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Abstract

The mixed-demand model allows for very flexible specification of what should be
considered endogenous and exogenous in demand system estimation. This paper in-
troduces a revealed preference framework to analyze the mixed-demand model. The
proposed methods can be used to test whether observed data (with measurement
errors) are consistent with the mixed-demand model and calculate goodness-of-fit
measures. The framework is purely non-parametric in the sense that it does not
require any functional form assumptions on the direct or indirect utility functions.
The framework is applied to demand data for food and provides the first non-
parametric empirical analysis of the mixed-demand model.

Key words: demand systems, measurement errors, mixed-demand, non-parametric,
revealed preference.

1 Introduction

The conventional specification of empirical demand models treats quantities as response
variables and prices and income as predetermined variables (or predictors) in the system
of demand equations. It is usually stipulated that the behavioral implications of these
so-called direct demand models hold at the aggregate or market-level, i.e., over a set of
collective consumers (Deaton and Muellbauer 1980b). An implication of predetermined
prices and income is that, if the data are assumed to be the outcome of a market equilib-
rium model, then supply functions are perfectly elastic, meaning that demand adjust to
clear the market. Of course, this assumption is valid in some markets (e.g., for tradeable
goods in small open economies), but it is equally as easy to find examples where it is an
inaccurate assumption to describe market characteristics.

On the other hand, inverse (or indirect) demand models where (expenditure-normalized)
prices act as response variables are particularly useful in markets where supply func-
tions are perfectly inelastic (e.g., for agricultural and natural resource commodities;
See McLaren and Wong (2005) and Barten and Bettendorf (1989)). In such markets,
(expenditure-normalized) prices adjust to clear the market.

*Research Institute of Industrial Economics (IFN). P.O. Box 55665, SE-102 15 Stockholm, Sweden.
E-mail: Per.Hjertstrand@ifn.se. I acknowledge financial support from Torsten Söderbergs stiftelse. I
thank Henrik Hällerfors for research assistance.
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However, in practice, the demand of goods from different sub-markets are often mod-
elled simultaneously, and for some of these goods it may be reasonable to treat prices
and income as predetermined, while for the remaining goods it may be more reasonable
to treat quantities as predetermined (at the market level). Hence, some quantities and
some (expenditure-normalized) prices adjust to clear the market. Samuelson (1965) in-
troduced a rich class of demand models, called mixed-demand models, that is able to
exactly account for this type of market behavior; See also Chavas (1984) for a detailed
theoretical analysis of this class. Mixed-demand models have obvious econometric ap-
peal for the purpose of estimating demand behavior at the market level because they are
able to cover a spectrum of possibilities between the two opposite cases of direct and
inverse (indirect) demand estimation. As such, empirical applications of mixed-demand
models have been used in a wide variety of fields such as agricultural economics (e.g.,
Moschini and Rizzi 2006, 2007), environmental economics (e.g., Cunha-e-Sá and Ducla-
Soares 1999), development economics (e.g., Krishnan et al. 2019) and welfare economics
(e.g., Ramadan and Thomas 2011).

This paper: (1) provides a nonparametric revealed preference analysis of the mixed-
demand model, and (2) provides the first purely nonparametric empirical application of
the mixed-demand model to the demand for food at the market level.

The first contribution consists of three parts. First, I derive a revealed characterization
of the mixed-demand model. This characterization gives a simple condition to test if
observed price-quantity data can be rationalized by the mixed-demand model, i.e., that
the data are consistent this model. The condition can be implemented using simple linear
programming (LP) techniques, and is therefore applicable to medium- and large-scaled
data sets.

In the second part, I derive a measure of goodness-of-fit for the mixed-demand model.
In case observed data violates the testable condition this index measures the severity of
the violation. I relate the index to conventional measures of goodness-of-fit for the direct
and indirect utility maximization models, and show that the index can be interpreted
as a measure of “wasted” expenditure, i.e., it gives the minimal expenditure adjustment
necessary to render the observed data consistent with the mixed-demand model.

In the third part, I derive a testable condition under the assumption that observed data
are contaminated with measurement errors. It is well-recognized that aggregated market-
level data contains measurement errors in various forms, e.g., due to aggregation issues
and the use of price indices (See, for example, Carroll et al. (2015)). Although I focus on
measurement errors in prices here, the condition can be straightforwardly generalized to
instead account for measurement errors in quantities. The condition is based on solving
a sequence of LP problem, and is therefore easy to implement in practice.

As a second contribution, I apply the new methods to annual, quarterly and monthly
U.S. data over total food expenditures for 16 food commodities. I use measures of
goodness-of-fit, power and predictive success to compare and contrast the empirical per-
formance of the mixed-demand model with the direct utility maximization model (fully
characterized by the generalized axiom of revealed preference, GARP) and a necessary
condition for the mixed-demand model, which I call M-WARP. Because of the higher
power of the mixed-demand model against (partial) uniform random behavior, I find
that this model seem to perform better than the other models for at least annual data
(with relatively few observations), and perhaps also for quarterly data. Using data sam-
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pled on higher frequencies, such as monthly data, this difference vanishes since the power
of GARP increases to the same levels as the power for the mixed-demand model. Overall,
I find that the mixed-demand model fits the data well.

Parametric vs. nonparametric modelling of mixed-demands. The parametric
approach requires postulating a particular parametric functional form for the demand
system and then estimating it using statistical techniques. The estimated demand func-
tions can then be used to, for examples, calculate elasticities, perform welfare analysis
and forecast demand behavior. However, the parametric approach will be satisfactory
only when the postulated functional form is a good approximation to the “true” form. In
fact, one may argue that any statistical inference based on parametric estimations of a
mixed-demand model is a joint test of the null hypothesis and the hypothesis that correct
functional forms and error structures have been employed.

In contrast to conventional demand analysis, many flexible direct demand systems,
such as the translog (Christensen et al. 1975), almost ideal demand system (Deaton and
Muellbauer 1980a) and quadratic almost ideal demand system (Banks et al. 1997), cannot
be used in parametric mixed-demand modelling because there do not exist closed-form
dual expressions of both the direct and indirect utility functions. Hence, parametric
analysis may be rather limited since the most common flexible functional forms used in
conventional (direct) demand analysis are unapplicable.1

Nevertheless, some parametric functional forms possess closed-form expressions for the
direct and indirect utility functions. For examples, Barten (1992), Moschini and Vissa
(1993), Matsuda (2004), Brown and Lee (2006) and Tabarestani et al. (2017) use different
versions of the Rotterdam model to specify and estimate mixed-demand systems. More
recently, Moschini and Rizzi (2006, 2007), Ramadan and Thomas (2011) and Krishnan
et al. (2019) formulate and estimate mixed-demand systems for either the Stone–Geary
model or normalized quadratic model.

The theory developed in this paper can be seen as an alternative to parametric de-
mand analysis of the mixed-demand model. The framework is based on the classical
revealed preference theory originally developed by Afriat (1967), Diewert (1973) and
Varian (1982), and can be used to test a finite body of data for consistency with the
mixed-demand model, recover preferences, perform counterfactual analysis and forecast
demand behavior.2 A distinct feature of the revealed preference framework is that it does
not require any ad hoc assumptions regarding functional form and there is no parameter
estimation. In other words, any test-procedure based on this approach is purely nonpara-
metric, and as such, circumvent the problem of having to choose a suitable functional
form as in the parametric approach.

1Wong and Park (2007) instead suggest to use conditional cost functions to generate empirical mixed-
demand models.

2Revealed preference methods has sometimes been used as pre-tests to check whether observed market
level data can be rationalized by a well-behaved utility function prior to conducting parametric demand
analysis. If the data is “close” to being rationalizable, then this may serve as motivation to perform
parametric demand estimation (Conversely, if the data is “far” from being rationalizable, then this might
serve as motivation to refrain from such analysis.) Of course, the revealed preference methods proposed
here can also be used prior to parametric demand analysis of the mixed-demand model for exactly the
same purpose.
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The nonparametric revealed preference approach appears particularly appropriate for
empirical analysis of the mixed-demand model. In particular, the direct and indirect util-
ity maximization models have been characterized in Varian (1982), Brown and Shannon
(2000) and Hjertstrand and Swofford (2012), and these results are used to construct dual
expressions of the direct and indirect utility functions. Hence, the revealed preference
approach is very flexible in that it allows for closed-form expressions of the direct and
indirect utility functions. More generally, each of the issues of concern to parametric
demand analysis mentioned above is amenable to the nonparametric revealed preference
approach.

This paper proceeds as follows: The next section gives a brief introduction to the
mixed-demand model. Section 3 recalls the basic characterizations of direct and indirect
utility maximization. Section 4 contains the theoretical results and provides a revealed
preference characterization of the mixed-demand model, analogous to the characteriza-
tions of the direct and indirect utility maximization models in Section 3. Section 5
contains the application and Section 6 concludes. Proofs of the theoretical results and
some additional empirical results are given in the appendix.

2 Mixed demands

In this section, I briefly recapitulate the mixed-demand model originally proposed by
Samuelson (1965) and analyzed in detail by Chavas (1984).

Notation. We consider a market with K goods. Let x ∈ RK+ denote the quantity-vector
and p ∈ RK++ denote the price-vector of the goods.3 I assume that total expenditure,
m, is exhaustive, and therefore given by m = px. The vector of expenditure-normalized
prices is defined as r = p

m
= p

px
.

Suppose that the goods are partitioned into two mutually exclusive and collectively
exhaustive blocks. The two blocks of quantities are denoted x = (y,w), where the
expenditure-normalized prices of y and w are denoted q and z, respectively, with r =
(q, z).

The model. In the mixed-demand model, consumers are price takers for all goods.
However, at the market level, prices (and income) for some subset of goods are pre-
determined, while for the remaining goods it is the quantities that are predetermined.
Suppose that y is the block of quantities that is chosen optimally, and that z is the block
of expenditure-normalized prices that is optimally determined. Thus, w and q are the
predetermined blocks of quantities and expenditure-normalized prices.

In the mixed-demand model, the consumer “chooses” the optimal values of the de-
cision values (y, z) by solving the following maximization problem (Samuelson, 1965,

3I use the following notation: The inner product of two vectors (x,y) ∈ RK is defined as xy =∑K
k=1 xkyk. For all (x,y) ∈ RK , x = y if xi ≥ yi for all i = 1, . . . ,K; x ≥ y if x = y and x 6= y; and

x > y if xi > yi for all i = 1, . . . ,K. We denote RK+ = {x ∈ RK : x ≥ (0, . . . , 0)} and RK++ = {x ∈
RK : x > (0, . . . , 0)}. ∇xf(x,y) denotes the gradient of the function f with respect to the argument x
(I write ∇ = ∇x when it is obvious from the context).
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p.791):

0 = max
(y,z)
{u(y,w)− v(q, z)} subject to qy + zw ≤ 1, (1)

where u is a continuous, strictly increasing and concave direct utility function, and v
is a continuous, strictly decreasing and convex indirect utility function. The first-order
conditions for an optimal (interior) solution of the problem (1) are:4

0 = ∇yu (y,w)− ψq,

0 = −∇zv (q, z)− ψw,
(2)

where ψ is the Lagrange multiplier. The solutions to the first-order conditions in (2) give
the Marshallian mixed-demand vectors y? = y(q,w, 1) and z? = z(q,w, 1). Given the
assumptions on u and v, the functions y(q,w, 1) and z(q,w, 1) satisfies Walras’ law and
are homogeneous of degree zero and one in (p,px) (See Chavas (1984) and Moschini and
Vissa (1993)).5

3 Characterizations of utility maximization

This section recalls the nonparametric revealed preference conditions that characterize
direct and indirect utility maximization from Varian (1982), Brown and Shannon (2000)
and Hjertstrand and Swofford (2012).

Notation. I assume that prices and quantities are observed in a finite number of time
periods, denoted by T . I index observations by the set T = {1, ..., T}, and let subscripts
denote observations, that is, xt = (x1t, ..., xKt), pt = (p1t, ..., pKt) and rt = (r1t, ..., rKt) =
( p1t
ptxt

, ..., pKt

ptxt
) denote quantities, prices and expenditure-normalized prices at observation

t ∈ T, respectively. I write D = {rt,xt}t∈T to signify all price-quantity observations.

3.1 Direct utility maximization

We begin with the definition of rationalization in terms of the direct utility function.

Definition 1 (Direct utility rationalization) Consider a data set D = {rt,xt}t∈T
and a direct utility function u : RK+ 7→ R. For all x ∈ RK+ and all t ∈ T such that
rtx ≤ 1, the data D is rationalized by u if u(x) ≤ u(xt).

This means that, for each observation t ∈ T it must be the case that the bundle
xt maximizes the utility function u over the set of all affordable bundles. The well-
known Afriat’s theorem gives necessary and sufficient nonparametric revealed preference
conditions for when a data set D can be rationalized by a well-behaved (i.e., continuous,
strictly increasing and concave) direct utility function:

4See Eqs. (28) and (29) in Chavas (1984).

5Since I do not characterize the mixed-demand model in terms of the cost function, I omit any
discussion of duality etc.; See Chavas (1984) and Moschini and Vissa (1993) for a detailed discussion of
such results.
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Theorem 1 (Afriat’s theorem, Varian 1982) The data set D = {rt,xt}t∈T can be
rationalized by a continuous, strictly increasing and concave direct utility function u(x)
if and only if there exist numbers Ut and λt > 0 such that the Afriat inequalities hold:

Us ≤ Ut + λtrt (xs − xt) ,

for all observations s, t ∈ T.

This is a limited version of Afriat’s theorem. It usually contains additional proce-
dures to test the direct utility maximization model such as the generalized axiom of
revealed preference (GARP), but since I only use the Afriat inequalities in the analysis of
mixed-demands, I omit these other conditions.6 The Afriat inequalities are convenient for
empirical analysis since they are linear in the unknown variables Ut and λt. In particular,
Ut and λt can be interpreted as the utility and marginal utility of income values at the
observation t ∈ T. To see this, suppose that the data D = {rt,xt}t∈T were generated
by a differentiable and concave utility function u(x), in which case, by the properties of
concavity, it must be that for all observations s, t ∈ T:

u(xs) ≤ u(xt) +∇u(xt) (xs − xt) .

Additionally, the first-order conditions for utility maximization subject to a linear budget
constraint (excluding boundary conditions) yield:

∇u(xt) = λtrt,

where λt is the marginal utility of income (i.e., the Lagrange multiplier). If we substitute
this into the concavity inequalities and define Ut = u(xt), we obtain the Afriat inequal-
ities. Diewert (1973) and Fleissig and Whitney (2005) propose linear programing (LP)
procedures to check whether there exists a feasible solution to the Afriat inequalities.

3.2 Indirect utility maximization

Brown and Shannon (2000) and Hjertstrand and Swofford (2012) give nonparametric
revealed preference conditions for when a data set D = {rt,xt}t∈T can be rationalized by
a well-behaved (i.e., continuous, strictly decreasing and convex) indirect utility function:

Definition 2 (Indirect utility rationalization) Consider a data set D = {rt,xt}t∈T
and an indirect utility function v : RK++ 7→ R. For all r ∈ RK++ and all t ∈ T such that
rxt ≤ 1, the data D is rationalized by v if v(rt) ≤ v(r).

Theorem 2 (Brown and Shannon 2000; Hjertstrand and Swofford 2012) The data
set D = {rt,xt}t∈T can be rationalized by a continuous, strictly decreasing and convex in-
direct utility function v(r) if and only if there exist numbers Vt and µt > 0 such that the
indirect Afriat inequalities hold:

−Vs ≤ −Vt + µtxt (rs − rt) ,

for all observations s, t ∈ T.

6See Demuynck and Hjertstrand (2019) for a recent survey of Afriat’s theorem that also includes
other testable conditions.
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This theorem mirrors Afriat’s theorem. The indirect utility function in Theorem 2 is
continuous, strictly decreasing and convex in r. By defining r = p

px
it follows that the

indirect utility function v(r) = v( p
px

) is strictly decreasing in prices p, strictly increasing

in expenditure px and homogeneous of degree zero in (p,px).
A heuristic derivation of the indirect Afriat inequalities follows along the same lines

as for the Afriat inequalities by first noticing that the indirect utility function is convex in
r and then applying Roy’s identity which states that ∇v(r) = x

∑K
j=1 rj

∂v(r)
∂rj

(Roy, 1947,

p.219). Evaluating Roy’s identity in every observation t ∈ T and defining Vt = v(rt) and

µt = −
∑K

j=1 rjt
∂v(rt)
∂rjt

gives the indirect Afriat inequalities. Diewert (1973)’s and Fleissig

and Whitney (2005)’s LP procedures can be straightforwardly modified to also check
whether there exist numbers Vt and µt > 0 satisfying the indirect Afriat inequalities.

Notice that the Afriat inequalities and the indirect Afriat inequalities are formally
equivalent with expenditure-normalized prices and quantities interchanged. This implies
that the characterizations in Theorems 1 and 2 are equivalent.

Proposition 1 (Chavas and Cox 1987) A data set D = {rt,xt}t∈T can be rationalized
by a well-behaved direct utility function if and only if D can be rationalized by a well-
behaved indirect utility function.

4 Characterization of mixed-demands

In this section, I give nonparametric revealed preference characterizations for the mixed-
demand model. I begin by deriving a characterization result for mixed-demands that is
analogous to Theorems 1 and 2. I then show how the framework can be extended to test
if the mixed-demand model can rationalize a data set with measurement errors.

Notation. As in the previous section, it is assumed that prices and quantities are
observed in a finite number of time periods. Denote the two blocks of quantities and
expenditure-normalized prices at observation t ∈ T as xt = (yt,wt) and rt = (qt, zt),
respectively. I write D = {(qt, zt); (yt,wt)}t∈T to signify all price-quantity observations.

4.1 Revealed preference conditions

I begin with the definition of rationalization in the context of the mixed-demand model.

Definition 3 (Mixed demand rationalization) Consider a data set D = {(qt, zt); (yt,wt)}t∈T,
a direct utility function u : RK+ 7→ R and an indirect utility function v : RK++ 7→ R. For
all (y, z) ∈ RK+ × RK++ and all t ∈ T such that qty + zwt ≤ 1, the data D is rationalized
by the mixed-demand model if u(y,wt)− v(qt, z) ≤ 0.

This means that, for each observation t ∈ T it must be the case that (yt, zt) maximizes
the function 0 = {u(y,wt)− v(qt, z)} over the set of all non-predetermined expenditure-
normalized prices and bundles (y, z) given the budget constraint qty + zwt ≤ 1. Thus,
Definition 3 is equivalent to that (yt, zt) are the optimal solutions to the problem (1) at
every observation.
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The next theorem gives a nonparametric revealed preference characterization of the
mixed-demand model, and is analogous to the characterizations of direct and indirect
utility maximization in Theorems 1 and 2.

Theorem 3 Consider the data set D = {(qt, zt); (yt,wt)}t∈T. The following two condi-
tions are equivalent:

� There exists a continuous, strictly increasing and concave direct utility function
u(y,w), and a continuous, strictly decreasing and convex indirect utility function
v(q, z), such that the data D can be rationalized by the mixed-demand model.

� For every t ∈ T, there exist numbers Ut, Vt, λt > 0 and µt > 0 such that the following
(in)equalities hold:

Us ≤ Ut + λtqt (ys − yt) ,

−Vs ≤ −Vt + µtwt (zs − zt) ,

Ut = Vt,

λt = µt,

(3)

for all observations s, t ∈ T.

This theorem gives necessary and sufficient conditions for when the mixed-demand
model can be rationalized by well-behaved direct and indirect utility functions. The
inequalities in (3) are the Afriat inequalities and indirect Afriat inequalities for the non-
predetermined bundles and expenditure-normalized prices, respectively. The equality
restrictions in (3) ensures that v is the indirect utility function corresponding to the direct
utility function u, and therefore guarantees that the difference of the function values at
the optimal solution is effectively zero. By defining Ft = Ut = Vt and ψt = λt = µt > 0,
the condition (3) can be equivalently stated as:

Fs ≤ Ft + ψtqt (ys − yt) ,

−Fs ≤ −Ft + ψtwt (zs − zt) ,
(4)

for all observations s, t ∈ T.

4.2 Necessary conditions and non-nestedness

In this section, I derive some necessary conditions for the inequalities (3) to hold and
show by example that the mixed-demand model is neither nested within nor nests the
direct (or indirect) utility maximization model.

The inequalities (4) are linear in the unknowns Ft and ψt, and checking whether a
solution exists to these inequalities can be achieved in polynomial time by solving a LP
problem in the 2T parameters {Ft, ψt}t∈T subject to the 2T (T − 1) linear restrictions
given by (4). However, for very large data sets (i.e., large T ) this LP problem may
become computationally difficult to implement since the number of restrictions grows
quadratically in T . In this case, it is possible to test a set of necessary conditions, which
if violated, implies that there cannot exist numbers Ft and ψt > 0 solving the inequalities
(4).
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One necessary condition is that the blocks {qt,yt}t∈T and {zt,wt}t∈T individually
satisfies the Afriat inequalities (or equivalently, by Proposition 1, the indirect Afriat
inequalities).7 Another necessary condition follows directly by combining the two sets of
inequalities in (4):

−ψtwt (zs − zt) ≤ Fs − Ft ≤ ψtqt (ys − yt) .

Thus, since ψt > 0, for every pair of observations s, t ∈ T it must hold that:

qtys + zswt ≥ qtyt + ztwt = 1. (5)

I call this condition the mixed weak axiom of revealed preference (M-WARP):

Definition 4 (M-WARP) The data D = {(qt, zt); (yt,wt)}t∈T satisfies the mixed weak
axiom of revealed preference (M-WARP) if, for every pair of observations s, t ∈ T, it
holds that qtys + zswt ≥ 1.

The following proposition formally states that M-WARP is a necessary condition for
the inequalities (4), or equivalently the inequalities (3) to hold:

Proposition 2 If the data D = {(qt, zt); (yt,wt)}t∈T satisfies the necessary and sufficient
conditions for the mixed-demand model given by the inequalities (3) then D satisfies M-
WARP.

In order to show that the mixed-demand model is empirically distinguishable from
the utility maximization model, I provide a data set that satisfies the rationalizability
condition for the direct utility maximization model but not the mixed-demand model,
and also a data set showing the opposite.

Example 1 Suppose T = 2 and K = 2. The expenditure-normalized prices are given by:

q1 = 1 z1 = 1

q2 =
1

2
z2 = 1

and the quantities are given by:

y1 =
1

2
w1 =

1

2

y2 = 1 w2 =
1

2

It is easy to verify that the Afriat inequalities are satisfied by choosing U1 = 1, U2 =
1
2
, λ1 = 1 and λ2 = 2. However, it is also easy to verify from (4) that F1 = F2, which

implies ψ1

2
≥ 0 but ψ2

4
≤ 0. Thus, ψ2 ≯ 0, which violates condition (3).

7Note that when implementing this necessary condition it is computationally simpler to apply other
equivalent test procedures, such as the generalized axiom of revealed preference (GARP).
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Example 2 Suppose T = 3 and K = 4. The expenditure-normalized prices are given by:

q1 =

(
2

302
,

22

302

)
z1 =

(
3

302
,

16

302

)
q2 =

(
5

96
,

2

96

)
z2 =

(
4

96
,

4

96

)
q3 =

(
2

169
,

7

169

)
z3 =

(
11

169
,

5

169

)
and the quantities are given by:

y1 = (17, 8) w1 = (4, 5)

y2 = (4, 10) w2 = (12, 2)

y3 = (3, 9) w3 = (5, 9)

It is easy to verify that there cannot exist a feasible solution to the Afriat inequalities, since
r1 (x2 − x1) = − 6

302
, r2 (x3 − x2) = − 7

96
and r3 (x1 − x3) = − 10

169
. On the other hand,

the following numbers (rounded to the fourth decimal) solve the necessary and sufficient
condition for the mixed-demand model in (3):

F1 = 0 ψ1 = 36.2146

F2 = −0.6354 ψ2 = 1

F3 = −0.7195 ψ3 = 5.7902

Example 2 gives a data set that can be rationalized by the mixed-demand model,
but not the utility maximization model. Examples 1 and 2 taken together shows that
the utility maximization model and the mixed-demand model are distinct and may yield
different answers regarding whether or not a data set can be rationalized. In other
words, the models have identifying power against each other (i.e., they may generate
different predictive success). Finally, Example 1 gives a data set which violates the
rationalizability condition for the mixed-demand model, which shows that this model has
substantial empirical bite even when the data set consists of two observations.

4.3 Goodness-of-fit

The test given in condition (4) is “sharp” in the sense that a single violation of the
inequalities rejects the hypothesis that the mixed-demand model rationalizes the data.
However, observed data may violate the condition even though underlying preferences
are consistent with the mixed-demand model. This may arise because of optimization
errors, minor measurement errors etc. Afriat (1972) proposed to measure the severity of
violations of the direct utility maximization model by calculating the minimal expenditure
adjustment necessary to render the observed data consistent with the Afriat inequalities.
This index, usually called the Afriat efficiency index (AEI) or the critical cost efficiency
index (CCEI), is a measure of wasted expenditure due to inconsistency with the Afriat
inequalities: If the consumer has an AEI less than one, then he could have obtained

10



the same level of utility by only spending a fraction 1−AEI of expenditure (at every
observation). In this regard, Varian (1990) interprets the AEI as a measure of goodness-
of-fit of the direct utility maximization model.

In practice, the AEI is calculated by multiplying total expenditure (normalized to
unity here) at every observation with a scalar e ∈ [0, 1] as ertxt, which gives the following
set of “relaxed” Afriat inequalities:8

Us ≤ Ut + λtrt (xs − ext) , (6)

for all observations s, t ∈ T. The AEI is defined as the largest e such that the observed
data satisfies condition (6). Analogously, the AEI for the indirect utility maximization
model is defined as the largest e such that the observed data satisfies the “relaxed”
indirect Afriat inequalities:

−Vs ≤ −Vt + µtxt (rs − ert) , (7)

for all observations s, t ∈ T.
Given condition (3) in Theorem 3 and conditions (6) and (7), the same idea can be

straightforwardly applied to the mixed-demand model: I define the AEI for the mixed-
demand model as the largest value of e such that the observed data satisfies the following
“relaxed” version of condition (4):

Fs ≤ Ft + ψtqt (ys − eyt) ,
−Fs ≤ −Ft + ψtwt (zs − ezt) ,

(8)

for all observations s, t ∈ T. Hence, the AEI in this context calculates the minimal
expenditure adjustment necessary to render the observed data consistent with condition
(8). As such, analogous to the direct and indirect utility maximization models, the AEI
can be interpreted as a measure of goodness-of-fit of the mixed-demand model.

4.4 Measurement errors

In this section, I derive a testable condition for the mixed-demand model under the
assumption that prices are measured with errors. As explained in the Introduction,
I focus on errors in prices because, in aggregated data, prices are usually constructed
from index number theory, and are therefore likely to be measured with errors due to
aggregation bias etc.

Following Varian (1985), it is assumed that the measurement errors, et = {e1t, ..., eKt} ∈
RK , enter prices multiplicatively via the Berkson multiplicative measurement error model:

pt = pt � et, (9)

for all t ∈ T, where pt denotes the “true” prices, and � denotes Hadamard (elementwise)
multiplication. Notice that, as a consequence of this assumption, total expenditure is

8See Theorem 2 in Heufer and Hjertstrand (2017) for a justification and proof that the “relaxed”
Afriat inequalities can be used to calculate the minimal expenditure adjustment.
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also measured with errors, and the ’true’ amount of total expenditure, denoted mt, is
given by:

mt = ptxt = (pt � et)xt. (10)

I define the “true” expenditure-normalized prices as rt = pt

mt
, and let rt be split into two

blocks (qt, zt) corresponding to (qt, zt).
The purpose is to test the following hypothesis:

H0 : The “true” data D = {(qt, zt); (yt,wt)}t∈T satisfies condition (3). (11)

The null, H0, corresponds to that there exists a continuous, strictly increasing and con-
cave direct utility function u(y,w), and a continuous, strictly decreasing and convex
indirect utility function v(q, z), such that the “true” data D = {(qt, zt); (yt,wt)}t∈T can
be rationalized by the mixed-demand model. The alternative hypothesis is that D cannot
be rationalized by the mixed-demand model, i.e., D does not satisfy condition (3).

Consider the following optimization problem:

Φ = min
{Ft,ψt,φ}t∈T

φ subject to

Fs − Ft − ψtqt (ys − yt) ≤ ψtφ,

−Fs + Ft − ψtwt (zs − zt) ≤ ψtφ,

1 ≤ ψt,

0 ≤ φ ≤ 1.

(12)

This problem computes the minimal slacks at each observation, ψtφ, such that the in-
equalities (4) hold. If φ = 0 then the first two restrictions in the problem (12) are equiv-
alent to the inequalities (4). In this case, the observed data D = {(qt, zt); (yt,wt)}t∈T
satisfies the rationalizability conditions in Theorem 3. On the other hand, if φ > 0 then
φ can be interpreted as the minimal (additive) adjustment of expenditure such that the
inequalities hold, which can be seen by rewriting the restrictions in the problem (12) as:

Fs − Ft − ψt (qtys − (qtyt − φ)) ≤ 0,

−Fs + Ft − ψt (wtzs − (wtzt − φ)) ≤ 0.

The third restriction, 1 ≤ ψt, can be imposed without loss of generality because the
inequalities are homogeneous of degree one in the parameters Ft, Fs and ψt. Moreover,
since total expenditure sums to unity, we have qtyt ≤ 1 and wtzt ≤ 1, which implies that
the inequalities always have a solution for φ = 1. Thus, the fourth restriction, 0 ≤ φ ≤ 1,
follows without loss of generality.

The problem (12) is nonlinear in the parameters ψtφ and may therefore be difficult to
implement in practice. However, notice that if it has a feasible solution for a particular
value of φ, then it also has a feasible solution for all values of φ′ ≥ φ. This monotonicity
condition implies that we can solve the problem using a binary search algorithm, and
treat φ as fixed in each iteration of the procedure.9 As such, the problem (12) is reduced

9Consider the infeasible bound φl = 0 and the feasible bound φu = 1. For each step of the binary
search algorithm, the procedure evaluates whether the midpoint φl+φu

2 is feasible. If it is, then in the next
iteration the upper bound φu is replaced by this midpoint. However, if the midpoint is not feasible, then
the midpoint replaces the lower bound φl. At each iteration of the algorithm, the range [φl, φu], which
contains the solution of the problem, is halved. Thus, the width of the interval decreases exponentially
in the number of iterations.
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to a standard LP problem, which is to be solved in every step. Since a LP problem can
be solved efficiently, i.e., in polynomial time, the procedure is applicable for medium- and
large scaled data sets.

The optimization problem (12) can be used to derive a statistical decision rule to test
the hypothesis (11) under the assumption of the multiplicative Berkson measurement
error model (9). This decision rule is based on the following theorem.

Theorem 4 Consider the optimization problem (12). Under H0 in (11), it holds that:

Φ ≤ C,

where:

C = max{C1, C2}, (13)

with:

C1 = max
s,t∈T
{(qt − qt)(ys − yt)}, (14)

C2 = max
s,t∈T
{wt((zs − zs)− (zt − zt))}. (15)

This theorem suggests the statistical decision rule that the null, H0, in the hypothesis
(11) should be rejected whenever Φ > C1−α, where α denotes the significance level and
C1−α denotes the (1 − α) × 100th percentile of the distribution of the random variable
C in (13). However, C is function of the “true” prices (qt, zt), which are unobserved.
Nevertheless, for a given distributional assumption on the measurement errors et, we can
simulate (qt, zt) from the Berkson measurement error models (9) and (10). Suppose that
the measurement errors, et, follow a known distribution, and consider D draws (realiza-
tions) from this distribution denoted by εdt , for d = 1, ..., D. Expenditure-normalized
prices, rdt , are simulated from (9) and (10) as:

pdt = pt � εdt ,

md
t = pdtxt,

rdt =
pdt
md
t

,

for all t ∈ T and d = 1, ..., D. If we split rdt into two blocks (qdt , z
d
t ) corresponding to

(qt, zt), then we can calculate the empirical distribution of C by drawing D copies of C
as Cd = max{Cd

1 , C
d
2}, where:

Cd
1 = max

s,t∈T
{(qdt − qt)(ys − yt)},

Cd
2 = max

s,t∈T
{wt((z

d
s − zs)− (zdt − zt))},

for d = 1, ..., D. At a given nominal significance level, α, let c1−α be the (1− α)× 100th
percentile of the simulated sample

(
C1, ...., CD

)
, and let Ψ̂ be the optimal solution from

the optimization problem (12). The null H0 in the hypothesis (11) is rejected if Ψ̂ > c1−α.
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A few remarks. First, deriving the analytical distribution of C in order to find an an-
alytical expression for C1−α is difficult since C does not follow any standard distribution.
However, as we have shown, it is simple to calculate the empirical distribution of C by
Monte Carlo simulations, which makes the problem easy to implement in practice. Note
that the number of draws D should be set relatively large so that the empirical percentile
c1−α closely approximates the “true” percentile C1−α.10

Second, in order to make draws from the distribution of the measurement errors
we must know the parameters characterizing the distribution. For example, assuming
that εdt are draws from the normal distribution (as in the empirical application below),
require assuming a value of the variance of the distribution. In practice, I implement
the procedure for a grid of values of the variance. The smallest variance such that H0 is
rejected is a lower bound of the possible “amount” of measurement errors (measured by
the variance). More precisely, if σ2 denotes the lower bound, then the procedure is also
unable to reject H0 at the given significance level for any σ2 > σ2. Thus, the lower bound
σ2 is a measure of what the unknown variance of the measurement errors would have to
be in order to reject H0 that the mixed-demand model can rationalize the “true” data
D = {(qt, zt); (yt,wt)}t∈T.

Third, the procedure is conservative in the sense that the probability of rejecting the
null, H0, when it is true is at most α.11 Unfortunately, calculating the power of the
procedure provides very limited information, since it would require specifying a model
of irrationality. Thus, any such analysis would only show the power against one specific
alternative, and not against any general notion of irrational consumption behavior.

Finally, a brief history of the origin of this procedure. Varian (1985) originally pro-
posed a procedure to account and test for measurement errors in revealed preference.
However, for the mixed-demand model, Varian’s procedure would be computationally
very difficult to implement in practice since it would be based on solving a highly non-
linear optimization problem. The framework proposed in this section is based on Fleissig
and Whitney (2005), and in particular, on the modification of Fleissig and Whitney’s
(2005) procedure proposed by Jones and Edgerton (2009). The idea of calculating a
lower bound for the measurement errors was proposed by Varian (1985) in the context of
his model, while Jones and Edgerton (2009) showed how to calculate a lower bound for
their modified version of Fleissig and Whitney’s (2005) procedure.

5 Application

In this section, I apply the methods proposed in previous sections to aggregated market
data on prices and quantities for food.

5.1 Data and classification

Data. I use data over total food expenditures in the U.S. These data consists of 16
different aggregated food commodities which are listed in Table 1 (Tables A1 and A2 in

10In the empirical application, I set D = 1, 000.

11See Jones and Edgerton (2009) for a more detailed discussion of this issue in the context of testing
for measurement errors in the utility maximization model.
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Table 1: Commodities and classification.

Commodity Classification utility function

A. Cereals Direct

B. Bakery products Direct

C. Beef and veal Direct

D. Pork Direct

E. Other meats Direct

F. Poultry Direct

G. Fish and seafood Indirect

H. Fresh milk Indirect

I. Processed diary products Direct

J. Eggs Indirect

K. Fats and oils Direct

L. Fruit (fresh) Indirect

M. Vegetables (fresh) Indirect

N. Processed fruits & vegetables Direct

O. Sugar and sweets Direct

P. Unclassified food Direct

Appendix C provides some descriptive statistics of the prices and budget shares). For
each commodity, I collect data on total real personal consumption expenditures from the
Bureau of Economic Analysis (BEA), which are sampled on three different frequencies:
(i) annual data ranging from 1999 to 2017 (T = 19 observations); (ii) quarterly data
ranging from 1999Q1 to 2017Q4 (T = 76 observations), and (iii) monthly data ranging
from 1999M1 to 2017M12 (T = 228 observations). The quarterly and monthly data are
seasonally adjusted at annual rates and all series are given in millions of chained (2009)
dollars.12

To obtain per capita expenditures, I collect U.S. annual, quarterly and monthly pop-
ulation series (in thousands) from the FRED data base at the St. Louis FED. Per capita
expenditures for every commodity are calculated by dividing the total real personal con-
sumption expenditures with the corresponding population series.

I also collect price indices for each food commodity at the three sample frequencies
from the BEA. In all these price series, the base year is 2009 and the quarterly and
monthly series are seasonally adjusted.13

Classification of commodities into direct or indirect utility function. I classify
all 16 commodities listed in Table 1 as arguments in either the direct or indirect utility
functions. Following standard practice, all commodities that are easy to store are clas-
sified as arguments in the direct utility function (commodities A, B, I, K, N, O and P).
Following Moschini and Vissa (1993) I also list beef and veal [C], pork [D], other meats [E]

12The data are collected from Table 2.4.6U downloadable from the BEA data archive, and listed in
excel sheets 20405-A (annual data), 20405-Q (quarterly data) and 20405-M (monthly data).

13The price data are collected from Tables 2.4.4U-A (annual data), 2.4.4U-Q (quarterly data) and
2.4.4U-M (monthly data) downloadable from the BEA data archive.
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Table 2: Goodness-of-fit (AEI).

Sample Mixed-demand M-WARP GARP

Annual 0.813 0.813 1.000

Quarterly 0.806 0.806 1.000

Monthly 0.801 0.801 1.000

and poultry [F] as arguments in the direct utility function. Moreover, following Moschini
and Rizzi (2006,2007), I list commodities that can be considered as fresh food such as
fish and seafood [G], fresh milk [H], eggs [J], fresh fruits [L] and fresh vegetables [M] as
arguments in the indirect utility function. These classifications are also listed in the last
column of Table 1.

5.2 Goodness-of-fit

I begin by calculating the Afriat efficiency index (AEI) for the mixed-demand model,
the necessary condition M-WARP and the direct utility maximization model (GARP).14

Table 2 gives the results. As seen from this table, the direct utility maximization model
rationalizes the data at full efficiency, that is, the consumer does not need to waste any
of her income for the data to satisfy GARP. This holds irrespectively of the sample. The
AEI for the mixed-demand model and M-WARP are lower, meaning that these models
seem to provide a worse fit to the data. However, what should be considered a “too
low” measure of goodness-of-fit? In several recent studies, a lower threshold is set to 0.8,
implying that data reflecting an AEI below this threshold is deemed to far from utility
maximization behavior.15

Following these recent studies, in this paper, I will consider a “waste” of 20% reason-
able. However, I strongly emphasize that this level is not universal, but should depend on
the problem at hand, that is, the number of observations, the power of the test, and the
model under consideration. Therefore, I encourage readers to make up their own mind of
what is a reasonable amount of “waste” such that the data should be considered “close”
enough to being rationalizable by the model in question.

Finally, I note that although M-WARP is only a necessary condition for the mixed-
demand model, the AEI for M-WARP and the mixed-demand model are equivalent,
suggesting that M-WARP is a very accurate approximation of the testable conditions for
the mixed-demand model.

14When measuring the goodness-of-fit for the direct demand model I treat all commodities as argu-
ments in the direct utility function. The AEI is calculated using the binary search algorithm for the
generalized axiom of revealed preference, GARP, as described in Varian (1990). Another equivalent but
computationally more expensive way to calculate the AEI for the direct demand model is to use the
Afriat inequalities as described in Section 4.3. Appendix A describes in more detail how the AEI for
M-WARP is calculated.

15See e.g., Choi et al. (2007) and Fisman et al. (2007).
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Figure 1: Power against uniformly random behavior (Bronars’ power index) for the mixed-
demand model, M-WARP and GARP at different levels of efficiency.

5.3 Power and predictive success

To meaningfully compare different models, it is important also to consider other diagnostic
measures than goodness-of-fit. One important such measure is power, which is measured
as the probability of rejecting the revealed preference test given that the model does not
hold. A high goodness-of-fit have little value if the test has little discriminatory power
(i.e., the conditions are hard to reject for the data at hand). In this section, I calculate
and compare the power for the mixed-demand model, M-WARP and GARP using two
different measures of power. I also compare the models using a measure of predictive
success.

Power against uniformly random behavior. The first measure I consider is the
power against uniformly random behavior. This index (often called Bronars power index)
quantifies discriminatory power in terms of the probability to detect uniformly random
behavior, and is based on Bronars (1987). This measure is implemented by first simulat-
ing 1,000 random series of 16 consumption choices (one for each commodity). At every
observation, this is achieved by drawing a random quantity bundle from a uniform dis-
tribution on the budget hyperplane given the observed prices and total expenditure. At
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a given efficiency level, the power against uniformly random behavior is then calculated
as one minus the proportion of these randomly generated consumption series that are
consistent with the rationalizability conditions being evaluated.

Figure 1 presents plots of the power of the mixed-demand model, M-WARP and
GARP at different levels of efficiency ranging from 0.8 to 1 for each of the three data
samples.16 As seen from these plots, both the mixed-demand model and M-WARP has
optimal power (equal to 1) for any efficiency level equal to 0.8 or higher, which holds
irrespectively of the sample. The results for the direct demand model (GARP) is quite
different: the power is equal to zero up to an efficiency level of about 0.975 after which
it increases rapidly. For the quarterly and monthly data, the power of GARP is 1 at full
efficiency (e = 1), while it is 0.75 for the annual data at full efficiency.

These results suggest that GARP is a much less stringent condition than the testable
conditions for the mixed-demand model and M-WARP. One way to interpret this is that,
while GARP is associated with a higher degree of goodness-of-fit, it seems that this better
fit may simply be due to a lower discriminatory power rather than a better model per se.
To analyze this in more detail, we also consider another measure of power, which nests
Bronars power index as a special case.

Power against partial uniformly random behavior. The second measure I con-
sider is the power against partial uniformly random behavior. This index (called the
partial uniformly random power (PURP) index) quantifies discriminatory power in terms
of the probability to detect a model of irrationality, where only a certain fraction of ex-
penditure is random, and was recently introduced by Hjertstrand (2021). In this model
of irrationality, the vector of budget shares, wI , corresponds to the weighted average
between the observed budget shares, w, and the uniformly random budget shares, wU ,
i.e.,

wI = (1− λ) w + λwU . (16)

The parameter λ ∈ [0, 1] is interpreted as the fraction of expenditure that is randomly
allocated. This model encompasses a continuum of sub-models. At the one extreme
λ = 0, it conform to when no part of the expenditure is being randomly allocated, in
which case the budget shares are equal to the observed budget shares, i.e., wI = w.
At the other extreme λ = 1, the model reduces to Bronars’ pure model of uniformly
random behavior, implying that the budget shares are equal to the uniformly random
budget shares, i.e., wI = wU .17 An appealing property of the PURP index is that it
can trace out the entire power curve against uniformly random expenditure allocation by
implementing the model at each node in an equally-spaced grid for λ ∈ [0, 1].18

I implement the PURP index for the mixed-demand model, M-WARP and GARP at
each node using a grid of 0.05 for λ (starting at 0 and ending at 1).19 Figure 2 plots the

16Thus, the power is calculated sequentially for the three models at different values of e as outlined in
Section 4.3.

17Thus, in the case λ = 1, the PURP index and Bronars power index coincide.

18In this regard, note that Bronars power index only gives a measure of power at a specific point on
the power curve.

19When implementing the testable condition for each model, I add efficiency corresponding to the
AEI for the corresponding model. Thus, in the testable condition for the mixed-demand model, I add
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Figure 2: Power against partial uniformly random behavior (PURP index) for the mixed-
demand model, M-WARP and GARP.

entire power curves against random expenditure allocation for the three models. First, I
note that the PURP indices for the mixed-demand model and M-WARP coincide for each
sample. For the annual data with relatively few observations, the power is considerably
higher for the mixed-demand model and M-WARP than it is for GARP at lower levels
of random expenditure allocations (i.e., for low values of λ). However, this difference
becomes smaller as the sample size increases, and for the monthly data the difference is
almost negligible. This suggests that the mixed-demand model and M-WARP has higher
discriminatory power in smaller samples, which is perhaps as expected since the power
should increase with sample size.

Predictive success. So far, we have compared the mixed-demand model, M-WARP
and GARP in terms of goodness-of-fit and discriminatory power. Beatty and Crawford
(2011) suggests to combine these two (often inversely related) performance measures into
a single metric. Building on an original idea of Selten (1991), Beatty and Crawford (2011)
suggest to assess the empirical performance of a model using a notion of predictive success
(PS). This measure is computed as difference between the pass rate (either 1 or 0) and

efficiency values of 0.813, 0.806 and 0.801 for the annual, quarterly and monthly data, respectively.
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Figure 3: Predictive success for the mixed-demand model, M-WARP and GARP at
different levels of efficiency.

1 minus the power, in which case −1 ≤ PS ≤ 1. Negative values (PS < 0) suggest
that the model inadequately describes the data, that is, the model provides a poor fit
(pass rate is zero) even though the model’s power is low (i.e., the model is difficult to
reject empirically). Conversely, a high and positive predictive success value points to a
potentially useful model: it is able to explain the observed consumption behavior (i.e.,
pass rate equals 1) while its power is high (i.e., the model would rapidly be rejected in
case of random behavior). Finally, a predictive success of zero, or approximately zero,
indicates that the theory in question performs about as well as a theory that explains
consumer behavior as purely uniformly random.

For every sample, I calculate the predictive success of the mixed-demand model, M-
WARP and GARP at different levels of efficiency (starting at 0.8 and ending at 1, with
increments 0.01). Figure 3 presents these results by plotting the predictive success against
efficiency. Since the goodness-of-fit and power are the same for the mixed-demand model
and M-WARP, these conditions will also have the same predictive success. The predictive
success for these two models are high and close to 1 at efficiency levels close to 0.8 but
rapidly drops to zero. For any sample, however, it is equal to 1 for some efficiency level
equal to 0.8 or higher. In contrast, the predictive success for GARP is zero up to about
0.98, after which it rapidly increases. For the annual, quarterly and monthly samples, the
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Figure 4: Rejection rates in percent of the null hypothesis (11) for the mixed-demand
model and M-WARP. The horizontal solid line represents the 95th percentile, i.e., the 5%
nominal significance level.

predictive success for GARP is equal to 0.75, 1.00 and 1.00 at full efficiency, respectively.
Taking an efficiency level of 0.8 as reasonable, it appear from the analyses of power

and predictive success that the mixed-demand model is the preferred model for the annual
data with a relatively short sample length. For the quarterly data and given that the
Bronars power index is considerably higher for the mixed-demand model than GARP,
one may also argue that the mixed-demand model perform slightly better than GARP.
For the monthly data, however, with a relatively large number of observations, the power
is very similar for the mixed-demand model and GARP, which would perhaps make the
direct utility maximization model the preferred model in terms of predictive success.

5.4 Measurement errors

As a final exercise, I implement the measurement error procedure outlined in Section 4.4.
Since the data in every sample satisfies GARP, I focus on the mixed-demand model and
M-WARP.20 I implement the procedure for an equally spaced grid of standard deviations

20Appendix A adapts the measurement error procedure in Section 4.4 to test M-WARP.
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starting at 0.15 and ending at 3.5. Figure 4 plots the percentage rejection rates of the null
hypothesis (11) at every point in the grid. The horizontal solid line represents the 95th

percentile. Thus, a rejection rate above this line implies a rejection of the null hypothesis
(11) at the 5% nominal significance level.

The lowest standard deviation at which the null cannot be rejected at the 5% nominal
significance level for the mixed-demand model is about 0.32% for the annual data, 0.26%
for the quarterly data and 0.24% for the monthly data. If one’s prior belief is that the
standard deviation of measurement errors in prices is lower, then the null is rejected,
implying that the “true” data cannot be rationalized by a well-behaved mixed-demand
model. If, however, one’s belief is that the standard deviation of the errors in prices is
higher, then the null of rationalizability is not rejected. In these type of data, given the
possibility of aggregation errors and the potential bias in the construction of price indices,
I would argue that an amount of error of about 0.3% appear low. Thus, for these data,
the null that the “true” data can be rationalized by a well-behaved mixed-demand model
should not be rejected.

As seen from Figure 4, the lowest standard deviation at which the null cannot be
rejected at the 5% nominal significance level for M-WARP is slightly higher than for the
mixed-demand model, and about 0.56% for the annual data, 0.46% for the quarterly data
and 0.42% for the monthly data. Again, give the type of data, these numbers seem low
enough not to reject the null of rationalizability.

6 Conclusions

This paper has: (1) provided a revealed preference characterization of Samuelson (1965)
mixed-demand model, and (2) provided the first nonparametric empirical application of
the mixed-demand model (Nonparametric here means that the direct and indirect utility
functions are free from any functional assumptions). A simple testable condition was
derived that can be implemented using computationally effective linear programming
techniques. These results were also generalized to provide a simple testable condition
under the assumption that observed data contains measurement errors.

I see a wide variety of potential follow-up studies based on the results in this paper. For
example, the methods introduced here can be straightforwardly extended to also recover
preferences following the ideas in Varian (1982). In particular, being based on revealed
preference methods, there are usually many types of preferences that will rationalize data
consistent with the rationalizability condition in Theorem 3. This exercise would aim
at constructing inner and outer bounds for the indifference curves passing an arbitrary
(not necessarily observed) block of optimally determined quantities and expenditure-
normalized prices.

The methods proposed here can also be used to perform counterfactual analysis.
Given some predetermined income and price- and quantity-vectors, the methods in Varian
(1982) can be used to find optimally determined quantities and expenditure-normalized
prices under the counterfactual scenario.

Given that some very popular parametric demand models does not have a mixed-
demand representation (as discussed in the Introduction), it seem that the theory and
methods developed in this paper could be a good alternative to researchers wanting to
apply the mixed-demand model in empirical demand analysis.
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Appendix

A AEI and measurement errors for M-WARP

AEI. The AEI for M-WARP is constructed in the same way as for the mixed-demand
inequalities. Note that the right-hand side of the M-WARP condition equals total ex-
penditure (normalized to unity). Consider the following ”relaxed” version of M-WARP,
where total expenditure, qtyt + ztwt = 1, at every observation is multiplied with a scalar
e ∈ [0, 1] :

qtys + zswt ≥ e. (17)

The AEI is defined as the largest e such that the observed data satisfies this condition.
Analogous to the AEI for the mixed-demand model, the AEI for M-WARP is calculated
by implementing a binary search algorithm.

Measurement errors. Consider the following optimization problem:

Φ = min
φ
φ subject to

qt (yt − ys) + wt (zt − zs) ≤ φ
(18)

Analogous to the mixed-demand model, this optimization problem can be used to de-
rive a statistical decision rule to test the hypothesis (11) under the assumption of the
multiplicative Berkson measurement error model (9). This decision rule is based on the
following theorem.

Theorem 5 Consider the optimization problem (18). Under H0 in (11), it holds that:

Φ ≤ C,

where:

C = max
s,t∈T
{(qt − qt)(ys − yt) + wt((zs − zs)− (zt − zt))}. (19)

As in Theorem 4, the null is rejected whenever Φ > C1−α, where α denotes the significance
level and C1−α denotes the (1 − α) × 100th percentile of the distribution of the random
variable C in (19). The empirical distribution of C can be simulated as described in
Section 4.4.

Finally, a word on solving the problem (18). Note that the constraints in (18) can be
written as:

qtys + zswt ≥ qtyt + ztwt − φ = 1− φ

Thus, by the AEI in (17), we have that φ = 1 − e, which implies that the decision rule
in Theorem 5 can be written as 1− AEI ≤ C, where C is defined in (19). Hence, if one
calculates the AEI for M-WARP in empirical applications, then it is not necessary to also
calculate φ.
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B Proofs

Proof of Theorem 3

Necessity. By Afriat’s Theorem, the existence of a continuous, strictly increasing and
concave (and rationalizing) direct utility function implies that there exist numbers Ut and
λt for all t ∈ T such that the Afriat inequalities (in the first row) hold. Analogously, from
Hjertstrand and Swofford (2012), the existence of a continuous, strictly decreasing and
convex (and rationalizing) indirect utility function implies that there exist numbers Vt
and µt for all t ∈ T such that the indirect Afriat inequalities (in the second row) hold. By
Definition 3, the optimum occur at 0 = u (y?,w)−v (q, z?). Hence, u (y?t ,wt) = v (qt, z

?
t )

for all t ∈ T. Defining Ut = u (y?t ,wt) and Vt = v (qt, z
?
t ), we obtain the equality in the

third row. Finally, the first-order conditions of the individual utility and indirect utility
maximization problems are:

0 = ∇yu (y,w)− λq,

0 = −∇zv (q, z)− µw,

But by the first-order conditions from the mixed-demand model (2), we must have λ = µ.
Evaluating this in every time period t ∈ T yields the equality in the fourth row.

Sufficiency. Suppose that the second condition holds (i.e., condition (3) holds). For
all (y, z) and any fixed (w,q) define the functions:

u (y,w) = min
{s∈T}
{Us + λsqs (y − ys)},

−v (q, z) = min
{s∈T}
{−Vs + µsws (z− zs)}.

By Afriat’s theorem, the function u (y,w) is continuous, strictly increasing and concave
in y. Rewrite v (q, z) as:

v (q, z) = − min
{s∈T}
{−Vs + µsws (z− zs)}

= max
{s∈T}
{Vs + µsws (zs − z)}.

Hjertstrand and Swofford (2012) showed that v (q, z) is continuous, strictly decreasing
and convex in z. Hence, it suffices to show that the mixed-demand model rationalizes
the data D = {(qt, zt); (yt,wt)}t∈T. For all (y, z) and any observation (wt,qt) such that
qty + zwt ≤ 1:

u (y,wt)− v (qt, z) = u (y,wt) + (−v (qt, z))

≤ (Ut + λtqt (y − yt)) + (−Vt + µtwt (z− zt))

= (Ut + (−Vt)) + λtqt (y − yt) + µtwt (z− zt)

= (Ut − Vt) + ψt (qt (y − yt) + wt (z− zt))

= (Ut − Vt) + ψt ((qty + zwt)− (qtyt + ztwt))

≤ Ut − Vt
= 0,

where ψt = λt = µt and Ut = Vt holds for all t ∈ T from condition (3). Thus, the
mixed-demand model rationalizes the data D. �
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Proof of Theorem 4

Under H0 in (11) and by Theorem 3, there exist numbers Ft and ψt > 0 such that the
following inequalities hold:

Fs − Ft ≤ ψtqt (ys − yt) ,

−Fs + Ft ≤ ψtwt (zs − zt) ,

for all observations s, t ∈ T. For every s, t ∈ T, adding and subtracting ψtqt (ys − yt)
from the right-hand side of the first set of inequalities gives:

Fs − Ft ≤ ψtqt (ys − yt)

= ψtqt (ys − yt) + ψtqt (ys − yt)− ψtqt (ys − yt)

= ψtqt (ys − yt) + ψt(qt − qt)(ys − yt).

Thus,

Fs − Ft − ψtqt (ys − yt) ≤ ψt(qt − qt)(ys − yt)

≤ ψtC1,

where C1 is defined in (14). Analogously, for every s, t ∈ T, adding and subtracting
ψtwt (zs − zt) from the right-hand side of the second set of the inequalities gives:

−Fs + Ft − ψtwt (zs − zt) ≤ ψtC2,

where C2 is defined in (15). Since C = max{C1, C2}, we have:

Fs − Ft − ψtqt (ys − yt) ≤ ψtC,

−Fs + Ft − ψtwt (zs − zt) ≤ ψtC.

Because Ψ is the value that solves the problem (12) it holds that Ψ ≤ C. �

C Additional results
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