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Price Setting in a Decentralized Market and the

Competitive Outcome

Stephan Lauermann�

January 21, 2008

Abstract

This paper studies a decentralized, dynamic matching and bargaining market:

buyers and sellers are matched into pairs. Traders exit the market at a constant

rate, inducing search costs (frictions). All price o¤ers are made by sellers. Despite

the fact that sellers have all the bargaining power we show that they set competitive

prices in the limit when frictions become small. Previous literature has restricted

the sellers�bargaining power. We dispense with this restriction and show that the

convergence result does not depend on the distribution of bargaining power. Our

model allows us to isolate basic market clearing forces that ensure the competitive

outcome in the frictionless limit.

For the particular case of homogeneous sellers we characterize the equilibrium

price by the familiar Lerner formula. We use this formula to provide comparative

static results of the decentralized trading outcome with respect to the level of the

search frictions.
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1 Introduction

It is a common claim that decentralized markets clear and become e¢ cient as frictions

vanish. Decentralized markets include the markets for housing, used cars, and labor.

Economists often refer to the following informal story as an explanation: Suppose prices

in a market are constantly too high. Then some sellers must be rationed and trade

less than they desire. This gives them an incentive to decrease their price in order to

increase the trading volume, since doing so makes the o¤er acceptable to more buyers.

This incentive makes it impossible to have an equilibrium in which prices are too high

to clear the market.

The story relies only on two components: the rationing of sellers and the elasticity

of demand. The purpose of the present paper is to isolate these two factors behind

the convergence results. We want to di¤erentiate them from additional factors that

can be favorable to a competitive outcome. In particular, in the existing literature,

the bargaining power of sellers is limited by either allowing buyers to make price o¤ers

themselves or by letting several sellers compete against each other (see the discussion

of the literature in Section 5.2). By dispensing with these additional assumptions, we

provide a more powerful limit result. In addition, we can single out basic market clearing

forces as the main factors of the convergence result.

This study uses a dynamic matching and bargaining game that is similar to the

model by Gale (1987): There is an in�nite number of periods, and in each period there

is a large pool of traders who want to trade an indivisible good. The pool consists of a

continuum of buyers and sellers: Sellers have costs c 2 [0; 1], and buyers have valuations
v 2 [0; 1]. These types are private information. At the beginning of every period, all
sellers and all buyers from the pool are matched into pairs. In each pair, the seller makes

a price o¤er to the buyer. If the buyer accepts the price, they trade and the pair exits

the market. If the buyer declines, the match is broken and both traders return to the

pool and wait to be rematched with new partners in the next period. While waiting,

traders exit with a constant hazard rate �. The hazard rate introduces costs of waiting

for better o¤ers, and we say that � is the friction in the market. At the end of every

period, an equal mass of new buyers and new sellers enters the market. This in�ow of

new traders is constant over all periods.

Let pw be de�ned as the price at which the mass of entering sellers with costs below

pw is equal to the mass of entering buyers with valuations above pw. This price is the
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competitive or the market clearing price relative to the in�ow. The trading outcome is

Walrasian if all buyers with valuations above pw and all sellers with costs below pw are

able to trade. Our main result characterizes the trading outcome with small �: With

� ! 0, all trades happen at the price pw (Theorem 5), and the trading outcome becomes

the Walrasian outcome (Corollary 6).1

We start by considering the case where sellers are homogeneous and their costs are

zero. Buyers are heterogeneous and their valuations are distributed between zero and

one. The market clearing price is zero; at any price p� above zero, there are more sellers

than buyers in the in�ow who are willing to trade. When showing convergence to the

market clearing price, we proceed in two steps. First, if sellers set a price p� above 0,

some sellers will be rationed : the probability of trading at some time during their life

is strictly smaller than one. We show that sellers must remain rationed at the non-

competitive price p� in the limit with � converging to zero. Second, if the others are

o¤ering p� > 0, a seller who o¤ers any price p0 below p� becomes certain to trade in the

limit. This is because buyers with valuations between p0 and p� can never trade with

the other sellers. Therefore, these types of buyers make up a strictly positive share of

the pool of buyers, and in every single period the seller has a strictly positive chance

of being matched with such a buyer. When � becomes zero, it becomes certain that

the seller will be able to trade some time during his lifetime before he is forced to exit

the market. Together, the two steps imply that in the limit a marginal decrease of

the price p� increases the trading probability discretely to one, i.e., the elasticity of the

trading probability at any p� above zero becomes "in�nite" when the exit rate vanishes.

Therefore, prices set by sellers have to be zero in the limit.

The convergence result is not immediate. Diamond (1971) shows that even with small

trading frictions, sellers can have considerable market power: Given any common price

p� set by sellers and any level of �, buyers with valuations v > p� are willing to pay a

premium of � (v � p�) to save on waiting costs. This allows all sellers to mark up the price
p� and provides incentives for them to increase their prices. With homogeneous buyers

this implies that sellers o¤er monopolistic prices in the unique equilibrium. This is known

as the Diamond paradox. In our model, prices are not monopolistic because buyers are

heterogeneous2. Sellers are rationed at any price p� > 0 and they have a countervailing
1We follow Gale (1987) and the subsequent literature, de�ning the competitive outcome with respect

to the �ow.
2 In addition to heterogeneity, it is also important that we assume that valuations are private infor-

mation. Prices do not become competitive if valuations are observable; see the discussion of Lauermann
(2006a) in Section 5.1.
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incentive to decrease their price to reach additional buyers with valuations below p�.

By giving sellers all the bargaining power, we isolate this incentive from the additional

incentives in the existing literature that are due to intermediate bargaining power and

direct competition between sellers (see the discussion in Section 5.2). To clearly isolate

the market forces of demand and supply in a simple and tractable model is the main

contribution of this paper.

When considering heterogeneous sellers with costs distributed between zero and one,

it is necessary to account for price dispersion, since sellers with di¤erent costs might

want to set di¤erent prices. Price dispersion implies an additional complication: With

dispersed prices, sellers can set prices in such a way as to provide buyers with incentives

to accept high prices (by setting high prices most of the time) while balancing the

distribution of buyers to avoid accumulating low valuation buyers (by setting low prices

some of the time). The main part of the proof with heterogeneous sellers consists of

showing that sellers have no incentives to set prices in this way. Instead, a version of

the law of one price holds with vanishing �, and price dispersion ceases to exist. Given

the law of one price, we show that prices must be competitive by the fact that sellers

(buyers) would be rationed at prices that are too high (too low).

This model di¤ers from the existing literature mainly by positing price setting by

sellers. Its basic framework is similar to Gale (1987), who introduced the steady-state

dynamic matching and bargaining game with heterogeneous agents, pairwise match-

ing, and an exogeneous in�ow of agents. Recent models like those of Inderst (2001)

and Satterthwaite and Shneyerov (2007a, 2007b) extended this framework to private

information.3 Following McAfee (1993) and Satterthwaite and Shneyerov (2007b), we

introduce an exogeneous exit rate. Section 5 contains a discussion of our assumptions

and of the existing literature.

Finally, in Section 5.3, we use our model to discuss the meaning of "demand" in

a dynamic market. During our analysis, we employ two concepts of demand at price

p: "Static demand" is exogeneous and it is de�ned as the mass of buyers in the in�ow

who have a valuation above p. "Dynamic demand" is endogeneous and it is de�ned as

the sellers�probability of trading at a price p. It depends on the stock of buyers in the

market and on their outside option, i.e., their ability of intertemporal substution. We

3Moreno and Wooders (2001) also analyze convergence with asymmetric information, but in a non-
stationary market with one-time in�ow and only two types. Butters�(1977) un�nished typescript also
includes asymmetric information and price posting.
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relate these two concepts to a recent econometric study of demand in a dynamic market

by Nevo and Hendel (2006).

This paper begins with a section introducing the model. The model and the proof

technique are illustrated by considering the case of homogeneous sellers. We characterize

the unique equilibrium in pure strategies by the Lerner pricing formula. The elasticity of

demand is endogenously determined, and a simple argument implies that with vanishing

� sellers set competitive prices. Then we go on to the heterogeneous case and show

convergence to the competitive outcome. A detailed discussion of our modeling choices

and extensions is provided in Section 5. In particular, we show which additional assump-

tions the existing literature makes to ensure convergence, and how these assumptions

translate into forces towards market clearance.

2 Model

There is a continuum of buyers and sellers who interact in a repeated market over an

in�nite number of periods. Sellers have one unit of an indivisible good, and their costs

of trading are c 2 [0; 1]. Buyers want to buy one unit of the good, and their valuation
of the good is v 2 [0; 1]. These types are private information. At the beginning of each
period, there is some pool of buyers and sellers. The traders from this pool are randomly

matched into pairs consisting of one seller and one buyer. Within each pair, the seller

announces a price o¤er p 2 [0; 1] ; and the buyer announces whether he accepts or rejects
the o¤er. If the buyer accepts, they trade and the seller receives a payo¤ of p� c; while
the buyer receives a payo¤ of v � p. Next, all the buyers and sellers who have traded
exit the pool. A share � of all those traders who failed to trade also exits. Finally,

new players enter the market and the period ends. The next period starts and proceeds

according to the same rules.

The in�ow of buyers and the in�ow of sellers have a mass of one each. The distribution

of valuations among buyers in the in�ow is exogeneously given by some c.d.f. GB (�) and
similarly, the distribution of costs is given by some distribution GS (�). We assume

that the density gB (�) is continuous and strictly positive, so
�
1�GB (v)

�
is strictly

decreasing.4 The functions GS and
�
1�GB

�
can be interpreted as the supply and

demand functions for a Walrasian Auctioneer who clears the market in each period

separately. Therefore, we call GS (�) the static supply and 1�GB (�) the static demand.
4We do not assume that the distribution of sellers�costs, GS (�), is strictly increasing, since in the

next section we want to give an example with homogeneous sellers who have all costs c = 0.
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The price at which static supply and demand are equal is called the Walrasian price and

is denoted by pw:

GS (pw) = 1�GB (pw) . (1)

The market clearing price is uniquely de�ned since the right-hand side (supply) is weakly

increasing and the left-hand side (demand) is strictly decreasing in the price.

A market constellation is a vector � =
�
p (�) ; r (�) ;�S (�) ;�B (�) ;M

�
; which sum-

marizes the endogeneous parameters of the market: p (c) 2 [0; 1] is the price o¤ered by
a seller of type c; r (v) 2 [0; 1] is the highest price accepted by a buyer of type v (see be-
low); �S (�) is the cumulative distribution function of costs in the pool of sellers; �B (�) is
the distribution function of buyers�valuations, and M is the total mass of buyers in the

pool that is equal to the total mass of sellers in a steady-state.5 We say that a market

constellation �� constitutes an equilibrium if strategies are mutually optimal given the

distribution of types and if the distribution of types in the pool is consistent with the

trading strategies and the exogeneous in�ow.

First we consider the sellers�decision problem. Let us denote by D (pj�; �) the prob-
ability that the buyer in any given pair accepts an o¤er p, given the market constellation

� and the exit rate �. For future reference, we refer to D (�j�; �) as the dynamic demand,
which depends on the endogeneous distribution of buyers�types in the pool and on their

strategies.6 To simplify the notation, we keep � �xed while presenting the model, and

from now on we suppress the dependency on �. Given D (�j�), we derive the probability
that a seller is able to trade at some time during his lifetime, qS (pj�), the so called
lifetime trading probability. We can derive qS (pj�) recursively from

qS (pj�) = D (pj�) + (1�D (pj�)) (1� �) qS (pj�) .

as

qS (pj�) � D (pj�)
1� (1�D (pj�)) (1� �) . (2)

Since there is no discounting, the seller does not care about when he conducts a trade

but only about whether he is able to trade before he must exit.7 Therefore, the expected

payo¤ to a seller when o¤ering a price p is the product of the selling probability and the

5For the analysis, we assume that all functions under consideration are measurable. With �M being
the set of measurable functions f : [0; 1]! [0; 1], � is an element of � � �4M � R.

6Formally, D (pj�) �
R
fvjp�r(v)g d�

B (v); see below.
7 Including a discount rate would not change results, see the discussion in Section 5.1.
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pro�t at the price p,

US (p; cj�) � qS (pj�) (p� c) . (3)

We require that p (c) 2 argmaxUS (�; cj�) for all c in equilibrium.

To derive the optimal search strategy of a buyer, note that his decision problem is

equivalent to the problem of optimal sampling without recall from a known and constant

distribution of prices. For this problem, it is well known that the optimal solution can

be described by a reservation price r, such that a price o¤er p is accepted if and only

if p � r (see, e.g., McMillan and Rothschild (1994)). The payo¤ to a buyer of type

v with a reservation price r depends on the expected price o¤er, E [pjp � r; �] ; and
the probability to trade at some time during his lifetime.8 With S (rj�) denoting the
probability to receive an acceptable o¤er p � r in any single period, we can derive the
lifetime trading probability qB (rj�) just as we derived qS (pj�):

qB (rj�) � S (rj�)
1� (1� S (rj�)) (1� �) .

Payo¤s for buyers are given by

UB (r; vj�) � qB (rj�) (v � E [pjp � r; �]) . (4)

Let V B (vj�) � maxr UB (r; vj�) be the maximized expected lifetime payo¤. At the opti-
mal reservation price r (v) buyers must be indi¤erent between acceptance and rejection,

so v � r (v) = (1� �)V B (vj�). Rewriting yields

r (v) = v � (1� �)V B (vj�) . (5)

We restrict attention to stationary equilibria in which the pool of traders does not

change over time. Suppose the total mass of sellers and the distribution of their costs at

the beginning of a period is given by M and �S (�), respectively, and suppose that the
trading strategies are r (�) and p (�). Then the mass of sellers at the end of the period is
the sum of the entering sellers and the initial sellers who neither traded nor died, i.e.,

the mass of sellers having costs below c is

GS (c) + (1� �)
Z c

0
(1�D (p (�) j�))Md�S (�) .

8Let E [pjp � r; �] = r if the probability of p � r is zero.
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Now, M is a steady-state mass and �S (�) is a steady-state distribution of sellers if and
only if the pool at the end of the period is the same as the pool at the beginning, i.e., if

M�S (c) = GS (c) + (1� �)
Z c

0
(1�D (p (�) j�))Md�S (�) . (6)

for all c. Also, for �S (�) to be a c.d.f., it has to be the case that its value at c = 1 is

normalized to one, �S (1) = 1. For buyers, a steady state requires that the mass at the

end of the period is equal to the mass at the beginning:

M�B (vj�) = GB (v) + (1� �)
Z v

0
(1� S (r (�) j�))Md�B (�) . (7)

Summing up, we de�ne an equilibrium to be a constellation that satis�es the above

conditions:

De�nition 1 An equilibrium �� consists of an optimal pair of strategies and a corre-

sponding steady-state pool, i.e., �� =
�
p (�) ; r (�) ;�S (�) ;�B (�) ;M

�
must be such that

1. p (c) 2 argmaxUS (p; cj��) for all c,

2. r (v) = v � (1� �)V B (vj��) for all v,

3. steady-state conditions (6) and (7) hold for all c and v, and �B (1) = �S (1) = 1.

3 Homogeneous Sellers: Existence and Characterization

In this section we analyze the case in which all sellers have zero costs so that the static

supply function GS (�) is �at. Static demand
�
1�GB (�)

�
is strictly decreasing. In this

case, the market clearing price pw is zero. In addition,
�
1�GB (�)

�
is assumed to be

continuously di¤erentiable and strictly concave.9 We want to prove that the prices set

by sellers converge to zero. The proof�s two important building blocks are that (a) sellers

are rationed at non-market clearing prices and that (b) in the limit, sellers can increase

their trading probability strictly by decreasing their price only marginally. In addition to

convergence, we show that we can characterize the equilibrium price o¤er by the Lerner

formula. We use this formula to prove the existence of a unique equilibrium price10.
9Concavity allows us to show existence because we can utilize the su¢ ciency of the �rst order condition

to derive the optimal price. Concavity is not needed for the characterization result.
10Note that the equilibrium de�nition does not allow sellers of the same type to set di¤erent prices.

We discuss price dispersion at the end of the next section, showing how to extend the characterization
proof for heterogeneous sellers to the homogeneous sellers case with mixed strategies (prices).
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Theorem 1 If all sellers have zero costs, then

1. there exists an equilibrium �� for all � 2 (0; 1),

2. for given �, the equilibrium price p�� = p (0) is unique;

3. the price p�� decreases if � decreases,

4. and the price o¤er in the limit is competitive, lim�!0 p�� = 0.

In the remaining section we prove the theorem. Some of the details are relegated to

the appendix.

3.1 Characterization of the Market

First, we want to characterize the market constellation in which (i) sellers o¤er some

price p�, (ii) buyers use optimal reservation prices, and (iii) the pool is in a steady-state.

Thus, we are looking for a market constellation � (p�) such that, conditional on p�; the

second and the third equilibrium conditions hold. We start by deriving the reservation

prices. For this, note that the payo¤ of buyers with valuations below p� is zero, while the

payo¤ to buyers with valuations above p� is v � p�. Therefore, buyers with valuations
below p� accept any price p � v since they cannot expect to do any better in the future;
thus, r (vjp�) = v for all v � p�. Buyers with valuations above p� are willing to pay

a premium � (v � p�) in order to save the waiting costs, thus their reservation price is
strictly above p�, r (vjp�) = p� + � (v � p�) > 0 for all v > p�. Together,

r (vjp�) � min fv; p� + � (v � p�)g : (8)

To characterize the steady state pool, note that buyers with valuations below p� can

never trade, but instead they stay in the pool until they die. Their mass in the pool is

thus equal to the mass of their in�ow GB (p�) ; plus the mass of those who entered in the

previous period and who survived (1� �)GB (p�) ; plus those surviving from the next

to last period (1� �)2GB (p�), and so on. Together, the mass of buyers with valuations
below p� must be GB (p�) =� = (1� �)0GB + (1� �)1GB + ::::. Buyers with valuations
above p� stay in the market for just one period and trade immediately. Thus, their mass

in the pool is exactly equal to the mass of their in�ow,
�
1�GB (p�)

�
. Taken together,

the total mass of all buyers is therefore given by M = GB (p�) =� +
�
1�GB (p�)

�
. The

share of buyers with valuations below p� is �B (p�) = GB (p�) =�M . Together

9



M (p�) � GB (p�) ��1 +
�
1�GB (p�)

�
: (9)

and

�B (vjp�) �
(
GB (v) = (�M) if v � p�

GB (p�) = (�M) +
�
GB (v)�GB (p�)

�
=M if v > p�;

(10)

The distribution of sellers is trivially given by �S (cjp�) = 1 for all c.

By construction, � (p�) satis�es equilibrium conditions (2) and (3). If, in addition,

p� maximizes the pro�t of the sellers, we have found an equilibrium. Therefore � (p�) is

an equilibrium constellation if and only if p� 2 argmaxUS (�; 0j� (p�)). As we will see,
such a price exists for every �; and this price is unique. However, before we move to this

point, will �rst consider the equilibrium price when � becomes small.

3.2 Convergence

We show that prices must become zero when � vanishes. The main portion of this task is

to derive the limiting lifetime trading probabilities at p� and at any p0 below it. (Trading

probabilities away from the limit are not important here and we will derive them only

in the next section.)

If all sellers o¤er p�; then their lifetime trading probability qS is simply the mass of

entering buyers with valuations above p�. The reason for this is as follows: In a steady-

state the mass of buyers who trade must be equal to the mass of sellers who trade.11

The mass of buyers who trade is 1�GB (p�), because only those buyers with valuations
above p� will �nd an acceptable price o¤er. The mass of sellers who trade is qS because

each seller trades with probability qS ; and there is a mass one of sellers who enter the

market. Thus, we get12

qS (p�j� (p�; �) ; �) = 1�GB (p�) 8p� 2 [0; 1] . (11)

For any price p0 strictly below p�, the lifetime trading probability qS can be derived

from the per period trading probability D. We can �nd a lower bound on the per period

11We prove this formally in Lemma 2, page 17.
12 In the previous paragraphs we de�ned � (p�) for a �xed �. Here, we vary �, so we now explicitly

include it as an argument in the functions.
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trading probability, which is also independent of � :

D
�
p0j� (p�; �) ; �

�
� GB (p�)�GB

�
p0
�

8p0 2 [0; p�). (12)

Two observations allow us to derive the bound: First, all buyers with valuations between

p0 and p� will accept p0. Therefore, the trading probability D is at least as large as the

share of buyers in the pool who have valuations v 2 [p0; p�]. Second, the share of these
buyers in the pool is at least as large as their share in the in�ow: if none of the other

types trade, the distribution of types in the pool must be simply the distribution of

types in the in�ow. Otherwise, if some of the other types do trade, then their share

must be even higher in the pool than in the in�ow.13 Given the bound on the per period

trading probability, let us derive the limiting trading probability at the price p0, qS (p0):

Since static demand is strictly falling, (12) implies that the trading probability D (p0) is

strictly positive. So a seller has a strictly positive probability to trade at p0 in any given

period. When the exit rate converges to zero, the seller can sample for an increasing

number of periods. Therefore, the lifetime trading probability at p0 becomes one:

lim
�!0

qS
�
p0j� (p�; �) ; �

�
= 1 8p0 2 [0; p�). (13)

Now, we can see why prices must converge to zero: The trading probability at any

price p� is independent of � and equal to
�
1�GB (p�)

�
. If p� is not market clearing,

then the trading probability is below one, see (11). However, the probability of trading

at any p0 below p� converges to one when � becomes zero, see (13). Hence, for p0 close to

p� and for � small enough, a deviation from p� to p0 is pro�table. The observation that

in the limit even the slightest decrease from p� to p0 increases qS to one is equivalent to

saying that the elasticity of qS becomes in�nite for all p� > 0.

Formally, take a vanishing sequence of exit rates f�kg1k=1, �k ! 0. Given �k, let

p�k � p��k be the equilibrium price. Since p�k 2 [0; 1], there must be some converging
subsequence of prices fpk0g with a limit �p 2 [0; 1]. Along this subsequence, pro�ts at the
equilibrium price p�k0 converge to

lim
k0!1

US (p�k0 j� (p�k0 ; �k0) ; �k0) = �p (1�G (�p)) 8�p 2 [0; 1] .

13Formally, the share of types v 2 [p0; p�] in the pool is de�ned as �B (p�)��B (p0). From (10) it follows
that this di¤erence is given by

�
GB (p�)�GB (p0)

�
(�M)�1 ; and from (9) it follows that (�M)�1 � 1.

Altogether, this implies (12).
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Let the "deviation price" p0 be such that p0 is strictly below �p. From (13), the lifetime

trading probability at p0 converges to one. The limiting payo¤ at p0 are therefore

lim
k0!1

US
�
p0j� (p�k0 ; �k0) ; �k0

�
= p0 8p0 2 [0; �p):

Thus, if �p is not competitive, then for p0 close to �p and for �k0 small enough, pro�ts at p0

are strictly larger than pro�ts at the equilibrium price p�k0 . This is a contradiction to the

de�nition of p�k0 . Hence, the limit �p of the subsequence must be zero as claimed. Since

the subsequence was chosen arbitrarily, the limit price for every convergent subsequence

must be zero and thus the limit of the sequence itself must be zero.

3.3 Remarks on the Intuition

A change in � changes the composition of the pool and the incentives of the traders at the

same time. One cannot therefore derive an intuition by keeping either of the two �xed.

For example, an intuition that looks only at the change of the pool might go as follows:

"If all sellers o¤er a common price p� > 0, then, in the limit with � ! 0, buyers with

valuations below p� will accumulate and the pool will consist almost entirely of these

buyers. Therefore, sellers can no longer expect to sell at p�; and hence they decrease

their price." The problem with this intuition is that at the same rate at which the pool

consists of buyers with lower valuations, sellers become more patient. Indeed, these two

e¤ects exactly o¤set each other such that the relevant lifetime trading probability qS (p�)

is independent of �: it is qS (p�j�) = 1�GB (p�) for all �, see (11).

The true reason that sellers want to decrease their price with � ! 0 is that it becomes

increasingly likely that they will �nd a buyer with a valuation between p0 and p� - even

if p0 is just slightly below p�. This increase in the matching probability stems from the

fact that sellers can sample more often from the pool. This increase is not due to a

change in the pool by the accumulation of low valuation buyers. Even if the distribution

�B of buyers in the pool remained the same as the distribution GB in the in�ow, the

sellers�trading probability at p0 would become one; see the derivation of (12). Therefore,

intuition derived solely from the change of the pool misses one of the main driving forces

for convergence.14

14Of course, rationing does depend on the decreasing share of buyers with valuations above p�. Oth-
erwise, if this share remained constant, the lifetime trading probability at any p� would become one as
well, and sellers would not want to decrease their prices; see the discussion of "cloning" in Lauermann
(2006b).
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3.4 Existence and Characterization of the Equilibrium Price

We now prove the existence of an equilibrium for a given � by constructing it explicitly.

This also allows us to characterize the equilibrium price and to show that this price is

unique. Recall that p� is an equilibrium price if and only if p� 2 argmaxUS (�; 0j� (p�)).
To solve this maximization problem, we �rst narrow down the set of candidate prices.

In particular, only prices in the interval between zero and the highest reservation price

can be optimal, i.e., the optimal price must be in (0; r (1jp�)): For prices outside this
interval, pro�ts are zero, while pro�ts are strictly positive for prices inside it (since at

least some buyers accept such a price). The maximization problem is further simpli�ed

by the observation that the payo¤ US (p; 0j� (p�)) is continuously di¤erentiable in p
on this interval and strictly concave. We will show continuous di¤erentiability below.

Concavity is shown in the appendix, and this property follows from the assumption

that static demand
�
1�GB (�)

�
is concave. Together, the two observations imply that

the optimal price is characterized by the �rst order condition, i.e., we have found an

equilibrium price if and only if @
@pU

S (p; 0j� (p�)) jp=p� = 0 for some p� 2 (0; r (1jp�)).

Rewriting the �rst order condition,15 yields the well-known Lerner Formula

p� � (1� �) qS (p�j� (p�)) p�
p�

= � 1

~" (p�j� (p�)) ; (14)

where ~" (�j� (p�)) is equal to � @
@pD (�j� (p

�)) pD (�j� (p�))�1. This is the elasticity of

dynamic demand D (�j� (p�)) which accounts for the possibility of buyers to substitute
intertemporally. The term (1� �) qS (p�j� (p�)) p� can be interpreted as the dynamic
opportunity costs of selling the good: Not selling today and o¤ering the good at a price

p� from tomorrow onwards yields expected pro�ts of (1� �) qS (p�j� (p�)) p�. Hence, the
right-hand side is the relative mark up of p� over the dynamic opportunity costs.

The Lerner formula (14) can be written in terms of static demand
�
1�GB (�)

�
by

solving for the lifetime trading probability qS (�j� (p�)) and the elasticity ~" (p�j� (p�)).
We already know the probability qS from (11). The dynamic elasticity ~" can also be

derived very easily. It is equal to the static elasticity scaled up by ��1 :

~" (p�j� (p�)) = 1

�
" (p�) ; (15)

where the elasticity of static demand
�
1�GB (�)

�
is " (p) = � pgB(p)

(1�GB(p)) . To see why

15See the appendix for the algebraic manipulations.
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this is the case, we need to know the dynamic demand D and its derivative. To de-

rive demand, we de�ne v (pjp�) as the lowest type who accepts the price p: v (pjp�) �
inf fv; 1jr (vjp�) � pg. Since r (vjp�) is given by (8), this type is

v (pjp�) =
(
p� + 1

� (p� p
�) if p 2 [p�; r (vjp�)]

p if p 2 [0; p�):

The set of buyers who accept a price p is the set of buyers with valuations above v (pjp�).
Hence, dynamic demand is D (pj� (p�)) = 1��B (v (pjp�) jp�). We know the distribution
of buyers types�from (10), and the derivative of dynamic demand is

@

@p
D (pj� (p�)) = ��0B (v (pjp�) jp�) v0 (pjp�)

=

(
�gB(v(pjp�))

M
1
� if p 2 [p�; r (vjp�)]

�gB(v(pjp�))
�M if p 2 [0; p�):

From the characterization of D (pj� (p�)) and its derivative, the formula (15) for the
elasticity ~" (p�j� (p�)) follows. Note also that the derivative of the dynamic demand
is continuous and in particular, the dynamic demand has no kink at p�. This might

be surprising at �rst but it follows intuitively from the observation that a seller who

decreases his price wins buyers with valuations below p� who never trade and who

accumulate at a rate proportional to ��1, while a seller who increases his price looses

buyers who would rather wait for the next period and he looses the types of these buyers

at a rate v0 (pjp�) = ��1. Finally, continuous di¤erentiability of D implies that payo¤s

US are continuously di¤erentiable as assumed in the beginning of this section (since

US = Dp (D + � � �D)�1; see the de�nitions of qS and US , (2) and (3)).

Our knowledge of qS and ~" allows us to rewrite the Lerner formula (14) as16

p�
�
1 +

�
1

�
� 1
�
GB (p�)

�
=

�
1�GB (p�)

�
gB (p�)

.

The remaining parts of the theorem now follow: The existence of a solution p� is implied

by the intermediate value theorem, since both sides of the equation are continuous. Given

p�, we can construct an equilibrium constellation �� = �� (p�) from (8), (9), and (10).

This proves the existence. The uniqueness and monotonicity of the solution follows from

16Substituting " and qs, we get
p��(1��)(1�GB(p�))p�

p� = 1

1
�

p�dGB(p�)

(1�GB(p�))

. Then, we cancel p� on the LHS

and multiply both sides by p�

�
.
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the concavity of the static demand (1�G): Note that the right-hand side is decreasing
in p�, since its derivative has the sign of �g2 (p�)�

�
1�GB (p�)

�
g0 (p�), where, by the

concavity of
�
1�GB

�
, g0 is strictly positive. The left-hand side is obviously increasing

in p�. Together, there can be only one p� for which the equality holds. Let this unique

price be p�� . The monotonicity of the terms of the rewritten Lerner formula also implies

that the solution p�� must be increasing in �. If p
�
� were decreasing in �, then our previous

discussion of the signs of the change in p� would imply that then the right-hand side

would increase in �; while the left-hand side would decrease in � �so the equality would

not hold for di¤erent �.

We can use the Lerner Formula to give an alternative proof of convergence. Let�
p�k0
	
again be a convergent subsequence of prices with limit �p. Then, if �p > 0, the

inverse elasticity on the right-hand side of the Lerner formula converges to zero: the

dynamic elasticity ~" is equal to the static elasticity " (�p) times ��1. Since the static

elasticity " (�p) is constant and positive, the inverse dynamic elasticity becomes zero,

~"�1k0 = �k0" (�p)
�1 ! 0. The relative mark up on the left-hand side of the Lerner Formula,

however, does not converge to zero since the trading probability qSk0 (�p) is bounded away

from one since �p is not market clearing. Thus, the Lerner formula cannot hold unless

�p is zero. This alternative proof illustrates again how rationing sellers at non-market

clearing prices is essential for convergence. However, one needs to �rst derive the Lerner

Formula and this proof is therefore not as direct as the comparison of the lifetime trading

probabilities, which we used in our previous proof.

4 Heterogeneous Sellers

We now consider heterogeneous sellers. With heterogeneous sellers, we need to account

for price dispersion. The main economic contribution of this section is to illustrate the

market forces that imply that price dispersion ceases in the limit and that the law of one

price holds. At the end of Section 4.2 we show how to use our characterization result

with heterogeneous sellers to analyze price dispersion in the case of homogeneous sellers.

Technically, an equilibrium can no longer be characterized by a single price but only by

a price function. The existence proof is therefore fairly involved and we relegate it to

the appendix.

To characterize the equilibria in the limit, we will look at a strictly decreasing se-

quence of exit rates which converge to zero, limk!1 �k = 0. In the �rst subsection that

follows, we will show that for every such �k an equilibrium exists. We will also show the
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monotonicity of the equilibrium strategies p� and r�. The reader who is not interested in

these more technical details might wish to jump directly to the second subsection. There,

we select one equilibrium for each k; which gives us a sequence of equilibria f��kg
1
k=1. We

show that for every such sequence, the support of prices at which trade happens shrinks

to a singleton, and hence, a law of one price holds. We then show that this one price

must be the Walrasian price pw, which is stated in the second theorem. Convergence to

the Walrasian Allocation follows as a corollary.

4.1 Existence and Preliminary Characterization

In this section, we prepare the analysis of the model with heterogeneous sellers. Now,

both, GS (�) and GB (�) are strictly increasing and we assume that they have continuous
densities gS (�) and gB (�). We need no longer assume that

�
1�GB (�)

�
is concave. We

�rst prove that prices p (�) and reservation prices r (�) are monotone. Then, we show that
for every monotone strategy combination p (�) and r (�) (not just equilibrium strategies),

there exists a steady-state pool of traders. We also show that for every monotone strategy

combination and for every corresponding steady-state pool, the transfers collectively

made by sellers are equal to the transfers received by buyers, and the total mass of

sellers who trade is equal to the total mass of buyers who trade. Finally, we prove that

an equilibrium exists for all �. All proofs are collected in the appendix.

The �rst lemma shows that the reservation prices of buyers are monotone increasing

in their valuations, and the prices set by sellers are monotone increasing in costs, if they

have costs below the highest accepted price r� (1). Since prices of sellers with costs above

r� (1) are never accepted, they have no impact on the equilibrium. Thus, the prices set

by these sellers can be changed such that these prices are monotone as well without

a¤ecting the equilibrium conditions.

Lemma 1 If �� =
�
p�; r�;�S�;�B�;M�� is a steady-state equilibrium then, de�ning

~p (c) �
(
p� (c) 8c 2 [0; r (1))
c 8c 2 [r� (1) ; 1] ;

~� =
�
~p; r�;�S�;�S�;M�� is a steady-state equilibrium, and ~p and r� are monotone.

Note, if all equilibrium constellations with monotone price functions are competitive,

then also all equilibrium constellations in which sellers�prices might be non-monotone
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above r� (1) must be competitive. The restriction to monotone p and r, however, makes

the analysis a lot easier.

It can also be shown that reservation prices must be strictly increasing with a slope

contained between � and 1. We de�ne �r(�) as the set of functions with such a bounded

slope, and we de�ne �p(�) as the set of monotone prices. For every strategy combination

of p and r from �p(�) and �r(�), we can use a �xed point argument to prove that a pool

of traders can be found such that the steady-state conditions hold.

Theorem 2 For every strategy combination (p (�) ; r (�)) 2 �p(�) � �r(�) there is a pool
�B (�), �S (�), and M such that the steady-state conditions (6) and (7) hold.

Thus, the steady-state conditions do not restrict the strategy set any further. In

models without an exit rate, this is not true, and for some strategies, a steady-state pool

fails to exist. In the latter case, the steady-state assumption implies a restriction on the

strategies (see the discussion of models with in�nitely lived players in Section 5.2).

Intuition suggests that in a steady-state the mass of buyers who trade is equal to

the mass of sellers who trade. In addition, the expected payments made by buyers

should be equal to the expected payments received by sellers. Indeed, straightforward

manipulation of the steady-state conditions shows that this is the case. To state the next

lemma, let �� be the set of all constellations � such that, given the pricing strategy p (�)
and reservation prices r (�), the pool �S ;�B and M satis�es the steady-state conditions.

Lemma 2 Mass Balance. Expected payments and the mass of expected trades are

equal on both sides of the market, i.e., for all � 2 ��:Z 1

0
qS (p (c) j�) p (c) dGS (c) =

Z 1

0
qB (r (v) j�)E [pjp � r (v) ; �] dGB (v)

and
Z 1

0
qS (p (c) j�) dGS (c) =

Z 1

0
qB (r (v) j�) dGB (v) :

As discussed in Lauermann (2006b), mass balance does not need to hold in models

in which the in�ow is not exogeneous as in De Fraja and Sakovics (2001).

Finally, an application of the Kakutani-Fan-Glicksberg Fixed Point Theorem shows

an equilibrium exists that for every �.

Theorem 3 For every �, there exists an equilibrium constellation ��.
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4.2 The Law of One Price

To de�ne the support of prices at which trade takes place, let hk be the highest accepted

price, hk � rk (1) ; and let lk be the lowest o¤ered price, lk � pk (0). Now, we state the
law of one price.

Theorem 4 For every sequence of steady-state equilibria with hk � rk (1) and lk �
pk (0) :

lim
k!1

(hk � lk) = 0:

In the remainder of this section we prove the theorem by contradiction, using the

following line of reasoning: Suppose that, contrary to the theorem, there is some (sub-

)sequence, indexed by k0 along which the cuto¤prices hk0 and lk0 converge to two di¤erent

limits, i.e., limk0!1 hk0 = h and limk0!1 lk0 = l, with h > l. As stated in the introduc-

tion, to sustain price dispersion in equilibrium, two opposing conditions must hold: For

rk0 (1) = hk0 to be optimal, intermediate prices p 2 (l; h) must be rare so that the buyer
v = 1 accepts rk0 (1) = hk0 instead of waiting for better prices. For pk0 (0) = lk0 to be

optimal for a seller, intermediate prices must be o¤ered frequently enough: Otherwise,

buyers with intermediate valuations would not �nd trading opportunities and would ac-

cumulate in the market. Then, a seller with c = 0 would want to deviate from the low

price lk0 to some intermediate price. When �k0 is small, the two optimality conditions

for the buyers and the sellers cannot both be satis�ed, i.e., intermediate prices cannot

simultaneously be o¤ered rarely enough for buyers�incentives and frequently enough for

sellers� incentives. The following three lemmas formalize this idea, and together they

imply the law of one price. The proofs of the lemmas are relegated to the appendix.

During this and subsequent sections, we often refer to the lifetime trading probabil-

ities of types, and we denote these probabilities by capital letters. For this we de�ne

QS (cj�; �) � qS (p (c) j�; �) and similarly QB (vj�; �) � qB (r (v) j�; �).17 We abbreviate
by using QSk0 (c) � QS

�
cj��k0 ; �k0

�
and QBk0 (v) � QBk0

�
vj��k0 ; �k0

�
.

First, the trading probability at intermediate reservation prices strictly below h must

not converge to one. Otherwise, accepting h would not be optimal for a buyer with a

valuation of one: By rejecting h and waiting for a lower price instead, he would still

trade with a probability of one but at a lower price, which makes him better o¤. Since

buyers with valuations strictly below h can only trade at prices below h, this implies

that their trading probabilities must not converge to one:

17Note that we vary the exit rate, and that we therefore include � in the arguments.
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Lemma 3 Trading probabilities of intermediate types of buyers are bounded away from
one:

lim supQBk0 (v) < 1 for all v < h.

The next two lemmas are the implication of this upper bound on the trading prob-

ability. First, payo¤s to buyers are bounded. In particular, the limiting payo¤s of the

intermediate types are strictly smaller than (v � l), since Lemma 3 implies that they
cannot become certain to trade at l (or better). Therefore, they accept prices above l in

the limit.

Lemma 4 Intermediate types of buyers accept prices above l in the limit:

lim inf rk0 (v) > l for all v 2 (l; h) .

The second implication of the upper bound on trading probabilities is that interme-

diate types make up a strictly positive share of the pool in the limit. Intuitively, buyers

who are less likely to trade stay in the pool for a longer time and make up a larger share

of the pool than those who are more likely to trade:

Lemma 5 Intermediate types of buyers make up a strictly positive share in the limit:

lim inf 1� �Bk0 (v) > 0 for all v 2 (l; h) .

Proof of the Theorem: Take any intermediate type v0 2 (l; h). Suppose a seller
having zero costs o¤ers a price equal to the reservation price of this type, rk0 (v0). All

buyers with valuations above v0 accept these prices. By Lemma 5, the share of these

buyers is strictly positive in the limit. Therefore, the lifetime trading probability of the

seller becomes one when � ! 0,

lim inf qS
�
rk0
�
v0
�
j�k0 ; �k0

�
= lim inf

1� �Bk0 (v0)
1� (1� �k0)

�
1� �Bk0 (v0)

� = 1:
By Lemma 4 the limiting reservation price of v0 is larger than l. Therefore, the limiting

payo¤ to the zero cost seller who o¤ers rk0 (v0) will be strictly larger than l. If instead the

seller would o¤er the prescribed equilibrium price pk0 (0), his payo¤s would be at most l
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in the limit. So, for k large enough, pk0 (0) is no longer payo¤ maximizing and the seller

would want to deviate and increase his price to rk0 (v0) instead. Therefore f�k0g cannot
be a sequence of equilibrium constellations, yielding the desired contradiction. QED:

4.3 Remark on the Intuition for the Law of One Price

There is an easy but misleading intuition for the law of one price that goes as follows:

"There can be no price dispersion in the limit because buyers become more patient with

� ! 0. Therefore, they would reject all high o¤ers and only accept low prices." This

overlooks the fact that the distribution of prices is endogeneous and might change with

� to keep buyers accepting high o¤ers. Note that our proof is constructed to �rst show

how prices must (and can) be set to actually make buyers accept high prices. Then, the

reasoning that such price dispersion is not sustainable is more subtle, and it involves the

sellers� incentives to increase prices.

4.4 Convergence to the Walrasian Price

Theorem 4 tells us that in the limit, all trades happen at a single price. The next theorem

shows that this price is the Walrasian price:

Theorem 5 For every sequence of steady-state equilibria, prices converge to the Wal-
rasian Price:

lim
k!1

pk (c) = p
w 8c < pw and lim

k!1
rk (v) = p

w 8v > pw:

Given the "law of one price," it is su¢ cient to prove that one of the two boundary

prices lk or hk converges to pw. Let us prove limk!1 hk = pw. To do so, we take

some convergent subsequence of fhkg1k=1, indexed by k0, and call its limit pc. First, we
show that all sellers with costs below pc must be able to trade in the limit. Second,

we show that also all buyers with valuations above pc must be able to trade in the

limit. Furthermore, the market clearing price is the only price at which all buyers

with valuations above this price and all sellers with costs below this price can trade.

Therefore, it must be the case that the limit price pc is equal to pw for every convergent

subsequence. And thus, pw must be the limit for the sequence itself.

The �rst lemma states that the trading probabilities of sellers become one if their

costs are below pc. The trading probabilities become zero otherwise:
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Lemma 6 For every convergent subsequence fhk0g with limk0!1 hk0 = pc:

lim
k0!1

QSk0 (c) = 1 8c < pc and lim
k0!1

QSk0 (c) = 0 8c > pc:

The proof is quite intuitive: Observe that along the subsequence, for any p0 < pc,

buyers with v 2 (p0; lk0) do not trade, but accumulate instead in the market.18 Hence,
we know that a seller who o¤ers any price p0 below pc becomes sure to trade in the

limit. Since the equilibrium price o¤er pk0 (c) converges to pc by de�nition, the trading

probability at pk0 (c) must converge to one as well, and we have QSk0 (c)! 1 for all c < pc

as claimed. Note that sellers with costs strictly above pc o¤er only prices p � c > pc,

and even the buyer with the highest reservation price will not accept such prices when

�k0 becomes small, since rk0 (1) ! pc. Thus, sellers with costs above pc will not �nd a

buyer in the limit, and the second part of the lemma follows.

Similarly, we can show that the trading probabilities of buyers with valuations v > pc

must converge to one. If not, some buyers would be willing to accept prices strictly above

pc, contradicting the de�nition of hk0 :

Lemma 7 For every convergent subsequence fhk0g with limk0!1 hk0 = pc:

lim
k0!1

QBk0 (v) = 1 8v > pc and lim
k0!1

QBk0 (v) = 0 8v < pc:

Proof of Theorem 5: Lemma 6 and 7 imply that in the limit the trading probabilities
of sellers and buyers are given by the step functions 1c�pw and 1v�pv . So we know the

mass of players who will trade with �k0 ! 0:

lim
k0!1

Z 1

0
QSk0 (c) dG

S (c) =

Z 1

0
1c�pwdG

S (c) = GS (pc)

lim
k0!1

Z 1

0
QBk0 (v) dG

B (v) =

Z 1

0
1v�pwdG

B (v) = 1�GB (pc) :

As veri�ed in Lemma 2, in every equilibrium ��k0 , the mass of buyers who trade must be

equal to the mass of sellers who trade, i.e.,
R 1
0 Q

S
k0 (c) dG

S (c) =
R 1
0 Q

B
k0 (v) dG

B (v) for

all k0; and thus,

lim
k0!1

Z 1

0
QSk0 (c) dG

S (c) = lim
k0!1

Z 1

0
QBk0 (v) dG

B (v) ;

18This and the following statements are trivial if pc = 0.
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which implies GS (pc) = 1�GB (pc) at pc. The unique price which satis�es this equality
is the market clearing price pw, and hence, all subsequences hk0 and lk0 converge to

pw. Since all subsequences converge to the same point, the sequence of prices hk itself

converges pw QED:

An immediate corollary of Lemma 6 and 7 is that in the limit those and only those

sellers with costs below pw and buyers with valuations above pw trade:

Corollary 6 For every sequence of steady-state equilibria, the outcomes converge to a
Walrasian allocation, i.e.,

lim
k!1

QSk (c) = 1 8c < pw and lim
k!1

QSk (c) = 0 8c > pw;

lim
k!1

QBk (v) = 1 8v > pw and lim
k!1

QBk (v) = 0 8v < pw:

Proof : Rewrite the Lemmas, substituting pc = pw QED:

4.5 The Law of One Price for Homogeneous Sellers

In the section with homogeneous sellers, we only analyzed equilibria in which all sellers

o¤er the same price p�. What about equilibria in which price o¤ers are distributed over

some range? One way to answer this question and to accommodate the possibility of

price dispersion with homogeneous sellers is to suppose that sellers use distributional

strategies which depend on the realization of some random variable. Suppose every

seller is characterized by some i 2 [0; 1] that is drawn at the time of his entry from a

uniform distribution, and suppose a seller who draws i o¤ers p (i). With this set-up,

we can conveniently analyze equilibria in mixed strategies. In particular, we can use

our results about heterogeneous sellers and show that p (i) converges to pw = 0 for all

i 2 [0; 1] if � ! 0. To accomplish this, the proof with heterogeneous sellers could be used

almost verbatim. We would �rst show the law of one price, i.e., the lowest price in the

support of price o¤ers converges to the highest accepted price. Here, we could simply

repeat the earlier proof. Then, we would show that lk and hk converge to zero. Here,

we would need to make small adjustments in the notation since there are no sellers with

costs c < pw = 0.

5 Discussion

We discuss �rst the setup and the robustness of our result. Then we look at the relation

to the existing literature. Finally, we discuss the interpretation of demand in a dynamic
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context.

5.1 Discussion of the Setup

Matching Technology. We assume that all entering buyers and sellers are matched
into pairs, and that no trader remains unmatched. This assumption allows for the

derivation of the lifetime trading probabilities in a very convenient way. Recall that

with homogeneous sellers and a common price o¤er p�, the lifetime trading probability

was equal to the mass of buyers with valuations above p�, qS = 1 � GB (p�); see (11).
This simple formulation allows us to directly tell the story of rationing, by connecting

the sellers�trading probability with the static demand function and by observing that

the trading probability is less than one whenever the price p� is not market clearing.

Alternative matching technologies would make the solution of the model less instructive,

but they would not change the qualitative results. All that we need for our characteri-

zation in the limit is that whenever a set of buyers makes up a strictly positive share of

the total pool then the probability that a seller is matched with these buyers is positive.

No Discounting. The exit rate � acts like a discount rate by introducing search
costs, and in particular, by making these search costs depend on the type: High valuation

buyers have more to loose and are more eager to trade. Qualitative results would not

change by adding pure time discounting that is proportional to the exit rate, as, e.g.,

in Satterthwaite and Shneyerov (2007b). However, discounting would drive a wedge

between the lifetime trading probability and the discounted lifetime trading probability.

While the former can be written in the simple way discussed before, the latter discounted

trading probability would be more cumbersome to derive, and would again make the

model less instructive.

Price O¤ers. We restrict sellers to o¤er simple take-it-or-leave-it prices. In prin-
ciple, there might be more elaborate selling mechanisms that could raise the seller�s

payo¤s. This is not the case in our quasilinear setup; see the work by Yilankaya (1997),

and in particular, the recent work by Mylovanov and Tröger (2007) for continuous type

spaces.

Exit Rate. When modelling the evolution of the pool of traders, we follow McAfee
(1993), and in particular Satterthwaite and Shneyerov (2007b) and assume that there

is some exogeneous exit rate. The main alternative would be to assume that traders

literally live in�nitely long like in Gale (1987). The assumption that agents live in�nitely

23



long, however, restricts the set of possible equilibria because it introduces a zero pro�t

condition for sellers. This zero pro�t condition is not a limit property but it holds even

away from the limit and for all levels of frictions. Also, it is independent of any further

strategic considerations. Thus, models with in�nitely lived agents do not necessarily

include the idea that frictions allow traders to enjoy market power in a decentralized

market, and that therefore trading is ine¢ cient unless the market becomes frictionless.

To see why the zero pro�t condition holds let us look at the example from Section 3

where sellers are homogeneous and the market clearing price is zero. To start, note that

agents who life in�nitely long can leave the market only through trading. Agents who

do never trade accumulate in the market and have a mass of in�nity. Therefore, one

needs to include an entry decision to ensure the existence of a steady-state with �nite

masses. Second, and again to ensure a steady-state, the mass of entering buyers and

sellers must be exactly identical and all traders who decide to enter the market must

trade at some point. Now there are two possible equilibrium scenarios: In the �rst case,

all buyers enter, including those with zero valuation. Because even these buyers must

be able to trade, sellers must o¤er prices close to zero. Since sellers would not do so

otherwise, this requires that sellers earn zero pro�ts in the �rst case. In the second case,

instead of all buyers, only a mass strictly smaller than one enters. Then, to equalize the

mass of entering sellers and buyers, some of the sellers must also choose to stay out of

the market. However, sellers will stay out of the market only if they earn zero pro�ts.

Therefore, for both cases the zero pro�t condition holds at all levels of the friction.

No Entry Stage. With in�nitely living agents, an entry decision is necessary for
technical reasons. We can dispense with it here. If, however, we were to include such an

entry stage in a modi�ed model, we could sustain multiple equilibria. For example, in a

model with entry, there will typically be a trivial equilibrium in which no trader enters

and no trade takes place. Such an equilibrium, however, might be considered unstable

because it relies on the assumption that it is impossible for sellers to reach inactive

buyers who chose not to enter and who accumulate outside of the pool. If sellers would,

for example, be allowed to advertise their prices at some cost per ad to buyers outside

the pool and if we let this cost converge to zero, the convergence result could be restored.

Asymmetric Information. Intuition suggests that asymmetric information makes
the convergence result harder to attain, because bilateral bargaining between the seller

and the buyer must be ine¢ cient if their costs and valuations are private information.

This, however, is not the case. In Lauermann (2006a), the present model is altered by
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enabling sellers to observe v before making a price o¤er. Therefore, bilateral bargaining

between the seller and the buyer is e¢ cient. The setup is the same in all other respects.

But, without asymmetric information, the convergence results are reversed: prices in-

crease if the friction � becomes smaller and the prices set in the limit are not competitive.

The reason for this is that price discrimination allows all types of sellers to make strictly

positive pro�ts even in the limit. Therefore, marginal sellers with costs close to the

market clearing price would not want to trade with marginal buyers, since trading with

these buyers would yield only zero pro�ts to them.19 The negative result in Lauermann

(2006a) not only illustrates the pro-competitive e¤ect of asymmetric information, but

it also shows that the convergence result obtained here is not immediately determined

from the set-up. For example, low valuation buyers "�ood" the market in both variants

of the model. Therefore, accumulation of these types cannot be crucial for the results.

Extensions: Non-Steady States and Multiple Goods. It is possible to extend
the model in several directions. In particular, one could assume that entry happens

only once, in the �rst period, and that there is no subsequent entry as in Moreno and

Wooders (2002).20 This would make the pool non-stationary. Similarly, one could extend

the model to allow traders to supply and demand several goods as in Gale (2000) or in

Atakan (2007). For both extensions, the crucial part of the proof would be to show the

"law of one price." Again, the main part would be to show that price dispersion cannot

be supported in equilibrium because intermediate types of buyers must not trade with

certainty and hence, make up a strictly positive share of the pool. Therefore, sellers

would rather deviate and trade with these intermediate types. Having shown the law of

one price, one can prove that the price (-vector) must be Walrasian because rationing

occurs at all other prices.

5.2 Existing Literature and Other Market Clearing Forces

We have argued that rationing and the incentives to reach out for additional buyers are

the essential ingredients that guarantee an e¢ cient outcome in the limit. In the existing

literature, however, assumptions can be found that give sellers additional incentives to

decrease their prices. In the main strand of the literature,21 within each pair, both sides

19That sellers can price discriminate among buyers even in the limit is known as the Diamond Paradox.
But price discrimination by itself does not constitute an ine¢ ciency.
20Moreno and Wooders assume that both, buyers and sellers, have a chance to make an o¤er, and

they restrict attention to a set of two types.
21Mortensen (1982), Rubinstein and Wolinsky (1985) and Gale (1986, 1987) initiated the analysis for

complete information. A more recent contribution is Mortensen and Wright (2002). Shneyerov and Wong

25



of the market have a chance to make an o¤er. In recent models, only sellers can make the

o¤er, but buyers have the chance to simultaneously receive several o¤ers from competing

sellers.22

For illustration, take a model with homogeneous sellers, where the market clearing

price is zero. Suppose that sellers set a common price p� > 0; even for small �. As

we know, not all sellers will be able to trade at this price and their lifetime trading

probability is bounded away from one. This implies furthermore that their pro�ts are

strictly smaller than p�. Now consider a model with a positive chance that a seller

competes directly against the o¤er of another seller. In this case, there is additional

pressure on prices: given the common price level p�, any incremental decrease of the

price increases the trading probability strictly by undercutting the rivals�prices. Because

expected future pro�ts are strictly below p�, this increase of the trading probability

is pro�table. Similarly, consider a model in which buyers can make o¤ers with some

probability themselves. Note that, in order to avoid rationing, a seller will accept a low

price o¤er p0 from a buyer even if it is considerably less than p�. Therefore, buyers have

the possibility to trade at that price p0 in the future when it is their turn to make an

o¤er. Moreover, if � is close enough to zero, buyers can almost certainly do so. This

outside option of trading at a much lower price in the future makes them unwilling to

accept an o¤er p� from the seller. Therefore, sellers are forced to decrease their price

o¤er in order to make it acceptable.

We can distinguish three forces that push prices towards the competitive level: the

incentive to reach out to additional buyers analyzed here, the incentive to undercut the

competitors, and the outside option for buyers if they have some bargaining power. Ra-

tioning on the sellers�side is the common starting point. However, there is an important

qualitative di¤erence between the three forces: While the existence of additional buy-

ers at lower prices is a basic feature implied by nothing more than falling demand, the

possibility of directly competing o¤ers or the distribution of bargaining power between

traders depends on the �ne details of the situation and of the model. By showing to

what extent the convergence result is independent on these latter details, we provide

evidence for the robustness of the prediction that decentralized trading is e¢ cient.

(2007), Serrano (2002), Moreno and Wooders (2002), and Inderst (2001) extended it towards incomplete
information.
22See Satterthwaite and Shneyerov (2007a, 2007b) and the literature on noisy search, e.g., Burdett

and Judd (1983).
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5.3 Demand and Supply in a Dynamic Market

What is "demand" in a dynamic market? There are at least three empirically appealing

notions of demand at price p: (i) The mass of buyers in the market who are present

today and who place a value above p on the good, (ii) the mass of buyers in the market

who are present today and who would actually buy the good at a price p, and (iii) the

mass of buyers who buy the good at price p if this is the only price of the good in all

past and future times. In our model, these notions correspond to (i) the distribution

of types in the pool
�
1� �B (p)

�
, (ii) dynamic demand DB (p), and (iii) static demand

1 � GB (p). "Demand" is less of a problem in a static market: If all buyers enter only

today and if also trade takes place only today, then the three concepts do not di¤er.

In a dynamic market, however, these three notions are di¤erent as we have seen and

one might ask which one is "the right one." Our analysis suggests the following: If a

researcher is interested in a market with small frictions, then static supply and demand

might be right. We have shown that in the limit, prices are equal to the market clearing

price pw, which is determined only by static supply and demand. This con�rms the view

put forward by Gale (1987).23 Away from the limit, however, we have seen how both,

static and dynamic supply and demand, jointly determine the prices, as illustrated by

the Lerner Formula. The distribution of the true willingness to pay, �B (p) by itself

does not enter price determination directly. (But indirectly, together with the level of

frictions �, �B does determine dynamic demand.)

The three notions matter in empirical research. For example, Nevo and Hendel (2006)

study demand for laundry detergents. The possibility of storing laundry detergents

makes demand more sensitive to temporary price changes than it would be otherwise.

Roughly, they estimate dynamic demand by looking at the true revenue at di¤erent

prices. Then, they estimate static demand, i.e., the level of demand that would emerge

if the price would be constantly �xed at some p. Since this demand is unobservable,

they use structural estimation by identifying the cost of storage and the distribution of

types of consumers. This allows them to calculate static demand. Note that similarly in

our model knowledge of the distribution of types in the pool, �B, and knowledge of the

waiting costs �, would allow to calculate the trading probability, qS (p), which depends

on static demand
�
1�GB

�
. Using their estimates, they show that the dynamic elasticity

of demand is much higher than the elasticity of static demand. This is consistent with
23Gale (1987) was the �rst to point out the problem in de�ning "demand" in a dynamic context.

However, he did not use the concept of dynamic demand and he was concerned mainly with the limiting
outcome and whether it is determined through stocks or �ows, (

�
1� �B

�
or
�
1�GB

�
).
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our analysis. Recall, that the elasticity of dynamic demand was equal to the elasticity

of static demand scaled up by ��1 (see equation (15)).

Nevo and Hendel point to the relevance of the right choice of "demand": For example,

when the Lerner formula is used to estimate the mark-up in an industry, then this

estimate is sensitive to whether one chooses the elasticity of dynamic or static demand.

The Lerner formula plays a prominent role in merger analysis and therefore the answer to

"What is demand?" has important policy implications. Although we look at the extreme

case in which many �rms compete under capacity constraints, our characterization of

pricing via the Lerner formula indicates that oligopolistic pricing decisions might be

sensitive to the dynamic elasticity of demand. In general, our model provides a simple

tool to discuss the di¤erent possible meanings of "demand" in a dynamic market. It

could be interesting to extend the model to an oligopolistic market structure.

5.4 Conclusion

In our analysis, we proved the asymptotic e¢ ciency of decentralized trading. The basic

forces of demand and supply are su¢ cient to provide incentives for sellers to set market

clearing prices when frictions are small. In particular, our intuitive argument appealed

to rationing of traders at non-market clearing prices. We have shown that with homoge-

neous sellers, prices can be characterized by the familiar Lerner formula, i.e., the mark

up of prices over costs is proportional to the inverse elasticity of demand. Both the

costs and the elasticity are endogeneous: the dynamic costs of trading for sellers include

foregone future pro�ts, and the dynamic elasticity of demand includes the possibility

of intertemporal substitution. When frictions become small, we see that rationing, to-

gether with the increasing elasticity of demand, implies that prices must converge to

their competitive level. Finally, we have discussed how to use our model to clarify the

meaning of "supply" and "demand" in a dynamic market.
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A Homogeneous Sellers

We want to show that US (p; 0j� (p�)) is strictly concave on [0; r (1jp�)]. For this, we
characterize the �rst and second derivative of qS :

@

@p
qS (pj� (p�)) =

d (p) [D (p) + � � �D (p)]�D (p) d (p) [1� �]
[D (p) + � � �D (p)]2

=
d (p) �

[D (p) + � � �D (p)]2
;

with d (p) = @
@pD (pj� (p

�)) and

@2

@p2
qS (pj� (p�)) =

d0 (p) � [D (p) + � � �D (p)]2 � �2d2 (p) [D (p) + � � �D (p)] (1� �)
[D (p) + � � �D (p)]2

;

with d0 (p) = �gB0 (v (pj� (p�))) 1� for p 2 [p
�; r (1jp�)] and d0 (p) = �gB0 (v (pj� (p�)))

for p 2 [0; p�) noting that the derivative of v (pj� (p�)) is1� and 1, respectively. The
assumption that

�
1�GB (�)

�
is strictly concave implies that gB0 (v) > 0 for all v. From

that, d0 < 0; and an inspection of the above equations reveals that the �rst and second

derivative of qS (�j� (p�)) are strictly negative. Looking at @2

@p2
US (p; 0j� (p�)) ; which is

equal to @2

@p2
qS (pj� (p�)) p+2 @@pq

S (pj� (p�)), this implies that payo¤s are strictly concave
on the intervals [0; p�) and (p�; r (1jp�)]). And by @

@pU
S (p; 0j� (p�)) being continuous at

p�, this implies that pro�t is strictly concave on the whole interval [0; r (1jp�)].

To derive the Lerner formula, note that from US (p; 0j� (p�)) = D(p)
D(p)+���D(p)p we get

@

@p
US (p; 0j� (p�)) jp=p� =

(d (p�) p� +D (p�)) (D (p�) + � � �D (p�))�D (p�) p� (1� �) d (p�)
(D (p�) + � � �D (p�))2

=

�
(d (p�) p� +D (p�))� qS (p�) p� (1� �) d (p�)

�
(D (p�) + � � �D (p�)) ;

where we dropped the dependency on � (p�). Because the denominator of @@pU
S (p; 0j� (p�))

is strictly positive for all p, @
@pU

S (�jp�) jp=p� = 0 if and only if the nominator is zero.
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We can rewrite the nominator as

d (p�)

0BBBBBB@p
� +

=
(1�GB(p�))M�1

gB(p�)(M�)�1z }| {
D (p�)

d (p�)
�qS (p�) p� (1� �)

1CCCCCCA

= d (p�) p�

26664
�
p� � qS (p�) p� (1� �)

�
p�

�
�
1�GB (p�)

�
�

p�gB (p�)| {z }
=~"(p�jp�)�1

37775 ;

and by d (p�) < 0, we get @
@pU

S (�jp�) jp=p� = 0 if and only the Lerner formula (14) holds.

B Heterogeneous sellers

B.1 Proof of Lemma 1

First, we prove that we can restrict attention to a subset of � (the set of measurable

constellations; see Footnote 2) when analyzing equilibrium outcomes. We use this to

ease notational burden, for the proof of Theorem 2, and to prepare the existence proof

by restricting the set of equilibrium candidates. Let �� =
�
p�; r�;�S�;�S�;M�� 2 � be

an equilibrium. The equilibrium conditions imply restrictions on these functions that

we spell out now: We show that r� (�) must have a slope in [�; 1], i.e., r� (�) is in the set

�r(�) = ff : [0; 1]! [0; 1] jf (a)� f (b) 2 [� (a� b) ; (a� b)]g :

For this, note that if the value function is di¤erentiable at some point ~v, then

V 0 (~vj��) = qB (r� (~v) j��) by the envelope theorem. Therefore r (�j��) = ~v�(1� �)V (~vj��)
is di¤erentiable at ~v as well and r0 (~vj��) = 1� (1� �) qB (r� (~v) j��); hence, r0 (~vj��) 2
[�; 1] at all di¤erentiability points. This restriction on the slope can be generalized

to all points by rewriting the optimality condition V B (a) � V B (b) � UB (r (b) ; a) �
UB (r (b) ; b) and its symmetric analogue and by using the de�nition of UB (�; �); see,
e.g., Milgrom and Segal (2002).

Inspecting the steady-state conditions (6) and (7), shows thatM� must be in
�
1; ��1

�
:
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Rewriting (7) at v = 1, with �B� (1) = 1; we get

M� = 1 + (1� �)M�
Z
(1� S (r (�) j��)) d�B (�) ;

from where M� 2
�
1; ��1

�
follows, substituting S (r (�) j��) � 1 to get the lower bound

and S (r (�) j��) � 0 to get the upper bound. Similarly, one can show that the distribu-
tion functions �S and �B are strictly increasing with a bounded slope: Note �rst, that

since the densities gS and gB are strictly positive and continuous by assumption, there

are gL and gH such that gB (v) and gS (c) are in [gL; gH ]. Rewriting the steady-state

condition (7) shows that therefore �B� (�) and �S� (�) are in the set

�� =
�
f : [0; 1]! [0; 1] jf (a)� f (b) 2

�
gL� (a� b) ; gH��1 (a� b)

�	
:

Given monotonicity of reservation prices, we want to show monotonicity of prices

p� (�). For this, we use that payo¤s satisfy the strict single crossing property. To show
that this is true, note that a seller who o¤ers a price p trades with all buyers with

a valuation above v (pj��) � inf fv; 1jr� (v) � pg by monotonicity of r (�). Therefore
D (pj��) = 1 � �B� (v (pj��)). Since �B� (�) and r� (�) are both continuous and strictly
increasing, the trading probability D (�j��) is strictly positive at all prices below the

highest reservation price r (1): for all p < r (1), we have v (pj��) < 1 and therefore

D (pj��) > 0. Hence, for these prices, the lifetime trading probability qS (pj��) is strictly
positive. For all prices above r� (1) trading probabilities are zero: by v (p) = 1 for all

p � r� (1) we have 1 � �B� (1) = 0. So the relevant range of optimal prices for sellers

with costs below r� (1) is [0; r (1)). Now we show that pro�ts US (�; �j��) satisfy the strict
single crossing condition on the domain [0; r� (1))2, i.e., we show that for all pH > pL

and cH > cL with (pL; cL; pH ; cH) 2 [0; r� (1))4:

US (pH ; cLj��)� US (pL; cLj��) � 0 ) US (pH ; cH j��)� US (pL; cH j��) > 0:

Rewriting shows that the left-hand side is equivalent to

cL
�
qS (pLj��)� qS (pH j��)

�
� qS (pLj��) pL � qS (pH j��) pH :

Since qS (�j��) is strictly decreasing in p on [0; r� (1)) - by v (�j��) and �B� (�) being
strictly increasing -

�
qS (pLj��)� qS (pH j��)

�
> 0. This implies that the left-hand side
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is strictly increasing in costs, and hence

cH
�
qS (pLj��)� qS (pH j��)

�
> qS (pLj��) pL � qS (pH j��) pH ;

and this inequality can be rewritten as US (pH ; cH j��)� US (pL; cH j��) > 0 as claimed.
By the monotone selection principle of Milgrom and Shannon (1994), the strict sin-

gle crossing property implies that all selections from the maximum correspondence

argmaxp U
S (p; cj��) are weakly increasing. Therefore, p� (�) is weakly increasing on

[0; r� (1)). We cannot use optimality conditions to extend the monotonicity of p� (�) to
types beyond r� (1): Every price p � r� (1) is optimal for a type c � r� (1) since at every
such price trading probabilities and pro�ts are zero, while at every price p < r� (1) ;

pro�ts would be strictly negative. Nevertheless, we may simply assume that these types

set monotone prices, and without further loss of generality, we may assume that they

set prices equal to their costs.

Let �+ be the set of weakly increasing functions and de�ne the set ~�

~� � �+ � �r(�) � �� � �� �
�
1; ��1

�
:

We summarize our �ndings in a lemma. It states that every equilibrium �� is equivalent

to an equilibrium ~�; which is in the set ~�, changing p� (�) to ~p (�) on [r� (1) ; 1] ; as
described before:

Lemma 8 If �� =
�
p�; r�;�S�;�S�;M�� is a steady-state equilibrium then, with

~p (c) �
(
p� (c) 8c 2 [0; r (1))
c 8c 2 [r� (1) ; 1] ;

~� =
�
~p; r�;�S�;�S�;M�� is a steady-state equilibrium and ~� 2 ~�.

Lemma 1 follows immediately.

B.2 Proof of Theorem2

See the remark following the existence proof on page 44.
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B.3 Proof of Lemma 2

Take some � 2 ��, i.e., some strategy combination and some corresponding steady-

state pool. We show the identity of trading masses by algebraic manipulation, drop-

ping the dependency on � for brevity, with c (v) = sup fc; 0jp (c) � r (v)g and v (c) =
inf fv; 1jr (v) � p (c)g :Z 1

0
qS (p (c)) dGS (c) =

Z 1

0

D (p (c))

D (p (c)) + � � �D (p (c))dG
S (c)

=

Z 1

0
MD (p (c)) d�S (c) =

Z 1

0
M

"Z 1

v(c)
d�B (v)

#
d�S (c)

=

Z 1

0
M

"Z 1

v(c)

dGB (v)

M (S (r (v)) + � � �S (r (v)))

#
d�S (c)

=

Z 1

0

"Z c(v)

0
d�S (c)

#
1

(S (r (v)) + � � �S (r (v)))dG
B (v)

=

Z 1

0
S (r (v))

1

(S (r (v)) + � � �S (r (v)))dG
B (v) =

Z 1

0
qB (r (v)) dGB (v) ;

and similarly the identity of expected payments follows from:Z 1

0
p (c) qS (p (c)) dGS (c) =

Z 1

0
p (c)MD (p (c)) d�S (c)

=

Z 1

0
M

"Z 1

v(c)

1

M (S (r (v)) + � � �S (r (v)))dG
B (v)

#
p (c) d�S (c)

=

Z 1

0

"Z 1

v(c)

1

S (r (v))
dGB (v) qB (r (v))

#
p (c) d�S (c)

=

Z 1

0
qB (r (v))

1

S (r (v))

"Z c(v)

0
p (c) d�S (c)

#
dGB (v)

=

Z 1

0
qB (r (v))E [pjp � r (v)] dGB (v) QED:

B.4 Proof of Existence

Finally, we show that an equilibrium exists for every �. With heterogeneous sellers, we

cannot reduce the existence problem to a one-dimensional �xed point problem as we did

for homogeneous seller; we have to prove the existence of a �xed point in the function

space ~�. Instead of the intermediate value theorem, we therefore use the Kakutani-Fan-

Glicksberg theorem. We �rst introduce some notation: We describe the pool by the
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mass of buyers with valuations above v, MB (v) and the mass of sellers with costs below

c, MS (c). The total mass of buyers is MB (0) and the total mass of sellers is MS (1).

Throughout the proof we do not require MB (0) to be equal to MS (1). Afterwards

we show that if we have found an equilibrium such that the appropriate steady-state

conditions hold, these two masses must be equal. With this new notation, the market

is characterized by a quartuple of functions ! =
�
r (�) ; p (�) ;MS (�) ;MB (�)

�
. Given !,

we now derive a response operator K. This operator consists of the best responses for

sellers and buyers, Kp [!] and Kr [!] ; and the pool responses KS [!] and KB [!]. The

former will consist of ex ante optimal strategies p (�) and r (�). The latter pool responses
are the masses of traders in the pool that will result at the end of a period if the pool at

the beginning of the period is described by MS (�) ; MB (�) and if they trade according
to p (�) and r (�). If !� is a �xed-point of K, !� 2 K [!�], traders play mutual best
responses and the pool is in a steady-state, i.e., !� is an equilibrium. We show that

such a �xed point exists and show that !� corresponds to an equilibrium �� as originally

de�ned. The main technical challenge is the proof of continuity of the pool-response

operators; see Lemma 14.

To prepare for the �xed point theorem, we restrict the set of candidate strategies and

distributions under consideration. Observing that MS (�) corresponds to �S (�)M , the
restrictions on distributions of types become now restrictions on masses, and we de�ne

analogously to ��S and ��B :

�MS �
�
MS (�) : [0; 1]!

�
0; ��1

�
jM

S (a)�MS (b)

a� b 2
�
gl; gh�

�1� , 8a 6= b�
�MB �

�
MB (�) : [0; 1]!

�
0; ��1

�
jM

B (b)�MB (a)

a� b 2
�
gl; gh�

�1� , 8a 6= b� ;
and the domain of K is


 � �p(�) � �r(�) � �MS � �MB : (16)

Because all functions in 
 are integrable, we use the integral norm kf (�)k1 =R 1
0 jf (t)j dt such that 
 becomes a subspace of L1.

24

To de�ne payo¤s, note that the share of buyers with valuations above v isMB (v)MB (0)�1

and we de�neD (pj!) �MB (v (pj!))M (0)�1 and similarly S (rj!) �MS (c (rj!))MS (1)�1

24As usual, we continue working with the function space itself, rather than the corresponding space of
equivalence classes. Two functions are equivalent under k�k1 if they are equal almost everywhere.
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with the generalized inverses c (�j!) and v (�j!) de�ned as before: c (pj!) = sup fc; 0jp (c) � pg
and v (pj!) = inf fv; 1jr (v) � pg. Lifetime trading probabilities for a given ! are

qB (rj!) � S (rj!)
1� (1� S (rj!)) (1� �) and q

S (pj!) � D (pj!)
1� (1�D (pj!)) (1� �) ;

and payo¤s are

US (p; cj!) � qS (pj!) (p� c) and UB (r; vj!) � qB (rj!) (v � E [pjp � r; !]) :

Ex ante expected payo¤s to sellers are �(p (�) j!) ; and interim maximized payo¤s to

buyers are V B (v):

�(p (�) j!) �
Z 1

0
qS (p (c) j!) (p (c)� c) dGS (c)

and V B (v) � max
r
UB (r; vj!) :

Now we de�ne the operator K. The sellers�best response correspondence is de�ned

as

Kp [!] � arg max
p(�)2�p(�)

�(p (�) j!) ;

and Kp [!] 2 �p(�) by de�nition. With r (vj!) = v � (1� �)V B (vj!) ; the buyers�best
response is given by

Kr [!] � r (�) :

Inspection of V B (vj!) = qB (r (v) j!) (v � E [pjp � r (v) j!]) shows that r (�j!) must
have a slope between � (if qB (r (v) j!) = 1) and 1 (if qB (r (v) j!) = 0), i.e.,Kr [!] 2 �r(�).

In analogy to the steady-state conditions, de�ne pool response operators by

KS (cj!) � GS (c) +

Z c

0
(1� �) (1�D (p (t) j!)) dMS (t) (17)

KB (pj!) �
�
1�GB (v)

�
+

Z 1

v
(1� �) (1� S (r (t) j!)) dMB (t) ; (18)

where KS (cj!) is the mass of sellers at the end of the period, consisting of the in�ow
GS (c) and those sellers who neither trade nor die. Similarly, KB (vj!) is the mass of
buyers at the end of the period, consisting of the new in�ow and the remaining buyers

from the beginning. To check that KS maps �MS into itself, note that KS (1j!) attains
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its maximal value if no seller trades and then KS (1j!) � 1 + (1� �)MS (1) � ��1.

The slope of KS (�j!) is maximal at dKS (t) = gh�
�1 and minimal at dKS (t) = gl + 0.

Therefore, KS [!] 2 �MS . Reasoning similarly for buyers and adding our observations

on the best response operators, we have that K [�] is a self map of 
:

K [!] � Kp �Kr �KS �KB : 
� 
:

We want to prove that K has a �xed point !�; using the Kakutani-Fan-Glicksberg

�xed point theorem. The theorem states that if 
 is a non-empty, convex, and compact

subset of a locally convex Hausdor¤ space, and if K has a closed graph and nonempty,

convex values, then K has a �xed point (see Aliprantis, Border, 1994, p484). In the

following lemmas, we prepare the proof by showing that the functions Kr;KS ;KB are

continuous in ! and that the correspondence Kp has convex values and a closed graph.

We use Berge�s Maximum Theorem to show that the best response correspondence

Kp is upper hemicontinuous with compact non-empty values. This implies that Kp

has a closed graph (see Aliprantis, Border, p. 473 and p. 465). To apply Berge�s

Theorem, we need to show that expected pro�ts are continuous in p (�) and !, which will
follow from reservation prices being continuous and strictly increasing. Then we show

convexity, using the fact that for all c 2 [0; r (1)] the best response correspondence is
essentially unique (because payo¤s satisfy the strict single crossing condition) and for

all c 2 (r (1) ; 1], all elements of Kp and all their convex combinations yield zero pro�ts:

Lemma 9 Kp [�] has a closed graph and it is non-empty and convex valued.

Proof: Trading probabilities qS (pj�) are continuous for all p in !; because qS (pj�)
is a continuous function of MB (v (pj�)) and MB (v (pj�)) is continuous in !, i.e., if
!N ! �! =

�
�p; �r; �MS ; �MB

�
, then MB

N (v (pj!n)) ! �MB (v (pj�!)). Note that v (pj�!) �
inf fv; 1j�r (v) � pg, i.e., v (pj!) is a mapping from 
 into [0; 1]. Continuity follows be-

cause rN (v) is strictly increasing with a slope bounded from below and hence, v (�j!N )
is strictly increasing for all N . This implies that v (pj!N )! v (pj�!) for all p. Likewise,
MB
N (�) is strictly increasing and hence the composite function MB

N (v (pj!N )) converges,
as claimed.

By the dominated convergence theorem, continuity of qS (pj�) for a given price p
implies that expected payo¤s �(p (�) j�) are continuous in ! for a given function p (�).
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Similarly, expected payo¤s are continuous in one�s own price function p (�). Therefore
Berge�s maximum theorem applies.

Now we want to show that Kp has convex values. Let the highest type who can

possibly trade with positive payo¤s be �c = sup
�
cjqS (cj!) > 0

	
. As a �rst step, we

show that all (ex ante) optimal pricing functions are equivalent (a.e. identical) on [0; �c].

Take any p (�) 2 Kp [!]. Then p (c) is interim optimal for almost every type, i.e., p (c) 2
argmaxUS (c; pj!) for almost every c, and in particular, at every point of continuity:
Suppose not, then for some pair p0, and c0, US (c0; p (c0) j!) < US (c0; p0j!). By continuity
of US (�; �j!) in p and c, and by continuity of p (�) at c0, there is a neighborhood B� (c0)
such that US (c; p (c) j!) < US (c; p0j!) for all c 2 B� (c0). Because B� (c0) has strictly
positive mass, this implies that p (�) is not pro�t maximizing ex ante, a contradiction.

Take two functions p1 2 Kp [!] and p2 2 Kp [!] and some c0 < �c such that p1 (c0)

and p2 (c0) are (interim) optimal, i.e., pi (c0) 2 argmaxUS (p; c0j!), i 2 f1; 2g. Suppose
that p1 (c0) 6= p2 (c0) and, without loss of generality, suppose p1 (c0) � p1 < p2 � p2 (c0).
We show that c0 must be a jump point for both functions. For all prices p+ above

p1, the optimality of p1 implies US (p1; c0j!) � US (p+; c0j!). Since payo¤s satisfy the
strict single crossing property, all types c� below c0 strictly prefer p1 to any such p+,

i.e., US (p1; c�j!) > US (p+; c�j!). Similarly, the optimality of p2 for c0 implies that
all types c+ 2 (c0; �c) prefer p2 strictly to any p� < p2. Hence, optimal prices for types
to the left of c0 are below p1; and optimal prices to the right are above p2. Finally,

if some (single) type c� < c0 plays a suboptimal price p2 (c�) > p1, all c 2 (c�; c0)

must play prices above p1 by monotonicity of p2 (�). But then a strictly positive mass
of types sets a strictly suboptimal price, and p2 (�) fails ex ante optimality. Therefore
pi (c

0 � 0) � p1 < p2 � pi (c0 + 0),25 i 2 f1; 2g ; and c0 is a jump point as claimed. To sum
up, the two functions can at most be di¤erent on the zero measure set of points at which

either one of these functions jumps or at which either one of them does not prescribe an

interim optimal price. Therefore, p1 (c) = p2 (c) for almost all c 2 [0; �c] ; and in particular,
every convex combination p� (�) � �p1 (�) + (1� �) p2 (�) will be equivalent on c 2 [0; �c].
For c 2 (�c; 1]; note that if prices and ultimate trading probabilities are monotone, it
must be that, for all such c, qS (p1 (c)) = 0 and qS (p2 (c)) = 0; and so qS (p� (c)) = 0 for

all � 2 [0; 1] and for all c 2 (�c; 1]. Therefore, we have �(p� (�) j!) = � (p1 (�) j!), i.e.,
p� (�) 2 Kp [!] for all �; as claimed QED:

The next lemma states that reservation prices are continuous in !. With r (vj!) = v�
25f (x� 0) is de�ned as the left hand limit, lim">0;"!0 f (x� "). f (x+ 0) is de�ned analogously.
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(1� �)V B (vj!) ; we need to show continuity of the value function V B (�j!). We cannot
directly apply Berge�s Maximum theorem since payo¤s UB (r; vj!) do not need to be
continuous in !, because, for given r, the mass of sellers who o¤er p � r,MS (c (rj!) j!),
can have a discontinuity. Therefore, we use the following trick : instead of choosing a

reservation price r, buyers are thought of as choosing a threshold seller cx and trade

with all sellers with c � cx:

Lemma 10 Kr [�] is continuous in !.

Proof: Given cx 2 [0; 1], let the ultimate trading probability be qBx (cxj!), with qBx (cxj!) �
MS(cx)MS(1)�1

1�(1��)(1�MS(cx)MS(1)�1)
; and let expected prices be Ex [pjcx; !] � 1

MS(cx)

R cx
0 p (c) dMS (c).

Then payo¤s from trading with all c � cx are

UBx (cx; vj!) � qBx (cxj!) (v � Ex [pjcx; !]) ;

and clearly UBx (cx; vj!) is continuous in cx, v; and !. Therefore V Bx (vj!) = maxcx UBx (cx; vj!)
is continuous in ! by the Maximum theorem. In addition, payo¤s from maximizing with

respect to cuto¤ types cx are equal to payo¤s from maximizing with respect to cuto¤

prices r, i.e., V Bx (vj!) = V B (vj!): Whenever pS (�) is increasing at cx, this follows
immediately by setting r (v) = p (cx) ; if pS (�) is �at at the optimal cuto¤ cx, the buyer
must be indi¤erent between accepting and rejecting pS (cx). Thus, the continuity of

V Bx (�j�) carries over to V B (�j�) QED:

Now we want to show that the pool responses KS and KB are continuous. This is

the main technical challenge of the existence proof. The problem here is that we need

to evaluate composite functions. In particular, to calculate the trading probability of a

type v, we need to evaluate the share MS (c (r (v)) j!)MS (1j!)�1. However, the type c
who trades with v, c (r (v) j!), does not need to be continuous in !. Therefore, we need
to state �rst three auxiliary lemmas to deal with the problem of composite (inverse)

functions. The �rst lemma states a partial converse to Lebesgue�s bounded convergence

theorem:

Lemma 11 Let ffNg be a sequence of measurable functions fN : [0; 1]! [0; 1] such that

fN ! �f in L1. Then fN (x) ! �f (x) pointwise for almost all x 2 [0; 1] if a) all fN and
�f are weakly increasing or if b) the family ffNg is equicontinuous.

Proof: For the �rst part: We show convergence at all interior continuity points of
�f which implies the statement. Let x0 be such a point, and suppose there is some
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subsequence such that lim fN 0 (x0) � fH 6= �f (x0) � fx0 . Suppose fH > fx0 (the other case
is symmetric). Choose " such that for all x 2 B" (x0),

�� �f (x0)� �f (x)
�� � 1

2 jfH � fx0 j, and
choose any xH 2 B" (x0) such that xH > x0. By the monotonicity of each element fN 0 ,

fN 0 (x) � fN 0 (x0) for all x 2 [x0; xH ] and for all N 0. Thus, lim inf fN 0 (x) � fH . Hence,
lim inf

R xH
x0

��fN 0 (x)� �f (x)
�� dx � 1

2 (xH � x
0) jfH � fx0 j > 0, contradicting fN ! �f . The

second part is immediate QED:

Take a sequence !N =
�
pN ; rN ;M

S
N ;M

B
N

�
with !N ! �!: we want to show conver-

gence of the composite functions MB
N (vN (pN (�) j!N )) and MS

N (cN (rN (�) j!N )). The
former composite function is not a problem since the families

�
MB
N (�)

	
and fvN (�)g are

equicontinuous and strictly increasing. Therefore, one can show thatMB
N (vN (pN (c) j!N ))

converges pointwise. Here, we concentrate on MS
N (cN (rN (�) j!N )). The next lemma

states that cN (rN (v) j!N ) converges pointwise almost everywhere, which is a su¢ cient
condition for the pointwise convergence of MS

N (cN (rN (v) j!N )):

Lemma 12 Given a sequence fpN (�)g1N=1 with pN 2 �p(�) and given a sequence frN (�)g
1
N=1

with rN (�) 2 �r(�), suppose pN (c)! �p (c) and rN (v)! �r (v) pointwise for almost every

c and v. Let c (pjpN (�)) � sup fc; 0jpN (c) � pg and let cN (p) � c (pjpN (�)). Then

cN (p)! �c (p) � c (pj�p (�)) a.e. and cN (rN (v))! �c (�r (v)) a.e.

Proof: First, we show convergence of the inverse c (�jp (�)) ; starting by showing that
we can disregard points where p (�) is �at because then the inverse function will have a
jump, and these points have zero measure. At all c where p (�) is not �at, convergence
of the inverse function at p (c) is not a problem. Then we prove convergence of the

composite, making use of its monotonicity and continuity almost everywhere.

Suppose �p (�) is �at at cf ; i.e., for some cff 6= cf , �p (cf ) = �p (cff ) � pf and sup-

pose pf 2 (0; 1) and cf < cff (wlog). Then c (pf � 0j�p (�)) < c (pf + 0j�p (�)) because
c (pf � ") = sup fc; 0j�p (c) � pf � "g � cf and c (pf + ") = sup fc; 0j�p (c) � pf + "g �
cff . So pf is a jump point of �c (�) = c (�j�p (�)). Let pl � �p (0) and ph � �p (1), then

for all p+ > ph and " > 0; we have �p (1� ") < p+. Thus, at all c0 2 (1� "; 1) such
that pN (c0) converges, �p (c0) < p+; and for N large enough, pN (c0) < p+. Therefore

cN (p
+) � c0 > 1 � "; and with " arbitrary, this implies cN (p+) ! 1 for all p+ > ph.

Reasoning similarly for p� < pl; we conclude that c (�jpN (�)) converges on [0; pl) and
(ph; 1]. Now, take any p0 2 (pl; ph) such that p0 is not a jump point of �c (�). Let

c0 = �c (p0) and suppose c0 2 (0; 1). Then �p (�) is not �at at c0, i.e., for all c� < c0 < c+,
�p (c�) < �p (c0) < �p (c+). Take some c� and c+ such that pN (�) converges pointwise at
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these points. Then for some " and N large enough, pN (c�) � p0�" and pN (c+) � p0+";
and so cN (p0) = sup fc; 0jpN (c) � p0g 2 [c�; c+] ; and by c� and c+ being arbitrary,

cN (p
0) ! c0. Suppose c0 = 0, then �p (") > p0 for all " > 0 since �p is not �at. Choose

some "1 such that pN ("1) ! �p ("1). Then for N large enough, cN (p0) � "1; and by

"1 being chosen arbitrary, cN (p0) ! 0. Similar reasoning holds for c0 = 1. Together,

cN (p)! �c (p) for almost all p.

Now we want to show cN (rN (�)) ! �c (�r (�)). Since r (�) is strictly increasing, we
can disregard the zero measure set of v where �c (�) is discontinuous at �r (v). We also
disregard the two points v 2 f0; 1g, noting that �r (v) 2 (0; 1) at all v 2 (0; 1). Note that
at all remaining v0, �c (�) will be continuous at �r (v0) ; and therefore cN (�r (v0)) converges
pointwise to �c (�r (v0)) by the reasoning in the preceding paragraph. Take such a type

v0 2 (0; 1) and any �1 < min f�r (v0) ; 1� �r (v0)g. Then we want to show that for every
such �1 there is some N large enough such that cN (rN (v0)) is in an open ball with radius

�1 around c0 � �c (�r (v0)), i.e., cN (rN (v0)) converges to �c (�r (v0)) pointwise: By continuity
of �c (�) at �r (v0) ; there are some prices pl, ph around �r (v0) with pl < �r (v0) < ph such

that �c (pl) 2 B�1 (c0) � (c0 � �1; c0 + �1) and �c (ph) 2 B�1 (c0). In addition, we choose
these prices such that cN (�) converges pointwise at pl and ph. Such prices exist within
the open ball because cN (�) converges pointwise almost everywhere. By this choice

there is some N1 large enough such that cN (pl) 2 B�1 (c0) and cN (ph) 2 B�1 (c0) for
N � N1. Now choose N2 � N1 such that rN (v0) 2 (pl; ph) for all N � N2 as well.

The monotonicity of cN (�) implies that we have successfully sandwiched cN (rN (v0)),
cN (pl) � cN (rN (v

0)) � cN (ph) ; and from cN (pl) 2 B�1 (c0) and cN (ph) 2 B�1 (c0) we
have cN (rN (v0)) 2 B�1 (c0) with c0 = �c (�r (v0)) for all N � N2. Since �1 is arbitrary, it
must be that cN (rN (v0))! �c (�r (v0)) QED:

Pool response operators KS and KB are integrals over functions of !; and integrals

are taken with respect to measures induced by !. To prove the continuity of this op-

erator, we need the following technical lemma, which combines the idea of Lebesgue�s

convergence result for a sequence of functions with Helly�s convergence result for a se-

quence of measures:

Lemma 13 Let FN be a sequence of c.d.f.s converging to some c.d.f. F almost every-

where and let gN : [0; 1]! [0; 1] be a sequence of measurable functions converging almost

everywhere to some function g (�). Then
R 1
0 gNdFN !

R 1
0 gdF:

Proof: Note that
R 1
0 gNdFN �

R 1
0 gdF =

R 1
0 (gN � g) dFN +

R 1
0 gdFN �

R 1
0 gdF . The

second term converges to zero by Helly�s convergence theorem (Kolmogorov, Fomin
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p.370). For the �rst term note that by Egorov�s theorem (Kolmogorov, Fomin, p.290),

for every " > 0, gN converges to g uniformly on a measurable subset A � [0; 1]

such that the remaining set is of measure "=2 , i.e., "=2 �
R
[0;1]�A dF (x). By Helly�s

convergence theorem,
R
x2[0;1]�A dFN (x) !

R
x2[0;1]�A dF (x) ; and thus for some N

0,

" �
R
x2[0;1]�A dFN (x) �

R
x2[0;1]�A jgN (x)� g (x)j dFN (x) for all N � N 0. By gN ! g

uniformly on A, there is some N 00 such that jgN (x)� g (x)j � " for all x 2 A and

N � N 00. Thus, for all N � max fN 0; N 00g,
R 1
0 (gN � g) dFN =

R
A (gN � g) dFN +R

[0;1]�A (gN � g) dFN � 2" and since " is arbitrary, the claim follows QED:

From the latter two lemmas, we get

Lemma 14 KS and KB are continuous.

Proof : From Lemma 12, D (p (c) j�) �MB (v (p (c) j�))MB (1) and

S (r (v) j�) � MS (c (r (v) j�))MS (1) are pointwise continuous in !. From Lemma 13,

this carries over to KS [�] and KB [�] QED:

A �nal auxiliary lemma states that if the steady-state conditions hold, then the mass

of sellers and the mass of buyers must be identical:

Lemma 15 If ! is a �xed point of K, then MS (1) =MB (0) :

Proof : Let xS and xB be the shares of sellers and buyers, respectively, who trade:

xS = MS (1)�1
Z 1

0

"Z 1

v(p(c))

�
dMB (v)

�
MB (0)�1

#
dMS (c)

xB = MB (0)�1
Z 1

0

"Z c(r(v))

0
dMS (c)MS (1)�1

#
dMB (v) ;

and note that by the same reasoning as for Lemma 2, the share of sellers and buyers

who trade must be the same:

xS = MS (1)�1
Z 1

0

"Z 1

v(p(c))

�
dMB (v)

�
MB (0)�1

#
dMS (c)

=

Z 1

0

"Z 1

v(p(c))

��
dMB (v)

�
MB (0)�1

�#�
dMS (c)MS (1)�1

�
=

Z 1

0

"Z c(r(v))

0

�
dMS (c)MS (1)�1

�#��
dMB (v)

�
MB (0)�1

�
= xB;
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and by rewriting the steady-state conditions we get

GS (1) = xSMS (1) +MS (1)
�
1� xS

�
�

GB (1) = xBMB (0) +MB (0)
�
1� xB

�
�;

so that xS = xB implies MS (1) =MB (0) by rewriting further:

1 = MS (1)
�
xS +

�
1� xS

�
�
�

1 = MB (0)
�
xB +

�
1� xB

�
�
�

QED:

Theorem 3 (Restated): For every � there exists an equilibrium ��.

Proof: Bounded monotone functions are compact in the locally convex Hausdor¤ space
L1 (Helly�s selection principle implies that this set is sequentially compact and sequential

compactness is su¢ cient for compactness in metric spaces). Monotone functions with

a bounded slope as de�ned here form a closed subset of the monotone functions, and

hence, these sets are compact. Therefore, the set 
 � L1; endowed with the integral

norm, is compact. Convexity of 
 is immediate. Together with the above Lemmas, the

correspondence K satis�es the conditions of the Kakutani-Fan-Glicksberg �xed point

theorem. Thus, there exists some !� 2 
 such that !� 2 K [!�].

The �xed point !� =
�
p�; r�;MS�;MB�� corresponds to a steady-state equilibrium

��; and we show how to translate it. First, we need to translate the masses MS and

MB into shares �S and �B. For this, let M� � MS� (1) ; �S� (c) � MS (c)M��1,

and �B� (v) �
�
M� �MB (v)

�
M��1.26 The identity MS� (1) = MB� (1) follows from

Lemma (15). Now, we translate the ex ante optimal pricing function p� into an interim

optimal pricing function �p: Let �p (�) be equal to p� (�) whenever p� (c) is interim optimal.
For all other points c 2 [0; 1), take the right limit, �p (c) = lim"!0;">0 p� (c+ ") ; which

preserves monotonicity and interim optimality by continuity of US (�; �). Finally, let
�p (1) = lim"!0;">0 p� (1� "). Recall that the set of types for which p� (�) is not interim
optimal has measure zero. Changing prices on this set does therefore not change the

distribution of price o¤ers so that neither steady-state conditions nor buyers�optimality

conditions are a¤ected. Hence, �� �
�
�p (�) ; r� (�) ;�S� (�) ;�B� (�) ;M�� is a steady-state

equilibrium QED:

26Note that �B (v) is the share of types below v; while MB (v) is the mass of types above v.
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Remark 1 Lemma 14 together with the reasoning in the proof of the last theorem, im-
plies Theorem 2: For �xed p (�) and r (�), the joint pool response

�
KS ;KB

�
[p (�) ; r (�) ; �; �]

de�nes a function which maps the compact subset �MS ��MB � L1 into itself. In par-
ticular, for �xed p (�) and r (�), the pool response

�
KS ;KB

�
[p (�) ; r (�) ; �; �] is continuous

in MS and MB. Thus, according to the Kakutani-Fan-Glicksberg theorem, there ex-

ists a �xed point, i.e., some
�
�MB; �MS

�
such that

�
KS ;KB

� �
p (�) ; r (�) ; �MB; �MS

�
=�

�MB; �MS
�
. As shown in the preceding proof, if KS

�
�MB; �MS

�
= �MS and similarly

KB
�
p (�) ; r (�) ; �MB; �MS

�
= �MB, then

�
�M; ��S ; ��B

�
�de�ned by �M � �MS (1), ��S (c) �

�MS (c) �M�1, and ��B (v) �
�
�M � �MB (v)

�
�M�1 �satisfy the steady-state conditions (6)

and (7) for given p (�) and r (�).

B.5 Proof of Lemmas 3, 4, 5, and 7.

Proof of Lemma 3: From rk0 (1) = 1�(1� �k0)V
�
1j��k0 ; �k0

�
, and from V

�
1j��k0 ; �k0

�
�

UB
�
rk0 (v) ; 1j��k0 ; �k0

�
, with UB

�
rk0 (v) ; 1j��k0 ; �k0

�
= QBk0 (v) (1� E [pjp � rk0 (v)]), we

get

lim inf rk0 (1) < 1� (1� h) lim supQBk0 (v) 8v < h,

observing that rk0 (v) � v implies that E [pjp � rk0 (v)] < h for all v < h. The lemma fol-
lows since lim supQBk0 (v) = 1 would imply lim inf rk0 (1) < h, contradicting the de�nition

of h QED

Proof of Lemma 4: From pk0 (c) � lk0 for all c, it follows that E [pjp � r] � lk0

for all r � lk0 and qBk0
�
rj��k0 ; �k0

�
= 0 for all r < lk0 . Therefore, UB

�
rk0 (v) ; vj��k0 ; �k0

�
�

QBk0 (v) (v � l) for all v. With lim supQBk0 (v) < 1 from Lemma 3, this implies

lim supV
�
vj��k0 ; �k0

�
< v�l for v 2 (l; h) ; and hence, lim inf rk0 (v) = v�lim supV

�
vj��k0 ; �k0

�
>

l QED:

Proof of Lemma 5: Manipulation of the steady-state condition shows that the
share of types is proportional to their probability of not trading:27

1� �Bk0 (v) =
Z 1

v

1�QBk0 (�) + �QBk0 (�)
Mk0�k0

dGB (�) . (19)

27Rewriting the de�nition of qB ; one gets 1
(1�(1��)(1�S(r(v)))) =

qB(r(v))(1�qB(r(v))+�qB(r(v)))
�qB(r(v))

; and

rewriting (7) shows that 1� �B (v) =
R v
0
(1� (1� �) (1� S (r (v))))�1M�1dGB (v).
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The total massMk0 is at most 1
�k0
, as can be seen by evaluating the steady-state condition

(7) at v = 1. Therefore, Mk0�k0 must be smaller than 1. We use this to rewrite the last

equation to get a lower bound

1� �Bk0 (v) �
Z v+"

v

�
1�QBk0 (�)

�
dGB (�) ,

where " � 0. Let
�
1� �Q

�
� lim inf

�
1�QBk0 (v + ")

�
. If " 2 (0; h� v), then from the

last lemma, we know that
�
1� �Q

�
> 0; and from the monotonicity of rk0 (�) ; we have�

1�QBk0 (�)
�
�
�
1� �Q

�
for all � � v + "; and thus,

lim inf 1� �Bk0 (v) �
�
1� �Q

� �
GB (v + ")�GB (v)

�
> 0;

where we use the assumption that static demand
�
1�GB (�)

�
is strictly decreasing,

which implies that
�
GB (v + ")�GB (v)

�
> 0 QED:

Proof of Lemma 7: From lim inf pk0 (c) � pc for all c and rk0 (v) � v, limQBk0 (v) = 0
for all v < pc. For v > pc, limiting payo¤s are bounded from above by max fv � pc; 0g
and thus, lim inf rk0 (v) � pc. From the de�nition of hk0 and by monotonicity of rk0 ,

rk0 (v) � hk0 for all v. Together, lim rk0 (v) = limhk0 = pc for all v > pc. The expected
price conditional on trading becomes pc, E [pjp � rk0 (v)]! pc for all v > pc. Rewriting

the equilibrium condition for rk0 shows:

lim
k0!1

rk0 (v) = v � lim
k0!1

QBk0 (v) (v � pc) ;

from which lim rk0 (v) = pc only if limQBk0 (v) = 1 QED:
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