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Abstract
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mate the substitutability of match-specific inputs in production. In an equilibrium model
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in technology and match values. Earnings are mainly driven by technology while match
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increased for educated workers but stagnated for others. Compensating differentials have
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1 Introduction

Significant changes in employment and wages have been documented in the U.S. labor mar-

ket over the past five decades.1 The uneven nature of these changes across occupations and

workers suggests that shifts in production arrangements and in workers’ heterogeneous pref-

erences for job attributes may both be contributing factors. While a growing body of research

examines the labor market impacts of technological change and automation (e.g. Autor and

Dorn, 2013; Autor and Salomons, 2018; Acemoglu and Restrepo, 2022) we have a limited

understanding of how non-wage compensation and job amenities offset, or reinforce, techno-

logical change. This is despite evidence that non-wage attributes shape workers’ valuations

of employment opportunities. For example, data on job injuries suggest that earnings disper-

sion is an imperfect measure of compensation inequality in the US in the 1990s (Hamermesh,

1999). Maestas et al. (2018) and Dube et al. (2022) document that employment conditions

contribute to job choice, employee retention, and overall compensation. They also show that

tastes for non-wage rewards vary systematically with gender, age, and education. In a model

of human capital accumulation featuring search frictions and occupational choice, Taber and

Vejlin (2020) find that about 1
3 of observed choices would be different if workers only cared

about pecuniary rewards. Lamadon et al. (2022) estimate that workers are, on average, will-

ing to pay over 1
10 of their wages to stay in their current jobs. Lehmann (2022) argues that

a positive correlation between wages and non-wage amenities exacerbated inequality in the

Austrian labor market between 1996 and 2011.

In this study, we examine the combined influence of technological change and workers’

heterogeneity in job valuations on occupation-level employment and returns. Focusing on

the US labor market between 1980 and 2018, we begin by estimating, through a revealed

preferences approach, distinct components of worker-occupation match values. To characterize

the changing distributions of worker-occupation match values, we combine information on

headcounts, earnings, and hours worked in all job matches, including matches observed so

infrequently that realized wage distributions are uninformative in isolation. That is, we use

information about the relative scarcity of matches as well as the pecuniary returns and hours

worked in each match.

The approach does not restrict attention to subsets of workers and jobs; rather, we elicit

match values conditional on gender, education, age, and occupation. This flexibility accom-

modates empirically relevant dimensions of heterogeneity (for example, Wiswall and Zafar,

2018 suggest that women may value work schedules and job stability more than men).

1Well-documented shifts include the increasing employment and wages of skilled workers (Katz and Mur-
phy, 1992; Katz and Autor, 1999; Beaudry et al., 2016; Valletta, 2017), the declining share of middle-paying
occupations (Acemoglu and Autor, 2011), the emergence of IT-intensive jobs (Gallipoli and Makridis, 2018),
the growing presence of women in high-pay occupations (Cortes et al., 2018), the rising rewards to soft non-
cognitive skills (Deming, 2017), the shrinking labor supply of young men (Aguiar et al., 2017), the convergence
of the occupational distributions across demographic groups (Hsieh et al., 2019).
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The analysis is carried out in a discrete choice setting that distinguishes between observable

and latent (unobserved) components of match values. Estimates of observable components

convey information about the value of earnings and hours worked.2 The latent components

reflect non-pecuniary returns as well as possible heterogeneity in deferred, or other, compen-

sation. For this reason, we avoid referring to latent components as non-pecuniary attributes

even though such attributes are captured by latent components. The analysis imposes few

restrictions apart from the low-level requirements of a Roy model in which relative returns

drive job selection (Willis, 1986).

We estimate the empirical counterpart of the model using cross-sectional data (Census,

ACS) on earnings, hours worked and employment headcounts across occupations. We find

that match values are poorly approximated by wages and hours alone. Similar jobs carry

different returns to different workers (Autor et al., 2014; Cortes et al., 2017) and the latent

components are more dispersed than the observable ones across worker-occupation matches.

Since employers cannot make wage offers fully contingent on idiosyncratic job valuations,

due to imperfect information about workers’ preferences, the components of match value

bundled within a job cannot be easily traded against each other. This implies that workers

earn rents from ongoing employment, reflecting their unobserved idiosyncratic job values.

We illustrate how to quantify the magnitudes of rents, alongside compensating differen-

tials, using model estimates of worker-occupation match values. Rents and compensating

differentials are connected: by definition, compensating differentials capture the trade-offs

faced by workers whose rents are close to zero and who are marginal in their occupation

choice. Such workers would take a different job if relative wages and non-wage compensation

were slightly different, and their trade-offs can be interpreted as marginal rates of substi-

tution. Compensating differentials are, therefore, conceptually distinct from the empirical

covariation between wage and non-wage job attributes, which is occasionally examined in the

applied literature. We discuss these differences in Appendix H, where we consider alternative

measures of compensating differentials.

Our estimates suggest that both rents and compensating differentials have changed sig-

nificantly over time, especially when we condition on gender and education. After 1980,

employment rents have grown among educated workers but not others. In particular, rents

have fallen for non-college male workers while they have expanded among educated women

(Cortes et al., 2018). The average rent has risen from about $14,500 in 1980 to just below

$16,000 in 2018 (all values in year 2000 dollars). Over the same period, we document a

growing divide between cognitive and manual jobs, with rents in routine manual occupations

exhibiting the largest declines.

2Occupations vary in their time demands (Erosa et al., 2022a). Heterogeneous preferences for leisure may
contribute to occupational choice, for example, if wages are a convex function of time (Aaronson and French,
2004; Erosa et al., 2022b).
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An increasing share of the rents enjoyed by college workers in skilled jobs is derived from

latent components of match values. Depending on the occupation, latent components account

for between 1/3 and 1/2 of rent gaps between workers in 2018.

Rents appear to reflect occupation characteristics: for example, workers in riskier jobs

retain higher rents on average. If we measure risk by the dispersion of wages within a worker-

occupation cell, a 10-dollar increase in the standard deviation of wages is associated with

a 4.5% increase in rents. Moreover, the same 10-dollar increase in the standard deviation

of wages is associated with a positive change of up to 0.7 standard deviations in the latent

match value. That is, occupations that exhibit higher wage dispersion have, on average,

proportionally larger latent employment values (see Appendix J).

Furthermore, we find evidence that, since 1980, compensating differentials in the US labor

market have grown in many worker-occupation pairs, although this growth slowed down after

2000. Variation of compensating differentials in the cross-section of worker occupation-pairs

is closely associated with occupational mobility. One interpretation of this finding is that

occupational mobility may help workers trade off different job attributes as they switch jobs

(Section 4 and Appendix I). This is not surprising if worker flows induce equilibrium adjust-

ments that affect compensation. By the same token, less mobility would be associated with

lower estimates of compensating differentials as latent returns are not systematically priced

in terms of wage differences.

Our findings suggest that the U.S. workforce changed significantly between 1980 and 2018,

both in composition and in latent valuations of employment. At the same time, large shifts

have occurred on the demand side of the labor market due to technological change. In the last

part of the paper, we bring together the demand and supply of match-specific inputs and assess

the intensity of equilibrium responses to technology and workforce changes. The endogenous

responses are mediated by a production technology that aggregates worker-occupation inputs

supplied by intermediate firms (Appendix B).

In Section 3 we discuss the identification and estimation of the aggregate production

function. Then, given a parametric form for technology, we perform counterfactual exercises

and quantify the relative contribution of shifts in the demand for, and in the supply of, different

worker-occupation inputs. To account for heterogeneity in labor supply elasticities, we break

them down into an intensive and an extensive margin. The extensive margin is important

to control for differences in employment responses to wages across worker-occupation pairs.

Moreover, we use the estimates of aggregate labor supply elasticities to validate the model as

they can be compared to existing measures in the literature.

Results indicate that the evolution of wages is broadly explained by technological change

and that price responses due to shifts in aggregate labor supply are less prominent than those

induced by technological transformation.

Shifts in latent values have asymmetric effects on the employment patterns of different
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worker types. For example, had latent returns stayed at their 1980 levels, the labor market

participation of men would be much higher in 2018.

Technological change has offset the negative impact of latent returns on the labor force

participation of college-educated men but it has reinforced the drop in the participation of

non-college men.

In contrast, women have experienced a double lift from latent returns and technology,

which have bolstered their labor force participation and earnings. Among non-college women,

latent returns and technological change have contributed similarly to increased participation.

For college-educated women, the main push has come from technological change.

The rest of the paper is organized as follows. In Section 2 we describe the model. Section 3

overviews the identification of model parameters and shows baseline estimates. In Section 4 we

characterize employment rents and compensating differential, and present estimates of their

values for different occupations and workers. Section 5 overviews counterfactual experiments

designed to assess how technological progress and a changing workforce have contributed

to historical patterns of employment and earnings. Extensions and robustness checks are

presented in Section 6. Section 7 concludes.

2 Model

We study a competitive labor market with two-sided heterogeneity (workers and jobs). The

sorting of workers in equilibrium reflects the distribution of relative returns. The wage com-

ponent of labor market returns is determined in equilibrium.

Markets. Time is discrete and a period (year) is indexed by t. There are a finite number

M > 1 of separate labor markets, indexed by m. Each (m, t) pair is an independent labor

market with its own supply of, and demand for, workers.

Workers. A continuum set of workers of size Smt populates each (m, t) market. Each

worker in market (m, t) is indexed by ι ∈ Smt and belongs to a distinct demographic group

i ∈ I. We let µimt denote the mass of workers of type i, so that
∑

i µimt = Smt. Workers

choose whether to work and, if so, their occupation j = 1, ..., J . If they do not work, they are

in the idle state indexed as j = 0.

The utility that a worker derives from each possible state j = 0, ..., J consists of two

elements: (i) a systematic utility component (Uijmt) that depends on their type i, occupation

j, and current labor market (m, t); (ii) an idiosyncratic component which reflects unobserved

individual preferences for an occupation (θιj).

Workers of type i supply hijmt hours of labor paid at the hourly rate w̃ijmt. Workers

consume their income in each period. Income is the sum of labor income and non-labor
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income ỹimt. Finally, letting Pmt be the price of the consumption good in each separate

market (m, t), we define as wijmt = w̃ijmt/Pmt and yijmt = ỹijmt/Pmt the real wage and real

non-labor income, respectively.

The worker’s problem. The problem of a worker of type i can be characterized in two

steps. First, conditional on being matched to occupation j, the systematic utility component

is maximized by solving

Uijmt(wijmt, yimt) = max
hijmt

uc (cijmt)− uih (hijmt) + bijt

s.t. cijmt = wijmthijmt + yimt,

(1)

where uc (·) is consumption utility, uih (·) captures the disutility from working and can differ

across types; bijt denotes latent benefits accruing to a type i worker in occupation j and period

t. The systematic component of utility can vary across markets since observable wages and

non-labor income depend on the specific (m, t) pair. The latent component of utility varies

with occupation, demographic group, and time.3

The latent value of not working is set to zero so that the systematic utility of non-

employment (j = 0) is Ui0t (0, yimt) = uc (yimt) − uh (0). The normalization bi0t = 0 for

all t and all i implies no loss of generality and is necessary because bi0t is not separately iden-

tified from all other bijt. Given the normalization of bi0t and additive separability of match

value, all the bijt terms include the value of home production. That is, differences between

employment and non-employment reflect the value of home production. Therefore, estimated

variation in bijt conveys also information about changes in productivity at home.

Workers in occupation j receive an additional return from the individual unobserved com-

ponent θιj , which captures idiosyncratic values of occupations. We assume that θιj is randomly

distributed as Type I Extreme Value with a zero location parameter and scale parameter equal

to σθ. The distribution of these idiosyncratic values is independent of time and market.

The second step in the problem of the worker is the occupation choice. Given a set of

idiosyncratic preference shocks {θιj}Jj=1, the worker ι solves

max
j=0,1,..,J

Uijmt(wijmt, yimt) + θιj (2)

By the properties of the Extreme Value distribution, the fraction of workers of type i supplying

3Latent components in the model do not vary across markets since local amenities are enjoyed by all workers
regardless of occupation and market-specific latent components cancel out in the definition of surplus. In the
empirical analysis, we perform robustness checks (Appendix K) by estimating a model in which latent returns
can change across labor markets.
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labor to occupation j in market m is

µijmt

µimt
=

exp (Uijmt(wijmt,yimt)/σθ)∑J
j′=0 exp (Uij′mt(wij′mt,yimt)/σθ)

(3)

Firms. Within each market and period, a representative final good producer uses a con-

tinuum of size one of intermediate goods to produce its output. Each intermediate is produced

by a different firm, indexed by v. Intermediate goods producers employ one occupation j and,

therefore, intermediate goods can be thought of as the output of an individual occupation.

Since each intermediate firm produces a differentiated good, they have market power in the

intermediate goods’ market, and non-zero profits are made. Labor markets are competitive.

For convenience we partition intermediate firms into subsets {Vjt}j=1,...,J such that, for any

pair of firms v, v′ ∈ Vjt, their production technologies differ only up to an idiosyncratic pro-

ductivity (TFP) shock. The Vjt partition splits the continuum of intermediate producers into

a finite number of subsets containing producers that employ the same input j. In Appendix

C we generalize the model to a setting where intermediate producers employ both capital and

labor.4

Final good production. The final good producer solves:

max
{λjmtv}

PmtYmt −
∫
v
pjmtvλjmtvdv

s.t. Ymt =

(∫
v
λρjmtvdv

) 1
ρ

,

(4)

where λjmtv are demanded quantities of the intermediate goods. The final good price Pmt in

market (m, t) is a function of intermediate prices pjmtv,

Pmt =

(∫
v
p

−ρ
1−ρ

jmtvdv

)−(1−ρ)
ρ

Optimality for this production problem implies

pjmtv =

[
λjmtv

Ymt

]−(1−ρ)

Pmt

4The key empirical relationships are unchanged and we show that in the baseline model without capital,
estimates of substitutability between different worker-occupation labor inputs are a lower bound.
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Producers of intermediate goods. The profit maximization of an intermediate pro-

ducer v ∈ Vjt is:

max
pjmtv ,λjmtv ,Lijmtv

pjmtvλjmtv −
∑
i

w̃ijmtLijmtv

s.t. λjmtv = zjmtv

∑
i

βijLijmtv

pjmtv =

[
λjmtv

Ymt

]−(1−ρ)

Pmt,

(5)

where zjtv is an idiosyncratic shock drawn from an occupation-specific distribution (zjtv ∼
Fjt(v)). Optimality implies the following expression for profits,

πjmtv =
1− ρ

ρ

∑
i

w̃ijmtLijmtv

The aggregate production function, derived analytically in Appendix B, is:

Ymt = At

∑
j

αjt

(∑
i

βijtLijmt

)ρ
 1

ρ

(6)

where αjt =
α̃jt∑
j′ α̃j′t

and At =
(∑

j′ α̃j′t

) 1
ρ
with α̃jt =

(∫
v∈Vjt

z
ρ

1−ρ

jmtvdv

)1−ρ

. In the appendix,

we also show that the wage function for match (i, j) in market (m, t) is

wijmt = ρAρ
tαjtβijt

(
Ymt∑

i′ βi′jtLi′jmt

)(1−ρ)

. (7)

Equilibrium. A competitive equilibrium in period t is a set of prices (w̃ijmt, pijmtv, Pmt,

occupational choices µijmt, labor supply choices hijmt and labor demands Lijmtv such that:

1. given wages and preference shocks, each worker solves the problems described in equa-

tions (1) and (2);

2. final good producer and intermediate firms behave optimally and solve (4) and (5),

respectively;

3. all markets clear. In particular, labor market clearing implies that for all matches (i, j)

and markets (m, t), it is the case that Lijmt = µijmthijmt where Lijmt =
∑

v∈Vjt
Lijmtv.
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3 Identification and Estimation of Model Parameters

To estimate the empirical counterpart of the model we need data on the cross-sectional distri-

butions of employment and earnings for different worker types. In what follows we overview

the identification of utility and production parameters and describe data sources and estima-

tion. More details are in Appendix A.

3.1 Data

We use decennial Census data from 1980, 1990, and 2000; in addition, we pool together three

years of the American Community Survey (King et al., 2010) to get samples of comparable

size for 2010 (2009-2011) and 2018 (2017-2019). We consider individuals aged between 25 and

54 and exclude those still in education, as well as workers in farming, forestry, and fishing. We

define worker-side heterogeneity as a combination of gender, age (three groups: 25-34, 35-44,

45-54), and education (college graduates and above, and less than college). This results in

12 distinct worker groups, indexed by i ∈ I. On the demand side, we consider a set of 13

occupations in addition to the non-employment state. The occupation states are indexed by

j ∈ J and are reported in Table 1 along with their aggregation into four broad task clusters

(see Acemoglu and Autor, 2011; Cortes and Gallipoli, 2018). We consider four geographical

markets, indexed by m ∈ M , corresponding to U.S. Census regions (Northwest, Midwest,

South, and West).

For each cell, consisting of a match (i, j) and a market (m, t), we compute total employ-

ment, average hours worked, average wages, and average non-labor income. To account for

differences in the cost of living across regions we adjust the income measures by a local CPI

based on the cost of housing (Moretti, 2013). To measure total employment we use population

weights and count a worker as employed if they report working at least 15 hours per week.

Non-labor income consists of the sum of incomes from businesses and farms.

3.2 Identification

Model parameters are identified by variations in employment shares across occupations and

by differences in labor supply and wages across workers.

Preferences. The employment equation (3) links the employment in each occupation to

the observed pecuniary value in those jobs. The occupation value is scaled by the parameter

σθ, which reflects the dispersion of idiosyncratic preferences. The relationship in (3) is helpful

to quantify the value of each (i, j) match relative to a different employment state. We define
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Table 1: Occupation categories used for estimation.

Managerial, Professional Specialty and Technical
(Non-Routine Cognitive)

1 Executive, Administrative, and Managerial
2 Management Related
3 Professional Specialty
4 Technicians and Related Support

Sales and Administrative Support
(Routine Cognitive)

5 Sales
6 Administrative Support

Service
(Non-Routine Manual)

7 Protective Service
8 Other Service

Precision Production, Craft, Repair,
Operators, Fabricators, and Laborers

(Routine Manual)

9 Mechanics and Repairers
10 Construction Trades
11 Precision Production
12 Machine Operators, Assemblers, and Inspectors
13 Transportation and Material Moving
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the surplus relative to non-employment as

log

(
µijmt

µi0mt

)
=
Uijt(wijmt, yimt)− Ui0t(0, yimt)

σθ
. (8)

Assuming isoelastic utility for consumption and leisure, we use the functional forms:

uc (c) =
c1−σ − 1

1− σ
uih (h) = ψi

h1−γ

1− γ

Under these parametric restrictions, equation (8) shows that we can use cross-sectional vari-

ation in employment, hours worked and wages to estimate: (i) the latent return bijt for

occupation-worker pair (i, j) in period t, and (ii) the scaling parameter σθ, which dictates the

dispersion of idiosyncratic preferences. Optimality of labor supply in the worker’s problem

(1) implies

(wijmthijmt + yimt)
−σ wijmt = ψih

−γ
ijmt (9)

If γ ≤ 0, the disutility from work is a convex function and (9) has a unique solution. We do

not restrict γ but show that its estimated value satisfies the condition for uniqueness.

Technology parameters. The wage equations in (7) and labor market equilibrium

imply

wijmt

wij′mt
=

αjtβijt
αj′tβij′t

(
L̃j′mt

L̃jmt

)1−ρ

where L̃jmt =
∑

i′ βi′jtLi′jmt. The β parameters are identified up to a normalization by

within-occupation ratios of wages between worker groups (proof in Appendix A). Normalizing

β1jt = 1, for all j = 1, ..., J and all t, we estimate the remaining β shares by averaging the

within-occupation wages in the M markets and obtain β̂ijt =
1
M

∑M
m=1

wijmt

w1jmt
. The remaining

parameters are estimated using wage ratios (see Appendix A) like

log

(
wijmt

wi1mt

)
= log

(
αjt

α1t

)
+ log

(
βijt
βi1t

)
+ (ρ− 1) log

(∑
i′ βi′jtLi′jmt∑
i′ βi′1tLi′1mt

)
(10)

To estimate the equation above we measure the second term on its right-hand side using

B̂ijt = log
(
β̂ijt

β̂i1t

)
; this term should have a coefficient equal to one, a restriction that we can

test. The empirical counterpart of the third term on the right-hand side of (10) is Λ̂jmt =

log

(∑
i′ β̂i′jtµi′jmthi′jmt∑
i′ β̂i′1tµi′1mthi′1mt

)
, which measures the supply of labor efficiency units to occupation j.

Then, the relationship in (10) is estimated as

Wijmt = γjt + ψB̂ijt + ϕΛ̂jmt + ϵijmt (11)
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where Wijmt = log
(
wijmt

wi1mt

)
and ϕ = ρ− 1.

3.3 Estimation of preference parameters

We estimate the model in two steps. First, we recover the parameters dictating utility and la-

bor supply choices. Next, conditional on estimates from the first step, we estimate production

technology parameters (shares and elasticity of substitution between different labor inputs).

Curvature parameters and disutility of labor. We use the optimality condition in

(9) to express hours worked as a function of wages and non-labor income. That is,

log (hijmt) = f
(
Xijmt, Ω̃i

)
+ ϵ1ijmt

whereXijmt = [wijmt; yimt], Ω̃i = [σ; γ; ψi], and f
(
Xijmt, Ω̃i

)
= log(ĥijmt) is the logarithm

of hours worked as predicted by the model which will be numerically computed. This delivers

two sets of moments for the GMM estimation of labor supply parameters. Namely,

E
[
log (hijmt)− f

(
Xijmt, Ω̃i

)
|i
]
= 0 (12)

E
[(

log (hijmt)− f
(
Xijmt, Ω̃i

))
Z1

ijmt

]
= 0 (13)

To account for potential endogeneity bias, the second set of moments posits orthogonality

with respect to a vector of instruments Z1
ijmt.

Extensive margin of labor supply. The definition in (8) implies that we can cast the

occupation choice as a function g (Xijmt;Ωi) such as

g (Xijmt;Ωi) =
Uijt(wijmt, yimt)− Ui0t(yimt)

σθ

=
uc

(
wijmtĥijmt + yimt

)
− uih

(
ĥijmt

)
+ bijt − uc (yimt)

σθ

where Ωijt = Ω̃i
⋃
[σθ; bijt]. Letting Υijmt = log

(
µijmt

µi0mt

)
, and using the estimates ĥijmt =

exp
(
f
(
Xijmt, Ω̃i

))
, we can recover the parameters dictating the extensive margin of labor

supply from the empirical relationship:

Υijmt = g (Xijmt;Ωijt) + ϵ2ijmt.
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In practice, we use the following moment conditions:

E [Υijmt − g (Xijmt,Ωijt) |i, j, t] = 0 (14)

E
[
(Υijmt − g (Xijmt,Ωijt))Z

2
ijmt

]
= 0 (15)

where Z2
ijmt is a vector of instruments.

Simulated method of moments. We denote as X the data vector of wages and hours

worked. To calculate the cell averages we consider only people reporting at least 15 hours

of work per week and positive earnings. Given the parameter matrix Ω = {Ωijt}, where
Ωijt = [σ; γ; ψi]

⋃
[σθ; bijt], we want to solve the estimation problem

Ω̂ = argmin
Ω

M (X,Z;Ω)T WM (X,Z;Ω) (16)

where W is a positive definite weighting matrix5, Z is the vector of instruments, and M is

the set of target moments described in (12), (13), (14) and (15).

The problem in (16) is computationally demanding as it requires solving the labor supply

first order conditions in (9) for all the (i, j) and (m, t) pairs. Therefore we reformulate the

problem by specifying the first order conditions as constraints (Su and Judd, 2012). We let

Ω+ be the union of the parameter matrix Ω and {ĥijmt}∀i,j,m,t, where the latter is the set of

model-generated labor supplies. The estimation problem becomes

Ω̂ =argmin
Ω+

M
(
X,Z;Ω+

)T
WM

(
X,Z;Ω+

)
(17)

s.t. − σ log(wijmtĥijmt + yimt) + log(wijmt) = log(ψi)− γ log(ĥijmt) ∀i, j,m, t

where the constraints represent the FONC with respect to the intensive margin of labor supply.

The presence of these constraints ensures that at the optimum labor supply satisfies the first

order conditions (i.e. that the function f
(
Xijmt, Ω̃i

)
is numerically approximated). Using

this technique we avoid having to solve for optimal hours in each iteration of the optimization

algorithm, substantially reducing the computation time.

We report estimates of the parameter matrix Ω in Appendix L; specifically, Table 8 shows

estimates of the curvature of the consumption utility and of the scaling factor of the extreme

value preference shocks (respectively, σ and σθ). In estimation, we use 10 and 20-year lagged

wages as instruments for current wages. Table 17 shows estimates of both weight and curvature

of dis-utility from labor (ψ, γ). Tables 10-14 report all estimates of latent match-specific values

(bijt) for different years.

5To reduce small sample biases (Altonji and Segal, 1996) the weights matrix W is an identity matrix.
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Figure 1: Distribution of labor supply elasticities in the sample population.

3.4 Labor supply elasticities

The preference parameter estimates imply a distribution of labor supply elasticities, which is

of interest for various reasons. First, it can be used to validate preference estimates. Second,

elasticities can be broken down into intensive and extensive margin components, thereby

providing insights into the relative contribution of the two margins to aggregate changes in

labor supply. Lastly, by considering the distribution of extensive margin elasticities across

(i, j) worker-occupation pairs, in the equilibrium analysis we can account for the occupation-

specific employment responses of different demographic groups.

Intensive margin. To compute the uncompensated elasticity of labor supply, we take

the total differential of the optimality condition for the intensive margin of labor supply in

(9). After rearranging it, we get

dhijmt

dwijmt
=

−σ(wijmthijmt + yimt)
−σ−1wijmthijmt + (wijmthijmt + yimt)

−σ

σ(wijmthijmt + yimt)−σ−1w2
ijmt − γh−γ−1

ijmt ψ

The uncompensated elasticity of labor supply at the intensive margin is defined as

ϵintijmt =
dhijmt

dwijmt

wijmt

hijmt

Figure (1a) shows the distribution of estimated intensive margin labor supply elasticities in the

population, obtained by plotting preference parameter estimates across (i, j,m, t) cells. The

average elasticity is 0.15 in every sample year we consider, which is well within the range of

existing estimates of uncompensated labor supply elasticities (see, for example, Blundell and

MaCurdy, 1999; Chetty et al., 2011; Keane, 2011; Keane and Rogerson, 2012, 2015; Attanasio

et al., 2018).
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Figure 2: Distribution of cumulative elasticities of labor supply (extensive plus intensive).

Extensive margin. Next, we define the extensive margin elasticity of labor supply

as the ratio of the percentage change in workers choosing a particular occupation and the

percentage change in the wage rate paid in that occupation. That is,

ϵextijmt =
dµijmt

dwijmt

wijmt

µijmt
.

From the utility maximization problem in (2), we obtain

dµijmt

dwijmt
= µimt

eUijmt/σθ 1
θ

[
u′c(cijmt)

(
hijmt +

dhijmt

dwijmt
wijmt

)
− ui

′
(hijmt)

hijmt

dwijmt

]
[∑J

j′=0 exp (Uij′mt/σθ)
]2 J∑

j′=0,j′ ̸=j

exp (Uij′mt/σθ)

Figure (1b) shows the distribution of estimates of the extensive margin elasticities. The

average elasticity varies little from year to year, ranging between 0.55 and 0.60.

Combined elasticity. We define the total labor supply within each (ijmt)-cell as the

aggregate hours worked in that cell and denote it as Lijmt = µijmthijmt. By combining the

intensive and extensive margins, we can compute the cumulative elasticity of labor supply to

changes in the own wage rate within each cell, which is:

ϵtotijmt =
Lijmt

dwijmt

wijmt

Lijmt
=

(
dµijmt

dwijmt
hijmt +

dhijmt

dwijmt
µijmt

)
wijmt

Lijmt
(18)

Figure 2 shows the distribution of estimated cumulative elasticities of labor supply. The

average cumulative elasticity varies between 0.70 and 0.74, depending on the year.

Equation (18) separates the relative contribution of the extensive margin (first term) and

the intensive margin (second term) to the cumulative elasticity. On average, the extensive

margin accounts for almost 4
5 of the cumulative elasticity.
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Aggregate labor supply responses. Finally, we define the aggregate labor supply in

period t as Lt =
∑

i,j,m Lijmt. The elasticity of the aggregate labor supply is the percentage

change in the aggregate supply in response to a percentage change in the average wage,

assuming that the change in the average wage is obtained by a homogeneous change across

the distribution of wages. That is,

ϵaggt =
dLt

dw̄t

w̄t

Lt

where w̄t is the average wage and

dLt

dw̄t
=
∑
ijm

 Lijmt

dwijmt
+
∑
j′

Lijmt

dwij′mt

 .

The second summation in the latter equation captures the fact that a change in the wage rate

in one occupation affects labor supply in all other occupations. Estimates of the aggregate

elasticity range between 0.72 and 0.78, depending on the year.

3.5 Estimation of technology parameters

The worker-occupation shares βijt are estimated using within-occupation wage ratios. With

those in hand, the αjt and ρ are recovered using a first-difference specification of the wage

conditions in (11). This specification flexibly allows for the use of instrumental variables to

account for endogeneity in input demands.

To illustrate all the estimation steps, note that ρ̂ = ϕ̂ + 1, and ϕ̂ can be estimated from

(11). Next, one can recover the γjt = log
(
αjt

α1t

)
in (11) by projecting the residuals W̃ijmt =

Wijmt − B̂ijt − ϕ̂Λ̂jmt on occupation-year fixed effects. Then, the value of each occupation

weight αjt in the production technology (6) is obtained from the restriction
∑

j αjt = 1 for

all t. The full set of estimated βijt shares, alongside plots of the combined αjt × βijt weights,

are reported in Appendix D.

Endogenous production inputs. We use two different approaches to account for po-

tential endogeneity of labor inputs. Each strategy instruments the changes in labor input

log-ratios ∆Λ̂jmt in (11) with predicted log-ratios of headcounts.

The model suggests that differences in the labor participation (headcount) in each occu-

pation over time are the by-product of worker match values, conditional on their demographic

group, or due to shifts in the overall demographic composition of the labor force. For example,

participation in manual construction jobs may change if a young non-college men value work

in construction less, or if the overall number young non-college men changes over time.

The first identification strategy leverages aggregate demographic shifts that exogenously

impact local labor markets, holding constant the occupation shares of workers within a market

15



and demographic group. We let sijmt be the share of type i workers in market m choosing to

work in occupation j. The predicted labor supply to occupation j is L̂h
jmt =

∑
i sijmt−10µimt,

where h denotes the headcount and sijmt−10 are the employment shares in the previous decade.

We use the latter measure to construct the predicted relative supply Λ̂h
jmt = log

(
L̂h
jmt

L̂h
1mt

)
in

period t. The instrument is defined as

IV1jmt = ∆Λ̂h
jmt = Λ̂h

jmt − log

(
Lh
jmt−10

Lh
1mt−10

)
(19)

where Lh
jmt−10 is the actual number of workers in occupation j in market m at time t − 10.

Given exogeneity of aggregate shifts in the demographic structure of the labor force, this is a

valid instrument as it is correlated with the regressor but is uncorrelated with the error term.

The second identification strategy relies more on theoretical restrictions as we build on the

observation that, by definition, shifts in latent returns affect occupation-specific employment

given observed wages. One can therefore develop a set of instruments by using changes in

occupation shares due to variation in latent returns bijt. Equation (8) implies

ϱijmt = log

(
µijmt

µi0mt

)
=
bijt +Πijmt

σθ
=⇒ ∆ϱijmt =

∆bijt +∆Πijmt

σθ

where Πijmt = Uijmt − Ui0mt is the observed pecuniary component of the returns. If we set

∆Πijmt = 0 in the equation above, we obtain a counterfactual ϱ̂ijmt:

ϱ̂ijmt = ∆ϱ̂ijmt + ϱijmt−10 =
bijt − bijt−10

σθ
+ ϱijmt−10.

We estimate a set of counterfactual shares as ŝijmt =
exp(ϱ̂ijmt)

1+
∑

j′=1,...,J exp(ϱ̂ij′mt)
, which can be used

to predict labor inputs as L̂h
jmt =

∑
i ŝijmtµimt. These fitted values can be employed, in turn,

to construct a set of instruments (IV2jmt), as described in equation (19).

Substitution among worker-occupation inputs. Table 2 shows estimates of the

coefficients on ∆Λ̂jmt and ∆B̂ijt in equation in (11).Endogeneity introduces a positive bias in

the estimates of ϕ. Columns 2 and 3 report estimates obtained after instrumenting ∆Λ̂ijmt

with either of the two instrument sets. Estimates of ρ suggest that the elasticity of substitution

between worker-occupation inputs is larger than one and within the range 1.65− 1.76.

We consider the values in column 4 as our baseline estimate, implying an elasticity of

substitution of 1.64. When using multiple instruments together, one can compute a p-value for

the over-identification test (Sargan, 1958). We find that the validity of the instruments cannot

be rejected. Moreover, in all cases, the estimated coefficient on ∆B̂ijt is not significantly

different from one, which is consistent with the theoretical restrictions of the model.
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OLS IV
(1) (2) (3) (4)

ϕ̂ -0.0834 -0.6041*** -0.5681*** -0.6100***
( 0.0610) ( 0.1212) ( 0.1348) ( 0.1256)

ψ̂ 0.9771*** 0.9771*** 0.9771*** 0.9771***
( 0.0413) ( 0.0414) ( 0.0414) ( 0.0414)

Observations 2,496 2,496 2,496 2,496

Instrument set IV1 IV2 IV1-IV2

Test ψ̂ = 1 (p-val) 0.5796 0.5812 0.5810 0.5812
OverId p-val 0.4152

Implied ρ 0.9166*** 0.3959*** 0.4319*** 0.3900***
( 0.0610) ( 0.1212) ( 0.1348) ( 0.1256)

Implied elast. of sub. 11.9974 1.6554*** 1.7604*** 1.6394***
( 58.5230) ( 0.3740) ( 0.4802) ( 0.4036)

Bootstrapped standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 2: Estimation results for equation (11) in first differences.
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Figure 3: Goodness of fit. Left: model implied wages vs. data. Center: model implied
employment vs. data. Right: model implied hours worked vs. data.

Prices and quantities in model and data. Figure 3 compares data on average wages

and employment in each worker-occupation cell (i, j) with their model counterparts obtained

by solving for the equilibrium in each market and year. Simulated prices and quantities match

data observations closely. The model accounts for, respectively, 99%, 95%, and 72% of total

variation in employment, wages, and hours worked.

3.6 Production shares

Changes in current wages depend on productivity. In turn, the productivity of each worker-

job pair responds, in equilibrium, to shifts in the supply of labor aggregates that are induced

by latent returns. In what follows we separately characterize the changes in technology and

in the distributions of observable and latent match values.

We begin by documenting the evolution of technology parameters, which suggests produc-

tivity divergence among worker-occupation inputs.

Technology shares by occupation category. The marginal product of a type-i

worker in occupation j at time t is increasing in the technology shares αjtβijt. Figure 4

plots the employment-weighted loadings αjtβijt of four broad occupation categories (levels in

the left panel, growth rates after 1980 in the right one). Production shares in some occupa-

tion categories have stagnated after 1980. Routine manual jobs have experienced a mild but

steady decline and estimates of αjtβijt are 26% lower in 2018 relative to 1980.

The remaining occupation categories exhibit production share growth of 10-16% in the

1980s but their productivity paths diverged in the 1990s. After the mid-1990s, non-routine

cognitive jobs show faster growth in their shares, adding up to a change of roughly 70% by

2018. In contrast, growth in non-routine manual and routine cognitive occupations was less

vigorous (with cumulative changes of 42% and 24% over the sample period). The fanning out
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Figure 4: Average production shares of four major occupation categories (based on estimates
of αjtβijt). Left panel: levels. Right panel: growth relative to 1980.

of production shares underlies changes in observable wages and employment.

Technology shares by worker group. Figure 5 breaks down changes in production

shares by worker type. First, we note that the share of routine manual occupations drops or

stagnates for all gender and education groups. Workers in college-level jobs exhibit large gains

in all but routine manual occupations. Their gains in cognitive occupations are the largest,

consistent with the notion of growing match-specific returns. However, a college degree does

not significantly improve productivity in manual occupations. For non-college workers, only

the production shares of non-routine jobs exhibit positive changes.

3.7 Latent heterogeneity in returns

Data on quantities (employment) and prices (wages) allow to distinguish between observable

and latent components of match-specific values. We examine changes in match values by

separately considering shifts in the distributions of these components.

Figure 6 plots the density of cumulative match values and of its three components, ex-

pressed in utility terms. Specifically, it plots the distribution of the observable wage compo-

nent, the dis-utility from hours worked, and the latent component net of hours worked. It is

apparent that (i) the dis-utility from work is very concentrated;6 (ii) the latent component

has the most dispersed distribution.

6This finding refers to the total amount of hours worked in a year. Goldin (2014) shows that the way hours
are distributed in a week and schedule flexibility may be important. The value of such flexibility is captured
in the model by the latent returns.
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Figure 5: Average production shares of four broad occupation categories by worker demo-
graphic group (based on estimates of αjtβijt). Brackets are 95-percent confidence intervals
around point estimates.

Location and latent heterogeneity. To examine the nature of latent returns, we

project estimates of bijt on location-specific measures that capture how frequent certain oc-

cupations are in urban settings. As the distribution of job opportunities is not homogeneous

across locations, some occupations may occur more frequently in urban and densely populated

areas. To the extent that urban settings offer different amenities, it is possible that the latent

value of an occupation may be related to its prevalence in those settings. That is, the latent

value of a worker-occupation pair may depend on the location where it is found. Occupations

that are concentrated in urban areas may exhibit higher bijt if the latter components capture

the value of urban amenities. To explore this conjecture we project estimates of latent re-

turns on measures that capture differences across occupations in their location (e.g., urban

or rural, population density). For each occupation we compute: (i) the fraction of workers

living in urban areas; (ii) the fraction of workers in a central city, defined as the central city

of a metropolitan area, as well as the fraction of workers in urban areas excluding central

cities; (iii) the average local population in the place where the job is done. To account for

heterogeneity by gender, we perform this analysis separately for men and women.

Table 20 in Appendix F shows that, for men, urban and central city effects are not pre-
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Figure 6: The figure shows, for different years, the cross-sectional distributions (densities) of:
(1) total match values (total of all systematic, non random components); (2) observable wage
components of match values; (3) dis-utility from hours worked; (4) latent components bijt. The
unit of observation is the worker-occupation pair. Distributions are employment-weighted.
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Average Rents (year 2000 $)

Year All College Men College Women Non-College Men Non-College Women

(1) (2) (3) (4) (5)
1980 14,520 22,678 14,165 15,839 9,013
1990 14,766 24,349 16,021 14,860 9,677
2000 16,056 27,390 18,199 14,884 10,500
2010 14,983 26,470 17,981 12,701 9,392
2018 15,989 27,458 18,864 12,909 9,460

Table 3: Estimated average rents by year and gender-education group.

cisely estimated while there is a positive and highly significant correlation between latent

components and population density. Estimates for women, in contrast, are highly significant

and larger. This suggests that location attributes may be relatively more important in de-

termining the occupational choices of women. In all cases, the coefficients are positive: jobs

in urban, dense areas have higher latent returns. Additional controls for age and education

(columns 2, 5, and 6 in Table 20) make the estimated effects larger and more significant for

both men and women. A detailed description of these findings is in Appendix F.

4 Rents from Employment and Compensating Differentials

We characterize jobs as bundles of observable and latent components that cannot be sepa-

rately acquired once employed. For this reason, employed workers are inframarginal in their

occupation choice and enjoy returns whose combined value is higher than their outside option

(that is, higher than the second best job they have access to).

We define the employment rent as the pecuniary value that makes a worker indifferent be-

tween their current occupation and their outside option. This definition includes the idiosyn-

cratic latent components (θιj) that influence worker ι’s choices above and beyond systematic

match quality.

4.1 Estimating rents

Consider worker ι in demographic group i, and let j be their current occupation and j′ their

second best option. We define R̃ι
ijj′mt as the change in worker ι’s wage that would make them

indifferent between current and second-best occupation. The wage gap R̃ι
ijj′mt must be such

that:

Ũi(wijmt − R̃ι
ijj′mt, yimt) + bijt + θιj = Ũi(wij′mt, yimt) + bij′t + θιj′ (20)

where Ũi(w, y) = uc(whi(w, y)+ y)−uih(hi(w, y)). It follows that the total employment rent
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Figure 7: Distribution of job rents (employment-weighted): pooled (top panel) and disaggre-
gated (bottom four panels). All values are in year 2000 dollar-equivalents. Vertical lines show
averages in different years.
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of worker ι, accounting for labour supply, is

Rι
ijj′mt = wijmthijmt − (wijmt − R̃ι

ijj′mt)hi(wijmt − R̃ι
ijj′mt, yimt),

which is the difference between the earnings in the current occupation and the earnings the

worker would receive if the wage is changed to the point of indifference (derivations are in

Appendix G.) We compute the average rent for each (i, j,m, t) cell and denote the cell-specific

averages as Rijmt.

4.2 The distribution of employment rents

Table 3 shows estimates of rents by year, gender and education. The average across all worker-

occupation pairs (first column) has grown over time, rising by roughly 10% from about $14,500

in 1980 to almost $16,000 in 2018.

Not all rents have risen over the sample period, and the gap between education groups has

grown significantly. College-level rents have gone up but non-college rents have stagnated or

fallen, like in the case of non-college men. This observation is consistent with the view that

male workers in non-college jobs may have experienced a shrinking labor market surplus (see

also Aguiar et al., 2017).

The mounting disparity in employment rents can be probed further by examining Figure 7,

which displays employment-weighted kernel densities of rents in different years (expressed in

year 2000 dollar equivalents). The top panel of the figure plots the cross-sectional distribution

of all rents, while the bottom panels show rent densities conditional on gender and education.

It is apparent that the distribution of rents among educated workers has shifted to the right,

while that of non-college men shifted to the left (Cortes et al., 2018).

Growing dispersion is visible when we compare averages across occupation categories, as

in Table 4. The main occupational divide is between cognitive and manual jobs, with the

former experiencing growth and the latter showing sizable drops. Lower rents are especially

conspicuous in routine manual occupations, where the 2018 rents are about 1/5 below the

1980 baseline values.

The role of systematic variation in latent match values. To assess the influence

on rents of the systematic components of latent values, we design counterfactual experiments

where all workers within a demographic group are assigned the same systematic latent compo-

nent; that is, we set bijt = bit for all (i, j) pairs. The uniform value bit within each group i is

set to preserve the labor force participation of that group at the same level as in the baseline.

This avoids confounding effects due to group-level labor supply responses in equilibrium.

To facilitate comparisons to rents in the baseline model, where bijt are allowed to vary

across (i, j) pairs, we hold wages fixed at their baseline levels. Therefore, the exercise conveys
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Average Rents (year 2000 $)

Year Non-Routine Cognitive Routine Cognitive Non-Routine Manual Routine Manual

(1) (2) (3) (4)
1980 18,728 12,137 9,142 14,316
1990 19,421 12,812 9,191 13,246
2000 22,009 13,840 9,812 13,167
2010 21,626 12,661 8,394 11,439
2018 22,625 13,169 8,834 11,752

Table 4: Estimated average rents by year and occupation category.

Difference in average rents within occupation group
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Figure 8: Counterfactual exercises: changes in employment rents (in year 2000 dollars, relative
to baseline estimates) when latent employment values are set to be the same for all workers.
Changes are reported by year and by broad occupation category.

information about the influence on rents of heterogeneity in systematic latent match values,

holding constant both wages and group-level labor supplies.

Figure 8 shows differences in the average rent (in year 2000 $) by occupation category.

Removing variation in systematic latent values induces a significant drop in rents in non-

routine cognitive occupations with some of the changes reaching almost 3, 000 dollars per

year, which is roughly 20% of the average NRC rent in 2018.

These losses are in stark contrast to the positive changes in other occupations. For exam-

ple, removing heterogeneity of the bijt latent values in non-routine manual matches increases

rents in those occupations up to 4, 000 dollars per year, or over 45% of the average NRM

rent in 2018. This is evidence that a large share of estimated rents is driven by systematic

components of latent match values. Workers in routine and manual jobs would be better off if
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systematic latent match values were equalized across occupations but workers in non-routine

cognitive occupation would enjoy lower rents.

Wage dispersion and rents. It is conceivable that employment rents vary with job

characteristics. For example, one might ask whether occupation-specific wage risk matters

for workers’ rents. In Appendix J we explore this question by examining the relationship

between the dispersion of wages within each ijmt-cell and average rents. We find that more

wage dispersion is associated with higher rents. A 10-dollar increase in the standard deviation

of wages is associated with a 4.3% increase in monetary rents. Moreover, the same increase in

risk is associated with a positive change of about 0.3 standard deviations in total match value.

Both the observable and latent components of surplus contribute to the positive risk-return

relationship; however, the latent value accounts for a larger share of total surplus in riskier

occupations. This implies that latent employment values are proportionally larger, as a share

of total surplus, in occupations that exhibit more wage dispersion.

4.3 Compensating differentials

Jobs combine different bundles of wages and latent returns and occupational choices entail

a trade-off between them. Given the discrete nature of match value components and the

fact they cannot be freely exchanged within a given job, assessing the trade-off is not trivial.

In what follows we illustrate how one can estimate compensating differentials for different

occupation-worker cells by considering workers at the margin of the occupation choice. By

focusing on workers who are close to indifference between their current occupation j and their

second best option j′ (see Lamadon et al., 2022), it is possible to identify the marginal rate of

substitution between observable and latent components within each worker-occupation pair.7

If we consider a marginal worker ι, the compensating differential between occupations j

and j′ is the difference between the utility worker ι would get in the second best occupation

if it was paid at the same rate as their current occupation, and the utility they get from their

current job. We denote the compensating differential between j and j′ as CDι
ijj′mt and define

it as:

CDι
ijj′mt = Ũi(wijmt, yimt) + bij′t + θιj′ − Ũi(wijmt, yimt)− bijt − θιj

In Appendix G we show that CDι
ijj′mt can be written as:

CDι
ijj′mt = Ũi(wijmt, yimt)− Ũi(wij′mt, yimt) = CDijj′mt.

The quantity CDijj′mt does not depend on the identity of the individual worker ι but only

on their observed characteristics. We can then define the compensating dollar value as the

7Empirical studies often define compensating differentials as the covariance between wage and non-wage
components (see Lehmann, 2022). In Appendix H, we revisit our findings using this alternative definition.
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Figure 9: Average absolute compensating differentials by year. Values are in year 2000 dollar-
equivalents.

reduction in labor income from the current occupation that makes CDijj′mt = 0,

uc(wijmthijmt + yimt − CD$
ijj′mt)− uh(hijmt) = uc(wij′mthij′mt + yimt)− uh(hij′mt). (21)

Estimates of compensating differentials. For each (i, j,m, t) cell, we compute the

mean absolute compensating differential as:

CD
$
ijmt =

∑
j′=1,..,J ;j′ ̸=j

ωijj′mt|CD$
ijj′mt|

where the weights are a function of employment shares (ωijj′mt =
µij′mt∑

j′′=1,..,J;j′′ ̸=j′ µij′′mt
).

Figure 9 shows employment-weighted averages of CD
$
ijmt by year, documenting an in-

creasing pattern whereby their values approximately doubled between 1980 and 2018.

In Figure 10 and Table 5 we show averages of the mean absolute compensating differentials

by year and occupation category. These measures are obtained by considering marginal work-

ers who are indifferent between two jobs in the same occupation category. Compensating

differentials are highest in non-routine jobs and we find evidence that they have grown in all

occupation categories. Figure 11 and Table 6 report compensating differentials after condi-

tioning on year and worker type. These estimates suggest that college men experienced the

largest growth in mean absolute compensating differentials, from a value of less than $10, 000

to almost $18, 000 over the sample period.
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Average compensating differentials by broad occupation category

Non-Routine Cognitive Routine Cognitive Non-Routine Manual Routine Manual
0

2000

4000

6000

8000

10000

12000

14000

1980

2000

2018

Figure 10: Averages of absolute compensating differentials by occupation category and year.
All values are in year 2000 dollars.

Average Compensating Differentials (year 2000 $)

Year Non-Routine Cognitive Routine Cognitive Non-Routine Manual Routine Manual

(1) (2) (3) (4)
1980 7,571 4,216 7,618 4,111
1990 8,135 5,341 8,927 5,380
2000 11,588 6,800 10,113 6,672
2010 11,197 7,684 10,988 7,216
2018 11,840 8,106 10,967 7,839

Table 5: Averages of absolute compensating differentials (CD
$
ijmt) by year and occupation

category.
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Average compensating differentials by demographic group
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Figure 11: Averages of absolute compensating differentials by worker group and year. All
values are in year 2000 dollars.

The large and growing magnitudes of compensating differentials across occupation and

demographic categories indicate that latent components of job values are being exchanged at

higher prices than before. As we discuss below, we find evidence that these shifts are strongly

associated to mobility across occupation pairs.

Compensating differentials and occupational mobility. Compensating differen-

tials allow workers to trade off differences between pecuniary and latent returns by switching

occupations. To illustrate this trade off, consider two occupations, denoted as A and B, which

offer the same wage rate; however, A offers more amenities than B. For simplicity, suppose

that workers are homogeneous and value the latent aspects of each occupation in the same

Average Compensating Differentials (year 2000 $)

Year All College Men College Women Non-College Men Non-College Women

(1) (2) (3) (4) (5)
1980 5,552 9,532 6,925 5,186 3,861
1990 6,706 11,127 6,874 6,122 5,262
2000 8,878 16,945 9,020 7,512 6,184
2010 9,405 15,492 10,123 7,797 7,427
2018 10,018 17,556 10,823 7,912 6,657

Table 6: Averages of absolute compensating differentials (CD
$
ijmt) by year and worker group.
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way. If workers can freely move across occupations, those in B would rationally switch to A. In

equilibrium, this flow of workers would cause a change in relative wages up to the point where

the total return in occupation A equals that in occupation B. When occupational mobility is

not impeded, equilibrium forces result in systematic compensating differentials that equalize

total returns. By the same token, higher switching costs and less mobility would imply that

latent components are less accurately reflected in wage differences. For this reason, compen-

sating trade-offs may appear lower when job mobility is limited and wages do not consistently

respond to changes in the value of latent components.

In Appendix I we examine the relationship between compensating differentials and occu-

pational mobility (Kambourov and Manovskii, 2008; vom Lehn et al., 2022) by using workers’

gross flows across occupation pairs as a proxy for the cost of occupational mobility (see Cortes

and Gallipoli, 2018). Appendix Table 23 shows that compensating differentials respond to

changes in mobility across occupation pairs. A 1% increase in the flow of workers within an

occupation pair is associated with an almost 10% increase in the monetary value of compen-

sating differentials.

5 Technological Progress with a Changing Workforce

The distributions of pecuniary and latent components of surplus have experienced significant

changes since 1980. To account for the interaction between these forces, and assess their

contributions to long-term shifts in employment and wages, we use the equilibrium framework

developed in Section 2.

We perform two sets of exercises to explore the quantitative impact of different sources

of structural change. First, we ask how employment and wages would have changed if the

distribution of latent employment returns had stayed at its 1980 levels. Second, we compute

counterfactuals holding constant technology parameters at their 1980 levels.

To separately account for partial and general equilibrium effects, we consider two addi-

tional counterfactual experiments: in one, we compute employment changes in different years

holding wages at their 1980 levels. This shows how employment responded to changes in

latent employment values in the absence of general equilibrium price responses. In another

counterfactual, we explore wage changes holding constant quantities (employment shares) at

their 1980 levels. This illustrates the partial equilibrium effects of technological progress when

employment responses are restricted.

We find evidence of an ongoing race between technological transformation and a changing

workforce. Increases in the supply of educated workers and their productivity have resulted

in a larger surplus for an expanding set of worker-job matches.

While changes in employment are largely explained by shifts in latent returns from em-

ployment, technology has the most prominent influence on the distribution of wages. The
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Figure 12: Changes in employment rates by demographic group. Comparisons of baseline and
counterfactual scenarios between 1980 and 2018. Changes are in percentage points.

latter do respond to employment shifts but their responses are offset by technological change.

Such patterns occur in most occupations but are especially salient in the cognitive ones, which

are those where latent rents are highest. Workers in these occupations, especially educated

women, have enjoyed a combination of higher employment, higher wages, and growing rents.

5.1 Counterfactual exercises: employment changes by worker type

Figure 12 plots the 1980-2018 cumulative employment changes in four demographic types

defined by gender and education.8 The black bars show the historical percentage change in

employment.

Participation has declined for men since 1980: the drop was small for college-educated

men (one percentage point) and more substantial for the less educated (-4 percentage points).

Changes are more pronounced among women, with both high-education (+15) and low-

education (+14) individuals experiencing higher employment.

The counterfactual experiments reveal that changes in labor force participation of both

men and women respond to latent components of returns. In fact, holding latent values at

their 1980 level has by far the largest impact on employment outcomes (as opposed to holding

technology or wages fixed).

8Plots of the evolution of employment, alongside wages, are in Appendix L.
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When we hold technology parameters at their 1980 level, we see that technological change

has had an asymmetric effect on men depending on their education. For college males, tech-

nological change has offset the negative impact of latent returns on labor force participation.

Employment rates for college men would be much lower if technology parameters were the

same as in 1980. For non-college men, however, technology and latent values have both

contributed to much lower employment rates.

The patterns are different among women: latent returns and technology have both lifted

female labor force participation. For low-education women, latent returns explain most of

the observed employment growth. For college-educated women, latent returns are the main

driver of higher employment but technology accounts for a non-trivial part (about a quarter)

of their employment growth.9

While gender patterns of employment are strikingly different over the sample period, it

appears that technology has boosted employment among all educated workers while having a

muted (or outright negative) impact on less educated ones.

The rightmost bar in each panel shows the partial equilibrium impacts of changes in

latent components of returns. This is done by holding wages at their 1980 level so that the

counterfactuals allow for changes in latent returns but shut down wage responses. In all

four panels, the outcomes closely align with the bars corresponding to the fixed technology

scenario, suggesting that price adjustments have little impact on employment. As we show

below, however, equilibrium responses are stronger when we consider employment shares

across occupation categories, which indicates that price responses do matter for the occupation

composition.

5.2 Counterfactual exercises: employment changes by occupation category

In Figure 13, we summarize counterfactuals designed to assess how changes in technology and

latent returns have influenced employment in four broad occupation categories (defined in

Table 1).

The black bar in the top-left panel shows the well-documented increase in non-routine

cognitive (NRC) employment. From 1980 to 2018 the NRC employment share climbed by 10

percentage points. How much did technological change contribute to this run-up? Holding

technology parameters at their 1980 values, we can account for roughly three-quarters of

the increase in NRC employment, while holding latent returns at their 1980 values we can

explain about 85% of this increase. This implies a significant contribution from technology,

considerably larger than the contribution of latent components. The rightmost bar in each

panel shows partial equilibrium outcomes where wages are held at their 1980 levels.

It is interesting to compare the fixed wage experiments to the fixed technology ones because

9Technology shares subsume possible shifts in wage discrimination (see Hsieh et al., 2019).
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Figure 13: Changes in employment shares by occupation category. Comparison of baseline
and counterfactual scenarios between 1980 and 2018. Changes in percentage points.

in both counterfactuals the effects of technological change are muted. The difference between

the two counterfactuals is that the fixed-technology experiment allows for price responses

to other exogenous labor supply changes (workforce composition), which seem to make a

noticeable difference for NRC employment. What we learn is that technological and workforce

composition changes have been comparatively more important drivers of NRC employment

than latent employment values. The importance of workforce composition changes is also

apparent from the observation that none of the counterfactuals implies employment changes

close to zero.

The second fastest growing occupation category was non-routine manual jobs (NRM),

which experienced employment growth of about 5 percentage points. Unlike NRC occupations,

this increase was almost exclusively driven by latent return components (when we hold them to

their 1980 level, NRM employment growth collapses). Technological change and equilibrium

price adjustments contributed little to NRM employment patterns.

The top-right panel performs similar exercises for routine cognitive (RC) jobs, showing a

slight decline in the employment share for such occupations (approximately, a 1.5 percentage

points drop). Counterfactual experiments suggest that technology has contributed the most

to this drop.

Lastly, the bottom-right panel shows outcomes for routine manual (RM) jobs. Technology

33



1980-2018 Change in Hourly Wages ($)

Non-College Men

Actual

Fixed employment

Fixed la
tent v

alues

Fixed te
chnology

-7

-6

-5

-4

-3

-2

-1

0

1
College Men

Actual

Fixed employment

Fixed la
tent v

alues

Fixed te
chnology

-2

0

2

4

6

8

10

College Women

Actual

Fixed employment

Fixed la
tent v

alues

Fixed te
chnology

-2

0

2

4

6

8

10
Non-College Women

Actual

Fixed employment

Fixed la
tent v

alues

Fixed te
chnology

-7

-6

-5

-4

-3

-2

-1

0

1

Figure 14: Changes in average hourly wage by demographic group. Actual versus counterfac-
tual scenarios between 1980 and 2018.

and latent surplus both contributed to a 6 percentage point employment fall in these occupa-

tions, with technology having a stronger influence. The difference between partial equilibrium

and fixed technology outcomes suggests that general equilibrium effects mitigated the nega-

tive impact of technological change on routine manual employment. As workers flew out of

those jobs, marginal returns did increase and this, in turn, slowed the workers’ outflow.

To sum up, technological change has been a key driver of run-ups in the share of cognitive

and routine manual jobs. In NRM occupations the largest contribution has come from latent

return components.

A comparison between Figure 12 and 13 (in particular, the counterfactual exercises in

which we keep technology at its 1980 level) shows that, while technology has had a limited

impact on the overall labor force participation of each demographic group, it did have a signif-

icant impact on the type of occupation workers chose. Figure 13 illustrates that technological

change has contributed to the shift from routine occupations to non-routine ones, especially

in cognitive jobs.

5.3 Counterfactual exercises: wages

We use a similar approach to examine the forces that underpin wage changes. Figure 14 shows

actual and counterfactual wage changes for different worker types. Between 1980 and 2018
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Figure 15: Changes in average hourly wage in four occupation categories. Actual versus
counterfactual scenarios between 1980 and 2018.

hourly wages increased significantly for college graduates (right panels). This was mostly

driven by technological change while the equilibrium effects originating from latent compo-

nents were fairly small. Their low magnitude can be appreciated by looking at the small gaps

between “fixed employment” and “fixed latent” experiments.

In contrast, wages for non-college men declined over the sample period. Also in this case

technological change was the main contributor, with equilibrium effects mitigating the wage

drops of non-college men.

The bottom left panel shows that low-education women experienced a small increase in

wages, which contributed to the substantial reduction of their wage gap with men. Technology

was again a key driver of these patterns.

Figure 15 illustrates the actual and counterfactual changes in hourly wages by occupation

category. Striking changes are apparent in non-routine cognitive (NRC) and routine manual

(RM) occupations. The wage changes in these two occupation categories mirror those observed

among college graduates and non-college men in Figure 14. This is not surprising as NRC

occupations are predominantly performed by college graduates (men and women) while RM

occupations are largely populated by non-college men.
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Counterfactual percentage differences relative to observed 2018 wages.

Demographic group
Holding fixed: Collge Men College Women Non-College Men Non-College Women
1980 Employment share 3.82% 6.68% -11.30% -2.85%
1980 Pop. composition and bijt 1.93% -0.93% -4.93% -4.80%
1980 Pop. composition only 0.32% 1.39% -6.79% -5.74%
Wage/hour in 2018 29.9 22.3 14.6 11.8

Table 7: Counterfactual percentage differences relative to 2018 observed wages. Dollar values
in the last row are expressed in year 2000 $.

Accounting for changes in workforce and technology. The evidence presented

above suggests that, between 1980 and 2018, technological change played a pivotal role in

shaping relative wages. At the same time, the workforce changed significantly in terms of its

composition and latent valuations of employment. How did these changes interact with each

other? We examine this question by breaking down wage changes into incremental responses

following the initial partial equilibrium impact of technological change.

Table 7 shows wage deviations (in percentage terms) relative to the 2018 baseline wage val-

ues. Each row in the table (except the bottom row) reports the counterfactual wage deviation

as we sequentially allow for different layers of employment responses. The bottom row shows

the baseline dollar value of hourly wages in 2018. Each column identifies a demographic group

(by gender and education). The first row shows the wage deviations when the distribution of

total employment is the same as in 1980. This partial equilibrium counterfactual corresponds

to the one described in Figure 15 and only reflects the direct effect of technological change on

wages. The positive gaps for college workers, as opposed to the negative ones for non-college

workers, confirm the asymmetric impact of technology across education groups.

In the second row, we allow for employment responses while holding latent values bijt as

well as the population composition fixed at their 1980 levels. A comparison between the first

row (1980 Employment) and the second (1980 Pop. Composition and bijt) illustrates how the

equilibrium responses to technological change have depressed the wages of college graduates,

especially those of women.

Growing returns to cognitive and non-routine manual occupations (see Figure 4) have

attracted more workers partially offsetting the growth in the wages of college educated workers,

who are initially more likely to be employed in these occupations, and the decline in the wages

of non-college men who are over-represented in routine manual occupations in 1980.

As shown in Figure 12, technological change has contributed to an increase in the labor

force participation of college women. This increase is reflected in the larger fall in their wages,

relative to men, when we allow for employment responses. Finally, non-college women, who

are initially more likely to be employed in non-routine manual occupations, suffered from

increased competition from men entering these occupations.
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In the third row, we allow for the historical changes in latent valuations of employment

while holding the population composition fixed. Therefore, the deviations shown in the third

row are due exclusively to changes in workforce demographic composition between 1980 and

2018.

This exercise illustrates how the shrinking share of non-college workers has lifted the wages

in this group. When we hold the workforce composition fixed at its 1980 levels, the wages

of non-college workers are 6− 7% lower than observed. As expected, the opposite occurs for

college graduates, whose ranks have grown, although magnitudes are smaller.

The growing share of college graduates has increased the supply of labor in cognitive

occupations which college graduates are more likely to populate, partially offsetting the direct

effect of higher productivity. This effect is especially strong among women who, over time,

have reversed the college gap with men. An inverse effect is apparent in the wages of non-

college workers: the reduction in their number mitigates the negative impact of technological

change on their wages.

These findings highlight the presence of significant equilibrium responses due to changes

in workforce composition and latent employment valuations. If we contrast these responses

to those shown in Figure 14, we further confirm the prominent quantitative impact of tech-

nological change on relative wages.

6 Extensions and Robustness

In what follows we consider some extensions and assess robustness to alternative assumptions.

First, we estimate a version of the model where latent returns can vary across labor markets.

Second, we compute alternative measures of compensating differentials. Third, we consider a

model with endogenous capital in intermediate production and use it to check the robustness

of the empirical relationships estimated in the baseline model.

6.1 Variation in latent values across locations

The systematic components of latent surplus could, in principle, vary systematically across

locations. In Appendix K we study a model specification that allows for heterogeneity in latent

returns over time and across markets. Identification requires that we impose restrictions on

the structure of latent factors. To this purpose, we cast the component bijmt as the sum of a

time-varying demographic-and-occupation component (like in the baseline model) and a term

that can change across market-occupation pairs. The latter term reflects possible differences

in the latent value of an occupation due to location-specific features. In practice, this amounts

to redefining bijmt = bijt+ bjm and identification requires that all values be estimated relative

to a reference region-occupation bjm.
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Table 25 in Appendix K shows estimates of the bjm for different census regions and oc-

cupations. While most estimates of local effects are significant, their values are rather small

relative to the bijt components. A variance decomposition illustrates that the contribution

of the local bjm terms is less than one percent of the total variance of systematic latent re-

turns bijmt. These magnitudes imply little or no influence of the variation in bjm on baseline

findings.

6.2 Alternative measures of compensating differentials

The baseline definition of compensating differentials emphasizes the trade-off between ob-

served wages and latent employment values faced by workers who are marginal in their occu-

pation choice. The compensating differential between occupations j and j′ is the difference

between the utility a worker would get in the second best occupation if it was paid at the

same rate as their current occupation, and the utility they get from their current job. By

definition, this measure includes the idiosyncratic valuations of the two marginal occupations.

On the other hand, the empirical literature often resorts to an indirect measure of com-

pensating differentials based on covariation between current wages and proxies of non-wage

compensation.

To relate our findings to these alternative measures, in Appendix H we report two different

measures of covariation between the value of observed wages and latent components of overall

returns. The first measure is based on the value of cov(uc(cijmt) − uih(hijmt), bijt), which we

estimate for each year and demographic group. Panel A of Appendix Table 22 reports the

results of this exercise, documenting a positive and increasing covariance for college graduates,

with pronounced growth among men. For non-college workers we find negative covariations,

with a trend towards lower covariances among men. The positive and increasing covariances

for college men are in line with findings in Lehmann (2022), which estimates wage and non-

wage compensation for a sample of male workers who experience job-to-job transitions.

The covariances reported in Panel A of Table 22 do not account for the idiosyncratic job

valuations across workers in the same demographic group. We extend our analysis and, as

shown in Panel B of Appendix Table 22, we report measures of covariation that include the

average of the idiosyncratic workers’ valuations within each cell. The cell-specific averages

of idiosyncratic job values θ̄ijmt are obtained through model simulations and we use them to

estimate the following covariances:

cov(uc(cijmt)− uih(hijmt), bijt + θ̄ijmt).

The resulting measures account for the idiosyncratic component of latent values and are

different from estimates in Panel A. Specifically, Panel B shows negative and diminishing

covariations for all demographic groups. This indicates the presence of positive and increas-
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ing compensating differentials and is consistent with estimates for the baseline definition of

compensating differentials.

6.3 Capital inputs in intermediate production

In Appendix C we examine the robustness of the main empirical relationship to the introduc-

tion of capital inputs in production. Specifically, we generalize the intermediate production

technology to account for endogenous capital choices. This analysis shows that, just like in the

baseline model, the distribution of labor inputs in the cross-section of intermediate good pro-

ducers can be expressed as a simple function of relative productivities (producer-level TFPs).

Moreover, we find that the empirical relationship in equation (11), used to recover technology

parameters, remains valid. Both shares and elasticities can be recovered using the baseline

identification strategy. The one difference is that a correction must be applied to account for

capital shares in the estimation of the elasticity of substitution between worker-occupation

aggregates. This follows from the observation that, in the baseline model, the ϕ parameter in

equation (11) gives a point estimate of (ρbase−1), where ρbase denotes the baseline estimate of

the substitution parameter ρ. Solving a model with endogenous capital inputs, however, we

show that ϕ delivers an estimate of ρ−1
1−ρ(1−γ) and 1− ρbase = 1−ρ

1−ρ(1−γ) , where γ is the capital

share in intermediates’ production.

Assuming a positive value of γ means that the baseline estimate ρbase is a lower bound of

the curvature parameter ρ. This results in an upward rescaling of the elasticity of substitution.

In turn, this suggests that estimates of price responses in the counterfactuals are an upper

bound of the equilibrium effects. For example, given the baseline estimate of ϕ̂ = −0.61 in

(11), if we set γ = 2/3 we obtain ρ = 0.49 and an elasticity of substitution of 1.96 (as opposed

to the 1.65 of the baseline elasticity estimate in Table 2).

7 Conclusions

Significant labor market shifts have occurred since the 1980s in both employment and wages.

Such changes convey information about different components of worker-occupation match

values. We suggest an approach to estimate these components by combining data on employ-

ment, earnings and hours worked within an equilibrium model of the labor market.

We model jobs as bundles of observable and latent characteristics that cannot be separately

acquired. The analysis emphasizes that similar jobs have different values to different workers.

Since employers cannot condition wages on latent returns, rents emerge in equilibrium. At the

margin, compensating differential can be defined by considering workers whose employment

rents are close to zero. We estimate average rents and compensating differentials for all

worker-occupation pairs.
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Our estimates indicate that employment rents have risen among educated workers while

stagnating for others. At the same time, compensating differentials increased in most jobs.

Compensating differentials are strongly associated with occupational mobility, which suggests

that workers may use job mobility to trade off alternative occupation characteristics.

These findings suggest that the U.S. workforce has changed in composition and in latent

valuations of employment since 1980. At the same time, large shifts in production arrange-

ments and technology have reshaped the demand side of the labor market. To bring together

demand and supply of match-specific inputs, we consider a technology that employs match-

specific intermediate inputs, estimate its parameters and use it to gauge the intensity of

equilibrium responses to technological change and to shifts in the distribution of latent match

values. Endogenous wage responses, mediated by a production technology that aggregates

worker-occupation inputs, make it possible to characterize both employment and earnings as

equilibrium outcomes.

To quantify the contribution of demand and supply forces to observed labor market pat-

terns, we design counterfactual exercises that compare the influences of technological progress

and of changes in latent match values on the distribution of workers across jobs and their

compensation. This analysis suggests that shifts in latent match values are important when

accounting for employment patterns. For example, had latent returns stayed at their 1980

levels, the participation of both high and low education men would be much higher in 2018.

Technological change has had asymmetric effects on the labor market participation of male

workers: while it offset the negative impact of drops in latent returns among college-educated

men, it further reduced the participation of non-college men.

The picture looks different among women, as changes in latent returns and technology

reinforced each other to bolster female labor force participation. For non-college women,

latent returns and technological change contributed similarly to increased participation. For

college-educated women, the main contribution has come from technological change.

The equilibrium analysis indicates that the evolution of wages in worker-occupation matches

is largely explained by technological change. Price responses due to shifts in occupation

headcounts, while present, are less prominent than the price effects induced by technological

transformation.
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A Identification and estimation

This section discusses the identification and estimation of model parameters and provides an

overview of the empirical analysis.

Identification: utility and technology parameters

To show the identification of the structural parameters, we consider a simplified version of

the model in which non-labor income is zero for all workers, and we show that we can identify

all the parameters even without exploiting the empirical variation in this dimension. This

assumption simplifies the problem by allowing us to derive a closed form solution to the

first order condition. First consider the time-consumption problem described in equation (1).

With the assumed functional forms, the problem becomes

Uijmt = max
hijmt

c1−σ
ijmt − 1

1− σ
− ψi

h1−γ
ijmt

1− γ
+ bijt

s.t. cijmt = wijmthijmt

(22)

the associated first order condition in logarithmic form is

log (hijmt) = − 1

σ − γ
log (ψi) +

1− σ

σ − γ
log (wijmt) (23)

The empirical counterpart of this is

log (hijmt) = αi + β log (wijmt) + ϵ1ijmt ≡ f
(
Xijmt, Ω̃i

)
+ ϵ1ijmt (24)

with

αi = − 1

σ − γ
log (ψi) β =

1− σ

σ − γ
(25)

With the linear specification of f(·, ·), moments (12) and (13) describe an OLS estimator of

(24). From the estimation of the latter equation we can obtain γ and ψi as a function of σ:

γ = σ − 1− σ

β
ψi = exp

(
−1− σ

β
αi

)
(26)

We are now left with three sets of parameters to estimate, namely σ, σθ, and bijt, and at

least three moments from equations (14) and (15), given that Z2
ijmt has at least two elements
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Z2
1,ijmt and Z

2
2,ijmt. From eq. (14) we have

b̃ijt = E

Υijmt −
uc

(
wijmtĥijmt

)
− uih

(
ĥijmt

)
− uc (0)

σθ

∣∣∣∣∣∣i, j, t
 (27)

where b̃ijt =
bijt
σθ

. Plugging this into (15) gives

E

Υijmt −
uc

(
wijmtĥijmt

)
− uih

(
ĥijmt

)
− uc (0)

σθ

−E

Υijmt −
uc

(
wijmtĥijmt

)
− uih

(
ĥijmt

)
− uc (0)

σθ

∣∣∣∣∣∣i, j, t
Z2

ijmt

 = 0 (28)

which is a system of at least two equations in two unknowns, σ and σθ, which drives the

identification of the latter. Once σ and σθ are identified, eq. (27) identifies bijt.

Production function identification.

On the firm side, taking the ratio between the wages for two demographic groups within an

occupation (eq. (7)),we have that
wijmt

wi′jmt
=
βijt
βi′jt

(29)

which shows that the β’s are directly identifiable from wage data as long as we normalize the

value of the β’s for one demographic group (e.g. setting β1jt = 1 for all j and t). Taking a

similar ratio within demographic groups across occupations and using market clearing gives

wijmt

wij′mt
=

αjtβijt
αj′tβij′t

(
L̃j′mt

L̃jmt

)1−ρ

=
αjtβijt
αj′tβij′t

(∑
i′ βi′j′tLi′j′mt∑
i′ βi′jtLi′jmt

)1−ρ

(30)

Once we know the β’s, we can identify the α′s (up to a normalization) and ρ’s as follows.

Taking the log of eq. (30) for j′ = 1 gives

log

(
wijmt

wi1mt

)
= log

(
αjt

α1t

)
+ log

(
βijt
βi1t

)
+ (ρ− 1) log

(∑
i′ βi′jtLi′jmt∑
i′ βi′1tLi′1mt

)
(31)

Since, at this point, the β’s are known, one can compute Λjmt = log
(∑

i′ βi′jtLi′jmt∑
i′ βi′1tLi′1mt

)
,

Bijt =
βijt

βi1t
and Wijmt = log

(
wijmt

wi1mt

)
and regress the latter on Λjmt and a set of occupation

dummies γ, separately for each year:

Wijmt = γjt + ψBijt + ϕΛjmt + ϵijmt (32)

45



Then the α’s are identified by
αjt

α1t
= eγ̂jt imposing

∑
j αjt = 1 for each t, and ρ by ρ =

(
1 + ϕ̂

)
.

Once all these parameters are identified, the TFP parameters A’s are identified as residuals

using the fact that in our model, thanks to the constant returns to scale assumption, total

production is Υmt =
∑

i

∑
j wijmtLijmt.

46



B Production sector: derivations

In this appendix, we report all the derivations concerning the production function. To reduce

notation cluttering we omit the time and market indexes in all the equations.

We begin by considering the intermediate firm’s problem in eq. (5) that, plugging the

constraints into the objective function, becomes

max
Lijv

PY (1−ρ)zρjv

(∑
i

βijLijv

)ρ

−
∑
i

w̃ijLijv (33)

the associated first order condition is

w̃ij = PY (1−ρ)zρjvρ

(∑
i′

βi′jLi′jv

)ρ−1

βij (34)

For any two firms v, v′ ∈ Vj the latter gives

zρjv

(∑
i

βijLijv

)ρ−1

= zρjv′

(∑
i

βijLijv′

)ρ−1

(35)

∑
i

βijLijv′ =
z

ρ
ρ−1

jv

z
ρ

ρ−1

jv′

∑
i

βijLijv (36)

Integrating over v′ ∈ Vj we get

∑
i

βijLij = z
ρ

ρ−1

jv

∫
v′∈Vj

1

z
ρ

ρ−1

jv′

dv′
∑
i

βijLijv (37)

∑
i

βijLijv = z
−ρ
ρ−1

jv

∫
v′∈Vj

1

z
ρ

ρ−1

jv′

dv′

−1∑
i

βijLij (38)

The aggregate production function is given by

Y =

(∫
v
υρjvdv

) 1
ρ

(39)

=

∑
j

∫
v∈Vj

υρjvdv

 1
ρ

(40)

=

∑
j

∫
v∈Vj

zρjv

(∑
i

βijLijv

)ρ

dv

 1
ρ

(41)
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Using (38) this gives

Y =

∑
j

∫
v∈Vj

zρjv

(∑
i

βijLijv

)ρ

dv

 1
ρ

(42)

=

∑
j

∫
v∈Vj

z
ρ

1−ρ

jv dv

∫
v′

1

z
ρ

ρ−1

jv′

dv′

−ρ(∑
i

βijLij

)ρ


1
ρ

(43)

=


∑
j

(∫
v∈Vj

z
ρ

1−ρ

jv dv

)1−ρ

︸ ︷︷ ︸
α̃j

(∑
i

βijLij

)ρ


1
ρ

(44)

=

∑
j

α̃j

(∑
i

βijLij

)ρ
 1

ρ

(45)

= A

∑
j

αj

(∑
i

βijLij

)ρ
 1

ρ

(46)

where αj =
α̃j∑
j′ α̃j′

and A =
(∑

j′ α̃j′

) 1
ρ
. Moreover, substituting (38) into (34) we have

w̃ij = PY (1−ρ)ρ

(∫
v∈Vj

z
ρ

1−ρ

jv dv

)1−ρ

︸ ︷︷ ︸
α̃j

(∑
i′

βi′jLi′j

)ρ−1

βij (47)

w̃ij

P
= Y (1−ρ)ρα̃j

∑
j′ α̃j′∑
j′ α̃j′

(∑
i′

βi′jLi′j

)ρ−1

βij (48)

wij = ρAραjβij

(
Y∑

i′ βi′jLi′j

)(1−ρ)

(49)

where wij =
w̃ij

P .
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C Model with capital inputs

The setup is similar to the baseline model. Here, we assume that intermediate good producers

also use capital in production. They solve

max
pjv ,λjv ,Lijv

pjvλjv −
∑
i

w̃ijLijv − rKjv (50)

s.t. λjv = zjv

(∑
i

βijLijv

)γ

(ηjKjv)
1−γ (51)

pjv =

[
λjv
Y

]−(1−ρ)

P (52)

Equivalently

max
Lijv

PY (1−ρ)zρjv

(∑
i

βijLijv

)ργ

(ηjKjv)
ρ(1−γ) −

∑
i

w̃ijLijv − rKjv (53)

The associated first order conditions are

w̃ij = PY (1−ρ)zρjvργ

(∑
i′

βi′jLi′jv

)ργ−1

(ηjKjv)
ρ(1−γ) βij (54)

and

r = PY (1−ρ)zρjvρ (1− γ)

(∑
i′

βi′jLi′jv

)ργ

(ηjKjv)
ρ(1−γ)−1 ηj (55)

Dividing the two first order conditions by each other we get

w̃ij

r
= βij

γ

1− γ

Kjv∑
i′ βi′jLi′jv

⇒ Kjv =
wij (1− γ)

rγβij

∑
i′

βi′jLi′jv (56)

Notice that this implies

Kjv∑
i′ βi′jLi′jv

=
w̃ij (1− γ)

rγβij
=

Kj∑
i′ βi′jLi′j

(57)

where Kj =
∫
v′∈Vj

Kjvdv and Lij =
∫
v′∈Vj

Lijvdv.

Using (56) into (54) we get

w̃ij =

(
w̃ij

r

)ρ(1−γ)

PY (1−ρ)zρjvργ
1−ρ(1−γ) (1− γ)ρ(1−γ) η

ρ(1−γ)
j

(∑
i′

βi′jLi′jv

)ρ−1

β
1−ρ(1−γ)
ij

(58)
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wij = Ξη
ρ(1−γ)

1−ρ(1−γ)

j z
ρ

1−ρ(1−γ)

jv βij

(∑
i′

βi′jLi′jv

) ρ−1
1−ρ(1−γ)

(59)

where Ξ =

[
Y (1−ρ)ργ

(
1−γ
rγ

)ρ(1−γ)
] 1

1−ρ(1−γ)

and wij =
w̃ij

P as before.

Notice that (59) implies the same relationship described in (36) and, thus, equation (38).

Using (38) in (59) we get

wij = ΞΛjβij

(∑
i′

βi′jLi′j

) ρ−1
1−ρ(1−γ)

(60)

where Λj = η
ρ(1−γ)

1−ρ(1−γ)

j

(∫
v∈Vj

1

z
ρ

ρ−1
jv

dv

) 1−ρ
1−ρ(1−γ)

. Dividing the latter by the same equation for

j = 1 and taking logs

log

(
wij

wi2

)
= log

(
Λj

Λ1

)
+ log

(
βij
βi1

)
+

ρ− 1

1− ρ(1− γ)
log

(∑
i′ βi′jLi′j∑
i′ βi′1Li′1

)
(61)

The empirical counterpart of this equation is equivalent to that in the paper.

Wijmt = γjt + ψB̂ijt + ϕΛ̂jmt + ϵijmt (62)

However, it is not possible to recover the value of all the structural parameters from the

estimated reduced form equation.

The elasticity of substitution in production. In the baseline model we have ϕ =

ρbase − 1. In this generalized model, however, ϕ = ρ−1
1−ρ(1−γ) . Thus

1− ρbase =
1− ρ

1− ρ(1− γ)
(63)

If ρ ∈ [0, 1], then 1− ρ(1− γ) ∈ [0, 1] and 1− ρbase > 1− ρ, that is

ρbase < ρ (64)

This implies that if the baseline estimate ρbase is a lower bound of the curvature parameter ρ.

Assuming γ = 2/3, a common choice in the literature, the baseline estimate of ϕ̂ = −0.61

delivers ρ = 0.49 which implies an elasticity of substitution of about 1.96.
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NON-IV IV
(1) (2) (3) (4)

σ̂ 0.3002*** 0.2753*** 0.2859*** 0.2810***
( 0.0191) ( 0.0736) ( 0.0780) ( 0.0649)

σ̂θ 2.9685*** 2.9685*** 2.9685*** 2.9685***
( 0.1448) ( 0.4236) ( 0.2022) ( 0.2008)

Instrumental Variables
wijmt−10 No Yes No Yes
wijmt−20 No No Yes Yes
yimt−10 No Yes No Yes
yimt−20 No No Yes Yes

Bootstrapped standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 8: Results from the GMM estimator in equation (16). Prameters and standard errors
for σ̂θ are scaled down by 1000.

D Method-of-moments estimates

D.1 Preference parameters and producction technology share

Table 8 shows estimates of the curvature of consumption utility (σ) and of the scale parameters

of the extreme value preference shock (σθ). Column 1 reports estimates obtained without

using instruments. That is, Z1
ijmt includes the logarithm of contemporaneous wages and non-

labor income, Z2
ijmt are the logarithm of contemporaneous wages. In columns (2), (3), and

(4) we instrument for wages and non-labor income using their 10-year and 20-year lagged

values. We refer to column (2) as our baseline specification. Results are not sensitive to

using the estimates in columns (3) or (4). Table 17 shows estimates of the remaining utility

parameters: the weight and curvature of disutility from labor (ψ, γ). Estimates of the latent

match-specific surplus for different (i, j) matches for different years (bijt are in Tables 10-14)

As for the production function estimates, tables 15 to 19 show point estimates and standard

errors (in parenthesis) for technology input shares in different years (1980, 1990, 2000, 2010,

2018). Share estimates are presented for all occupation-worker combinations.
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NON-IV IV
(1) (2) (3) (4)

γ̂ -4.1489 -4.8535 -3.8444 -3.8444
( 0.2197) ( 0.6095) ( 0.4497) ( 0.4402)

ψi

Age 25-34

Non-college

Men 0.9982 0.0058 11.9290 11.9290
( 0.1483) ( 0.0032) ( 6.9124) ( 3.5599)

Women 1.6933 0.0109 19.2453 19.2453
( 0.2274) ( 0.0053) ( 11.0030) ( 5.8896)

College

Men 1.0692 0.0062 12.9025 12.9025
( 0.1619) ( 0.0035) ( 7.7103) ( 3.9269)

Women 1.5900 0.0099 18.4665 18.4665
( 0.2234) ( 0.0051) ( 10.8629) ( 5.6986)

Age 35-44

Non-college

Men 1.0102 0.0058 12.2070 12.2070
( 0.1536) ( 0.0033) ( 7.2603) ( 3.6975)

Women 1.6568 0.0106 18.9706 18.9706
( 0.2263) ( 0.0053) ( 10.9762) ( 5.8275)

College

Men 1.0841 0.0062 13.2802 13.2802
( 0.1692) ( 0.0037) ( 8.2564) ( 4.1372)

Women 1.9095 0.0122 22.0656 22.0656
( 0.2712) ( 0.0065) ( 13.2986) ( 7.0254)

Age 44-54

Non-college

Men 1.0745 0.0063 12.9847 12.9847
( 0.1634) ( 0.0035) ( 7.8101) ( 3.9694)

Women 1.5534 0.0098 17.8936 17.8936
( 0.2137) ( 0.0050) ( 10.3727) ( 5.4770)

College

Men 1.1466 0.0066 14.0492 14.0492
( 0.1787) ( 0.0039) ( 8.8377) ( 4.4114)

Women 1.6911 0.0106 19.6681 19.6681
( 0.2508) ( 0.0057) ( 12.1845) ( 6.3714)

Instrumental Variables
wijmt−10 No Yes No Yes
wijmt−20 No No Yes Yes
yimt−10 No Yes No Yes
yimt−20 No No Yes Yes

Bootstrapped standard errors in parentheses

Table 9: Estimates of the utility parameters realtive to the disutility of hours worked from
the GMM estimator in equation (16). Parameter estimates and standard errors for ψi are
scaled up by 1014.
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E Elasticity of labor supply

The elasticity of labor supply can be defined at the level of different worker-occupation (i, j)

cells. In what follows we overview how we estimate the distributions of different labor supply

elasticities. Next we relate these estimates to aggregate labor supply.

E.1 Uncompensated elasticity: intensive margin

To compute the uncompensated elasticity of labor supply we start from the equation that

defines the MRS between hours and wages for the intensive labor supply choice:

(wijmthijmt + yimt)
−σ = ψih

−γ
ijmt.

The total differential of the MRS is:

[
−σ(wijmthijmt + yimt)

−σ−1wijmthijmt + (wijmthijmt + yimt)
−σ
]
dwijmt+[

−σ(wijmthijmt + yimt)
−σ−1w2

ijmt

]
dhijmt = −γh−γ−1

ijmt ψdhijmt

After rearranging:

dhijmt

dwijmt
=

−σ(wijmthijmt + yimt)
−σ−1wijmthijmt + (wijmthijmt + yimt)

−σ

σ(wijmthijmt + yimt)−σ−1w2
ijmt − γh−γ−1

ijmt ψ

The uncompensated elasticity at the intensive margin is,

ϵintijmt =
dhijmt

dwijmt

wijmt

hijmt

Figure (1a) in the main body of the paper shows the distribution of the intensive margin

elasticity of labor supply in the population based on model estimates. The average elasticity

is 0.15.

E.2 Uncompensated elasticity: extensive margin

The extensive margin elasticity of labor supply is defined as the ratio of the percentage change

in the number of workers choosing a particular occupation and the percentage change in the

wage rate paid in that occupation. That is,

ϵextijmt =
dµijmt

dwijmt

wijmt

µijmt
.
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From equation (2) we get:

dµijmt

dwijmt
= µimt

eUijmt/σθ 1
θ

[
u′c(cijmt)

(
hijmt +

dhijmt

dwijmt
wijmt

)
− ui

′
(hijmt)

hijmt

dwijmt

]
[∑J

j′=0 exp (Uij′mt/σθ)
]2 J∑

j′=0,j′ ̸=j

exp (Uij′mt/σθ)

Figure (1b) shows the distribution of extensive margin elasticities in the population, obtained

from the model estimates. The average elasticity is between 0.55 and 0.60 across all years.

E.3 Uncompensated elasticity: total response

The total labor supply (hours) within each (i, j,m, t) cell is denoted as Lijmt = µijmthijmt.

We can compute the total elasticity of labor supply to changes in the wage rate within each

cell as

ϵtotijmt =
Lijmt

dwijmt

wijmt

Lijmt
=

(
dµijmt

dwijmt
hijmt +

dhijmt

dwijmt
µijmt

)
wijmt

Lijmt
(65)

Figure 2 shows the distribution of total elasticity estimates in the population. The average is

0.72. Equation (65) allows one to compute the relative contribution of the extensive margin

(first term in the summation) and the intensive margin (second term) to total elasticity. On

average the extensive margin accounts for about 78% of the total elasticity.

E.4 Aggregate elasticity

Aggregate labor supply is defined as Lt =
∑

i,j,m Lijmt. We define the aggregate elasticity of

labor supply as the percent change in aggregate supply corresponding to a percent change in

the average wage assuming that the change in the average wage is obtained by a homogeneous

change across the distribution of wages (all wages change by the same amount), namely

ϵaggt =
dLt

dw̄t

w̄t

Lt

where w̄t is the average wage and

dLt

dw̄t
=
∑
ijm

 Lijmt

dwijmt
+
∑
j′

Lijmt

dwij′mt

 .

The second summation in the latter equation captures the fact that a change in the wage rate

in one occupation affects labor supply in all the other occupations. This spill-over effect can
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be further broken down into different components,

Lijmt

dwij′mt
=
d(µijmthijmt)

dwij′mt
=

dµijmt

dwij′mt

= −µimte
Uijmt/σθ

eUij′mt/σθ 1
σθ

[
u′c(cij′mt)

(
hij′mt +

dhij′mt

dwij′mtwij′mt

)
− ui

′
h

dhij′mt

dwij′mt

]
[∑J

j′=0 exp (Uij′mt/σθ)
]2 .

The aggregate elasticity is between 0.72 and 0.78, depending on the year.

F Projecting latent returns on observables

In this appendix, we investigate the determinants of latent returns by projecting their esti-

mates on observable variables. Given data constraints, we focus on the role of geographic

amenities and of gender discrimination.

F.1 Geography and urban amenities

The distribution of job opportunities is not homogeneous across geography. Some occupations

are more concentrated in urban, densely populated areas while others are in rural, less-dense

areas. Different geographic areas are also characterized by different levels of local amenities.

As a consequence, the location of an occupation can also affect its attractiveness.

Arguably, urban areas tend to offer more and better amenities making occupations that

are concentrated in urban areas more attractive. To explore this relationship we regress our

estimates of latent returns on several measures of the geographic location of occupations.10

For each occupation we compute: (i) the fraction of workers living in urban areas, (ii) the

fraction of workers in a central city, defined as the central city of a metropolitan area, and the

fraction of workers in urban areas excluding central cities (this measure is not available for

1990), (iii) average local population (available after the year 2000). We project our estimates

of latent returns on these three measures separately for men and women.

Table 20 show the estimation results. Columns 1, 3, and 5 report the results from regress-

ing bijt on the geographic variables without any other control. For men the coefficients are

often not significant and the R2 is always very low (low explanatory power). For women we

have always significant coefficients and relatively high R2, which suggests that geography is

more important in determining the occupational choices of women than those of men. In all

cases, the coefficients are positive: jobs in urban, dense areas are preferred. Adding controls

10A caveat is in order. We must proxy job location with workers’ residence. Given this data limitation, a
more flexible interpretation is that the local-amenity value of an occupation is determined by the local amenities
that a worker can access given the geographic constraints imposed by the chosen occupation.
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for age and education (columns 2, 5, and 6) makes the estimated coefficient bigger and more

significant for both men and women.

F.2 Gender-specific frictions

Besides capturing the value of amenities associated with each occupation, our estimates of

latent returns reflect the effects of gender-specific frictions in access to some occupations.

Larger frictions for a particular demographic group cause fewer workers from this group to

enter an occupation which, in our estimates, translates into a lower estimate of the corre-

sponding bijt. In this section, we explore this hypothesis by projecting the difference of our

estimates in latent returns between women and men on a proxy for gender-specific frictions.

As a proxy for gender frictions we use differences in the occupation-specific unemployment

rate between women and men. The underlying assumption is that under competitive markets

if there is no gender-specific friction in access to an occupation, the unemployment rate

should be the same for men and women.11 Intuitively, we expect a higher difference in

unemployment rates (e.g. women’s unemployment relatively larger than men’s) to reflect

larger gender-specific frictions.

Table 21 shows the results of these projections. In Column 1, we see that the gap in un-

employment rates can explain alone 13.6% of the variation in the gender gap of latent returns.

The estimated coefficient is sizable in magnitude and of the expected sign (all variables are

standardized). An increase of one standard deviation in the unemployment gap corresponds

to a fall of 0.37 standard deviations in bijt. In Column 2 we include year fixed effects, age

and education fixed effects to control for differences in preferences of men and women that

arise with age (e.g. women of childbearing age might be less keen on working in certain

occupations), as well as education fixed effects. Results are not affected by these additional

controls.

To account for differences in productivity between men ad women, in Column 3 we include

gender gaps in estimated productivity βijt. This additional control does not affect the results

and, interestingly, the estimated coefficient on the productivity gap is negative suggesting

that women tend to be relatively more productive in occupations in which they get relatively

lower latent returns.

A possible concern is that, in occupations where the unemployment gap is largest, women

search for longer and are pickier about work conditions (e.g. flexibility in hours). Several

things can be said in this respect: (i) if the concern is about total hours worked, this shouldn’t

matter as hours are not part of the bijt as we account for them through a type-specific “disu-

11In markets where workers are paid their marginal product, differences in productivity should be reflected
in wages and not in unemployment rates. In our model, systematic differences in productivity across demo-
graphic groups are captured by the production parameters βijt. As a robustness check, we control for the βijt

parameters in the regressions estimated below.
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Men

(1) (2) (3) (4) (5) (6)
bijt bijt bijt bijt bijt bijt

Frac. in urban area 0.660 2.989∗∗

(0.728) (0.963)

Frac. in central city 4.659 5.095∗

(2.368) (2.342)

Frac. in urban area (non central) 0.424 2.547
(1.235) (1.424)

Population density 1.276∗∗∗ 1.319∗∗∗

(0.335) (0.309)

Constant -2.356∗∗∗ -4.240∗∗∗ -3.618∗∗∗ -4.720∗∗∗ -12.58∗∗∗ -13.25∗∗∗

(0.603) (0.781) (0.821) (0.978) (2.801) (2.597)

Observations 390 390 312 312 234 234
R2 0.002 0.191 0.016 0.186 0.059 0.230
Age and Education FE No Yes No Yes No Yes
Year FE No Yes No Yes No Yes

Women

(1) (2) (3) (4) (5) (6)
bijt bijt bijt bijt bijt bijt

Frac. in urban area 10.57∗∗∗ 18.99∗∗∗

(1.164) (1.576)

Frac. in central city 36.58∗∗∗ 44.90∗∗∗

(3.465) (3.516)

Frac. in urban area (non central) 4.220∗ 9.527∗∗∗

(1.808) (2.138)

Population density 5.856∗∗∗ 6.017∗∗∗

(0.460) (0.460)

Constant -12.13∗∗∗ -19.06∗∗∗ -17.69∗∗∗ -22.96∗∗∗ -52.12∗∗∗ -53.69∗∗∗

(0.965) (1.279) (1.202) (1.468) (3.839) (3.863)

Observations 390 390 312 312 234 234
R2 0.175 0.300 0.330 0.416 0.411 0.433
Age and Education FE No Yes No Yes No Yes
Year FE No Yes No Yes No Yes

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 20: Results for job location.
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(1) (2) (3) (4) (5)
Gap in bijt Gap in bijt Gap in bijt Gap in bijt Gap in bijt

Gap in unemp. rate -0.368∗∗∗ -0.371∗∗∗ -0.411∗∗∗ -0.241∗∗∗ -0.0767∗∗∗

(0.0472) (0.0458) (0.0421) (0.0343) (0.0162)

Gap in productivity -0.481∗∗∗ -0.151∗∗ 0.0624∗∗

(0.0546) (0.0488) (0.0230)

Non-Routine Cognitive -0.289∗∗

(0.102)

Routine Cognitive -0.608∗∗∗

(0.120)

Routine Manual 0.838∗∗∗

(0.0937)

Constant -0.00422 0.102 -0.111 -0.0302 -0.0388
(0.0471) (0.126) (0.118) (0.121) (0.0547)

Observations 389 389 389 389 389
R2 0.136 0.262 0.387 0.644 0.946
Age and Education FE No Yes Yes Yes Yes
Year FE No Yes Yes Yes Yes
Occupation FE No No No No Yes

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 21: Results for gender frictions.

tility of hours” term; (ii) if the concern is about work schedule flexibility, this might introduce

a bias. If women prefer jobs that allow for more flexibility and, conditional on choosing an

occupation, they search for longer to find the most flexible employer, the coefficient on the

unemployment gap would become more negative (that is, the coefficient would not only reflect

frictions but also longer search times due to preferences). For this reason, the coefficient we

estimate is a lower bound and, to get an upper bound, we add controls for occupation type

(Column 4) or occupation fixed effects (Column 5). These controls should also capture some

of the frictions’ impacts (averaged over time) and reduce the predictive power of the difference

in unemployment. That is indeed what we observe in Columns 4 and 5.
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G Analytical derivations of rents and of compensating differ-

entials

Employment rents. Average rents can be computed by solving the following integral

(Lamadon et al., 2022):

Rijmt = E[Rι
ijmt] (66)

=

∫ wijmt

0
(wijmthijmt − whi(w, yimt))

1

µijmt(wijmt)

∂µijmt(w)

∂w
dw (67)

where µijmt(wijmt) is our conditional labor supply function (eq. (3) in the paper). The term

fijmt(w) =
1

µijmt(wijmt)

∂µijmt(w)

∂w
(68)

is the conditional density function of the distribution of the reservation wage of workers of

type i choosing to work in j. In other words fijmt(w) gives the mass of workers of type i in

market j and time t who optimally chose occupation j and who are indifferent between their

chosen occupation and their second best option. Notice that the distribution of reservation

wages has a mass at w = 0 since certain workers would always choose occupation j even if

the wage rate was equal to zero.

We do not have a formed close solution for this integral but we can solve it numerically.

To do so, we notice that

∂µijmt(w)

∂w
= Bijmt(w)Cijmt(w)

Aimt(w)− Cijmt(w)

A2
ijmt(w)

µimt (69)

where

Aijmt(w) = exp

(
uc(yimt)

σθ

)
+ exp

(
uc(whi(w, yimt) + yimt)− uih(hi(w, yimt)) + bijt

σθ

)
+

(70)

+
∑
j′ ̸=j

exp

(
uc(wij′mthi(wij′mt) + yimt)− uih(hi(wij′mt)) + bij′mt

σθ

)
(71)

Bijmt(w) =
1

σθ

[
(whi(w, yimt) + yimt)

−σ − hi(w, yimt)
−γ ∂hi(w, yimt)

∂w

]
(72)

Cijmt(w) = exp

(
uc(whi(w, yimt) + yimt)− uih(hi(w, yimt)) + bijt

σθ

)
(73)

Where the function hi(w, y) can be solved numerically and the derivative ∂hi(w,y)
∂w can be

computed using the envelope theorem on the FOC for hours. Dropping the subscripts for
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clarity we have

(wh+ y)−σ w = ψh−γ (74)[
(wh+ y)−σ − σ(wh+ y)−σ−1wh

]
dw +

[
−σ(wh+ y)−σ−1w2

]
dh = −γψh−γ−1dh

∂h

∂w
=

(wh+ y)−σ − σ(wh+ y)−σ−1wh

σ(wh+ y)−σ−1w2 − γψh−γ−1

In the numerical implementation, we approximate the integral with a sum by dividing the

support [0, wijmt] into 999 equal intervals. To approximate the function hi(w, yimt) we solve

the first order equation in (9) for 500 equally spaced points over a grid of wages and we use

linear interpolation to compute the function for values of the wage rate that are off-grid.

Compensating Differentials. Consider a worker ι who is marginal at the current

occupation j and whose next best occupation is j′. If a worker is marginal, i.e. indifferent

between the first choice and the second choice, then R̃ι
ijj′mt = 0 and eq. (20) becomes

Ũi(wijmt − R̃ι
ijj′mt, yimt) + bijt + θιj = Ũi(wij′mt, yimt) + bij′t + θιj′

bijt + θιj − bij′t − θιj′ = Ũi(wij′mt, yimt)− Ũi(wijmt, yimt)
(75)

The compensating differential between occupations j and j′ is defined as the difference between

the utility worker ι would get by choosing its second best occupation if it was paid at the same

rate as their preferred occupation, and the utility they get from their actual choice. Notice

that if paid at the same rate workers would work the same amount of time, thus total income

would be the same).

CDι
ijj′mt = Ũi(wijmt, yimt) + bij′t + θιj′ − Ũi(wijmt, yimt)− bijt − θιj

= bij′t + θιj′ − bijt − θιj
(76)

Substituting eq. (75) into (76), we have that

CDι
ijj′mt = Ũi(wijmt, yimt)− Ũi(wij′mt, yimt) = CDijj′mt (77)

As discussed in the body of this paper, we define the dollar value of compensating differ-

entials as

uc(wijmthijmt + yimt − CD$
ijj′mt)− uh(hijmt) = uc(wij′mthij′mt + yimt)− uh(hij′mt) (78)

where hij′mt = hi(wijmt). The latter equation has a closed form solution given by

CD$
ijj′mt = wijmthijmt + yimt − u−1

c

(
uc(wij′mthij′mt + yimt)− uh(hij′mt) + uh(hijmt)

)
(79)
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H Alternative measures of compensating differentials

In this appendix, we relate our estimates of compensating differentials to the covariation be-

tween wage and latent components of compensation. The baseline definition of compensating

differentials focuses on the trade-offs faced by workers who are marginal in the occupation

choice. This measure fully accounts for unobserved idiosyncratic components of each marginal

worker’s valuation. The applied literature often gauges the magnitude of compensating differ-

entials from estimates of the covariance between wage and non-wage components of job values

(Lehmann, 2022). While informative these measures are based on a sample that includes both

marginal and inframarginal workers and do not include the idiosyncratic components of the

workers’ valuations. Through the lens of our model, the closest quantity to these measures is

the covariation between the value of observed wages and latent components of overall returns;

that is,

cov(uc(cijmt)− uih(hijmt), bijt).

We compute this covariance separately for each year and demographic group and we show the

results in Panel A of Table 22. We find a positive and increasing covariance for college gradu-

ates, with the growth being particularly pronounced among men. For non-college workers we

find negative covariations and a trend towards lower covariances among men. The positive

and increasing covariances for college men are in line with the findings of Lehmann (2022),

which restricts attention to male workers who experience job-to-job transitions. Transitions

that bypass unemployment tend to over-sample educated men, which is consistent with our

findings.

To extend our analysis, in Panel B of Table 22 we report similar measures of covariation

after including the average idiosyncratic workers’ valuations within each cell. The average

idiosyncratic job values θ̄ijmt are obtained by simulating the model. Specifically, we compute

the following covariances

cov(uc(cijmt)− uih(hijmt), bijt + θ̄ijmt).

Results are sensitive to accounting for the idiosyncratic component of the non-wage values.

For all demographic groups, we find negative and diminishing covariances, which suggests the

presence of positive and increasing compensating differentials. This finding is in line with

results based on our baseline definition of compensating differentials, as discussed in the main

body of the paper.
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Panel A: cov(uc(cijmt)− uih(hijmt), bijt)

Year College Men College Women Non-College Men Non-College Women

1980 0.076 0.102 -0.031 -0.038
1990 0.090 0.085 -0.045 -0.035
2000 0.139 0.140 -0.058 -0.039
2010 0.129 0.130 -0.078 -0.039
2018 0.119 0.113 -0.074 -0.036

Panel B: cov(uc(cijmt)− uih(hijmt), bijt + θ̄ijmt)

Year College Men College Women Non-College Men Non-College Women

1980 -0.046 -0.022 -0.011 -0.005
1990 -0.065 -0.016 -0.016 -0.007
2000 -0.076 -0.033 -0.016 -0.007
2010 -0.091 -0.041 -0.017 -0.010
2018 -0.115 -0.045 -0.017 -0.011

Table 22: Covariances between observable and latent components of employment surplus, by
year and demographic group. All covariances are normalized by the variance of idiosyncratic
values, σ2θ .

I Occupational mobility and compensating differentials

To the extent that workers can more freely trade off the observable and latent returns within

a job bundle, the relative value of the latent component should be better reflected in wage

gaps between jobs with higher worker mobility. This is because low occupational mobility

restricts these implicit transactions, possibly preventing some workers from moving to job

bundles that better suit their preferences.

Pairwise compensating differentials and job flows. We examine the relationship

between job mobility and compensating differentials by using workers’ gross flows across

occupations as a proxy for the cost of occupational mobility (see Cortes and Gallipoli, 2018).

We use retrospective data to measure annual occupational mobility from the March CPS (vom

Lehn et al., 2022) and obtain weighted flow data from the CPS. We match each model year

with the corresponding year in the CPS and the two adjacent years, to increase sample sizes.

Letting ξimt,j→j′ be the mass of people who flow from occupation j to j′, the baseline

measure of gross flows between two occupations is

Ξijj′mt =
ξimt,j→j′ + ξimt,j′→j

µijmt + µij′mt
(80)

Next, we project changes in compensating differentials between two occupations on changes
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in the gross flow of workers between the same occupations,

∆ log(CDijj′mt) = β0 + β1∆ log(Ξijj′mt) + ϵijj′mt (81)

If more intense job flows facilitate the emergence of systematic compensating differentials,

the estimated value of β1 should be positive. Table 23 illustrates our findings. Panel A (top

panel) reports estimates including all the years in the sample. Panel B (bottom panel) reports

results for the three decades after 2000.

Column (1) shows result for the full sample where all job pairs are considered, including

rarely observed job flows. Column (2) includes only (j, j′) occupation pairs in which both

occupations belong to the same occupation category. These are the occupation pairs where

most of the worker flows occur. The β1 coefficient are precisely estimated in the sub-sample

featuring common transitions, which suggests that considering all transitions adds more noise

than signal. Estimated elasticities are larger for the later years 2000-2018 (as opposed to the

full sample 1980-2018); on average, an increment of 1% in the gross flow of workers within

an occupation pair is associated with an increase of 8.7% (19.7% after the year 2000) in the

compensating differential between those occupations. Columns (3) to (6) lend similar evidence

but they consider each broad occupation category separately. The stronger significance for

non-routine cognitive (NRC) and routine-manual (RM) jobs is likely due to the much larger

sample sizes in those occupation categories. Columns (7) and (8) split the sample of Column

(2) by gender and show that the effects are larger and more precisely identified for men. This

latter observation is consistent with the finding that compensating differentials tend to be

lower among women (see Figure 11).

J Occupation-specific wage dispersion and rents

Some occupations may carry higher wage risk than others. For example, if there are differences

in the performance-based component of wages across jobs, one might observe differences

in the dispersion of ex-post pay. In this section, we examine whether workers in riskier

occupations are compensated for higher wage uncertainty. To answer this question we compute

the standard deviation of wage rates within each ijmt-cell and use it as a reference measure

of wage risk for each ijmt worker-occupation-market triplet. Then, within a ijmt cell, we

compute four distinct outcomes (that is, four measures of occupation returns) and separately

project each return measure on the corresponding standard deviation of wages. The four

measures of returns are: (i) rents; (ii) total surplus; (iii) observable current wage in a job; and

(iv) occupation latent value. One should note that the latter two measures are the fundamental

components that add up to total surplus. To facilitate comparisons, we normalize total surplus

and its components by the standard deviation of total surplus so that the estimated coefficients
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convey information about the way total surplus components change with occupation-level

wage risk.

Table 24 reports the main findings of this exercise. For every dependent variable we first

run a regression with no controls; then we run a regression including demographic controls

(education, age, and gender fixed effects), occupation fixed effects, and year fixed effects. The

results indicate that higher wage risk is associated with higher returns. Estimates in Columns

1 and 2 are semi-elasticities. Column 2, in particular, shows that a 10-dollar increase in the

standard deviation of wages is associated with a 4.5% increase in rents. Moreover, Column

4 shows that the same increase in risk is associated with an increase of about 0.3 standard

deviations in total match surplus. Comparing this estimate to those in Columns 6 and 8

suggests that both the pecuniary and latent components of surplus contribute to the positive

risk-return relationship. In addition, they highlight that latent values are proportionally

larger, as a share of total surplus, in occupations characterized by higher wage risk.

K Robustness: market variation in latent returns

In what follows we perform a robustness check by estimating an alternative version of the

model where latent returns can vary across markets. To identify this specification we must

impose additional structure on latent returns

bijmt = bijt + bjm,

This implies that we cast latent returns as the sum of a demographic-and-occupation com-

ponent that can change over time (like in the baseline model) plus an additional term that

varies across market-occupation pairs. The latter reflects differences in the latent value of an

occupation that may depend on region-specific features such as climate, population density

or cultural and social aspects.

Table 25 shows estimates of the market-occupation component bjm. Identification requires

that all values must be estimated relative to a reference region-occupation. The table shows

that many coefficients are statistically significant. However, their values are not economically

significant as the magnitudes of the bjm terms are much smaller than the bijt components.

Through a variance decomposition, we show that the bjm contribution is less than one percent

of the total variation across the overall latent returns bijmt. We have verified that such

magnitudes are not sufficient to affect the subsequent estimation and results.
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Market (Census Region)
Occupation Northeast Midwest South West

Exec., Admin., Manag. 0.0000 0.0000 0.0000 0.0000
( 0.0000) ( 0.0000) ( 0.0000) ( 0.0000)

Manag. rel. 0.0000 0.0889*** -0.0142 -0.0124
( 0.0000) ( 0.0185) ( 0.0315) ( 0.0560)

Professional 0.0000 0.0858*** -0.0325** -0.0925***
( 0.0000) ( 0.0038) ( 0.0144) ( 0.0260)

Technicians 0.0000 0.1078*** 0.0586*** 0.0205***
( 0.0000) ( 0.0096) ( 0.0059) ( 0.0066)

Sales 0.0000 0.1494*** 0.0495 -0.0015
( 0.0000) ( 0.0227) ( 0.0406) ( 0.0521)

Admin. Support 0.0000 0.0746*** -0.0558*** -0.0999***
( 0.0000) ( 0.0043) ( 0.0084) ( 0.0304)

Protective Services 0.0000 -0.0996*** -0.0303 -0.1199***
( 0.0000) ( 0.0374) ( 0.0624) ( 0.0415)

Other Services 0.0000 0.0084 -0.0755*** 0.0454**
( 0.0000) ( 0.0069) ( 0.0060) ( 0.0182)

Mechanics 0.0000 0.1751*** 0.2289*** 0.1179***
( 0.0000) ( 0.0303) ( 0.0230) ( 0.0307)

Construction Traders 0.0000 0.0881*** 0.2391*** 0.1435***
( 0.0000) ( 0.0269) ( 0.0296) ( 0.0247)

Precision Prod. 0.0000 0.3965*** 0.0535*** -0.0976***
( 0.0000) ( 0.0203) ( 0.0108) ( 0.0203)

Machine Operators 0.0000 0.4452*** 0.0693*** -0.0775***
( 0.0000) ( 0.0284) ( 0.0107) ( 0.0138)

Transportation 0.0000 0.2612*** 0.0897*** -0.0200
( 0.0000) ( 0.0278) ( 0.0126) ( 0.0144)

Bootstrapped standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 25: Estimates of the market and occupation specific component of non-pecuniary re-
turns.

L Additional tables and graphs

L.1 Counterfactual exercises: additional plots
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Figure 16: Evolution of the labor force participation of demographic groups in the baseline
model (which replicates the data) and in the counterfactual scenarios.
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Figure 17: Evolution of the shares of the population employed in four major occupation
groups in the baseline model (which replicates the data) and in the counterfactual scenarios.
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Figure 18: Evolution of the average hourly wage received by the different demographic groups
in the baseline model (which replicates the data) and in the counterfactual scenarios.
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Figure 19: Evolution of the average hourly wage paid to the four major occupational groups
in the baseline model (which replicates the data) and in the counterfactual scenarios.
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L.2 Compensating differentials: additional plots
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Figure 20: Averages of absolute compensating differentials by worker and occupation category,
1980-2018. All values are in year 2000 dollars.
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