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Abstract 

Although previous literature demonstrates that punishment is more efficient and stable than reward, in our daily life, 

numerous kinds of rewards permeate. One possible explanation for widely use of reward institution in practice is that 

it’s an efficient and satisfactory way to enhance cooperation and welfare in a social dilemma situation even the 

contribution is hardly evaluated accurately. Nevertheless, this explanation lacks support from empirical evidence. Our 

study aims to examine whether the institution with reward option is an efficient and satisfactory way to solve social 

dilemma problems under imperfect information conditions. We show that reward institutions sustain higher cooperation 

levels and let participants get more welfare under imperfect information conditions. Furthermore, we find most 

participants to have a tendency to favor reward institutions, even when the information is highly noisy. Our study sheds 

light on the superiority of reward institutions over punishment institutions in a realistic world. 
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1 Introduction 

The evolutionary success of humans has often been attributed to our cooperation in non-relative 
groups. However, a large amount of theoretical and empirical studies has documented that 
individually costly cooperation tends to break down in the long run, which is called as the social 
dilemma problem (Dietz et al., 2003; Nowak, 2006; Fischbacher & Gächter, 2010; Gächter et 
al.,2017). Punishment and reward are considered key mechanisms proposed solving the social 
dilemma, nevertheless, punishment is demonstrated to be more efficient and stable than reward 
(Yamagishi, 1986; Ostrom, 1992; Fehr & Gäther, 2000, 2002; Walker, 2004; Sefton, 2007; Gächter 
et al., 2008; Rand et al., 2009; Boyd et al., 2010; Sigmund et al., 2010; Faillo et al., 2012; Andreoni 
& Gee, 2012; Kamijo et al., 2014; Yang et al., 2019). Based on these findings of previous literature, 
it seems that reward should not have been used in fostering cooperation when punishment is 
available. In our daily life, however, numerous kinds of rewards permeate. For example, the partners 
of Alibaba are rewarded by each other from the bonus pool at the end of each year based upon their 
contributions to the corporation. Does Alibaba use peer reward institution because the punishment 
for their partner is not available? In addition, non-monetary rewards such as honor and esteem are 
often used by individuals for their partners who contribute more. Motivated by these observations, 
the basic question we address in this paper is why do groups sometimes choose the reward other 
than punishment in enforcing cooperation?  

Social welfare is a different important consideration for groups choosing incentive institutions 
(i.e., reward and punishment) besides cooperation since groups with higher welfare can survive in 
the evolutionary process (Dong, 2019). The reward is chosen probably because it is better in 
improving welfare than punishment in a realistic environment. In a more realistic environment, one 
fundamental characteristic of group cooperation is that the amount of each member’s contribution 
is hardly observed nor evaluated. That is, the observed information on other group member’s 
contribution is likely to be inaccurate. Both decentralized and centralized punishments are 
demonstrated to be a poor tool to enforce cooperation when subjects observe other’s decisions with 
a small amount of noise because they are not able to increase the welfare of group members (Ambrus 
& Greiner, 2012; Nicklisch et al., 2016; Ambrus et al., 2019). As the level of noise increases to large, 
both decentralized and centralized punishment institutions even reduce social welfare (Nicklisch et 
al., 2016). Therefore, one possible explanation for widely use of reward institution in practice is that 
it’s an efficient and satisfactory way to improve cooperation and welfare in a social dilemma 
situation even the contribution is hardly evaluated accurately. Whether do reward institutions sustain 
higher cooperation and welfare in the imperfect information environment? And whether do subjects 
prefer reward institutions even if the noise level is large? We aim to examine these crucial issues.  

In this paper, we first investigate how the option of costly reward affects cooperation and 
welfare in the imperfect information environment, in which the observed information on other group 
member’s contribution is liable to be wrong. In particular, we investigate a voluntary contribution 
mechanism with reward (VCMR) game in which, after each contribution decision, the private signal 
of a player’s contribution to another subject——that is, the information on the player’s contribution 
announced to another subject——might differ from the true contribution of the player. Similar to 
Nicklisch et al. (2016), we employed two imperfect information treatments: (i) high-noise treatment 
(represents high noisy environment); and (ii) low-noise treatment (represents low noisy 
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environment). Specifically, the possibility that the private signal differs from the true contribution 
equals roughly 10% in the low-noise treatment and equals roughly 50% in the high-noise treatment1. 
This design corresponds to collective production situations in which even if a group member 
contributes to a joint project, the others do not recognize the contribution. In our design, such 
mistakes in private signal only influence the subjects’ information, but not their payoffs2 . As a 
control design, we also employed the perfect-information treatment, under which the private signal 
always matches the true contribution level.  

The other dimension of our design is the reward option. We employed three institutions: (i) a 
reward-free institution (hereafter referred as 𝑁𝑅); (ii) a decentralized reward institution (hereafter 
referred as 𝐷𝑅); and (iii) a centralized reward institution (hereafter referred as 𝐶𝑅)3. In 𝐶𝑅, an 
additional (randomly drawn) subject (the authority) can reward the players in this institution while 
players are not permitted to reward each other. The authority’s payoff is increasing in the players’ 
contributions, and the authority is not required to bear the costs of rewards. In 𝐷𝑅 players can 
reward other players in the same institution, at their own expense. Hence, our experiment facilitates 
investigating the effects of 𝐷𝑅 and 𝐶𝑅 on cooperation and welfare in both perfect and imperfect 
information environments. 

Furthermore, we investigate whether the reward option is preferred by group members in the 
imperfect information environment. In particular, we investigate which institution is chosen by the 
players after they have experienced three institutions in turn. For this purpose, we divided the main 
experiment into two parts. In the first part, we used a within-group design, in which a group of 
players participate in all three institutions in random order.4 Specifically, in each institution a player 
interacts with 3 other fixed group members for 5 periods. At the end of this part, players observed 
the accurate information about average contribution and welfare (that is, payoff that related to 
contributions, imposed rewards and received rewards) for each period of each institution. In the 
second part, players decide to participate in one of the three institutions and then complete the game 
with other players who choose the same institution. Since the payoff is related to the chosen 
institution and subsequent decisions, our experiment elicited the group member’s preference for 
𝐶𝑅, 𝐷𝑅 and 𝑁𝑅.  

We have determined that in the benchmark perfect-information treatment, both 𝐶𝑅 and 𝐷𝑅 
increase the amounts of contribution and the welfare. This strengthens the findings in Rand et al. 
(2009), a key literature demonstrating that the decentralized reward institution improves both 
cooperation and welfare. In 𝑁𝑅, players contribute about half endowments at the beginning, and 
this contribution level quickly decays. 𝐷𝑅 not only provides a higher contribution level at the 

 
1 These two imperfect information treatments represent two typical information environments. We employed the 
low-noise treatment to examine whether the positive effects of reward on cooperation and welfare and subjects’ 
preference for reward institutions are undermined by a slight noise. In addition, we employed the high noise 
treatment to examine whether reward institutions are still efficient and satisfactory to improve cooperation and 
welfare under a relatively large noisy environment.   
2 The payoffs of players are determined by their true actions and are revealed at the end of the second stage. 
3 These two reward institutions are most typical institutions for reward used in previous literature (Walker,2004; 
Sefton,2007; Rand et al., 2009).  
4 In experimental economics, within-group design might incur “demanding effect” and hence reduces the validity 
of treatment effect found in the experiments. Our design mitigates the possible concerns about “demanding effect”. 
First, we provide a substantial incentive for players’ decisions, which mitigates the player’s motivation to meet the 
experimenter’s demand in the first stage. Second, after experienced three institutions, players are asked to choose 
one institution and interact with other group members in the same institution. This task catches players’ attention 
and prevents them from guessing the experimenter’s demand for their decisions in the first stage, which mitigates 
the demanding effect on players’ contributions and reward actions in the first stage.   
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beginning, but also diminishes the decaying trend occurring in 𝑁𝑅. Build on our theoretical model 
and experimental data, we simulate the decisions of players in three institutions with a long finite 
period (50 periods). The simulated result shows that 𝐷𝑅 sustains a higher level of contribution 
and welfare than NR even in the last period, which was similar to the finding of Rand et al. (2009). 
We also found the same effect of 𝐶𝑅 with 𝐷𝑅 on cooperation tendency. More specifically, 𝐶𝑅 
even sustains a higher contribution and welfare level than 𝐷𝑅, which makes most players to prefer 𝐶𝑅.  

In the imperfect information environment, the observed patterns are similar to perfect-
information. Both 𝐶𝑅  and 𝐷𝑅  significantly increase the contribution and welfare level, and 
sustain higher contribution and welfare than 𝑁𝑅 in the last period. Simulation results demonstrate 
that players maintain a moderate cooperation even in the 50th period. In a low noisy environment, 
𝐶𝑅 sustains higher contribution and welfare than 𝐷𝑅. In contrast, in a high noisy environment, 𝐶𝑅 has a similar effect on contribution with 𝐷𝑅, but sustains higher welfare than 𝐷𝑅. Moreover, 
we also find most players to prefer 𝐶𝑅 than other two institutions notwithstanding in the imperfect 
information environment. To summarize, whether the information is perfect or not, clearly 𝐷𝑅 and 𝐶𝑅 are beneficial for society, notwithstanding in the long run. Moreover, 𝐶𝑅 is the most preferred 
institution. 

Compared to the perfect information environment, we find a smaller effect of 𝐷𝑅 and 𝐶𝑅 
on improving cooperation and welfare in the imperfect information environment. A closer look at 
the data provides hints for why the costly reward option is less effective under the imperfect 
information environment than the perfect information environment in improving cooperation and 
welfare. First, in the case of 𝐷𝑅 and 𝐶𝑅, the linkage between contribution and reward is reduced 
by the high level of noise. This suggests that players contributing high are less likely to believe to 
be rewarded in the high noisy environment because others might receive a private signal of low 
contribution, or others might suspect they contribute at a low level even if the private signal of 
contribution is at a high level. Hence, players are more likely to contribute less in the high noisy 
environment because they might get similar rewards to higher contribution level, even if they 
contribute at a low level. Second, players learn the other’s cooperation level more slowly with noisy 
information. That is, in the imperfect information environment, players hardly expect that others 
increase their contribution level with the reward option, leading conditional cooperators to 
contribute less under imperfect information than perfect information in 𝐷𝑅 and 𝐶𝑅. Third, only 
in the case of 𝐷𝑅, the amount of reward is reduced by the high level of noise. This results in a 
lower welfare level in 𝐷𝑅 than 𝐶𝑅 under high noisy environment, even if the contribution levels 
of two reward institutions are comparable.  

Our paper contributes to the existing literature in several important ways. First, we complement 
and expand the recent discussion on how to enforce cooperation in a realistic noisy environment. 
Bereby-Meyer and Roth (2006) find that players hardly to learn to cooperate in a repeated social 
dilemma situation when payoffs are noisy. It suggests that the reputation mechanism does not sustain 
cooperation in the imperfect information environment. Grechenig et al. (2010) investigate whether 
the option to punish others costly improves cooperation in a short repeated social dilemma situation 
with uncertainty about the contributions of others. They point out that punishment is inefficient to 
improve cooperation and welfare if there is some nontrivial degree noise. That is, perfect-
information is crucial to the efficiency of sanction mechanism. Ambrus and Greiner (2012) focus 
on the effects of increasing the severity of punishment on cooperation and welfare in a long repeated 
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noisy environment5. They find a U-shape relationship between severity and welfare with small noise. 
More specifically, a standard punishment significantly decreases welfare while a severe punishment 
leads to roughly the same welfare as with no punishment option even in the long run. Ambrus and 
Greiner (2019) compare the effect of the democratic punishment institution with decentralized 
punishment and centralized punishment institution on cooperation and welfare in a medium repeated 
noisy environment (20 periods). Although they reveal that democratic punishment leads to a higher 
level of contribution and welfare with the small level of noise, a clear decaying trend of contribution 
and welfare level is not checked by democratic punishment. Hence democratic punishment is likely 
to be uneconomical in the long run. Moreover, neither decentralized punishment nor centralized 
punishment institution is found to improve cooperation or welfare even in a medium run. To 
summarize, these results suggest that punishment option does not increase welfare in a long run 
even if there exists a small noise. In contrast to the previous literature, we find that even with a large 
level of noise, both DR and CR sustain a higher contribution and welfare level in the long run. These 
findings shed light on the superiority of reward institutions over punishment institutions in 
promoting cooperation and welfare in a realistic world where cooperation information is likely 
observed inaccurate. 

Second, we also contribute to the growing literature about the preference for incentive 
institutions. Most literature focuses on the institution choice under perfect information environment. 
Sutter et al. (2010) investigate the endogenous choice of reward and punishment institutions. They 
find a preference on the reward option in perfect-information environment, although punishment is 
much more effective in sustaining a high level of cooperation. Dickinson et al. (2015) replicate this 
finding and validate the external validity by using police commissioners’ sample. Markussen et al. 
(2014) focus on the endogenous choice of institutions in sanction. They reveal that centralized 
punishment institution (automatically executed) is more popular than decentralized punishment in 
perfect-information environment. To our knowledge, only one study concentrates on the institution 
choice under imperfect information environment. Nicklisch et al. (2016) show that decentralized 
punishment is the most popular sanctioning institution in perfect-information environment. 
However, this preference is significantly affected by the level of noise. Subjects do not show a clear 
preference for decentralized punishment, centralized punishment and sanction-free institutions in a 
low noisy environment while sanction-free institution is chosen with the highest shares in a high 
noisy environment. In contrast to Nicklisch et al. (2016), our paper concentrates on the endogenous 
choice of institutions in reward. We find a stable preference for centralized reward institution, 
whether there exists a small or large level of noise in contribution information. Combining the 
findings of Nicklisch et al. (2016), our paper suggests that individuals are most likely to prefer 
reward institutions in the imperfect information environment and hence explains the prevalence of 
centralized reward institution in the real world. 

Finally, our paper is at the forefront of papers in the economics literature studying how 
antisocial rewards influence subsequent contribution behaviors in the repeated public goods game6. 
The literature on the harmful effect of antisocial incentive behaviors most focus on antisocial 

 
5 Ambrus and Greiner (2012) employ two punishment treatments: a standard punishment technology and a strong 
punishment technology. In the standard punishment technology, every token spent on punishment incurs a damage 
of three tokens. In the strong punishment technology, very token spent on punishment incurs a damage of six tokens. 
Therefore, the strong punishment technology is more severe than the standard punishment technology.   
6 According to the definition of antisocial punishment in previous literature, we define the reward followed a low 
contribution by the subject as antisocial reward.  
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punishments. Herrmann et al. (2008) is the first paper to study antisocial punishments across 
societies, demonstrating that the antisocial punishment of contributors lowers their subsequent 
contributions in the perfect information environment7. Ambrus & Greiner (2012) and Ambrus & 
Greiner (2019) then replicate this finding using a binary public goods game, documenting that 
subjects who were punished “unfairly” by other group members are less likely to contribute in the 
next period8. In addition, Ambrus & Greiner (2019) reveal that this adverse effect is mitigated under 
democratic and dictator punishment9. To the best of our knowledge, our study takes the lead in 
examine how participants make cooperation decisions after received antisocial rewards from other 
group members or an authority. In contrast to antisocial punishments, we find that antisocial rewards 
do not affect players’ subsequent contributions in the perfect information and low noisy environment 
but decrease players’ subsequent contributions in the imperfect information environment. This 
finding suggests that when the information is perfect or the noise is small, players are able to expect 
the rewards assigned to them accurately, and that the received antisocial rewards per se do not affect 
players’ subsequent contributions. This has significant implications for understanding the 
mechanisms underlying subjects’ cooperation choices in reward institutions, and for helping us 
better understand how reward differences from punishment in enhancing cooperation under noisy 
environment. 

This paper is structured as follows. Section 2 describes our basic game and derives some 
important propositions for the effect of reward institutions. In Section 3 we introduce the 
experimental setting. Section 4 presents the results and Section 5 concludes the paper with a 
discussion.    

2 The Model 

We use an overarching model that combines (i) social norms of conditional cooperation, and (ii) 
sequential reciprocity, using psychological game theory.  

2.1 Game structure 

Consider a standard VCM, let 𝐼 = {1,2,3,4} denote a group of 4 subjects who interact in 𝑇  
periods. The IDs of players changed from period to period, meaning that the reputation effect is 
ruled out. In each period 𝑡 ∈ {1,2,… , 𝑇 }, individual 𝑖 ∈ 𝐼  receives an endowment m ∈ ℕ+ , 
which can be allocated to either a private good or a public good. We use index 𝑗 for other group 
members, 𝑗 ∈ 𝐼\{𝑖} . The voluntary contribution of player 𝑖  in period 𝑡  must satisfy 𝑔𝑖𝑡 ∈𝐺,𝐺 = {0,1,2,… , 𝑚}. Let 𝑔𝑡̅ denote the average contribution towards public goods (i.e., 𝑔𝑡̅ =
14 ∑ 𝑔𝑖𝑡4i=1 ). Individual member 𝑖’s payoff from her contribution in period 𝑡, denoted by 𝜋𝑖𝑡1 , is 

 
7 Herrmann et al. (2008) uses a standard linear public goods game with/without punishment. In their no-punishment 
condition, the endowment is set to 20 tokens and the marginal per capital return is set to 0.4. In their punishment 
condition, the punishment point is set to 10 and the efficiency of punishment is set to 3.  
8 In Ambrus & Greiner (2012), subjects can only choose between contributing all or none of their endowments.  
9  In Ambrus & Greiner (2019), there are three treatments: Individual punishment, democratic punishment and 
dictator punishment. In their individual punishment treatment, each group member could directly reduce the earnings 
of another group member. In their democratic punishment treatment, group members simultaneously cast votes for 
each group member whether to punish the member or not. If a majority is reached, that participant will be punished. 
In their dictator punishment treatment, one of the group members is randomly chosen to decide whether to punish 
other group members.      
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given by 
𝜋𝑖𝑡1 (𝑚, 𝑔𝑖𝑡, 𝑔𝑡̅) = 𝑚 − 𝑔𝑖𝑡 + 4𝛾 ⋅ 𝑔𝑡̅                                        (2.1)  

The marginal per capita return (MPCR) from investing into the public good is denoted as 𝛾, which 
satisfies 14 < 𝛾 < 1, meaning that the self-interested choice and the socially optimal one are at odds. 

We set up three variants of this basic game representing different institutions: (i) the standard 
VCM without reward option (representing 𝑁𝑅), (ii) the VCM with centralized reward option 
(representing 𝐶𝑅) and (iii) the VCM with decentralized reward option (representing 𝐷𝑅). We 
denote by 𝐶, 𝐷 and 𝑁  the set of players in the three institutions. In period 𝑡 ∈ {1,2,… , 𝑇 } of 
each institution, there are two stages: a contribution stage and a reward stage. The contribution stage 
for all institutions is the same as the standard VCM described above. All group members make 
decisions about their contributions simultaneously. The only difference is that in 𝐶𝑅, an authority 𝑎 joins the group but takes no actions in this stage.  

In the reward stage, all players including the authority receive a signal 𝑠 valued at 𝑠𝑘𝑗𝑡 ∈ 𝑆 
about the contribution of player 𝑗, 𝑆 = {0,1,2,… , 𝑚}, 𝑘 ∈ 𝐼 ∪ {𝑎} and 𝑗 ∈ 𝐼\{𝑖}10. For each 
𝑘, a signal is produced, such that 

𝑠 = { 𝑔𝑗𝑡 𝑤𝑖𝑡ℎ  𝑝𝑟𝑜𝑏 = 𝜆      𝑔𝑗̃𝑡 𝑤𝑖𝑡ℎ  𝑝𝑟𝑜𝑏 = 1 − 𝜆                       (2.2) 
Where 𝑔𝑗̃𝑡 is randomly drawn from the set 𝐺 = {0,1,2,… , 𝑚} with uniform probabilities. Thus, 
for each player, there is an independent random draw determining whether the signal correspondents 
to the true contribution or not. Parameter λ  characterizes the observability of contribution 
information11. We define perfect observability as λ = 1 and imperfect observability as λ ∈ [0,1)12. 
The player 𝑗 doesn’t know whether the subject 𝑘 receives a true or false signal of her contribution. 
Let 𝑃(𝑋 = 𝑥) denote the probability of a variable 𝑋 equaling 𝑥. We then define the probability 
of a signal 𝑠 equaling 𝑠𝑘𝑗𝑡 conditional on 𝑔𝑗𝑡 by 𝑃 𝑠(𝑠𝑘𝑗𝑡∣𝑔𝑗𝑡) = 𝑃(𝑠 = 𝑠𝑘𝑗𝑡∣𝑔𝑗𝑡)13.  

𝑃 𝑠(𝑠𝑘𝑗𝑡∣ 𝑔𝑗𝑡) = {1−𝜆𝑚+1 + 𝜆,      𝑖𝑓  𝑠𝑘𝑗𝑡 = 𝑔𝑗𝑡1−𝜆𝑚+1 ,          𝑖𝑓  𝑠𝑘𝑗𝑡 ≠ 𝑔𝑗𝑡
                     (2.3) 

In addition, all players receive an extra endowment 𝑟̅ > 0. Depending on their institution, 
players assign reward points (that is, the player 𝑖 in 𝐷𝑅 and the authority 𝑎 in 𝐶𝑅), and then 
the final payoffs are realized. The three institutions mainly differ in the reward stage. For player 𝑖 
in 𝑁𝑅 the payoff equals the profit after the contribution stage plus the extra endowment: 

 𝜋𝑖𝑡𝑁 = 𝜋𝑖𝑡1 + 𝑟 ̅                                                 (2.4) 
In 𝐷𝑅  all player 𝑖s decide simultaneously over reward 𝑟𝑖→𝑗,𝑡𝐷 ∈ [0, 𝑟]̅  toward player 𝑗 . 

Each reward point assigned to player 𝑗 leads to an addition of 𝜅 > 1 units from the payoff of 
player 𝑗 and reduces the payoff of player 𝑖 by one unit. Each player can spend up to her extra 

 
10 𝑠𝑘𝑗𝑡 is the value of a signal of player 𝑗’s contribution received by subject 𝑘. 
11 The parameter 𝜆 in our study is different from that in Nicklisch et al. (2016). In their study, 𝜆 is the possibility 
of subject 𝑘  receiving a true signal of other’s contribution. In our study, however, this possibility is 1−𝜆𝑚+1 + 𝜆 
instead of 𝜆.  
12 Based on equation (2.3), when 𝜆 equals 1, the possibility of subject 𝑘 receiving a true signal is 1; when 𝜆 is 
less than 1, this possibility is less 1 as well. 
13 𝑃𝑠(𝑠𝑘𝑗𝑡∣𝑔𝑗𝑡) is the possibility of subject 𝑘 receiving a signal 𝑠 equaling 𝑠𝑘𝑗𝑡 if player 𝑗’s contribution is 𝑔𝑗𝑡. 
For example, if player 𝑗’s contribution is 𝑚, the possibility of subject 𝑘 receiving a signal equaling 𝑚2  is 1−𝜆𝑚+1 and 
that of subject 𝑘 receiving a signal equaling 𝑚 is 1−𝜆𝑚+1 + 𝜆. 



9 
 

endowment 𝑟 ̅ for reward, that is, ∑ 𝑟𝑖→𝑗,𝑡𝐷𝑗 ≤ 𝑟.̅ Units not spent on reward are credited to the 

payoff of player 𝑖. For player 𝑖 in 𝐷𝑅, the payoff equals 

𝜋𝑖𝑡𝐷 = 𝜋𝑖𝑡1 + (𝑟̅ −   ∑ 𝑟𝑖→𝑗,𝑡𝐷
𝑗

) + 𝜅 ⋅ ∑ 𝑟𝑗→𝑖,𝑡𝐷
𝑗

                                     (2.5) 
In 𝐶𝑅  all reward decisions are delegated to the authority 𝑎. The authority decides over 

reward 𝑟𝑎→𝑗,𝑡𝐶 ∈ [0,3𝑟]̅ toward player 𝑗 ∈ 𝐼 . Like in 𝐷𝑅 each reward point assigned to a player 
assigned to player 𝑗 leads to an addition of 𝜅 ≥ 1 units from the payoff of player 𝑗 and costs one 
unit. In 𝐶𝑅 these costs have to be borne by all players except 𝑗 in the institution. In sum, the 

authority can spend up to the extra endowment of all player 𝑗s for reward, i.e., ∑ 𝑟𝑎→𝑗,𝑡𝐶𝑗∈𝐼 ≤ 4𝑟.̅ 

In addition, maximum reward targeted at a single player is restricted to 3𝑟.̅ Units not spent on 
reward are credited to the particular player’s account. Hence, 𝐷𝑅 and 𝐶𝑅 are identical with 
regard to the feasible set as well as the financial consequences of reward. The only difference is that 
reward decisions are made by the authority. For player 𝑖 in 𝐶𝑅, the payoff equals 

𝜋𝑖𝑡𝐶 = 𝜋𝑖𝑡1 + (𝑟̅ −   ∑ 𝑟𝑎→𝑗,𝑡𝐶𝑗 3 ) + 𝜅 ⋅ 𝑟𝑎→𝑖,𝑡𝐶                                      (2.6) 
The authority’s payoff equals the average profit after contribution stage of all players in 𝐶𝑅 

𝜋𝑎𝑡𝐶 = ∑ 𝜋𝑖𝑡1𝑖4                                    (2.7) 
2.2 Belief updating 

In order to construct appropriate belief hierarchies, we make some basic assumption on the belief 
based on our experimental data. The belief of subject 𝑘 about player 𝑗’s contribution in period 𝑡 
known as subject 𝑘’s first-order belief toward player 𝑗 is defined by 𝑏𝑘𝑗𝑡. Without any correlated 
signals, first-order belief is referred to as the first-order positive belief. Denote the probability of 
first-order positive belief by 𝐵𝑘𝑗1 (⋅):𝐺 → [0,1]. Thus 𝐵𝑘𝑗1 (𝑔𝑗𝑡) = 𝑃(𝑏𝑘𝑗𝑡 = 𝑔𝑗𝑡) is the probability 
assigned by subject 𝑘 that the contribution of the player 𝑗 in period 𝑡 equals 𝑔𝑗𝑡  before the 
contribution decision is made. Our first assumption is on the first-order positive belief.  

Assumption 1. The positive belief of subject 𝑘 about player 𝑗’s contribution equals 𝑔𝑗̃𝑡, where 𝑔𝑗̃𝑡 is randomly drawn from the set 𝐺 = {0,1,2,… , 𝑚} with uniform probabilities. Thus, for each 𝑔𝑗𝑡 ∈ 𝐺, the probability of first-order positive belief 𝐵𝑘𝑗1 (𝑔𝑗𝑡) equals 1𝑚+1  . 
From Assumption 1, 𝑘 may unconditionally expect player 𝑗 averagely contribute 𝑚2  to public 
goods. Let E[⋅] denote the expectation of a variable. We define 𝑘’s first-order expectation as 𝔼𝑘𝑗𝑡1 [⋅] = E[𝑏𝑘𝑗𝑡| ⋅], which means the expectation of subject 𝑘's first-order belief toward player 𝑗. 
Without any signals, 𝑘’s unconditional first-order expectation 𝔼𝑘𝑗𝑡1 [∅] equals 𝑚2 .  

Remark 1. Assumption 1 is easy to understand. When subject 𝑘 has no information about player 
j, she may expect player 𝑗 contribute randomly. Our data showing the average beliefs about other 
group members in the first period is nearly 10 somewhat supports this assumption14. Of cause, 

 
14 In our experiment, the parameter 𝑚 is set to 20. Hence 𝑖's first order expectation of each 𝑗 consistently 



10 
 

player 𝑖 may also expect player 𝑗 will do the same action with herself. This phenomenon is 
famous as the false consensus effect and supported by a great deal of empirical evidence. This effect 
is also backed by our data since the average beliefs about other group members are significantly 
positive correlated with player 𝑖’s contribution in the first period. However, this mechanism does 
not apply to authority 𝑎 in 𝐶𝑅15. For simplicity and consistency, we use Assumption 1 in our 
model to characterize the first-order positive belief of subject 𝑘.  

Denote player 𝑖’s second order expectation as 𝔼𝑗𝑖𝑡2 [⋅] = E[𝑏𝑗𝑖𝑡| ⋅], which equals the expectation of 
player 𝑗's first-order belief toward player 𝑖. 
Lemma 1. The unconditional second order expectation of player 𝑖 is given by 

 𝔼𝑗𝑖𝑡2 [∅] = E[𝑏𝑗𝑖𝑡] = 𝑚2                                                 (2.8) 

We denote (𝑆𝑘𝑗𝑡)𝑘∈𝐼∪𝑎,𝑗∈𝐼\{𝑖} = {𝑠𝑘𝑗1, 𝑠𝑘𝑗2,… , 𝑠𝑘𝑗𝑡} as the signal set of subject 𝑘 in the reward 
stage of period 𝑡 about player 𝑗’s contributions16, and 𝑆𝑘𝑡 =×𝑗∈𝐼\{𝑖} 𝑆𝑘𝑗𝑡 as the information set 
of 𝑘 in the reward stage of period 𝑡. The possibility of player 𝑘′𝑠 first-order belief toward player 𝑗 conditional on a signal 𝑠𝑘𝑗𝑡 in period 𝑡 is denoted by 𝐵𝑘𝑗1 (𝑔𝑗𝑡|𝑠𝑘𝑗𝑡) = 𝑃(𝑏𝑘𝑗𝑡 = 𝑔𝑗𝑡|𝑠𝑘𝑗𝑡).  
Assumption 2. Subject 𝑘 updates her belief about player 𝑗’s contribution with the latest signal of 𝑗’s contribution according to Bayes rule. That is, 𝐵𝑘𝑗1 (𝑔𝑗𝑡∣𝑆𝑘𝑡) is given by17, 

𝐵𝑘𝑗1 (𝑔𝑗𝑡∣𝑆𝑘𝑡) = 𝐵𝑘𝑗1 (𝑔𝑗𝑡∣𝑠𝑘𝑗𝑡) =
⎩{⎨
{⎧1 + 𝑚𝜆1 + 𝑚 , 𝑖𝑓 𝑔𝑗𝑡 = 𝑠𝑘𝑗𝑡

1 − 𝜆1 + 𝑚 ,       𝑖𝑓 𝑔𝑗𝑡 ≠ 𝑠𝑘𝑗𝑡
              (2.9) 

From Assumption 2, the possibility that player 𝑗’s contribution is believed to be same as her signal 𝑠𝑘𝑗𝑡 is increasing with information observability λ. When information is perfectly observed (i.e., 
λ = 1), 𝑘’s first-order belief toward player 𝑗 is completely consistent with her received signal 𝑠𝑘𝑗𝑡.  

Remark 2. In our experiment, players in a group change their IDs from period to period. Therefore, 
they cannot assign the signals shown to them in previous periods to a certain group member in the 
current period. For this reason, we assume players update their beliefs about a certain group 
member in the reward stage only with the signal shown in the current period.  

Lemma 2. The first-order expectation of subject 𝑘 toward player 𝑗 conditional on signals is given 
by, 

𝔼𝑘𝑗𝑡1 [𝑆𝑘𝑡] = E[𝑏𝑘𝑗𝑡|𝑠𝑘𝑗𝑡] = 𝑚(1 − λ)2 + λ𝑠𝑘𝑗𝑡                        (2.10) 
Lemma 3. The second order expectation conditional on 𝑖’s contribution is given by, 

 
equals 10 in the first period. As a result, the average beliefs about other group members equal 10 as well. 
15 This is because the authority 𝑎 doesn’t need to contribute in our experiment. 
16 𝑆𝑘𝑗𝑡 contains signals about player 𝑗’s contribution received by subject 𝑘 in previous periods as well as that 
received by subject 𝑘 in the current period. Therefore, the signal set of subject 𝑘 in the contribution stage of period 𝑡 ≥ 2 about player 𝑗’s contributions is 𝑆𝑘𝑗,𝑡−1. When 𝑡 = 1, we denote 𝑆𝑘𝑗,𝑡−1 = ∅. 
17 In the contribution stage of period 𝑡, as the signal set of subject 𝑘 in the contribution stage of period 𝑡 about 
player 𝑗 ’s contributions is 𝑆𝑘𝑗,𝑡−1 , the possibility of 𝑘 ’s first order belief is defined by 𝐵𝑘𝑗1 (𝑔𝑗𝑡∣𝑆𝑘,𝑡−1) =𝐵𝑘𝑗1 (𝑔𝑗𝑡∣𝑠𝑘𝑗,𝑡−1). 



11 
 

𝔼𝑗𝑖𝑡2 [𝑔𝑖𝑡] = E[𝑏𝑗𝑖𝑡|𝑔𝑖𝑡] = 𝑚 − λ2𝑚2 + λ2𝑔𝑖𝑡                       (2.11) 
2.3 Psychological utility function 

2.3.1 Psychological utility function in reward stage 

In 𝐷𝑅, player 𝑖 may infer the kindness intentions of player 𝑗 based 𝑖’s conditional expectation. 
Following the spirit of Dufwenberg and Kirchsteiger (2004), we define the reciprocity of player 
𝑖 towards player 𝑗 as follows18 

𝑅𝑖𝑗𝑡 = (𝔼𝑖𝑗1 [𝑆𝑖𝑡] − 𝜇 ⋅ 𝑚) ⋅ 𝑟𝑖→𝑗,𝑡𝐷                                           (2.12)  
Where 𝜇𝑚 is player 𝑖’s reciprocal reference point. The right-hand side (hereafter, RHS) of 

equation (2.12) is the product of two terms. The first term (𝔼𝑖𝑗1 [𝑆𝑘𝑡] − 𝜇 ⋅ 𝑚)  captures the 
perception of player 𝑖  for the kindness of player 𝑗  in the contribution stage. Thus, player 𝑖 
perceives player 𝑗 to be kind, if player 𝑖 believes that player 𝑗 contributes more than a fraction 
of 𝜇 of her endowment in the contribution stage. The second term 𝑟𝑖→𝑗,𝑡𝐷  captures the kindness of 
player 𝑖 towards player 𝑗 in the reward contribution. Thus, player 𝑖 perceives being kind to 
player 𝑗 if she chooses a reward 𝑟𝑖→𝑗,𝑡𝐷 > 0. The psychological utility, 𝑈𝑖𝑡2𝐷, of player 𝑖 in the 
reward stage of 𝐷𝑅 is given by 

𝑈𝑖𝑡2𝐷 = E[𝜋𝑖𝑡𝐷] + ∑ 𝛿𝑖 ⋅ 𝑅𝑖𝑗𝑡𝑗
                                              (2.13) 

In (2.13), the first term on the RHS is the expectation of player 𝑖 in the reward stage on her 
total payoff of period 𝑡 defined in (2.5). The second term captures conditional reciprocity, the 
reciprocity of player 𝑖 towards player 𝑗 in reward stage was formally defined in (2.12); 𝛿𝑖 > 0 
is a parameter related to player 𝑖’s reciprocity sensitivity.  

In 𝐶𝑅, the reciprocity of authority 𝑎 towards player 𝑗 as follows 𝑅𝑎𝑗𝑡 = (𝔼𝑎𝑗1 [𝑆𝑎𝑡] − 𝜇 ⋅ 𝑚) ⋅ 𝑟𝑎→𝑗,𝑡𝐶                                         (2.14)  
The psychological utility, 𝑈𝑎𝑡2𝐶 , of authority 𝑎 in the reward stage of 𝐶𝑅 is given by 

𝑈𝑎𝑡2𝐶 = 𝜋𝑎𝑡𝐶 + ∑ 𝛿𝑎 ⋅ 𝑅𝑎𝑗𝑡𝑗
                                            (2.15) 

In (2.15), the first term on the RHS gives the utility from authority 𝑎’s payoff, defined in (2.7). The 
second term captures conditional reciprocity, the reciprocity of authority 𝑎 towards player 𝑗 in 
reward stage was formally defined in (2.14); 𝛿𝑎 > 0  is a parameter related to authority 𝑎 ’s 
reciprocity sensitivity.  

2.3.2 Psychological utility function in contribution stage 

Following Fehr and Schurtenberger (2018), we define the social norm of conditional 
cooperation that player 𝑖 should contribute no less than the average contribution of other group 
members. In 𝑁𝑅, the psychology utility function of player 𝑖 in the contribution stage is denoted 

 
18 In Dufwenberg and Kirchsteiger (2004), the kindness of player 𝑗 to player 𝑖 in the contribution stage is defined 
by 𝜋𝑖1(𝑔𝑗, 𝑔−𝑗) − 12 [𝜋𝑖1(𝑚, 𝑔−𝑗) + 𝜋𝑖1(0, 𝑔−𝑗)], which can be simplified by 𝛾(𝑔𝑗 − 12 𝑚). Moreover, the kindness of 
player 𝑖 to player 𝑗 in the reward stage can be simplified by 𝜅(𝑟𝑖→𝑗,𝑡𝐷 − 12 𝑟 ̅). Hence the reciprocity of player 𝑖 
to player 𝑗 is defined by 𝑅𝑖𝑗 = 𝜅𝛾(𝑔𝑗 − 12 𝑚)(𝑟𝑖→𝑗,𝑡𝐷 − 12 𝑟 ̅). For simplicity, we define the reciprocity of player 𝑖 
to player 𝑗 as equation (2.12). However, we should have derived the same propositions if we had directly used the 
definition of reciprocity in Dufwenberg and Kirchsteiger (2004) instead. 
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by 𝑈𝑖𝑡1𝑁 , 𝑈𝑖𝑡1𝑁 = E[𝜋𝑖𝑡𝑁 ] − 𝛼𝑖 ⋅ {(𝔼̅𝑖𝑡1 [𝑆𝑖,𝑡−1] − 𝑔𝑖𝑡)+}2                        (2.16) 

Where 𝔼̅𝑖𝑡1 [𝑆𝑖,𝑡−1] = ∑ 𝔼𝑖𝑗𝑡1 [𝑆𝑖,𝑡−1]3𝑗≠𝑖  is the average first-order expectation toward other group 

members, which equals player 𝑖’s expectation about other group members’ average contribution. 
The notion 𝑧 = 𝑥+  means that 𝑧 = 𝑥  if 𝑥 > 0  and 𝑧 = 0  if 𝑥 ≤ 0 , 𝛼𝑖 > 0  captures the 
sensitivity to norm incompliance. In (2.16), the first term on the RHS is the expectation of player 𝑖 
in the contribution stage on her total payoff of period 𝑡. The second term captures the utility loss 
that player 𝑖 may suffer if her contribution is less than her expectation about other group members’ 
average contribution at the end of the contribution stage, i.e., 𝑔𝑖𝑡 < 𝔼̅𝑖𝑡1 [𝑆𝑖,𝑡−1]. 

In 𝐷𝑅, the psychology utility function of player 𝑖 in the contribution stage is denoted by 𝑈𝑖𝑡1𝐷, 

𝑈𝑖𝑡1𝐷 = E[𝜋𝑖𝑡𝐷] − 𝛼𝑖 ⋅ {(𝔼̅𝑖𝑡1 [𝑆𝑖,𝑡−1] − 𝑔𝑖𝑡)+}2 + E[∑𝛿𝑖 ⋅ 𝑅𝑖𝑗𝑡𝑗
]         (2.17) 

Similarly, in 𝐶𝑅, the psychology utility function of player 𝑖 in the contribution stage is denoted 
by 𝑈𝑖𝑡1𝐶 , 𝑈𝑖𝑡1𝐶 = E[𝜋𝑖𝑡𝐶] − 𝛼𝑖 ⋅ {(𝔼̅𝑖𝑡1 [𝑆𝑖,𝑡−1] − 𝑔𝑖𝑡)+}2                       (2.18) 

In (2.17) and (2.18), the first term on the RHS is the expectation of player 𝑖 in the contribution 
stage on her total payoff in period 𝑡. The second term captures the utility loss from incompliance 
with conditional cooperation norm. The third term in (2.17) captures the expectation of player 𝑖 on 
her psychological utility of reciprocity19.  

2.4 Psychological best responses 

There should be no automatic supposition that a subgame perfect Nash equilibrium (SPNE) is the 
empirically appropriate solution concept for finite repeated experimental games, when the 
machinery of psychological game theory is used (Battigalli and Dufwenberg, 2022). It is arguably 
more compelling that players perform best response conditional on their beliefs about other player’s 
actions, and such beliefs have not always been true. Our data shows players generally form false 
beliefs about other’s contributions even in the last period, especially when other group members’ 
contributions cannot be accurately observed (i.e., λ < 1). Hence, we use player’s best response 
instead of SPNE as the solution of our model. In the contribution stage, the beliefs of players are 
expectation for the average contribution of other group members, and in reward stage, these are 
expectations about reward chosen by other group members, conditional on her contribution. Players 
play a psychological best response if they maximize their psychological utility in each stage, 
conditional on their beliefs. 

Definition 1. A psychological best response of player 𝑖 in period 𝑡 is a series of contributions and 
reward levels (𝑔𝑖𝑡∗ ,𝑟𝑖→𝑗,𝑡∗ ) with the following properties: 

1. 𝑔𝑖∗ ∈ 𝐺, ∑ 𝑟𝑖→𝑗,𝑡∗𝑗 ∈ [0, 𝑟 ̅]. 

 
19 Among three institutions, only player 𝑖 in 𝐷𝑅 is able to reward player 𝑗. Therefore, the psychological utility 
of player 𝑖 in 𝐷𝑅 but not in 𝑁𝑅 nor 𝐶𝑅 contains the motivation of reciprocity relating to her future reward 
behaviors.  
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2. In the reward stage of 𝐷𝑅 , 𝑟𝑖→𝑗,𝑡∗ = 𝑟𝑖→𝑗,𝑡∗ (𝑆𝑖𝑡)  maximizes 𝑈𝑖𝑡2𝐷  in (2.13) with the 
information set 𝑆𝑖𝑡. 

3. In the contribution stage of 𝑁𝑅, 𝑔𝑖∗ maximizes 𝑈𝑖𝑡1𝑁  in (2.16) with the information set 𝑆𝑖,𝑡−1. 
In the contribution stage of 𝐷𝑅, 𝑔𝑖∗ maximizes 𝑈𝑖𝑡1𝐷 in (2.17) with the information set 𝑆𝑖,𝑡−1. 
In the contribution stage of 𝐶𝑅, 𝑔𝑖∗ maximizes 𝑈𝑖𝑡1𝐶  in (2.18) with the information set 𝑆𝑖,𝑡−1. 

Definition 2. A psychological best response of authority 𝑎 is a series of reward levels 𝑟𝑎→𝑗,𝑡∗  with 
the following properties: 

1. 𝑟𝑎→𝑗,𝑡∗ ∈ [0,3𝑟]̅,∑ 𝑟𝑎→𝑗,𝑡∗𝑗 ∈ [0,4𝑟 ̅] 
2. In the reward stage of 𝐶𝑅 , 𝑟𝑎→𝑗,𝑡∗ = 𝑟𝑎→𝑗,𝑡∗ (𝑆𝑎𝑡)  maximizes 𝑈𝑎𝑡2𝐶  in (2.15) with the 

information set 𝑆𝑎𝑡. 
Assumption 3. To ensure budget constraint, we assume (a) player 𝑖 rewards each player 𝑗 no 
more than 𝑟̅3 in 𝐷𝑅, that is, 𝑟𝑖→𝑗,𝑡∗ ∈ [0, 𝑟̅3]; (b) authority 𝑎 rewards each player 𝑗 no more than 𝑟 ̅ in 𝐶𝑅, that is 𝑟𝑎→𝑗,𝑡∗ ∈ [0, 𝑟]̅. 
Remark 3. In 𝐷𝑅 of our experiment, player 𝑖 is able to assign all her reward points 𝑟 ̅ to player 𝑗. However, this extreme assignment is seldomly found in our data. In order to ensure the sum of 
rewards no more than 𝑟,̅ player 𝑖 forms three independent mental accounts, each containing 𝑟̅3 
reward points for each player 𝑗. In 𝐶𝑅, in the same way, authority 𝑎 forms four independent 
mental accounts, each containing 𝑟 ̅ reward points for each player 𝑗. Our data showing that about 
95% rewards of player 𝑖 towards player 𝑗 are no more than 𝑟̅3 in DR, and about 80% rewards of 
authority 𝑎 towards player 𝑗 is no more than 𝑟 ̅ in CR supports Assumption 3 to some extent. 

We solve the psychological best response of players by backward induction. 

2.4.1 Optimal choice in reward stage 

For a non-integer 𝑥, we denote the function 𝐶𝑒𝑖𝑙(𝑥) as the smallest integer larger than 𝑥. If 𝑥 is 
an integer, 𝐶𝑒𝑖𝑙(𝑥) is defined as 𝑥. 

Lemma 4. If Assumption 3 holds, the best response for player 𝑖 in reward stage of DR is given by,  

 𝑟𝑖→𝑗,𝑡∗ = ⎩{⎨
{⎧𝑟̅3 , 𝑖𝑓 𝑠𝑖𝑗𝑡 ≥ 𝑠𝐷̃

0, 𝑖𝑓 𝑠𝑖𝑗𝑡 < 𝑠𝐷̃                                        (2.19) 

Where 𝑠𝐷̃ equaling 𝐶𝑒𝑖𝑙(𝜇𝑚𝜆 + 1𝛿𝑖𝜆 − 𝑚(1−𝜆)2𝜆 ), is denoted as reward reference point in 𝐷𝑅, which 

represents the minimum amount of signal for player 𝑖 to reward player 𝑗.  

Lemma 5. If Assumption 3 holds, the best response of authority 𝑎 in reward stage of CR is given 

by,  

 𝑟𝑎→𝑗,𝑡∗ = {𝑟,̅ 𝑖𝑓 𝑠𝑎𝑗𝑡 ≥ 𝑠𝐶̃
0, 𝑖𝑓 𝑠𝑎𝑗𝑡 < 𝑠𝐶̃                                       (2.20) 
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Where 𝑠𝐶̃  equals 𝐶𝑒𝑖𝑙(𝜇𝑚𝜆 − 𝑚(1−𝜆)2𝜆 ) , is denoted as reward reference point in 𝐶𝑅 , which 

represents the minimum amount of signal for authority 𝑎 to reward player 𝑗. 

2.4.2 Optimal choice in contribution stage 

To solve the psychological best response of player 𝑖 in the contribution stage, we first make a basic 
assumption about the conditional expectation of player 𝑖 on the received reward.  

Assumption 4. Subjects are able to expect how rewards are chosen from player 𝑗 and authority 𝑎 
in DR and CR, respectively. That is, E[𝑟𝑗→ 𝑖,𝑡| ⋅] = E[𝑟𝑗→ 𝑖,𝑡∗ | ⋅]  and E[𝑟𝑎→ 𝑖,𝑡| ⋅] = E[𝑟𝑎→ 𝑖,𝑡∗ | ⋅] . 

Lemma 6. If Assumption 4 holds, the expectation of player 𝑖 on the reward chosen from player 𝑗 
conditional on player 𝑖’s contribution is given by,  

E[𝑟𝑗→ 𝑖,𝑡|𝑔𝑖𝑡] =
⎩{{⎨
{{⎧  

𝑟̅3 ⋅ [1 − (1 − 𝜆)𝐶𝑒𝑖𝑙(𝑠𝐷̃)𝑚 + 1 ]     , 𝑖𝑓 𝑔𝑖𝑡 ≥ 𝑠𝐷̃
𝑟̅3 ⋅ [1 − 𝜆 − (1 − 𝜆)𝐶𝑒𝑖𝑙(𝑠𝐷̃)𝑚 + 1 ], 𝑖𝑓 𝑔𝑖𝑡 < 𝑠𝐷̃

            (2.21) 

Lemma 7. If Assumption 4 holds, the expectation of player 𝑖 on the reward chosen from authority 𝑎 conditional on player 𝑖’s contribution is given by, 

E[𝑟𝑎→ 𝑖,𝑡|𝑔𝑖𝑡] =
⎩{{⎨
{{⎧𝑟̅ ⋅ [1 − (1 − 𝜆)𝐶𝑒𝑖𝑙(𝑠𝐶̃)𝑚 + 1 ]     , 𝑖𝑓 𝑔𝑖𝑡 ≥ 𝑠𝐶̃

𝑟̅ ⋅ [1 − 𝜆 − (1 − 𝜆)𝐶𝑒𝑖𝑙(𝑠𝐶̃)𝑚 + 1 ], 𝑖𝑓 𝑔𝑖𝑡 < 𝑠𝐶̃
             (2.22) 

Assumption 5. The player 𝑖’s average first-order expectation in the contribution stage is no less 

than 1−𝛾2𝑎𝑖 , which is no less than 1. That is, 𝔼̅𝑖𝑡1 [𝑆𝑖,𝑡−1] ≥ 1−𝛾2𝑎𝑖 ≥ 1.20 

We denote the function 𝑅𝑜𝑢𝑛𝑑(𝑥) as the integer nearest to 𝑥. If there are two integers with 
the same distance to 𝑥, 𝑅𝑜𝑢𝑛𝑑(𝑥) is defined as the larger one. 

Lemma 8. In 𝑁𝑅, the best response of player 𝑖 in contribution stage is given by, 

𝑔𝑖𝑡∗ = 𝑅𝑜𝑢𝑛𝑑(𝔼̅𝑖𝑡1 [𝑆𝑖,𝑡−1] − 1 − 𝛾2𝛼𝑖 )                                       (2.23) 
For simplicity, we denote a symbol 𝑠𝑢̃ as follows: 

𝑠𝑢̃ =
⎩{⎨
{⎧ 𝑅𝑜𝑢𝑛𝑑(𝔼̅𝑖𝑡1 [𝑆𝑖,𝑡−1] − 1−𝛾2𝛼𝑖) + 𝜆𝜅𝑟̅(1−𝛾) + 𝛼𝑖𝑐2

(1−𝛾)  , 𝑖𝑓 𝜆𝜅𝑟̅ ≥ (1 − 𝛾) ⋅ 𝑐 − 𝛼𝑖𝑐2

𝔼̅𝑖𝑡1 [𝑆𝑖,𝑡−1] − 1−𝛾2𝛼𝑖 − ∣𝑐−1−𝛾2𝑎𝑖∣
𝑐−1−𝛾2𝑎𝑖

⋅ √𝜆𝜅𝑟̅𝛼𝑖 + (𝑐 − 1−𝛾2𝛼𝑖)2 , 𝑖𝑓 𝜆𝜅𝑟̅ ∈ (0, (1 − 𝛾) ⋅ 𝑐 − 𝛼𝑖𝑐2) (2.24)  

Where 𝑐 represents the difference between the average first-order expectation 𝔼̅𝑖1[𝑆𝑖,𝑡−1] and the 

best response 𝑔𝑖𝑡∗  in NR, that is 𝑐 = 𝔼̅𝑖𝑡1 [𝑆𝑖,𝑡−1] − 𝑅𝑜𝑢𝑛𝑑(𝔼̅𝑖𝑡1 [𝑆𝑖,𝑡−1] − 1−𝛾2𝛼𝑖 ). 𝑠𝑢̃ represents an 

indifference continuous contribution amount which means if players increased their contributions 
 

20  Assumption 5 is used for simplicity of our model. Without this assumption, our proposition 1-5 still keep 
unchanged. 
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to this amount, the earned reward should have been just right offset by the cost of the increasing 
contribution. However, since the contribution is set to an integer in our model, indifference 
contribution amount can hardly be chosen by player 𝑖. 
Lemma 9. (a) In 𝐷𝑅, the best response of player 𝑖 in contribution stage is given by, 

𝑔𝑖𝑡∗ =
{𝑅𝑜𝑢𝑛𝑑(𝔼̅𝑖𝑡1 [𝑆𝑖,𝑡−1] − 1−𝛾2𝛼𝑖), 𝑖𝑓 𝑠𝐷̃ ∈ [0,𝑅𝑜𝑢𝑛𝑑(𝔼̅𝑖𝑡1 [𝑆𝑖,𝑡−1] − 1−𝛾2𝛼𝑖)] ∪ (𝐶𝑒𝑖𝑙(𝑠𝑢̃) − 1,𝑚]

𝑠𝐷̃                 , 𝑖𝑓 𝑠𝐷̃ ∈ (𝑅𝑜𝑢𝑛𝑑(𝔼̅𝑖𝑡1 [𝑆𝑖,𝑡−1] − 1−𝛾2𝛼𝑖),𝐶𝑒𝑖𝑙(𝑠𝑢̃) − 1]   (2.25)  

(b) In 𝐶𝑅, the best response of player 𝑖 in contribution stage is given by, 

𝑔𝑖𝑡∗ =
{𝑅𝑜𝑢𝑛𝑑(𝔼̅𝑖𝑡1 [𝑆𝑖,𝑡−1] − 1−𝛾2𝛼𝑖), 𝑖𝑓 𝑠𝐶̃ ∈ [0,𝑅𝑜𝑢𝑛𝑑(𝔼̅𝑖𝑡1 [𝑆𝑖,𝑡−1] − 1−𝛾2𝛼𝑖)] ∪ [𝐶𝑒𝑖𝑙(𝑠𝑢̃) − 1,𝑚]

𝑠𝐶̃                  , 𝑖𝑓 𝑠𝐶̃ ∈ (𝑅𝑜𝑢𝑛𝑑(𝔼̅𝑖𝑡1 [𝑆𝑖,𝑡−1] − 1−𝛾2𝛼𝑖),𝐶𝑒𝑖𝑙(𝑠𝑢̃) − 1)    (2.26)  

2.5 Comparation between institutions with and without reward 

Proposition 1. (a) For period 1, the contribution of player 𝑖 in 𝐷𝑅 is no less than in 𝑁𝑅. If 

𝑠𝐷̃ ∈ (𝑅𝑜𝑢𝑛𝑑(𝑚2 − 1−𝛾2𝛼𝑖 ), 𝐶𝑒𝑖𝑙(𝑠𝑢̃) − 1], the contribution of player 𝑖 in 𝐷𝑅 is strictly more than 

that in 𝑁𝑅 . For any period 𝑡 > 1 , given the same first-order expectation of the average 
contribution of other group members, the contribution of player 𝑖 in 𝐷𝑅 is no less than in 𝑁𝑅. 

If 𝑠𝐷̃ ∈ (𝑅𝑜𝑢𝑛𝑑(𝔼̅𝑖𝑡1 [𝑆𝑖,𝑡−1] − 1−𝛾2𝛼𝑖 ), 𝐶𝑒𝑖𝑙(𝑠𝑢̃) − 1], the contribution of player 𝑖 in 𝐷𝑅 is strictly 

more than that in 𝑁𝑅. 
(b) For period 1, the contribution of player 𝑖 in 𝐶𝑅 is no less than in 𝑁𝑅. If 𝑠𝐶̃ ∈ (𝑅𝑜𝑢𝑛𝑑(𝑚2 −
1−𝛾2𝛼𝑖 ), 𝐶𝑒𝑖𝑙(𝑠𝑢̃) − 1], the contribution of player 𝑖 in 𝐶𝑅 is strictly more than that in 𝑁𝑅. For any 

period 𝑡 > 1, given the same first-order expectation of the average contribution of other group 
members, the contribution of player 𝑖  in 𝐶𝑅  is no less than in 𝑁𝑅 . If 𝑠𝐶̃ ∈
(𝑅𝑜𝑢𝑛𝑑(𝔼̅𝑖𝑡1 [𝑆𝑖,𝑡−1] − 1−𝛾2𝛼𝑖 ), 𝐶𝑒𝑖𝑙(𝑠𝑢̃) − 1] , the contribution of player 𝑖 in 𝐶𝑅 is strictly more 

than that in 𝑁𝑅.  

Discussion of proposition 1: In 𝐷𝑅  and 𝐶𝑅 , without considering the reward, players’ best 
contribution is smaller than their expectation about the average contribution of other group members. 
To earn the reward, players may choose their best contribution amount according to the reward 
reference point. When the reward reference point is larger than their best contribution without 
reward and less than their indifference contribution amount, players will increase their contributions 
for the reward. Otherwise, they will keep their contributions unchanged. The intuition behind this 
result is that, only if more contributions lead to more earning, players have motivation to increase 
their contributions. If the reward reference point is lower than the best contribution without reward, 
players have earned the reward without changing their contributions. If the reward reference point 
is more than the indifference contribution amount, the reward cannot cover the cost of increasing 
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contribution. That is, contributing more to get reward makes them earn less. Hence, in these two 
conditions, players still keep their contributions though they considering the reward.  

Proposition 2. (a) For any period 𝑡, the expectation of player 𝑖’s average first-order expectation 
in 𝐷𝑅 is no less than that in 𝑁𝑅. (b) For any period 𝑡, the expectation of player 𝑖’s average 
first-order expectation in 𝐶𝑅 is no less than that in 𝑁𝑅. 

Discussion of proposition 2: At the beginning of the game, players don’t have any information about 
other players’ contribution amounts. Hence, players in 𝑁𝑅,𝐷𝑅 and 𝐶𝑅 expect other players in 
the same institution to contribute 𝑚2  to the public good. Based on the equivalent first-order 
expectation in period 1, players contribute no less both in 𝐷𝑅 or 𝐶𝑅 than in 𝑁𝑅. In perfect-
information environment, players update their beliefs entirely depending on the other player’s 
contribution information in the previous period. That is, the average first-order expectation in period 
2 equals the average contribution level of other players in period 1. In imperfect information 
environment, as signals of other players’ contribution are likely incorrect, players update their 
beliefs partly depending on their received signals in the previous period and partly depending on 
their positive beliefs. That is, their average first-order expectations in period 2 are positively 
correlated with their received signals in period 1. As the expectation of average first-order 
expectation is positive correlated to the average of received signals which is also increased by other 
players’ contribution amount, we know that the expectation of average first-order expectation in 
period 2 is no less in 𝐷𝑅  or 𝐶𝑅  than in 𝑁𝑅 . By parity of reasoning, in any period, the 
expectation of average first-order expectation is no less in 𝐷𝑅 or 𝐶𝑅 than in 𝑁𝑅. Therefore, 
we expect the average first-order expectation is no less in 𝐷𝑅 or 𝐶𝑅 than in 𝑁𝑅. 

Proposition 3. (a) For any period 𝑡 > 1, the expectation of player 𝑖’s contribution in 𝐷𝑅 is no 
less than in 𝑁𝑅. (b) For any period 𝑡 > 1, the expectation of player 𝑖’s contribution in 𝐶𝑅 is no 
less than in 𝑁𝑅. 

Discussion of proposition 3: In 𝐷𝑅 and 𝐶𝑅, players expect others contribute no less than in 𝑁𝑅. 
If players’ first-order expectations about the average contribution of other group members are same 
in 𝐷𝑅  and 𝑁𝑅 , they contribute no less in 𝐷𝑅  than 𝑁𝑅 . Moreover, if players’ first-order 
expectations about the average contribution of other group members are more in 𝐷𝑅 than 𝑁𝑅, 
their contribution levels are strictly larger in 𝐷𝑅. Similarly, if players’ first-order expectations 
about the average contribution of other group members are same in 𝐶𝑅 and 𝑁𝑅, they contribute 
no less in 𝐶𝑅  than 𝑁𝑅 . Moreover, if players’ first-order expectations about the average 
contribution of other group members are more in 𝐶𝑅  than 𝑁𝑅 , their contribution levels are 
strictly larger in 𝐶𝑅. According to proposition 3, we expect the average contribution level in 𝐷𝑅 
and 𝐶𝑅 is no less than that in 𝑁𝑅. 

Proposition 4. (a) If the average contribution in 𝐷𝑅 is strictly more than that in 𝑁𝑅 during 
period 1, for any period 𝑡 > 1, the expectation of contribution in 𝐷𝑅 is strictly more than that in 𝑁𝑅 as well. (b) If the average contribution in 𝐶𝑅 is strictly more than that in 𝑁𝑅 during period 
1, for any period 𝑡 > 1, the expectation of contribution in 𝐶𝑅 is strictly more than that in 𝑁𝑅 
as well. 

Discussion of proposition 4: If the average contribution in 𝐷𝑅 and 𝐶𝑅 is strictly more than that 
in 𝑁𝑅 at the beginning of the game, it means that players contribute more to earn rewards in 𝐷𝑅 
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and 𝐶R. Based on a higher contribution level of their partner in the previous period, players expect 
others contribute more with the reward option, leading to a higher contribution level in 𝐷𝑅 and 𝐶𝑅  in the current period, and so on. An implication of proposition 4 is that, if 𝐷𝑅  and 𝐶𝑅 
promote contribution at the beginning, these reward institutions sustain a higher contribution level 
in the long run as well. 

Proposition 5. (a) For any period 𝑡 ≥ 1, the expectation of welfare in 𝐷𝑅 is no less than in 𝑁𝑅. 
If the average contribution in 𝐷𝑅 is strictly more than that in 𝑁𝑅 in period 1, for any period 𝑡 > 1, the expectation of welfare in 𝐷𝑅 is strictly more than that in 𝑁𝑅 as well. (b) For any 
period 𝑡 ≥ 1, the expectation of welfare in 𝐶𝑅 is no less than in 𝑁𝑅. If the average contribution 
in 𝐶𝑅 is strictly more than that in 𝑁𝑅 in period 1, for any period 𝑡 > 1, the expectation of 
welfare in 𝐶𝑅 is strictly more than that in 𝑁𝑅 as well. 

Discussion of proposition 5: In 𝐷𝑅 and 𝐶𝑅, players contribute no less than in 𝑁𝑅. In addition, 
since 𝜅 ≥ 1, any reward point assigned to the other group member increases the average earnings 
of the group (𝜅 > 1) or at least keeps it constant (𝜅 = 0). Therefore, players earn no less in 𝐷𝑅 or 
𝐶𝑅 than in 𝑁𝑅. If the average contribution in 𝐷𝑅 and 𝐶𝑅 is strictly more than that in 𝑁𝑅 
at the beginning, these reward institutions sustain a higher contribution level in the long run as 
well. In this condition, players earn more in 𝐷𝑅 and 𝐶𝑅. An implication of proposition 5 is 
that, if 𝐷𝑅 and 𝐶𝑅 promote contribution at the beginning, these reward institutions sustain a 
higher welfare in the long run. 

3 Experimental Design 

The experiment is played in sessions of thirteen subjects. Prior to the start of the game, we randomly 
allocate one subject in each session to the role of the authority who always participates in 𝐶𝑅 and 
twelve subjects to the role of players. Roles remain the same throughout the experiment.  

In each session, we divide a repeated game of 20 periods into two parts. The identification 
numbers of players are randomly assigned between periods. In the first part, we implement a game 
with three phases consisting of 5 periods each. At the beginning of the first phase, twelve players 
are randomly and anonymously assigned to 3 different institutions (i.e., 𝑁𝑅  or 𝐷𝑅  or 𝐶𝑅 ). 
Each institution consists of 4 players constant over 5 periods. Then players in each institution 
participate in another institution together at the beginning of the second and third phases. Our 
matching mechanism following a within-group design ensures each player to experience three 
different institutions in a random order. That is, in each session (i) 4 players go through 𝑁𝑅, then 𝐷𝑅, and finally 𝐶𝑅; (ii) other 4 players go through 𝐷𝑅, then 𝐶𝑅 and finally 𝑁𝑅; (iii) and the 
last 4 players go through 𝐶𝑅, then 𝑁𝑅, and finally 𝐷𝑅. In the second part, we implement a game 
of 5 periods. Based on the previous information of the average contribution and welfare for each 
institution in the previous 15 periods, all players are asked to choose participating one institution at 
the beginning of this part and remain there during this part.  

Each period consists of 2 stages, a contribution stage and a reward stage21. In the contribution 
stage, each player is endowed with 20 tokens and asked to contribute some of these tokens to a 

 
21 In the second part, if there is only one player in an institution, there is no contribution stage nor reward stage. In 
this case, the player receives a payoff of 20. If there are less than two players in CR, the authority receives a payoff 
of 20. 
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public good. Each token contributed to the public good is multiplied 1.6 and the resulting amount 
is shared equally among the players in the respective institution. This payoff function is following 
Nicklisch et al. (2016) that keeps the marginal social return from the public good constant for 
different population size22. The rest endowment benefits the player by the same tokens. Then, the 
player is asked to conjecture about the average amount that other players in the same institution 
contribute. The more accurate the players’ conjectures were, the higher the payoff they could get 
from their decisions. With the purpose of avoiding hedging, players were paid for either belief 
elicitation task or for contribution decisions (with the same probability). That is, on average, players 
were paid for belief elicitation task in 10 periods and paid for contribution decisions in another 10 
periods. In contrast to players, the authority was called upon to do nothing in this stage and earned 
the average profit of players in 𝐶𝑅 for this stage. That is, players in 𝐶𝑅 contribute more, the 
authority earns more.  

In the reward stage, all players and the authority receive the signals from players in their 
institution. There is a certain probability that the signals are consistent with the true contributions. 
Taking a between-subjects design, we employed three information treatments: perfect-information, 
low-noise and high-noise. In the perfect-information treatment, the probability is 100%. In the low-
noise treatment, the probability shifts to 90%. In the high-noise treatment, the probability decreases 
dramatically to 50%. That is, all signals were correct in perfect-information treatment, while only 
90% and 50% signals were correct in the other two information treatments. Moreover, false signals 
were randomly drawn from the contribution choice set that excludes the real contribution choice. 
Players do not receive information about signals for their contributions, that is, they do not know 
whether other subjects were correctly informed about their exact contribution or not.  

In addition, all players receive an extra endowment of three points. In 𝑁𝑅, players are not 
allowed to reward. In 𝐷𝑅, all players decide simultaneously over reward to other players in the 
same institution. In 𝐶𝑅, reward decisions are delegated to the authority. The authority decides over 
reward to players and the rest points are returned equally to players in 𝐶𝑅. Each point assigned to 
a player results in an addition of 3 tokens from the rewarded player’s payoff. The rest points of each 
player exchange for tokens in a ratio of 1:1. At the end of each period, players learn their total 
amount of reward received.  

The experimental sessions were computerized and conducted with z-Tree (Fischbacher, 2007). 
We conducted 36 sessions during September and October 2019 at the Selton Laboratory of Nankai 
University. Experimental subjects were recruited as volunteers from a university-wide subject pool. 
None of the subjects participated in more than one session. Overall, 468 subjects took part in 36 
sessions, with 13 subjects per session. After entering the laboratory, participants were given 
instructions to review (sample instructions are provided in Supplementary Material A). The 
instructions were delivered aloud and explained carefully by the experimenters. The Subjects 
individually answered a set of control questions to make sure that they understood the task. After 
all subjects answered the questions correctly, they were randomly allocated to a PC terminal, and 
the game then started. After the end of the experiment, participants filled out a brief demographic 
survey. Cash payments from this experiment were calculated by converting the total number of 
tokens accumulated at a fixed rate. Each session lasted approximately 100 min, and the subjects 
earned 40 Chinese Yuan (CNY, roughly equal to $5.64) on average, with a show-up fee of 10 CNY. 

 
22 This setting leads to constant payoff of player 𝑖 for different population size if the player 𝑖’s contribution and 
the average contribution of other group members are same. 
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4 Results 

The result section is structured as follows: First, we analyze contributions and welfare in the 
first part to demonstrate that both 𝐷𝑅 and 𝐶𝑅 promote contributions and welfare even if signals 
become noisy. Additionally, we reveal that noise weakens the effects of reward institutions on 
contributions and welfare (Result 1). Then we show that noise does not substantially influence 
institutional choice in a systematic way: players opt predominately for 𝐶𝑅 no matter whether there 
exists any noise (Result 2). In the next step, we focus on the mechanism by which noise modulates 
the reward effect. First, we analyze the reward amount and demonstrate that players reward less in 
𝐷𝑅 under high-noise than perfect-information. We also note that authorities reward less in 𝐶𝑅 
under low-noise than perfect-information (Result 3). Second, we analyze the linkage between the 
player’s contribution and received reward and show that high-noise reduces such linkage both in 
𝐷𝑅  and 𝐶𝑅  (Result 4). Third, we show that in perfect information environment reward 
institutions increase players’ beliefs about others’ average contribution and hence lead to higher 
contributions, but this effect is impaired by noise (Result 5). Fourth, we analyze the reactions to 
received reward and reveal a different reaction pattern for high-noise compared to other two 
information environments (Result 6). Finally, using simulation technology based on our model, we 
show that both 𝐷𝑅 and 𝐶𝑅 sustain higher contributions and welfare in a long run (Result 7).  
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4.1 Contributions and welfare 

To test for institution difference nonparametrically, we apply Wilcoxon matched-pairs signed-
rank tests to our data of the first part. Table 1 lists the average contribution, reward, and welfare 
observed in 𝑁𝑅 , 𝐷𝑅  and 𝐶𝑅  under our three treatments23 . Figure 1a and 2a display the 
evolution of public good contributions and welfare over time. Moreover, Figure 1b and 2b show the 
comparison on contributions and welfare of three institutions among three orders.  

Table 1. Average Contributions, Reward, and Welfare in Institutions and Treatments 

 
N 

participants 

Average 

contribution 

Average 

reward 

Average 

welfare 

Perfect-information     

NR 156 7.96  27.77 

DR 156 10.12 1.50 32.08 

CR 156 11.75 2.22 34.49 

Low-noise     

 
23 The average contribution, reward and welfare of each player in each institution are used for Wilcoxon matched-
pairs signed-rank tests. 

Figure 1. Average Contributions in Treatments and Institutions. Panel A: Average contributions 
over time in 𝑁𝑅, 𝐷𝑅 and 𝐶𝑅 by treatment. Panel B: Average contributions over all periods in 𝑁𝑅, 𝐷𝑅 and 𝐶𝑅 by treatment and the order of institutions. * p<0.1, ** p<0.05, *** p<0.01. 
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NR 156 6.58  26.95 

DR 156 8.13 1.33 30.53 

CR 156 8.86 1.85 32.01 

High-noise     

NR 156 6.13  26.68 

DR 156 7.08 1.26 29.77 

CR 156 7.27 2.31 31.98 

As Table 1 reveals, both contributions and welfare are highest in 𝐶𝑅, followed by 𝐷𝑅 and 𝑁𝑅. The effect of reward on the contribution is significant. Contributions increase from both 𝑁𝑅 
to 𝐷𝑅  and 𝑁𝑅  to 𝐶𝑅 , under perfect-information, low-noise, and high-noise (all p-values < 
0.001). These findings provide evidence for our proposition 3. Similarly, welfare also increases from 
both 𝑁𝑅 to 𝐷𝑅 and 𝑁𝑅 to 𝐶𝑅, under perfect-information, low-noise, and high-noise (all p-
values < 0.001). Figure 1a and 2a suggest that for each treatment, contributions and welfare have a 
tendency to decrease over time in 𝑁𝑅, however tend to stabilize over time in 𝐷𝑅 and 𝐶𝑅. The 
effect of reward on contributions and welfare is smallest in the first period and largest in the last 
period. This finding is in agreement with our proposition 4. Figure 1b and 2b reveal robust positive 
effect of reward institutions on contributions and welfare whatever the order of institutions 
participated by players in the first part is.   

Comparing the effects of reward institutions, 𝐶𝑅  leads to higher contributions than 𝐷𝑅 . 
This is, however, only statistically significant under perfect-information and low-noise treatments 
(all p-values < 0.001), and not significant under high-noise treatment (p = 0.387). With respect to 
the average number of assigned reward points, there are significantly less reward points assigned in 
𝐷𝑅 under all three information treatments (all p-values < 0.001). Therefore, 𝐶𝑅 always leads to 
significantly higher welfare than 𝐷𝑅 (all p-values < 0.001). 

To complement the nonparametric analysis, we ran ordinary least square (OLS) regressions 
with robust standard errors clustered on the matching group24. Table 2 lists the results from OLS 
estimates explaining contributions. In model (1), We find a moderate positive effect of reward on 
contributions to public good. However, this effect is weakened by noise. In models (2)-(4), we study 
the effect of reward on contributions for the three treatments separately. Under all three treatments, 
contributions are significantly higher in both 𝐶𝑅  and 𝐷𝑅  than 𝑁𝑅  (p = 0.001 for 𝐷𝑅  vs. 𝑁𝑅 under perfect-information, p < 0.001 for 𝐶𝑅 vs. 𝑁𝑅 under perfect-information, p = 0.003 
for 𝐷𝑅 vs. 𝑁𝑅 under low-noise, p < 0.001 for 𝐶𝑅 vs. 𝑁𝑅 under low-noise, p = 0.027 for 𝐷𝑅 
vs. 𝑁𝑅  under high-noise, p = 0.010 for 𝐶𝑅  vs. 𝑁𝑅  under high-noise). Furthermore, the 
coefficient for 𝐷𝑅  is smaller than for 𝐶𝑅 , and the difference is significant under perfect-
information (p < 0.001), marginally significant under low-noise (p = 0.084), and not significant 
under high-noise (p = 0.643). It seems that higher levels of noise close the gap in contributions 
between 𝐶𝑅 and 𝐷𝑅.  

 
24 We also use Tobit regressions to instead of all OLS regressions in this study and get similar estimates. 
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In the remaining models (5)-(7), we concentrate on the effect of noise on contributions in three 
institutions. The results confirm that low-noise results in lower contributions for all institutions. This 
is, however, only significant in 𝐷𝑅 (p = 0.012) and 𝐶𝑅 (p = 0.001), and not significant in 𝑁𝑅 
(p = 0.106). High-noise results in significantly lower contributions in all three institutions (p = 0.027 
for 𝑁𝑅, p < 0.001 for 𝐷𝑅, and p < 0.001 for 𝐶𝑅). Furthermore, the coefficient for low-noise is 
smaller than for high-noise, and the difference is significant in 𝐶𝑅  (p = 0.018), marginally 
significant in 𝐷𝑅 (p = 0.089), and not significant in 𝑁𝑅 (p = 0.613). Interestingly, contributions 
significantly drop within a phase in 𝑁𝑅 (p < 0.001), but significantly rise in 𝐶𝑅 (p = 0.001). 

These results are similar when using welfare instead of contribution as the dependent variable 
(models not shown in the table): welfare is highest in 𝐶𝑅 , followed by 𝐷𝑅 , and 𝑁𝑅 . The 
differences are significant under all three treatments (all p-values < 0.001). Moreover, both low-
noise and high-noise lead to lower welfare in all three institutions. This is at least marginally 
significant (p = 0.093 for low-noise vs. perfect-information in 𝑁𝑅, p = 0.040 for high-noise vs. 
perfect-information in 𝑁𝑅, p = 0.008 for low-noise vs. perfect-information in 𝐷𝑅, p < 0.001 for 
high-noise vs. perfect-information in 𝐷𝑅, p = 0.001 for low-noise vs. perfect-information in 𝐶𝑅, 
p < 0.001 for high-noise vs. perfect-information in 𝐶𝑅). Furthermore, welfare significantly drops 
within a phase in 𝑁𝑅 (p < 0.001) and 𝐷𝑅 (p < 0.001), but significantly rises in 𝐶𝑅 (p = 0.001). 

Result 1. The two institutions with reward sustain higher contributions and welfare than 𝑁𝑅 even 

Figure 2. Average Welfare in Treatments and Institutions. Panel A: Average welfare over time in 
𝑁𝑅, 𝐷𝑅 and 𝐶𝑅 by treatment. Panel B: Average welfare over all periods in 𝑁𝑅, 𝐷𝑅 and 𝐶𝑅 by treatment and the order of institutions. * p<0.1, ** p<0.05, *** p<0.01. 
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if the information about other players’ behavior becomes noisy. These differences become smaller 
as the noise level increases. Additionally, contributions and welfare in 𝐶𝑅 tend to be higher than 𝐷𝑅. 

Table 2. OLS Estimations of Contributions Based on Institution and Treatment Dummies 
 Dependent variable: Contribution 

 All 

observations 

Perfect-

Information 
Low-Noise High-Noise NR DR CR 

 (1) (2) (3) (4) (5) (6) (7) 

DR 2.17*** 

(0.59) 

2.17*** 

(0.6) 

1.54*** 

(0.48) 

0.96** 

(0.41) 
   

CR 3.80*** 

(0.59) 

3.80*** 

(0.59) 

2.27*** 

(0.52) 

1.14*** 

(0.42) 
   

Low-noise -1.40* 

(0.82) 

-1.34 

(0.82) 

-1.97** 

(0.77) 

-3.03*** 

(0.86) 
   

High-noise -1.98** 

(0.80) 

-1.73** 

(0.77) 

-3.29*** 

(0.73) 

-4.79*** 

(0.74) 
   

DR × Low-

noise 

-0.62 

(0.76) 
      

DR × High-

noise 

-1.21* 

(0.72) 
      

CR × Low-

noise 

-1.52* 

(0.78) 
      

CR × High-

noise 

-2.66*** 

(0.72) 
      

Period in phase 
-0.04 

(0.06) 

0.06 

(0.11) 

-0.03 

(0.08) 

-0.14 

(0.11) 

-0.43*** 

(0.07) 

0.04 

(0.09) 

0.27*** 

(0.08) 

Constant 
5.36* 

(2.84) 

-3.04 

(5.79) 

2.52 

(3.89) 

10.03*** 

(2.97) 

11.72*** 

(3.21) 

7.78** 

(3.15) 

2.54 

(3.37) 

Demography Yes Yes Yes Yes Yes Yes Yes 

N 6480 2160 2160 2160 2160 2160 2160 

Cluster 108 36 36 36 108 108 108 

Adjusted R2 0.085 0.083 0.056 0.01 0.031 0.053 0.12 

Notes: OLS estimates. Low-noise and High-noise are treatment dummies with Perfect-information as an omitted 

case, DR and CR are institution dummies with NR as an omitted case. Gender and age are demographic variables. 

Robust standard errors, clustered on matching group, in parentheses.  * p<0.1, ** p<0.05, *** p<0.01 

4.2 Choice of institution 

As Figure 3 reveals, for the choice of institution in part 2, 𝐶𝑅 attracts the majority of the 
population under all treatments. About 54% players choose this institution under low-noise, and 
even more under the other treatments (57.64% for perfect-information and 61.11% for high-noise). 
𝐷𝑅 attracts about 40% players under low-noise, compared to 37.50% and 34.72% under perfect-
information and high-noise, respectively. In sum, more than 95% of players favor the two reward 
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institutions (p = 0.835, Pearson chi-square test). 
We then focus on the contributions and welfare of reward institutions after players’ choices. 

We apply Wilcoxon rank-sum tests to our data of the second part. We find similar results compared 
to part 1. 𝐶𝑅 leads to significantly higher contributions than 𝐷𝑅 under perfect-information (p = 
0.004). Under both low-noise and high-noise treatments, contributions are comparable in 𝐶𝑅 and 𝐷𝑅 (p = 0.348 for low-noise and p = 0.653 for high-noise). However, in 𝐶𝑅 there is more welfare 
than 𝐷𝑅 under all three treatments (all p-values < 0.001).  

Result 2. Players predominately choose two reward institutions than 𝑁𝑅 no matter whether the 
information is noisy or not. These differences are not affected by noise significantly. Additionally, 
share of choice for 𝐶𝑅 tends to be higher than 𝐷𝑅. 

4.3 Reward strategies 

Tables 3 displays the results from OLS estimates explaining the number of reward points 
assigned to other players in 𝐷𝑅. In model (1), we find reward points decrease with the increasing 
of the noise level. That is, in 𝐷𝑅, high-noise leads to the lowest assigned reward points, followed 
by low-noise and perfect-information. However, only the difference between high-noise and perfect-
information is significant (p = 0.031). Moreover, we find a significantly decaying trend of players’ 
assignment of reward points in 𝐷𝑅 (p < 0.001).  

In model (2), we find that players assign reward points based on the signals for others’ 
contributions25. More specifically, players assign more reward points to the target as they receive a 

 
25 We also use variable AverageContr which is the average of the rewarder’s own contribution and other two players’ 
contributions observed by the rewarder instead of AverageSignal. Both AIC and BIC statistics demonstrates that 

Figure 3. Average choice of institution in the second part.  
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larger signal for the target’s contribution (Signal) and as they receive smaller signals for another two 
players’ contributions (AverageSignal). In addition, noise leads to smaller reward points even if we 
control the received signals. The difference is just marginally significant between high-noise and 
perfect-information. This result suggests that players assign less reward points under high-noise 
than perfect-information even if they observe the same signals.  

In model (3), we explore the effect of noise on the reward strategy in 𝐷𝑅. We find that high-
noise makes the players’ assignment of rewards significantly less dependent on their received 
signals (p = 0.014 for the signal of the target’s contribution and p < 0.001 for signals of other players’ 
contributions). However, the dependence of the assigned reward on signal for target’s contribution 
is not significantly influenced by low-noise (p = 0.944), and that for other players’ contributions is 
significantly reduced by low-noise (p = 0.007). In the remaining models (4)-(6), we explore the 
effect of noise on players’ reward strategies for the three treatments separately. The results confirm 
that players’ assignment of reward points to target significantly depends on both the signal for the 
target’s contribution and the signals for another two players’ contributions even under low-noise, 
although this dependence is smaller than perfect-information.  

Table 3. OLS Estimations of Reward Strategy in DR 
 

Dependent variable: Reward point  
All observations Perfect-

Information 

Low-

Noise 

High-

Noise  
(1) (2) (3) (4) (5) (6) 

Signal 
 

0.040*** 

(0.003) 

0.048*** 

(0.005) 

0.048*** 

(0.005) 

0.048*** 

(0.005) 

0.032*** 

(0.003) 

Low-noise -0.056 

(0.044) 

-0.023 

(0.041) 

-0.209** 

(0.083) 

   

High-noise -0.089** -0.067* -0.168** 
   

 
(0.041) (0.04) (0.079) 

   

AverageSignal 
 

-0.023*** -0.040*** -0.040*** -0.020*** -0.014***   
(0.005) (0.005) (0.005) (0.004) (0.003) 

Signal × Low-noise 
  

0.001 
   

  
(0.007) 

   

Signal × High-noise 
  

-0.016*** 
   

  
(0.006) 

   

AverageSignal × Low-

noise 

  
0.020*** 

   

  
(0.007) 

   

AverageSignal × High-

noise 

  
0.026*** 

   

  
(0.006) 

   

Period in phase -0.050*** -0.050*** -0.050*** -0.055*** -0.051*** -0.045***  
(0.005) (0.005) (0.005) (0.007) (0.008) (0.009) 

Constant -0.089** 0.556*** 0.662*** 0.506 0.549* 0.516  
(0.213) (0.203) (0.205) (0.485) (0.277) (0.322)        

Demography Yes Yes Yes Yes Yes Yes 

 
AverageSignal is better to explain the variance of reward points than AverageContr. 
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N 6300 6300 6300 2160 1980 2160 

Cluster 108 108 108 36 36 36 

Adjusted R2 0.016 0.176 0.186 0.197 0.208 0.144 

Notes: OLS estimates. Low-noise and High-noise are treatment dummies with Perfect-information as an omitted 

case, Signal is a continuous variable representing the target’s contribution level observed by the rewarder, 

AverageSignal is the average of rewarder’s received signals except the target in 𝐷𝑅 . Gender and age are 

demographic variables. Robust standard errors, clustered on matching group, in parentheses. * p<0.1, ** p<0.05, 
*** p<0.01 

Tables 4 displays the results from OLS estimates explaining the number of reward points 
assigned by authorities to other players in 𝐶𝑅. In model (1), we find low-noise leads to lowest 
reward points, followed by perfect-information and high-noise. That is, in 𝐶𝑅, low-noise decreases 
the reward points but high-noise increases the reward points compared to perfect-information.  
However, only the difference between low-noise and perfect-information is significant (p = 0.013). 
Unlike 𝐷𝑅, we find a significantly growing trend of authorities’ assignment of reward points in 𝐶𝑅 (p = 0.011).  

 In model (2), we find authorities assign reward points based on the signals for other players’ 
contributions. Similar to players in 𝐷𝑅, authorities assign more reward points to the target as they 
receive a larger signal for the target’s contribution (Signal) and as they receive smaller signals for 
other three players’ contributions (AverageSignal). Unlike 𝐷𝑅, high-noise leads to significantly 
larger reward points even if we control the received signals. This result suggests that authorities 
assign more reward points under high-noise than perfect-information even if they observe the same 
signals.  

In model (3), we explore the effect of noise on the reward strategy in 𝐶𝑅. Merely a weak 
effect of noise on authorities’ reward strategies is observed. To be specific, only the dependence of 
the assigned reward on the signal for the target’s contribution is marginally significantly reduced by 
high-noise (p = 0.059). This result suggests that the reward strategy of authority in 𝐶𝑅 is less 
affected by noise than that of players in 𝐷𝑅. In the remaining models (4)-(6), we explore the effect 
of noise on authorities’ reward strategies for the three treatments separately. The results confirm that 
authorities’ assignment of reward points to target significantly depends on both the signal for the 
target’s contribution and the signals for another three players’ contributions even under high-noise, 
although this dependence is slightly smaller than perfect-information. 

Table 4 OLS Estimations of Reward Strategy in CR 
 

Dependent variable: Reward point  
All observations Perfect-

Information 

Low-

Noise 

High-

Noise  
(1) (2) (3) (4) (5) (6) 

Signal 
 

0.17*** 

(0.01) 
0.18*** 

(0.022) 
0.18*** 

(0.022) 

0.20*** 

(0.02) 

0.16*** 

(0.014) 

Low-noise -0.44** 

(0.17) 

-0.16 

(0.16) 

-0.79** 

(0.32) 

   

High-noise 0.19 0.44** 0.50   
  

 
(0.19) (0.17) (0.33) 
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AverageSignal 
 

-0.079*** -0.11*** -0.13*** -0.076*** -0.076***    
0.013 (0.023) (0.022) (0.023) (0.018) 

Signal × Low-noise 
  

0.023 
   

  
(0.029) 

   

Signal × High-noise 
  

-0.046* 
   

  
(0.026) 

   

AverageSignal × Low-

noise 

  
0.042 

   

  
(0.032) 

   

AverageSignal × High-

noise 

  
0.035 

   

  
(0.029) 

   

Period in phase 0.05** 0.028 0.025 -0.003 0.023 0.065**  
(0.018) (0.019) (0.019) 0.039 0.03 0.03 

Constant 0.88 0.77 1.27 -0.27 -1.29 4.99  
(1.44) (1.25) (1.24) (1.70) (1.69) (1.87)        

Demography Yes Yes Yes Yes Yes Yes 

N 2160 2160 2160 720 720 720 

Cluster 108 108 108 36 36 36 

Adjusted R2 0.023 0.40 0.41 0.45 0.49 0.33 

Notes: OLS estimates. Low-noise and High-noise are treatment dummies with Perfect-information as an omitted 

case, Signal is a continuous variable representing the target’s contribution level observed by the authority, 

AverageSignal is the average of authority’s received signals except the target in 𝐶𝑅 . Gender and age are 

demographic variables. Robust standard errors, clustered on matching group, in parentheses. * p<0.1, ** p<0.05, 
*** p<0.01 

Result 3. Noise has different effects on assigned reward points in 𝐷𝑅 and 𝐶𝑅. In 𝐷𝑅, assigned 
reward points are less under high-noise than perfect-information but comparable under low-noise to 
perfect-information. In 𝐶𝑅, however, assigned reward points are less under low-noise than perfect-
information, but comparable under high-noise to perfect-information.  

As the assignment of both players and authorities is less dependent on signals, which are 
positively related to true contribution levels when the contribution information is quite inaccurate, 
we suspect that the linkage between contributions and assigned rewards is reduced by noise. We 
then examine this conjecture. Tables 5 displays the results from OLS estimates explaining the 
linkage between the number of reward points assigned and the contribution levels in 𝐷𝑅 and 𝐶𝑅. 
In model (1), we find in 𝐷𝑅 , high-noise significantly reduces the positive correlation between 
contributions and assigned rewards (p < 0.001), while this effect is not observed for low-noise (p = 
0.399). In models (2)-(4), we explore the linkage between contributions and assigned rewards for 
the three treatments separately. The results confirm that the more contribution levels, the more 
assigned reward points. This is significant under all three treatments (p < 0.001 for perfect-
information, p < 0.001 for low-noise, and p = 0.002 for high-noise). In the remaining models (5)-
(8), we find similar results for 𝐶𝑅. That is, there exists a positive linkage between contributions 
and assigned rewards under all treatments in 𝐶𝑅, and this linkage is reduced by high-noise.  

Table 5. OLS Estimations of Assigned Reward Point Based Contribution and Treatment 
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Dummies 
 

Dependent variable: Assigned reward point  
DR CR  

All Perfect- 

Informati

on 

Low-

Noise 

High-

Noise 

All Perfect- 

Informa

tion 

Low-

Noise 

High-

Noise 

 
(1) (2) (3) (4) (5) (6) (7) (8) 

Contribution 0.11*** 0.11*** 0.13*** 0.04*** 0.14*** 0.13*** 0.15*** 0.06*** 

(0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.02) (0.02) 
Contribution ×

Low-noise 

0.02 
   

0.02 
   

(0.02) 
   

(0.02) 
   

Contribution ×

High-noise 

-0.07*** 
   

-0.08*** 
   

(0.02)    (0.02)  
  

Low-noise -0.08 
   

-0.10 
   

(0.15) 
   

(0.26) 
   

High-noise 0.59*** 
   

1.27*** 
   

(0.14) 
   

(0.27) 
   

Period in phase -0.16*** -0.18*** -0.14*** -0.14*** 0.01 -0.04 0.01 0.06* 

(0.02) 0.02 0.02 0.03 (0.02) 0.05 0.03 0.03 

Constant 1.50*** 2.43** 1.78** 1.28** 0.71 -1.11 -0.86 4.11*** 

(0.43) (1.15) (0.72) (0.48) (0.85) (1.06) (1.11) (0.93) 

Demography Yes Yes Yes Yes Yes Yes Yes Yes 

N 2160 720 720 720 2160 720 720 720 

Cluster 108 36 36 36 108 36 36 36 

Adjusted R2 0.23 0.28 0.32 0.065 0.23 0.31 0.32 0.064 

Note: OLS estimates. Low-noise and High-noise are treatment dummies with Perfect-information as an omitted 

case. Gender and age are demographic variables. Robust standard errors, clustered on matching group, in 

parentheses. * p<0.1, ** p<0.05, *** p<0.01   

Result 4. There exists a significantly positive linkage between contributions and assigned rewards 
in both 𝐷𝑅 and 𝐶𝑅 under all three treatments. However, if the contribution information is quite 
inaccurate, this linkage is significantly reduced.  

4.4 Conditional cooperation and belief updating 

Subject to the conditional cooperation norm, players contribute to the public good based on their 
beliefs about the average amount of other players’ contributions. Table 6 reveals this phenomenon. 
In model (1), we find players increase their contributions with their beliefs about the average amount 
of other players’ contributions (Belief). As their beliefs increase 1 token, their contributions increase 
about 0.86 token (p < 0.001). As shown in model (2), this effect is neither influenced by reward 
institutions nor noise. Moreover, given the same belief, 𝐷𝑅 and 𝐶𝑅 still lead the beliefs higher 
about 1 token than 𝑁𝑅  (all p-values < 0.001). These Differences are significant and provide 
evidence for our proposition 2. 
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Table 6. OLS Estimations of Contribution Based Belief and Treatment Dummies 
 

Dependent variable: Contribution  
(1) (2) 

Belief 0.86*** 0.90*** 

(0.04) (0.06) 
Belief×DR 

 
-0.04  
(0.04) 

Belief×CR 
 

0.00  
(0.04) 

Belief×Low-noise 
 

-0.02  
(0.09) 

Belief×High-noise 
 

-0.08  
(0.10) 

Constant -0.36 -0.65 

(1.62) (1.78) 

Control Yes Yes 

Demography Yes Yes 

N 6480 6480 

Cluster 108 108 

Adjusted R2 0.44 0.44 

Note: OLS estimates. Control variables include Low-noise, High-noise, 𝐷𝑅  and 𝐶𝑅 . Low-noise and High-

noise are treatment dummies with Perfect-information as an omitted case. Belief is a continuous variable 

represents player’s expectation of other group members’ average contribution. Gender and age are demographic 

variables. Robust standard errors, clustered on matching group, in parentheses. * p<0.1, ** p<0.05, *** p<0.01 

Table 7 reveals how reward institutions and noise change players’ beliefs. In model (1), we 
find both 𝐷𝑅 and 𝐶𝑅 lead to significantly higher beliefs than 𝑁𝑅 (p = 0.004 for 𝐷𝑅 vs. NR 
and p < 0.001 for 𝐶𝑅  vs. NR). This result supports our proposition 3. Differences in beliefs 
between reward institutions and 𝑁𝑅 are reduced by noise. However, the adverse effect of low-
noise on the difference between 𝐷𝑅 and 𝑁𝑅 is not significant (p = 0.323). We then explore the 
mechanism players update their beliefs.  

In model (2), we estimate the current-period belief of players based on the positive beliefs 
(Belief0) and average signals from other players in previous periods (Presignal,   Pre2signal, 
Pre3signal, Pre4signal). We find both positive beliefs and signals from previous two periods have 
significantly positive effects on current beliefs. That is, players anchor their beliefs to positive 
beliefs and update them based on the observed signals from previous two periods. Furthermore, the 
weight for positive beliefs and signals from the previous period are twice as large as the weight for 
signals from two periods ago. 

In the next step, we examine whether noise influences players’ positive beliefs and their belief-
updating procedures. In model (3), we find that players updating their current beliefs depend more 
on positive beliefs and less on signals from the previous period under noise. This is significant for 
both low-noise and high-noise. In the remaining models (4)-(6), we explore the effect of noise on 
the belief-updating procedure for the three treatments separately. The results confirm that not the 
belief-updating procedure per se, but the weight for positive beliefs and signals is changed by noise. 
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In model (7), we find players’ positive beliefs decrease with the level of noise (p = 0.046 for low-
noise vs. perfect-information and p = 0.006 for high-noise vs. perfect-information), although the 
coefficient for low-noise is not significantly different from that for high-noise (p = 0.481). Moreover, 
the positive beliefs in reward institutions are not significantly different from that in 𝑁𝑅. 

Table 7. OLS Estimations of Current Belief Based on Previous Signals 

Dependent 

variable: 

Belief Belief0 

All Observations Perfect-

Information 

Low-

Noise 

High-

Noise 

All 

Observations  
(1) (2) (3) (4) (5) (6) (7) 

DR 1.41*** 0.62*** 0.61*** 0.42* 0.91*** 0.51 -0.1 

(0.48) (0.23) (0.16) (0.22) (0.26) (0.32) -0.35 

CR 2.58*** 0.81*** 0.77*** 0.60*** 1.14*** 0.57* 0.62 

(0.51) (0.21) (0.14) (0.18) (0.21) (0.31) -0.39 

Low-noise -1.00 0.00 -0.17    -1.25** 

(0.7) (0.28) (0.53)    -0.62 

High-noise -1.13* -0.78** 1.05    -1.67*** 

(0.65) (0.31) (0.76)    -0.6 

DR ×Low-noise -0.61 
 

    -0.19 

(0.61) 
 

    -0.46 

DR ×High-noise -1.02* 
 

    -0.05 

(0.55) 
 

    -0.43 

CR ×Low-noise -1.11* 
 

    -0.19 

(0.66) 
 

    -0.5 

CR ×High-noise -2.06*** 
 

    -0.6 

(0.59) 
 

    -0.52 

Belief0 
 

0.38*** 0.24*** 0.24*** 0.52*** 0.49***   
(0.05) (0.06) (0.07) (0.06) (0.06)  

Presignal 
 

0.36*** 0.62*** 0.62*** 0.33*** 0.22***   
(0.04) (0.05) (0.05) (0.05) (0.03)  

Pre2signal 
 

0.18*** 0.11** 0.11** 0.14*** 0.07**   
(0.04) (0.04) (0.05) (0.04) (0.03)  

Pre3signal 
 

0.06       
(0.05)      

Pre4signal 
 

0.00       
(0.03)      

Belief0×Low-noise 
  

0.29***       
(0.09)     

Belief0×High-

noise 

  
0.24***       
(0.09)     

Presignal×Low-

noise 

  
-0.28***       
(0.07)     

Presignal×High-

noise 

  
-0.40***       
(0.06)     
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Pre2signal×Low-

noise 

  
0.02       

(0.06)     

Pre2signal×High-

noise 

  
-0.04       
(0.05)     

Constant  6.87*** 1.11 1.64 -1.27 2.48 3.70** 7.62*** 

(1.96) (1.56) (1.27) (2.09) (2.23) (1.77) -1.77 

Demography Yes Yes Yes Yes Yes Yes Yes 

N 6480 1296 3888 1296 1296 1296 1296 

Cluster 108 108 108 36 36 36 108 

Adjusted R2 0.074 0.52 0.53 0.66 0.53 0.28 0.043 

Note: OLS estimates. Low-noise and High-noise are treatment dummies with Perfect-information as an omitted 

case, DR and CR are institution dummies with NR as an omitted case. Variable Belief0 is the players’ positive beliefs. 

Variable Presignal is the average signals from other players in the previous period. Similarly, variables Pre2signal, 

Pre3signal, and Pre4signal are the average signals from other players two periods ago, three periods ago and four 

periods ago, respectively. Gender and age are demographic variables. Robust standard errors, clustered on matching 

group, in parentheses. * p<0.1, ** p<0.05, *** p<0.01 

Result 5. Both 𝐷𝑅 and 𝐶𝑅 increase players’ beliefs about others’ average contribution which 
results in higher contributions under perfect-information treatment. However, for 𝐷𝑅 this effect 
is marginally significantly impaired by high-noise. For 𝐶𝑅, this effect is marginally significantly 
reduced by low-noise and significantly reduced by high-noise. 

4.5 Reactions to received reward 

We employ OLS regression analysis to analyze reactions to received reward and other previous 
experience of the players. In model (1) of Table 8, we estimate the current-period contribution of 
players based on the number of reward points she received in the previous period (PreRew, 
multiplied with PreContr). We control for the previous-period contribution (PreContr) of this player, 
the current period belief about the average amount of other players’ contributions (Belief), number 
of periods in the current phase (Period in phase), demographic factors and other treatment factors 
(i.e., 𝐷𝑅, 𝐶𝑅, high-noise and low-noise). We find that the previous-period contribution has a large 
and significant positive effect (p < 0.001). 

Our main interest, however, lies in the interaction term (PreContr × PreRew). For 
noncontributors, we find a marginally significant negative effect of the previous-period received 
reward points (p = 0.093)26 . This negative effect, however, is significantly decreased with the 
increasing previous-period contributions (p < 0.001). When the previous-period contribution is 
larger than 4, such effect changes to be positive, that is, the higher the received reward points, the 
larger contribution in the next period. In model (2) and (3), we explore the effect of reward 
institution on the reactions to received rewards. We find similar reaction patterns between 𝐷𝑅 and 𝐶𝑅. In contrast to model (1), for noncontributors, we find the negative effect of the previous-period 
received reward points is insignificant (p > 0.1).    

In the remaining models (4)-(6), we examine the effect of noise on the reactions to received 

 
26 Although previous-period noncontributors are not able to decrease their contribution level, the negative effect of 
the previous-period received reward points might represent a lower probability of free-ride in the current-period. 
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rewards. The results reveal an essential role of high-noise in changing the reaction patterns of 
players. Under perfect-information and low-noise, we find an insignificant effect of the previous-
period received rewards on the current-period contributions (p > 0.1). This suggests that when the 
information is perfect or the noise is small, players are able to expect the rewards assigned to them 
accurately, and hence learning effect does not exist27. Moreover, we can infer that received rewards 
per se hardly have an effect on players’ subsequent contributions28. Under high-noise, however, we 
find a significant interaction effect of the previous-period received reward points and contributions 
(p < 0.001). For noncontributors, we find a significant negative effect of the previous-period 
received reward points (p = 0.001). This negative effect, nevertheless, is significantly decreased 
with the increasing previous-period contributions (p < 0.001). When the previous-period 
contribution is larger than 6, such effect changes to be positive. This result reveals a learning 
procedure of players for the linkage between assigned rewards and contributions under high-noise. 
For players with lower contributions received rewards, they learn the correlation between their 
assigned rewards and contributions is small, and hence reduce their contributions in the next period. 
On the other hand, for players with higher contributions received rewards, they learn the correlation 
between their assigned rewards and contributions is large, and hence increase their contributions in 
the next period. 

Table 8. OLS Estimations of Current Contribution Based on Previous Period Behavior 
 

Dependent variable: Contribution  
All observations Perfect-

Information 

Low-

Noise 

High-

Noise 
 

All DR CR 

 (1) (2) (3) (4) (5) (6) 

PreContr 0.40*** 0.38*** 0.41*** 0.35*** 0.54*** 0.28*** 

(0.05) (0.06) (0.05) (0.1) (0.06) (0.07) 

PreRew -0.17* -0.15 -0.18 -0.03 0.04 -0.47*** 

(0.1) (0.16) (0.12) (0.29) (0.14) (0.12) 

PreContr×PreRew 0.04*** 0.05*** 0.03** 0.02 0.02 0.07***  
(0.01) (0.02) (0.01) (0.02) (0.01) (0.02) 

Belief 0.51*** 0.50*** 0.52*** 0.59*** 0.43*** 0.52***  
(0.04) (0.06) (0.05) (0.08) (0.07) (0.07) 

CR 0.13   0.29 0.19 0.04 

 (0.13)   (0.22) (0.22) (0.25) 

Period in phase -0.22*** -0.23** -0.20*** -0.38*** -0.20** -0.11 

(0.06) (0.09) (0.07) (0.11) (0.1) (0.11) 

Low-noise -0.44* -0.46 -0.42*    

(0.24) (0.31) (0.25)    

High-noise -0.76*** -0.64** -0.84***     
(0.25) (0.29) (0.31)    

 
27 If players wrongly expect the reward points assigned to them, they will change their expectation of assigned 
reward based on the reward points they truly received and hence adjust their subsequent choice of contribution levels. 
If this was true, we should have found a significant effect of received reward points on subsequent contributions. 
This finding supports our assumption 4 in the theoretical model.   
28 This inference is consistent with our psychological utility function in contribution stage, which describes that 
received rewards per se have no effect on the players’ choice of contribution. 
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Constant 1.02 1.01 1.04 -0.52 -0.25 1.88  
(1.26) (1.51) (1.39) (3.56) (1.3) (2.07)        

Demography Yes Yes Yes Yes Yes Yes 

N 3456 1728 1728 1152 1152 1152 

Cluster 108 108 108 36 36 36 

Adjusted R2 0.56 0.51 0.6 0.55 0.61 0.43 

Notes: OLS estimates. Low-noise and High-noise are treatment dummies with Perfect-information as an omitted 

case. PreContr and PreRew are continuous variables representing player’s contribution and assigned reward 

points in the previous period, Belief indicates player’s expectation of other group members’ average contribution. 

Gender and age are demographic variables. Robust standard errors, clustered on matching group, in parentheses. 

* p<0.1, ** p<0.05, *** p<0.01 

Result 6. Under perfect-information and low-noise, players choose their current-period 
contributions independently on their previous-period received reward points. Under high-noise, 
however, players have a different reaction pattern. For players contributing lower than 6, the larger 
the received reward points, the lower contribution in the next period. On the other hand, for players 
contributing higher than 6, the direction is opposite. 

4.6 Simulation results of contributions 

According to our experimental setup, we assign values to some parameters of our theoretical 
model. We set 𝑚 = 20 , 𝛾 =  0.4 , 𝜅 =  3 , 𝜇 =  10 , 𝜆 = 1  for perfect-information, 𝜆 = 0.895 
for low-noise, and λ = 0.475 for high-noise29. For the parameters α and 𝛿, we set a series of 
values from 0.5 to 5, spaced at intervals of 0.530. Based on these parameters, we simulate players’ 
contributions in 50 periods. Figure 4 displays the simulation results of differences in contributions 
between reward institutions and 𝑁𝑅 in periods 1-5 and 45-50.  

In figure 4a, we find that for all values of parameters 𝛼 and 𝛿, 𝐷𝑅 leads to contributions no 
less than 𝑁𝑅 under three treatments in the first 5 periods. Specifically, for 𝛿 ≥  0.1 𝐷𝑅 results 
in a higher contribution under perfect-information. For 𝛿 ≥  0.1  and α ≥  0.1  or 𝛿 ≥  0.15 , 𝐷𝑅 results in a higher contribution under low-noise. For 𝛿 ≥  0.2 and α ≥  0.1 or 𝛿 ≥  0.25, 𝐷𝑅  results in a higher contribution under high-noise. Moreover, we find that for all values of 
parameters 𝛼 and 𝛿, 𝐶𝑅 leads to contributions higher than 𝑁𝑅 under all treatments in the first 
5 periods. 

In figure 4b, we find that for all values of parameters 𝛼  and 𝛿 , the effects of reward 
institutions on contributions are bigger in the last 5 periods (periods 45-50) than in the first 5 periods 
(periods 1-5) under perfect-information and low-noise. However, this trend is undermined by high-
noise because the contributions sustain a higher level in 𝑁𝑅 in the last 5 periods under a high noisy 
environment than under perfect information and low noisy environment. Even so, for any values of 
parameters 𝛼  and 𝛿  making contribution levels for reward institutions higher than 𝑁𝑅  in the 
first 5 periods, result in higher contributions for reward institutions in the last 5 periods as well. 

 
29 When 𝜆 = 0.895, the probability of an accurate signal is 0.9, when 𝜆 = 0.475, the probability of an accurate 
signal is 0.5. 
30 We set the values of parameters 𝛼 and 𝛿 no more than 0.5 because these parameters have a little effect on 
contributions when they are more than 0.5. 
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These results are similar when using welfare instead of contributions as the simulation object, and 
provide evidence to support our proposition 4 and 5. 

Result 7. The two institutions with reward improve contributions and welfare in the long run even 
if the information about other players’ behavior becomes noisy. This effect becomes smaller as the 
noise level increases. 
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Figure 4. Simulation results of average contribution difference between reward institutions and
institution without reward. The vertical axis represents the values of parameter 𝛼 and the horizontal
axis represents the values of parameter 𝛿, the color in each cell represents the simulated contribution
levels. The grey box marks the parameters that make average contributions higher in 𝐷𝑅 and 𝐶𝑅 than 
𝑁𝑅 over periods 1-5. 
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5 Discussion and Conclusion 

Our study examines whether the institution with reward option is an efficient and satisfactory 
way to solve social dilemma problem under different information conditions. We vary the accuracy 
of the information concerning the contributions of other participants in the group. We show that 
reward institutions sustain higher cooperation levels and let participants get more welfare under all 
information conditions. Furthermore, we find most participants tend to favor reward institutions no 
matter whether the information is perfect.  

In line with previous literature on decentralized reward institution under perfect-information, 
we observe that contributions in the first period of 𝐷𝑅  are similar to 𝑁𝑅  (Walker,2004; 
Sefton,2007; Rand et al., 2009). Subjects, on average, allocate about 40%-50% of their endowments 
to the public good at the beginning of the repeated game in 𝑁𝑅 and these behaviors are consistent 
with findings in standard voluntary contribution mechanism (VCM) of other studies (Fehr & Gäther, 
2000,2002; Walker,2004; Sefton,2007). As periods go on, contributions in 𝑁𝑅  decay quickly 
while that in 𝐷𝑅  maintains. Therefore, participants in 𝐷𝑅  tend to contribute more than 𝑁𝑅 . 
This finding replicates the results of Sefton (2007) and Rand et al. (2009).  

Compared to the literature on punishment under perfect-information, the effects of reward 
institutions on cooperation in our study are relatively weaker. In classical studies of Fehr and Gäther, 
institutions with punishment opportunity maintain the average level of contributions at about 60%-
80% of subjects’ endowments in the final period (Fehr & Gäther, 2000,2002). In our study, 
participants contribute about 50% of their endowments to the public good in the final period of 𝐷𝑅 
under perfect-information, and this contribution level increases to 60% in the final period of 𝐶𝑅.  

However, in a realistic environment with inaccurate information about others’ contributions, 
the effects of reward institutions are close to punishment institutions. In a slightly noisy environment, 
contributions of decentralized punishment institutions continue to decay and decline to about 10% 
and 40% of subjects’ endowments in the final period in Ambrus et al. (2019) and Ambrus & Greiner 
(2012) respectively. In our study, we find a steady contribution level in reward institutions and 
participants contribute about 40% and 45% of their endowments in the final period of 𝐷𝑅 and 𝐶𝑅 , respectively. As noise increases to a high level, the contribution levels in punishment 
institutions drop dramatically (about 20%-50% of endowment) while that in reward institutions only 
drop about 10% of endowment. This suggests that reward institutions might be more efficient than 
punishment institutions in a realistic world with noisy information.  

The welfare benefits of reward institutions better than punishment institutions are self-evident. 
This is because the reward per se improves the welfare while punishment per se damages the welfare. 
Under perfect-information, the advantages of punishment institutions in cooperation compensate 
the flaw of punishment institutions on welfare. However, as information tends to be nosier, the 
advantages of punishment institutions in cooperation shrink while the flaw of punishment 
institutions in welfare is amplified. Therefore, punishment institutions lead to higher welfare in a 
perfect information environment while lead to similar or lower welfare in an imperfect information 
environment (Gächter et al., 2008; Ambrus & Greiner, 2012; Nicklisch et al., 2016; Ambrus et al., 
2019). In contrast to punishment, we find that reward institutions lead to higher welfare even if the 
level of noise is quite large. Our findings highlight the superiority of reward institutions over 
punishment institutions in promoting cooperation and welfare in a realistic world with noisy 
information. 
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 Of the two reward institutions, centralized reward is the most efficient and popular under all 
information conditions. This might account for the choices of reward institutions, especially the 
prevalence of centralized reward (i.e., commendation meeting) in reality. Nicklisch et al. (2016) 
analyze information conditions, which lead subjects to voluntarily subordinate themselves to 
punishment institutions. They demonstrate that an environment with perfect-information tends to 
favor the decentralized punishment institution, while a high level of noise favors an institution with 
no punishment. Under low levels of noise, they observe undifferentiated preference on institutions 
with punishment and without punishment. In our study, however, subjects consistently favor the 
centralized reward institution over the institution without reward under all information 
environments. So, we infer subjects are highly likely to favor centralized reward institutions over 
all other institutions (i.e., institutions with punishment, the institution without punishment or reward, 
and the institution with decentralized reward) in a realistic world.   

Subjects contribute more in reward institutions under high noisy environment for three reasons. 
First, in reward institutions, one main aim of subjects is to get rewards to earn a higher payoff. If 
they believe that more contributions lead them to earn more rewards, they will choose higher 
amounts of contribution in reward institutions than the institution without reward. Under high noisy 
environment, we still find a significant positive correlation between contribution levels and assigned 
rewards. Subjects learned this positive correlation, and hence increase their contributions in the 
reward institutions. Second, unlike antisocial punishment which reduces players’ subsequent 
contributions through the channel of anger (Herrmann et al., 2008; Hopfensitz & Reuben,2009; 
Ambrus & Greiner, 2012), antisocial reward per se hardly has any effect on players’ contributions. 
Therefore, even though players with lower contributions often receive reward points because the 
quite inaccurate information, the assigned rewards per se doesn’t decrease their contributions in the 
next period. Third, through the reinforcement learning process, subjects expect others to contribute 
more in reward institutions than the institution without reward. Following the conditional 
cooperation norm that comes up in Fehr and Schurtenberger (2018), subjects increase their 
contributions with their beliefs about other group members’ average contributions. This is 
corroborated by our data as well. Therefore, higher beliefs lead to higher contribution levels in 
reward institutions.   

This study contributes to understand the evolution of social structure in humans. Early societies 
allowing for nearly perfect observation of others tend to apply decentralized punishment regimes. 
In maturing societies, production increases complexity. It becomes somewhat difficult to monitor 
others’ contributions. These are the circumstances, in which people are willing to employ centralized 
punishment or reward regime instead. Under the condition under which high level of cooperation is 
essential to the survival of groups, centralized punishment is preferred. Otherwise, centralized 
reward is more desirable. In the past decades, innovation has grown up to be an important driver of 
economic growth. In the process of innovation, intellectual capital occupies an increasing proportion 
of input. Because of the high degree of uncertainty in the outcome of innovation and the extreme 
difficulty of monitoring intellectual capital input, centralized reward becomes fashionable in this 
circumstance.  

Recently, the epidemic of COVID-19 has given rise to another interesting development, as it 
increases the space distance in people’s work and decreases the transparency of actions among group 
members. As a consequence, we might expect that reward institutions are used more often to 
strengthen cooperation. A promising direction for future research is examining this guess using data 
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from real-world environments.   
 

Data availability 

The datasets generated during the current study are available upon request. 
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