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Abstract

This study explores how aridity (proxied with a measure of soil potential evapotranspi-

ration) impacts agricultural productivity and child wellbeing in Sub-Saharan Africa.

Climate conditions, crop yield, and infant health measures are collected over approx-

imately 4,000 grid cells of 0.5 x 0.5 in 34 countries. The results indicate that cells

with higher soil aridity suffer from lower agricultural productivity, and infants born in

arid areas are comparatively more likely to be underweight at birth and in the early

years. Additionally, the aridity measure in this study captured a large share of the

effect on crop yields and child health imputed to precipitations alone. The findings are

applied to model projections of future climate conditions to emphasize the importance

of accounting for aridity, alongside precipitations, when assessing the economic impact

of climate.
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1 Introduction

The effects of climate change and global warming have been a central issue in the recent

scientific and economic literature. Studies have found strong evidence of a relationship

between the evolution of weather factors and economic welfare, both at the micro and

macro level (Dell et al. 2008, 2012, Burke et al. 2015, Zhang et al. 2017, Peri & Sasahara

2019). Yet, while climate change is now irrefutable due to empirical evidence, the nature

of the aforementioned relationship remains unclear. The consequences of this accelerating

process for the planet and its inhabitants are still a matter of great discussion, and relatively

little consensus has been reached.

Among the numerous implications of climate change, water access for people worldwide

is a key concern. The availability of a reliable water source is crucial for developing sustain-

able human settlements as well as agricultural and economic systems, and water availability

is strongly influenced by precipitation and its intensity. According to current predictions,

global rainfall is expected to rise in the next few decades due to climate change. Panel A

in Figure 1 illustrates the upcoming trend in rainfall using five of the most commonly used

Earth System Models (ESM) for the periods 2040– 2079 and 2060–2099: all models predict

a consistent increase in global precipitation levels, roughly between 5.7% and 12.2%.

Most of the economic literature has examined the separate action of rainfall and tem-

peratures as key determinants of the amount of water available to individuals in developing

countries. Maccini & Yang (2009) use early-life precipitations in Indonesia to show how

fluctuations in agricultural output have a long-lasting impact on women’s health, school-

ing, and socioeconomic status. Kudamatsu et al. (2012) used rainfall and temperature to

determine how a period of relative drought affects infant mortality in Africa, finding that

in-utero drought exposure increases babies’ risk of death. In both these papers, nutrition

and malnutrition (experienced either by a mother or an infant during early life) constitute

the primary channel through which climate conditions affect individuals. Conversely, Jay-

achandran (2006) used rainfall shocks in underdeveloped rural India to explain the impact

of productivity shocks to agriculture on wages, migration, and credit constraints.

Based on these findings, rainfall can be thought to have, to a degree, a positive impact

on human development in rural settings, primarily through its beneficial effect on the

agricultural sector. While this consideration is supported by substantive evidence,

precipitations alone do not capture actual soil water availability, which also depends
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on concurring factors such as land quality, solar radiation, temperature, air humidity, and

wind speed. As climate change accelerates and temperatures rise globally, the stability of

the relationship between precipitations and water availability could be questioned. This is

not a mere technicality but rather has relevant implications in discussing the forthcoming

impact of climate change. If one fails to recognize the role of other critical determinants of

water availability, one may superficially believe that climate change could imply enhanced

water access. Thus, this paper reassesses the role of precipitations when matched with a

measure of soil water retention. It combines data on temperature and rainfall defined on a

0.5° X 0.5° (ca. 56km X 56 km at the equator) earth grid with an original measure of soil

aridification, namely potential evapotranspiration (PET), which considers the combination

of two sources of soil water loss: soil surface evaporation (i.e., the process whereby liquid

water is converted to water vapor and removed from the evaporating surface) and reference

crop transpiration (the vaporization of liquid water contained in plant tissues and the vapor

removal to the atmosphere; Allen et al. 1998). Following environmental research on the

topic, we assume PET as an indication of aridity of an area (Rind et al. 1990, Cherlet

et al. 2018). We study the differential impact of our measures on agriculture and infant

wellbeing in Africa, where the increase in precipitations is projected to take place similarly

to the rest of the world (Figure ??, Panel B).

The study proceeds in two steps. First, drawing from previous research identifying

agriculture as the primary mechanism through which rainfall impacts socioeconomic de-

velopment, this work aims to clarify whether a relationship exists between precipitations,

PET, and agricultural output. Data is gathered on crop suitability, production, harvested

land, and yield for a sample of 21 crops, covering 3,896 cells in 32 African countries.

Agricultural data from the Food and Agriculture Organization (FAO) is combined with

precipitations, PET, and temperatures. Moreover, climate variables are constructed, cal-

culated using the entire solar year or only the cell-specific growing season months. In this

study, a mostly negative relationship is observed between PET and crop yield, although

the ultimate effect depends on the composition of agricultural output in the area. More-

over, precipitation alone is found to be insufficient to explain variations in agricultural

productivity and becomes even a second-order factor when PET is considered.

Second, the study directly analyzes how PET influences the role of precipitations in

human development. Consistently with previous contributions in the literature, the focus

of the study is on the core indicators of infant health as a proxy for economic wellbeing
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(Aber et al. 1997, Benshaul-Tolonen 2018). Geolocalized data is combined from nationally

representative demographic and health surveys; across four survey waves, information is

obtained regarding women and children in 34 countries between 1992 and 2018, with a

primary focus on neonatal mortality, self-reported by women in the survey. On a subsample

of individuals, the study also documents the joint effect of rainfall and PET on body

mass index (BMI) at the time of interview and size at birth in children under five years

old. The study’s findings suggest that the tendency retrieved for agricultural productivity

reflects infant health. Indeed, children in more arid lands tend to be smaller at birth and

have systematically lower BMI values by the time of interview. The results prove robust

for redefining the primary outcome variables with comparable measures, such as weight-

to-height ratio. Aridity also exacerbates infant mortality, but the results are somewhat

unclear. Yet, an important finding is that the inclusion of PET absorbs part of the effect

previously imputed to precipitations.

This paper contributes to the economic and environmental literature on the effects of

weather conditions and climate changes in several ways. First, by using the most com

prehensive spatial data on PET and exploiting temporal and cross-sectional variation, the

study constructs a map of desertification in the African continent. Furthermore, this work

demonstrates how agricultural productivity tends to suffer from increasing evapotranspira-

tion, and the role of precipitations in boosting crop yields appears to be reduced when soil

aridity is considered . In this regard, the paper adds to the literature on rainfall’s effect on

agricultural productivity (Jayachandran 2006, Brückner 2012, Rosenzweig & Udry 2014,

Amare et al. 2018). In addition, as the results emphasize the importance of aridity in eval-

uating the consequences of climate change, this paper links to the current environmental

economics debate concerning adequate statistical measures to study the future of global

warming (Dell et al. 2014, Almer et al. 2017, Harari & Ferrara 2018).

Second, with further evidence, this research complements the relationship between pre-

cipitations and human wellbeing, thus adding to the literature on the effect of rainfall and

climate change in low-income countries on child health (Kudamatsu et al. 2012, Rabassa

et al. 2014, Bharadwaj et al. 2020) and other economic outcomes (Rose 1999, Barrios et al.

2010, Brückner & Ciccone 2011, Björkman-Nyqvist 2013, Rocha & Soares 2015).

The remainder of the paper is organized as follows: Section 2 summarizes the debate

on the future of precipitations and presents the data. In Section 3, we study the relation-

ship between rainfall, PET, and agricultural productivity. In Section 4, we transpose our
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research design to study the impact of weather conditions on child health. In Section 5,

we discuss our findings and list some of the caveats of our approach. Section 6 concludes.

2 Background and Data Description

2.1 The Geography of Desertification

There is an ongoing debate about the near-term evolution of global precipitation levels

among the several implications of rising temperatures and the changing composition of

earth, land, and sea. It was initially posited that climate change could lead to a wet-

get-wetter and dry-get-drier pattern (Held & Soden 2006) due to atmospheric moisture

convergence and divergence. Nonetheless, due to a lack of consistent empirical evidence,

this hypothesis has seemingly been replaced by a contrasting view: mean precipitations

are expected to increase at high- and mid-latitudes, but they will likely not decrease in

subtropical regions (Kirtman et al. 2013, Donat et al. 2016). In turn, average rainfall at

the global level is expected to increase in the coming years (Cherlet et al. 2018).

The premises alone suggest that the amount of water available to an individual in

developing countries for productive use, or even for simple subsistence, may increase in the

short and medium term and that, to the extent that higher levels of precipitations could

help prevent drought and boost agricultural productivity, rural communities may benefit

from weather modifications. Climate change could even have positive implications for

rural households in the upcoming decades, something that, possibly unexpectedly, could

buck the trend of the current discourse on future environmental threats. However, the

latter conclusion is potentially flawed and shortsighted. It fails to consider progressive soil

aridification parallel to changes in rainfall. As temperatures are expected to rise sharply in

the next few years, they are predicted to increase the rate of soil moisture loss, resulting in

mounting evapotranspiration rates. The World Atlas of Desertification (WAD) estimates

that drylands, defined as areas with a ratio of precipitations over PET less than 0.651, are

expected to increase between 10% and 21% by 2100 (Cherlet et al. 2018). This complicates

predictions regarding the impact of climate change on land productivity and well-being.

This study reconsiders the focus on environmental factors by taking soil aridity into

account. It assesses the direct effect of soil evapotranspiration on crop productivity and in-

1In the WAD, this ratio is referred to as Aridity Index (AI)
[
AI =

∑30
i=1

(
PETi
Preci

)]
.
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fant health measures and the role of rainfall in light of PET. To this aim, the study accesses

publicly available data collected by the Climate Research Unit (CRU), established at the

University of East Anglia and funded by the UK National Centre for Atmospheric Science

(NCAS). The CRU TS4.04 dataset contains gridded time-series data on month-by-month

variations in climate over the period 1901–2019, provided on high-resolution (0.5 \times

0.5 degree) grids2. To harmonize the different data sources on climatic factors, crop, and

infant health in this paper, the focus is on an area covering almost 40% of the entire African

continent. Moreover , as the study’s measure of infant mortality records some births tak-

ing place up to the early 1950s, this work focuses on weather conditions between 1951 and

2019 and considers three measures of climate variation: PET (mm/month), precipitations

(mm/month), and monthly mean temperature (°C). PET represents the amount of water

lost from a cropped reference surface that is not short of water (a hypothetical grass ref-

erence crop with specific characteristics). As such, this measure estimates the evaporative

demand of the atmosphere independently of crop type, crop development, and management

practices. PET estimates are calculated using a variant of the Penman-Monteith method,

which is briefly summarized in Section A.1.1 in Appendix.

We report the evolution of our environmental measures over the sample period in Table

1. 1. The mean yearly averages of each variable are included in time windows of 15 years

each. The predictions about increasing rainfall cannot be confirmed using historical data

and a limited sample period; however, the study’s series points in that direction. Indeed,

the level of average precipitations appears on a reverting trend, decreasing at first and then

rising again in the early 2000s. Conversely, average PET and temperatures are on a stable,

increasing path. Additionally, the process of aridification and rising temperatures seems

to accelerate starting from the 80s .

Table 1 reports summary statistics and correlations between the climate variables used

in this research. To interpret cross-sectional variability across grids, the average level of

yearly precipitations and PET throughout the sample period is plotted in Figure 2. While

PET shows steady but little volatility over time, the sample retains substantial cross-

sectional variation, ranging from areas with almost no evapotranspiration to cells where

this measure even exceeds the average level of precipitations.3

2As it is usually the case for model-computed weather data, the choice of the CRU database comes with
partial concerns regarding the quality of data. We justify the suitability of this dataset for our purpose in
Section A.1.3 in Appendix.

3When PET exceeds actual precipitation, it is an indication that the soil may eventually dry out, unless
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2.2 Measures of Agricultural Productivity

One of the aims of the present paper is to verify the existence of a relationship between

PET, precipitations, and agriculture. To this end, this study collects data on crop and

agricultural productivity from the Global Agro-Ecological Zones (GAEZ) v4 database,

which defines the cultivation potentials for approximately 50 crops for each location of

the globe. It is assembled based on grids, with a resolution of 30 arc-seconds (about 0.9

km x 0.9 km at the equator) and five arc-minutes (about 9 km x 9 km). For Africa, all

necessary information can be retrieved for a total of 22 crops, which represent a consistent

share of agricultural output in the area: on average, these crops account for roughly 75%

of the total harvested land in the cell. To compare the data with the climate variables

in this study, the cell size is harmonized to meet the structure of the CRU TS4.04. This

implies computing the average value (e.g., yield) or the total (e.g., harvested area) in the

corresponding wider cell.

From GAEZ, cell- and crop-specific data on the harvested area (thousands of hectares)

and crop yield (tons/ha) is retrieved. This information is available for two unique points

in time: 2000 and 2010. In addition, a suitability index (SI) is calculated using historical

climate between 1981 and 2010. This measure is a weighted sum of the component soil or

terrain suitability rating factors4 4.

Figure 3 plots the spatial distribution of the prominent crop family (i.e., the family

with the widest harvested area in the cell) across the grid in this study, averaging 2000

and 2010 values. The figure illustrates that agriculture on the African content is highly

reliant on cereals (e.g., maize and millet) and root-tuber crops (e.g., potato and cassava).

To confirm this evidence, a complete list of the available crops is included in Table 2,

which reports the average share of area devoted to each crop over the cultivated surface

instead of absolute quantities. According to the table, cereals such as maize and millet,

tubers such as cassava and yam, and olives account, on average, for a high share of the

cultivated areaa in each cell. Moreover, while the cultivable area devoted to each crop

remains, from 2000 to 2010, the average yield grows for almost all crops. This is explained

by a progressive improvement in crop management techniques, for example mechanization,

irrigation is used to outset the loss. However, that the effective amount of water dispersed depends also on
the type of plants cultivated on the land.

4Extensive details on the methodology employed to compute the indicators reported can be found in
Fischer et al. (2021).
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optimal applications of nutrients and chemical pesticides , and disease and weed control

Fischer et al. (2021).

Furthermore, we provide a measure of gross energy (kcal/kg of dry matter) of the raw

product for each crop5. This indicator is used to quantify yield in terms of caloric power

using tons produced. While this is only a proxy for the actual potential nutritional intake

related to each crop, it represents a measure of comparability among crops with vastly

different yields in terms of dry matter production. A study observation is that staple crops

in the sample tend to have similar gross energy values, although rice and cassava provide

less energy than cereals such as maize, millet, or sorghum.

2.3 Measures of infant health

This study combines data on weather factors and agricultural production with information

on child health from the Demographic and Health Surveys (henceforth DHS) database.

The program collects nationally representative data on health and population in developing

countries, compensating for the lack of high-quality infant health statistics, particularly in

Sub-Saharan Africa. In the present study, a dataset is constructed using up to four survey

waves, conducted between 1992 and 2018, for 34 countries. The survey is stratified into

clusters, which are geolocalized with displacement up to 2 km for urban and 10 km for rural

points6. Data from the Individual Recode dataset and the Child Recode dataset is utilized.

The former contains data on every eligible woman, including individual socioeconomic

characteristics, birth history, pregnancy, and postnatal care; the latter comprises some

core child health indicators for children under five years and their mothers. Here, the

study sample is restricted to women who experienced at least one completed pregnancy.

Table 3 summarizes descriptive statistics on mothers and infant mortality across the sample

period7. We obtained 468,873 women aged 13 to 50, corresponding to more than 2 million

birth entries between 1955 and 2019. However, wealth and education characteristics and

records on size at birth and BMI are available only for a subsample of individuals. These

leave us with a final sample of roughly 1.7 million births and more than 400,000 children

under five. The number of available children under five is instead almost 700,000.

5This information is retrieved through Feedipedia, an open access information system on that provides
information on nature, occurrence, chemical composition, nutritional value and safe use of nearly 1400
worldwide livestock and human feeds. Further details in Section A.1.2 in Appendix.

6The geographical distribution of clusters available in at least one wave is plotted in Figure A.1.
7All variables relevant for our study are described in Section A.1.2.
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Since this study considers a large number of countries and a variety of developing

settings, women in the sample are heterogeneous in terms of education and economic

wealth scores. Average schooling is relatively low: women in the sample, on average, have

attended school for less than four years, with almost 50% declaring having received no

formal education. Moreover, roughly 70% to 75% of the sample comprises women living in

rural households. As extensively highlighted in previous literature, fertility appears to be

high in the sample, with an average of more than five births per woman. These measures

tend to remain homogeneous across different survey waves.

The first outcome variable is infant mortality, retrieved from a woman’s reporting

of completed pregnancies. The variable is a binary indicator taking a value of 1 if a

woman reports the child to have died within 12 (60) months from the declared date of

birth. This methodology of computing infant mortality has already been adopted in the

literature employing DHS data (Kudamatsu et al. 2012, Benshaul-Tolonen 2018). As Table

3 indicates, despite a steady decrease, the average probability of a pregnancy resulting in

a child’s death ranges from 8.4% (12%) to 6.2% (8.9%) across the survey waves. However,

infant mortality is highly volatile across the sample, with large standard deviations common

to all rounds. Moreover, there seems to be only a negligible difference between the mortality

rate of male and female children in the sample.

In addition to child mortality, other infant health indicators are analyzed in this study

to provide further evidence of the mechanism discussed in the paper. This study considered

a measure of BMI calculated using the new Child Growth Standards (CGS) from WHO

at the time of interview and a categorical variable indicating whether the child’s size at

birth was below or above average8. These measures allow us to understand better whether

aridity could also affect the health of those who survive. These indicators have been

collected irregularly throughout the DHS waves; hence they are only available for a subset

of children under five years of age. From Table 3, we notice that kids in our sample display

consistently below-average weight/height ratio (the average child falls in the left tail of

the weight/height distribution, around the 40th percentile), while for BMI this appears

only towards the last waves survey collection. Unsurprisingly, this is not captured in our

measure of size at birth, given that the average size of a child is determined by mothers

8Later in the analysis, we check the robustness of our findings using a slight variation of our outcome
measures. We focus on five years mortality, and the ratio of weight over height, expressed in standard
deviations and again calculated using the CGS method.
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through comparison with their peers. All three measures retain strong volatility across the

sample.

To explore the link between crop productivity and human development, a positive

relationship is documented in Figure 4 wwhere the cross-sectional correlation between

average crop yield and the mean value of the health measures is plotted. As this figure

illustrates, average yield at the cell level is negatively correlated with child mortality and

positively correlated with BMI, weight-to-height ratio, and size at birth.

3 Aridification and Crop Productivity

The attempt to predict the impact of climate change on crop production is rarely retrieved

in the economic literature , but it has been a highly debated topic in environmental sciences

(e.g., Vermeulen et al. 2012, Asseng et al. 2013, Challinor et al. 2014). While no definitive

consensus has been reached, researchers have highlighted how the effects of global heating

and weather modifications may be heterogeneous, depending mainly on the predominant

agricultural output in a region and the population’s ability to foresee and adapt to climate

shocks (Kandlikar & Risbey 2000, Lema & Majule 2009, Juana et al. 2013).

Economists often indicate agricultural productivity as a primary mechanism through

which precipitations affect socioeconomic development. Indeed, especially in low-income

countries and rural areas, agriculture directly supplies food and nutrition to and constitutes

a significant source of income for individuals. Still, relatively little is known about the

relationship between crop productivity and PET . On the one hand, one may expect a

rising trend in PET to negatively impact agricultural output, given the exacerbated soil

water loss, which subtracts nutrients from growing plants. However, it is well understood

that rainfall is a vital determinant of cultivation potential. On the other hand, as PET

partially reflects higher temperatures and more intense solar radiation, its increase may

benefit crops requiring long sun exposure to reach maturity. Moreover, there is no evidence

of the role of PET when compared to precipitations. The evidence presented in this section

corroborates the belief that an increase in PET may constitute a potential threat to crop

productivity in this study’s sample.
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3.1 Methodological Approach

Studying the effects of aridification is especially cumbersome because, differently from other

forms of weather shocks, it encompasses a gradual change over a long period. To meet the

characteristics of the available data sources, this study focuses on the yearly realization

of precipitations and PET and their impact on agricultural output. This approach does

not directly assess the effect of the slow deterioration of soil’s capability to retain water.

However, it allows one to highlight the importance of soil evapotranspiration on crop

productivity relative to other environmental factors. Together with the abovementioned

projections on the evolution of climate conditions in the upcoming decades, the results can

thus indirectly contribute to the debate on the long-term effects of raising PET.

The following baseline specification is thus estimated:

log(Y )c,k,t =
1∑

r=0

α1,rPRE
g
c,t−r +

1∑
r=0

α2,rPET
g
c,t−r + γXk,c,t + δk(c)(t) + εk,c,t (1)

where log(Y )c,k,t represents the natural logarithm of the yield of crop k at time t in cell

c. In this section, the time dimension comprises only two years, 2000 and 2010. PREc,t

and PETc,t are respectively the levels of precipitations and potential evapotranspiration

at time t in cell c. The superscript g indicates whether the variable is measured over

the entire year or only considering the cell’s growing season months. To explore the time

dependency of agricultural output with water availability, we also include a one-period lag

of both variables. Xc,t,k comprises of a set of crop- and cell-specific controls. Among those,

to make sure PET is not merely acting as a proxy for temperature, we control for it at

time t in cell c. In addition, given that environmental conditions in a cell are inevitably

correlated with the typology of crops cultivated and that different crops may be more or

less resilient to climatic fluctuations, we add a Suitability Index of crop k in cell c (the

index is time-invariant, and calculated over the 30-year period between 1981 and 2010).

Finally, δk,(c,t) represents three sets of crop, cell and time fixed effects.

To cope with potential attenuation bias in the main coefficients deriving from measure-

ment error in precipitations and PET, in the spirit of Maccini & Yang (2009), in addition

to our linear model we estimate an instrumental variable regression, in which actual rain-

fall and evapotranspiration in year t and cell c is instrumented using the average of the
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corresponding measure in up to eight neighbouring cells in the same year9. With this

methodology, we obtain highly correlated instruments for precipitations and PET (corre-

lation between the environmental measure and its corresponding instrument computed in

neighboring cells is always more than 85%). The validity of this approach relies on the

assumption that measurement error is orthogonal across neighboring cells and uncorrelated

with the error of the instrumented variable.

While Equation 1 captures the average effect of precipitations and PET in a cell that

harvests multiple crops, it is informative to look separately at the impact on each culti-

vation, to assess the existence of important heterogeneity. We thus estimate Equation 1

separately for each crop k ∈ I, (with dim(I) = 22), thus obtaining a set of coefficients:

log(Y )c,k,t = αPREg
c,t + α2,kPET

g
c,t + γXc,k,t + δc(t) + εc,k,t (2)

As highlighted above, the sign of the set of α coefficients is ultimately an empirical

question. It is also unclear whether the inclusion of PET could influence the effect of

precipitations. Indeed, if one considers precipitations and soil evapotranspiration as two

entirely independent processes, using PET may increase the model’s explanatory power

but leave almost unaltered considerations on precipitations. Conversely, to the extent that

meteorological factors may determine some non-negligible correlation between these two

measures, adding PET into the equation may resolve some omitted variable bias and hence

help to reconsider the role of rainfall in the literature.

3.2 Empirical findings

The estimates of Equation 1 are reported in Table 4. To ease interpretation, both environ-

mental measures are standardized. Following standard practice in the literature, we focus

on the five major crops by harvested area (Jayachandran 2006)

The results demonstrate the fundamental impact of PET on crop yield compared to

precipitations. When rainfall is included alone as the primary explanatory variable, its

effect on crop yield is positive and strongly significant: one standard deviation increase in

precipitations raises yield by 6.15% (Column 1). The inclusion of PET in the regression

9Given data availability in our grid, not all cells have environmental measures for all surrounding neigh-
bours. The average number of cells used to compute the instrument is 7, with a minimum of 2 and a
maximum of 8.
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has a two-fold implication. First, evapotranspiration appears to impact agricultural yield

significantly: when PET increases by one standard deviation, yield is expected to decrease

by 32.67% (Column 2). Second, the effect imputed to precipitations is almost three times

lower than that in the previous regression and is still strongly significant. The inclusion of

lagged terms for precipitations and PET (Column 3) and the use of the study’s instrument

for potential measurement error (Column 4) only marginally affect the magnitude of the

main coefficients of interest, while the significance is partially lost only for precipitations
10.

In Panel B, we report the estimates of Equation 1 using as main independent variables

climate conditions calculated using uniquely growing season months in the cell11. TThe

tendency highlighted in Panel A seems to persist. Yet, the magnitude of the coefficients

is considerably lower, particularly for PET. One standard deviation increase in growing

season evapotranspiration decreases crop yield by between 0.37% and 5.6%, with scattered

significance. Similar considerations could be made for the effects of precipitations in the

growing season, although it is still evident that accounting for PET captures part of the

previously attributed to rainfall. It seems that weather conditions even outside growing

season months affect agricultural productivity. This can be easily explained by the fact that

farmers may not comply with model-derived harvesting periods, since the latter consider

the average crop composition in the cell.

Furthermore, this study explores the possibility of heterogeneous responses to fluctu-

ations in rainfall and PET levels depending on the specific crop, followed by an iterative

estimation of Equation 2. We obtain a set of 22 coefficients for each climate measure;

to enhance visualization, we focus here on PET and plot the coefficients in Figure 5. As

it emerges from the graph, some crops appear to benefit from greater evapotranspiration

(e.g., olive, banana). Nonetheless, focusing on those products that account for the average

highest shares of cultivated land in the cell (whose coefficients are plotted with a darker

shade), higher levels of PET appear to reduce yield systematically.

While the estimates in Table 4 reveal a drop in productivity suffered by African staple

crops due to high PET, the actual implications of such yield loss might be hard to quantify,

as crops entail significantly different amounts of dry mass production. To better understand

10First stage coefficients for the estimates in Column 4 are reported in Table A.3 in Appendix
11Data on the growing season in each cell are available through the GAEZ v4 database, starting from

1960. Growing season is calculated using the beginning date of the earliest growing period and total number
of growing period days. Further details are provided in Appendix A.1.2.

13



the impact of aridity and rainfall, we thus newly estimate Equation 1, this time using our

data on dry-mass caloric intake to express crop yield in terms of kcal/m2. The results are

report in Appendix, Table A.1. The results are very similar to those presented in Table 4,

and the trend in the coefficients is unchanged. Focusing on yearly values of precipitations

and PET (Panel A), when precipitations are the main explanatory variable, one standard

deviation increase implies an expected yield gain of 6%. The predicted increase is three

times lower when PET is brought into the picture. Conversely, PET maintains a robust

negative impact on caloric yield: one standard deviation increase in PET implies between

a 32% and 45% kcal/mˆ{2} loss, with all coefficients maintaining strong significance. The

inclusion of environmental controls during the growing season (Panel B) again significantly

reduces the magnitude of the coefficients, with very similar coefficients to what was observed

for yield in dry mass.

It appears that aridity can substantially impact agricultural productivity, leading to a

significant loss in dry product mass and caloric intake of the overall production. Yet, while

the average effect appears to be strongly negative, each area could be affected differently

depending on the production mix adopted in the agricultural sector. As such, whether an

average productivity loss may have health implications for inhabitants remains an open

question, which this study attempts to address in Section 4.

4 Precipitations, PET and Infant Health

As seen so far, soil evapotranspiration could influence crop productivity and lead to a

sensitive loss in agriculture yield, depending on the characteristics of the cultivated land.

In an area such as Sub-Saharan Africa, where most of the population lives in rural areas,

agriculture has historically accounted for more than 50% of the gross domestic product

(GDP) until the beginning of the 90s (Diao et al. 2007), and agricultural productivity

has been key. Even at the time of writing, in the 34 countries in the sample, in 2020

agriculture, forestry, and fishing accounted for an average of 21.4% of the GDP, with some

countries even exceeding 50% 12. As such, by impacting agricultural productivity, aridity

could affect human development through the channels analyzed in the literature on rainfall.

12Source: World Development Indicators, The World Bank Group: Agriculture, forestry, and fishing,
value added (% of GDP). Data for Comoros, Cote d’Ivoire, Mozambique, are available from 2019. Data for
Zimbabwe are available from 2018.
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This section quantifies the effect of PET on health indicators that can serve as proxies for

economic well-being.

Once again, a linear fixed-effects panel data model is employed, exploiting exogenous

variation in weather conditions in each year and across cells to identify the effects of rainfall

and PET on the infant health indicators in this study. To compare the impact of PET and

precipitations, an unbalanced panel dataset is assembled using the DHS.

The following equation is estimated:

Yi,m,q,c,t =

1∑
r=0

β1,rPRE
g
c,t∗−r +

1∑
r=0

β2,rPET
g
c,t∗−r + ρXi,m,c + σtrend + φq(t∗) + εi,m,q,c,t

(3)

where Yi,m,q,c,t∗ now represents our measure of infant health for child i born from mother

m in cluster q, in cell c. t ∈ {t∗, t̃} can represent either a child’s year of birth (t∗) or the year

of interview (t̃). As main regressand, we consider a measure of infant mortality (mortality

at one year), BMI in standard deviations recorded at the time of interview and size at

birth. We also assess the robustness of our results on a different yet comparable set of

outcome variables (mortality at five years and weight/height ratio).

In our baseline specification, the reference model for the binary outcome variable of

infant mortality is a linear probability model (LPM). Using a linear estimator eases the

interpretation of the coefficients and allows for immediate comparisons between the differ-

ent specifications. Moreover, this choice is deemed to be preferable given the ample set of

fixed effects included in the regression13.

The primary environmental measures of rainfall and PET are defined as in Equation 1,

and calculated at a child’s year of birth (t∗). Lagged terms are still included, which, in this

case, have a slightly different interpretation. Levels of precipitations and PET may impact

infant health by impinging a mother’s physical wellbeing or ability to effectively take care

of her child. Thus, the study controls for weather conditions one year before childbirth,

which more clearly isolates a potential effect on the mother that is not directly linked to

the child’s health.

13While it is possible to estimate non-linear models through iterative algorithms, such as Iteratively
Reweighted Least Squares (IRLS), some theoretical challenges exist regarding the existence of a solution to
the algorithm or whether relevant parameters are identifiable.
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Xi,m,c includes a set of covariates at birth, woman, and grid level. Since information was

obtained on each child’s year and month of birth, the year is taken as the time dimension,

but the study accounts for the month of birth as a control. This approach allows for

seasonality in precipitations and PET to be smoothened out, while accounting for infant

health may be influenced by exposure to weather conditions both in utero and immediately

after childbirth. Moreover, the study controls for a mother’s education and self-reported

wealth index, the main source of water supply in the household, and again for temperature

in the grid at time t or in the corresponding growing season, for the same reason as above.

Moreover, φc(t) includes two sets of time and cluster fixed effects 14. Lastly, the term σtrend

captures country trends.

Based on previous findings and the existing literature, PET and precipitations are

expected to have opposite effects on infant health. Once again, however, it is an empirical

question whether controlling for PET in the estimation can also affect the impact of rainfall,

as observed for crop productivity.

4.1 Baseline Results

Table A.2 reports the estimates of the impact of precipitations and PET from Equation 3.

As in previous sections, in Panel A, weather variables are computed over the entire year

of reference, while in Panel B, they are calculated in the corresponding growing season.

PET and precipitation variables are standardized to ease comparison. By first examining

Panel A, in Column (1), the effect of precipitations alone on infant mortality within one

year can be estimated. Higher rainfall seems to prevent infant mortality partially: one

standard deviation increase reduces mortality by 0.26%. The coefficient of the lagged term

also reveals that some of the effects of precipitations on mortality could already be in place

in utero, as one standard deviation increase in rainfall in the year before birth decreases

mortality by 0.14%, with a 5% significance level. When adding PET into the regression

(Column 2), however, the effect of precipitations drops to 0.15% in the year of birth and

approaches 0 one year before (Column 2). The effect also appears to be stronger compared

to rainfall, as one standard deviation increase in PET increases expected mortality by

0.63%. Conversely, PET displays positive coefficients, suggesting a detrimental effect of

increased PET on infant mortality. However, significance is not reached in OLS estimates,

14Adding cluster FEs consitutes a more conservative approach compared to cell FEs, as a cell in our grid
contains at least one cluster.
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while the coefficient for PET {t-1} is significant at a 5% level in our IV specification

(Column 3).

A similar tendency can be observed for BMI (Columns 4 to 6): when precipitations are

included alone, one standard deviation increase raises BMI by 0.0746 standard deviations

in the year of birth and 0.0331 standard deviations in the previous year. When PET is

brought into the regression, the joint effect of the two terms is roughly halved. Conversely,

PET appears to harm BMI, which again becomes strongly significant when instrumenting

weather measures: one standard deviation increase in PET decreases BMI by 0.136 stan-

dard deviations in the year of birth and by 0.1246 standard deviations in the previous year

(Column 6). Finally, examination of the size at birth reveals a similar tendency, although

the effect of aridity is not always significant.

Panel B reports the same estimates, with only growing season months, with environ-

mental measures computed. Most of the coefficients remain comparable in terms of both

magnitude and significance, but the effect of the main regressors generally appears smaller

across specifications, as highlighted in Table 4. It thus appears again that, while the dis-

crepancy between the estimates in the two panels is now lower, environmental conditions

can impact child health even outside growing season months.

As Table A.2 indicates, the results observed for infant health are robust when sub-

stituting the outcome variables adopted with similar measures of health and mortality.

Indeed, repeating the estimation with mortality within five years and weight-to-height ra-

tio in standard deviations returns remarkably similar coefficients, both in magnitude and

in significance.

From the analysis performed in this section, a similar tendency emerges to that depicted

for agricultural productivity. First, the effect of precipitations and PET tends to move

in opposite directions. More importantly, whenever PET is introduced in the analysis,

the explanatory power of rainfall systematically decreases. The remainder of the paper

addresses some potential endogeneity concerns when testing the results’ robustness and

explaining the findings’ implications.
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5 Robustness and Additional Evidence

5.1 Farmers’ adaptation

Despite the inclusion of high-dimensional fixed effects and the intrinsic exogeneity of

weather conditions, farmers’ endogenous adaptation to climate change could affect the

estimates. On the basis of the hypothesis that farmers can foresee the evolution of soil

evapotranspiration and temperature, possibly by observing decreasing yields through time,

they may revert to crops that benefit from a warmer climate and require a lower amount

of water throughout the growing period. Under this assumption, the impact of evapotran-

spiration on agricultural productivity may be underestimated.

This potential concern is confronted in two ways in this study. First, the limited

change in cell-specific crop composition is highlighted between 2000 and 2010. The average

absolute variation in the harvested area devoted to each crop is roughly 0.2 hectares,

corresponding to 1.8 percentage points of relative harvested share. Therefore, on average,

more than 40% of cultivated area in a cell is devoted to a single crop, while the four major

crops sum up to roughly 80%; such slight variation implies no dramatic conversion in the

composition of harvested land.

Furthermore, to raise endogeneity concerns, the change in crop composition should be

non-orthogonal to the variation in precipitations and PET, thus reflecting farmers’ adap-

tation to climate change. If this were the case, one might observe that farmers reorganize

agricultural production toward plants that are generally more suitable to the evolving

climate conditions. The index of suitability is exploited to explore this instance. A suit-

ability score (SSc) is calculated for each cell c in 2000 and 2010, according to the following

expression:

SScc,t =

K∑
k

SIk,c ·Hark,c,t (4)

where K ∈ {2, 3, ..., dim(I)} and t ∈ {2000, 2010}. We then compute the score differential

between 2010 and 2000 for each cell (∆SSc). We plot the distribution of the resulting ∆SSc

in Figure 6. Two considerations are in place. Firstly, the probability density function of

∆SSc appears symmetric and centered around zero, with limited variability (the average

gain in suitability score is 3.6 points, with 231.7 standard deviations). This sustains the

18



belief that there is no systematic direction in crop substitution, which instead appears

relatively randomic. In addition, even relaxing the previous assumption, the average SSc

gain (when ∆SSc in indeed positive) is negligible provided that the average score is around

2000 points.

Despite little descriptive evidence of the endogenous adaptation of farmers, this study

also proposes a more analytical strategy to further alleviate this concern.

The unexpected variation in precipitations and PET in a given year is computed and

used as the main predictor of agricultural yields. Under the assumption of endogenous

adaptation to increasing aridity, much of the effect observed in the paper should indeed be

captured by the unpredictable component of PET volatility, to which farmers fail to adjust.

Farmers’ expectations regarding future weather conditions must hence be modeled. The

literature exploring their decision-making process has observed that farmers tend to form

predictions and carry out harvesting operations based on a heuristic connecting past climate

conditions Guido et al. (2020), seemingly looking back to up to three years Zaveri et al.

(2020). Thus, we model farmers’ expectations using an exponentially decaying weighted

average, in which historical weather conditions up to N years in the past are weighted by

a discount factor ρ, according to the following equation:

E[V ]t =
N∑
i=1

ρi−1Vt−i

ρi−1
(5)

and use expected values to estimate Equation 1 with unexpected variation in precipitations

and PET as main regressors, i.e.:

log(Y )c,k,t =
1∑

r=0

α1,rP̂RE
g

c,t−r +
1∑

r=0

α2,rP̂ET
g

c,t−r + γXk,c,t + δk(c)(t) + εk,c,t (6)

where V̂t = Vt − E [Vt], and other terms are defined as in Equation 1. We estimate the

coefficients for two values of N (N ∈ {3, 5}) and four values of ρ (ρ ∈ {0, 0.5, 0.7, 1}).
These value of the two parameters include the scenario of fully adaptive expectations, i.e.

farmers inferring current rainfall and PET looking uniquely at values in the previous year

(E[V ]t = Vt−1).

We report the coefficients of interest in Table 6. While the effect of unexpected variation

in precipitations is fuzzy, with coefficients switching sign and generally high standard errors,
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unexpected PET appears on a more stable path: the coefficients are systematically negative

and always strongly significant. However, it is reassuring to notice that the magnitude

of the coefficients is considerably lower than those estimated in Table 4, in an order of

magnitude of roughly 0.1 to 0.2. This, in turn, implies that the effect of PET cannot be

imputed uniquely to its unexpected component, reinforcing even further the belief that

limited adaptation, if at all, is not enough to obfuscate significantly our findings.

5.2 Migration

If one assumes that climate change may push people to move toward more productive

regions based on some non-random characteristics, the results could again suffer from

endogeneity. Another concern may pertain to endogenous migratory flows. Two primary

considerations are in place.

First, based on the visual representation of the sample’s precipitations and PET levels

in Figure 2, these climate factors show some spatial correlation. As such, migration would

be of higher concern if one hypothesizes that people displace non-randomly to considerably

different climatic areas. It can anecdotally be argued that, given the preeminently internal

nature of migration in Sub-Saharan Africa, one may not expect this to be the case often.

Second, the information contained in the sample can be used to strengthen the study’s

claim. Indeed, for around 60% of women in the sample, information has been retained

regarding the number of years they have lived in their current residence. More than 80%

of those women had been living in the same place of residence for more than 15 years at

the time of the interview. Estimates of Equation 3 are thus repeated, limiting the sample

to these individuals. This threshold is chosen to balance the tradeoff between the loss

of observations and the impossibility of households relocating following an evaluation of

climate conditions. As such, this study assumes that migrations that occurred more than

15 years in the past are uncorrelated with the climate conditions at time t.

Observing significant discrepancies with the study’s baseline estimates would support

the hypothesis that individuals tend to react to climate change by relocating endogenously,

and the study’s coefficients would not capture the true effect of precipitations and PET.

However, the results reported in the Appendix (Table A.4) seem to alleviate this concern.

First, the loss of information (roughly 25% of the overall sample) translates into a partial

loss of significance. Yet, the order of magnitude and general trend in the coefficients appear
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to be mostly unchanged. Such evidence offers reassurance that the coefficients capture the

true effect of yearly rainfall and aridity on child health.

6 Calculation of Aridification Losses

Throughout the analysis, standardized coefficients were presented for all climate variables

of interest to compare the contribution of precipitations and PET in explaining crop yield

variability and child health. While these estimates serve, at best, the narrative of the

present paper, they provide no information on whether the impact of aridity is economically

relevant for policymakers. To determine the degree to which the process of aridification

could impact the measures of agricultural productivity and socioeconomic development

employed in this paper, unstandardized coefficients are estimated, and a short back-of-the-

envelope calculation is performed15. This study emphasizes that the average PET across

the grid has steadily increased since the 1980s. Since then, average PET across the grid has

increased by roughly 40 mm/year (around 1.8 mm when considering growing season months

uniquely). The yearly marginal estimates in Table A.6, suggest that the evolution of the

African climate since 1980 is responsible of an average yield loss between 4.4% and 6%,

in addition to a decrease in children BMI by between roughly 0.015 and 0.0175 standard

deviations and a 0.008-unit drop in the average size at birth class. Despite some evidence

that mortality could have been affected, the estimates do not allow for a precise inference

of this effect.

While progressing aridity appears to have contributed to harming agricultural produc-

tivity and the health of African children throughout the sample period, neglecting the role

of PET has especially crucial implications if one focuses on climate simulations for the next

century. To this end, this study obtains projections of future levels of PET and rainfall

over two time horizons (2040–2079 and 2060–2099) for the sample grid from five different

ESMs16 over two representative concentration pathway (RCP) scenarios. RCPs represent

pathways for greenhouse gas concentration trajectories and vary depending primarily on

a set of assumptions about the human response to the climate emergency. The study fo-

15The estimates can be found in Table A.5 and Table A.6 in Appendix.
16The time series at 0.5° Ö 0.5° grid resolutions are produced by five ESMs: GFDL-ESM2M, HadGEM2-

ES, IPSL-CM54-LR, MIROC-ESM-CHEM, NorESM1-M. These are all part of the Coupled Model Inter-
comparison Project Phase 5 (CMIP5). More information about the nature and specificities of these models
can be found in Noce et al. (2020).
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cuses on RCPs 4.5 – often addressed as an “intermediate” and more likely scenario, which

foresees a peak in emissions between 2010 and 2030, followed by a decline throughout the

21st century – and 8.5, a “worst-case” scenario under which the emissions curve does not

flatten in the next 100 years.

We report the sample average of the simulated levels in Table 7, which shows that the

RCP scenarios differ most significantly in PET predictions, while rainfall projections remain

relatively stable. Moreover, the discrepancy intensifies as predictions extend further into

the future. The estimated coefficients are then applied to the simulated series to quantify

the importance of controlling for PET. First, the net effect of the increase in precipitations

is calculated using only estimates from the specifications that do not include PET. The

projected precipitations are considered relative to the observed 2010–2019 average level.

Under RCP 4.5, all else equal, the increase in precipitations is expected to boost crop yield

by 0.77 to 1.72 percentage points and raise children’s BMI and size at birth by 0.0097 to

0.022 standard deviations and 0.008 to 0.017 points, respectively. However, when PET is

included, the net effect of the climate’s projected evolution changes dramatically . The

net impact on crop yield oscillates from a 1.9% gain to an 8.5% loss. The same applies for

BMI and size at birth, which stand between +0.013 and -0.0311 and between +0.008 and

-0.02 points, respectively. Notably, only those models that do not foresee a sizable increase

in evapotranspiration still allow for positive predictions regarding the impact of climate

change on water availability.

Under the RCP 8.5 scenario, accounting for PET projections has even more substantial

implications. Predicted gains in crop yield (+0.83% to 2.39%), children’s BMI (+0.01 to

+0.03), and size at birth (+0.008 to +0.024) turn into considerable losses (-5.8 to -45.89%

for crop yield, -0.01 to -0.12 for BMI, and -0.007 to -0.057 for size at birth). While this is

a less likely scenario, it provides a negative benchmark on how aridity could dramatically

impact African households in the next decades

7 Conclusion

This paper reconsiders the role of precipitations as soil aridification subsists, adding to the

current debate on the effects of climate change on human development. The impact of

precipitations and PET on crop productivity and child health are examined on a grid of

more than 4,000 cells of 0.5 x 0.5 in Sub-Saharan Africa.
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When considered alone, higher rainfall has, on average, a positive effect on crop yields,

although this result is conditional on the composition of the area harvested in the cell. One

standard deviation increase in precipitations increases the average yield of the five most

cultivated crops by 6%. However, when PET is considered, the effect of precipitations

fades, offset by the strong negative impact of PET on yield: one standard deviation increase

implies a yield loss between 31.9% and 45.6%.

Furthermore, the study investigates the effect of water availability on child health indi-

cators. A similar pattern is observed: the inclusion of PET not only harms health (reducing

a child’s size at birth and BMI at the time of interview) but also reduces the impact of

rainfall. These results have important policy implications. Enhancing agricultural produc-

tivity and ensuring the food security of rural communities emerge as crucial points on the

agenda of policymakers, given the future rise in temperatures and soil evapotranspiration.

However, these findings are not final. Future research should focus on understanding

farmers’ ability to adapt to the challenges of global warming and the ways in which planting

substitution could counter the negative impact of aridification. Furthermore, new avenues

for investigation should analyze how evolving societies and climate change impact the

transmission mechanism between agricultural productivity and human development.
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Tables

Table 1: Summary statistics - Climate variables

1951-1965 1966-1980 1981-1995 1996-2010 2010-2019 Avg growth

Prec 1064.9 1032.9 965.6 1006.1 1016.9 -0.3%

(545.99) (527.67) (523.01) (520.64) (516.55)

[1.67 ; 3,194.77] [2.44 ; 3,110.26] [2.09 ; 3,107.39] [2.07 ; 3,102.73] [0.89 ; 2,959.36]

PET 1402.1 1396.6 1412.0 1431.9 1435.7 0.07%

(315.89) (314.28) (310.26) (318.03) (310.12)

[809.00 ; 2,664.20] [811.60 ; 2,680.00] [823.20 ; 2,704.00] [822.20 ; 2,794.80] [836.67 ; 2,713.33]

Temp 23.231 23.243 23.555 23.905 23.993 0.07%

(3.58) (3.61) (3.58) (3.58) (3.56)

[8.76 ; 29.68] [8.90 ; 29.¡93] [9.35 ; 30.15] [9.51 ; 30.65] [9.99 ; 30.68]

Correlations

Prec PET Prec PET Prec PET Prec PET Prec PET

PET -0.58 . -0.62 . -0.63 . -0.63 . -0.61 .

Tmp 0.21 0.39 0.13 0.41 0.13 0.41 0.13 0.42 0.13 0.40

Notes: summary statistics are shown on a sample of 4,052 grid cells. Precipitations and PET
show the total millimetres of rain and water lost by the soil in the year, averaged throughout
the indicated period, while temperature is an yearly average (◦C). Standard deviations are
reported in parentheses; minimum and maximum values are reported in brackets. The average
growth column is calculated as ∆ = 1/T

∑T
t (Xt+1 − Xt)/Xt, where T is the entire sample

period (68 years).
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Table 2: Summary statistics - Agricultural outcomes and productivity

Harvested Yield∗∗ Suitability Water req∗∗∗∗ Gross energy

share (% tot)∗ (avg, t/ha) Index∗∗∗ (avg, mm/ha) (avg, kcal/kg)

2000 2010 2000 2010 1980-2010

Maize 0.22 0.24 1.46 1.77 3082.66 650 4466.42

(0.20) (0.19) (1.08) (1.42) (1,729.77)

Olive 0.16 0.17 1.51 2.55 89.32 500 4920.23

(0.20) (0.18) (1.57) (2.01) (515.27)

Cassava 0.15 0.14 7.82 9.13 3575.96 550 4012.61

(0.14) (0.12) (3.23) (4.71) (2,060.48)

Millet 0.12 0.10 0.71 0.75 892.95 550 4227.57

(0.17) (0.16) (0.36) (0.47) (1,482.21)

Sorghum 0.10 0.10 0.94 1.01 3267.54 550 4514.19

(0.11) (0.12) (0.90) (0.89) (2,076.29)

Rice 0.10 0.11 1.67 1.96 1548.43 575 3893.19

(0.17) (0.17) (1.44) (1.61) (1,355.12)

Yam 0.09 0.09 6.15 6.95 2996.28 . 4132.03

(0.11) (0.12) (3.10) (4.76) (1,858.26)

Wheat 0.08 0.08 2.96 2.63 1482.51 550 4418.65

(0.14) (0.14) (2.25) (2.05) (1,610.57)

Pulses 0.08 0.09 0.23 0.25 3107.48 675 4370.88

(0.07) (0.08) (0.12) (0.14) (1,580.30)

Barley 0.08 0.07 1.86 2.31 193.50 550 4442.53
(0.13) (0.13) (1.71) (1.58) (886.96)

Coffee 0.07 0.07 0.91 0.90 2424.94 425 4657.50

(0.13) (0.13) (0.91) (0.75) (1,946.88)

Groundnut 0.06 0.07 0.88 0.92 2464.53 600 4633.61

(0.08) (0.08) (0.51) (0.52) (1,628.93)

Cotton 0.05 0.03 0.86 0.98 2570.88 1000 5684.53

(0.08) (0.06) (0.54) (0.74) (1,402.07)

Vegetables 0.03 0.03 1.28 1.47 1911.59 433 .

(0.04) (0.05) (0.86) (1.10) (1,162.70)

Sugarcane 0.03 0.02 54.41 54.16 2890.75 2000 4394.76

(0.05) (0.05) (31.02) (32.87) (1,877.00)

Potato 0.02 0.03 6.02 7.61 785.99 600 4012.61

(0.03) (0.03) (5.18) (7.03) (1,254.33)

Sunflower 0.02 0.03 0.80 0.79 2071.86 800 6854.88

(0.05) (0.05) (0.51) (0.36) (1,946.71)

Banana 0.02 0.02 9.64 13.39 1828.20 1700 4108.15

(0.03) (0.03) (9.69) (12.51) (1,683.12)

Sugarbeet 0.02 0.02 51.31 55.77 128.36 650 4036.50

(0.03) (0.03) (9.24) (10.17) (644.53)

Soybean 0.01 0.02 1.11 1.08 3050.71 575 4347.00

(0.02) (0.04) (0.60) (0.58) (1,790.60)

Tobacco 0.01 0.01 0.96 0.88 2507.20 500 .

(0.01) (0.02) (0.55) (0.58) (1,563.73)

Rapeseed 0.01 0.01 0.71 1.16 972.40 . 5063.53

(0.02) (0.01) (0.33) (0.47) (1,577.97)
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Notes: mean values over a grid of 3,896 cells are reported.
∗Harvested area for each crop is reported as a share of the total area cultivated.
∗∗ Crop yield is expressed in tons per hectare of area cultivated.
∗∗∗ Suitability Index (SI) is defined on a scale 0-10000.
∗∗∗∗ Water requirements indicate water yield and water requirements are expressed respectively
in tons and millimetres per hectare of area cultivated.
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Table 3: Summary statistics - Mothers and children

All Wave III Wave IV Wave V Wave VI Wave VII Min Max

sample

Count

Sample characteristics∗

N. countries 32 3 14 13 28 12

N. clusters 36842 859 7885 6433 16010 5655

Mothers 468873 11277 120289 110359 186949 89867

Births 2358849 46343 511967 501581 979807 319151

Births u5 697710 12237 132073 149913 296656 106831

Mean (sd)

Mother’s characteristics

Age 35.254 35.630 36.041 35.083 35.061 34.796 15 50

(8.07) (8.02) (8.02) (8.15) (8.03) (8.05)

Education 3.451 2.469 2.852 3.806 3.558 3.669 0 27

(4.18) (3.99) (4.12) (4.00) (4.23) (4.29)

Wealth∗∗ 2.796 . 2.822 2.804 2.790 2.781 1 5

(1.40) . (1.42) (1.39) (1.40) (1.40)

Rural household 0.279 0.263 0.266 0.230 0.296 0.330 0 1

(0.45) (0.44) (0.44) (0.42) (0.46) (0.47)

Births 5.402 5.724 5.673 5.694 5.226 5.004 1 19

(2.75) (2.67) (2.78) (2.81) (2.70) (2.65)

Age of first birth 18.784 18.225 18.915 18.402 18.883 18.976 3 47

(3.64) (3.52) (3.57) (3.51) (3.72) (3.66)

Children under 5 1.550 1.694 1.386 1.546 1.623 1.576 0 24

(1.32) (1.39) (1.28) (1.22) (1.40) (1.26)

N. of living children 4.560 4.494 4.584 4.652 4.543 4.438 0 16

(2.24) (2.19) (2.24) (2.29) (2.22) (2.20)

Infant morality

1 year 0.084 0.120 0.103 0.097 0.073 0.062 0 1

(0.28) (0.33) (0.30) (0.30) (0.26) (0.24)

5 years 0.120 0.172 0.144 0.140 0.105 0.089 0 1

(0.33) (0.38) (0.35) (0.35) (0.31) (0.28)

1 year - boys 0.090 0.126 0.110 0.104 0.079 0.068 0 1

(0.29) (0.33) (0.31) (0.30) (0.27) (0.25)

5 years - boys 0.127 0.177 0.151 0.148 0.111 0.096 0 1

(0.33) (0.38) (0.36) (0.35) (0.31) (0.30)

Infant nutrition-health

BMI (SD)∗∗∗ 0.57 . . 1.82 1.22 -2.72 -500 500

(142.94) . . (156.37) (144.29) (119.50)

Weight/Height (SD)∗∗∗ -12.38 . . -12.88 -11.83 -13.20 0 99.8

(140.44) (152.18) (140.38) (124.27)

Size at birth (cat) ∗∗∗∗ 2.22 2.45 2.08 2.32 2.23 2.25 0 4

(0.99) (0.99) (0.95) (0.98) (0.99) (1.00)
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Notes: the DHS surveys employed are conducted between 1992 and 2019.
∗ The number of countries, clusters, mothers and generic births refers to the data available from the
Individual Recode DHS survey. The number of births under 5 refers to the data available from the Child
Recode DHS survey.
∗∗ Wealth is a categorical index spanning from 1 (very poor) to 5 (very rich).
∗∗∗ The measures are presented with two implied decimal places; the actual value is obtained by dividing
the variable by 100.
∗∗∗∗ Size at birth is a categorical variable spanning from 0 (very small) to 4 (very large)
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Table 4: Precipitations, PET and crop productivity in Africa

Yield (ton/ha) (1) (2) (3) (4)
OLS OLS OLS IV

[A] Yearly values
Prec t 0.0615*** 0.0239*** 0.0118* 0.0135**

(0.0065) (0.0066) (0.0062) (0.0066)

PET t -0.3267*** -0.4560*** -0.3185***
(0.0201) (0.0210) (0.0215)

Observations 38,520 38,520 38,520 38,520
R2 0.8968 0.8971 0.8973

[B] Growing season
Prec GS t 0.0165*** 0.0155** 0.0081 -0.0094

(0.0052) (0.0072) (0.0074) (0.0070)

PET GS t -0.0037 -0.0559*** -0.0248
(0.0146) (0.0169) (0.0166)

Observations 34,208 34,208 34,208 34,208
R2 0.8952 0.8952 0.8954
Controls Y Y Y Y
Lags N N Y N
Crop FE Y Y Y Y
Year FE Y Y Y Y
Cell FE Y Y Y Y
F-stat. (excl.) 83.42

Notes: Panel [A] shows the estimates using yearly values of precipita-
tions and PET. In Panel [B], precipitations and PET are calculated
using only growing season months. The sample comprises on the five
major crops in each cell by harvested area. These account on average
for roughly 80% of the total harvested area in the cell. Environmental
variables are standardized. Robust standard errors are clustered at
cell level, with significance levels at 10, 5, and 1 percent.
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Table 5: Impact of Precipitations and PET on infant health

Mort (1y) BMI (SD) Size at birth
OLS OLS IV OLS OLS IV OLS OLS IV
(1) (2) (3) (4) (5) (6) (7) (8) (9)

[A] Yearly values

Prect -0.0026*** -0.0015** 0.0004 7.4652*** 5.1982*** 4.1962*** 0.0363*** 0.0222*** 0.0303***
(0.0006) (0.0007) (0.0008) (1.2166) (1.2941) (1.5804) (0.0064) (0.0067) (0.0078)

Prec(t−1) -0.0014** -0.0003 0.0014* 3.3141*** 1.2999 -0.0667 0.0308*** 0.0172*** 0.0212***

(0.0006) (0.0007) (0.0008) (1.1741) (1.2384) (1.5083) (0.0059) (0.0063) (0.0074)

PETt 0.0020 0.0020 -9.6136* -13.5959** 0.0139 -0.0217
(0.0024) (0.0027) (5.1651) (6.0826) (0.0266) (0.0314)

PET(t−1) 0.0029 0.0063** -1.3564 -12.4924** -0.0754*** -0.0348

(0.0024) (0.0026) (5.1662) (5.9796) (0.0266) (0.0312)

Observations 2,059,719 2,059,719 2,059,719 266,469 266,469 266,469 518,591 518,591 518,591
R2 0.0352 0.0353 0.1999 0.2000 0.1331 0.1332

[B] Growing season

Prec GS t -0.0016*** 0.0005 0.0000 3.4957*** 2.4391** 2.6218** 0.0173*** 0.0080 -0.0018
(0.0006) (0.0007) (0.0009) (1.0977) (1.1367) (1.3315) (0.0059) (0.0062) (0.0075)

Prec GS (t−1) -0.0005 0.0001 -0.0009 3.2944*** 2.2290** 1.5798 0.0117** 0.0046 -0.0051

(0.0006) (0.0007) (0.0009) (1.0955) (1.1369) (1.3352) (0.0058) (0.0059) (0.0072)

PET GS t 0.0016 0.0021 -4.5811* -2.0338 -0.0416*** -0.0651***
(0.0021) (0.0030) (2.7278) (3.6986) (0.0147) (0.0201)

PET GS (t−1) -0.0012 0.0011 -4.5907* -15.0802*** -0.0137 -0.0247

(0.0020) (0.0030) (2.7214) (3.7126) (0.0146) (0.0200)

Observations 1,721,409 1,721,391 1,721,384 227,786 227,786 227,786 432,729 432,729 432,729
R2 0.0349 0.0198 0.1833 0.1835 0.1287 0.1289
Controls Y Y Y Y Y Y Y Y Y
Country FE N N N N N N N N N
Year FE Y Y Y Y Y Y Y Y Y
Cluster FE Y Y Y Y Y Y Y Y Y
Country Trends Y Y Y Y Y Y Y Y Y
F-stat. (excl.) 1833 674.4 457.9

Notes: the table presents the estimates of β1 and β2. Long controls include woman’s education
in single years, wealth index of the household, kid’s month of birth, main source of water, cell
temperature in the corresponding time period. Columns (1) to (3) are based on a sample of 33
countries and 22,757 clusters. Columns (4) to (9) are based on a sample of 34 countries and 22,909
clusters. In Panel [A], precipitations and PET are computer over the entire year; in Panel [B], only
growing season months are considered. Robust standard errors are clustered at DHS cluster level,
with significance levels at 10, 5, and 1 percent.
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Table 6: Unexpected variation in precipitations and PET and crop productivity

Yield (ton/ha) Yield (kcal/m3)

P̂RE P̂ET P̂RE P̂ET
(1) (2) (3) (4)

ρ = 0 -0.0066 -0.0379 -0.0067 -0.0384
(0.0018) (0.0025) (0.0010) (0.0025)

N=3
ρ = 1 0.0016 -0.0432 0.0011 -0.0437

(0.0021) (0.0020) (0.0007) (0.0021)

ρ = 0.7 -0.0019 -0.0434 -0.0023 -0.0440
(0.0020) (0.0020) (0.0007) (0.0020)

ρ = 0.5 -0.0041 -0.0429 -0.0045 -0.0437
(0.0019) (0.0020) (0.0008) (0.0021)

N=5
ρ = 1 0.0098 -0.0473 0.0100 -0.0473

(0.0022) (0.0021) (0.0000) (0.0022)

ρ = 0.7 0.0033 -0.0457 0.0034 -0.0459
(0.0021) (0.0021) (0.0005) (0.0021)

ρ = 0.5 -0.0016 -0.0442 -0.0017 -0.0447
(0.0020) (0.0020) (0.0007) (0.0021)

Notes: the table presents the estimates of Equation 6. All coeffi-
cients are estimated through OLS. The five major crops in each
cell are considered for the calculation of yield. Each row assigns
a different value of the parameter that enter in the calculation of
the regressors of interest. Controls include unexpected variation
in temperature and suitability index in cell c at time t, year and
cell fixed effects. Robust standard errors clustered at cell level
are reported in parentheses.
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Table 7: Precipitations and PET projections - sample average

RCP 4.5 RCP 8.5

Rainfall PET Rainfall PET

2040-79 2060-99 2040-79 2060-99 2040-79 2060-99 2040-79 2060-99

GFDL 1094.3 1098.4 1437.5 1458.7 1099.7 1105.2 1520.6 1600.6
HadGEM2 1117.4 1123.7 1524.2 1566.7 1116.7 1114.1 1627.9 1743.6
IPSL 1176.0 1189.0 1500.6 1533.6 1222.3 1255.6 1608.7 1730.0
MIROC 1150.9 1180.3 1458.6 1488.6 1183.7 1224.0 1547.1 1547.1
NorESM1 1107.0 1113.4 1419.4 1441.1 1111.9 1128.0 1496.6 1578.9

Notes: the table presents the projections for yearly precipitations and PET (mm/year) aver-
aged over our sample grid from five ESMs (GFDL-ESM2M, HadGEM2-ES, IPSL-CM54-LR,
MIROC-ESM-CHEM, NorESM1-M) for the time intervals 2040-2079 and 2060-2099. Data
is displayed for two RCP scenarios: 4.5 (decreasing ”intermediate” emission levels by 2100)
and 8.5 (non-decreasing ”worst-case” emission levels by 2100). Source: CMCC-BioClimInd
dataset.
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Figures

Figure 1: Historical trend and future projections in yearly precipitation, 1901-2099

[A] Global Precipitations [B] African Precipitations

Notes: the figure depicts the trend in yearly precipitations (mm/year) starting form
1901. The series between 1901 and 2019 is computed from the CRU TS4.04 dataset.
Projections for two time horizons (2040-2079 and 2060-2099) are accessed from five com-
monly employed Earth System Models (ESMs): GFDL-ESM2M, HadGEM2-ES, IPSL-
CM54-LR, MIROC-ESM-CHEM, NorESM1-M. Bias-corrected projections are plotted
under the Representative Concentration Pathway (RCP) 4.5, a greenhouse gas con-
centration trajectory which possibly constitutes the most probable baseline scenario
taking into account the exhaustible character of non-renewable fuels. Panel [A] plots
average global precipitations levels; panel [B] focuses on the African continent. Source:
CMCC-BioClimInd dataset.
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Figure 2: Geographical variation in Precipitations and PET (1951-2018)

[A] [B]

Notes: Panel [A] depicts precipitations (mm/year) over the sample grid. Panel [B]
shows PET (mm/year) in the same cells. In Panel [A], lighter cells identify areas of
scarce precipitations. In Panel [B], darker cells identify arid regions.
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Figure 3: Most frequently harvested crop family per cell - average (2000; 2010)

Notes: the figure reports the crop family with the widest relative
harvested area in each cell. Families are defined by the following crops:
cereals (barley, maize, millet, rice, sorghum, wheat); fruits and nuts
(banana); oilseed crops (groundnut, olive, rapeseed, soy, sunflower);
pulses; root-tuber crops (cassava, potato, yam); sugar crops (sugar
cane, sugar beet); vegetables; other (coffee, cotton, tobacco).

39



Figure 4: Geographical variation in Precipitations and PET (1951-2018)

[A] [B]

[C] [D]

Notes: the figure reports the correlation across cells between child’s health and crop yield.
Fitted lines are obtained through of a linear regression of the the mean cell value of mortality
[A], BMI [B], Weight/Height [C], and Size at birth [D] on the average crop yield between 2000
and 2010. Cell average of rural area, education and wealth index are added as controls. We only
consider children born after year 2000 to match the period of our crop dataset.
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Figure 5: PET and crop yield - single crop regressions coefficients

[A] Yearly values

[B] Growing Season

Notes: the figure reports the set of coefficients obtained from of Equation 2. Panel A
estimates Equation 2 using yearly values of precipitations and PET. In Panel B, these
variables are calculated in growing season months. Bars coloured with darker shades
represent a higher average share of the total harvested area in the cell. Grey bars are
plotted when the coefficient is not significant.
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Figure 6: Distribution of the variation in Suitability Score between 2000 and 2010

Notes: the figure reports the set of coefficients obtained from of Equation 2. Panel A
estimates Equation 2 using yearly values of precipitations and PET. In Panel B, these
variables are calculated in growing season months. Bars coloured with darker shades
represent a higher average share of the total harvested area in the cell. Grey bars are
plotted when the coefficient is not significant.
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A.1 Data Appendix

A.1.1 Computation of Potential Evapotranspiration

We access a measure for potential evapotranspiration from the CRU TS.04 dataset. This is cal-
culated using a modelling scheme based on climate simulations, developed by the Hadley Centre
(HadRM3H). A full description of the relevant regional climate models can be found in Ekström
et al. (2007). Here, we report a short summary explaining the computation of PET.

The estimates for PET are provided using a variant of the Penman-Monteith method, as pro-
posed by FAO. This indicator is addressed as potential since it employs a grass reference crop 17

PET is computed according to the following equations:

PET =
0.408∆ (Rn −G) + γ + 900

T+273.16U2 (ea − ed)

∆ + γ (1 + 0.34U2)
(7)

where Rn represent net radiation at crop surface (MJ m−2 per day), G is soil heat flux (MJ m−2

per day), T is mean temperature, U is wind speed (m
s ), (ea − ed) and ∆ are respectively vapour

pressure deficit and the relative slope of the vapour pressure curve (kPa
◦C ), and γ is a psychrometric

constant. While wind speed and temperature are direct outputs from the HadRM3H, the other
constants in the formula are calculated using model data.

As it appears from Equation 7, while temperature is indeed relevant in the computation of
PET (which justify an average positive correlation of around 40% between PET and temperature),
it is only part of the story. As such, by controlling for yearly average temperature in our main
specifications, we are able to isolate the effect of soil water availability, without capturing potential
noise coming from heat volatility.

A.1.2 Datasets and Variables description

Feedipedia: Feedipedia is a joint project of INRAE (formerly INRA-Institut National de la Recherche
Agronomique, French National Institute for Agricultural Research), CIRAD (Centre de Coopération
Internationale en Recherche Agronomique pour le Développement, French Agricultural Research
Center for International Development, AFZ (Association Française de Zootechnie, French Associa-
tion for Animal Production) and FAO (Food and Agriculture Organization of the United Nations).

FAO crop database: Crop based information provided by FAO is the resulting combination of
Crop Ecological Requirements Database (ECOCROP), WCA infoNET (Internet-based integrated
information platform managed by the International Programme for Technology and Research in
Irrigation and Drainage (IPTRID), and FAOSTAT dataset.

Precipitations (PRE): total, mm /year

Potential evapotranspiration (PET): total, mm/year. See Section A.1.2 for computational details

Temperature: ◦C, average monthly value at 2m altitude.

Growing Season: growing season months are calculated using beginning date of earliest growing
period (day-of-year) for the time period 1981-2010, and the total number of growing period days.

17For the original contribution on this computation, see Allen et al. (1994).
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Both measures are accessed through the GAEZ v4 dataset, which employs climate data source
HadGEM2-ES. More information can be found in Fischer et al. (2021).

Yield : tons/hectare of dry matter product. The corresponding yield expressed in kcal/m2 is calcu-
lated according to the following formula: Ykcal/m2 = 1

100Yton/ha · Energykcal/ton.

Suitability index (SI): Crop suitability index (range 0 – 10000); weighted sum of the component
soil/terrain suitability rating factors. Extensive details on the methodology employed to compute
the indicators reported can be found in Fischer et al. (2021).

Infant Mortality (1-5 years): binary indicator computed using mother-reported time of death after
birth (in months).

BMI (SD): Body Mass Index, defined as her weight in kilograms divided by the square of her height
in meters (W/H2), and then expressed in standard deviations.

Weight/Height : Weight for Height standard deviations from the reference median based on the
DHS reference standard.

Anemic: binary indicator telling whether a child is anemic. Anemia is measured as follows: levels
below 7.0 g/dl hemoglobin are considered as severe anemia, levels between 7.1g/dl and 9.9g/dl
are considered as moderate anemia and cases between 10.0 g/dl and 10.9 g/dl are considered as
mild anemia. The indicator defines the presence of any form of anemia (mild to severe) against no
anemia.

Education: Highest year of education gives the years of education completed.

Wealth index : a composite measure of a household’s cumulative living standard, calculated using
easy-to-collect data on a household’s ownership of selected assets, such as televisions and bicycles;
materials used for housing construction etc. Generated by principal components analysis, the index
ranks individual households into five wealth quintiles.

Source of drinking water : Main source of drinking water for members of the household (major
categories).

A.1.3 CRU TS.04 choice and comfront with alternative datasets

When it comes to environmental studies, more than one alternative to researchers in need of high-
frequency data on weather and climate conditions. Researchers have been comparing and high-
lighting the peculiarities of these different sources . However, there exist no rule of thumb guiding
through the adoption of one particular dataset

In their paper on weather shocks, malaria and child mortality, Kudamatsu et al. (2012) access
observations on monthly rainfall through the 45-Year European Centre for Medium-Range Weather
Forecasts (ECMWF) Re-Analysis (ERA-40) data archive, provided by the European Centre for
Medium-Term Weather Forecasting (ECMWF). The authors justify their choice by claiming the
superiority over the more well-known CRU dataset. Their main argument relies on the fact that
rainfall gauge data in Africa lack the necessary quality, and show bias in arid and semi-arid areas,
where departures from standard seasonal fluctuations are more pronounced. A similar argument is
provided by Harari & Ferrara (2018) to justify the adoption of the ERA-40. Other authors instead
have deemed gauge data suitable for the purpose of their studies, and have thus turned at the
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CRU dataset, usually in its previous versions (Vicente-Serrano et al. 2010, Couttenier & Soubeyran
2014).

While the concerns with gauge data are surely legitimate, significant drawback are implied also
by the choice of reanalysis data. Firstly, the ERA-40 dataset is provided at more than twice the
resolution of the CRU TS.04, 1.25 × 1.25 degress (roughly 139 km × 139 km), which is a significant
loss in terms of spatial variation. Being our sample an unbalanced panel, variation across grid cells
is of great importance and, as such, this could impinge the detection of an effect of precipitations
and PET on agricultural productivity and infant health. As such, another alternative available
to researchers is the ERA-5 dataset, in which near-surface meteorological variables have been re-
gridded to a half-degree resolution. Yet, in addition to using monthly-scale bias corrections still
based CRU data, this dataset is available only form 1980.

Secondly, re-analysis relies on a variety of sources, including weather stations, ships, aircrafts
and satellites. To provide the corresponding weather measures, recorded data is analysed through
an atmospheric circulation model (IFS CY23r4). Compared to gauge data, this augments the risk
of measurement error.

It is indeed true that CRU stations are partially dispersed in Sub-Saharan Africa and, since
they cannot provide full direct coverage, the resulting data relies on interpolation. However, the
data on station location and resulting cover contained in Harris et al. (2020), in which stations
appear if they contribute at least 75% of observations in the decade, show that the problem of loss
of variability due to interpolation may be more of a concern in the areas of scarce coverage (in this
case, historical data would have a greater role in filling in for missing observations). In Figure A.1,
we plot the spatial distribution of the clusters available from the DHS with the resulting coverage
of the CRU stations in decades 1970-79 and 2000-09. Coverage in the CRU dataset is defined
as an area having direct measurement of at least 75% of all potential observations in the decade.
We notice that most of the clusters in the sample are actually within the declared coverage, which
reassures at least on the probability of errors generated by the stations. As we use the area identified
by DHS cluster to run the analysis on crop productivity, a similar reasoning applies for crop yield
observations.

This evidence ultimately helps reduce the concern that our data may not capture properly the
variability in precipitations and PET, which is essential to our research strategy, and contributes
to justify the choice of the CRU TS.04 dataset.
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A. Tables

Table A.1: Precipitations, PET and crop productivity in Africa - Caloric yield

Yield (kcal/m2) (1) (2) (3) (4)
OLS OLS OLS IV

[A] Yearly values
Prec t 0.06*** 0.02*** 0.01* 0.0126*

(0.01) (0.01) (0.01) (0.0066)

PET t -0.33*** -0.45*** -0.3209***
(0.02) (0.02) (0.0215)

Observations 36,971 36,971 36,971 36,971
R2 0.90 0.90 0.90

[B] Growing season
Prec GS t 0.0187*** 0.0169** 0.0100 -0.0062

(0.0053) (0.0075) (0.0076) (0.0081)

PET GS t -0.0066 -0.0547*** -0.0227
(0.0151) (0.0173) (0.0193)

Observations 32,949 32,949 32,949 32,949
R2 0.8978 0.8978 0.8979
Controls Y Y Y Y
Lags N N Y N
Crop FE Y Y Y Y
Year FE Y Y Y Y
Cluster FE Y Y Y Y
Crops 5 Major
F-stat. (excl.) 145

Notes: Panel [A] shows the estimates using yearly values of precipitations
and PET. In Panel [B], precipitations and PET are calculated using only
growing season months. Restricting the analysis to four major crops
accounts on average for roughly 80% of the total harvested area in the
cell. Robust standard errors are clustered at cell level, with significance
levels at 10, 5, and 1 percent.
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Table A.2: Impact of Precipitations and PET on infant health - Additional outcomes

Mort (5y) W/H (SD)
OLS OLS IV OLS OLS IV
(1) (2) (3) (4) (5) (6)

[A] Yearly values
Prect -0.0048*** -0.0026*** -0.0008 7.9419*** 5.4943*** 4.6207***

(0.0009) (0.0010) (0.0012) (1.1803) (1.2505) (1.5327)

Prec(t−1) -0.0033*** -0.0013 0.0005 3.1379*** 0.8670 -0.5593
(0.0009) (0.0010) (0.0012) (1.1443) (1.2045) (1.4665)

PETt 0.0053 0.0045 -6.9669 -11.4910*
(0.0045) (0.0053) (5.0209) (5.8866)

PET(t−1) 0.0033 0.0086 -5.1389 -15.5620***
(0.0044) (0.0052) (4.9873) (5.7643)

Observations 2,059,690 2,059,690 2,059,690 267,083 267,083 267,083
R2 0.0601 0.0601 0.1964 0.1966

[B] Growing season
Prec GS t -0.0027*** -0.0017* -0.0001 3.0697*** 1.9820* 2.0379

(0.0009) (0.0009) (0.0011) (1.0663) (1.1028) (1.2971)

Prec GS (t−1) -0.0034*** -0.0027*** -0.0017 2.9896*** 1.7785 0.9190
(0.0008) (0.0009) (0.0011) (1.0694) (1.1072) (1.3014)

PET GS t 0.0053** 0.0053 -4.1160 -3.0178
(0.0025) (0.0035) (2.7023) (3.6697)

PET GS (t−1) 0.0006 0.0041 -5.8206** -14.9041***
(0.0024) (0.0035) (2.6913) (3.6638)

Observations 1,721,384 1,721,384 1,721,384 228,387 228,387 228,387
R2 0.0600 0.0600 0.1811 0.1812
Controls Y Y Y Y Y Y
Country FE N N N N N N
Year FE Y Y Y Y Y Y
Cluster FE Y Y Y Y Y Y
Country Trends Y Y Y Y Y Y
F-stat. (excl.) 1833 675.3

Notes: the table presents the estimates of β1 and β2 for comparable outcome variables. Long
controls include woman’s education in single years, wealth index of the household, kid’s month of
birth, main source of water, cell temperature in the corresponding time period. Columns (1) to
(3) are based on a sample of 33 countries and 22,757 clusters. Columns (4) to (9) are based on a
sample of 34 countries and 22,909 clusters. In Panel [A], precipitations and PET are computer over
the entire year; in Panel [B], only growing season months are considered. Robust standard errors
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are clustered at DHS cluster level, with significance levels at 10, 5, and 1 percent.

Table A.3: First stage coefficients - multiple equations

Table 4 Table 5 Table 5 Table 5 Table A.2
Col (6) Col (3) Col (6) Col (9) Col (6)
Yield Mort (1y/5y) BMI (SD) Size at birth W/H (SD)

[A] Yearly values

PREt 0.98 0.82 1.03 1.08 1.03
(0.01) (0.00) (0.00) (0.00) (0.00)

PRE(t−1) 0.82 1.03 1.07 1.03
(0.00) (0.00) (0.00) (0.00)

PETt 0.91 0.79 0.72 0.76 0.72
(0.01) (0.00) (0.01) (0.01) (0.01)

PET(t−1) 0.79 0.74 0.77 0.74
(0.00) (0.01) (0.01) (0.01)

[B] Growing season

PRE GS t 0.98 0.79 1.04 1.06 1.04
(0.01) (0.00) (0.00) (0.00) (0.00)

PRE GS (t−1) 0.79 1.04 1.05 1.04
(0.00) (0.00) (0.00) (0.00)

PET GS t 0.65 0.71 0.84 0.77 0.84
(0.05) (0.01) (0.02) (0.01) (0.02)

PET GS (t−1) 0.69 0.76 0.72 0.76
(0.01) (0.01) (0.02) (0.01)

Notes: the table reports first-stage coefficients from the IV regressions in the paper.
Standard errors are reported in parentheses. All models are just-identified and comprise
of at least two instruments. As such, columns identify the model regression to which co-
efficients refer to. Rows capture instead the first stage dependent variable. The reported
value is then the coefficient of the corresponding regressor in the first-stage equation
(e.g. instrumented: PREt; reported coefficient: PREt (neighbours)).
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Table A.4: Impact of Precipitations and PET on infant health - long-settled sample

Mort (1y) BMI (SD) Size at birth
OLS IV OLS IV OLS IV
(1) (2) (3) (4) (5) (6)

[A] Yearly values
Prect -0.0017* 0.0029*** 5.3897*** 4.6965** 0.0169** 0.0228**

(0.0009) (0.0010) (1.5072) (1.8276) (0.0083) (0.0098)

Prec(t−1) -0.0009 0.0037*** 2.2763 2.0342 0.0166** 0.0220**
(0.0009) (0.0010) (1.4348) (1.7275) (0.0076) (0.0089)

PETt 0.0007 -0.0007 -7.4546 -12.2176* 0.0280 -0.0258
(0.0044) (0.0051) (6.0538) (7.2021) (0.0315) (0.0373)

PET(t−1) 0.0015 0.0057 -2.4066 -10.5591 -0.0998*** -0.0475
(0.0043) (0.0051) (6.0461) (7.0854) (0.0315) (0.0370)

Observations 1,673,718 1,673,765 199,674 199,674 378,859 378,859
R2 0.0436 0.2292 0.1529

[B] Growing season
Prec GS t 0.0005 -0.0003 2.8326** 2.7997* 0.0061 -0.0055

(0.0007) (0.0010) (1.3546) (1.5808) (0.0077) (0.0093)

Prec GS (t−1) 0.0000 -0.0014 2.7837** 2.8029* -0.0020 -0.0124
(0.0008) (0.0010) (1.3257) (1.5409) (0.0072) (0.0087)

PET GS t -0.0007 0.0004 -5.3823* -0.1575 -0.0393** -0.0656***
(0.0023) (0.0034) (3.1412) (4.4414) (0.0172) (0.0232)

PET GS (t−1) 0.0007 0.0027 -3.1989 -16.1685*** -0.0229 -0.0316
(0.0023) (0.0033) (3.1077) (4.4204) (0.0172) (0.0231)

Observations 1,384,393 1,384,359 166,138 166,138 311,944 311,944
R2 0.0207 0.2101 0.1467
Controls Y Y Y Y Y Y
Country FE N N N N N N
Year FE Y Y Y Y Y Y
Cluster FE Y Y Y Y Y Y
Country Trends Y Y Y Y Y Y
F-stat. (excl.) 3126 424.7 517.5

Notes: the table presents the estimates of β1 and β2 on the sample of women who have been living in
the same place of residence for at least 15 years. Long controls include woman’s education in single
years, wealth index of the household, kid’s month of birth, main source of water, cell temperature
in the corresponding time period. Columns (1) and (2) are based on a sample of TBCcountries
and TBCclusters. Columns (3) to (6) are based on a sample of TBCcountries and TBCclusters.
In Panel [A], precipitations and PET are computer over the entire year; in Panel [B], only growing
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season months are considered. Robust standard errors are clustered at DHS cluster level, with
significance levels at 10, 5, and 1 percent.

Table A.5: Precipitations, PET and crop productivity - Unstandardized coefficients

Yield (ton/ha) (1) (2) (3) (4)
OLS OLS OLS IV

[A] Yearly values
Prect 0.0001*** 0.0000*** 0.0000* 0.0000**

(0.0000) (0.0000) (0.0000) (0.0000)

PETt -0.0011*** -0.0015*** -0.0010***
(0.0001) (0.0001) (0.0001)

Observations 38,520 38,520 38,520 38,520
R2 0.8968 0.8971 0.8973

[B] Growing season
Prec GS t 0.0003*** 0.0003** 0.0002 -0.0002

(0.0001) (0.0001) (0.0001) (0.0001)

PET GS t -0.0002 -0.0029*** -0.0013
(0.0007) (0.0009) (0.0008)

Observations 34,208 34,208 34,208 34,208
R2 0.8952 0.8952 0.8954
Controls Y Y Y Y
Lags N N Y N
Crop FE Y Y Y Y
Year FE Y Y Y Y
Cell FE Y Y Y Y
F-stat. (excl.) 83.42

Notes: Panel [A] shows the estimates using yearly values of precipita-
tions and PET. In Panel [B], precipitations and PET are calculated
using only growing season months. The sample comprises on the five
major crops in each cell by harvested area. These account on average
for roughly 80% of the total harvested area in the cell. Environmental
variables are standardized. Robust standard errors are clustered at
cell level, with significance levels at 10, 5, and 1 percent.
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Table A.6: Precipitations, PET and child health - Unstandardized coefficients

Mort (1y) BMI (SD) Size at birth
OLS OLS IV OLS OLS IV OLS OLS IV
(1) (2) (3) (4) (5) (6) (7) (8) (9)

[A] Yearly values

Prect -0.0000*** -0.0000** 0.0000 0.0125*** 0.0087*** 0.0070*** 0.0001*** 0.0000*** 0.0001***
(0.0000) (0.0000) (0.0000) (0.0020) (0.0022) (0.0027) (0.0000) (0.0000) (0.0000)

Prect−1 -0.0000** -0.0000 0.0000** 0.0056*** 0.0022 -0.0001 0.0001*** 0.0000*** 0.0000***
(0.0000) (0.0000) (0.0000) (0.0020) (0.0021) (0.0025) (0.0000) (0.0000) (0.0000)

PET t 0.0000 0.0000 -0.0309* -0.0437** 0.0000 -0.0001
(0.0000) (0.0000) (0.0166) (0.0196) (0.0001) (0.0001)

PET t−1 -0.0000 0.0000 -0.0044 -0.0401** -0.0002*** -0.0001
(0.0000) (0.0000) (0.0166) (0.0192) (0.0001) (0.0001)

Observations 2,059,719 2,059,690 2,059,706 266,469 266,469 266,469 518,591 518,591 518,591
R2 0.0352 0.0391 0.1999 0.2000 0.1331 0.1332

[B] Growing season

Prec GSt -0.0000*** 0.0000 -0.0000 0.0700*** 0.0489** 0.0525** 0.0003*** 0.0002 -0.0000
(0.0000) (0.0000) (0.0000) (0.0220) (0.0228) (0.0267) (0.0001) (0.0001) (0.0002)

Prec GSt−1 -0.0000 0.0000 -0.0000** 0.0658*** 0.0445** 0.0315 0.0002** 0.0001 -0.0001
(0.0000) (0.0000) (0.0000) (0.0219) (0.0227) (0.0267) (0.0001) (0.0001) (0.0001)

PET GSt 0.0025 0.0040 -7.2105* -3.2012 -0.0655*** -0.1025***
(0.0032) (0.0046) (4.2934) (5.8215) (0.0231) (0.0316)

PET GSt−1 -0.0019 0.0001 -7.2090* -23.6809*** -0.0216 -0.0388
(0.0032) (0.0046) (4.2735) (5.8300) (0.0230) (0.0314)

Observations 1,721,409 1,721,391 1,721,384 227,786 227,786 227,786 432,729 432,729 432,729
R2 0.0349 0.0198 0.1833 0.1835 0.1287 0.1289
Controls Y Y Y Y Y Y Y Y Y
Country FE N N N N N N N N N
Year FE Y Y Y Y Y Y Y Y Y
Cluster FE Y Y Y Y Y Y Y Y Y
Country Trends Y Y Y Y Y Y Y Y Y
F-stat. (excl.) 1639 674.4 457.9

Notes: the table presents the estimates of β1 and β2. Long controls include woman’s education
in single years, wealth index of the household, kid’s month of birth, main source of water, cell
temperature in the corresponding time period. Columns (1) to (3) are based on a sample of 33
countries and 22,757 clusters. Columns (4) to (9) are based on a sample of 34 countries and 22,909
clusters. In Panel [A], precipitations and PET are computer over the entire year; in Panel [B], only
growing season months are considered. Robust standard errors are clustered at DHS cluster level,
with significance levels at 10, 5, and 1 percent.

51



A. Figures

Figure A.1: Positive PET trend in 1951-2019 and crop WRI distribution

[1970-79] [2000-09]

Notes: green dots represent the spatial distribution of DHS clusters in our
sample. The purple shaded area identifies grid cell station coverage of the CRU
dataset in decades 1970-79 and 2000-09.
Source: Harris et al. (2020)
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