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Abstract

This paper analyzes monetary policy in a model with a potential unanchoring of inflation 
expectations. The degree of unanchoring is given by how sensitively the public’s long-run 
inflation expectations respond to inflation surprises. I find that optimal policy moves the in-
terest rate aggressively when expectations unanchor, allowing the central bank to accommo-
date inflation fluctuations when expectations are well-anchored. Furthermore, I estimate the 
model-implied relationship that determines the extent of unanchoring. The data suggest that 
the expectations process is nonlinear and asymmetric: expectations respond more sensitively 
to large or downside surprises than to smaller or upside ones.

JEL codes: E52, E71, D84
Keywords: anchored expectations, behavioral macro, optimal monetary policy
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Non-technical summary

Central bankers have been emphasizing the importance of anchoring inflation expectations for a

long time. In recent times, high inflation in the United States and the eurozone has sparked re-

newed interest in whether policymakers should anchor expectations, and if so, how to get expec-

tations anchored. This paper tackles the question of how a concern to anchor inflation expectations

affects the conduct of monetary policy.

To study what expectations anchoring and unanchoring means for monetary policy, one needs

a clear idea of what the phenomenon of anchoring is. The paper relies on recent research by Car-

valho et al. (2021) to formalize the degree of unanchoring as the sensitivity of long-run inflation

expectations of firms and households to short-run surprises in inflation. The idea is that if expecta-

tions are well-anchored, then even large inflation surprises should not lead the public to reconsider

its view on what inflation will be on average. By contrast, strongly unanchored expectations lead

the public to revise its expectation of long-run inflation very sharply following surprises in current

inflation.

Concretely, my model of anchoring postulates that firms and households understand how dif-

ferent changes in the economy affect current inflation, but they are unsure about what inflation is

on average. One can think of long-run inflation expectations, a term I use interchangeably with

“expected mean inflation,” as the public’s view of the central bank’s inflation target because it cap-

tures what average inflation the public expects over a longer time horizon. In my model, firms

and households form their long-run inflation expectation by averaging their own previously held

expectation and current surprises in inflation. The model’s measure of the degree of unanchoring

is how large the weight on the current inflation surprise is.

The weight on current inflation surprises is formed according to a function I call the “anchoring

function.” I estimate the form of this function by embedding the anchoring model in a general

macroeconomic model frequently used by central banks, and then selecting the parameters of the

anchoring function so that the macro model replicates the dynamic properties of inflation, inflation

expectations, the output gap and the federal funds rate. I use quarterly data for the US for the

time period 1981-Q3 to 2020-Q1. For inflation expectations, I use the 1-year-ahead CPI inflation

expectation from the Survey of Professional Forecasters.

The estimation results show that the unanchoring process is nonlinear and asymmetric. What

this means is that the sensitivity of long-run inflation expectations increases for larger inflation
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surprises, and for downward surprises. On the one hand, being more surprised about recent

inflation developments thus makes the public revise its view of average inflation more sensitively

than smaller surprises. On the other hand, inflation surprises on the downside also lead to more

sensitive updates to the public’s view of mean inflation than surprises on the upside. One can also

interpret these results as the public becoming more alert to inflation developments if it has been

strongly surprised about current inflation, or if it overestimated inflation.

I then characterize how monetary policy should optimally set the interest rate when expecta-

tions can anchor and unanchor according to the estimated anchoring process. The optimal interest

rate policy involves a very strong response to movements in the public’s long-run inflation expec-

tation. In particular, for each basis point revision in long-run expectations, the interest rate should

react by 50 basis points. This strong response ensures that whenever the public is surprised by in-

flation in the wake of recent events, and expectations start to unanchor, the central bank does not

allow expectations to unanchor persistently. One can interpret this as the central bank reassuring

the public that it is committed to the inflation target. Simulations of the model with the optimal

policy show that in practice, the central bank does not need to move the interest rate much because

the aggressive policy firmly anchors inflation expectations to the inflation target, resulting in very

stable long-run inflation expectations. Only large disturbances in the economy can cause long-run

inflation expectations to start drifting away from the central bank’s target, raising the need for the

central bank to intervene.

Lastly, the model also provides policy prescriptions for the case when the central bank, instead

of following the fully optimal policy, moves the interest rate in response to inflation and the output

gap, as monetary policy is often described in practice. In this case, the central bank needs to adjust

the interest rate very strongly, almost by a factor of 50, in response to fluctuations in inflation. An

important issue with such a policy rule is that it introduces volatility no matter if expectations are

unanchored or not. Therefore, the central bank can do better by responding more aggressively to

inflation fluctuations the more unanchored expectations are.
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1 Introduction

Inflation that runs below its desired level can lead to an unwelcome fall in longer-term
inflation expectations, which, in turn, can pull actual inflation even lower, resulting in
an adverse cycle of ever-lower inflation and inflation expectations. [...] Well-anchored
inflation expectations are critical[.]
Jerome Powell, Chairman of the Federal Reserve1

(Emphases added.)

There is broad consensus among policymakers that anchoring inflation expectations is central
to the modern conduct of monetary policy. As Powell emphasizes, policymakers think of expec-
tations as anchored when long-run expectations do not fluctuate systematically with short-run
inflation surprises. If expectations were to unanchor, policymakers fear this would result in an ad-
verse cycle of self-enforcing movements in expectations. And yet, this is a topic that until recently
had received little attention in the literature. While there existed an empirical literature proposing
measures of central bank credibility often associated with the idea of expectations anchoring, there
were few models with a formal concept of anchoring and unanchoring.

This paper studies how a concern to anchor inflation expectations affects the conduct of mon-
etary policy. I augment a New Keynesian model of the type generally used to study monetary
policy with inflation expectations that can unanchor to varying degrees, building on Carvalho
et al. (2021)’s idea that the sensitivity of long-run inflation expectations to short-run inflation sur-
prises can be thought of as a metric of unanchoring. I use survey data on inflation expectations
to discipline how unanchoring happens in the model, and solve the Ramsey problem of how to
optimally conduct monetary policy in this environment. The main contribution of the paper is
to provide analytical and numerical policy prescriptions for monetary policy when the degree of
expectations anchoring may vary.

In order to provide a convincing analysis of optimal policy in an environment with time-
varying unanchoring, I need a qualitatively and quantitatively realistic model of expectation for-
mation. To this end, I build on new work by Carvalho et al. (2021), who model the anchoring
of expectations as a discrete sensitivity to surprises. In their model, agents choose whether they
should revise their estimate of long-run inflation weakly or strongly in response to past expecta-
tions errors, yielding a well-anchored and an unanchored expectations regime. I extend this work
along two dimensions. First, in order to be able to study optimal monetary policy analytically, I
need to take derivatives of all equations of the model. I therefore consider a smooth, continuous
sensitivity, which maintains the property in Carvalho et al. (2021) that agents choose what weight
to put on past expectations errors based on recent inflation surprises. Second, I embed the anchor-
ing model of expectation formation in a general equilibrium New Keynesian model, allowing me
to formally consider the monetary policy problem.

As an empirical contribution, I employ a simulated method of moments strategy (Duffie and
Singleton, 1990, Lee and Ingram, 1991, Smith, 1993) on Survey of Professional Forecasters (SPF)

1“New Economic Challenges and the Fed’s Monetary Policy Review,” August 27, 2020, Jackson Hole.
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data to estimate how expectations unanchor in practice. I find that unanchoring in the data is
nonlinear and asymmetric. On the one hand, larger inflation surprises upset the public’s view on
long-run inflation much more than smaller ones. On the other hand, in line with other studies such
as Hebden et al. (2020), I also find that inflation surprises on the downside unanchor expectations
more than same-sized surprises on the upside.

I then turn to the main contribution of the paper, the question of how to conduct policy when
expectations can unanchor. I perform my analysis of policy in the model in three stages. First,
I present an analytical characterization of the Ramsey problem of the monetary authority. This
prescribes that the central bank should smooth out the effects of shocks over time, foreshadowing
that the central bank’s interest-rate policy will depend on the degree of unanchoring.

Second, I solve the optimality conditions of the Ramsey problem numerically. Because the
anchoring function renders the model nonlinear, I rely on global methods to obtain the optimal
interest-rate policy function. The key takeaway is that the optimal interest-rate setting is time-
varying. The monetary authority acts aggressively when expectations unanchor, responding with
large movements in the interest rate. When expectations are well-anchored, by contrast, the central
bank accommodates fluctuations in inflation. This state-dependent behavior allows the central
bank to anchor expectations in volatile times, but avoid inflicting volatility in stable times.

Third, I investigate how to deal with unanchoring when monetary policy simply sets the inter-
est rate in response to fluctuations in inflation and the output gap. This “Taylor rule” specification
of policy is interesting because academics and central bankers often think of monetary policy in
practice as following a Taylor rule. I solve for the optimal response coefficient of the interest rate
to inflation numerically in the case of both the anchoring and the rational expectations versions
of my model. To avoid comparing apples with oranges when comparing the Taylor rule with the
Ramsey policy, I abstract from the drifting interest-rate expectations specification of Eusepi et al.
(2020) in the main analysis.

There are two key results. On the one hand, it is optimal to respond much more to inflation
under varying levels of anchoring than under rational expectations because expectations in the
anchoring model have a self-enforcing tendency. As has been shown in the literature, whenever
this is the case, it is optimal to act aggressively to subdue fluctuations in expectations (Orphanides
and Williams, 2004). On the other hand, the fact that expectations fluctuate smoothly between
varying degrees of unanchoring introduces some trouble for the standard Taylor rule that always
responds to inflation with the same aggressiveness. Very strong unanchoring calls for an aggres-
sive response, while well-anchored expectations mean that a policymaker who intervenes only
introduces excess volatility into the model (Eusepi et al., 2020). A fixed Taylor-rule coefficient can-
not accommodate both cases, suggesting that in a model with varying levels of unanchoring, the
size of the interest rate response should depend on the degree of unanchoring.

To understand the practical relevance of my findings, I also explore what the optimal Ramsey
and Taylor-rule policies imply for the Great Inflation and the Great Moderation. I back out the
structural shocks from this period using a simple structural VAR in the output gap, inflation and
the federal funds rate and feed these into the model. Strikingly, both policies prevent the Great
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Inflation from ever happening, thus eliminating the need to induce the Volcker recession to bring
inflation back under control.

The difference between the two policies in this application is that the optimal Taylor rule ren-
ders the interest rate and the output gap much more volatile because it responds to inflation with
the same aggressiveness no matter the extent of unanchoring. Just like the analysis of the Taylor
rule suggested, an implication for policy in practice is that it is beneficial to allow the interest rate
to respond more to inflation the more unanchored expectations are. A Taylor rule with aggressive-
ness that depends on the degree of unanchoring is both flexible and simple, combining the advan-
tages of the optimal Ramsey and Taylor-rule policies of my model. It avoids inflicting volatility
when expectations are well-anchored, but acts swiftly and strongly to reanchor expectations when
long-run inflation expectations unanchor.

The paper is structured as follows. Section 2 introduces the model. Section 3 describes how
anchoring works in the model. Section 4 estimates the anchoring process. Section 5 presents the
results in three parts. First, Section 5.1 discusses an analytical characterization of the Ramsey pol-
icy. Second, Section 5.2 solves for the interest rate sequence that implements the optimal Ramsey
allocation using global methods. Third, Section 5.3 investigates the optimal choice of the response
coefficient on inflation if monetary policy is restricted to follow a Taylor rule. Section 6 examines
the model’s implications for the Great Inflation and the Great Moderation to draw practical policy
conclusions. Section 7 concludes.

1.1 Related literature

The paper is related to two main strands of literature. The model I use to study the interaction
between monetary policy and anchoring is a behavioral version of the standard New Keynesian
(NK) model of the type widely used for monetary policy analysis. Monetary policy in the rational
expectations (RE) version of this model has been studied extensively, for example in Clarida et al.
(1999), Woodford (2003a) or Svensson (1999).

The behavioral part of the model is the departure from rational expectations on the part of the
private sector. Instead, I allow the private sector’s expectation of long-run inflation to fluctuate
based on the history of observed inflation. This situates my paper in the adaptive learning litera-
ture advocated by Evans and Honkapohja (2001). This literature replaces the rational expectations
assumption by postulating an ad-hoc forecasting rule that agents use to form expectations and
that they update in every period using observed data. My contribution to this literature is to study
optimal monetary policy in a model with expectations anchoring and unanchoring.

There are three main reasons for why adaptive learning is an attractive alternative to ratio-
nal expectations in general, and a suitable framework to study anchoring in particular. First,
many studies document the ability of adaptive learning models to match empirical properties of
both expectations and macro aggregates. Adaptive learning models imply that forecast errors are
correlated with forecast revisions, a feature of expectations documented by Coibion and Gorod-
nichenko (2015). The prediction of these models concerning the response of expectations to shocks
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exactly aligns with new evidence by Angeletos et al. (2021), suggesting that in response to shocks,
expectations initially underreact, and then overshoot. As for the macro evidence, Milani (2007)
demonstrates that estimated learning models match the persistence of inflation without recourse
to backward-looking elements in the Phillips curve. Eusepi and Preston (2011) show that a cal-
ibrated adaptive learning version of the RBC model outperforms the rational expectations ver-
sion. In particular, even with small deviations from RE, the learning model leads to persistent and
hump-shaped responses to iid shocks, resolving the long-standing critique of real business cycle
(RBC) models of Cogley and Nason (1993).

Secondly, there is very strong empirical backing for state-dependent expectations. Milani (2014)
documents that state-dependence in expectations can generate endogenous time-varying volatility
in models without any time-variation in the exogenous processes. Additionally, Carvalho et al.
(2021) show that state-dependent sensitivity of long-run inflation expectations allows their model
to fit both inflation and inflation expectations very well, both in- and out-of-sample. An entire
empirical literature aimed at estimating inflation and trend inflation also arrives at the conclusion
that modeling the private sector’s expectations as reacting strongly to big surprises is key to fitting
the inflation process (Leeper and Zha, 2003, Stock and Watson, 2016, Mertens, 2016 and Mertens
and Nason, 2020).

Thirdly, an extensive experimental literature in the spirit of Anufriev and Hommes (2012)
demonstrates that simple, state-dependent forecasting rules provide the best fit among compet-
ing models to how individuals form expectations in controlled lab settings. A key finding in this
literature is that experiment participants rely on simple heuristics to form expectations, and they
do so in a state-dependent way. In particular, changing the economic environment of the experi-
ment induces the forecasters to change the forecasting rule they use.

Within the adaptive learning literature, the paper touches base with three sets of papers. First,
Molnár and Santoro (2014) and Mele et al. (2019) show that adaptive learning in general introduces
an intertemporal tradeoff to monetary policy that is absent under rational expectations. This gen-
eral insight, which also implies that optimal policy under commitment coincides what that under
discretion, also carries over to my model because it comes from the fact that agents learn from
past data. Erceg and Levin (2003), Lu et al. (2016) and King and Lu (2021) also investigate mone-
tary policy when the public learns from observed data and the policymaker seeks to influence the
learning process. In these models, the public is endowed with the knowledge of the true model,
while in my paper, the public has model-inconsistent expectations. This allows me to distinguish
anchoring from the notion of reputation.

Second, Marcet and Nicolini (2003), Cho and Kasa (2015), Kostyshyna (2012) Milani (2014)
and Carvalho et al. (2021) study time-varying and state-dependent sensitivities of expectations to
surprises. My paper is intimately connected to Carvalho et al. (2021) in particular, who propose
endogenous sensitivity as a model of anchoring. While their focus is validating the empirical per-
formance of their anchoring model using inflation expectations surveys, I modify their framework
to provide what I think is a novel contribution: the study of monetary policy for varying degrees
of unanchoring.
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Third, my results on the optimal Taylor rule speak to the literature on whether monetary pol-
icy should respond more or less to inflation when expectations are boundedly rational. On the one
hand, Orphanides and Williams (2004) obtain that with non-rational expectations, monetary pol-
icy should respond more to inflation in order to subdue volatile expectations. In contrast, Eusepi
et al. (2020) and Eusepi and Preston (2018) find that an aggressive response to inflation leads to
excess volatility when expectations of the long-run interest rate have a drift. As a result, monetary
policy cannot and should not respond strongly to inflation fluctuations. My paper instead empha-
sizes that when expectations unanchor to varying degrees, the optimal Taylor-rule coefficient on
inflation should itself depend on the extent of unanchoring.

Finally, my work is also related to the literature attempting to explain features of expectations
data using departures from the full information rational expectations (FIRE) paradigm. This liter-
ature consists of two main lines of attack. The first is relaxing the assumption of full information.
In this body of work, information is either not fully or not symmetrically available, or information
acquisition is costly (Mankiw and Reis, 2002, Sims, 2003, Maćkowiak and Wiederholt, 2009, An-
geletos and Pavan, 2009). The second strand of this literature, to which this paper belongs, instead
emphasizes that expectation formation departs from rational expectations. One example of this
literature is Sargent (1999), who explores the role of adaptive learning on the part of the Federal
Reserve for the Great Inflation. A more recent example is Bordalo et al. (2018). These authors com-
plement the empirical results of Coibion and Gorodnichenko (2015) with new evidence to suggest
that the pattern of over- and underreaction to news is consistent with diagnostic expectations in-
stead of dispersed information. My model of anchored expectations is also consistent with these
data facts.

2 The model

Apart from expectation formation, the model is a standard New Keynesian (NK) model with nom-
inal frictions à la Calvo (1983). The advantage of having a standard NK backbone to the model is
that one can neatly isolate the way anchoring alters the behavior of the model. Since the mechan-
ics of the rational expectations version of this model are well understood, I only lay out the model
briefly and pinpoint the places where the assumption of non-rational expectations matters.2

2.1 Households

The representative household is infinitely-lived and maximizes expected discounted lifetime util-
ity from consumption net of the disutility of supplying labor hours:

Êit
∞∑
T=t

βT−t
[
U(CiT )−

∫ 1

0
v(hiT (j))dj

]
. (1)

2For more details on the NK model, see Woodford (2003a).
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In the above, the only non-standard element is the expectations operator, Êi. As detailed in Section
3, this operator captures non-rational expectations and is assumed to satisfy the law of iterated
expectations, so that ÊitÊ

i
t+1 = Êit. The remaining elements are familiar from the rational expecta-

tions version of the NK model. U(·) and v(·) denote the utility of consumption and disutility of
labor, respectively, and β is the discount factor of the household. I am using standard CRRA utility
of the form U(ct) =

c1−σt
1−σ . hit(j) denotes the supply of labor hours of household i at time t in the

production of good j, and the household participates in the production of all goods j. Similarly,
household i’s consumption bundle at time t, Cit , is a Dixit-Stiglitz composite of all goods in the
economy:

Cit =

[ ∫ 1

0
cit(j)

θ−1
θ dj

] θ
θ−1

, (2)

where θ > 1 is the elasticity of substitution between the varieties of consumption goods. Denoting
by pt(j) the time-t price of good j, the aggregate price level in the economy can then be written as

Pt =

[ ∫ 1

0
pt(j)

1−θdj

] 1
θ−1

. (3)

The budget constraint of household i is given by

Bi
t ≤ (1 + it−1)Bi

t−1 +

∫ 1

0
wt(j)h

i
t(j) + Πi

t(j)dj − Tt − PtCit , (4)

where Πi
t(j) denotes profits from firm j remitted to household i, Tt taxes, and Bi

t the riskless bond
purchases at time t.3

The only difference to the standard New Keynesian model is the expectations operator, Êi. This
is the subjective expectations operator that differs from its rational expectations counterpart, E, in
that it does not encompass knowledge of the model. In particular, households have no knowledge
of the fact that they are identical. By extension, they also do not internalize that they hold identical
beliefs about the evolution of the economy. This implies that while the modeler can suppress the
index i, understanding that Êi = Êj = Ê, households cannot do so. As we will see in Section 2.3,
this has implications for their forecasting behavior and will result in decision rules that differ from
those of the rational expectations version of the model.

2.2 Firms

Firms are monopolistically competitive producers of the differentiated varieties yt(j). The produc-
tion technology of firm j is yt(j) = Atf(ht(j)), whose inverse, f−1(·), signifies the amount of labor
input. Noting that At is the level of technology and that wt(j) is the wage per labor hour, firm j

profits at time t can be written as

Πj
t = pt(j)yt(j)− wt(j)f−1(yt(j)/At). (5)

3For ease of exposition I have suppressed potential money assets here. This has no bearing on the model implications
since it represents the cashless limit of an economy with explicit money balances.
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Firm j’s problem, then, is to set the price of the variety it produces, pt(j), to maximize the present
discounted value of profit streams

Êjt
∞∑
T=t

αT−tQt,T

[
Πj
t (pt(j))

]
, (6)

subject to the downward-sloping demand curve

yt(j) = Yt

(
pt(j)

Pt

)−θ
, (7)

where
Qt,T = βT−t

PtUc(CT )

PTUc(Ct)
(8)

is the stochastic discount factor from households. Nominal frictions enter the model through the
parameter α in Equation (6). This is the Calvo probability that firm j is not able to adjust its price
in a given period.

Analogously to households, the setup of the production side of the economy is standard up to
the expectation operator. Also here the model-consistent expectations operator E has been replaced
by the subjective expectations operator Êj . This implies that firms, like households, do not know
the model equations, nor do they internalize that they are identical. Thus, their decision rules, just
like those of the households, will be distinct from their rational expectations counterparts.

2.3 Aggregate laws of motion

The model solution procedure entails deriving first-order conditions, taking a loglinear approxi-
mation around the nonstochastic steady state and imposing market clearing conditions to reduce
the system to two equations, the New Keynesian Phillips curve and IS curve. The presence of
subjective expectations, however, implies that firms and households are not aware of the fact that
they are identical. Thus, as Preston (2005) points out, imposing market clearing conditions in the
expectations of agents is inconsistent with the assumed information structure.4

Instead, I prevent firms and households from internalizing market clearing conditions. As
Preston (2005) demonstrates, this leads to long-horizon forecasts showing up in firms’ and house-
holds’ first-order conditions. As a consequence, instead of the familiar expressions, the IS and

4Two ways have been proposed in the adaptive learning literature to deal with this issue. The first is the so-called
Euler-equation approach, see for example by Bullard and Mitra (2002). This approach involves writing down the log-
linearized first-order conditions of the model, and simply replacing the rational expectations operators with subjective
ones. The other approach, advocated by Preston (2005) and adopted in this paper, instead involves rederiving the ag-
gregate laws of motion from the individual agents’ optimization problems that incorporate subjective expectations from
the start. Lastly, a related but distinct alternative to Preston (2005)’s long-horizon approach is the shadow price learning
framework advocated by Evans and McGough (2009).
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Phillips curves take the following form:

xt = Êt
∞∑
T=t

βT−t((1− β)xT+1 − σ(βiT − πT+1) + σrnT ), (9)

πt = κxt + Êt
∞∑
T=t

(αβ)T−t(καβxT+1 + (1− α)βπT+1 + uT ). (10)

Here xt, πt and it are the log-deviations of the output gap, inflation and the nominal interest rate
from their steady state values, and σ is the intertemporal elasticity of substitution. The variables
rnt and ut are exogenous disturbances representing a natural-rate shock and a cost-push shock
respectively.

The laws of motion (9) and (10) are obtained by deriving individual firms’ and households’
decision rules, which involve long-horizon expectations, and aggregating across the cross-section.
Importantly, agents in the economy have no knowledge of these relations since they do not know
that they are identical and thus are not able to impose market clearing conditions required to
arrive at (9) and (10). Thus, although the evolution of the observables (π, x) is governed by the
exogenous state variables (rn, u) and long-horizon expectations via these two equations, agents in
the economy are unaware of this. As I will spell out more formally in Section 3, it is indeed the
equilibrium mapping between states and jump variables the agents are attempting to learn.

To simplify notation, I gather the exogenous state variables in the vector st and observables in
the vector zt as

st =

r
n
t

īt

ut

 and zt =

πtxt
it

 , (11)

where īt is a shock to the interest rate that only shows up in the model for particular specifications
of monetary policy.5 This allows me to denote long-horizon expectations by

fa,t ≡ Êt
∞∑
T=t

(αβ)T−tzT+1 and fb,t ≡ Êt
∞∑
T=t

(β)T−tzT+1. (12)

As detailed in Appendix A, one can use this notation to reformulate the laws of motion of jump
variables (Equations (9) and (10)) and a given monetary policy rule compactly as

zt = Aafa,t +Abfb,t +Asst, (13)

where the matricesAi, i = {a, b, s} gather coefficients and are given in Appendix A. Assuming that
exogenous variables evolve according to independent AR(1) processes, I write the state transition
matrix equation as

st = hst−1 + εt with εt ∼ N (0,Σ), (14)

where h gathers the autoregressive coefficients ρj , εt the Gaussian innovations εjt , and η the stan-
dard deviations σjt , for j = {r, i, u}. Σ = ηη′ is the variance-covariance matrix of disturbances.6

5For generality, I treat the exogenous state vector as three-dimensional throughout the paper, even when the mone-
tary policy shock is absent and the second element of the state vector is zero.

6For the sake of conciseness, I have suppressed the expressions for these in the main text. See Appendix A.
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3 The unanchoring of inflation expectations

The informational assumption of the model is that agents do not know the equilibrium mapping
between states and jumps in the model. Without knowing the form of the observation equation,
they are not able to form rational expectations forecasts. Instead, agents postulate an ad-hoc fore-
casting relationship between states and jumps and seek to refine it in light of incoming data. In
other words, they act like an econometrician: they estimate a simple statistical model and con-
stantly attempt to improve their model as new data arrive.

3.1 Perceived law of motion

I assume agents consider a forecasting model for the endogenous variables of the form

Êtzt+1 = at−1 + bt−1st, (15)

where a and b are estimated coefficients of dimensions 3× 1 and 3× 3 respectively. This perceived
law of motion (PLM) reflects the assumption that agents forecast jumps using a linear function of
current states and a constant, with last period’s estimated coefficients. Note that a can be inter-
preted as long-run expectations of the observables z. Since inflation is the first element of z, the
first element of a corresponds to long-run inflation expectations. This object, which I will denote
by π̄, will be the main focus of the paper in what follows.

Summarizing the estimated coefficients as φt−1 ≡
[
at−1 bt−1

]
, here 3× 4, I can rewrite Equa-

tion (15) as

Êtzt+1 = φt−1

[
1

st

]
. (16)

I also assume that
Êtφt+k = φt ∀ k ≥ 0. (17)

This assumption, known in the learning literature as anticipated utility (Kreps, 1998), means that
agents do not internalize that they will update the forecasting rule in the future.7 Since the states
st are exogenous, I assume that agents know Equation (14), the equation governing the evolution
of st.8 Then, the PLM together with anticipated utility implies that k-period-ahead forecasts in the
beginning of period t are constructed as

Êtzt+k = at−1 + bt−1h
k−1st ∀k ≥ 1. (18)

7Clearly, anticipated utility poses a higher level of irrationality than not knowing the model and using statistical
techniques to learn it. Nevertheless, because Sargent (1999) demonstrates that it does not alter the dynamics of the
linearized model, anticipated utility has become a standard simplifying assumption in the adaptive learning literature.

8This is another common simplifying assumption in the adaptive learning literature. In an extension, I relax it and
find that when agents have to learn the evolution of state variables, they do so very quickly. Therefore, the dynamics
in that case resemble the dynamics here, except that responses to shocks are muted as long as agents are learning about
the state variables.
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The timing assumptions of the model are as follows. In the beginning of period t, the current
state st is realized. Agents then form expectations according to (15) using last period’s estimate
φt−1 and the current state st. Given exogenous states and expectations, today’s jump vector zt is
realized. This allows agents to evaluate the forecast error made at the end of last period

ft|t−1 ≡ zt − φt−1

[
1

st−1

]
(19)

to update their forecasting rule.9 The estimate is updated according to the following recursive
least-squares algorithm:

φt =

(
φ′t−1 + ktR

−1
t

[
1

st−1

]
f ′t|t−1

)′
, (20)

Rt = Rt−1 + kt

([
1

st−1

] [
1 st−1

]
−Rt−1

)
. (21)

Here Rt is the 4× 4 variance-covariance matrix of the regressors and kt is the learning gain, speci-
fying to what extent the updated estimate loads on the forecast error. Clearly, a high gain implies
high loadings and thus strong changes in the estimated coefficients φt. A low gain, by contrast,
means that a given forecast error only has a small effect on φt. Thus, one can interpret the gain as
the sensitivity of the expectations process to short-run surprises.

3.2 Endogenous gain as a metric of unanchoring

The vast majority of the learning literature specifies the gain either as a constant, ḡ, or decreasing
with time, so that kt = t−1, where t indexes time. Instead, I follow Carvalho et al. (2021) in allowing
the gain to fluctuate in a time-varying way in response to short-run forecast errors. I assume the
gain evolves as

kt = g(ft|t−1), (22)

where g(·) is a smooth, continuous function. I refer to g(·) as the anchoring function since it
specifies how the sensitivity of the expectations process is determined. As Carvalho et al. (2021)
point out, one can think of the gain as a formal notion of the degree of unanchoring, because a
high gain implies a high sensitivity to surprises, while a low gain a low one.

To understand the intuition, consider the learning vector a, the intercept in the private sector’s
forecasting rule in Equation (15). Recall that the first element of this vector, π̄, corresponds to the
expectation of long-run inflation. When the gain is high, agents update their expectations process
strongly in light of surprises, thus also updating π̄. What this means is that episodes of high
gains correspond to episodes when the private sector changes its expectation of long-run inflation
very strongly in response to current realized inflation. So if the central bank misses its inflation
target, this surprise inflation will show up in long-run inflation expectations only if the gain is

9Alternatively, one could assume that agents use the forecast they made in the morning of the current period. This
does not change the dynamics of the model in any way.
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large enough. In other words, one can interpret the gain as a metric of unanchoring because it
specifies how strongly current realized inflation will cause the public to revise its view of the
inflation regime it is in.

Notice that the anchoring function is an extension to the conventional decreasing or constant
gain specifications, as it nests both as special cases. A decreasing gain implies g(ft|t−1) = t−1,
while a constant gain g(ft|t−1) = ḡ. Furthermore, in both special cases, the derivative gf = 0.10

The smooth gain function is also an extension to Carvalho et al. (2021)’s framework, as I explain
below.

Apart from the smoothness and continuity assumptions, I also assume that

gff ≥ 0. (23)

Equation (23) states that g(·) is convex, meaning that the gain is increasing in the absolute value
of forecast errors. To interpret this assumption, consider what time series of inflation surprises
imply for the evolution of the gain. During the Great Inflation of the 1970s in the US, for example,
when inflation kept exceeding the public’s expectations, large positive forecast errors resulted in
high gains through the convexity of g(·). In other words, a volatile environment with lots of large
inflation surprises drives up the gain, rendering long-run inflation expectations sensitive to short-
run fluctuations, unanchoring them. The convexity makes sure that both upside and downside
surprises raise the sensitivity of long-run expectations, so that what matters for the unanchoring
of expectations is the absolute size of the surprise, not its sign.

The usefulness of specifying the evolution of the gain as endogenous is that it offers a state-
dependent sensitivity of the expectations process to surprises. In both of the standard, exogenous
gain schemes, the gain is divorced from the current environment. It either decreases determin-
istically (kt = t−1), or is a constant (kt = ḡ). This means that the level of unanchoring is either
deterministic or constant.

An endogenous gain, instead, generates periods of well-anchored expectations (low gain) as
well as highly unanchored episodes (high gain), and everything in-between. The endogenous
gain can thus be interpreted as a metric of the varying degrees of unanchoring. Furthermore, since
monetary policy influences the volatility of the economic environment, an endogenous gain frame-
work allows monetary policy to affect the anchoring and unanchoring of expectations directly.

State-dependent learning has significant empirical backing. The notion that forecasters ignore
small surprises, yet revise their forecasting rules strongly following large surprises is a robust
finding of the empirical literature estimating the inflation process (Leeper and Zha, 2003, Stock
and Watson, 2016, Mertens, 2016 and Mertens and Nason, 2020). My model also implies a pattern
of delayed reaction and overshooting of expectations in response to incoming information, in line
with recent evidence by Angeletos et al. (2021). Furthermore, as demonstrated by Milani (2014),
endogenous gain learning models can match time-varying volatility in the data, a feature that
constant gain learning or rational expectations models cannot account for. Lastly, an expectation
formation that allows individuals to regulate the extent to which they track incoming information

10To be precise, for a decreasing gain this statement only holds in the limit.
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also aligns with micro-level evidence on state-dependent expectation formation in lab settings,
such as in Anufriev and Hommes (2012).

To be clear, I am not the first to use an endogenous gain learning model in the macro con-
text. Marcet and Nicolini (2003), Milani (2014) and Carvalho et al. (2021) propose models in
which agents switch between a constant and a decreasing gain based on a switching criterion.
In Kostyshyna (2012), agents use a Kushner and Yin (2003) algorithm to choose the size of the gain.
Furthermore, Carvalho et al. (2021) propose an endogenous gain model as a metric of unanchor-
ing.11 Their focus is to show that an anchoring expectation formation can both match untargeted
moments of long-run inflation expectations from surveys, as well as rationalize the historical dy-
namics of US inflation through a novel narrative of transitioning from an unanchored phase to an
anchored one. To do so, they estimate a partial equilibrium model which incorporates their novel
anchoring theory.

My focus here instead is to analyze the interaction between expectations unanchoring and mon-
etary policy. I thus embed an endogenous gain model of anchoring in a general equilibrium con-
text to understand how it affects the conduct of monetary policy. The modification of Carvalho
et al. (2021)’s anchoring theory using a smooth gain function serves the purpose of rendering the
optimal monetary policy problem tractable. With this modification, the derivatives of g(·) exist,
allowing me to obtain analytical expressions for the Ramsey problem of the monetary authority.
Thus, the paper can shed light on what varying degrees of expectations unanchoring means for
monetary policy.

3.3 Actual law of motion

To complete the model, I now use the specifics of the anchoring expectation formation to charac-
terize the evolution of the jump variables under learning. Using the PLM from Equation (15), I
write the long-horizon expectations in (12) as

fa,t ≡
1

1− αβ
at−1 + bt−1(I3 − αβh)−1st and fb,t ≡

1

1− β
at−1 + bt−1(I3 − βh)−1st. (24)

Substituting these into the law of motion of observables, Equation (13), yields the actual law of
motion (ALM):

zt = glt−1

[
1

st

]
, (25)

where gl is a 3 × 4 matrix given in Appendix B. Thus, instead of the state-space solution of the
RE version of the model, Equations (14) and (B.1), the state-space solution for the learning model
is characterized by the pair of equations (14) and (25), together with the PLM (18), the learning
equations (20) and (21), as well as the anchoring function (22).

11See Appendix C for a detailed description of Carvalho et al. (2021)’s anchoring function.
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3.4 Simplifying assumption

To simplify the analytical work in Section 5.1, I make one assumption that I maintain for the rest
of the paper.

Assumption 1. at =

π̄t0
0

 , and bt = g h, ∀t.

Assumption 1 amounts to restricting the intercepts in the forecasts of the output gap and the
interest rate, as well as the slope coefficients of all forecasts to what they would be under rational
expectations. This means that instead of learning the intercept and slope parameters for all three
endogenous variables, the private sector only learns the intercept of the inflation process. Thus the
single learning parameter is the long-run inflation expectation, π̄.

The rationale behind this assumption is that it is the smallest possible deviation from rational
expectations that has enough flexibility to study the unanchoring of inflation expectations. It ren-
ders the Ramsey problem very tractable and makes the comparison with the rational expectations
benchmark more transparent. In particular, since the inflation intercept is learned using my an-
choring model, the formulation is able to capture the time-varying sensitivity of long-run inflation
expectations to short-run forecast errors in inflation.

Relaxing the assumption that slope coefficients are not learned does not change the implica-
tions of the model because it only makes impulse responses to shocks more bumpy after impact.
As I explain in Section 5.3, the assumption on whether all variables are learned or not has stronger
implications because interest-rate expectations are intricately linked with monetary policy, in par-
ticular with the question of whether strong policy responses are desirable or not. I maintain this
assumption for the sake of tractability of the Ramsey problem, and for ease of comparison with
rational expectations.

With Assumption 1, the updating equations (20) and (21) simplify to a single equation:

π̄t = π̄t−1 + ktft|t−1, (26)

where, using the notation that b1 is the first element of the vector b, the k-period-ahead inflation
forecast in the beginning of period t is given by

Êtπt+k = π̄t−1 + bk1st, ∀k ≥ 1. (27)

Lastly, the one-period-ahead forecast error in inflation from the end of last period simplifies to

ft|t−1 = πt − (π̄t−1 + b1st−1). (28)

An advantage of the simplifying assumption is that it offers insights into how the anchoring
process works. Recursively substituting Equation (26) into Equation (28) yields the following ex-
pression

ft|t−1 = fREt|t−1 −
t−1∑
τ=0

kτfτ |τ−1. (29)
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Here fREt|t−1 stands for the rational expectations forecast error and captures unforecastable variation
in inflation. Furthermore, I have initialized the long-run inflation expectation and the forecast
error at the beginning of time with the rational expectations values of zero.

Equation (29) says that a forecast error today can arise from two sources. First, it can reflect
a realization of shocks that was not foreseeable last period. This has the interpretation that a
tail event like the Great Recession or the Covid-19 crisis can contribute to the unanchoring of
expectations. The other source is the sum of the full history of gain-weighted forecast errors. This
means that unanchoring is more likely to happen if the public has seen a long streak of similar
surprises in the past, or if its expectations were highly or persistently unanchored in the past. In
this way, even though the gain function only depends on the most recent forecast error, it still
captures the dependence of anchoring on the full history of surprises.

4 Quantification of the anchoring channel

The numerical analysis of monetary policy requires a functional specification for the anchoring
function g(·) of Equation (22). For this reason, I back out the functional form of g(·) from data.
Apart from its usefulness for numerical analysis, the form of the anchoring function is interesting
in its own right because it describes empirical properties of the anchoring of expectations. In
particular, central bankers may want to know how much forecast errors of a particular sign and
magnitude unanchor expectations.

I carry out the estimation in two steps. I first calibrate the parameters of the underlying New
Keynesian model. Conditional on these parameter values, I estimate the anchoring function by
simulated method of moments à la Lee and Ingram (1991), Duffie and Singleton (1990) and Smith
(1993). I target the autocovariance structure of the Baxter-King filtered observables of the model
and expectations. The observables are CPI inflation from the Bureau of Labor Statistics (BEA),
the output gap and the federal funds rate from the Board of Governors of the Federal Reserve
System.12 For expectations, I rely on 12-month-ahead CPI inflation forecasts from the Survey of
Professional Forecasters (SPF). The dataset is quarterly and ranges from 1981-Q3 to 2020-Q1. Ap-
pendix D contains a detailed description of the estimation methodology.

4.1 Calibration

For the calibration of the New Keynesian backbone of the model, I split the parameters into two
subsets. The first is calibrated using values from the literature, while the second is calibrated to
match the moments outlined above, for an initial set of expectations parameters. Tables 1 and 2
show the two subsets of calibrated parameters respectively. As Table 1 depicts, I adopt standard
parameters from the literature where possible. In particular, for β, σ and other parameters un-
derlying κ, the slope of the Phillips curve, I rely on the parameterization of Chari et al. (2000),

12The output gap measure is constructed as the difference between real GDP from the Bureau of Economic Analysis
(BEA) and the Congressional Budget Office’s (CBO) estimate of real potential output.
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advocated in Woodford (2003a).
The composite parameter κ is given by κ = (1−α)(1−αβ)

α ζ, where ζ is a measure of strategic
complementarity in price setting. Assuming specific factor markets, constant desired markups
with respect to output levels and no intermediate inputs, ζ = ω+σ−1

1+ωθ . Here θ is the price elasticity
of demand and ω is the elasticity of the marginal cost function with respect to output. Chari et al.
(2000)’s calibration involves θ = 10, σ = 1, ω = 1.25, β = 0.99, so that together with my choice
of α detailed below, κ is pinned down. Note that I lower β slightly (0.98 instead of Chari et al.
(2000)’s 0.99). This allows the model to better match the autocovariance structure of the output
gap because it lowers the pass-through of long-horizon expectations in the IS curve.

The probability of not adjusting prices, α, is set to match an average price duration of 2 quarters,
which is slightly below the average number found in empirical studies of around 7 months.13 I
choose a slightly lower number in order to allow the learning mechanism, and not price stickiness,
to drive the bulk of the model’s dynamics.

To simplify the numerical analysis as well as the interpretation, I follow Molnár and Santoro
(2014) in restricting the shocks to be iid. While this is a useful assumption to make sure that
the optimal monetary policy problem has an analytical solution, it is actually not a restrictive
assumption at all, as Molnár and Santoro (2014) show. The reason is that because learning models
introduce endogenous persistence into inflation dynamics, autocorrelation in innovations becomes
superfluous.

The volatilities of the disturbances and, where applicable, the output-coefficient of the Taylor
rule, are set to match the above-mentioned moments for an initial set of expectations parameters.
As shown in Table 2, this implies standard deviations of 0.01 for the natural rate and monetary
policy shock and 0.5 for the cost-push shock. In sections of the paper where I assume a Taylor rule,
the moment-matching exercise results in a 0.3 coefficient on the output gap. The last parameter
of the New Keynesian core is the inflation coefficient of the Taylor rule, ψπ. Unless otherwise
specified, I set ψπ to 1.5, the value recommended by Taylor (1993). Note that the asterisks in Tables
1 and 2 demarcate parameters that pertain to the Taylor rule and thus only to sections of the paper
which assume that a Taylor rule is in effect.

I initialize the value of the gain at ḡ = 0.145. This is Carvalho et al. (2021)’s estimate for the
case of unanchored expectations. In the case of a discrete anchoring function, as in Carvalho et al.
(2021), this parameter has important implications for model dynamics because by construction,
the gain takes on this value very frequently. However, since my specification for g(·) is smooth, ḡ
does not have a strong bearing on model dynamics.

13On the lower end of the empirical values for α, Bils and Klenow (2004) find a mean duration of 4.3 months and
Klenow and Malin (2010) 6.9 months. Klenow and Kryvtsov (2008) and Nakamura and Steinsson (2008) agree on
between 7-9 months, while Eichenbaum et al. (2011)’s number is 10.6 months.
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Table 1: Parameters calibrated from the literature

β 0.98 stochastic discount factor
σ 1 intertemporal elasticity of substitution
α 0.5 Calvo probability of not adjusting prices
κ 0.0842 slope of the Phillips curve

π 1.5 coefficient of inflation in Taylor rule*
ḡ 0.145 initial value of the gain

Table 2: Parameters set to match data moments

x 0.3 coefficient of the output gap in Taylor rule*
σr 0.01 standard deviation, natural rate shock
σi 0.01 standard deviation, monetary policy shock*
σu 0.5 standard deviation, cost-push shock

*Parameters with an asterisk refer to sections of the paper where a Taylor rule is in effect.

4.2 Estimation

In inferring the functional form of the anchoring function g(·), I proceed as follows. First, since
the analysis in Section 5 relies on Assumption 1, I similarly impose this on the estimation. In
other words, I seek to back out the functional form of the relationship between the size of the gain
and forecast errors in inflation, kt = g(ft|t−1). In Appendix E, I investigate whether an alternative
estimation strategy using long-run inflation expectations data is suitable to estimate a more general
formulation for the anchoring function.

To be as close as possible to a non-parametric estimate of g(·), while at the same time preserve
the shape of the function, I employ a piecewise linear approximation of the form:

g(ft|t−1) =
∑
i

γibi(ft|t−1). (30)

Here bi(·) is a piecewise linear basis and γ is a vector of approximating coefficients. The index i
refers to the breakpoints of the piecewise linear approximation. As explained in Appendix D, I
estimate γ by simulated method of moments, targeting the autocovariance structure of the observ-
ables of the model and expectations.

The estimated coefficients are γ̂ = (0.82; 0.61; 0; 0.33; 0.45). The elements of γ̂ represent the
value of the gain the private sector chooses when it observes a forecast error of a particular mag-
nitude. For example, a forecast error of -4 pp in inflation is associated with a gain of 0.82.

To make these numbers easier to interpret, Figure 1 depicts what the elements of γ̂ imply for the
updating of long-run inflation expectations (blue dotted line). For comparison, the red line plots a
constant gain model with the gain calibrated to the consensus value from the empirical literature
(see below). The circles on the blue line indicate the nodes of the piecewise linear approximation.
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Figure 1: Changes in long-run inflation expectations for various forecast errors given the estimated gain function

Estimates for 5 knots (indicated by circles), cross-section of size N = 1000. The shaded gray areas are 95% confidence
intervals constructed using Wald’s method from 100 bootstrap samples. The constant gain is calibrated to the consensus
value of 0.05.

For instance, a gain of 0.82 that arises when the private sector observes a -4 pp forecast error
implies a downward revision in long-run inflation expectations by about 3.2 pp. For the constant
gain model, the -4 pp forecast error implies a 0.1 pp downward revision in long-run expectations.

Before interpreting the magnitudes of the estimated anchoring function, it is helpful to work
out what amounts to a large gain. In particular, since the gain is the model’s metric of the extent
of unanchoring, from what size of the gain should one consider expectations to be significantly
unanchored? The consensus in the literature on estimating learning gains is that if the true model
is one with constant gain learning, then the gain lies between 0.01-0.05. On the higher end of the
empirical estimates, Branch and Evans (2006) obtain a constant gain on inflation of 0.062. Milani
(2007) finds 0.0183. Noting that a constant gain model corresponds to forecasting with a Kalman
gain, where the Kalman gain is given by the signal-to-noise ratio of the underlying distribution,
one can also calibrate the gain by measuring signal-to-noise ratios in the data. Doing so using SPF
data, Erceg and Levin (2003) obtain a much higher gain of 0.13.

The estimates of the maximal value for endogenous gains lie closer to Erceg and Levin (2003)’s
number, at 0.082 in Milani (2014) and at 0.145 in Carvalho et al. (2021). Estimating trend inflation
using an unobserved components model with stochastic volatility, Mertens (2016) obtains time-
varying Kalman gains for CPI inflation that fluctuate in the range between 0.1 and 0.8.

While Eusepi and Preston (2011) find that the value of 0.002 is sufficient to significantly alter the
dynamic behavior of a standard RBC model, calibrated models tend to use values between 0.01-
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0.05. Since the estimation and calibration literature has settled on the number 0.05 in particular
as the benchmark, I calibrate the constant gain model I use for comparison throughout the paper
using this value. Accordingly, the constant gain model on Figure 1 also features a 0.05 gain.

An intuitive interpretation of the gain is that its inverse gives the number of past observations
the private sector uses to form its current forecasts. Eusepi and Preston (2011)’s number, 0.002,
thus implies that firms and households rely on the last 125 years of data. By contrast, the consensus
number of 0.05 translates to using 5 years of data.

Seen from both of these perspectives, the consensus gain value of 0.05 corresponds to a sizable,
but not excessive sensitivity to surprises. With this benchmark number in mind, the message of
the estimation seems stark: the estimated coefficients are large. The highest gain value in my
estimation, 0.82, can be interpreted as seeing forecast errors of 4 pp in absolute value prompting
the private sector to discount any observations older than about 5 months. That is a very short
time.

However, Figure 1 points out that there is considerable nonlinearity in the estimated gain func-
tion. One sees this by noticing how the approximation nodes show up as kinks on the figure.
What this means is that large surprises unanchor expectations more than linearly compared to
small ones. Intuitively, this captures the feature in the data that large surprises upset the public’s
view on inflation much more than small mistakes. One can thus interpret the nonlinearity of the
gain function as an element of rationality on the part of the public sector, as it adjusts its expecta-
tion formation much more strongly when larger mistakes make revisions more urgent. By contrast,
the constant gain model is by construction linear, failing to account for this feature of the data.

Figure 2: Forecast errors in the SPF data

1-quarter-ahead forecast errors of individual forecasters in the SPF, 1981-Q4 - 2021-Q4, annualized percentage points.
The forecast errors are split into three non-overlapping bins with roughly the same number of observations.

Presumably, such large forecast errors are rare, however. To confirm this, Figure 2 plots individual-
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level forecast errors in the SPF, split into three distinct time periods so as to have roughly the same
number of forecast errors in each subsample. As the figure shows, the bulk of surprises are ap-
proximately in the [−3, 3] percentage point interval. What is also noticable is that forecast errors
changed pattern over time. In the first time period, inflation tended to surprise forecasters on the
downside, while in the second period (roughly between 1997 and 2010) it instead mostly surprised
on the upside.14 In the last decade, the tails of the distribution shrank, reflecting more stable infla-
tion, less inflation surprises and thus a smaller need for forecasters to reconsider their view on the
long-run mean of inflation.

A changing pattern in inflation surprises is thus a feature of the data. The nonlinearity of the
anchoring framework embodies forecasters adjusting their forecasting behavior according to the
volatility of their environment, updating a lot when there are large surprises, and barely updating
if the environment is stable. As seen by comparing the red and blue lines on Figure 1, this is
something agents would not be able to do if they used a constant gain forecasting model.

That time-varying anchoring is a feature consistent with data can be also seen on the autoco-
variogram, shown in Figure 3, which plots the moments of the model (red) against those in the
data (blue). For comparison, I also plot moments generated by a constant gain learning model
with the consensus value for the gain of 0.05 (yellow).

While a constant gain can match inflation dynamics (top left panel), its fit deteriorates com-
pared to the anchoring model when it comes to the output gap (second diagonal panel) and, im-
portantly, inflation expectations (bottom right panel). The reason the anchoring model fits the
expectations data better than a constant gain alternative is because it does not constrain the pri-
vate sector to always respond to surprises in the same way. In a volatile environment, such as the
1980s, high degrees of unanchoring allow the private sector to update its view very strongly on
what kind of inflation regime it is in. With low and stable inflation instead, such as in the 2000s,
occasional small inflation surprises do not incite the private sector to change its mind about aver-
age inflation. With a constant gain, instead, the private sector would respond as sensitively during
the 2000s as during the 1980s. That is at odds with the data.

We also notice that unanchoring introduces another flexibility to expectation formation com-
pared to constant gains: asymmetry. As seen on the estimates and on Figure 1, negative inflation
surprises raise the gain about twice as much as positive ones do, and lead to almost twice as large
updates in long-run inflation expectations. Consistent with the findings of Hebden et al. (2020),
this indicates that long-run expectations are more sensitive to negative than to positive surprises.
In other words, surprises on the downside are almost twice as likely to unanchor expectations as
those on the upside. This has some interesting implications for the current time period, where
rising inflation in the wake of the Covid-19 crisis has resulted in a series of very large inflation
surprises. On the one hand, this is clearly putting upward pressure on the expectations anchor.
On the other, the asymmetry of unanchoring implies that this situation would be more concerning
if inflation was surprising on the downside rather than on the upside.

14In this period, there are some outliers with extreme downward surprises, which may be due to the Great Recession.

ECB Working Paper Series No 2685 / July 2022 22



Figure 3: Autocovariogram

Estimates for a cross-section of N = 1000. Moments are computed for the best estimate for the sample length of 151
with 200 additional burn-in periods. The constant gain case shows the moments of the model for the consensus value
of the gain of 0.05 from the literature.

5 Monetary policy and anchoring

This section sets up and solves the optimal monetary policy problem in the model with anchoring.
In Section 5.1, I begin by analyzing the Ramsey problem of determining optimal paths for the
endogenous variables that policy seeks to bring about. While anchoring introduces substantial
nonlinearity into the model, it is possible to derive analytically an optimal target criterion for the
policymaker to follow. As we shall see, the optimal rule prescribes for monetary policy to act
conditionally on the stance of expectations, and will thus be time-varying and state-dependent.
In particular, whether expectations are anchored or not matters for the extent to which there is a
tradeoff between inflation and output gap stabilization, and also for the volatility cost of getting
expectations anchored.

I then turn to the question of how to implement optimal policy. Section 5.2 uses global meth-
ods to solve for the interest rate sequence that implements the target criterion. I then discuss the
properties of the optimal interest rate policy and why it is successful in stabilizing both inflation
expectations and inflation.

The optimal interest rate policy will thus be a nonlinear function of all the states in the model - a
complicated object to compute. In practice, however, monetary policy is most commonly modeled
using time-invariant rules like the Taylor rule that are both simple to compute and to communicate
to the public. In Section 5.3, I therefore restrict attention to Taylor-type feedback rules for the
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interest rate. I solve for the optimal Taylor-rule coefficient on inflation numerically and investigate
how this choice affects the anchoring and unanchoring of expectations.

5.1 The Ramsey policy under anchoring

I assume the monetary authority seeks to maximize welfare of the representative household under
commitment. As shown in Woodford (2003a), a second-order Taylor approximation of household
utility delivers a central bank loss function of the form

LCB = Et
∞∑
T=t

{(πT − π∗)2 + λx(xT − x∗)2}, (31)

where λx is the weight the central bank assigns to stabilizing the output gap. In the rational ex-
pectations New Keynesian model, λx is a function of deep parameters: λx = κ/θ. Just as under
rational expectations, one can show that it is optimal to set the central bank’s targets, π∗ and x∗, to
zero. The central bank’s problem, then, is to determine paths for inflation, the output gap and the
interest rate that minimize the loss in Equation (31), subject to the model equations (9) and (10), as
well as the PLM (18), the learning equations (20) and (21), and the anchoring function (22). The
full statement of the Ramsey problem under Assumption 1 is as follows:

min
{πt,xt,it,π̄t−1,kt}∞t=t0

Et0
∞∑
t=t0

βt−t0(π2
t + λxx

2
t ) s.t.

xt = Êt
∞∑
T=t

βT−t((1− β)xT+1 − σ(βiT − πT+1) + σrnT ),

πt = κxt + Êt
∞∑
T=t

(αβ)T−t(καβxT+1 + (1− α)βπT+1 + uT ),

Êtπt+k = π̄t−1 + bk1st ∀k ≥ 1,

π̄t = π̄t−1 + ktft|t−1,

ft|t−1 = πt − Êt−1πt,

kt = g(ft|t−1), (32)

where E is the central bank’s expectation. The use of the mathematical expectation E reflects the
assumption that the central bank has model-consistent expectations and observes the private sec-
tor’s expectations. This assumption, which Gaspar et al. (2010) refer to as “sophisticated central
banking,” is quite strong. In practice, it is likely that the central bank’s measure of private sector
expectations is noisy at best. Nevertheless, it is a useful benchmark case.

A last thing to note about the Ramsey problem in the anchoring model is that while it is set up
under commitment, the optimal plans under commitment and discretion will coincide, and will
thus not be subject to the time-inconsistency problem of Kydland and Prescott (1977). As shown
by Mele et al. (2019) and Molnár and Santoro (2014), this is a general feature of adaptive learning
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models and comes from the fact that adaptive expectations cannot incorporate promises of the
policymaker.

5.1.1 Optimal Ramsey policy as a target criterion

As foreshadowed above, the nonlinearity of the model due to the anchoring function prevents a
full analytical solution to the Ramsey problem. Therefore I now characterize the first-order condi-
tions of the problem analytically, and proceed in Section 5.2 to solve the full problem numerically.
The details of the derivations are given in Appendix F, which also illustrates how the endogeneity
of the gain introduces nonlinearity into the model.

The solution of the Ramsey problem is stated in the following proposition.

Proposition 1. Target criterion in the anchoring model
The targeting rule in the simplified learning model with anchoring is given by

πt +
λx
κ
xt = c

(
kt + ft|t−1g

′
t

)
Et
(

(1− β)xt+1 + β
∞∑
i=1

xt+i

i−1∏
j=0

1− kt+j − ft+j|t−1+jg
′
t−1+j

)
, (33)

c ≡ λx
κ

(1− α)β2

1− αβ
. (34)

Proved in Appendix F. For a target criterion for a more general specification of the gain function, see
Appendix G.

Here g′t denotes the derivative of g(·) with respect to the forecast error ft|t−1, evaluated at time
t. Note that g′ = gπ = −gπ̄.

The interpretation of Equation (33) is that the intratemporal tradeoff between inflation and the
output gap due to cost-push shocks is complemented by two intertemporal tradeoffs. One is due to
learning in general and corresponds to Molnár and Santoro (2014)’s result, and one is due to an-
choring in particular, and is thus novel here. The first intertemporal effect comes from the current
level of the gain, kt, which captures how far learning is from converging to rational expectations.
The second, novel intertemporal tradeoff is manifest in the derivative of the anchoring function
today, g′t, as well as in all expected levels and changes in the gain in the future in the expression
(1 − kt+j − ft+j|t−1+jg

′
t−1+j) in the second bracket on the right-hand side. These expressions say

that the presence of anchoring qualifies the first intertemporal tradeoff because now the degree
and direction in which the gain changes today and is expected to change in the future matter
too. In other words, the central bank needs to consider whether its chosen interest rate sequence
contributes to anchoring expectations in future periods, or whether it actually serves to unanchor
them.

Let me investigate these channels in isolation. To see exactly what the role of anchoring is in the
target criterion, consider first the special case of exogenous gain adaptive learning, for simplicity
with a constant gain specification. In this case the anchoring function and the forecast error are
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irrelevant (since g′t = 0, ∀t) and (33) boils down to

πt = −λx
κ
xt +

λx
κ

(1− α)β2

1− αβ
kEt

(
(1− β)xt+1 +

∞∑
i=0

xt+i+1(1− k)i
)
, (35)

which replicates Molnár and Santoro (2014)’s expression, with the exceptions that the parameters
(1−α)β2

1−αβ and an extra (1 − β)xt+1 appear.15 These differences come from the fact that in my model
the entire term structure of expectations enters the evolution equations of inflation and output,
while in Molnár and Santoro (2014), only one-period-ahead expectations do.

As Molnár and Santoro (2014) emphasize, this result suggests that already the presence of
learning by itself is responsible for the first intertemporal tradeoff between inflation and output
gap stabilization. The fact that the central bank now has future output gaps as a margin of adjust-
ment means that it does not have to face the full tradeoff in the current period. Learning allows
the central bank to improve the current output gap without sacrificing inflation stability today;
however, this results in a worsened tradeoff in the future. In other words, adaptive learning by
itself allows the central bank to postpone the current tradeoff to later periods.

Intuitively, this happens because adaptive expectations are slow in converging to rational ex-
pectations. In the transition, the private sector’s expectations do not adjust to fully internalize
the intratemporal tradeoff. This gives the monetary authority room to transfer the tradeoff to the
future.

Contrasting Equations (35) and (33) highlights the novel role of the anchoring channel. With
anchoring, the extent to which policy can transfer the intratemporal tradeoff to future periods
depends not only on the stance of the learning process, as in (35), but also on whether expectations
are anchored, and in which direction they are moving. In fact, not only the current stance and
change of anchoring matters, but also all expected future levels and changes.

Anchoring, however, complicates the possibility of transferring today’s tradeoff to the future.
One can see this on the fact that forecast errors and the derivatives of the anchoring function
are able to flip the sign of the second term in (33). This means that anchoring can alleviate or
worsen the intertemporal tradeoff. To see the intuition, consider the equation system of first-order
conditions from solving the Ramsey problem. While the full system is presented in Appendix F,
let us focus solely on Equation (F.2), the equation governing the dynamics of observables in the
model:

2πt = −2
λx
κ
xt + ϕ5,tkt + ϕ6,tg

′
t. (36)

The Lagrange multipliers ϕ5 ≥ 0 and ϕ6 ≥ 0 are the multipliers of the updating equation (20)
and the anchoring function respectively. This equation, upon substitution of the solutions for the
two multipliers, yields the target criterion. It is therefore easy to read off the intuition at a glance.
First, since ϕ5,tkt ≥ 0, one immediately obtains the above-discussed conclusion that as long as
the adaptive learning equation is a constraint to the policymaker (ϕ5,t > 0), the central bank has

15Since Molnár and Santoro (2014) has no equation number at the relevant expression, I refer the reader to Equation
(24) of Gaspar et al. (2010), who provide a parsimonious summary of Molnár and Santoro (2014).
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more room to transfer the contemporaneous tradeoff between inflation and the output gap to the
future.16

However, whether the anchoring equation alleviates or exacerbates the inflation-output gap
tradeoff depends on the sign of g′t. If the derivative is positive, the effect is the same as above,
and the central bank has more leeway to postpone the tradeoff to the future. By contrast, if the
derivative is negative, that is expectations are becoming anchored, the intratemporal tradeoff is
worsened.

Why do unanchored expectations give the central bank the possibility to postpone its cur-
rent inflation-output gap tradeoff? The reason is that when expectations become unanchored, the
learning process is restarted. A not-yet converged learning process implies, as discussed above,
that postponing the tradeoff is possible. Restarting the convergence process thus unlocks this pos-
sibility.

This seems to suggest that from a smoothing standpoint, the central bank should prefer to have
unanchored expectations. As will be shown in Sections 5.2-5.3, volatility considerations will sug-
gest otherwise. But in fact, even the smoothing viewpoint involves some ambiguity on whether
expectations should be anchored from the perspective of the central bank. Clearly, the central bank
prefers to face a learning process that on the one hand has not yet converged, and on the other is
converging only slowly. A high gain under unanchored expectations implies both a sizable dis-
tance from convergence as well as faster learning and thus faster convergence. Therefore, ideally
the central bank would like to have expectations anchored but the gain far from zero; a contra-
diction. Once the gain approaches zero, only unanchored expectations can raise it again to restart
the learning process. But once the gain is large, the only way to slow down learning is to anchor
expectations, that is, to lower the gain.

5.2 Implementing the Ramsey policy: the optimal interest rate sequence

Having a characterization of optimal policy in the anchoring model as a first-order condition, the
next relevant question is how the central bank should set its interest rate tool in order to implement
the target criterion in (33). In other words, we would like to know what time-path of interest rates
implements the optimal sequence of inflation and output gaps. As emphasized in Section 5.1, the
nonlinearity of the model does not admit an analytical answer to this question. I therefore solve
for the optimal interest rate policy numerically using global methods. I rely on the calibration
presented in Tables 1 and 2 and the estimated parameters of the expectations process in Section
4. Furthermore, I set the central bank’s weight on output gap fluctuations, λx, to 0.05, the value
estimated by Rotemberg and Woodford (1997).

Appendix H outlines my preferred solution procedure, the parameterized expectations ap-
proach, while Appendix I gives the details of the parametric value function iteration approach I

16ϕ5 and ϕ6 are zero if the learning process has converged. In absence of shocks, this eventually happens because
decreasing forecast errors lead to decreasing gains. But with exogenous disturbances, forecast errors may increase
throughout the lifetime of the economy, raising the gain and restarting the learning process. The model thus exhibits a
weak form of weak expectational stability.
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implement as a robustness check. The main output of this procedure is an approximation of the
optimal interest rate policy as a function of the vector of state variables. The relevant state vari-
ables are expected mean inflation and the exogenous states at time t and t− 1, rendering the state
vector five-dimensional:

Xt = (π̄t−1, r
n
t , ut, r

n
t−1, ut−1). (37)

As a first step, I plot how the approximated policy function depends on π̄t−1, while keeping
all the other states at their mean. The result, depicted on Panel (a) of Figure 4, suggests that
optimal interest-rate setting responds linearly and very sensitively to the stance of expectations,
π̄t−1. If expected mean inflation increases by 5 basis points, the interest rate rises by about 250
basis points.17

Figure 4: Policy function and implied volatility in long-run expectations

(a) i(π̄, all other states at their means) (b) Histogram of changes in π̄

This is a large response. Clearly, optimal policy involves subduing unanchored expectations
by injecting massive negative feedback to the system. One may then wonder why optimal policy
is so aggressive on unanchored expectations when the analysis of the target criterion in Section 5.1
suggested that learning can alleviate the stabilization tradeoff between output and inflation.

The reason is that the anchoring expectation formation introduces another intertemporal trade-
off to monetary policy: a volatility tradeoff. One can see this on Figure 5, portraying the dynamics
of the system following a two-standard-deviation inflationary cost-push shock, conditional on a
Taylor rule with baseline parameters. The figure contrasts the rational expectations version of the
model with a well-anchored, weakly anchored and strongly unanchored scenario in the anchoring
model, as well as with a constant gain model.

17This result is qualified if one relaxes Assumption 1. If the private sector learns about all observables, not just infla-
tion, interest-rate expectations play a major role in determining forecasts of future inflation and thus add a stabilizing
channel that is absent from the current specification. In the more general case, then, an order of magnitude smaller
responses in the current interest rate are sufficient. For more on the role of interest-rate expectations, see Section 5.3.
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The same shock that under rational expectations completely vanishes by the second period,
triggers a large, persistent and oscillatory response in the anchoring model.18 Clearly, the size and
persistence of the shock, as well as the magnitude of oscillations increase the more unanchored
expectations are. This comes from the fact that if expectations are anchored, stable expectations
lower the pass-through between shocks and observables. Instead, if expectations are unanchored,
they become volatile, passing through the shocks and amplifying them. Another way to say this
is that anchored expectations flatten the reduced-form Phillips curve, echoing the argument of
Hazell et al. (2022). Having unanchored expectations, then, comes at a volatility cost in the central
bank’s target variables.

This volatility cost is also present in the constant gain model, and its size depends on the size of
the gain. But as the literature on estimating constant gain models shows (Branch and Evans, 2006,
Milani, 2007), a too large constant gain is inconsistent with data, thus putting an upper bound on
how much excess volatility can come from a constant gain model. Also, the constant gain model
implies the same volatility cost to a particular shock in any state of the world. A state-dependent
gain, instead, introduces the distinction between the effects of the same shock when expectations
are unanchored as opposed to anchored. As seen on the difference between the blue and yellow
lines, the same shock leads to much more volatility if expectations are unanchored when the shock
hits than if they are strongly anchored.

The fact that the volatility cost rises the more unanchored expectations are dictates that, in
the long run, the central bank wishes to have expectations anchored. In the constant gain model,
this would not be an option because the central bank would not be able to influence the size of
the constant gain. In the anchoring model, instead, the central bank can affect the expectation
formation process.

What complicates the central bank’s life is that anchoring expectations itself comes at a convex
volatility cost. Anchoring expectations requires an aggressive interest response because by these
means the central bank can introduce negative feedback to the system. But changes in the interest
rate surprise the private sector, raising forecast errors. The more unanchored expectations are, the
more volatility the interest rate movement inflicts on the economy.

We can see from the policy function how optimal policy resolves this tradeoff: it reacts ex-
tremely aggressively to movements in long-run expectations. This way, the central bank hopes to
avoid even larger interventions that would become necessary were expectations to unanchor fur-
ther. To avoid having to pay so high a price, the central bank is extra aggressive in the short run to
prevent massive unanchoring from ever materializing. Thus, the optimal response to the volatility
tradeoff is to temporarily increase volatility in order to reduce it in the long-run. In this way, the
central bank’s aggressiveness in the model is driven by the desire to prevent upward (downward)

18As periodically noted in the literature, adaptive learning models tend to produce impulse responses that exhibit
damped oscillations. Authors making explicit note of this phenomenon include Evans and Honkapohja (2001), Evans
et al. (2013) and Anufriev and Hommes (2012). The reason is that under an adaptive learning framework, forecast
errors following an impulse are oscillatory. In fact, the higher the learning gain, the higher the amplitude of forecast
error oscillations. Appendix J presents a simple illustration for why this is the case.
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Figure 5: Impulse responses after a cost-push shock

Shock imposed at t = 25 of a sample length of T = 400 (with 200 additional burn-in periods), cross-sectional average
with a cross-section size of N = 100. The remark on whether expectations are anchored or not refers to whether the
gain is below the 10th, below the 50th, or above the 90th percentile of simulated gains at the time the shock hits. For the
constant gain model, the gain is set to the consensus value of 0.05.

drifting long-run expectations from becoming a self-fulfilling inflationary (deflationary) spiral.
The large interest-rate responses resemble the idea advocated by Goodfriend (1993) that the

central bank moves to offset “inflation scare” episodes. As Goodfriend shows, it was historically
not uncommon to move the interest rate by hundreds of basis points to subdue inflation scares.
For example, in March 1980, the Fed raised the interest rate by 230 bp to convince the public that it
would not tolerate high inflation. The optimal policy function prescribes that this is exactly what
the policymaker should do to fight unanchored expectations.

What Figure 4 also suggests is that acting aggressively in the short run indeed delivers the
long-run benefits of stabilizing economic fluctuations. As Panel (b) depicts, employing the optimal
policy implies that realized changes in long-run inflation expectations are very small. As seen on
the histogram of ∆π̄, with the optimal policy in place, the model spends most of its time in the
region of minuscule fluctuations in π̄. The mode of the distribution is a change of 0.3 basis points
in absolute value, implying that in normal times, the central bank only needs to raise or lower the
interest rate by 15 basis points. In other words, the aggressive nature of optimal policy allows the
central bank to keep expectations anchored or quickly reanchor them following shocks. In this way,
the monetary authority eliminates as much volatility stemming from unanchored expectations as
it possibly can.
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5.3 Optimal Taylor rule under anchoring

Monetary policy is often formulated using a Taylor rule. Proponents of such a characterization,
like Taylor (1993) himself, emphasize the benefits of having a simple, time-invariant and easily
verifiable rule. Also in the anchoring model, a policymaker may thus be interested in using a
Taylor-type approximation to optimal policy in order to combine the benefits of having a simple,
yet near-optimal rule.19 Therefore I now consider the restricted set of Taylor-type policy rules and
ask what value of the time-invariant Taylor-rule coefficient on inflation is optimal in the case of the
anchoring model.

In this section, I thus restrict attention to a standard Taylor rule:

it = ψπ(πt − π∗) + ψx(xt − x∗) + īt, (38)

where ψπ and ψx represent the responsiveness of monetary policy to inflation and the output gap
respectively. Lastly, īt is a monetary policy shock. I also assume that when the Taylor rule is in
effect, the central bank publicly announces this. In order to avoid comparing apples with oranges,
I start by assuming that, exactly as in the Ramsey policy, interest-rate expectations are formed
using the Taylor rule with rational expectations of inflation. This is a crucial assumption which
has bearings on the debate on whether non-rational expectations necessitate a stronger policy re-
sponse than rational expectations (Orphanides and Williams, 2004, Eusepi et al., 2020). I relax the
assumption and discuss its implications at the end of the section.

I compute the optimal Taylor rule coefficient on inflation numerically by minimizing the central
bank’s expected loss in a cross-section ofN = 100 simulations of the rational expectations, constant
gain learning and anchoring models. I continue to use the calibration of Tables 1 and 2 and to
parameterize the anchoring function using the estimated approximating coefficients of the gain
function (γ̂ in Section 4). For the constant gain model, I continue using the consensus gain value
of 0.05.

Table 3 presents the optimal Taylor rule coefficient ψπ for the three models. The message is
clear: in the anchoring model, the central bank needs to work much harder than in the other mod-
els and push strongly against inflation fluctuations. This is necessary because mistakes by the
central bank in achieving the inflation target unanchor expectations, but unanchored expectations
feed back into inflation, leading to further unanchoring. To get out of this unpleasant feedback
loop, the central bank moves the interest rate exceedingly aggressively in response to movements
in inflation. Corroborating the conventional wisdom in the adaptive learning literature, for exam-
ple in Orphanides and Williams (2004), I thus find that monetary policy specified as a Taylor rule
should be more aggressive on inflation than what would be optimal under rational expectations.
As I explain below, however, one can overturn this result by maintaining alternative assumptions
on interest rate expectations.

19Recall from Woodford (2003a) that even under rational expectations, a standard Taylor rule is not fully optimal
because its purely forward-looking nature precludes the use of promises of future policy.
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Table 3: Optimal coefficient on inflation, RE, anchoring and constant gain models

∗,RE
π ψ∗,Anchoringπ

∗,Constant gain
π

2.2079 48.6083 45.6499

Sample length is T = 400 with a cross-section of N = 100 and 200 additional burn-in periods. For the constant gain
model, the gain is set to the consensus value of 0.05.

The reason behind this high aggressiveness is that when the central bank’s interest rate rule is
not state-dependent, it moves the interest rate too little when expectations are unanchored, and
too much when they are anchored. We can see this on Figure 6, which depicts impulse responses
of the model for an inflationary cost-push shock for various levels of inflation aggressiveness ψπ.
A too small value of ψπ = 34 relatively to the optimal value (blue line) imposes too little negative
feedback to get inflation back to its pre-shock value. A too high value of ψπ (yellow dotted line)
instead is effective in stabilizing inflation, but also involves costs in terms of making interest rates
and output very volatile. But as the figure suggests, it is relatively less costly to err on the upside,
i.e. to choose a too high ψπ, than on the downside, since a too low inflation coefficient in the Taylor
rule is not sufficient to stabilize the economy at all.

Figure 6: Impulse responses for various values of ψπ

Cost-push shock imposed at t = 25 of a sample length of T = 400 (with 200 additional burn-in periods), cross-sectional
average with a cross-section size of N = 100.

This intuition is reinforced in Figure 7, which depicts the central bank’s loss as a function of the
inflation coefficient ψπ. One notices that for values of ψπ below about 42, the loss in the anchoring
model goes to infinity so fast that it exits the figure. Intuitively, this comes from the fact that since

π is too low in this case to stabilize the model, the explosive paths for inflation, output gaps
and interest rates lead to infinite losses for the central bank. A too high Taylor coefficient, instead,
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Figure 7: Central bank loss as a function of ψπ

Sample length is T = 400 with a cross-section of N = 100 and 200 additional burn-in periods. Note that for the
anchoring and constant gain models, I only plot the loss function if it takes on sufficiently small values. For the constant
gain model, the gain is set to the consensus value of 0.05.

while increasing the loss somewhat by virtue of making interest rates more volatile, is not nearly as
costly. In fact, in this range of ψπ-values (about > 50), the loss in the anchoring model approaches
that in the rational expectations version of the model. This makes sense because since a sufficiently
high inflation coefficient stabilizes inflation expectations, fluctuations in expectations cease being
the main driver of losses. Thus the wedge between RE and anchoring disappears, and in both
cases the central bank just incurs losses from volatility coming from volatile interest rates.

A similar intuition applies to the constant gain model as to the anchoring model: the central
bank needs to lean against fluctuating expectations to stabilize the economy. But there is a crucial
difference. In the constant gain world, the central bank does not need to work as hard as in the
anchoring model, and its loss is also always weakly below that in the anchoring model. This is
because expectations are always (un)anchored to the same degree in a constant gain model. The
central bank can do nothing to influence anchoring, and thus there are no benefits of acting extra
aggressively today to anchor expectations tomorrow. Thus a lower inflation coefficient is sufficient
to do the job.

The anchoring and the constant gain models look similar here in the sense that the anchoring
model involves a higher optimal aggressiveness to subdue higher losses, but the order of the mag-
nitude of losses and optimal coefficients is similar. This is because the fact that the Taylor rule
policy is not state-dependent constrains the policymaker to act as if the anchoring model was a
constant gain model. There is simply not much the policymaker can do to take state-dependent
anchoring into account apart from being a little more aggressive.

This highlights that the time-varying nature of Ramsey-optimal policy is its key characteris-
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tic. The ability to take the stance of anchoring into account is what enables the central bank to be
exceedingly aggressive if and only if expectations are about to unanchor, and maintain a dovish
stance otherwise. The way out for a central bank that conducts policy via a Taylor rule is to select
state-dependent Taylor-rule coefficients. For example, if the Taylor-rule coefficients were a func-
tion of the gain, the model’s metric of unanchoring, the central bank would choose low coefficients
when expectations are anchored and high ones when expectations show signs of unanchoring.
Such a policy rule would produce central bank behavior that appears to the econometrician as
regime-switching, echoing the literature on estimating Taylor rules that frequently arrives at this
conclusion (Lubik and Matthes, 2016).

Lastly, the optimal Taylor rule exercise entails an interesting lesson for optimal policy when
the public is learning. I noted at the beginning of the section that interest-rate expectations are
formed using a Taylor rule with rational inflation expectations. This assumption served to make
the comparison between the Ramsey and the Taylor-rule policies fair. However, if one recomputes
the inflation coefficient under the alternative assumption that the private sector forms interest-rate
expectations with a Taylor rule with the anchoring inflation expectation, one obtains an optimal
coefficient of 1.1, about half of the rational expectations value. In other words, in this case, optimal
Taylor-rule policy should be less aggressive on inflation, not more.

In this case, then, one obtains Eusepi et al. (2020)’s result that when there is a drift in long-run
interest-rate expectations, there is an upper limit to how aggressive the central bank can be. In
such a case, interest-rate expectations inherit the volatility of inflation expectations induced by an
aggressive interest rate response. This leads to a lot of additional volatility on top of the volatility
coming from inflation expectations. This excess volatility outweighs the benefits of stabilization.

In fact, as I remark in the beginning of Section 5.2, a similar conclusion holds for the Ramsey
policy as well. If one introduces a drift in interest-rate expectations, for example by allowing the
private sector to form interest-rate expectations using a Taylor rule with the anchoring expectation
of inflation in it, the aggressiveness of the optimal Ramsey policy is scaled down. This underscores
Eusepi et al. (2020)’s point that understanding interest-rate expectations is really important.

But at the end of the day, in the anchoring model this boils down to a question of scale: how
large should the policy response be quantitatively? My model is too simple to answer that question
precisely. The key lesson for policy from the anchoring model, distinguishing it from constant gain
models or from other models with private sector learning, is that the smoothly evolving degree of
unanchoring introduces the need for policy to be state-dependent. This state-dependence is the
main characteristic of the Ramsey policy, and, as I have argued, a central bank can overcome the
deficiencies of a fixed-coefficient Taylor rule as well by conditioning the inflation-coefficient on the
degree of unanchoring.

6 The Volcker disinflation

What are the practical implications of the optimal policies under anchoring for the conduct of
monetary policy? To better understand this, I now consider what the model implies for the Great
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Inflation and the Great Moderation. To do this, I first back out structural shocks in the US from
a structural VAR for the period 1970-Q3 to 2021-Q3. I then feed the shocks into the model, both
under the optimal Ramsey and Taylor rule policies, and compare the evolutions of the observables
with the data.

I consider a two-lag VAR in the output gap, inflation and the federal funds rate (in this order).
Following standard practice, I isolate a demand, supply and monetary policy shock by imposing
a Cholesky decomposition on the variance-covariance matrix of the reduced-form residuals. This
amounts to the assumption that the monetary policy shock only affects the federal funds rate on
impact, while the demand shock is the only shock to affect all observables contemporaneously.

Figure 8: The Great Inflation and the Great Moderation through the lens of the anchoring model

Structural shocks are extracted from a trivariate VAR with a Cholesky identification, where the output gap is ordered
first, inflation second and the federal funds rate last.

Figure 8 shows the historical evolutions of inflation, the output gap and the federal funds rate
in blue against the counterfactual evolutions under the optimal Ramsey policy in red and the
Taylor rule policy in yellow. I zoom in on the period between 1970 and 1985 to see in particular
what the model implies for the Great Inflation and the Volcker period.

The first striking observation is that under the Ramsey policy, the Great Inflation never hap-
pens. Since the central bank that follows the Ramsey policy works hard to maintain the expecta-
tions anchor, it responds to inflationary pressures swiftly and strongly. This is most clearly seen
when comparing the Ramsey policy interest rate with the true data between 1975 and 1980 (red
against blue lines). Whereas the historical interest rate decreased around 1975, and only started
rising slowly and with some backtracking toward 1980, the Ramsey policy involves a steadily ris-
ing interest rate throughout this period. In fact, under the Ramsey policy, the late 1970s would
have seen even higher interest rates than the ones introduced by Paul Volcker in the early 1980s.
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The aggressive response to inflationary pressures does not allow inflationary shocks to unan-
chor expectations, maintaining a strikingly stable inflation process. This also means that the nor-
malization of the interest rate once inflationary pressures subside can happen much more quickly
than in the data. Notice for example the difference between the historical and Ramsey policy inter-
est rates in 1983-84. That there still are some inflationary pressures is reflected in that the Ramsey
interest rate flattens momentarily. But then it continues decreasing steadily. Instead, historically,
the Fed had to hike interest rates multiple times to convince markets that high inflation was not
coming back.

A stable inflation process also helps to stabilize the output gap. As seen on the middle panel,
the Ramsey policy essentially renders output acyclical. Since it pushes against inflationary pres-
sures, it does not allow the booms in the early and late 1970s to materialize. At the same time,
because high inflation does not have to be reigned in the 1980s, it also completely avoids the Vol-
cker recession.

This goes to show how much policy can benefit from having anchored expectations: having
paid the cost to get expectations anchored in the past pays off in terms of making life easy in the
present. As discussed in Section 5.2, the central bank trades off the short-run cost of aggressive
interest rate movements today with the long-run benefit of having anchored expectations. As
Figure 8 suggests, the benefits outweigh the costs by far.

The optimal Taylor rule policy displays both similarities and differences to the Ramsey policy.
Its main feature is an exceedingly volatile interest rate path, which comes from the fact that the
Taylor rule is not state-dependent. On the one hand, this has the advantage that it leads to an
inflation path which is even more stable than that in the Ramsey policy. But the volatility cost in
terms of output fluctuations is very sizable - probably far too large for policymakers in practice.
Again, the model suggests that adopting a Taylor rule with time-varying coefficients can approxi-
mate the benefits of the Ramsey policy while cutting down the volatility costs of a fixed-coefficient
rule.

Of course, my model is too simple for the policy implications to be taken at face value. But what
I think constitutes the practical lesson for policy is to learn from the key features of the optimal
Ramsey and Taylor rule policies of the model. And those are the state-dependent nature of the
Ramsey policy on the one hand, and the ability of a simple Taylor rule to anchor expectations on
the other hand, especially if one conditions the inflation coefficient of the Taylor rule on the degree
of unanchoring.

Combining these insights can yield practical guidance for policymakers. It suggests that a Tay-
lor rule with state-dependent coefficients would do a good job in both guarding the expectations
anchor as well as avoiding inflicting excess volatility. It could respond strongly to inflation fluctu-
ations when expectations become unanchored, but avoid interfering too much when expectations
are well-anchored. At the same time, such a policy rule would still be simple to design and to
communicate to the public. What it would necessitate, however, would be an empirical measure
of the extent of unanchoring like that in Mertens (2016) or Grishchenko et al. (2019) for the central
bank and the public to rely on.
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7 Conclusion

Central bankers frequently voice a concern to anchor expectations, that is, to render expectations of
long-run inflation unresponsive to short-run economic conditions. The contribution of this paper
is to investigate how this affects the conduct of monetary policy. I use a simple behavioral model in
the spirit of Carvalho et al. (2021) to capture the notion of anchoring as the time-varying sensitivity
of long-run expectations to short-run surprises. I quantify my anchoring channel by estimating the
form of the function that determines the degree of unanchoring. I use the model to characterize
monetary policy both analytically and numerically.

The simulated method of moments estimation establishes that anchoring in the data has two
key properties: nonlinearity and asymmetry. On the one hand, expectations become more sensitive
to forecast errors when the private sector made larger mistakes in predicting inflation in the past.
On the other hand, like in Hebden et al. (2020), downside surprises unanchor expectations more
than upside ones of the same magnitude do.

Using the thus quantified model, I provide three sets of results on monetary policy. I first con-
sider the Ramsey policy of the central bank, deriving an analytical target criterion that prescribes
how the monetary authority should respond to shocks. I show that the presence of my novel an-
choring channel makes it desirable and feasible to smooth out shocks over time. However, the
extent this is feasible varies over time in tandem with the current and expected future degrees of
unanchoring.

Second, I use global methods to solve the nonlinear system of first-order conditions of the Ram-
sey problem numerically. I thus obtain an approximation to the optimal policy function, providing
the fully optimal path of interest rates conditional on the sequence of exogenous disturbances. The
main result is that optimal policy is state-dependent. Like in Goodfriend (1993)’s account of US
monetary policy, the optimal policy involves responding aggressively when expectations unan-
chor in order to suppress the volatility that high degrees of unanchoring cause. By contrast, when
facing well-anchored expectations, the central bank does not need to intervene and can accommo-
date inflation fluctuations.

Lastly, I explore the implications of the model for the most common specification of monetary
policy, the Taylor rule. In the benchmark case with rational inflation expectations in the Taylor rule,
the central bank should be much more aggressive on inflation in my model than under rational
expectations, as in Orphanides and Williams (2004). This is because a strong response is required
to anchor expectations. However, a time-invariant Taylor rule involves the same response to a
given movement in inflation regardless of the degree of unanchoring, so that the central bank ends
up inflicting excess volatility when expectations are well-anchored. As the application of the model
to the Great Inflation and Volcker period shows, a Taylor rule that takes the degree of anchoring
into account is a good candidate to combine the anchoring of expectations of the Ramsey policy
with the simplicity of a simple Taylor rule.
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Schmitt-Grohé, S. and M. Uribe (2004). Solving Dynamic General Equilibrium Models Using a
Second-Order Approximation to the Policy Function. Journal of Economic Dynamics and Con-
trol 28(4), 755 – 775.

Schumaker, L. L. (1983). On shape preserving quadratic spline interpolation. SIAM Journal on
Numerical Analysis 20(4), 854–864.

Sims, C. A. (1974). Optimal stable policies for unstable instruments. In Annals of Economic and
Social Measurement, Volume 3, number 1, pp. 257–266. NBER.

Sims, C. A. (2003). Implications of rational inattention. Journal of Monetary Economics 50(3), 665 –
690.

Slobodyan, S. and R. Wouters (2012). Learning in an estimated medium-scale DSGE model. Journal
of Economic Dynamics and Control 36(1), 26–46.

Smith, A. A. (1993). Estimating nonlinear time-series models using simulated vector autoregres-
sions. Journal of Applied Econometrics 8, S63–S84.

Stock, J. H. and M. W. Watson (2016). Core Inflation and Trend Inflation. The Review of Economics
and Statistics 98(4), 770–784.

Svensson, L. E. (1999). Inflation targeting as a monetary policy rule. Journal of Monetary Eco-
nomics 43(3), 607–654.

Svensson, L. E. (2003). What is wrong with Taylor rules? Using judgment in monetary policy
through targeting rules. Journal of Economic Literature 41(2), 426–477.

Taylor, J. B. (1993). Discretion versus policy rules in practice. In Carnegie-Rochester conference series
on public policy, Volume 39, pp. 195–214. Elsevier.

Townsend, R. M. (1983). Forecasting the forecasts of others. Journal of Political Economy 91(4),
546–588.

Tversky, A. and D. Kahneman (1974). Judgment under uncertainty: Heuristics and biases. Sci-
ence 185(4157), 1124–1131.

Weiser, A. and S. E. Zarantonello (1988). A note on piecewise linear and multilinear table interpo-
lation in many dimensions. Mathematics of Computation 50(181), 189–196.

Whittle, P. (1983). Prediction and regulation by linear least-square methods. University of Minnesota
Press.

ECB Working Paper Series No 2685 / July 2022 47



Williams, J. C. (2006). The Phillips curve in an era of well-anchored inflation expectations. Federal
Reserve Bank of San Francisco.

Williams, N. (2003). Adaptive learning and business cycles. Manuscript, Princeton University.

Winkler, F. (2019). The role of learning for asset prices and business cycles. Journal of Monetary
Economics.

Woodford, M. (1999). Optimal monetary policy inertia. The Manchester School 67, 1–35.

Woodford, M. (2003a). Interest and Prices: Foundations of a Theory of Monetary Policy. Princeton
University Press.

Woodford, M. (2003b). Optimal interest-rate smoothing. The Review of Economic Studies 70(4), 861–
886.

Woodford, M. (2013). Macroeconomic analysis without the rational expectations hypothesis. Annu.
Rev. Econ. 5(1), 303–346.

Woodford, M. (2019). Monetary policy analysis when planning horizons are finite. NBER Macroe-
conomics Annual 33(1), 1–50.

ECB Working Paper Series No 2685 / July 2022 48



A Compact model notation

The A matrices are given by

Aa =

 gπa

gxa

πgπa + ψxgxa

 , Ab =

 gπb

gxb

πgπb + ψxgxb

 , As =


gπs

gxs

πgπs + ψxgxs +
[
0 1 0

]
 ,

(A.1)

gπa = (1− κσψπ
w

)
[
(1− α)β, καβ, 0

]
, (A.2)

gxa =
−σψπ
w

[
(1− α)β, καβ, 0

]
, (A.3)

gπb =
κ

w

[
σ(1− βψπ), (1− β − βσψx, 0

]
, (A.4)

gxb =
1

w

[
σ(1− βψπ), (1− β − βσψx, 0

]
, (A.5)

gπs = (1− κσψπ
w

)
[
0 0 1

]
(I3 − αβh)−1 − κσ

w

[
−1 1 0

]
(I3 − βh)−1, (A.6)

gxs =
−σψπ
w

[
0 0 1

]
(I3 − αβh)−1 − σ

w

[
−1 1 0

]
(I3 − βh)−1, (A.7)

w = 1 + σψx + κσψπ. (A.8)

The matrices of the state transition equation (14) are

h ≡

ρr 0 0

0 ρi 0

0 0 ρu

 , εt ≡

ε
r
t

εit
εut

 , and η ≡

σr 0 0

0 σi 0

0 0 σu

 . (A.9)

Note that this is the formulation for the case where a Taylor rule is in effect and is known by the
private sector. It is straightforward to remove any of these two assumptions.

B The observation matrix for learning

Instead of the matrix g in the rational expectations observation equation

zt = gst, (B.1)

agents in the anchoring model use the estimated matrix gl

glt−1 =
[
Ft−1 Gt−1

]
, (B.2)

with

Ft−1 =

(
Aa

1

1− αβ
+Ab

1

1− β

)
at−1, (B.3)

Gt−1 = Aabt−1

(
I3 − αβh

)−1

+Abbt−1

(
I3 − βh

)−1

+As. (B.4)
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C An endogenous gain as a model of anchoring

Carvalho et al. (2021) define their anchoring function as follows. Let θt be a criterion to be defined.
Then, for a threshold value θ̃, the gain evolves according to

kt =

(kt−1 + 1)−1 if θt < θ̃,

ḡ otherwise.
(C.1)

In other words, agents choose a decreasing gain when the criterion θt is lower than the threshold
θ̃; otherwise they choose a constant gain. The criterion employed by Carvalho et al. (2021) is
computed as the absolute difference between subjective and model-consistent expectations, scaled
by the variance of shocks:

θt = max|Σ−1(φt−1 −
[
Ft−1 Gt−1

]
)|, (C.2)

where Σ is the VC matrix of shocks, φt−1 is the estimated matrix and [F,G] is the ALM (see Ap-
pendix B).

As a robustness check, Carvalho et al. (2021) also compute an alternative criterion.20 Let ωt
denote agents’ time t estimate of the forecast error variance and θt be a statistic evaluated by agents
in every period as

ωt = ωt−1 + κ̃kt−1(ft|t−1f
′
t|t−1 − ωt−1), (C.3)

θt = θt−1 + κ̃kt−1(f ′t|t−1ω
−1
t ft|t−1 − θt−1), (C.4)

where κ̃ is a parameter that allows agents to scale the gain compared to the previous estimation
and ft|t−1 is the most recent forecast error, realized at time t. Indeed, this is a multivariate time
series version of the squared CUSUM test.21

D Estimation procedure

The estimation of Section 4 is a simulated method of moments (SMM) exercise. As elaborated in
the main text, I target the autocovariances of CPI inflation, the output gap, the federal funds rate
and the 12-months ahead inflation forecasts coming from the Survey of Professional Forecasters.
For the autocovariances, I consider lags 0, . . . , 4. The target moment vector, Ω, is the vectorized
autocovariance matrices for the lags considered, 80× 1.

Let Θ denote the set of parameters in the New Keynesian model that I calibrate. Then, for each
proposed coefficient vector γ, the estimation procedure consists of simulating the model condi-
tional on γ, Θ andN different sequences of disturbances, then computing model-implied moments
for each simulation, and lastly choosing γ such that the squared distance between the data- and
model-implied mean moments is minimized. Thus

20Note that for both criteria, I present the matrix generalizations of the scalar versions considered by Carvalho et al.
(2021).

21See Brown et al. (1975) and Lütkepohl (2013) for details.
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γ̂ = arg min

(
Ωdata − 1

N

N∑
n=1

Ωmodel(γ,Θ, {ent }Tt=1)

)′
W−1

(
Ωdata − 1

N

N∑
n=1

Ωmodel(γ,Θ, {ent }Tt=1)

)
,

(D.1)
where the observed data consist of T = 151 quarters. Here {ent }Tt=1 is a sequence of disturbances of
the same length as the data; note that I use a cross-section of N such sequences and take average
moments across the cross-section to wash out the effects of particular disturbances. Experimenta-
tion with the number N led me to choose N = 1000, as estimates no longer change upon selecting
larger N .

Before computing moments, I filter both the observed and model-generated data using the
Baxter and King (1999) filter, with thresholds at 6 and 32 quarters and truncation at 12 lags, the
recommended values of the authors. I then compute the moments by fitting a reduced-form VAR
to the filtered series and using the estimated coefficients to back out autocovariances. Because there
are four observables to three structural shocks and occasionally low volatility in the expectation
series, I estimate the VAR coefficients by ridge regression with a tuning parameter of 0.001. This
is to ensure that the VAR coefficients are estimated with a lower standard error, so that estimated
variances of the moments are more accurate. As the weighting matrix of the quadratic form in the
moments, I use the inverse of the estimated variances of the target moments, W−1, computed from
10000 bootstrapped samples.

To improve identification, I also impose restrictions on the estimates. First, I require that the
γ-coefficients be convex, that is, that larger forecast errors in absolute value be associated with
higher gains. Second, since forecast errors close to zero render the size of the gain irrelevant (cf. the
learning equation (20)), I impose that the coefficient associated with a zero forecast error should be
zero. Both restrictions are implemented with weights penalizing the loss function, and the weights
are selected by experimentation.

Both additional assumptions reflect properties that the anchoring function should reasonably
exhibit. The convexity assumption captures the very notion that larger forecast errors in absolute
value suggest bigger changes to the forecasting procedure are necessary. This is thus a very natural
requirement. As for the zero gain for zero forecast error assumption, the idea here is to supply
the estimation with information where it is lacking. Since the updating of learning coefficients
corresponds to gain times forecast error, as Equation (20) recalls, a zero forecast error supplies no
information for the value of the gain. To impose a zero value here also seems natural, given that
since forecast errors switch sign at zero, one would expect the zero forecast error to be an inflection
point in the anchoring function (Gobbi et al., 2019). Furthermore, the objective function does not
deteriorate upon imposing either assumption, suggesting that they are not at odds with the data.
One does observe however that these additional moments do have bite in estimating the nodes at
zero and at the edges, reflected in slightly tighter confidence intervals than at the other two nodes
on Figure 1. Lastly, I supply 100 different initial points and select the estimate involving the lowest
value for the loss (D.1).
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E Alternative estimation strategy

One legitimate criticism of the estimation strategy in the main text is that since the autocovariances
of the observables are likely to be correlated, the effective number of moments may be significantly
lower than what is sufficient to properly identify the parameters of the gain function in Equation
(22). If more moments were available, one may also hope to estimate more general forms of the
gain function.

An alternative that I therefore now consider is to estimate the gain function directly using
data on inflation and short- and long-run inflation forecasts (recall that in the main text, I did not
use data on long-run inflation expectations). Next to the same CPI inflation series as in the main
text, the idea is to rely on the 1-quarter-ahead and 10-year-ahead individual-level CPI inflation
expectations from the Survey of Professional Forecasters. Then one can select the parameters of
the gain function to make the following equation hold

π̄it − π̄it−1 = g(f it|t−1)f it|t−1 (E.1)

at each period t for each forecaster i. Here f it|t−1 denotes the one-quarter-ahead forecast error
of forecaster i. Since the individual-level SPF data at short and long horizons is available at the
quarterly frequency between 1991-Q4 and 2021-Q4, and with about 30 forecasters in each wave,
one obtains around 3600 moments. Of course, because of forecasters rotating in and out of the
survey, the actual number of moments is significantly less, because in order to compute changing
long-run expectations of a forecaster, one can in each period only use forecasters already present
in the previous period.

The advantage of this approach is that a much larger number of moments allows many more
parameters to be estimated. I also do not need to impose convexity as an additional restriction
on the estimation. Furthermore, having more moments should make it possible to estimate more
general specifications of the gain function. One obvious generalization of the gain function is to
allow the gain to depend also on its own lag:

kt = g(kt−1, ft|t−1). (E.2)

I therefore now hope to employ this alternative estimation strategy to estimate the piecewise
linear approximating coefficients of the gain function, considering both the simple specification of
the main text and the general specification of Equation (E.2).

This estimation approach has one major drawback, however, which turns out to be prohibitive.
The issue is that long-run inflation expectations data (5 or 10-year ahead) are only available starting
in 1991-Q4 (as opposed to 1981-Q3 in the main text). But as Carvalho et al. (2021) show, this is the
period in US monetary history that involved well-anchored expectations. This means that long-run
inflation expectations do not really fluctuate in this period. That this is indeed the case can be seen
from Figure 9, which plots changes in 10-year-ahead inflation expectations against 1-quarter-ahead
individual forecast errors.

This means that restricting the sample to post-1990 leads to missing the time period where there
is action in long-run expectations. This is a significant problem because since there is not enough
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Figure 9: Time series of changes in individual long-run inflation expectations and forecast errors

variation in the long-run inflation expectations data, one cannot reliably estimate the parameters
of the anchoring function. One still obtains the same convexity and asymmetry as in the main
section, but the estimates are an order of magnitude lower. This is why I maintain the simulated
method of moments strategy of the main text as my main estimation strategy.

F The policy problem in the simplified baseline model

Denote by g′t = gπ,t = −gπ̄,t the derivative of the anchoring function g(·) with respect to the
forecast error, evaluated at time t. In this simplified setting, π̄t = e1at, the estimated constant for
the inflation process. As in the main text, ei is a selector vector, selecting row i of the subsequent
matrix. I also use the notation bi ≡ eib. The planner chooses {πt, xt, fa,t, fb,t, π̄t, kt}∞t=t0 to minimize
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L = Et0
∞∑
t=t0

βt−t0
{

(π2
t + λxx

2
t )

+ ϕ1,t

(
πt − κxt − (1− α)βfa,t − καβb2(I3 − αβh)−1st − e3(I3 − αβh)−1st

)
+ ϕ2,t

(
xt + σit − σfb,t − (1− β)b2(I3 − βh)−1st + σβb3(I3 − βh)−1st − σe1(I3 − βh)−1st)

)
+ ϕ3,t

(
fa,t −

1

1− αβ
π̄t−1 − b1(I3 − αβh)−1st

)
+ ϕ4,t

(
fb,t −

1

1− β
π̄t−1 − b1(I3 − βh)−1st

)
+ ϕ5,t

(
π̄t − π̄t−1 − kt(πt − (π̄t−1 + b1st−1))

)
+ ϕ6,t

(
kt − g(πt − π̄t−1 − b1st−1)

)}
, (F.1)

where ρi are Lagrange-multipliers on the constraints. After a little bit of simplifying, the first-order
conditions boil down to the following three equations:

2πt + 2
λx
κ
xt − ϕ5,tkt − ϕ6,tg

′
t = 0, (F.2)

− 2(1− α)β2

1− αβ
λx
κ

Et xt+1 + ϕ5,t − β Et(1− kt+1)ϕ5,t+1 + βg′t Et ϕ6,t+1 = 0, (F.3)

ϕ6,t = (πt − π̄t−1 − b1st−1)ϕ5,t. (F.4)

Note that Equation (F.2) is the analogue of Gaspar et al. (2010)’s Equation (22) (or, equivalently, of
Molnár and Santoro (2014)’s (16)), except that there is an additional multiplier, ϕ6. This multiplier
reflects the fact that in addition to the constraint coming from the expectation process itself, with
shadow value ϕ5, learning involves the gain equation as a constraint as well. One can also clearly
read off that when the learning process has converged, so that neither expectations nor the gain
process are constraints (ϕ5 = ϕ6 = 0), the discretionary inflation-output gap tradeoff familiar from
Clarida et al. (1999) obtains. Combining the above three equations and solving for ϕ5,t, using the
notation that

∏0
0 ≡ 1, one obtains the target criterion (33).

The system of first-order conditions and model equations for this simplified system also reveals
how the endogenous gain introduces nonlinearity to the equation system. In particular, notice how
the gain kt shows up multiplicatively with the Lagrange multiplier, ϕ5. In fact, the origin of the
problem is the learning equation for the long-run inflation expectation π̄t

π̄t = π̄t−1 + ktft|t−1 (F.5)

where the first interaction term between the gain and other endogenous variables show up. This
results in an equation system of nonlinear difference equations that does not admit an analytical
solution.
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Considering equation (F.5) is instructive to see how it is indeed the endogeneity of the gain that
causes these troubles. Were we to specify a constant gain setup, kt would merely equal the con-
stant ḡ. In such a case, all interaction terms would reduce to multiplication between endogenous
variables and parameters; linearity would be restored and an analytical solution for the optimal
time paths of endogenous variables would be obtainable. Similarly, a decreasing gain specification
would also be manageable since for all t, the gain would simply be given by t−1, and the anchoring
function would also be deterministic and exogenous.

G Target criterion for a general gain function

Consider a more general anchoring mechanism than Equation (22) in which the current gain de-
pends not only on the most recent forecast error, but also on the previous gain, as in Equation
(E.2):

kt = g(kt−1, ft|t−1). (G.1)

Using the notation gk,t and gf,t for the derivates of the anchoring function with respect to k and f
evaluated at time t, the FOCs of the Ramsey problem are

2πt + 2
λx
κ
xt − ϕ5,tkt − ϕ6,tgf,t = 0, (G.2)

− 2(1− α)β2

1− αβ
λx
κ

Et xt+1 + ϕ5,t − β Et(1− kt+1)ϕ5,t+1 + βgf,t Et ϕ6,t+1 = 0, (G.3)

ϕ6,t − Et gk,t+1ϕ6,t+1 = (πt − π̄t−1 − b1st−1)ϕ5,t, (G.4)

where the red term is the new element vis-à-vis the case where the anchoring function is specified
in levels (kt = g(ft|t−1)). Thus a central bank that follows the target criterion in this general case
has to compute the solution to this three-dimensional difference equation system, where the more
involved algebra contains the same economic intuition.

H Parameterized expectations algorithm (PEA)

The objective of the parameterized expectations algorithm is to solve for the sequence of interest
rates that solves the model equations including the target criterion, representing the first-order
condition of the Ramsey problem. For convenience, I list the model equations:
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xt = −σit +
[
σ 1− β −σβ

]
fb,t + σ

[
1 0 0

]
(I3 − βh)−1st, (H.1)

πt = κxt +
[
(1− α)β καβ 0

]
fa,t +

[
0 0 1

]
(I3 − αβh)−1st, (H.2)

fa,t =
1

1− αβ
π̄t−1 + b(I3 − αβh)−1st, (H.3)

fb,t =
1

1− β
π̄t−1 + b(I3 − βh)−1st, (H.4)

ft|t−1 = πt − (π̄t−1 + b1st−1), (H.5)

kt =
∑
i

γibi(ft|t−1), (H.6)

π̄t = π̄t−1 + ktft|t−1, (H.7)

πt +
λx
κ
xt = c

(
kt + ft|t−1g

′
t

)(
(1− β)Et xt+1 + β Et

∞∑
i=1

xt+i

i−1∏
j=0

1− kt+j − ft+j|t−1+jg
′
t−1+j

)
,

(H.8)

with c ≡ λx
κ

(1−α)β2

1−αβ as in the main text. Denote the expectation on the right hand side of (H.8) as
Et. The idea of the PEA is to approximate this expectation and to solve model equations given the
approximation Êt. The algorithm is as follows:22

Objective: Obtain the sequence {it}Tt=1 that solves Equations (H.1) - (H.8) for a history of exogenous
shocks {st}Tt=1 of length T .

1. Conjecture an initial expectation Êt = β0s(Xt).
The expectation is approximated as a projection on a basis, s(Xt), where β0 are initial pro-
jection coefficients, and Xt = (kt, π̄t−1, r

n
t , ut) is the state vector. I use a monomial basis

consisting of the first, second and third powers of Xt.

2. Solve model equations given conjectured Êt for a given sequence of shocks {st}Tt=1.
Compute residuals to the model equations (H.1) - (H.8) given {st}Tt=1 and {Êt}Tt=1. Obtain
a sequence {it}Tt=1 that sets the residuals to zero. The output of this step is {vt}Tt=1, the
simulated history of endogenous variables (Christiano and Fisher (2000) refer to this as a
“synthetic time series”).

3. Compute realized analogues of {Et}Tt=1 given {vt}Tt=1.

4. Update β regressing the synthetic Et on s(Xt).
The coefficient update is βi+1 = (s(Xt)

′s(Xt))
−1s(Xt)

′Et. Then iterate until convergence by
evaluating at every step ||βi − βi+1||.

22For a thorough treatment of the PEA, see Christiano and Fisher (2000).
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I Parametric value function iteration

This is an alternative approach I implement as a robustness check to the PEA. The objective is thus
the same: to obtain the interest rate sequence that solves the model equations. The general value
function iteration (VFI) approach is fairly standard, for which reason I refer to the Judd (1998)
textbook for details. Specific to my application is that the state vector is five-dimensional, Xt =

(π̄t−1, r
n
t , ut, r

n
t−1, ut−1), and that I approximate the value function using a cubic spline. Thus the

output of the algorithm is a cubic spline approximation of the value function and a policy function
for each node on the grid of states. Next, I interpolate the policy function using a cubic spline
as well. As a last step I pass the state vector from the PEA simulation, obtaining an interest rate
sequence conditional on the history of states. Figure 10 shows the resulting interest rate sequence,
obtained through the two approaches, conditional on a simulated sequence for the exogenous
states.

Figure 10: Policy function for a particular history of states, PEA against VFI

J Oscillatory dynamics in adaptive learning models

Here I present an illustration for why adaptive learning models produce oscillatory impulse re-
sponses if the gain is high enough. Consider a stylized adaptive learning model in two equations:

πt = βet + ut, (J.1)

et = et−1 + k(πt − et−1). (J.2)

The reader can recognize in (J.1) a simplified Phillips curve in which I am abstracting from output
gaps to keep the presentation as clear as possible. Like in the simple model of Section 5.1 in
the main text, et represents the one-period inflation expectation Êtπt+1. (J.2), then, represents the
simplest possible recursive updating of the expectations et. My notation of the gain as k indicates
a constant gain specification, but the intuition remains unchanged for decreasing (or endogenous)
gains.
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Combining the two equations allows one to solve for the time series of expectations

et =
1− k

1− kβ
et−1 +

k

1− kβ
ut, (J.3)

which, for β close but smaller than 1, is a near-unit-root process. Defining the forecast error as
ft|t−1 ≡ πt − et−1, one obtains

ft|t−1 = − 1− β
1− kβ

et−1 +
1

1− kβ
ut. (J.4)

Equation (J.4) shows that in this simple model, the forecast error loads on a near-unit-root process
with a coefficient that is negative and less than one in absolute value. Damped oscillations are the
result.

Note that even if the gain would converge to zero, the coefficient on et−1 would be negative and
less than one in absolute value. Thus even for decreasing gain learning, one obtains oscillations,
but the lower the gain, the more damped the oscillations become. This corroborates my findings in
the impulse responses of Figure 5. But importantly, the opposite extreme, when k → 1, results in a
coefficient of exactly −1, giving perpetual oscillations. This clearly illustrates how the oscillatory
behavior of impulse responses comes from the oscillations in the forecast error that obtain when
the gain is sufficiently large.
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