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Abstract

A recurring puzzle to many academics and some policymakers is why impact

evaluations, which have become something of a cottage industry in the development

field, have so little impact on actual policymaking. In this paper, I study the

impact of impact evaluations. I show, in a simple Bayesian framework embedded

within a standard contest success function-based model of competition amongst

anti-evaluation policymakers, Bayesian policymakers, and frequentist evaluators,

that the likelihood of a program being cancelled is a decreasing function both

of the impact estimated by the evaluation and of the prior on whose basis the

program was approved to begin with. Moreover, the probability of cancellation

is a decreasing function of the effectiveness of the influence exerted by frequentist

evaluators. Since the latter’s effectiveness in terms of lobbying in favor of their

findings in the real world is likely to be close to zero, the likelihood of cancelling a

program that was approved in the first place, despite its suffering a highly negative

evaluation, is extremely low. The model thus provides one possible explanation for

why impact evaluations have so little impact in the realm of decisionmaking, and

why they have contributed so little to evidence-based policymaking.

Keywords: impact evaluation, Bayesian analysis, contest success functions

JEL: O12, D04, D72, C11, C21, C72
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Any academic researcher who has been associated with impact evaluations in the field

can tell horror stories of how his or her findings were not subsequently taken into account

by decisionmakers, in terms of deciding whether or not to continue with an existing

program. My own personal experience is a case in point. Several years ago I carried

out an impact evaluation of a major program funded by an important multilateral donor.

After three years of work, we found statistically significant negative effects of the program

on our main response variable. Simple budgetary logic would suggest that the donor

should have taken the results of what was a rigorously conducted impact evaluation into

account. But it did not. At the end of the project cycle, and when the time came for

the donor to decide whether or not to cancel the program (as I was urging), they chose

not to cancel it. Why?

In this paper, I show, using elementary Bayesian arguments and a barebones model of

competition among three types of decisionmakers, that it is highly likely that a program

that a frequentist evaluator would recommend cancelling, but that was approved to begin

with, will be continued. The result obtains because of the strategic interaction, in terms

of pushing for their preferred outcomes, amongst a frequentist evaluator, a policymaker

who initiated the program in the first place on the basis of her priors, and a Bayesian

decisionmaker who attempts to combine the priors and the results of the impact evaluation

in a statistically rational manner.

The development community has long been aware of the dearth of evidence-based pol-

icymaking. For example, the Center for Global Development Evaluation Gap Working

Group’s 2006 paper, When Will We Ever Learn?, which led to the establishment of the

International Initiative for Impact Evaluation (3ie, see CGD (2006))

presented the lack of rigorous impact evaluations as the missing piece in learn-

ing about social development efforts. It advocated a renewed approach to aid

evaluation that would bring greater accuracy and credibility to assessments

of impact and, by extension, to development policy and practice.... it set out

the challenge in clear terms: that 10 years on from the publication of the re-

port, more and better rigorous impact evaluations would need to be in place
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if we wanted a stronger evidence-base for making decisions.(ODI 2011)

Unfortunately for evidence-based policymaking, there may be many more rigorous

impact evaluations available today than in 2006, but the quality of policymaking has

seen little if any improvement.

The intuition behind the model presented in this paper is extremely simple. Suppose

that β̂ is the impact of the program on the response variable of interest uncovered by the

impact evaluation and, without loss of generality, normalize the cost of the program to

zero. In order to be deployed, a program must be approved, and it must therefore be the

case that there are good a priori reasons to believe that its impact will outweigh its cost.

In statistical terms, this means that decisionmakers have a prior (which I shall denote by

µβ) concerning the program, and this prior must be such that β is "believed" ex ante to

be greater than zero (µβ > 0) in a statistically significant sense.1 Bayesian theory tell us

that the updated beliefs (which I shall denote by µ∗
β) of a Bayesian decisionmaker will be

a convex combination of β̂ and µβ. If the prior is large and positive, the result β̂ of the

impact evaluation must be sufficiently negative for the posterior µ∗
β to be negative. Thus,

if the prior is sufficiently positive, even a negative and statistically significant impact

evaluation result may not be sufficient to generate a negative and statistically significant

posterior, in which case it will be rational for a Bayesian decisionmaker to be against

cancelling the program, although the frequentist evaluator is in favor of cancellation. If

we combine the need for a strongly negative impact evaluation result with the inertia

generated by the fact that many of the decisionmakers who initiated the program in the

first place, and who often base their decisionmaking entirely upon their prior, are likely

to possess a high degree of decisionmaking power, it should come as no surprise that

cancellation will be relatively unlikely.

The paper is organized as follows. In section 1 I set the scene in simple Bayesian

terms. I establish the conditions under which the program will be approved to begin with,

and study the corresponding conditions under which a frequentist academic evaluator

1In operational terms, and to take the example of World Bank practice, this is what is done in
Project Appraisal Documents (PADs), which set out the likely benefits of the program (and that fact
that they exceed costs) in order to secure approval by the Bank’s Board of Directors for the associated
loan instrument.
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and a Bayesian decisionmaker will be in favor either of continuing or of terminating

the program. Starting from first principles, these conditions are shown to be given by

the results of standard Student t−tests of statistical significance. Having established

each agent’s preferences as a function of the results of the impact evaluation, section 2

embeds the initial setup within a simple model of competition phrased in terms of the

contest success function approach that constitutes a workhorse of the political science

literature. I establish several results. First, the probability of cancellation is a decreasing

function of β̂ and µβ. Second, the probability of cancellation is an increasing function

of the variance of µβ and of the variance of the treatment status dummy. Third, the

probability of cancellation is a decreasing function of the effectiveness of the influence

exerted by frequentist evaluators on policymaking. Section 3 concludes by offering some

thoughts on the limitations inherent in basing policymaking on the Average Treatment

Effect (ATE), which is akin to assuming a risk neutral social welfare function.

1 A simple Bayesian model

When we carry out an impact evaluation, we come up with an estimate of its impact, β̂.

For simplicity, assume that this estimate comes from a Randomized Control Trial (RCT)

in which the treatment effect is estimated through a simple least squares regression of

the form:

Yi = Diβ + Ui, (1)

where Yi is the outcome of interest, Di is the treatment dummy (equal to 1 when individual

i is treated by the program and zero otherwise) and Ui is a disturbance term that satisfies

the usual Gauss-Markov assumptions, with Ui ∼ N(0, σ2).2 Sample size will be denoted

by n.

2None of the results that follow are dependent on Di being a dummy variable: they are also valid
were Di to be a continuous measure of the intensity of treatment.

4



1.1 Conjugate priors

In the standard Bayesian linear model, described, for example, in O’Hagan (1994), one

specifies a conjugate prior p(β, σ2) for β and σ2 of the Normal-Inverse-Gamma (NΓ−1)

form:

p(β, σ2) = p(β|σ2)p(σ2) = N(µβ, σ
2Vβ)Γ

−1(a, b) = NΓ−1(µβ, Vβ, a, b),

or more explicitly:

N(µβ, σ
2Vβ) =

1√
2π

√
σ2Vβ

exp

{
−
(β − µβ)

2

2σ2Vβ

}
,

Γ−1(a, b) =
ba exp

{
− b

σ2

}

σ2(1+a)Γ(a)
,

yielding:

p(β, σ2) =
1√

2π
√

σ2Vβ

exp

{
−(β − µβ)

2

2σ2Vβ

}
ba exp

{
− b

σ2

}

σ2(1+a)Γ(a)
.

Integrating σ2 out of this expression yields:

p(β) =

∫ +∞

0

1√
2π

√
σ2Vβ

exp

{
−
(β − µβ)

2

2σ2Vβ

}
ba exp

{
− b

σ2

}

σ2(1+a)Γ(a)
dσ2

=
2a(bVβ)

a
[
2bVβ + (β − µβ)

2
]− 1

2
−a

Γ(1
2
+ a)√

πΓ(a)
. (2)

Inspection of (2) implies that it can be rewritten as:

2a(bVβ)
a
[
2bVβ + (β − µβ)

2
]− 1

2
−a

Γ(1
2
+ a)√

πΓ(a)
=

2−
1
2
+ 1

2
(1+2a)

(
a

2a+
a(β−µβ)2

bVβ

)1
2
(1+2a)

√
a

√
b
a
VβB(a, 1

2
)

(3)

where the Right-Hand-Side (RHS) of (3) is a Student’s t distribution with mean µβ, scale

parameter b
a
Vβ and degrees of freedom 2a.3 This distribution for the unconditional prior

of β, which is the information that decisionmakers have when they decide to approve

funding for the program, implies that the mean and variance that decisionmakers have

3B(., .) is Euler’s Beta function.

5



in mind ex ante facto are given by:

E[β] = µβ, V ar[β] =
b

a− 1
Vβ. (4)

1.2 Prior approval of the program

For the program to have been approved, it must be the case that the decisionmakers in

question believed its impact to be greater than its cost in a statistical sense, which we

can write as the usual inequality:

E[β]− tα,n−1

√
V ar[β] = µβ − tα,n−1

√
b

a− 1
Vβ > 0, (5)

where the tα,n−1 term represents the critical value for a standard Student’s t−test with

1−α level of confidence and n−1 degree of freedom.4 In intuitive terms, the decisionmaker

approves the program if zero lies strictly below the lower bound of the 1−α level confidence

interval.

1.3 Posteriors following the impact evaluation

In turn, by Bayes Rule, received theory tells us that the joint posterior distribution

p(β, σ2|Y ) = p(β,σ2)p(Y |β,σ2)∫ ∫
p(β,σ2)p(Y |β,σ2)dβdσ2 that can be computed once the impact evaluation is

carried out is given by a NΓ−1 distribution with updated parameters:

µ∗
β =

V −1
β µβ +D′Y

V −1
β +D′D

=
V −1
β

V −1
β +D′D

µβ +
D′D

V −1
β +D′D

β̂, V ∗
β =

1

V −1
β +D′D

, (6)

a∗ = a +
n

2
, b∗ = b+

1

2

(
µ2
βV

−1
β + Y ′Y − µ∗2

β V ∗−1
β

)
. (7)

In turn, proceding as in (2), the marginal posterior distribution of β is given by a Student’s

t of the same form as that given on the RHS of (3), with:

E[β] = µ∗
β, V ar[β] =

b∗

a∗ − 1
V ∗
β .

4For example, for such a one-sided test with infinite sample size and a confidence level of 97.5%,
tα,n−1 ≈ 1.96.
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1.4 The impact of the impact evaluation

What is the impact of the impact evaluation?

1.4.1 Frequentist evaluators

For many researchers, who do not take into account the fact that the program was

approved in the first place, the only quantity of import is the least squares estimate

β̂ = D′Y
D′D

from the regression given by (1). If β̂ > 0 and:

β̂ − tα,n−1σ̂
√
D′D

−1
> 0, (8)

where σ̂2 = 1
n−1

(Y −Dβ̂)′(Y − Dβ̂) = 1
n−1

(Y ′Y − D′Dβ̂
2
) is the least squares estimate

of σ2, the researcher will declare that the program "works" in the sense that its impact

is positive, in a statistically significant sense. But if β̂ < 0 and:

β̂ + tα,n−1σ̂
√
D′D

−1
< 0, (9)

(i.e. if zero lies strictly above the upper bound of the 1− α level confidence interval) the

researcher will declare that the program is a failure, and should be terminated. In terms

of threshold values of β̂, the frequentist evaluator will therefore recommend cancellation

of the program when:

β̂ < β∗ = − tα,n−1Y
′Y√

(n− 1 + t2α,n−1)(D
′D)(Y ′Y )

< 0,

whereas she will recommend continuation when:

β̂ > β∗ =
tα,n−1Y

′Y√
(n− 1 + t2α,n−1)(D

′D)(Y ′Y )
> 0.

When β∗ < β̂ < β∗, the results of the impact evaluation will be deemed to be inconclu-

sive. Of course, this makes no sense from the decisionmaker’s perspective, because it is

reasonable to assume that at least some of the decisionmakers in question update their
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prior beliefs based on the results of the impact evaluation.5

1.4.2 Bayesian decisionmakers

When would the decisionmakers, upon updating their beliefs following the impact evalu-

ation, decide that the program should be terminated? In formal terms, this will be the

case when µ∗
β < 0 and:

µ∗
β + tα,n−1

√
b∗

a∗ − 1
V ∗
β < 0, (10)

where we now of course work with the posteriors. Of course, if µ∗
β > 0 and:

µ∗
β − tα,n−1

√
b∗

a∗ − 1
V ∗
β > 0, (11)

a Bayesian decisionmaker will be in favor of continuing the program.

Substituting from (6) and (7) implies that inequality (10) can be rewritten as:

µβ + VβD
′Dβ̂ + tα,n−1

√
VβΩ

n−2a−2

1 + VβD′D
< 0, (12)

where:

Ω = 2b (1 + VβD
′D) + Y ′Y +D′D

[
Vβ

(
Y ′Y −D′Dβ̂

2
)
+ µβ

(
µβ − 2β̂

)]
,

with a similar expression for (11). Figure 1 provides a standard graphical representation

of inequalities (8), (9), (10), and (11). I set parameters such that the program is approved

in the first place. To do so, and for purely illustrative purposes, I pose µβ = 2, Vβ = 1.00,

a = 75, b = 40, D′D = 0.2, Y ′Y = 1 and n = 10. The area within the large elipse

corresponds to values of β̂ such that µ∗
β − tα,n−1

√
b∗

a∗−1
V ∗
β < 0 < µ∗

β + tα,n−1

√
b∗

a∗−1
V ∗
β and

for which the Bayesian decisionmaker can therefore not take a decision concerning the

statistical significance of the estimate. The area within the small elipse corresponds to

the same situation of statistical insignificance for the frequentist evaluator.

After some tedious algebra, it can be shown that the roots of the quadratic equations

5Time inconsistency issues in terms of decionmaking are beyond the scope of this paper.
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Figure 1: An illustration of β̂ − tα,n−1σ̂
√
D′D

−1
, β̂ + tα,n−1σ̂

√
D′D

−1
,

µβ+VβD
′Dβ̂−tα,n−1

√
VβΩ

n−2a−2

1+VβD′D
, and

µβ+VβD
′Dβ̂+tα,n−1

√
VβΩ

n−2a−2

1+VβD′D
.

in β obtained by setting the LHS of (11) or (12) equal to zero are given by:

β+, β− =
−µβ ± tα,n−1

√
(1+VβD′D)(2bVβ+VβY ′Y+µ2

β)
n(n−2a−2)+t2α,n−1

VβD′D
< 0. (13)

This leads to the following Proposition:

Proposition 1 It will be rational for a Bayesian decisionmaker to cancel the program

when β̂ < β− and to continue the program when β̂ > β+. When β− < β̂ < β+ the

Bayesian decisionmaker is indifferent between continuing and cancelling the program.

Proof. It is easy to show that the LHS of (12) is equal to zero for

β̂ = β− =
−µβ − tα,n−1

√
(1+VβD′D)(2bVβ+VβY ′Y+µ2

β)
n(n−2a−2)+t2α,n−1

VβD′D
.
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Moreover, straightforward differentiation of the LHS of (12) yields:

∂

∂β̂




µβ + VβD
′Dβ̂ + tα,n−1

√
VβΩ

n−2a−2

1 + VβD′D


 =

VβD
′Dβ̂ − tα,n−1VβD

′D(µβ+VβD
′Dβ̂)

(n−2a−2)

√
VβΩ

n−2a−2

1 + VβD′D
> 0,

where the sign of the inequality follows from the fact that in this configuration µβ +

VβD
′Dβ̂ < 0. Thus (12) will hold for β̂ < β−. Similar arguments show that (11) will

hold when β̂ > β+. As a result, neither inequality holds when β− < β̂ < β+, and the

Bayesian decisionmaker will be indifferent between cancelling and continuing the program

when this configuration obtains.

Proposition 1 shows that it will be rational for a Bayesian decisionmaker to cancel

the program when β̂ is "sufficiently small", whereas she will be in favor of continuing the

program when it is "sufficient large".

Figure 2 presents an illustration of Proposition 1. For the parameter configuration

used in Figure 1,
µβ√
b

a−1
Vβ

≈ 2.72 so that, based on the prior, the program would be

approved without trouble at conventional levels of confidence.

In the Figure, I plot the Student t−statistics associated with varying the result β̂ of the

impact evaluation, holding all other parameter values constant. For the prior, the asso-

ciated t−statistic is constant and equal to 2.72 for all values of β̂. The inverse S−shaped

curve plots the t−statistic β̂

σ̂
√
D′D

−1 associated with the result of the impact evaluation,

as seen by a frequentist evaluator. When the value of the associated t−statistic crosses

the upper confidence band and lies above it (β̂ > β∗ > 0), the frequentist evaluator will

declare the program to be a success, and will be in favor of its continuation. When the

value of β̂ is such that the t−statistic lies below the lower confidence band (β̂ < β∗ < 0),

the frequentist evaluator will be in favor of cancellation. For all intermediate values, she

will be indifferent between cancelling and continuing the program. Similar arguments

can be made with respect to the Bayesian evaluator’s t−statistic
µ∗

β√
b∗

a∗−1
V ∗

β

. Notice, for

this parameter configuration, and given the strength of the prior, that the Bayesian eval-

uator will still be in favor of continuing the program even when the estimated β̂ is just

10



above β+ ≈ −2.2, whereas she will only be in favor of cancellation once the estimated

impact of the program is below β− ≈ −17.6.

Lower confidence band

Upper confidence band Prior

Bayesian decisionmaker

Frequentist evaluator

b-

b+

b*

b*

-15 -10 -5
b
`

-8

-6

-4

-2

2

4

6

t - statistic

Figure 2: An illustration of Proposition 1.

Note in Figure 2 that β− < β+ < β∗. In this case, for β+ < β̂ < β∗, the frequentist

evaluator is for cancellation and the Bayesian decisionmaker is for continuation. This

is not a general property and it is entirely possible, with a different configuration of

parameter values, that one would obtain β− < β∗ < β+. In this case, when β∗ < β̂ <

β+, the frequentist evaluator will be indifferent between cancellation and continuation,

whereas the Bayesian decisionmaker will be in favor of cancellation.

In passing, it is worth noting (since D′D = (n− 1)σ2
D, Y ′Y = (n− 1)σ2

Y and Y ′Y −

D′Dβ̂
2
= (n− 1)σ̂2), that:

lim
n→∞

µβ + VβD
′Dβ̂ − tα,n−1

√
VβΩ

n−2a−2

1 + VβD′D
= lim

n→∞

µβ + VβD
′Dβ̂ + tα,n−1

√
VβΩ

n−2a−2

1 + VβD′D
= β̂,

and thus that:

lim
n→∞

β− = lim
n→∞

β+ = lim
n→∞

β∗ = lim
n→∞

β∗ = 0.
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Therefore, if the impact evaluation were based on a sample of infinite size, its result would

entirely determine the decision to cancel the program, as one would intuitively expect.

2 Evidence-based policymaking?

I consider a situation in which, following the impact evaluation, there are three decision-

makers who compete to determine whether the program is continued or whether it is

terminated. The three decisionmakers are:

• Anti-evaluation decisionmakers: they are afraid of evaluation and prefer to

base their decision solely on the prior; they get benefits from continuing a program

that has been approved in the past;6

• Bayesian decisionmakers: they will base their decision on the posterior, thereby

combining their prior with the results of the impact evaluation;

• Frequentist (academic) impact evaluators: they will base their decisions solely

on the results of the impact evaluation.

2.1 Competition amongst actors

I assume that the decisionmaking process that leads to the program being continued

or terminated takes the form of a competition amongst the three decisionmakers, who

each invest resources to have their preferred outcome obtain.7 For illustrative purposes,

6To quote a senior Scandinavian development aid official whom I once questioned about why her
agency was not evaluating its programs through impact evaluations: "We have been carrying out the
same programs for 20 years, so they must be working."

7When most impact evaluations are being planned, a key parameter that must be established is
sample size n. As pointed out in the seminal article by Bloom (1995), a larger n reduces the Minimimal
Detectable Effect Size (MDES), meaning that the statistical power of the sample design is greater. If
one assumes as a first approximation that sample size is determined so that the MDES is equal to the
prior concerning the impact of the program, and if one takes the case of an RCT, the standard formula

for the MDES for a balanced sample (P = 1
2) is given by MDES = Mn−2√

n

√
1

P (1−P ) =
2Mn−2√

n
; Mn−2 will

be roughly equal to 2.5 for a one-sided statistical test with conventional power of 0.80 and significance
level of 0.05. Since the prior is that the effect size is

µβ
√

b
a−1

Vβ

, this implies that sample size would be

given by n = 4b
a−1µ

−2
β VβM2

n−2 on the basis of the prior. A frequentist evaluator, on the other hand,
might wish to increase sample size so as to increase the weight of the impact evaluation in terms of
policymaking. Including sample size as a variable over which lobbying takes place is beyond the scope
of this paper.
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consider the following standard simple "ratio form" contest success functions, where the

probability of winning (having one’s preferred outcome obtain) is given by:8

pi(eA, eB, eF ) =
αie

γ
i

αAe
γ
A + αBe

γ
B + αFe

γ
F

, γ � 0, i = A,B,F, (14)

where αi is the relative effectiveness of effort expended by agent i, and pi therefore gives

the probability that agent i prevails, as a function of the effort expended (eA, eB, eF ) by

all three parties involved.

Assuming risk neutrality, notice that the benefits to agent A from continuing the

program can be written as:

BA = µβ, (15)

where BA > 0 since the program was approved in the first place. When the impact

evaluation implies that the program should be cancelled for agent F (β̂ < β∗ < 0),

BF = −β̂ > 0. (16)

Note that the objective function for agent F involves −β̂ since that is the gain obtained

from cancelling the program and not inflicting an average loss of β̂ on beneficiaries (recall

in passing that we have normalized the cost of the program to zero). Another way of

seeing this is that it represents the opportunity gain from cancelling the program.

In what follows, I consider the four possible configurations of the impact evaluation

results.9 In all cases, the anti-evaluation decisionmaker is in favor of continuation of the

program:

• β̂ < β− < β+ < β∗ < β∗ : agent B is in favor of cancellation, agent F is in favor of

8A vast literature exists on contest success functions. An excellent recent survey on the various func-
tional forms and the manner in which they may be derived axiomatically, from stochastic specifications,
or from mechanism design principles is provided by Jia, Skaperdas, and Vaidya (2011).

9In the alternative configuration in which β∗ < β+, there are only two interesting cases to consider.

To wit: β̂ < β− < β∗ < β+ < β∗ : agent B is in favor of cancellation, agent F is in favor of cancellation;

β− < β̂ < β∗ < β+ < β∗ : agent B is indifferent between cancellation and continuation, agent F is

in favor of cancellation; β− < β∗ < β̂ < β+ < β∗ : agent B is indifferent between cancellation and
continuation, agent F is indifferent between cancellation and continuation —the program is continued
with probability 1; β− < β∗ < β+ < β̂ < β∗ : agent B is in favor of continuation, agent F is indifferent
between cancellation and continuation —the program is continued with probability 1.
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cancellation;

• β− < β̂ < β+ < β∗ < β∗ : agent B is indifferent between cancellation and continu-

ation, agent F is in favor of cancellation;

• β− < β+ < β̂ < β∗ < β∗ : agent B is in favor of continuation, agent F is in favor of

cancellation;

• β− < β+ < β∗ < β̂ < β∗ : agent B is in favor of continuation, agent F is indifferent

between cancellation and continuation —the program is therefore continued with

probability 1.

2.2 A significantly negative posterior: β̂ < β
−
< β+ < β

∗
< β∗

When the impact evaluation, through the posterior, implies that the program should be

cancelled for agent B, we have:

BB = −µ∗
β > 0. (17)

Assuming the preceding configuration of outcomes, and since agents B and F both want

the program to be cancelled (which implies that pB = pF = 1− pA) the expected payoffs

of the agents are given by:

UA = pAµβ − ceA, UB = (1− pA)(−µ∗
β)− ceB, UF = (1− pA)(−β̂)− ceF , (18)

where, for the sake of the transparency of the results that follow, I assume that the

marginal cost c of expending effort on achieving one’s preferred outcome is constant

and identical for each of the parties.10 Each agent is assumed to solve a standard

maximization problem which yields her optimal level of effort:

e∗j = argmax
{ej}

Uj s.t. ej � 0, j = A,B,F.

10More complicated equilibrium outcomes will obtain when the cost functions differ by player, but I
prefer to eschew these complications and focus on the impact on the ensuing equilibrium of the charac-
teristics of the prior, the results of the impact evaluation, the variances associated with the prior and
the impact evaluation, and the relative influence of each party.
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Again, both for simplicity and to ensure the uniqueness of the ensuing equilibrium, assume

that γ = 2.11 In this case, and after some tedious algebra, the Nash equilibrium levels

of effort furnished by each party are given by:

e∗A =
2αAαBαFµ

3
βµ

∗2
β β̂

2
(αBµ

∗2
β + αF β̂

2
)

c[αBαFµ
∗2
β β̂

2
+ αAµ

2
β(αBµ

∗2
β + αF β̂

2
)]2

> 0, (19)

e∗B = −
2αAαBα

2
Fµ

2
βµ

∗3
β β̂

4

c[αBαFµ
∗2
β β̂

2
+ αAµ

2
β(αBµ

∗2
β + αF β̂

2
)]2

> 0, (20)

e∗F = −
2αAα

2
BαFµ

2
βµ

∗4
β β̂

3

c[αBαFµ
∗2
β β̂

2
+ αAµ

2
β(αBµ

∗2
β + αF β̂

2
)]2

> 0. (21)

Substituting from (19), (20) and (21) into the contest success function then yields the

equilibrium probability that the program will be continued as a function of the prior mean

impact, the posterior mean impact, the estimate stemming from the impact evaluation,

and the influence that each agent has on the outcome:

p∗A− =
αAµ

2
β

(
αF β̂

2
+ αBµ

∗2
β

)

αBαFµ
2
βµ

∗2
β + αAµ

2
β

(
αF β̂

2
+ αBµ

∗2
β

) .

Substituting from the expression for the posterior yields:

p∗A− =

αAµ
2
β

[
αF (1 + VβD

′D)2β̂
2
+ αB

(
VβD

′Dβ̂ + µβ

)2
]

Ψ
. (22)

where

Ψ = αAαF (1 + VβD
′D)2β̂

2
µ2
β + αB

(
VβD

′Dβ̂ + µβ

)2 (
αF β̂

2
+ αAµ

2
β

)
.

One then has the following Proposition:

11The parameter γ represents the "informativeness" of the contest. As γ → 0, the contest tends
towards a randomization in which the actions of the agents have no effect whatsoever on the outcome,
whereas as γ → ∞ the contest tends towards an "all pay auction" in which the contestant who furnishes
an infinitessimally greater level of effort reaps the entirety of the reward. In terms of uniqueness of the
equilibrium, note that setting γ = 1/2 yields a pair of equilibria (one of which obtains under certain
conditions on the parameters) but that the qualitative flavor of the results that follow remain unchanged.
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Proposition 2 The likelihood of the program being cancelled, when it was approved

in the first place and when both Bayesian and frequentist evaluators are in favor of

cancellation (β̂ < β− < β+ < β∗ < β∗) admits the following comparative statics:

∂(1−p∗A−
)

∂µβ
= −

(
µβ

β

)
∂(1−p∗A−

)

∂β̂
< 0,

∂(1−p∗A−
)

∂Vβ
=

(
Vβ

D′D

)
∂(1−p∗A−

)

∂(D′D)
> 0.

Proof. Straightforward, though cumbersome, differentiation of (22) with respect to µβ

and β̂ yields:

∂(1− p∗A−)

∂µβ

= −2Ψ−2αAαBαF β̂
2
µβ(VβD

′Dβ̂ + µβ)

×
[
αFVβD

′D (1 + VβD
′D)

2
β̂
3
+ αB(VβD

′Dβ̂ + µβ)
3
]

= −
(
µβ

β

)
∂(1− p∗A−)

∂β̂
.

Since, under the configuration I have assumed, β̂ < 0, VβD
′Dβ̂ + µβ < 0 and β̂ − µβ < 0,

it follows that −∂(1−p∗A−
)

∂µβ
=

∂(1−p∗A−
)

∂β̂
< 0. Similarly,

∂(1−p∗A−
)

∂Vβ
= 2Ψ−2αAαBα

2
FVβ(1 +

VβD
′D)β̂

4
(β̂ − µβ)µ

2
β(VβD

′Dβ̂ + µβ) =
(

Vβ

D′D

)
∂(1−p∗A−

)

∂(D′D)
> 0.

As one would intuitively expect, Proposition 2 shows that, ceteris paribus, the higher

the coefficient β̂ associated with the impact evaluation, the lower the likelihood that

the program is cancelled. A similar, intuitively appealing, result obtains with respect

to the prior µβ. Moreover, an increase in the variance of the treatment dummy (D′D)

increases the likelihood of the program being cancelled, as does an increase in the variance

associated with the prior.

Another interesting result obtains when one considers the effect of a change in the

effectiveness of lobbying by either the Bayesian or the frequentist evaluator. I express

this as the following obvious Proposition:

Proposition 3 When β̂ < β− < β+ < β∗ < β∗, the likelihood of cancellation of the

program is an increasing function of the influence of the Bayesian and the frequentist

evaluators, and a decreasing function of the influence of the anti-evaluation decision-

maker. Moreover, when the influence αF (αB) of the frequentist (Bayesian) evaluator is

zero, the probability of cancellation of the program is zero.
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Proof. Trivial differentiation of (22) yields:

∂(1− p∗A−)

∂αA

= −Ψ−2αBαF β̂
2
µ2
β(VβD

′Dβ̂ + µβ)
2

×[αF β̂
2
(1 + VβD

′D)2 + αB(VβD
′Dβ̂ + µβ)

2] � 0

∂(1− p∗A−)

∂αB

= Ψ−2αAα
2
F (1 + VβD

′D)2β̂
4
µ2
β(VβD

′Dβ̂ + µβ)
2
� 0,

∂(1− p∗A−)

∂αF

= Ψ−2αAα
2
Bβ̂

2
µ2
β(VβD

′Dβ̂ + µβ)
4
� 0.

Moreover, it is immediate that 1− p∗A−
∣∣
αB=0

= 1− p∗A−
∣∣
αF=0

= 0.

Proposition 3 is striking: it suffices for the influence of lobbying by either the frequen-

tist (αF ) or the Bayesian decisionmaker (αB) to become zero for the likelihood of the

program being cancelled going to zero. In the real world, and despite much rhetoric, it is

likely that the actual influence of lobbying by academic evaluators in terms of obtaining

the cancellation of programs that have been "proven" through the results of impact eval-

uations not to work is minimal at best. The model shows (through the expression for

e∗F in equation (21)) that as the influence αF of lobbying carried out by the frequentist

academic evaluator tends towards zero —which is likely to be close to the situation that

obtains in the real world— her effort in favor of cancellation of the program tends towards

zero as well. Thus, lack of influence breads lack of effort, and lack of effort leads to the

continuation of the program. As such, it is perhaps not surprizing that the influence of

impact evaluations in the realm of policymaking is limited, at best.

2.3 An inconclusive posterior: β
−
< β̂ < β+ < β

∗
< β∗

When the impact evaluation yields a posterior that is inconclusive, the Bayesian evaluator

will be indifferent between cancellation and continuation of the program and will therefore

furnish no effort. The game then reduces to its two-player variant, in which the anti-

evaluation decisionmaker and the frequentist evaluator compete. The payoffs are given

by UA = pAµβ − ceA, UF = (1 − pA)(−β̂) − ceF , whereas the contest success function
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simplifies to pA =
e
γ
A

e
γ
A+e

γ
F
. It is then easy to establish the following Proposition:

Proposition 4 The likelihood of the program being cancelled, when it was approved in the

first place, when the Bayesian evaluator is indifferent between continuation and cancella-

tion, and the frequentist evaluator is in favor of cancellation (β− < β̂ < β+ < β∗ < β∗)

is equal to p∗A0 =
αAµ2

β

αF β̂
2
+αAµ2

β

, and admits the following comparative statics:
∂(1−p∗A0)

∂µβ
=

−
(

µβ

β

)
∂(1−p∗A0)

∂β̂
< 0,

∂(1−p∗A0)

∂Vβ
=

∂(1−p∗A0)

∂(D′D)
= 0.

Proof. Proceeding as in the proof of Proposition 2 yields: e∗A =
2αAαFµ3

β β̂
2

c(αF β̂
2
+αAµ2

β
)2

> 0,

e∗F = −2αAαBαFµ2
βµ

∗2
β β̂

3

c(αF β̂
2
+αAµ2

β
)2

> 0, which implies that p∗A0 =
αAµ2

β

αF β̂
2
+αAµ2

β

. Differentiation then

yields:
∂(1−p∗A0)

∂µβ
= − 2αAαF β̂

2
µβ

(αF β̂
2
+αAµ2

β)
2
= −

(
µβ

β

)
∂(1−p∗A0)

∂β̂
< 0. It is immediate that

∂(1−p∗A0)

∂Vβ
=

∂(1−p∗A0)

∂(D′D)
= 0.

As with the case of a significantly negative posterior, the likelihood of cancellation

falls to zero when the influence αF of the frequentist academic evaluator falls to zero.

2.4 A significantly positive posterior: β
−
< β+ < β̂ < β

∗
< β∗

In this case, we have:

BB = µ∗
β > 0,

both agent A and agent B wish to continue the program, and the expected payoffs are

given by:

UA = pAµβ − ceA, UB = pAµ
∗
β − ceB, UF = (1− pA)(−β̂)− ceF ,

where pA =
e
γ
A+e

γ
B

e
γ
A+e

γ
B+e

γ
F
. We then have the following Proposition:

Proposition 5 The likelihood of the program being cancelled, when it was approved in

the first place, when the Bayesian evaluator is in favor of continuation and the fre-

quentist evaluator is in favor of cancellation (β− < β+ < β̂ < β∗ < β∗) is equal to

p∗A+ =
αAαBµ2

β(VβD
′Dβ̂+µβ)

2

Ψ
, and admits the following comparative statics:

∂(1−p∗A+)

∂µβ
=

−
(

µβ

β

)
∂(1−p∗A+)

∂β̂
< 0,

∂(1−p∗A+)

∂Vβ
=

(
Vβ

D′D

)
∂(1−p∗A+)

∂(D′D)
> 0.
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Proof. Proceeding as in the proof of Proposition 2, the Nash equilibrium levels of effort

furnished by each of the parties can be shown to be given by e∗A =
2αAα2

BαFµ3
βµ

∗4
β β̂

2

c[αBαFµ∗2
β
β̂
2
+αAµ2

β
(αBµ∗2

β
+αF β̂

2
)]2

>

0, e∗B =
2α2

AαBαFµ4
βµ

∗3
β β̂

2

c[αBαFµ∗2
β β̂

2
+αAµ2

β(αBµ∗2
β +αF β̂

2
)]2

> 0, e∗F = − 2αAαBαFµ2
βµ

∗2
β β̂

3

c[αBαFµ∗2
β β̂

2
+αAµ2

β(αBµ∗2
β +αF β̂

2
)]2

> 0,

which implies that p∗A+ =
αAαBµ2

βµ
∗2
β

αBαF β̂
2
µ∗2
β

+αAµ2
β

(
αF β̂

2
+αBµ∗2

β

) and thus p∗A+ =
αAαBµ2

β(VβD
′Dβ̂+µβ)

2

Ψ
.

Differentiation then yields:
∂(1−p∗A+)

∂µβ
= −2Ψ−2αAαBαF β̂

2
µβ(VβD

′Dβ̂+µβ)[αA (1 + VβD
′D)2 µ3

β+

αB(VβD
′Dβ̂ + µβ)

3] = −
(

µβ

β

)
∂(1−pA+)

∂β̂
< 0. Since, under the configuration we have as-

sumed, β̂ < 0, VβD
′Dβ̂+µβ > 0 and β̂−µβ < 0, it follows that

∂(1−p∗A+)

∂µβ
= −

(
µβ

β

)
∂(1−p∗A+)

∂β̂
<

0. Similarly,
∂(1−p∗A+)

∂Vβ
= −2Ψ−2α2

AαBαFD
′D(1 + VβD

′D)β̂
2
(β̂ − µβ)µ

4
β(VβD

′Dβ̂ + µβ) =(
Vβ

D′D

)
∂(1−p∗A+)

∂(D′D)
> 0.

The upshot of Propositions 2, 4 and 5 is that the likelihood of a program that was ini-

tially approved being cancelled is, as common sense would suggest, a decreasing function

of the result β̂ of the impact evaluation, ceteris paribus. Moreover, Proposition 3 (and

the corresponding results that can be trivially established for the configurations consid-

ered in Propositions 4 and 5) shows that, as the influence exerted on policy decisions by

frequentist academic evaluators tends towards zero —an assumption that is likely to be

approximately satisfied in practice— the likelihood of the program being cancelled tends

towards zero.

2.5 Tying it all together

In order to tie the results of the preceding Propositions together, one last step is needed:

to consider what happens to the probability of cancellation at the three critical threshold

values β−, β+ and β∗. I do this in the following Proposition:

Proposition 6 A the limit values β−, β+ and β∗, 1 − p∗A−(β−) < 1 − p∗A0(β−), 1 −

p∗A0(β+) < 1− p∗A+(β+), and 1− p∗A+(β∗) > 0.

Proof. By inspection of the results presented in Propositions 2, 4 and 5, it is immediate

that:

[1− p∗A−(β̂)]− [1− p∗A0(β̂)] = −
αAα

2
F (1 + VβD

′D)2β̂
4
µ2
β

Λ
< 0, ∀β̂,
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Figure 3: The equilibrium probability of cancellation of the program as a function of the
result β̂ of the impact evaluation.

and

[1− p∗A0(β̂)]− [1− p∗A+(β̂)] = −
α2
AαF (1 + VβD

′D)2β̂
2
µ4
β

Λ
< 0, ∀β̂,

where: Λ = (αF β̂
2
+αAµ

2
β)[αAαF (1+VβD

′D)2β̂
2
µ2
β+αB(VβD

′Dβ̂+µβ)
2(αF β̂

2
+αAµ

2
β)].

It follows that 1− p∗A−(β−) < 1− p∗A0(β−), and 1− p∗A0(β+) < 1− p∗A+(β+). Finally, it

is obvious from Proposition 4 that 1− p∗A+(β∗) > 0.

Proposition 6 shows, as the value of β̂ decreases, that there will be: (i) an upward

jump in the unconditional probability of cancellation p∗A at β∗, and (ii) downward jumps

at β+ and β−.

Figure 3 provides an illustration of Propositions 2, 4, 5 and 6 in action, for the same

parameter values used in Figures 1 and 2. I set αA = αB = 1 and αF = 0.01: this

probably overstates the weight that is placed on the results of the impact evaluation in

policy circles, in that it gives equal influence to the anti-evaluation decionmaker and her

Bayesian counterpart. The weight of 0.01 assigned to the frequentist academic evaluator

is made for argument’s sake: the weight they carry in policy decisions concerning program

cancellation is probably even smaller.
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Figure 4: An illustration of Proposition 3: as the influence αF of the frequentist academic
evaluator tends towards 0, the probability of program cancellation tends toward 0, for all
values of β̂.

In Figure 3, the probability of cancellation, as noted in Propositions 2, 4 and 5, is

everywhere a strictly decreasing function of β̂, ∀ β̂ < β∗ and equal to zero ∀ β̂ � β∗. The

jumps established in Proposition 6 obtain at the threshold values β−, β+ and β∗, most

obviously so at β−. The most striking aspect of Figure 3 is the relatively low probability

of cancellation of the program, even when the result β̂ of the impact evaluation becomes

exceedingly negative: for example, when β̂ ≈ −5 (in which case it would be seen as

being highly significant by the frequentist evaluator), the probability of cancellation is

still below 5%. For the likelihood of cancellation to rise to 50%, the result of the impact

evaluation would have to reach a value well below −25. Such is the power of bureaucratic

inertia in the world of policymaking.

A final graphical representation of the results presented above is provided in Figure

4, which illustrates Proposition 3 by plotting the probability of cancellation against both

the outcome β̂ of the impact evaluation and the influence αF of the academic frequentist

evaluator. As should be clear, as the influence αF of the frequentist academic evaluator

tends towards zero, the probability of cancellation tends towards zero, for all values of β̂.
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3 Concluding remarks

One final issue remains to be addressed before drawing to a close. Is the fundamentally

risk neutral nature of the preferences being assumed in all impact evaluation reasonable?

Should one not be allowing for risk aversion in terms of what is essentially a problem of

social choice?

In terms of our statistical methodology, when we estimate the impact of a program,

our estimators seek to minimize a risk function that is based on a quadratic loss:

argmin
{β̂}

∫
(β̂ − β)2f(β)dβ =

∫
βf(β)dβ = µβ. (23)

This is akin to an assumption of risk-neutrality in utility terms. From the standpoint of

impact evaluation terminology, this is why one often focuses on the Average Treatment

Effect (ATE).

But from the social choice point of view, we should be choosing an estimator that

corresponds to our social welfare criterion, and risk aversion should enter the picture.

Consider a standard utility function of the CARA class: W (β, θ) = 1− exp{−θβ}, where

θ is the usual Arrow-Pratt coefficient of absolute risk aversion. Then we should be

picking an estimator β̂ that corresponds to:

argmin
{β̂}

∫
[W (β̂, θ)−W (β, θ)]2f(β)dβ. (24)

As in (23), the key to being able to compute this estimator is that the quantity

∫ +∞

−∞
W (β̂, θ)f(β)dβ

exists. Moreover, as has been shown in this paper, the appropriate distribution that

should be used for f(β) in terms of deciding whether or not to approve the program

in the first place is given by a Student’s t distribution. Either by applying the well-

known result of Geweke (2001) or by straightforward calculations, it is easy to show that
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the integral
∫ +∞
−∞ W (β̂, θ)t(β)dβ diverges, and that a risk averse decisionmaker therefore

cannot even compute the expected utility associated with the approval of a program in

the first place.12 The same reasoning holds for the Bayesian decisionmaker following the

impact evaluation, since the posterior is also given by a Student’s t. The implications of

this lack of a workable social welfare function, when one relaxes the untenable assumption

of risk neutrality, when it comes to evaluating a program either ex ante in terms of

approval, or ex post in Bayesian terms, is left for further research.

Of course, there are many valid econometric reasons that could lead one to recommend

the continuation of a program despite an impact evaluation that yields a frequentist ATE

that is negative and statistically significant. For example, if the marginal treatment

effect (MTE), formalized by Heckman and Vytlacil (1999), is increasing in the unobserv-

ables that determine treatment status, and the treatment on the treated (TT) is highly

negative and the treatment on the untreated (TUT) highly positive (with a negative and

statistically significant ATE), there are excellent reasons for not cancelling the program

if the untreated individuals can be brought into the fold when it is continued.13

This observer has yet to see this level of sophistication in policymaking circles, and

it is highly likely that the bureaucratic inertia arguments developed in this paper within

the straightjacket of a simple Bayesian framework are, unfortunately, much closer to the

uggly truth, and explain why we almost "never learn" from impact evaluations, and why

they seldom lead to evidence-based policymaking.
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