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Abstract

The paper provides a new formulation of the Mirrlees-Seade theo-
rem on the positivity of the optimal marginal income tax, under weaker
assumptions and in a more general model. The formulation of the the-
orem is independent of whether the model involves �nitely many types
or a continuous type distribution. The formal argument makes the un-
derlying logic transparent, relating the mathematics to the economics
and showing precisely how each assumption enters the analysis.
Key Words: Optimal Income Taxation, Utilitarian Welfare Maxi-

mization, Redistribution
JEL Classi�cation: D63, H21

1 Introduction

The theory of optimal utilitarian income taxation is one of the cornerstones
of normative public economics. Its central result states that, under certain
assumptions, when individual productivity (earning ability) is a hidden char-
acteristic, the optimal marginal income tax is strictly positive at all income
levels other than the very top and, in some speci�cations, the very bottom
of the income distribution. The �rst version of this result was established by

�This is a revision of Hellwig (2005), which extends the analysis of the earlier paper
to allow e¢ cient outcomes involving zero production of people with low productivity. I
am very grateful to Felix Bierbrauer, Christoph Engel, Thomas Gaube, Stefan Homburg,
Peter Norman, the Editor and two referees for very helpful discussions and comments on
earlier drafts. The usual disclaimer applies.
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Mirrlees (1971, 1976) for a model with a continuum of types. His result was
subsequently generalized by Seade (1977, 1982), Ebert (1992), and Brunner
(1993, 1995). For models with �nitely many types, di¤erent versions have
been provided by Guesnerie and Seade (1982), Stiglitz (1982), Roëll (1985),
and Weymark (1986).

It is not clear whether this cornerstone of public economics is really
a monolith or whether it is a couple of stones packaged under a common
label. Models of optimal income taxation with �nitely many types and
with a continuum of types involve di¤erent assumptions and di¤erent formal
arguments. Therefore, it is di¢ cult to see the underlying common principle.

Our understanding of underlying principles is particularly de�cient in
models with a continuum of types. The utility speci�cation that is used in
these models is special, the role of the assumptions is di¢ cult to understand,
and the relation of the mathematical arguments to the underlying economics
is unclear. The utility speci�cation identi�es the hidden characteristic with
the wage rate, i.e., the ratio of output produced or income earned to hours
worked. This is problematic because, in many settings, the wage rate can
be taken to be observable.

In these models, the utility function is assumed to be strictly concave
and leisure is assumed to be a normal good. Together, these two conditions
imply that some redistribution is desirable. However, normality of leisure
is an ordinal property of the utility function. Why this ordinal property
should matter for redistribution is unclear.

In these models we also use formal arguments which mix local and global
considerations in ways that are di¢ cult to disentangle. The arguments actu-
ally depend on whether consumption and leisure are (Edgeworth) substitutes
or complements. This makes it hard to see the common underlying structure
and to relate it to any economic intuition.

The present paper develops a uni�ed approach to optimal utilitarian
income taxation. Relying on a new proof strategy, it shows that the the-
ory of optimal income taxation is indeed a monolith, involving the same
assumptions and the same arguments in models with �nitely many types
and in models with a continuum of types. The new approach provides for a
sharper formulation of the theorem, in a more general model, under weaker
assumptions. More importantly, it provides for a transparent account of
the underlying logic, relating the mathematics to the economics and mak-
ing clear where exactly and how the key assumptions enter the analysis.
The argument is the same for models with �nitely many types and with
a continuum of types. For models with a continuum of types, I abandon
the interpretation of the hidden characteristic as a wage rate and use the
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abstract "type" formulation of Guesnerie and Seade (1982); moreover, there
is no need to have di¤erent arguments when consumption and leisure are
substitutes and when they are complements.

The argument proceeds indirectly. Exploiting an idea of Matthews and
Moore (1987), I study the modi�cation of the optimal income tax problem
that is obtained if upward incentive constraints are replaced by a monotonic-
ity condition on consumption. Under fairly general assumptions, this mod-
i�ed problem turns out to be equivalent to the optimal income tax problem
in that any solution to one problem is also a solution to the other and vice
versa. However, the modi�ed problem is much easier to analyse.

In the modi�ed problem, it is easy to see that optimal marginal income
taxes are never negative. Negative marginal income taxes, i.e., a subsi-
dization of work at the margin, would induce people to work more and to
consume more than is e¢ cient.1 Such a distortion could only be justi�ed by
upward incentive constraints requiring excessive workloads as a way of pre-
venting people with lower earning abilities from imitating people with higher
earning abilities. When upward incentive constraints are not imposed, there
cannot be any rationale for such distortions. Because one does not have to
worry about negative marginal taxes, it is easier to see which conditions call
for marginal taxes to be strictly positive.

The rationale for utilitarian redistribution will be based on a version of
Roëll�s (1985) "very weak redistribution assumption". It postulates that, in
the absence of incentive considerations, certain allocations cannot be welfare
maximizing because utilitarian welfare can be increased by redistribution
from people with higher productivity to people with lower productivity,
requiring the former to consume less or to work more so that the latter can
consume more or work less. Whereas Roëll imposed this postulate for all
incentive-compatible allocations, I only impose it for allocations in which the
outcomes for the less productive people are e¢ cient and the outcomes for
the more productive people are either e¢ cient or distorted in the direction

1This argument assumes that, as in Mirrlees (1971), consumption-leisure choices are
made at the intensive margin. Saez (2002) has shown that negative marginal income
taxes can be optimal if consumption-leisure choices are made at the extensive margin,
so people of type n choose only whether to work at a job of type n or not to work; see
also Laroque (2005). In this case, there is no question of a person of type n choosing
to work at a job of type n-1 and earning a lower income; marginal income taxes as such
are therefore economically unimportant. The optimal tax on income earned on a job of
type n is obtained from a simple elasticities consideration involving only people of type
n. A model involving choices at both the intensive and the extensive margin would have
to allow for multidimensional type heterogeneity; for a �rst approach to this problem, see
Choné and Laroque (2006).
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of too little consumption and too much leisure.
Under this redistribution assumption, the paper shows that the optimal

income tax schedule is strictly increasing. If the type set is �nite, the op-
timal marginal income tax is strictly positive at all positive income levels
below the top. If the type set is an interval and the distribution of types
has a continuous and strictly positive density on this interval, the optimal
marginal income tax is strictly positive. Indeed, on any compact set of in-
come levels between the bottom and the top of the income distribution, it
is bounded away from zero. There is not even a possibility that the optimal
marginal income tax might be zero or arbitrarily close to zero near some
isolated point.2

These results can be understood in terms of a local equity-e¢ ciency
tradeo¤. If the marginal tax rate that is relevant for a given type is zero, then
this type�s consumption-leisure choice is e¢ cient. Given the information
that marginal tax rates are never negative, any higher type�s consumption-
leisure choice is either e¢ cient or distorted in the direction of too little
consumption and too much leisure. The assumption on the desirability of
redistribution therefore implies that, in this case, it is desirable to have
some redistribution from people with the higher types to people with the
lower type. Ceteris paribus, such a redistribution may violate downward
incentive compatibility, but, by standard arguments, the incentive e¤ects
can be neutralized by distorting the lower type�s consumption-leisure choice
in the direction of too little consumption and too much leisure. If this shift
is small, then, because one starts from an e¢ cient pair, the e¢ ciency loss
that the shift induces is negligible and is outweighed by the gain from the
redistribution.

In this analysis, the rationale for utilitarian redistribution rests on both
the cardinal and ordinal properties of the utility speci�cation. The util-
itarian approach to income taxation has traditionally built on the notion
that it is desirable to redistribute consumption because people with higher
consumption have a lower marginal utility of consumption. In the theory of
income taxation, this notion goes back (at least) to Edgeworth (1897/1925).3

Mirrlees (1971, 1976), as well as Guesnerie and Seade (1982) and Weymark
(1986), have followed this tradition. They recognized that di¤erences in

2By contrast, Seade (1982) proceeds by assuming that positivity fails on some interval
and then obtains a contradiction by comparing the consumption-income pairs that are
associated with the two endpoints of the interval. This argument neglects the possibility
that the interval in question might be degenerate, i.e., consist of a single point, in which
case the comparison in question is moot.

3For a comprehensive account, see Chapter 5 of Musgrave (1959).
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consumption levels which are due to di¤erences in the hidden productiv-
ity parameters are likely to be correlated with di¤erences in leisure, but,
through additional assumptions, they avoided the complications that this
might cause. Thus, in Mirrlees (1971), additive separability of utility func-
tions eliminates the possibility that people who produce more might also be
hungrier.

The focus on redistributing consumption was loosened by Seade (1982)
and Roëll (1985). For Mirrlees�s (1971) model, Seade (1982) showed that the
assumption of additive separability of the utility function can be replaced
by the assumption that leisure is a noninferior good. For the more abstract
utility speci�cation of Guesnerie and Seade (1982), Roëll (1985) showed that
the traditional redistribution assumption in terms of consumption can be
weakened to the assumption that it is desirable to redistribute consumption
or leisure from participants with higher roductivity to participants with
lower productivity.4 She also showed that, for the utility speci�cation of
Mirrlees (1971), this condition is implied by noninferiority of leisure.5

This paper goes one step further and all but eliminates the notion that
it is desirable to redistribute consumption. Desirability of redistribution, as
formulated in this paper, refers on a redistribution of consumption only if
the lower type is not working so that there is no scope at all for increasing
this type�s leisure. If the lower type is working, desirability of redistribution
can be formulated solely in terms of leisure, having the high-productivity
types work more so that the low-productivity types can have more leisure.

At this point, it becomes di¢ cult to distinguish whether the desirability
of redistribution is based on inequality aversion or on the consideration that
the aggregate burden of producing a given aggregate output is reduced if
output requirements are redistributed from people with low productivity to
people with high productivity. I will actually show that, whatever the ordi-
nal properties of the utility function may be, the redistribution assumption
on which I rely holds whenever inequality aversion is su¢ ciently large. Nor-
mality of leisure is not necessary. However, I will also give an example to
show that the redistiribution assumption can hold even though inequality
aversion is zero.

In the following, Section 2 formulates the optimal income tax problem.
Section 3 states and discusses the assumptions that I impose. Section 4
explains the main argument. Section 5 provides the formal analysis for the

4 In the formal statement of her theorem, Roëll only claims nonnegativity of the optimal
marginal income tax. However, the arguments given by Guesnerie and Seade (1982) for
strict positivity apply to her speci�cation as well.

5On this point see also Brunner (1993, 1995) and Homburg (2004).
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case of �nitely many types, Section 6 for the case when the type set is an
interval and the type distribution has a continuous, strictly positive density.
Some supplementary proofs are given in the Appendices.

2 The Optimal Income Tax Problem

Following Mirrlees (1971, 1976) and Seade (1977, 1982), I study a large
economy with one produced good and labour. Each agent in the economy
is characterized by a productivity parameter n: An agent with productivity
parameter n who consumes c units of the produced good and who supplies
the labour needed to produce y units of output obtains the payo¤ u(c; y; n):
The leading example in the literature is the speci�cation

u(c; y; n) = U(c;
y

n
): (2.1)

In this speci�cation, n is labour productivity (the wage rate) and y
n is the

number of hours the person needs to work to produce the output y or to
obtain the labour income y: The analysis here encompasses (2.1), but is not
limited to this speci�cation.

The productivity parameter n of any one person is the realization of a
nondegenerate random variable ~n with probability distribution F which has
a compact support N � <+: The smallest and largest elements of N are
denoted as n0 and n1: The distribution F is the same for all agents. By a
large-numbers e¤ect, F is also assumed to be the cross-section distribution
of the realizations of people�s productivity parameters.

In this economy, an allocation is a pair of functions, (c(�); y(�)); which
indicate how an individual�s consumption level c(n) and output provision
level y(n) depend on his productivity parameter n. An allocation is feasible
if Z

N
c(n)dF (n) �

Z
N
y(n)dF (n); (2.2)

so aggregate consumption does not exceed aggregate production. The allo-
cation is incentive-compatible if

u(c(n0); y(n0); n0) � u(c(n); y(n); n0) (2.3)

for all n and n0 in N , so nobody has an incentive to claim that his pro-
ductivity parameter is n when in fact it is n0: An individual�s productivity
parameter and labour input are taken to be private information, so incentive
compatibility is a prerequisite for the implementation of an allocation.
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Allocations are assessed according to the utilitarian welfare functionalZ
N
u(c(n); y(n); n)dF (n); (2.4)

The utilitarian welfare maximization problem is to maximize (2:4) over the
set of feasible and incentive-compatible allocations. By the taxation prin-
ciple of Hammond (1979) and Guesnerie (1995), this problem is equivalent
to the problem of choosing an optimal tax schedule T (�) and then letting
each person choose an output provision level y and a consumption level
c = y � T (y): Therefore, I refer to it as the optimal income tax problem.

I shall be interested in the e¢ ciency properties of optimal allocations.
For any n and any v; let (c�(n; v); y�(n; v)) be the pair which provides the
person with productivity parameter n with the utility v at the lowest cost
in terms of required net resources, i.e., let (c�(n; v); y�(n; v)) be the solution
to the problem

min
u(c;y;n)�v

(c� y): (2.5)

A consumption/output pair (c(n); y(n)) providing a person of type n with
the utility

v(n) = u(c(n); y(n); n) (2.6)

is said to be e¢ cient for n if

(c(n); y(n)) = (c�(n; v(n)); y�(n; v(n))); (2.7)

the pair (c(n); y(n)) is said to be distorted downward from e¢ ciency if

(c(n); y(n))� (c�(n; v(n)); y�(n; v(n))) (2.8)

and to be distorted upward from e¢ ciency if

(c(n); y(n))� (c�(n; v(n)); y�(n; v(n))): (2.9)

If the utility function is di¤erentiable, e¢ ciency implies that

uc(c(n); y(n); n) + uy(c(n); y(n); n) � 0; (2.10)

with a strict inequality only if c(n) = 0 or y(n) = 0; if (c(n); y(n)) is distorted
downward from e¢ ciency, then

uc(c(n); y(n); n) + uy(c(n); y(n); n) > 0: (2.11)
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3 Assumptions

The following assumptions will be imposed throughout the paper.

RC Regularity Conditions: The utility function u : <3+ ! < is twice
continuously di¤erentiable as well as increasing in c; decreasing in y;
nondecreasing in n; and strictly quasiconcave in c and y: Moreover,
for every n 2 N and every v in the range of u(�; �; n); the e¢ cient pair
(c�(n; v); y�(n; v)) is well de�ned.

ND Nondegeneracy: For any n; let

cLF (n) = yLF (n) = argmax
y

u(y; y; n) (3.1)

be the outcome that a person of type n would choose under laissez-
faire. Then

(cLF (n1); yLF (n1))� (0; 0):

SSCC Strict Single-Crossing Condition: The utility function satis�es

@

@n

�
uc(c; y; n)

juy(c; y; n)j

�
> 0 (3.2)

for all (c; y; n) 2 <2++ � (0; 1):

DR Desirability of Redistribution: For any (c; y; n) 2 <2+ � [n0; n1);
there exists " > 0 such that n+ " 2 N; and, for all n0 2 (n; n+ "] and
all (c0; y0) 2 <2+, the following hold:
(a) if c0 = c and y0 < y; then

juy(c; y; n)j >
��uy(c0; y0; n0)�� ; (3.3)

(b) if c0 > c; u(c0; y0; n0) � u(c; y; n0), and if, moreover (c; y) is e¢ cient
for n; and (c0; y0) is e¢ cient or distorted downwards from e¢ ciency for
n0; then

juy(c; y; n)j > min(uc(c0; y0; n0);
��uy(c0; y0; n0)��) if y > 0; (3.4)

and

uc(c; y; n) > min(uc(c
0; y0; n0);

��uy(c0; y0; n0)��) if y = 0: (3.5)
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Conditions RC, ND, and SSCC are standard. In RC, I postulate quasi-
concavity rather than concavity of u: Concavity can contribute to making
redistribution desirable, but, as indicated by Proposition 2.1 below, this ap-
pears in the context of condition DR. ND rules out the trivial case where
nobody produces or consumes anything. SSCC re�ects the notion that the
tradeo¤ between consumption and leisure results in a higher level of con-
sumption and a lower level of leisure (more output provision) when the
productivity parameter is higher.6

Condition DR provides the rationale for utilitarian redistribution. The
condition implies that, if incentive considerations could be neglected, then,
at certain speci�ed allocations, it would be desirable to have some redis-
tribution from people with a higher productivity parameter to people with
a lower productivity parameter, requiring the former to work more or to
consume less so that the latter can consume more or work less. For any allo-
cation that satis�es c(n0) = c(n) and y(n0) < y(n) for given n and n0 slightly
greater than n, part (a) of DR implies that welfare is increased if output
requirements are redistributed from people with productivity parameter n0

to people with productivity parameter n: For any allocation that satis�es
c(n0) � c(n) and u(c(n0); y(n0); n0) � u(c(n); y(n); n0) for n0 > n; part (b) of
DR asserts that, if (c(n); y(n)) is e¢ cient for n and (c(n0); y(n0)) is e¢ cient
or distorted downward from e¢ ciency for n0; then welfare is increased if peo-
ple with productivity parameter n0 are required to consume less or to work
more and if the workload of people with productivity parameter n is reduced
if this workload is positive; if this workload is zero, welfare is increased by
raising their consumption.

Part (a) of condition DR has no explicit analogue in the literature. If
u is concave in c and y; this condition corresponds to the requirement that
the marginal disutility of output provision, juy(c; y; n)j ; be decreasing in n:
It is automatically ful�lled if the utility function takes the form (2.1) for
some concave U: For arbitrary utility functions, this is not necessarily the
case. By stating it as an explicit assumption, I eliminate the possibility
that, when upward incentive constraints are neglected, it might be desirable
to choose an allocation with c(n) = c(n0) and y(n) > y(n0) for some n and
n0 > n:

Part (b) of condition DR can be read as a version of the "very weak
redistribution assumption" that Roëll (1985) formulated for the �nite-type

6Actually, one only needs the strictness of the inequality in (3.2) at n1; the top of the
type set; below the top, it is enough to have a weak inequality in (3.2).
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model of Guesnerie and Seade (1982). Roëll�s condition is equivalent to the
requirement that, for any two neighbouring types n and n0 > n with outcome
pairs (c; y) and (c0; y0) that satisfy c0 � c; and u(c0; y0; n0) � u(c; y; n0); the
sum of utilities is increased if a person of type n0 is made to work more or
to consume less in order that a person of type n can consume more or work
less. This is also what the inequalities (3.4) and (3.5) are saying, (3.4) for
the case y > 0; (3.5) for the case y = 0:

By contrast to Roëll (1985), I do not require these inequalities to hold
for all incentive-compatible outcome pairs (c; y) and (c0; y0). I only require
them to hold for downward incentive-compatible outcome pairs (c; y) and
(c0; y0) with c0 � c; such that (c; y) is e¢ cient for n and (c0; y0) is e¢ cient or
distorted downwards from e¢ ciency for n0: An illustration is given in Figure
1. In this �gure, (c�(n); y�(n)) is an e¢ cient outcome pair for type n; I(n0)
is the indi¤erence curve of type n0 > n through (c�(n); y�(n)); and A � A
is the locus of e¢ cient outcome pairs for type n0: Given that, in the �gure,
y�(n) > 0; part (b) of DR postulates that, if n0 > n is su¢ cently close to n;
then (3.4) holds for all outcome pairs (c0; y0) in the shaded area to the left of
the locus A�A of e¢ cient outcome pairs for type n0; above the indi¤erence
curve I(n0); and strictly above the horizontal line through the reference pair
(c�(n); y�(n)):

Whenever y and y0 are both positive, desirability of redistribution can
be formulated in terms of output requirements rather than consumption.
Under the premises of part (b) of condition DR, y0 > 0 implies uc(c0; y0; n0) �

10



juy(c0; y0; n0)j : Condition (3.4) can then be written as:

juy(c; y; n)j >
��uy(c0; y0; n0)�� if y > 0 and y0 > 0: (3.6)

By contrast, redistribution of consumption plays a role if y and y0 are both
zero and the outcome pairs (c; y) and (c0; y0) are both e¢ cient.

What does condition DR mean for the utility function u? For utility
functions taking the special form (2.1), Roëll (1985) has shown that her
"very weak redistribution assumption" is implied by strict concavity of u
in combination with Seade�s (1982) assumption that leisure is a noninferior
good.7 The following result provides a more general set of su¢ cient condi-
tions under which u satis�es DR. These conditions do not presume that u
takes the special form (2.1) or that leisure is a noninferior good.

Proposition 3.1 Assume RC, ND, and SSCC, and suppose that, for any
n; the indi¤erence curves of the utility function u(�; �; n) have strictly positive
Gaussian curvature.8 Assume also that N is an interval. Then condition
DR holds if u is concave in c and y and, moreover,

ucn(c; 0; n) � 0; ucc(c; 0; n) < 0; (3.7)

uyn(c; y; n) > 0 (3.8)

for all (c; y; n); and

uny(c
�(n; v); y�(n; v); n)

@y�

@v
+ unc(c

�(n; v); y�(n; v); n)
@c�

@v
< 0; (3.9)

for all n 2 N and all v in the range of u(�; �; n): Under these assumptions on
the functions u; c�; and y�, condition DR also holds if N is a �nite set and
the di¤erences between neighbouring elements of N are uniformly small.

For a proof of Proposition 3.1, the reader is referred to Appendix A.
The proposition reduces the desirability of redistribution to four substantive
properties of the utility function: First, u is concave. Second, if y = 0; a
person with higher consumption and higher productivity has a lower mar-
ginal utility of consumption: Third, the marginal disutility of producing
additional output is decreasing in n: Fourth, for any n0 2 N; the func-
tion v ! un(c

�(n0; v); y�(n0; v); n0) is di¤erentiable, and its slope is negative.

7See also Brunner (1993, 1995), and Homburg (2004).
8 I.e., that the quadratic form u2yucc�2ucuyucy+u2cuyy is everywhere strictly negative.

11



Thus, in Figure 1, un is strictly decreasing as one is moving up along the
locus A�A of e¢ cient outcome pairs for type n0:

The �rst three properties are familiar from the literature. Concavity of
u re�ects inequality aversion. Monotonicity of uc(c; 0; n) re�ects the idea
that people with higher productivity are no better than people with lower
productivity for transforming consumption into utility. Positivity of uyn
re�ects the idea that people with higher productivity have a lower marginal
disutility from producing additional output.

As for condition (3.9), observe that the set of outcome pairs that are
e¢ cient for n0 (the line A - A in Figure 1) coincides with the set of solutions
to the problem of maximizing u(c; y; n0) under the budget constraint c =
�+ y; for � varying over the real numbers. For given � and n0; let

v�(�; n0) := max
y�0

u(�+ y; y; n0) (3.10)

be the utility maximum in this problem. Under the given assumptions, the
indirect utililty function v� is twice continuously di¤erentiable, with v�n = un
and

v�n� =

�
uny(c

�(n; v); y�(n; v); n)
@y�

@v
+ unc(c

�(n; v); y�(n; v); n)
@c�

@v

�
v��:

(3.11)
Thus, condition (3.9) is equivalent to the requirement that v�n�(�; n

0) < 0
for all n0 and �: This inequality in turn is equivalent to the requirement
that v��n(�; n

0) < 0, i.e., that the "social marginal utility of income" in the
absence of distortionary taxation is a decreasing function of n. This latter
condition �gures prominently in the literature on optimal linear income
taxation, see, e.g., Hellwig (1986).

For utility functions taking the form (2.1), the inequalities v��n < 0
and, therefore, (3.9) are implied by strict concavity of u and noninferiority
of leisure.9 For arbitrary utility functions, (3.9) holds if consumption is
normal,10 leisure is noninferior, and if uyn > 0 and ucn < 0:

Regardless of the signs of @y�

@v and @c�

@v ; i.e. regardless of the ordinal
properties of u; condition DR is always satis�ed if u is su¢ ciently concave.
To see this, suppose that u = ' � û, where û satis�es RC, ND, and SSCC,
and ' is twice continuously di¤erentiable, increasing, and strictly concave.

9See Christiansen (1983) or Werning (2000). For such utility functions, Roy�s identity
implies that the indirect utility function v� satis�es v�n = v��

y
n
: Hence, v��n = v�n� =

v���
y
n
+ v��

y�
n
:

10Under RC and SSCC, (3.9) is also satis�ed if consumption is nonnormal and uyn > 0:
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Then u and û have the same ordinal properties. The elements of the Hessian
of u are given as

uij = '0ûij + '
00ûiûj

for i; j 2 fc; y; ng: Thus, conditions (3.7) - (3.9) take the form

'0ûcn + '
00ûcûn < 0 (3.12)

'0ûyn + '
00ûyûn > 0 (3.13)

and

'0
�
ûny

@y�

@v
+ ûnc

@c�

@v

�
+ '00ûn < 0: (3.14)

One easily veri�es that these inequalities are fullied and, moreover, u is
concave, if the curvature of ' is su¢ ciently large. This observation yields:

Corollary 3.2 Let û be a utility function that satis�es RC, ND, and SSCC,
and assume that, for any n; the indi¤erence curves of û(�; �; n) have strictly
positive Gaussian curvature. Let ' be twice continuously di¤erentiable, in-
creasing and strictly concave. If N is an interval, the function u = ' � û
satis�es condition DR if the curvature �'00

'0 of the function ' is everywhere
su¢ ciently large.

Corollary 3.2 highlights the importance of the cardinal properties of u for
the desirability of redistribution. Whereas Seade (1982) used strict concav-
ity, a cardinal property, and noninferiority of leisure, an ordinal property, to
derive the desirability of redistribution, Corollary 3.2 shows that, whatever
the ordinal properties of u may be, some (local) redistribution of leisure is
always desirable if u(�; �; n) is su¢ ciently concave.

This being said, one should also see that, for reasons related to the
ordinal properties of u; condition DR can be satis�ed even if u is not strictly
concave. For instance, the Cobb-Douglas speci�cation

u(c; y; n) = c�(1� y

n
)1�� (3.15)

satis�es DR because the disutility of producing additional output is lower
for people with higher n. With v�(�; n) = ��(1 � �)1��(� + n)n�(1��);
inequality aversion does not play any role.

In the remainder of the paper, conditions RC, ND, SSCC, and DR will
be imposed without further mention.
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4 Standard Properties of Optimal Allocations

Past work on the optimal income tax problem has focussed on the following
properties of optimal allocations.

Property A There is no distortion at the top: If F (fn1g) > 0; then

(c(n1); y(n1)) = (c�(n1; v(n1)); y�(n1; v(n1))); (4.1)

if F (fn1g) = 0, then, for any sequence fnkg in N that converges to n1

from below,

lim
k!1

(c(nk); y(nk)) = (c�(n1; v(n1)); y�(n1; v(n1))): (4.2)

Property B There are downward distortions between the top and the bot-
tom: At any n < n1 for which F ([n0; n]) > 0; y(n) > 0 implies

(c(n); y(n))� (c�(n; v(n)); y�(n; v(n))): (4.3)

Property C If F (fn0g) = 0 and if y(�) is strictly increasing at n = n0;
there is no distortion at the bottom, i.e., for any sequence fnkg in N
that converges to n0 from above,

lim
k!1

(c(nk); y(nk)) = (c�(n0; v(n0)); y�(n0; v(n0))): (4.4)

Property D The functions y(�); c(�); and y(�)� c(�) are nondecreasing and
co-monotonic on N , i.e., for any n and n0 > n in N; y(n0) � y(n); and,

if y(n0) > y(n); then c(n0) > c(n) and y(n0)� c(n0) > y(n)� c(n);
(4.5)

if y(n0) = y(n); then c(n0) = c(n) and y(n0)� c(n0) = y(n)� c(n):
(4.6)

Moreover, for some n̂ 2 (n0; n1), one has

c(n) > y(n) if n < n̂; (4.7)

and
c(n) < y(n) if n > n̂: (4.8)

Finally, (c(n); y(n))� (c�(n1; v(n1)); y�(n1; v(n1))) for all n < n1:
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The following result shows that, if Properties A - D hold, the optimal
marginal income tax is zero at the top and strictly positive between the top
and the bottom. This explains the importance of these properties for the
theory of optimal income taxation.

Theorem 4.1 If an allocation (c(�); y(�)) with associated indirect utility func-
tion v(�) exhibits Properties A - D, a tax schedule T that implements the
allocation (c(�); y(�)) is strictly increasing on the range y(N) of the output
provision function. If T is di¤erentiable,11 its derivative �(�) satis�es the
following:

A: If F (fn1g) > 0; then

�(y(n1)) = 0; (4.9)

if F (fn1g) = 0, then, for any sequence fnkg in N that converges to n1 from
below,

lim
k!1

�(y(nk)) = 0: (4.10)

B: For any n 2 [n0; n1); F ([n0; n]) > 0 and y(n) > 0 imply

�(y(n)) 2 (0; 1): (4.11)

C: If F (fn0g) = 0 and if y(�) is strictly increasing at n = n0; then, for
any sequence fnkg in N that converges to n0 from above,

lim
k!1

�(y(nk)) = 0: (4.12)

Proof. Any tax schedule that implements (c(�); y(�)) satis�es

T (y(n)) = y(n)� c(n) (4.13)

11 If N is an interval and the allocation (c(�); y(�)) is continuous and strictly increasing,
the tax schedule T (�) is necessarily di¤erentiable on y(N); its derivative �(�) is then given
by (4.15). If (c(�); y(�)) is not strictly increasing, the tax schedule T (�) is not di¤erentiable
at any point at which there is bunching; in this case, if N is an interval and the allocation
is continuous, the claims of the Theorem still hold for right-hand and left-hand derivatives
of the tax schedule.
If N is a �nite set or if the allocation (c(�); y(�)) is not continuous, the set y(N) is not

an interval. In this case, the speci�cation of T (y) for y =2 y(N) is somewhat arbitrary; this
arbitrariness introduces the possibility that, at a boundary point of y(N); the speci�ed
tax schedule may not be di¤erentiable from the right. However, it is always possible to
specify T (�) so that the right-hand derivative �(y) exists for all y and satis�es (4.15) for
all n 2 N:

15



for all n 2 N:12 If Property D holds, (4.5) implies that T (�) is strictly
increasing on y(N). Incentive compatibility requires that, for all n 2 N ,
y(n) maximizes u(y � T (y); y; n): If T (�) is di¤erentiable, the �rst-order
conditions for this maximization require that

uc(c(n); y(n); n)(1� �(y(n))) + uy(c(n); y(n); n) � 0; (4.14)

with equality unless y(n) = 0 or c(n) = 0: If Property D holds, the possibility
that c(n) = 0 can be ruled out because (4.7) implies c(n0) > 0 and, by
the monotonicity of y(�) and the co-monotonicity of c(�) and y(�); one has
c(n) � c(n0) for n > n0: Thus, (4.14) holds with equality whenever y(n) > 0:
By a rearrangement of terms, it follows that

�(y(n)) =
uc(c(n); y(n); n) + uy(c(n); y(n); n)

uc(c(n); y(n); n)
(4.15)

whenever y(n) > 0: For n 2 (n̂; n1]; y(n) > 0 follows from (4.8). From
(4.15) and (2.10), one sees that statement A of Theorem 4.1 is equivalent
to the allocation (c(�); y(�)) and the associated indirect utility function v(�)
exhibiting Property A. Similarly, statements B and C are equivalent to the
allocation (c(�); y(�)) and the associated indirect utility function v(�) exhibit-
ing Properties B and C.

I claim that RC, ND, SSCC, and DR are su¢ cient for any solution to the
optimal tax problem to exhibit Properties A - D, so the optimal tax schedule
is characterized by Theorem 4.1. Section 4 will establish this claim for a
type distribution with �nite support, Section 5 for a type distribution with
a continuous density whose support is an interval. In this case, one actually
obtains the stronger version of Property B whereby, on any compact set of
productivity parameters for which y(n) > 0 and F ([n0; n]) 2 (0; 1); the pairs
(c(n); y(n)) are distorted downward and bounded away from e¢ ciency.13

Before going into details, I brie�y explain the proof strategy. Following
the line of argument that was developed by Matthews and Moore (1987) for
a monopoly problem, I will study the modi�ed problem which is obtained
if the requirement of incentive compatibility is weakened to downward in-
centive compatibility and, in addition, a weak monotonicity requirement is

12 If there is bunching, with y(n) = y(n0) for distinct types n and n0; incentive compat-
ibility dictates that c(n) = c(n0): In this case, (4.13) yields T (y(n)) = T (y(n0)); so there
is no problem in thinking about T as a function of y:
13 In Hellwig (2007), I extend these results to cover "mixed" distributions involving mass

points as well as a continuous part.
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imposed on consumption. I refer to this modi�ed problem as the weakly
relaxed income tax problem. The word "relaxed" refers to the fact that, un-
der SSCC, incentive compatibility of an allocation implies monotonicity, so
downward incentive compatibility and consumption monotonicity together
are weaker than incentive compatibility. The word "weakly" refers to the
fact that upward incentive compatibility is not just dropped, but is replaced
by consumption monotonicity.14

In the weakly relaxed income tax problem, the implications of redistri-
bution concerns and incentive constraints are easier to disentangle than in
the optimal income tax problem itself. In the end, the analysis also shows
that, under the given assumptions, both problems have the same solutions.

The argument proceeds in several distinct steps: First, if consumption
is constant on some set of types, then the output requirement must also be
constant on this set. Otherwise, by downward incentive compatibility, the
higher types in this set would have lower output requirements. Part (a) of
condition DR implies that this cannot be optimal because one could raise
welfare by equalizing these output requirements.

Second, in the absence of upward incentive constraints, the allocation
cannot be distorted upward from e¢ ciency. If, for type n, the pair (c(n); y(n))
were distorted upward from e¢ ciency, one could reduce both c(n) and y(n)
in such a way that the di¤erence c(n)�y(n) becomes smaller while the util-
ity v(n) = u(c(n); y(n); n) is unchanged: By SSCC, such a reduction would
not a¤ect downward incentive compatibility. The decrease in c(n) � y(n)
could be used to raise welfare by making, e.g., types near the top of the type
distribution, better o¤.

Third, at any n below the top, if c(n) > 0 and F ([n0; n]) > 0; then either
consumption monotonicity or adjacent downward incentive compatibility
must be strictly binding in the sense that the corresponding Kuhn-Tucker
multipliers or Pontryagin costate variables are nonzero. Otherwise, the pair
(c(n); y(n)) would be e¢ cient for type n. Because, for n0 > n; the outcome
(c(n0); y(n0)) is not distorted upward from e¢ ciency for these types, the
premises of part (b) of condition DR would be satis�ed. Therefore, some

14 In contrast, Matthews and Moore (1987) study a relaxed problem involving only down-
ward incentive constraints. In their general discussion of how to simplify global incentive
constraints, they mention the possibility of using monotonicity in combination with ad-
jacent downward incentive compatibility; see in particular their fn. 15, p. 447. Their
discussion is taken up again by Besley and Coate (1995, p. 197). In the context of opti-
mal income taxation, Hellwig (2005/2007) shows that the relaxed problem involving only
downward incentive constraints is equivalent to the optimal income tax problem if the
utility function exhibits an additional property of weakly decreasing consumption-speci�c
risk aversion.
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additional redistribution from adjacent higher types to type n would raise
welfare.

Fourth, at any n between n0 and n1, adjacent downward incentive com-
patibility is satis�ed with equality. For adjacent types that are assigned the
same outcome pairs, this assertion is trivial. For adjacent types that are
assigned di¤erent outcome pairs, consumption monotonicity is not binding,
so, by the preceding argument, adjacent downward incentive compatibility
must be.

Because adjacent downward incentive compatibility is satis�ed with equal-
ity for all n, any increase in c(�) must be accompanied by an increase in y(�)
and vice versa. The functions c(�) and y(�) are thus co-monotonic.

Given the monotonicity of c(�) and y(�); SSCC implies that, if an agent is
indi¤erent between the outcome assigned to him and the outcome assigned
to an adjacent lower type, then an agent with the adjacent lower type is
happy to receive the outcome that is assigned to him, rather than receiving
the outcome that is assigned to the adjacent higher type. The allocation thus
satis�es adjacent upward as well as downward incentive compatibility. By
monotonicity and SSCC, this implies that the allocation is actually incentive-
compatible.

The remaining arguments are straightforward:
Because downward incentive compatibility is everywhere weakly binding,

the indi¤erence curve of any type n 2 N in the point (c(n); y(n)) must be
tangent to the image set of the function (c(�); y(�)) to the left of this point.
In the absence of upward distortions from e¢ ciency, the slope dc

dy of this
indi¤erence curve to the left of (c(n); y(n)) is less than one. Therefore, any
increase in y(�) is accompanied by an increase in y(�) � c(�) and vice versa,
i.e., the functions y(�); and y(�)� c(�) are co-monotonic.

Given this co-monotonicity property, the image set of the function (c(�); y(�))
crosses the 45-degree line at most once. Thus, c(n0) = 0 would imply
c(n) � y(n) � 0 for all n; with a strict inequality if y(n) > 0: By ND, such
an allocation would be dominated by the laissez-faire allocation. Therefore,
one must have c(n0) > 0 and, by monotonicity, c(n) > 0 for all n 2 N:

Because consumption is strictly positive, the third step of the argument
implies that, for n < n1, one of the Kuhn-Tucker multipliers or Pontryagin
costate variables corresponding to downward incentive compatibility and
consumption monotonicity must be nonzero if F ([n0; n]) > 0. If y(n) > 0;
this implies that the outcome pair (c(n); y(n)) is distorted downward from
e¢ ciency.

All these considerations refer to the weakly relaxed income tax problem.
However, being incentive-compatible, any solution to the weakly relaxed
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income tax problem thus lies in the constraint set of the optimal income tax
problem. Because, under SSCC, any incentive-compatible allocation is in
fact downward incentive-compatible and nondecreasing, the constraint set
of the optimal income tax problem is actually a subset of the constraint set
of the weakly relaxed income tax problem. Because the objective functions
are the same, it follows that any solution to the weakly relaxed income tax
problem which lies in the constraint set of the optimal income tax problem
must also be a solution to the optimal income tax problem. Because all
solutions to the optimal income tax problem generate the same welfare,
any other solution to this problem will also be a solution to the weakly
relaxed income tax problem. The optimal income tax problem and the
weakly relaxed income tax problem thus have the same solutions.

5 The Case of Finitely Many Types

In this section, I consider the optimal income tax problem when the type set
is �nite. Without loss of generality, I set N = fn1; n2; :::; nmg; where n0 =
n1 < ::: < nm = n1: I also write fi := F (fnig) > 0. An allocation (c(�); y(�))
is identi�ed with a sequence f(ci; yi)gmi=1 such that (ci; yi) = (c(ni); y(ni))
for i = 1; :::;m: The optimal income tax problem is to choose f(ci; yi)gmi=1
so as to maximize

max
f(ci;yi)gmi=1

mX
i=1

u(ci; yi; ni) fi (5.1)

subject to the feasibility condition

mX
i=1

(yi � ci) fi � 0; (5.2)

and the incentive compatibility the condition that

u(ci; yi; ni) � u(ck; yk; ni) (5.3)

for all i and k: In the remainder of this section, I will prove:

Theorem 5.1 If the type set is �nite, any solution to the optimal income
tax problem exibits Properties A - D.

To prove this theorem, I study the weakly relaxed income tax problem,
i.e., the problem of choosing f(ci; yi)gmi=1 so as to maximize (5.1) subject to
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the feasibility condition (5.2), the downward incentive compatibility condi-
tion that (5.3) hold for all i and k < i; and the consumption monotonicity
condition that

ci � ci�1 (5.4)

for all i: The proof strategy is to show (i) that any solution to the weakly
relaxed income tax problem exhibits Properties A - D, and (ii) that the
solution sets of the optimal and the weakly relaxed income tax problems are
the same.

Under SSCC, the downward incentive compatibility constraint in the for-
mulation of the weakly relaxed income tax problem can actually be weakened
to an adjacent downward incentive compatibility constraint.

Lemma 5.2 An allocation f(ci; yi)gmi=1 with nondecreasing consumption is
downward incentive-compatible if and only if it satis�es the adjacent down-
ward incentive constraint

u(ci; yi; ni) � u(ci�1; yi�1; ni) (5.5)

for all i:

Proof. The "only if" statement is trivial. To prove the "if" state-
ment, let f(ci; yi)gmi=1 satisfy adjacent downward incentive compatibility
and consumption monotonicity. To show that f(ci; yi)gmi=1 satis�es down-
ward incentive compatibility, I will �x i and use an induction on k < i: For
i = 1; there is nothing to prove. Suppose, therefore, that i > 1: Adjacent
downward incentive compatibility implies that (5.3) holds for k = i � 1:
For the induction, suppose that (5.3) holds for some k < i and consider
the validity of (5.3) for k + 1: If yi�(k+1) � yi�k; then, by consumption
monotonicity and RC, one has u(ci�k; yi�k; ni) � u(ci�(k+1); yi�(k+1); ni);
and the validity of (5.3) for k + 1 follows from the induction hypothesis.
If yi�(k+1) < yi�k; then, by consumption monotonicity and adjacent down-
ward incntive compatibility, one has (ci�(k+1); yi�(k+1)) � (ci�k; yi�k) and
u(ci�k; yi�k; ni�k) � u(ci�(k+1); yi�(k+1); ni�k): By SSCC, it follows that

u(ci�k; yi�k; ni) � u(ci�(k+1); yi�(k+1); ni):

The validity of (5.3) for k + 1 again follows from the induction hypothesis.
The induction is thus complete.

The weakly relaxed income tax problem is thus reduced to the problem
of maximizing (5.1) subject to (5.2), (5.5), and (5.4). The Lagrangian for
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this problem can be written as

mX
i=1

u(ci; yi; ni) fi + �
mX
i=1

(yi � ci) fi

+
mX
i=2

�i[u(ci; yi; ni)� u(ci�1; yi�1; ni)] +
mX
i=2

�i(ci � ci�1); (5.6)

where � and �i; �i; i = 2; :::m; are nonnegative multipliers for the constraints
(5.2), (5.5), and (5.4): The Kuhn-Tucker conditions for a solution are:

uc(ci; yi; ni)(fi + �i)� �fi � �i+1uc(ci; yi; ni+1) + �i � �i+1 � 0 (5.7)

for ci; i = 1; :::;m; with a strict inequality only if ci = 0; and

uy(ci; yi; ni)(fi + �i) + �fi � �i+1uy(ci; yi; ni+1) � 0 (5.8)

for yi; i = 1; :::;m; with a strict inequality only if yi = 0:15 Moreover,

�

mX
i=1

(yi � ci)fi = 0; (5.9)

�i[u(ci; yi; ni)� u(ci�1; yi�1; ni)] = 0; (5.10)

and
�i(ci � ci�1) = 0 (5.11)

for i = 2; :::;m: In the remainder of this section, the allocation f(ci; yi)gmi=1 is
taken to be a solution to problem of maximizing (5.1) subject to (5.2), (5.5),
(5.4); �; �i; and �i; i = 2; :::m; are the associated Kuhn-Tucker multipliers
in (5.6) - (5.11).

I �rst show that people with the same consumption must also provide
the same output.

Lemma 5.3 For any k, ck = ck�1 implies yk = yk�1:

Proof. Suppose that the lemma is false, and let k be such that ck = ck�1
and yk 6= yk�1: Then downward incentive compatibility implies yk < yk�1;
hence

u(ck; yk; nk) > u(ck�1; yk�1; nk): (5.12)

15 If i = m; (5.7) and (5.8) hold with �i+1 = �i+1 = 0:
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By (5.10), it follows that �k = 0: Therefore (5.8) becomes:

uy(ck�1; yk�1; nk�1)(fk�1 + �k�1) + �fk�1 = 0 (5.13)

for i = k � 1 and

uy(ck; yk; nk)fk + �fk � �k+1uy(ck; yk; nk+1) � 0 (5.14)

for i = k: From (5.13) and (5.14), one obtains

uy(ck�1; yk�1; nk�1) � �� � uy(ck; yk; nk); (5.15)

contrary to part (a) of DR. The assumption that ck = ck+1 and yk 6= yk+1
for some k has thus led to a contradiction and must be false.

The next lemma shows that, in a solution to problem (5.1), consumption
and output provision are never distorted upward from e¢ ciency. To simplify
the notation, I write (c�k; y

�
k) for the pair (c

�(nk; v(nk)); y
�(nk; v(nk))); which

provides type nk with the utility v(nk) = u(ck; yk; nk) at the lowest net
resource requirement.

Lemma 5.4 For any k; (ck; yk) � (c�k; y�k):

Proof. If the lemma is false, one has ck̂ > c�
k̂
or yk̂ > y�

k̂
for some k̂. By

RC and the fact that

u(ck̂; yk̂; nk̂) = v(nk̂) = u(c�
k̂
; y�
k̂
; nk̂);

one must actually have (ck; yk) � (c�k; y
�
k): Being upward distorted from

e¢ ciency, they satisfy the inequality

uc(ck̂; yk̂; nk̂) + uy(ck̂; yk̂; nk̂) < 0: (5.16)

Let I(k̂) be the set of indices i with the same consumption as index k̂;
and let {̂ := min I(k̂): By Lemma 5.3, (c{̂; y{̂) = (ck̂; yk̂): Moreover, by SSCC,
(5.16) implies

uc(c{̂; y{̂; nk̂) + uy(c{̂; y{̂; nk̂) < 0: (5.17)

Because (c{̂; y{̂) = (ck̂; yk̂)� (c�k; y
�
k); c{̂ and y{̂ are both strictly positive. For

k = {̂; the �rst-order conditions (5.7) and (5.8) can therefore be written as

uc(c{̂; y{̂; n{̂)(f{̂ + �{̂)� �f{̂ � �{̂+1uc(c{̂; y{̂; n{̂+1) = � {̂+1 � � {̂ (5.18)
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and
uy(c{̂; y{̂; n{̂)(f{̂ + �{̂) + �f{̂ � �{̂+1uy(c{̂; y{̂; n{̂+1) = 0: (5.19)

If one solves (5.19) for the multiplier �{̂, substitutes into (5.18), and re-
arranges terms, one obtains:

� {̂+1 � � {̂ = ��uc(c{̂; y{̂; n{̂) + uy(c{̂; y{̂; n{̂)
uy(c{̂; y{̂; n{̂)

fi (5.20)

+�{̂+1

�
uc(c{̂; y{̂; n{̂)

uy(c{̂; y{̂; n{̂)
uy(c{̂; y{̂; n{̂+1)� uc(c{̂; y{̂; n{̂+1)

�
:

By (5.17) and RC, the �rst term on the right-hand side of (5.20) is negative.
By SSCC and the nonnegativity of �{̂+1; the second term is nonpositive.
Thus, (5.20) implies � {̂+1 � � {̂ < 0: However, � {̂+1 is nonnegative, and, by
the de�nition of {̂ and (5.11), � {̂ is equal to zero. The assumption that
ck > c�k or yk > y�k for some k has thus led to a contradiction and must be
false.

E¢ ciency is obtained if neither the downward incentive compatibility
constraint nor the consumption monotonicity constraint for the adjacent
higher type is binding. This is the point of:

Lemma 5.5 For any k; �k+1 = �k+1 = 0 implies (ck; yk) = (c�k; y
�
k): In this

case, moreover, (ck; yk)� (0; 0) implies ci < ck for i < k:

Proof. If �k+1 = �k+1 = 0; the �rst-order conditions (5.7) and (5.8)
become

uc(ck; yk; nk)(fk + �k)� �fk + �k � 0; (5.21)

with equality unless ck = 0; and

uy(ck; yk; nk)(fk + �k) + �fk � 0; (5.22)

with equality unless yk̂ = 0: Upon adding these inequalities and rearranging
terms, one obtains

uc(ck; yk; nk) + uy(ck; yk; nk) � �
�k

fk + �k
; (5.23)

with equality unless ck = 0 or yk = 0: Because the right-hand side of (5.23)
is nonpositive, it follows that (ck; yk) � (c�k; y

�
k): By Lemma 5.4, therefore,

(ck; yk) = (c
�
k; y

�
k):

23



If (ck; yk) = (c�k; y
�
k)� (0; 0); the �rst-order condition for e¢ ciency yields

uc(ck; yk; nk) + uy(ck; yk; nk) = 0:

For i < k; therefore, SSCC implies

uc(ck; yk; ni) + uy(ck; yk; ni) < 0:

By Lemma 5.4, it follows that (ci; yi) 6= (ckyk): By Lemma 5.3 and con-
sumption monotonicity, it follows that ci < ck:

For k = m, the premise of Lemma 5.5 is automatically ful�lled. This
observation yields:

Corollary 5.6 (cm; ym) = (c�m; y
�
m): Moreover, (cm; ym) � (0; 0) implies

cm�1 < cm:

The following lemma shows that, below the top, the premise of Lemma
5.5 is never satis�ed. Part (b) of condition DR is crucial for this result.

Lemma 5.7 For any k < m; if ck+1 > 0; then at least one of the multipliers
�k+1; �k+1 is nonzero.

Proof. If the lemma is false, then, for some k̂ < m, one has ck̂+1 >
0 and �k̂+1 = � k̂+1 = 0: By Lemma 5.5, one has (ck̂; yk̂) = (c�

k̂
; y�
k̂
): By

downward incentive compatibility and consumption monotonicity and by
Lemma 5.4, one also has u(ck̂+1; yk̂+1; nk̂+1) � u(ck̂; yk̂; nk̂+1); ck̂+1 � ck̂;
and (ck̂+1; yk̂+1) � (c

�
k̂+1

; y�
k̂+1
): Therefore, part (b) of condition DR implies

��uy(ck̂; yk̂; nk̂)�� > min(uc(ck̂+1; yk̂+1; nk̂+1); ���uy(ck̂+1; yk̂+1; nk̂+1)���) if yk̂ > 0;
(5.24)

and

uc(ck̂; yk̂; nk̂) > min(uc(ck̂+1; yk̂+1; nk̂+1);
���uy(ck̂+1; yk̂+1; nk̂+1)���) if yk̂ = 0:

(5.25)
If yk̂ > 0; (5.22) holds as an equation, and one has��uy(ck̂; yk̂; nk̂)�� = fk̂

fk̂ + �k̂
� � �; (5.26)
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then (5.24) implies

� > min(uc(ck̂+1; yk̂+1; nk̂+1);
���uy(ck̂+1; yk̂+1; nk̂+1)���). (5.27)

If yk̂ = 0; (5.27) is still obtained, this time from (5.25) and the observation
that (5.21) yields

uc(ck̂; yk̂; nk̂) �
fk̂

fk̂ + �k̂
�� � k̂ � �: (5.28)

(5.27) thus holds regardless of whether yk̂ is positive or zero.
However, because ck̂+1 > 0; �k̂+1 = � k̂+1 = 0; �k̂+2uy(ck̂+1; yk̂+1; nk̂+2) �

0; and � k̂+2 � 0; the �rst-order conditions (5.7) and (5.8) for i = k̂+1 yield
uc(ck̂+1; yk̂+1; nk̂+1) � � and uy(ck̂+1; yk̂+1; nk̂+1) � ��; hence

min(uc(ck̂+1; yk̂+1; nk̂+1);
���uy(ck̂+1; yk̂+1; nk̂+1)���) � �; (5.29)

which is incompatible with (5.27). The assumption that ck̂+1 > 0 and
�k̂+1 = � k̂+1 = 0 has thus led to a contradiction and must be false.

On the basis of Lemma 5.7, one easily �nds that adjacent downward
incentive constraints hold everywhere with equality.

Lemma 5.8 For any k < m;

v(nk+1) = u(ck; yk; nk+1): (5.30)

Proof. If the lemma is false, there exists k̂ < m; such that

v(nk̂+1) = u(ck̂+1; yk̂+1; nk̂+1) > u(ck̂; yk̂; nk̂+1): (5.31)

(The reverse inequality is ruled out by downward incentive compatibility.)
Thus, (ck̂+1; yk̂+1) 6= (ck̂; yk̂). By Lemma 5.3 and consumption monotonicity,
it follows that ck̂+1 > ck̂: By (5.10) and (5.11), therefore, �k̂+1 = 0 and
� k̂+1 = 0: By Lemma 5.7, this is only possible if ck̂+1 = 0: But then, one
cannot have ck̂+1 > ck̂:

Equation (5.30) implies that, for type nk+1; the point (ck; yk) lies on the
indi¤erence curve through (ck+1; yk+1): By RC and consumption monotonic-
ity, this implies:

Corollary 5.9 The sequences fcigmi=1 and fyigmi=1 are nondecreasing and
co-monotonic.
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By consumption monotonicity, and SSCC, (5.30) also implies

v(nk) � u(ck+1; yk+1; nk); (5.32)

i.e., the allocation f(ci; yi)gmi=1 satis�es adjacent upward incentive compati-
bility, as well as downward incentive compatibility. By standard arguments,
based on monotonicity and SSCC, this yields:

Corollary 5.10 The allocation f(ci; yi)gmi=1 is incentive-compatible.

By the argument of Guesnerie and Seade (1982), Lemmas 5.8 and 5.4
combined yield the desired co-monotonicity properties.

Lemma 5.11 The sequence fyi�cigmi=1 is nondecreasing and co-monotonic
with fcigmi=1 and fyigmi=1:

Proof. By Lemma 5.4 in combination with the monotonicity and strict
quasiconcavity of u; the slope of the indi¤erence curve of type nk+1 through
(ck+1; yk+1) is less than one at any point (c; y) below (ck+1; yk+1). The
lemma follows from (5.30).

Lemma 5.12 For all k; ck > 0:

Proof. I will show that, if the lemma is false, the allocation f(ci; yi)gmi=1
is dominated by the laissez-faire allocation f(yLFi ; yLFi )gmi=1; where, for any
i; yLFi := argmaxu(y; y; ni): This is incompatible with the assumption
that f(ci; yi)gmi=1 is a solution to the problem of the weakly relaxed in-
come tax problem because, trivially, under SSCC, the laissez-faire allocation
satis�es feasibibility, downward incentive compatibility, and consumption
monotonicity.

If the lemma is false, then, by consumption monotonicity, there exists
k̂ 2 f1; :::;mg such that ck = 0 for k = 1; :::; k̂: For any k � k̂, RC implies

u(ck; yk; nk) � u(0; 0; nk); (5.33)

hence, also
u(ck; yk; nk) � u(yLFk ; yLFk ; nk): (5.34)

If k̂ = m; condition ND implies that, for k = m; the inequality in (5.34)
is strict. Summation of (5.34) over k = 1; :::;m then yields

mX
k=1

u(ck; yk; nk)fk <

mX
k=1

u(yLFk ; yLFk ; nk)fk: (5.35)
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If k̂ < m; then, for k > k̂; Lemma 5.11 implies ck � yk � ck̂+1 � yk̂+1 and,
since ck̂+1 > ck̂; ck̂+1 � yk̂+1 < �yk̂ � 0: By RC; it follows that

u(ck; yk; nk) < u(yLFk ; yLFk ; nk) (5.36)

for k = k̂+1; :::;m: Summation of (5.34) over k � k̂ and of (5.36) over k > k̂
again yields (5.35).

In either case, if k̂ = m and if k̂ < m; one obtains a contradiction the
assumption that f(ci; yi)gmi=1 maximizes (5.1) subject to (5.2) - (5.4). The
assumption that ck = 0 for some k must therefore be false.

To conclude the argument, I �nally show that, below the top, consump-
tion and output provision must be distorted downward from e¢ ciency. The
argument again relies on Lemma 5.7 and, thereby, on part (b) of condition
DR.

Lemma 5.13 For any k < m; yk > 0 implies (ck; yk)� (c�k; y
�
k):

Proof. Suppose that the lemma is false. Then, for some k̂ < m; one
has ck̂ > 0; yk̂ > 0; and ck̂ � c�

k̂
or yk̂ � y�

k̂
: By Lemma 5.4, one must

actually have (ck̂; yk̂) = (c�
k̂
; y�
k̂
): Positivity of (ck̂; yk̂) implies that, for i =

k̂; conditions (5.8) and (5.7) must hold as equations. Upon adding these
equations, one obtains

[uc(ck̂; yk̂; nk̂) + uy(ck̂; yk̂; nk̂)](fk̂ + �k̂) + � k̂
= �k̂+1[uc(ck̂; yk̂; nk̂+1) + uy(ck̂; yk̂; nk̂+1)] + � k̂+1: (5.37)

Because (ck̂; yk̂) is strictly positive and e¢ cient, one also obtains

uc(ck̂; yk̂; nk̂) + uy(ck̂; yk̂; nk̂) = 0: (5.38)

The �rst term on the left-hand side of (5.37) is thus equal to zero. The
second term is also equal to zero. For suppose that � k̂ > 0: By (5.11) and
Lemma 5.3, one then has ck̂�1 = ck̂ and yk̂�1 = yk̂: At the same time, (5.38)
and SSCC imply

uc(ck̂; yk̂; nk̂�1) + uy(ck̂; yk̂; nk̂�1) < 0;

so that, for type nk̂�1; (ck̂; yk̂) is distorted upwards from e¢ ciency. By
Lemma 5.4, it follows that (ck̂�1; yk̂�1) � (ck̂; yk̂). The assumption that
� k̂ > 0 has thus led to a contradiction and must be false. The left-hand side
of (5.37) is thus equal to zero.
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By SSCC, (5.38) also implies that uc(ck̂; yk̂; nk̂+1)+uy(ck̂; yk̂; nk̂+1) > 0:
By Lemmas 5.7 and 5.12, it follows that either the �rst term or the second
term on the right-hand side of (5.37) is strictly positive. The other term is
nonnegative, because �k̂+1 and � k̂+1 are both nonnegative. Therefore, the
right-hand side of (5.37) is strictly positive. The assumption that the lemma
is false has thus led to a contradiction.

The preceding results show that any solution to the weakly relaxed in-
come tax problem exhibits Properties A, B, and D as speci�ed in Section 3:
Property A holds by Corollary 5.6, Property B by Lemma 5.13, Property D
by Lemmas 5.11 and 5.12 and Corollary 5.6. Property C is moot because
F (fn0g) = f1 > 0: Given these observations, Theorem 5.1 follows because,
by the argument at the end of Section 4, Corollary 5.10 implies that the
optimal income tax problem and the weakly relaxed income tax problem
have the same solutions.

6 The Case of a Continuum of Types

6.1 The Control Problem

If the type set N is an interval and the type distribution F has a density f ,
the optimal income tax problem is to choose an allocation (c(�); y(�)) with
the associated indirect utility function v(�) in order to maximize the integralZ n1

n0
v(n)f(n)dn =

Z n1

n0
u(c(n); y(n); n)f(n)dn (6.1)

subject to the feasibility conditionZ n1

n0
(y(n)� c(n))f(n)dn � 0 (6.2)

and incentive compatibility:
For technical reasons, I impose the additional condition that the alloca-

tion (c(�); y(�))must be piecewise continuously di¤erentiable. Given that c(�)
and y(�) are endogenous, this assumption is problematic, but, as shown in
Hellwig (2007), it is not actually necessary for the analysis. Here, I impose
it here to avoid encumbering the presentation with control-theoretic details
that have little to do with the income tax problem.16 The main result of
this section is then formulated as:
16 In assuming that c(�) and y(�) are piecewise continuously di¤erentiable, I follow the

approach of Guesnerie and La¤ont (1984); see also Ebert (1992) and Brunner (1993).
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Theorem 6.1 If the type set is an interval and the type distribution has a
density that is continuous and strictly positive on this interval, any solution
to the optimal income tax problem that is piecewise continuously di¤eren-
tiable exibits Properties A - D.

I approach the proof of this theorem by looking at the weakly relaxed
income tax problem of maximizing (6.1) subject to feasibility, downward
incentive compatibility, and consumption monotonicity, i.e., subject to (6.2)
and the requirement that the inequalities u(c(n); y(n); n) � u(c(n0); y(n0); n)
and c(n) � c(n0) hold for all n and all n0 < n. As an analogue to Lemma
5.2, the following lemma shows that, as in the �nite case, under SSCC,
downward incentive compatibility can be weakened to a local downward
incentive compatibility condition.

Lemma 6.2 A piecewise continuously di¤erentiable allocation (c(�); y(�))
with nondecreasing c(�) is downward incentive-compatible if and only if the
associated indirect utility function v(�) is absolutely continuous and its deriv-
ative satis�es

v0(n) � un(c(n); y(n); n) (6.3)

for all n.

The proof of lemma 6.2 is given in Appendix B. It is virtually iden-
tical to Mirrlees�s (1976) proof that, under SSCC, incentive compatibility
is equvalent to the requirement that the allocation be nondecreasing on N
and that the indirect utility function v(�) satisfy the di¤erential equation
v0(n) = un(c(n); y(n); n):

Given the restriction to piecewise continuously di¤erentiable allocations,
the weakly relaxed problem can be formulated as a standard problem of op-
timal control with state variables v(�) and c(�) and control variables y(�); s(�);
and q(�); where, for any n;

s(n) := v0(n)� un(c(n); y(n); n); (6.4)

and
q(n) := c0(n):

Condition (6.3) and consumption monotonicity are equivalent to the re-
quirements that s(n) � 0 and q(n) � 0: With the restriction to piecewise
continuously di¤erentiable allocations, the weakly relaxed income tax prob-
lem is therefore equivalent to the problem of choosing v(�); c(�); y(�); s(�); and
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q(�) so as to maximize (6.1) subject to (2.6), (6.2), (6.4), and nonnegativity
of s(�) and q(�): This control problem has the Hamiltonian

H(n) = v(n)f(n) + �(y � c(n))f(n) + �(n)(u(c(n); y; n)� v(n))
+'(n)[s+ un(c(n); y; n)] +  (n)q; (6.5)

where � and �(n) are the Lagrange multipliers of the constraints (6.2) and
(2.6), and '(�) and  (�) are the costate variables associated with the state
variables v(�) and c(�):

The requirement that y(n); s(n); and q(n) maximize the Hamiltonian
with respect to the controls y � 0; s � 0; and q � 0 yields the �rst-order
conditions:

�f(n) + �(n)uy(c(n); y(n); n) + '(n)uny(c(n); y(n); n) � 0; (6.6)

with equality if y(n) > 0;
 (n) � 0; (6.7)

with equality if q(n) > 0; �nally,

'(n) � 0; (6.8)

with equality if s(n) > 0: The costate variables '(�) and  (�) are absolutely
continuous; their derivatives satisfy

'0(n) = �f(n) + �(n); (6.9)

and

 0(n) � �f(n)� �(n)uc(c(n); y(n); n)� '(n)unc(c(n); y(n); n); (6.10)

where (6.10) is an equation if c(n) > 0: In addition, '(�) and  (�) must
satisfy the transversality conditions

'(n0) = '(n1) = 0; (6.11)

and
 (n0)c(n0) =  (n1) = 0: (6.12)

Finally, one has � � 0; with

�

Z n1

n0
(y(n)� c(n))f(n)dn = 0: (6.13)
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If one uses (6.9) to eliminate �(n) from (6.10) and (6.6), one obtains:

 0(n)� �f(n) + ucf(n) + '0(n)uc + '(n)unc � 0; (6.14)

with equality if c(n) > 0; and

�f(n) + uyf(n) + '
0(n)uy + '(n)uny � 0 (6.15)

with equality if y(n) > 0: Except for the fact that  0(n) appears in the
condition referring to c(n) rather than y(n); these conditions are familiar
from Ebert (1992) and Brunner (1993). If  0(n) = 0; they reduce to the
corresponding conditions in Mirrlees (1971, 1976) and Seade (1977, 1982).

Upon combining (6.14) and (6.15) so as to eliminate '0(n), one further
obtains

 0(n) � �
uc + uy
uy

f(n)� '(n)(unc �
uc
uy
uny); (6.16)

with equality if c(n) > 0 and y(n) > 0: This is the central condition of the
model with a continuous type distribution. If c(n) > 0 and y(n) > 0 and
 0(n) = 0; it yields the equation

�
uc + uy
uy

f(n) = '(n)(unc �
uc
uy
uny); (6.17)

which lies at the core of the analysis of Mirrlees and Seade. Because uy < 0;
the left-hand side is negative or positive, depending on whether uc + uy is
positive or negative, i.e. on whether (c(n); y(n)) is distorted downward or
upward from e¢ ciency. SSCC implies that unc � uc

uy
uny is positive, so the

sign of the right-hand side is the same as the sign of '(n):
At this point, Seade (1982) investigates the global properties of ' when

treated as a solution to (6.14) and (6.15) in order to show that one can-
not have '(n) > 0: By contrast, the indirect approach developed here has
'(n) � 0 already from the necessary condition (6.8) for the choice of the
slack variable w(n): From (6.17), one immediately knows that uc+uy is non-
negative, i.e., that (c(n); y(n)) cannot be distorted upward from e¢ ciency.
The problem is to show that, between n0 and n1; one actually has '(n) > 0
and uc + uy > 0; i.e., that (c(n); y(n)) is actually distorted downward from
e¢ ciency. One must also deal with the possibility of corner solutions for
c(n) or y(n) and with the possibility of bunching, implying that  0(n) might
not be zero.
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6.2 Proof of Theorem 6.1

The proof of Theorem 6.1 follows the same line of argument as the proof of
Theorem 5.1 in the �nite case. I �rst use part (a) of condition DR to show
that people with the same consumption must also provide the same output.
This corresponds to Lemma 5.3 in the �nite-type case.

Lemma 6.3 For any n and n0 > n; in N; c(n) = c(n0) implies that y(n) =
y(n0):

Proof. Suppose that the lemma is false, and let n; n0 > n be such that
c(n) = c(n0) and y(n) 6= y(n0): By consumption monotonicity, c(�) is constant
on the interval [n; n0]: By downward incentive compatibility, therefore, y(�)
is nonincreasing on [n; n0] and y(n) > y(n0): Because y(�) is continuous, there
exists a nondegenerate subinterval [�n; �n0] � [n; n0] on which y(�) is strictly
decreasing. In the interior of this subinterval, there is slack in adjacent
downward incentive constraints, i.e., one must have s(n00) > 0: By the �rst-
order condition for s(n00); it follows that '(n00) = 0 for n00 2 (�n; �n0): This
in turn implies that '0(n00) = 0 for n00 2 (�n; �n0): Because y(�) is strictly
decreasing, one must also have y(n00) > 0 for n00 2 (�n; �n0): For n00 2 (�n; �n0);
condition (6.15) thus takes the form �f(n00)+uyf(n00) = 0: It follows that uy
is constant on (�n; �n0); contrary to part (a) of condition DR. The assumption
that the lemma is false has thus led to a contradiction.

The next lemma shows that consumption and output provision are never
ine¢ ciently high. This corresponds to Lemma 5.4 in the �nite case. The
argument presumes that the Lagrange multiplier � of the feasibility con-
straint is strictly positive. In the �nite case, this is trivially implied by the
�rst-order condition for cm. In the continuous-type case, the argument is
more complicated. A formal statement and proof are given in Appendix C.

Lemma 6.4 For all n 2 N; (c(n); y(n)) � (c�(n); y�(n)).

Proof. If the lemma is false, one has (c(n̂); y(n̂)) � (c�(n̂); y�(n̂)) for
some n̂ 2 N: Let �n � n̂ be the smallest type that has the same consumption
as n̂: By Lemma 6.3, this type also has the same output requirement as n̂;
and one has (c(�n); y(�n)) = (c(n̂); y(n̂)): By the same argument as in the
proof of Lemma 5.4, one also has

uc(c(n̂); y(n̂); �n) + uy(c(n̂); y(n̂); �n) < 0; (6.18)

so, with (c(n̂); y(n̂)) � (0; 0); one also has (c(n̂); y(n̂)) � (c�(�n); y�(�n));
hence (c(�n); y(�n))� (c�(�n); y�(�n)):

32



By continuity, it follows that, for some � > 0; one has (c(n); y(n)) �
(c�(n); y�(n)) for all n 2 (�n; �n + �): Trivially, also (c(n); y(n)) � 0 for
n 2 (�n; �n + �): On the interval (�n; �n + �), (6.16) must therefore hold as an
equation, i.e., one has

 0(n) = �
uc + uy
uy

f(n)� '(n)(unc �
uc
uy
uny): (6.19)

By RC and the positivity of �, (c(n); y(n)) � (c�(n); y�(n)) implies that
the �rst term on the right-hand side of (6.19) is strictly positive. By SSCC
and (6.8), the second term on the right-hand side of (6.19) is nonnegative.
Therefore,  0(n) > 0 for n 2 (�n; �n+ �): Since (6.7) implies  (�n+ �) � 0; it
follows that  (�n) < 0:

Since  (�n) < 0 and c(�n) = c(n̂) > 0; the transversality condition (6.12)
implies that one must have �n > n0: For n 2 (n0; �n); the de�nition of �n
implies c(n) < c(�n): Therefore, one must have q(nk) > 0 and  (nk) = 0
for all elements of some sequence fnkg that converges to �n from below.
By continuity, this implies  (�n) = 0: The assumption that (ĉ(n̂); ŷ(n̂)) �
(ĉ�(n̂); ŷ�(n̂)) for some n̂ 2 N thus leads to a contradiction and must be
false.

Lemma 6.5 For any n̂ 2 (n0; n1]; '(n̂) =  (n̂) = 0 implies

(c(n̂); y(n̂)) = (c�(n̂); y�(n̂)): (6.20)

Moreover, if (c(n̂); y(n̂))� 0; then c(n) < ĉ(n̂) for n < n̂:

Proof.  (n̂) = 0 implies that, for some sequence fnkg which converges
to n̂ from below, one has  0(nk) � 0 for all k: For any element of this
sequence, (6.16) yields

'(nk)(uknc �
ukc
uky
ukny) � �

ukc + u
k
y

uky
f(nk): (6.21)

By the continuity of '; '(n̂) = 0 implies that the left-hand side of (6.21)
goes to zero as nk converges to n̂: Since uky < 0 for all k; it follows that

lim
k!1

(ukc + u
k
y) � 0:

Because c(�) and y(�) are continuous, therefore,

uc(c(n̂); y(n̂); n̂) + uy(c(n̂); y(n̂); n̂) � 0 (6.22)
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and (c(n̂); y(n̂)) � (c�(n̂); y�(n̂)): By Lemma 6.4, (6.20) follows.
If (c(n̂); y(n̂))� 0; the �rst-order condition for e¢ ciency implies that

uc(c(n̂); y(n̂); n̂) + uy(c(n̂); y(n̂); n̂) = 0: (6.23)

For n < n̂; therefore, SSCC implies

uc(c(n̂); y(n̂); n) + uy(c(n̂); y(n̂); n) < 0;

so Lemma 6.4 yields (c(n); y(n)) 6= (c(n̂); y(n̂)). By Lemma 6.3 and con-
sumption monotonicity, it follows that c(n) < ĉ(n̂):

As in the �nite case, one immediately concludes that there is no distor-
tion at the top:

Corollary 6.6 (c(n1); y(n1)) = (c�(n1); y�(n1)):Moreover, (c(n1); y(n1))�
0 implies c(n) < c(n1) for all n < n1:

The next lemma uses part (b) of DR to show that, for n 2 (n0; n1); the
premise of Lemma 6.5 cannot be satis�ed. This corresponds to Lemma 5.7
in the �nite case.

Lemma 6.7 For any n 2 (n0; n1), if c(n) > 0; then at least one of the
costate variables '(n);  (n) is nonzero.

Proof. A complete proof of this lemma is given in Appendix C. To
provide at least the gist of the argument, I give a simpler proof here, which
applies if there is no bunching. For any n 2 (n0; n1); I show that, if q(n0) > 0
for all n0 in some neighbourhood of n; then '(n) < 0:

If this claim is false, there exists n̂ 2 (n0; n1) such that q(n0) > 0 for all
n0 in some neighbourhood of n̂; and, moreover, '(n̂) = 0: The positivity of
q in a neighbourhood of n̂ implies that  0(n) =  (n) = 0 and c(n) > 0 for
all n in some neighbourhood of n̂: In this neighbourhood, condition (6.14)
holds as an equation and can be written as

'0(n)uc + '(n)unc = (�� uc)f(n): (6.24)

Because c(�); y(�) and the density f(�) are continuous, it follows that, in the
given neighbourhood of n̂; '0(�) is also continuous. By (6.7) '(n̂) = 0 means
that '(�) is maximal at n̂: Therefore, one also has '0(n̂) = 0: By (6.14), it
follows that

uc(c(n̂); y(n̂); n̂) = �: (6.25)
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If y(n̂) is also positive, then, in a neighbourhood of n̂; condition (6.15) also
holds as an equation, and one obtains

juy(c(n̂); y(n̂); n̂)j = �: (6.26)

By Lemmas 6.5 and 6.4, in combination with downward incentive com-
patibility and consumption monotonicity, one has (c(n̂); y(n̂)) = (c�(n̂); y�(n̂))
and, for any n > n̂; (c(n); y(n)) � (c�(n); y�(n)); u(c(n); y(n); n) � u(c(n̂); y(n̂); n̂),
and c(n) � c(n̂): By part (b) of condition RC, it follows that

juy(c(n̂); y(n̂); n̂)j > min(uc(c(n); y(n); n); juy(c(n); y(n); n)j) if y(n̂) > 0
(6.27)

and

uc(c(n̂); y(n̂); n̂) > min(uc(c(n); y(n); n); juy(c(n); y(n); n)j) if y(n̂) = 0
(6.28)

for all n > n̂ that are su¢ ciently close to n̂: By (6.25) and (6.26), therefore,
one has

� > min(uc(c(n); y(n); n); juy(c(n); y(n); n)j): (6.29)

However, in the neighbourhood of n̂ where (6.24) holds, one has

'0 + '
ucn
uc

=
�� uc
uc

f:

By SSCC and the nonpositivity of '; it follows that

'0 + '
uyn
uy

� �� uc
uc

f: (6.30)

From (6.15), one also has

'0 + '
uyn
uy

� �� juyj
juyj

f: (6.31)

Upon combining (6.30) and (6.31), one obtains

'0 + '
uyn
uy

� ��min(uc; juyj)
min(uc; juyj)

f: (6.32)

Upon multiplying both sides of this inequality by exp(
R n
n̂
uyn
uy
d�) and inte-

grating, one �nds that

'(�n) exp(

Z �n

n̂

uyn
uy

d�) �
Z �n

n̂

��min(uc; juyj)
min(uc; juyj)

f(n)

�
exp

Z �n

n̂

uyn
uy

d�

�
dn

(6.33)
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for any �n: From (6.33) and (6.29), one concludes that '(�n) > 0 for �n > n̂
su¢ ciently close to n̂: This is incompatible with the �rst-order condition
(6.8) for the slack variable s(�n):

Given Lemma 6.7, the following lemma shows that downward incentive
compatibility is everywhere locally binding. This is the analogue of Lemma
5.8 in the �nite case.

Lemma 6.8 For any n 2 (n0; n1); s(n) = 0 and

v0(n) = un(c(n); y(n); n): (6.34)

Proof. Suppose that s(n̂) > 0 for some n̂ 2 (n0; n1): By the complemen-
tary slackness condition for s(n̂); it follows that '(n̂) = 0: By Lemma 6.7,
it follows that  (n̂) < 0: Because  is continuous, one must have  (n) < 0
for all n in some neighbourhood [n̂ � �; n̂ + �] of n̂: By the complemen-
tary slackness condition for q(n); it follows that q(n) = 0 for all n in this
neighbourhood. By Lemma 6.3, therefore, one also has dy

dn(n) = 0 for all n
in this neighbourhood. By (6.3) and (2.6) it follows that s(n) = 0 for all
n 2 [n̂� �; n̂+ �]: The assumption that s(n̂) > 0 must therefore be false.

Proceeding by the same arguments as in the �nite case, one now obtains:

Corollary 6.9 The functions c(�) and y(�) are nondecreasing and co-monotonic.

Corollary 6.10 The allocation (c(�); y(�)) is incentive-compatible.

Lemma 6.11 The function y(�) � c(�) is nondecreasing and co-monotonic
with c(�) and y(�).

Lemma 6.12 For n 2 N; consumption is bounded away from zero.

Lemma 6.13 On any compact subset of (n0; n1) on which y(n) > 0; (c(n); y(n))
is distorted downward and bounded away from e¢ ciency.

Proof. If the lemma is false, then, by continuity, there exists n̂ 2 (n0; n1)
such that y(n̂) > 0 and

(c(n̂); y(n̂)) = (c�(n̂); y�(n̂)): (6.35)

By Lemma 6.12, one has c(n̂) > 0: Since also y�(n̂) > 0; the same argument
as in the proof of Lemma 6.5 implies that c(n) < c(n̂) for n < n̂: Therefore,
 (n̂) = 0:
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Since  (n̂) = 0 and, by (6.7),  (n) � 0 for n > n̂; there exists a sequence
fnkg which converges to n̂ from above such that  0(nk) � 0 for all k: By
the monotonicity of the allocation, one has (c(nk); y(nk))� (0; 0) for all k;
so, for n = nk; (6.16) must hold as an equation. Thus,  0(nk) � 0 implies

�
ukc + u

k
y

uky
f(nk)� '(nk)(uknc �

ukc
uky
ukny) � 0; (6.36)

where the derivatives ukc ; u
k
y ; etc. are all evaluated at (c(n

k); y(nk); nk): Because
the allocation, as well as the density f and the costate variable '; are con-
tinuous, one can take limits in (6.36), to obtain

�
uc + uy
uy

f(n̂)� '(n̂)(unc �
uc
uy
uny) � 0; (6.37)

where uc; uk; etc. are evaluated at (c(n̂); y(n̂); n̂): Because (c(n̂); y(n̂)) =
(c�(n̂); y�(n̂)) is strictly positive; the �rst term on the left-hand side is zero.
By SSCC, (unc� uc

uy
uny) is strictly positive. Therefore, (6.37) implies '(n̂) �

0: By (6.8), it follows that '(n̂) = 0:
By Lemma 6.7, for n̂ 2 (n0; n1); '(n̂) =  (n̂) = 0 implies c(n̂) = 0;

contrary to Lemma 6.12. The assumption that the lemma is false has thus
led to a contradiction.

The preceding results show that any solution to the weakly relaxed in-
come tax problem exhibits Properties A, B, and D, as speci�ed in Section
3: Property A holds by Corollary 6.6, Property B by Lemma 6.13, Property
D by Lemmas 6.11 and 6.12 and Corollary 6.6. The following lemma shows
that Property C is also satis�ed.

Lemma 6.14 If c(�) and y(�) are strictly increasing at n0; then

(c(n0); y(n0)) = (c�(n0; v(n0)); y�(n0; v(n0))); (6.38)

if the monotonicity constraint on c(�) is strictly binding at n0 and if y(n0) >
0; then

(c(n0); y(n0))� (c�(n0; v(n0)); y�(n0; v(n0))): (6.39)

Proof. If c(�) and y(�) are strictly increasing at n0; one has c(n) > 0 and
y(n) > 0 for n > n0: Then (6.14) and (6.15) hold as equations. Because '; f;
and the allocation (c(�); y(�)) are continuous, it follows that  0 and '0 are
also continuous. Therefore, (6.14) and (6.15) hold as equations for n = n0;
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as well as n > n0; and so does (6.16). By the transversality condition (6.11),
this yields

 0(n0) = �
uc + uy
uy

f(n0); (6.40)

where uc and uy are evaluated at (c(n0); y(n0); n0): If c(�) and y(�) are strictly
increasing at n0; there exists a sequence fnkg converging to n0 from above
such that  (nk) = 0 for all k: Because  0 is continuous, it follows that there
also exists a sequence fn`g converging to n0 from above such that  0(n`) = 0
for all `: By continuity, therefore,  0(n0) = 0; so (6.40) implies (6.38). By
contrast, if  0(n0) < 0 and y(n0) > 0; (6.40) is again valid, but implies
(6.39).

Theorem 6.1 follows because, by the argument at the end of Section 4,
Corollary 6.10 implies that a piecewise continuously di¤erentiable allocation
(c(�); y(�)) solves the optimal income tax problem if and only if it also solves
the weakly relaxed income tax problem.
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A Proof of Proposition 2.1

To simplify things for the reader, I begin by restating condition DR and
Proposition 2.1.

DR Desirability of Redistribution: For any (c; y; n) 2 <2+ � [n0; n1);
there exists " > 0 such that n+ " 2 N; and, for all n0 2 (n; n+ "] and
all (c0; y0) 2 <2+, the following hold:
(a) if c0 = c and y0 < y; then

juy(c; y; n)j >
��uy(c0; y0; n0)�� ; (A.1)

(b) if c0 > c; u(c0; y0; n0) � u(c; y; n0), and if, moreover, (c; y) is e¢ cient
for n; and (c0; y0) is e¢ cient or distorted downwards from e¢ ciency for
n0; then

juy(c; y; n)j > min(uc(c0; y0; n0);
��uy(c0; y0; n0)��) if y > 0; (A.2)

and

uc(c; y; n) > min(uc(c
0; y0; n0);

��uy(c0; y0; n0)��) if y = 0: (A.3)

Proposition A.1 Assume RC, ND, and SSCC, and suppose that, for any
n; the indi¤erence curves of the utility function u(�; �; n) have strictly positive
Gaussian curvature.17 Assume also that N is an interval. Then condition
DR holds if u is concave in c and y; and, moreover,

ucn(c; 0; n) � 0; ucc(c; 0; n) < 0; (A.4)

uyn(c; y; n) > 0 (A.5)

for all (c; y; n); and

uny(c
�(n; v); y�(n; v); n)

@y�

@v
+ unc(c

�(n; v); y�(n; v); n)
@c�

@v
< 0 (A.6)

for all n 2 N and all v in the range of u(�; �; n): Under these assumptions on
the functions u; c�; and y�, condition DR also holds if N is a �nite set and
the di¤erences between neighbouring elements of N are uniformly small.

The proof of this proposition proceeds in several steps. The �rst step
concerns part (a) of condition DR.

17 I.e. that the quadratic form u2yucc�2ucuyucy+u2cuyy is everywhere strictly negative.
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Lemma A.2 If (c; y; n) 2 <2+ � [n0; n1) and (c0; y0; n0) 2 <2+ � (n; n1] are
such that c0 = c and y0 � y; then��uy(c0; y0; n0)�� < juy(c; y; n)j : (A.7)

Proof. Immediate from (A.5) and the concavity of u:

The next two steps concern the validity of part (b) of condition DR when
the outcome pair (c0; y0) for type n0 lies on the indi¤erence curve I(n0) of
type n0 through the outcome pair (c; y) for type n < n0; see Figure 1 in the
text.

The �rst of these two steps concerns the case where (c; y) satis�es the
�rst-order condition for e¢ ciency as an equation.

Lemma A.3 If n 2 [n0; n1) and (c; y) 2 <2+ are such that

uc(c; y; n) + uy(c; y; n) = 0; (A.8)

then there exists " > 0 such that, for any n0 2 (n; n + "] and any (c0; y0) 2
<2+ that satis�es

u(c0; y0; n0) = u(c; y; n0) (A.9)

and c � c0 � c�(n0; u(c; y; n0)); one has��uy(c0; y0; n0)�� < juy(c; y; n)j : (A.10)

Proof. If (c; y) satis�es (A.8), then, for n0 > n; SSCC implies

uc(c; y; n
0) + uy(c; y; n

0) > 0:

By RC, there exists a unique pair (c�(n0; u(c; y; n0)); y�(n0; u(c; y; n0))) that
lies on I(n0) and is e¢ cient for n0: This pair is strictly greater than (c; y) and
satis�es the �rst-order condition for an interior e¢ cient point, uc + uy = 0.

By RC, the indi¤erence curve I(n0) of type n0 through (c; y) is strictly
convex. Its slope is strictly increasing. For any point (c0; y0) on I(n0) that
lies between the e¢ cient pair (c�(n0; u(c; y; n0)); y�(n0; u(c; y; n0))) and the
reference point (c; y), there must therefore exist some � 2 [0; 1] such that

juy(c0; y0; n0)j
uc(c0; y0; n0)

= �
juy(c; y; n0)j
uc(c; y; n0)

+ (1� �); (A.11)

in (A.26), the left-hand side indicates the slope of I(n0) at (c0; y0); the fraction
juy(c;y;n0)j
uc(c;y;n0)

on the right-hand side the slope of I(n0) at (c; y); the slope of I(n0)
at the e¢ cient point (c�(n0; u(c; y; n0)); y�(n0; u(c; y; n0))) is of course one.
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Conversely, for the given n0 and any � 2 [0; 1]; there exists a pair
(ĉ(n0; �); ŷ(n0; �)) such that (c0; y0) = (ĉ(n0; �); ŷ(n0; �)) lies between (c; y) and
(c�(n0); y�(n0)) and is the unique solution to equations (A.9) and (A.11).
By construction, one has (ĉ(n; �); ŷ(n; �)) = (c; y) for all �: One also has
(ĉ(n0; 0); ŷ(n0; 0)) = (c�(n0; u(c; y; n0)); y�(n0; u(c; y; n0))) for all n0:

By standard arguments, relying on the implicit function theorem, the
assumption that indi¤erence curves have positive Gaussian curvature implies
that the functions ĉ(�; �) and ŷ(�; �) that are de�ned by (A.9) and (A.11) are
continuously di¤erentiable. It follows that, for any � 2 [0; 1] and any n0 � n;
the derivative

duy(ĉ(n
0; �); ŷ(n0; �); n0)

dn0
=

�
uyc

@ĉ

@n0
(n0; �) + uyy

@ŷ

@n0
(n0; �) + uyn

�
(A.12)

is well de�ned. At n0 = n and any �; one computes18

@ĉ

@n0
(n; �) =

@ŷ

@n0
(n; �) = �(1� �) (ucn + uyn)

ucc + ucy + uyc + uyy
: (A.13)

For any � 2 [0; 1]; one therefore obtains

duy(ĉ(n
0; �); ŷ(n0; �); n0)

dn0
(n; �)

= �(1� �) (ucn + uyn)

ucc + ucy + uyc + uyy
(uyc + uyy) + uyn

= (1� �)
�
� (uyc + uyy)

ucc + ucy + uyc + uyy
ucn +

(ucc + ucy)

ucc + ucy + uyc + uyy
uyn

�
+ �uyn

= (1� �)
�
ucn

@c�(n; v)

@v
+ uyn

@y�(n; v)

@v

�
+ �uyn

� min

�
�
�
ucn

@c�(n; v)

@v
+ uyn

@y�(n; v)

@v
(n)

�
; uyn

�
: (A.14)

The right-hand side of (A.14) is independent of �: By (A.5) and (A.6), it is
also strictly positive. It follows that, for some " > 0; n0 2 (n; n+ "] implies

duy(ĉ(n
0; �); ŷ(n0; �); n0)

dn0
(n0; �) > 0

for all � 2 [0; 1]: The claim follows immediately.

The next step concerns the case where (c; y) satis�es the �rst-order con-
dition for e¢ ciency as a strict inequality.
18Positivity of the Gaussian curvature implies that the denominator in (A.13) is strictly

negative.
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Lemma A.4 Let n 2 [n0; n1) and (c; y) 2 <2+ be such that (c; y) is e¢ cient
for n, with

uc(c; y; n) + uy(c; y; n) < 0; (A.15)

then there exists " > 0 such that, for any n0 2 (n; n + "] and any (c0; y0) 2
<2+ that satis�es

u(c0; y0; n0) = u(c; y; n0) (A.16)

and c < c0 � c�(n0; u(c; y; n0)); one has��uy(c0; y0; n0)�� < juy(c; y; n)j (A.17)

and
uc(c

0; y0; n0) < uc(c; y; n) if y = 0: (A.18)

Proof. If (c; y) satis�es (A.15), then by RC, one also has

uc(c; y; n
0) + uy(c; y; n

0) < 0 (A.19)

for n0 su¢ ciently close to n: If (c; y) satisfying (A.15) is e¢ cient for n, one
must have c = 0 or y = 0: Such (c; y) satisfying (A.19) is then also e¢ cient
for n0; and, for (c0; y0) satisfying (A.16) and c � c0 � c�(n0; u(c; y; n0)); one
has (c0; y0) = (c; y): Then (A.17) and (A.18) follow from (A.5) and (A.4) by
standard calculus.

The �nal step concerns those outcome pairs (c0; y0) that type n0 prefers
to the reference pair (c; y), that have consumption greater than c and that
are e¢ cient or distorted downwards from e¢ ciency for type n0. In Figure 1,
the set of these outcome pairs is represented by the shaded area to the left
of the curve A � A of e¢ cient points for n0, strictly above the indi¤erence
curve I(n0) and strictly above the horizontal line through the reference point
(c; y): The argument is adapted from Brunner (1995).

Lemma A.5 Let n 2 [n0; n1) and (c; y) 2 <2+ be such that (c; y) is e¢ cient
for n; and let " be given by Lemma A.3 or A.4: Then for any n0 2 (n; n+ "]
and any (c0; y0) 2 <2+ that is e¢ cient or distorted downwards from e¢ ciency
for n0 and satis�es that c0 > c and u(c0; y0; n0) > u(c; y; n0); one has��uy(c0; y0; n0)�� < juy(c; y; n)j (A.20)

and

min(uc(c
0; y0; n0);

��uy(c0; y0; n0)��) < uc(c; y; n) if y = 0: (A.21)
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Proof. Fix n; (c; y); n0; (c0; y0) as speci�ed in the lemma. De�ne a
shadow price q for the outcome (c0; y0) for n0 by setting

quc(c
0; y0; n0) + uy(c

0; y0; n0) = 0 (A.22)

if
uc(c

0; y0; n0) + uy(c
0; y0; n0) � 0; (A.23)

and
q = 1 (A.24)

if
uc(c

0; y0; n0) + uy(c
0; y0; n0) < 0: (A.25)

RC implies that q � 1: Given that q � 1; RC also implies that, for any v
in the range of u; the problem of minimizing c00 � qy00 under the constraint
that u(c00; y00; n0) � v has a unique solution. Let (�c(v); �y(v)) be this solution.
Again by RC, one has (�c(v); �y(v)) � (c�(n0; v); y�(n0; v)) for all v:

From (A.22) - (A.25), one easily �nds that (c0; y0) = (�c(u(c0; y0; n0)); �y(u(c0; y0; n0))):
Because u is concave, one also has��uy(�c(v); �y(v); n0)�� � ��uy(c0; y0; n0)�� (A.26)

and
uc(�c(v); �y(v); n

0) � uc(c
0; y0; n0) (A.27)

whenever v < u(c0; y0; n0): In particular,��uy(�c(u(c; y; n0)); �y(u(c; y; n0)); n0)�� � ��uy(c0; y0; n0)�� (A.28)

and
uc(�c(u(c; y; n

0)); �y(u(c; y; n0)); n0) � uc(c
0; y0; n0): (A.29)

If �c(u(c; y; n0)) � c; (A.20) follows from (A.28) because, by Lemma A.3
or A.4, one has juy(�c(u(c; y; n0)); �y(u(c; y; n0)); n0)j < juy(c; y; n)j :

If �c(u(c; y; n0)) < c; then, by the intermediate value theorem, there exists
v̂ 2 (u(c; y; n0); u(c0; y0; n0)) such that �c(v̂) = c and �y(v) < y: For this v̂;
Lemma A.2 yields juy(�c(v̂); �y(v̂); n0)j < juy(c; y; n)j ; so (A.20) follows from
(A.26).

As for (A.21), I �rst note that, trivially, one must have �c(u(c; 0; n0)) � c:
Therefore, if y = 0 and uc(c; y; n) + uy(c; y; n) < 0; Lemma A.4 yields
uc(�c(u(c; y; n

0)); �y(u(c; y; n0)); n0) < uc(c; y; n): If one combines this inequal-
ity with (A.29), one obtains (A.21). If uc(c; y; n) + uy(c; y; n) = 0; (A.21)
follows directly from (A.20).
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Upon combining Lemmas A.3 - A.5, one �nds that, for n; c; y and n0; c0; y0

as speci�ed in these lemmas, (A.2) follows from (A.10), (A.17), or (A.20). If
uc(c; y; n) = juy(c; y; n)j ; (A.3) follows immediately. If y = 0 and uc(c; y; n) <
juy(c; y; n)j, (A.3) follows from (A.18) or (A.21). To complete the proof of
Proposition A.1, it su¢ ces to note that, if N is an interval, then there is no
loss of generality in assuming that n + " is an element of N: The same is
true if N is a �nite set and the elements of N are su¢ ciently close.

B Proof of Lemma 6.2

Lemma B.1 An allocation (c(�); y(�)) with nondecreasing c(�) is downward
incentive compatible if and only if the indirect utility function v(�) = u(c(�); y(�); �)
satis�es

v(n) = S(n) +

Z n

n0
un(c(n

0); y(n0); n0)dn0 (B.1)

for some nondecreasing function S(�). If the allocation is piecewise contin-
uously di¤erentiable, the functions v(�) and S(�) are also piecewiese contin-
uously di¤erentiable, and one has

v0(n) � un(c(n); y(n); n): (B.2)

Proof. The argument follows Mirrlees (1976). For any n; let S(n) be the
di¤erence between v(n) and the integral

R n
n0 un(c(n

0); y(n0); n0)dn0: If S(�) is
a nondecreasing function, one hasZ n

n0
�(n00; n)dS(n00) � 0 (B.3)

for all n; all n0 < n; and every nonnegative-valued function �: By the de�n-
ition of S(�); (B.3) is equivalent to the inequalityZ n

n0
�(n00; n)[uc(c(n

00); y(n00); n00)dc(n00) + uy(c(n
00); y(n00); n00)dy(n00)] � 0:

With �(n00; n) = uy(c(n00);y(n00);n)
uy(c(n00);y(n00);n00)

; it follows thatZ n

n0
uy(c(n

00); y(n00); n)dy(n00)

+

Z n

n0

uy(c(n
00); y(n00); n)

uy(c(n00); y(n00); n00)
uc(c(n

00); y(n00); n00)dc(n00) � 0 (B.4)
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for all n and all n0 < n:
By SSCC and RMC, one also has

�uy(c(n00); y(n00); n)
uc(c(n00); y(n00); n)

<
�uy(c(n00); y(n00); n00)
uc(c(n00); y(n00); n00)

;

whenever n00 < n: Because c(�) is nondecreasing, it follows that

�
Z n

n0

uy(c(n
00); y(n00); n)

uy(c(n00); y(n00); n00)
uc(c(n

00); y(n00); n00)dc(n00)

� �
Z n

n0
uc(c(n

00); y(n00); n)dc(n00) (B.5)

for all n and all n0 < n: Now (B.4) and (B.5) implyZ n

n0
uc(c(n

00); y(n00); n)dc(n00) +

Z n

n0
uy(c(n

00); y(n00); n)dy(n00) � 0; (B.6)

hence
u(c(n); y(n); n) � u(c(n0); y(n0); n) (B.7)

for all n and all n0 < n: Monotonicity of c(�) and S(�) is thus su¢ cient for
downward incentive compatibility.

Conversely, for all n and all n0 < n; downward incentive compatibility
implies

v(n)� v(n0) �
Z n

n0
un(c(n

0); y(n0); n00)dn00: (B.8)

By standard arguments, it follows that

v(n)� v(n0) =

KX
k=1

(v(nk+1)� v(nk))

�
KX
k=1

Z nk+1

nk

un(c(nk); y(nk); n
00)dn00 (B.9)

for every increasing sequence fnkgKk=1 with n1 = n0 and nK = n: Upon
taking limits across sequences fnkgKk=1 as K goes out of bounds and the
sequence fnkgKk=1 becomes dense in the interval [n0; n]; one concludes that

v(n)� v(n0) �
Z n

n0
un(c(n

00); y(n00); n00)dn00

and, hence, that S(n) � S(n0) for all n and all n0 < n:
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If c(�) and y(�) are piecewise continuously di¤erentiable, with derivatives
q(�) and z(�); one can use the equation v(n) = u(c(n); y(n); n) to show that
v(�) is also piecewise continuously di¤erentiable, with derivative

v0(n) = ucq(n) + uyz(n) + un: (B.10)

Equation (B.1) then yields

S(n)� S(n0) =
Z n

n0
[ucq(n

0) + uyz(n
0)]dn0: (B.11)

Thus function S(�) is also piecewise continuously di¤erentiable, with deriv-
ative ucq + uyz � 0: (B.2) follows immediately.

C Additional Proofs for Section 6.2

In this appendix, I show that the Lagrange multiplier for the feasibility
constraint is positive, and I provide the full proof of Lemma 6.7 in the text.
Both proofs are complicated by the appearance of the term  0(n) in the
conditions for consumption. To deal with these complications, both proofs
rely on the following lemma.

Lemma C.1 For any n̂; �n 2 [n0; n1];  (n̂) = 0 and  (�n) � 0 implyZ n̂

�n

 0(n)

uc
f(n) exp

�Z n

n0

unc
uc
d�

�
dn � 0; (C.1)

with equality if and only if  (�n) = 0:

Proof. First, let �n < n̂: Neglecting null sets, one may suppose that
 0(n) is nonzero only on intervals of constancy of c(�): On such intervals, by
Lemma 6.3 in the text, y(�) is also constant. Let I be the collection of such
intervals between �n and n̂ and note that I is at most countable. For any
I 2 I; let n0(I) and n1(I) be the in�mum and the supremum of I; and let
c(I); y(I) be the common value of (c(n0); y(n0)) on (n0(I); n1(I)): Because,
outside the union of intervals in I;  0(n) must vanish for almost all n; one
can write:Z n̂

�n

 0(n)

uc
f(n) exp

�Z n

n0

unc
uc
d�

�
dn =

X
I2I

Z n1(I)

n0(I)

 0(n)

uc
exp

�Z n

n0

unc
uc
d�

�
dn:

(C.2)

46



For any I 2 I and any n0 2 (n0(I); n1(I)); one has (c(n0); y(n0)) = (c(I); y(I)):
Therefore

exp

�Z n

n0

unc
uc
d�

�
= exp

 Z n0(I)

n0

unc
uc
d� +

Z n

n0(I)

d lnuc
dn0

dn0

!

= exp

 Z n0(I)

n0

unc
uc
d� + ln

uc(c(I); y(I); n)

uc(c(I); y(I); n0(I))

!

=
uc(c(I); y(I); n)

uc(c(I); y(I); n0(I))
exp

 Z n0(I)

n0

unc
uc
d�

!
:

For any I 2 I(n); it follows thatZ n1(I)

n0(I)

 0(n)

uc(c(n); y(n); n)
exp

�Z n

n0

unc
uc
d�

�
dn

=
1

uc(c(I); y(I); n0(I))
exp

 Z n0(I)

n0

unc
uc
d�

!Z n1(I)

n0(I)
 0(n)dn

=
1

uc(c(I); y(I); n0(I))
exp

 Z n0(I)

n0

unc
uc
d�

!
[ (n1(I))�  (n0(I))]:

If  (�n) = 0; then, by the de�nition of n0(I) and n1(I) and the continuity of
 ; one has  (n0(I)) =  (n1(I)) = 0; henceZ n1(I)

n0(I)

 0(n)

uc
exp

�Z n

n0

unc
uc
d�

�
dn = 0 (C.3)

for all I 2 I. Given that the set I is at most countable, (C.2) and (C.3)
imply Z n̂

�n

 0(n)

uc
f(n) exp

�Z n

n0

unc
uc
d�

�
dn = 0:

If  (�n) < 0; there exists an initial interval I1 of constancy of c(�) such that
�n = n0(I1): For I 2 InfI1g; one again has  (n0(I)) =  (n1(I)) = 0; so
(C.3) holds and (C.2) - (C.3) implyZ n̂

�n

 0(n)

uc
f(n) exp

�Z n

n0

unc
uc
d�

�
dn

=

Z n1(I1)

�n

 0(n)

uc
f(n) exp

�Z n

n0

unc
uc
d�

�
dn

=
1

uc(c(I); y(I); �n)
exp

�Z �n

n0

unc
uc
d�

�
[ (n1(I1))�  (�n)]:
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By the de�nition of n1(I1) and the continuity of  ; one has  (n1(I1)) = 0:
Therefore  (�n) < 0 impliesZ n̂

�n

 0(n)

uc
f(n) exp

�Z n

n0

unc
uc
d�

�
dn > 0: (C.4)

If �n > n̂; a precisely symmetric argument shows thatZ �n

n̂

 0(n)

uc
f(n) exp

�Z n

n0

unc
uc
d�

�
dn = 0 (C.5)

if  (�n) = 0 and Z �n

n̂

 0(n)

uc
f(n) exp

�Z n

n0

unc
uc
d�

�
dn < 0 (C.6)

if  (�n) < 0: (C.4) follows immediately from (C.6).

Lemma C.2 � > 0:

Proof. If the lemma is false, � = 0: Then condition (6.14) in the text,
the condition for the costate variable  (�); can be written as

 0(n)

uc
+ f(n) + '0(n) + '(n)

unc
uc

� 0; (C.7)

which in turn implies

 0(n)

uc
exp

�Z n

n0

unc
uc
d�

�
+

d

dn

�
'(n) exp

�Z n

n0

unc
uc
d�

��
< 0:

By integration, one obtainsZ n1

n0

 0(n)

uc
exp

�Z n

n0

unc
uc
d�

�
dn+ '(n1) exp

�Z n

n0

unc
uc
d�

�
� '(n0) < 0:

By the transversality condition (6.11), therefore,Z n1

n0

 0(n)

uc
exp

�Z n

n0

unc
uc
d�

�
dn < 0: (C.9)

However, by Lemma C.1, in combination with (6.7) and the transversality
condition (6.12), one also hasZ n1

n0

 0(n)

uc
exp

�Z n

n0

unc
uc
d�

�
dn � 0: (C.10)

The assumption that � = 0 has thus led to a contradiction and must be
false.
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Lemma C.3 For any n 2 (n0; n1); c(n) > 0 and '(n) =  (n) = 0 imply

uc(c(n); y(n); n) � � (C.11)

and
juy(c(n); y(n); n)j � � if y(n) > 0: (C.12)

Proof. Let n̂ 2 (n0; n1) be such that c(n̂) > 0 and '(n̂) =  (n̂) = 0: I
�rst prove that

� � uc(c(n̂); y(n̂); n̂): (C.13)

If, for some �n < n̂; one has  (n) < 0 for n 2 (�n; n̂); then there is
bunching, and one has c(n) = c(n̂) > 0 for n 2 [�n; n̂]: For n 2 [�n; n̂];
therefore, condition (6.14) in the text must hold as an equation. Thus

 0(n) + '0(n)uc + '(n)ucn = (�� uc)f(n) (C.14)

for all n 2 [�n; n̂]; where uc and ucn are evaluated at (c(n); y(n); n): Because
c(n) is constant on [�n; n̂]; Lemma 6.3 implies that y(n) is also constant on
[�n; n̂]: Therefore, one has

d

dn
uc(c(n); y(n); n) = ucn(c(n); y(n); n) (C.15)

for n 2 [�n; n̂]: On the interval [�n; n̂]; equation (C.14) thus can be rewritten
as

 0(n) +
d

dn
['(n)uc(c(n); y(n); n)] = (�� uc)f(n): (C.16)

Because  (n) and '(n) are nonpositive for all n and because '(n̂) =  (n̂) =
0, one has

 (n) + '(n)uc(c(n); y(n); n) �  (n̂) + '(n̂)uc(c(n̂); y(n̂); n̂) (C.17)

for all n 2 [�n; n̂] = 0: Therefore, it must be the case that

 0(n) +
d

dn
['(n)uc(c(n); y(n); n)] � 0 (C.18)

and, by (C.16), that
(�� uc)f(n) � 0 (C.19)

for n between �n and n̂; arbitrarily close to n̂: By the continuity of the
allocation, (C.13) follows.

If, instead, there exists a sequence fnkg converging to n̂ from below such
that  (nk) = 0 for all k; there need not be any bunching at c(n̂); but, by the
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continuity of c(�); one still has c(n) > 0; and one may suppose that equation
(C.14) must hold for n close to n̂: This equation can be rewritten as:

d

dn

�
'(n) exp

�Z n

n0

unc
uc
d�

��
=

�
�� uc
uc

f(n)�  0(n)

uc

�
exp

�Z n

n0

unc
uc
d�

�
:

(C.20)
Integration between nk and n̂ yields:

'(n̂) exp

�Z n

n0

unc
uc
d�

�
= '(nk) exp

 Z nk

n0

unc
uc
d�

!

+

Z n̂

nK

�� uc
uc

f(n) exp

�Z n

n0

unc
uc
d�

�
dn

�
Z n̂

nK

 0(n)

uc
f(n) exp

�Z n

n0

unc
uc
d�

�
dn:(C.21)

Because '(n̂) = 0 and because '(nk) is nonpositive, it follows thatZ n̂

nk

�� uc
uc

f(n)e
R n
n0

unc
uc
dn0dn �

Z n̂

nk

 0(n)

uc
f(n)e

R n
n0

unc
uc
dn0dn (C.22)

for all k: Lemma C.1 shows that the right-hand side of (C.22) is equal to
zero for all k: Thus, Z n̂

nk

�� uc
uc

f(n)e
R n
n0

unc
uc
dn0dn � 0 (C.23)

for all k: Because (C.23) holds regardless of k; it follows that, for some
sequence fnjg converging to n̂ from below, one has � � uc(c(nj); y(nj); nj)
for all j. Again by the continuity of the allocation, (C.13) follows:

To establish (C.12), it now su¢ ces to observe that, by Lemma 6.5 in
the text, the outcome (c(n̂); y(n̂)) is e¢ cient for n̂: Because ĉ(n̂) > 0 and
ŷ(n̂) > 0; this yields

uc(c(n̂); y(n̂); n̂) = juy(c(n̂); y(n̂); n̂)j :

Lemma C.4 For any n 2 (n0; n1), if c(n) > 0; then at least one of the
costate variables '(n);  (n) is nonzero.
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Proof. If the lemma is false, there exists n̂ 2 (n0; n1) such that c(n̂) > 0
and '(n̂) =  (n̂) = 0: By Lemmas 6.4 and 6.5 in the text, the premises
of part (b) of condition DR are satis�ed for n = n̂ and any n0 > n̂ that is
su¢ ciently close to n̂: For any such n0; one therefore has

juy(c(n̂); y(n̂); n̂)j > min(uc(c(n0); y(n0); n0);
��uy(c(n0); y(n0); n0)��) if y(n̂) > 0

(C.24)
and

uc(c(n̂); y(n̂); n̂) > min(uc(c(n
0); y(n0); n0);

��uy(c(n0); y(n0); n0)��) if y(n̂) = 0:
(C.25)

By Lemma C.3, (C.24) and (C.25) imply

� > min(uc(c(n
0); y(n0); n0);

��uy(c(n0); y(n0); n0)��) (C.26)

for any n0 > n̂ that is su¢ ciently close to n̂:
Because c(n̂) > 0; condition (6.14) in the text must hold as an equation

for n0 > n̂. Thus,

 0(n0) + '0(n0)uc + '(n
0)ucn = (�� uc)f(n0) (C.27)

for n0 > n̂: By condition (6.15) in the text, one also has

'0(n0)uy + '(n
0)uyn � �(�+ uy)f(n0) (C.28)

for n0 > n̂:
I distinguish three cases and will give separate arguments for each of

them.
Case 1: There exists �n > n̂ such that

uc(c(n
0); y(n0); n0) �

��uy(c(n0); y(n0); n0)�� (C.29)

for all n0 2 (n̂; �n]: In this case, (C.26) implies � > uc(c(n
0); y(n0); n0); and

(C.27) implies
 0(n0) + '0(n0)uc + '(n

0)ucn > 0 (C.30)

for all n0 2 (n̂; �n]: Upon multiplying this inequality by 1
uc
exp(

R n0
n̂

ucn
uc
d�);

one can rewrite (C.30) in the form

 0(n0)

uc
exp(

Z n0

n̂

ucn
uc
d�) +

d

dn0

 
'(n0) exp(

Z n0

n̂

ucn
uc
d�)

!
> 0: (C.31)
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By integration between n̂ and n 2 (n̂; �n]; one obtainsZ n

n̂

 0(n0)

uc
exp(

Z n0

n̂

ucn
uc
d�)dn0 + '(n) exp(

Z n

n̂

ucn
uc
d�)� '(n̂) > 0: (C.32)

Because '(n) is nonpositive and '(n̂) = 0; it follows thatZ n

n̂

 0(n0)

uc
exp(

Z n0

n̂

ucn
uc
d�)dn0 > 0

or Z n̂

n

 0(n0)

uc
exp(

Z n0

n̂

ucn
uc
d�)dn0 < 0; (C.33)

which is incompatible with Lemma 5.2. The assumption that, for some n̂ 2
(n0; n1) and �n > n̂; one has c(n̂) > 0; '(n̂) =  (n̂) = 0; and uc(c(n0); y(n0); n0) �
juy(c(n0); y(n0); n0)j for all n0 2 (n̂; �n] has thus led to a contradiction and
must be false.

Case 2: There exists �n > n̂ such that

uc(c(n
0); y(n0); n0) �

��uy(c(n0); y(n0); n0)�� (C.34)

for all n0 2 (n̂; �n]: In this case, (C.26) implies � > juy(c(n0); y(n0); n0)j ; and
(C.28) implies

'0(n0)uy + '(n
0)uyn < 0 (C.35)

for all n0 2 (n̂; �n]: Upon multiplying this inequality by 1
uy
exp(

R n0
n̂

uyn
uy
d�) <

0; one can rewrite (C.35) in the form

d

dn0

 
'(n0) exp(

Z n0

n̂

uyn
uy

d�)

!
> 0: (C.36)

By integration between n̂ and n 2 (n̂; �n]; one obtains

'(n) exp(

Z n0

n̂

uyn
uy

d�)� '(n̂) > 0: (C.37)

Thus, '(n̂) = 0 implies '(n) > 0 for n 2 (n̂; �n]: This is incompatible with
the �rst-order condition (6.8) for the slack s(n) in downward incentive com-
patibility. The assumption that, for some n̂ 2 (n0; n1) and �n > n̂; one has
c(n̂) > 0; '(n̂) =  (n̂) = 0; and uc(c(n0); y(n0); n0) � juy(c(n0); y(n0); n0)j for
all n0 2 (n̂; �n] has thus also led to a contradiction and must also be false.
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Case 3: There exist sequences fnkg and fnjg converging to n̂ from
above such that

uc(c(n
k); y(nk); nk) <

���uy(c(nk); y(nk); nk)��� (C.38)

for all k and

uc(c(n
j); y(nj); nj) <

��uy(c(nj); y(nj); nj)�� (C.39)

for all j: In this case, by continuity, there also exists a sequence fn`g that
converges to n̂ from above such that

uc(c(n
`); y(n`); n`) =

���uy(c(n`); y(n`); n`)��� (C.40)

for all `: By continuity, it follows that

uc(c(n̂); y(n̂); n̂) = juy(c(n̂); y(n̂); n̂)j : (C.41)

For any `; one also has

uc(c(n
`); y(n`); n`) = uc(c(n̂); y(n̂); n̂) +

Z n`

n̂
[uccq + ucyz + ucn] dn

0 (C.42)

and

uy(c(n
`); y(n`); n`) = uy(c(n̂); y(n̂); n̂) +

Z n`

n̂
[uycq + uyyz + uyn] dn

0;

(C.43)
where q(�) and z(�) are the derivatives of c(�) and y(�): Thus, (C.40) and
(C.41) yieldZ n`

n̂
[uccq + ucyz + ucn + uycq + uyyz + uyn] dn

0 = 0: (C.44)

By SSCC, (C.41) implies

ucn(c(n̂); y(n̂); n̂) + uyn(c(n̂); y(n̂); n̂) > 0: (C.45)

By continuity, it follows that, for some " > 0; one has

ucn(c(n
0); y(n0); n0) + uyn(c(n

0); y(n0); n0) > " (C.46)
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for all n0 in a su¢ ciently small neighbourhood of n̂: For any su¢ ciently large
`; one therefore has Z n`

n̂
[ucn + uyn] dn

0 � "(n` � n̂): (C.47)

Upon combining this inequality with (C.44), one obtainsZ n`

n̂
[uccq + ucyz + uycq + uyyz] dn

0 � �"(n` � n̂): (C.48)

If one divides this inequality by (n`� n̂) and takes limits as ` becomes large
and n` converges to n̂; one �nds that

[ucc + uyc]q(n̂+) + [ucy + uyy]z(n̂+) � �"; (C.49)

where q(n̂+) and z(n̂+) are the limits of q(n0) and z(n0) as n0 converges to n̂
from above. By Lemma 6.3, q(n̂+) = 0 would imply z(n̂+) = 0: Therefore,
(C.49) yields q(n̂+) > 0 and, indeed, q(n0) > 0 for any n0 > n̂ that is
su¢ ciently close to n̂.

It follows that, for any n0 > n̂ that is su¢ ciently close to n̂; one has
 (n0) = 0 and  0(n0) = 0: For such n0; (C.27) becomes

'0(n0)uc + '(n
0)ucn = (�� uc)f(n0); (C.50)

which, by SSCC and the nonpositivity of '(n0), implies

'0(n0) + '(n0)
uyn
uy

� �� uc
uc

f(n0): (C.51)

In combination with (C.28), this implies

'0(n0) + '(n0)
uyn
uy

� max

�
�� uc
uc

f(n0);
�� juyj
juyj

f(n0)

�
=

��min(uc; juyj)
min(uc; juyj)

f(n0): (C.52)

By (C.26), (C.52) implies

'0(n0) + '(n0)
uyn
uy

> 0: (C.53)

As discussed in the text, multiplication by exp(
R n0
n̂

uyn
uy
d�) and integration

yield

'(n) exp(

Z n

n̂

uyn
uy

d�)� '(n̂) > 0; (C.54)
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so, with '(n̂) = 0; one must have '(n) > 0 for any n > n̂ that is su¢ ciently
close to n̂: This is incompatible with the �rst-order condition (6.8) for the
slack s(n) in downward incentive compatibility. The assumption that, for
some n̂ 2 (n0; n1) and �n > n̂; one has c(n̂) > 0; '(n̂) =  (n̂) = 0; as well as

uc(c(n
k); y(nk); nk) <

���uy(c(nk); y(nk); nk)��� (C.55)

and
uc(c(n

j); y(nj); nj) <
��uy(c(nj); y(nj); nj)�� (C.56)

for all k and j; for sequences fnkg and fnjg converging to n̂ from above, has
thus also led to a contradiction and must be false.

Because Cases 1 - 3 cover all possibilities, the assumption that, for some
n̂ 2 (n0; n1) and �n > n̂; one has c(n̂) > 0; '(n̂) =  (n̂) = 0 must be false.
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