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Executive summary

Over recent years, to foster a “green transition” of the economy, various European Union (EU) policies were

implemented to shift financial investors’ preferences towards sustainable investments. Against this background,

a concern from a financial stability angle is whether a strong push towards sustainable investments might

increase the risk of creating asset price bubbles in relevant market niches, which are perceived as more sus-

tainable from an environmental, social and governance (ESG) perspective. At the same time, in the context of a

low-carbon transition, high-carbon assets could become stranded and associated investments could depreciate,

posing risks to the stability of the financial system. These arguments become even more relevant in view of

stock market developments over the past two years, with European equities hitting an unprecedented record

high even when compared with 2001 and 2007 levels, with the real economy only gradually recovering from

the Covid-19 pandemic.

To shed some light on these issues, we investigate to what extent stock market prices are disconnected from

their ‘fundamentals’, defined as past prices and dividends. To do so we use monthly data on the European stock

market from 2005 to 2022, analysing the European market as a whole, as well as the green, high-carbon and

ESG segments.

We find evidence that at the beginning of 2022 the non-fundamental component in the European stock market

was about 25% of the total price, a record-high never observed before. When looking at particular portfolios,

the model shows that green and ESG stocks behave broadly in line with the market. However, in recent years

ESG stocks have shown a significant, though small, overvaluation compared to the market. In addition, the

model shows that markets are uncertain about the actual value of high-carbon assets, as reflected in the huge

uncertainty surrounding the estimates of the non-fundamental component for these particular stocks.

We interpret this finding in the context of an evolving EU sustainable finance regulation as a successful shift of

investors’ preferences towards sustainability, suggesting a “transition on the move” in financial markets. More-

over, while the disconnect of the ESG segment deserves careful monitoring, the major concern to policymakers

should probably be the substantial overvaluation in the entire market.
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1 Introduction

Over recent years, to foster a “green transition” of the economy various European Union

(EU) policies were implemented to shift investors’ preferences towards sustainable invest-

ments. In this context, a concern from a financial stability perspective is whether a strong

push towards sustainable investments might increase the risk of creating asset price bubbles

in relevant market niches. At the same time, in the the context of a low-carbon transition,

high-carbon assets could become stranded and associated investments could depreciate,

posing risks to the stability of the financial system. These arguments become even more

relevant in view of stock market developments over the past two years, with European

equities hitting an unprecedented record high even when compared with 2001 and 2007

levels, with the real economy gradually recovering from the consequences of the Covid-19

pandemic.

Already after the great financial crisis, a debate started whether exceptionally easy mon-

etary conditions could create pressures on asset prices to deviate from their fundamental

values, i.e. the factors underlying the actual financial performance of a company (e.g. see

BIS, 2015; Blanchard and Gagnon, 2016). In Europe, the European Central Bank (ECB)

established several Quantitative Easing (QE) programmes, thereby directly purchasing fi-

nancial assets. By today’s perspective there is evidence that periods of QE coincided with

exuberant investor behaviour, reflected in a moderate disconnect of equities from their

fundamentals, even when controlling for improved macro fundamentals (see e.g. Hudepohl

et al., 2021).

Looking at stocks with a particularly good environmental, social and governance (ESG)

performance, general market conditions have combined with the evolving EU sustainable

finance regulation aimed at shifting investors’ preferences to hold sustainable assets.1 For

this reason, developments in this market segment are monitored carefully by investors and

regulators, as after all, green tech or alternative energy bubbles have indeed taken place

1In 2018, the European Commission (EC) launched an Action Plan on financing sustainable growth,
followed by a renewed strategy in 2021. The main objectives are to reorient capital flows towards a more
sustainable economy and mainstreaming sustainability into risk management while fostering transparency
and long-termism. https://ec.europa.eu/info/publications/sustainable-finance-renewed-strateg

y en
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since the mid-2000s. Back then, as discussed in Bohl et al. (2013, 2015), Europe and in

particular Germany faced a boom and bust in alternative energy stocks driven by investors’

sentiment. In response to the intense sector competition and the downturn due to the

global financial crisis, profit margins eventually declined as well as stock prices. In fact, the

underlying dynamics could not be explained by rising oil prices or a general stock market

euphoria.

On the back of this experience, the question today is whether we might be facing a similar

situation of particular assets being potentially inflated beyond the sector’s growth potential.

Hence, by early 2021, concerns were expressed on the formation of a green bubble2, which

by the second half of 2021 extended to the ESG sphere as a whole and entered the policy

discussion.3 In addition, evidence was brought forward by a counterfactual study (see

van der Beck, 2021) on the US that argued that the aggregate ESG industry would have

strongly underperformed the market from 2016 to 2021, should the unexpected inflows from

institutional funds not have taken place.4

Despite past examples of asset price bubbles, deviations from stock market fundamentals do

not necessarily point to unsustainable excesses, as they are often on productive assets in an

expanding sector of the economy. An inflated market or sector might also produce positive

spillovers to other sectors, when it alleviates unjustified financing constraints (see Anderson

et al., 2010; Campello and Graham, 2013). In general, a deviation from fundamentals

could well be justified by rational expectations on economic developments rooted e.g. in

219 February 2021: “‘Green bubble’ warnings grow as money pours into renewable stocks” https:

//www.ft.com/content/0a3d0af8-7092-44c3-9c98-a513a22629be; 20 May 2021: “A green bubble? We
dissect the investment boom” https://www.economist.com/finance-and-economics/2021/05/17/green

-assets-are-on-a-wild-ride; 24 May 2021: “Clean energy stocks are as crowded as tech before dotcom
crash, says MSCI” https://www.ft.com/content/74baff9a-bce6-49a5-b7f5-7cbf84ac32c6.

3See BIS (2021) “There are signs that ESG assets’ valuations may be stretched [..] Even after a decline
from their peak in January 2021, price-to-earnings ratios for clean energy companies are still well above those
of already richly valued growth stocks”. 22 October 2021: “ESG will create bubbles and the next Amazon
or Tesla” https://www.cnbc.com/2021/10/22/esg-will-create-bubbles-and-the-next-amazon-or-t

esla-iif.html. 26 October 2021: Analysis on price-earnings ratios by Banque de France (see Jourde and
Stalla-Bourdillon, 2021) on green stocks contends that firms with a high environmental score appear to have
lower valuations than their high-carbon counterparts. 28 October 2021: “Trillion-Dollar ESG Boom Rings
Bubble-Trouble Alarm in New Study” https://www.bloomberg.com/news/articles/2021-10-28/trillio

n-dollar-esg-boom-rings-bubble-trouble-alarm-in-new-study.
4Griffin et al. (2011) makes a similar argument with reference to the tech bubble in the US. At the end

of the 1990s, technology stocks quintupled due to a shift in demand by institutional investors (primarily
hedge funds, independent investment advisors and mutual funds) to the technology sector. Later, the broad
sell-off of institutional investors and households triggered the collapse.
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policy objectives or other information that is available to investors. The growth of rational

bubbles is consistent with rational expectations and reflects the presence of expectations

about future increases in an asset’s price.5

Because of the forward-looking nature of investment decisions and the large information set

they are based on, no econometric model - including ours - would be able to tell whether an

identified disconnection between stock prices and their fundamentals in a particular market

segment is driven by rational behaviour or irrational exuberance. An alternative strand

of literature uses behavioural models to allow for irrational pricing and the appearance of

“irrational” bubbles (see Vissing-Jorgensen, 2004).

The empirical literature identifying abnormal market developments follows primarily two

prominent strands that have grown rapidly since the great financial crisis.6 The first group

applies cointegration and unit root tests in the context of an indirect bubble test looking

for explosive behaviour (see Diba and Grossman, 1988a; Phillips et al., 2011, 2015; Homm

and Breitung, 2012). The other group applies a Markov-switching-augmented version of the

present-value model(see Van Norden and Schaller, 1999; Brooks and Katsaris, 2005; Bins-

bergen and Koijen, 2010; Al-Anaswah and Wilfling, 2011; Choi et al., 2017; Chan and Santi,

2021).7 While each of these approaches has its advantages and shortcomings, we follow the

latter approach as it provides the advantage of being able to unveil a non-fundamental

component and the related estimation uncertainty. In particular, we employ a model that

builds on latest developments in the literature on present-value models. In this framework,

market fundamentals are a function of expected dividend growth and returns, while the

non-fundamental component is assumed to follow a Markov-switching process that allows

for the possibility of exploding and collapsing regimes. Although our model is not capable

to explicitly incorporate additional information related to the evolving state of macroeco-

5For an exhaustive discussion on the theory of “rational” bubbles in the context of asset pricing see
Diba and Grossman (1988b); Kortian (1995); Santos and Woodford (1997), in the context of systemic risk
Brunnermeier and Oehmke (2013), and in the context of broader macroeconomics Martin and Ventura
(2018). Differences among “rational” and “irrational” bubbles are discussed in Meltzer (2002), Shi and Suen
(2014) and Balcombe and Fraser (2017).

6For an exhaustive overview see Gürkaynak (2008) and Chan and Santi (2021).
7Besides these two groups, two other approaches are proposed by the literature to assess the fair value of

assets. Cecchetti and Taboga (2017) use a probabilistic framework that allows to simultaneously take into
account asset prices and economic determinants, while Binswanger (2004) and Velinov and Chen (2014) use
a Markov-switching structural vector autoregressive (MS-SVAR) model to detect fundamentals.
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nomic determinants (Cecchetti and Taboga, 2017), market power considerations (Farhi and

Gourio, 2019), issues regarding the flow of funds (van der Beck, 2021) or the structural

decline in the natural rate of interest (Monache et al., 2021), it provides a parsimonious

representation of market dynamics which is in line with the business cycle. Finally, for the

estimation of the model we propose an alternative Bayesian approach to those available in

the literature, which is more efficient.

Our empirical study of the alignment between equity prices and their fundamentals in var-

ious relevant market niches over time, is based on a sample including 1200 stocks traded

in the main European markets from January 2005 to January 2022. Our findings suggest

that the non-fundamental component in the EU stock market at the beginning of 2022

accounts for about twenty-five per cent of the total price. Based on a comparison of density

estimates of non-fundamental components, we do not find evidence of much higher over-

valuation in the green or in the broader sustainability segment. Indeed, the weight of the

non-fundamental component for the green portfolio is in line with that of the market. With

respect to the ESG portfolio it appears to be slightly more overvalued than the market

as a whole, which however has been the case for some years already. We interpret these

results as EU legislation being successful in shifting investor preferences and hence flows of

funds towards sustainability objectives, suggesting a “transition on the move” in financial

markets. In addition, the model shows that markets are uncertain about the actual value

of high-carbon assets, as reflected in the huge uncertainty surrounding the estimates of the

non-fundamental component for these particular stocks. Overall, the ESG segment does not

seem to be much more inflated than the market, but the market is significantly overvalued,

which can be a source of financial risk.

The remainder of this paper is structured as follows. Section 2 outlines the model. Section

3 describes the data. Section 4 illustrates the results for the EU market as well as the

green, high-carbon and ESG portfolios, and contrasts the non-fundamental components

across portfolios. Section 5 concludes.
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2 The present-value model

In the tradition of Campbell and Shiller (1988), we start from a log-linearized version of

the present-value model. Following for instance Binsbergen and Koijen (2010) and Choi

et al. (2017), we define pdt as the logarithm of the price-dividend ratio, pdt = ln(Pt/Dt),

and ∆dt as the logarithm of the dividend growth rate, ∆dt = ln(Dt/Dt+1). By resorting

to a first order log-linear approximation, the log gross return, rt = ln((Pt +Dt)/Pt−1), can

be specified as a linear function of the price-dividend ratio and the dividend growth rate as

in:

rt+1 ' κ+ ρpdt+1 + ∆dt+1 − pdt (1)

with κ = ln
(
1 + exp

(
p̄d
))
− ρp̄d, ρ = exp

(
p̄d
)
/(1 + exp

(
p̄d
)
), and p̄d = (1/T )

∑T
t=1 pdt.

Iterating forward Equation (1) and taking the expectation conditional on today’s infor-

mation, =t = (∆d1,∆d2, · · · ,∆dt, pd1, pd2, · · · , pdt), yields the price-dividend fundamental

component:

pdft =
κ

1− ρ +
∞∑

j=1

ρj−1E[∆dt+j − rt+j |=t] (2)

In line with Binsbergen and Koijen (2010) and Chan and Santi (2021), we assume the

growth rate of dividends and gross returns equal their expected values plus an orthogonal

shock as in:

dt = gt−1 + εdt

rt = µt−1 + εrt (3)

The latent expected gross returns, µt ≡ E [rt+1|=t], and expected dividend growth rate,

gt ≡ E[∆dt+1|=t] follow the autoregressive processes:

µt = αµ + φµ(µt−1 − αµ) + εµt

gt = αg + φg(gt−1 − αg) + εgt (4)
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where αµ and αg are the unconditional mean of the expected gross returns and dividend

respectively. Given (3) and (4), taking the conditional expectation in (1) allows to unveil a

closed form solution for the fundamental price-dividend ratio:

pdft =
κ− αµ + αg

1− ρ − µt − αµ
1− ρφµ +

gt − αg
1− ρφg (5)

When the transversality condition does not hold the particular solution given in (5) is

complemented by a non-fundamental or rational bubble component, say bt. In this case

the price-dividend ratio is expressed as the sum of a fundamental and a non-fundamental

component as in:

pdt = pdft + bt (6)

In the equation above bt satisfies the homogeneous difference equation E [bt+i|=t] = bt
ρi

.

In line with other studies (e.g. Al-Anaswah and Wilfling, 2011), we assume that the non-

fundamental component follows the autoregressive process:

bt =
bt−1

ρ
+ εbt (7)

With the aim of identifying periodically collapsing bubbles, we superimpose a two-regime

Markov switching process, say St on equations (3)-(7). The econometric model is described

by the following observational equations:

dt = gt−1 + edSt

pdt = pdft + bt (8)

The dynamics of the latent states is given by:

pdft = αpSt − (µt − αµSt)/(1− ρStφ
µ
St

) + (gt − αgSt)/(1− ρStφ
g
St

)

bt = bt−1/ρSt + ebSt

gt = αgSt + φgSt(gt−1 − αgSt) + egSt

µt = αµSt + φµSt(µt−1 − αµSt) + eµSt (9)

6



Where αpSt = (ln(1 + exp(p̄d))− ρSt p̄d− αµSt + αgSt)/(1− ρSt). The variable St take values

in {0, 1}, and its dynamic is ruled by the transition probabilities πij = Pr(St = i|St−1 = j),

i, j = 0, 1, and t = 1, 2, · · · , T . The 0-state identifies surviving regimes, i.e. 1/ρ0 > 1,

while collapsing regimes prevail when St = 1 and 1/ρ1 < 1. The vector of shocks, εSt =

(edSt , e
b
St
, egSt , e

µ
St

), is a function of the unit variance white noise vector et = (edt , e
b
t , e

g
t , e

µ
t ),

i.e. εSt = LStet, where CSt = LStL
′
St

is a Markov dependent covariance matrix. To simplify

the model structure we set to zero the off-diagonal elements of CSt , while its diagonal entries

take the form:

CSt(y, y) =





V y if St = 0

V yδy if St = 1

(10)

where y = d, b, g, µ, and δy > 1 imposes shocks with larger variances during collaps-

ing regimes. Appendix B details the Bayesian approach used to estimate the model de-

scribed by equations (8)-(10): (i) the prior distribution elicited on model parameters θ =

(ρj , α
x
j , φ

x
j , V

y, δy), j = 1, 2, x = g, µ, y = d, b, g, µ, and on the transition probabilities of the

Markov process πij , j = 1, 2; (ii) the MCMC algorithm employed to produce draws from the

posterior distribution of both model parameters and the latent state ξt = (pdft , bt, gt, µt).

3 Data description

We use monthly data from Refinitiv Datastream for 1200 European companies from January

2005 to January 2022 to build market, ESG, green and high-carbon portfolio data. The

model requires two observable variables, the price-dividend ratio and dividend growth.

Both require to be created applying different procedures as described below8. We obtain

the aggregate price index of a portfolio by summing over the price index of individual firms,

which is the product of the unadjusted price and number of shares. We obtain the aggregate

dividend yield by weighting each firm’s dividend yield with its market value. The price-

dividend ratio is given by taking the natural logarithm of the aggregate price index divided

8The procedure is able to recover the aggregate Datastream portfolio data for the United States from the
underlying constituents data.
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by the aggregate dividend yield. The second observable is given by the natural logarithm

of the rate of change in the aggregate dividend yield. The starting date varies across the

different portfolios due to data issues at the beginning of some samples.9

Table 1 Time-varying amount of companies across portfolios

Market ESG Green High-carbon

2005 678 71 26 474

2006 718 84 55 447

2007 777 124 90 435

2008 825 162 102 453

2009 837 175 104 456

2010 846 189 110 451

2011 859 206 115 453

2012 878 215 122 468

2013 891 221 129 468

2014 920 232 139 469

2015 961 249 151 488

2016 1016 267 154 536

2017 1048 306 157 557

2018 1100 364 162 605

2019 1154 405 162 657

2020 1193 447 162 696

2021 1191 431 162 694

2022 1192 431 162 695

Notes: The table displays the time-varying dummies for green and high-carbon portfolios as provided by Alessi et al.
(2021). The sample is only sparsely filled in the early years and we extrapolate dummies from 2019 to 2020 and 2021.
Similarly we fill missing ESG data in 2021 with 2019 and extrapolate 2021 to 2022.

Table 1 displays the number of companies in each portfolio at each point in time. All port-

folios are characterised by a time-varying composition, as the firms satisfying the definition

may vary from a year to another. For the market or composite portfolio, we include all

companies available in the dataset. For the ESG portfolio, we select all companies with

a Datastream ESG score higher than 50.10 Environmental portfolios for green and high-

9A more detailed description of the formulas can be found in Appendix ??. The list of companies and
the associated mnemonic codes are available upon request.

10The ESG score varies from 0 to 100. A higher threshold would result in too few companies. Whenever
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carbon companies are built based on the methodology proposed in Alessi et al. (2021). In

particular, the green portfolio includes firms characterised by lower emission intensity and

higher transparency on their environmental performance, while the high-carbon portfolio

includes firms that do no disclose on their environmental performance, and in addition, are

active in fossil-fuel or energy-intensive sectors. It is noteworthy that in more recent years

about one-third of the companies included in the ESG portfolio constitute about ninety per

cent of the companies in the green portfolio. A plot of the raw data is provided in Appendix

A.

The model presented in section 2 implies a departure from joint normality of the uncon-

ditional distribution of dividend growth rate and price dividend ratio. To check whether

the data show evidence of asymmetry and fat tails, we focus on the following third and

fourth-order moments:

mij = E[∆̃d
i
t · ∆̃pd

j

t ]

where x̃ refers to the centered and standardised version of variable x, and i, j = 0, 1, 2, 3, 4,

with i+j = 3 or i+j = 4. Assuming linearity and Gaussian errors, the third moments above

are null, while the fourth-order moments are: equal to 3, when i = 0, j = 4 or i = 4, j = 0,

equal to 3 ∗ corr(∆dt,∆pdt), when i = 1, j = 3 or i = 3, j = 1, and equal to 1 + 2 ∗

corr(∆dt,∆pdt)
2, when i = 2, j = 2. Significant departure of each empirical moment from

its linear counterpart is verified by the Politis and Romano (1994) bootstrap procedure. For

the market, ESG, green and high-carbon data, Table 2 shows (in bold) statistical significance

at 90%(∗) and 95%(∗∗)-level. Dividend growth rate data are positively asymmetric (m30)

only for the high-carbon portfolio. Excess kurtosis (m40) is detected for both the market

and high-carbon portfolios. Price dividend ratio data are negatively asymmetric (m03) for

all portfolios excluding the green one. Excess kurtosis (m04) is detected for all portfolios.

Interestingly the excess co-kurtosis (m22) shows significant commonalities between the two

series for all market segments excluding the green one. Overall Table 2 confirms the need

of a non-linear model to process the data at hand.

needed, data points for recent years are imputed by using the last available observation.
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Table 2 Third and fourth-order empirical moments

m30 m03 m12 m21 m40 m04 m13 m31 m22

Market 0.31 -0.58∗∗ 0.47∗∗ -0.38 4.01∗ 4.18∗∗ -3.97∗∗ -3.88∗ 3.87∗∗

ESG 0.31 -0.43∗∗ 0.41∗∗ -0.37 3.87 3.96∗∗ -3.68∗ -3.66 3.59∗

Green 0.18 0.80 0.02 -0.24 3.78 7.72∗ -3.34∗ -2.93 2.76

High-carbon 0.47∗∗ -1.84∗∗ -0.13 -0.58∗∗ 5.46∗∗ 10.87∗∗ -0.71 -3.94 4.52∗∗

Notes: mij is the empirical standardised moment of order i, j, where i refers to ∆dt, and j to ∆pdt; ∗ and ∗∗
refers to statistical significance at 90% and 95%-level according to the Politis and Romano (1994) stationary

bootstrap.

4 Overvaluation in the European market

The following subsections present the estimation results for the European market as a whole,

as well as for the ESG, green and high-carbon portfolios. Finally, we try to understand how

inflationary dynamics have developed in these market niches.

4.1 The market portfolio

In the first part of our analysis, we investigate the role of the non-fundamental component

in the European market portfolio. The top panel of Figure 1 shows the price-dividend ratio

(dashed black line, left axis) and the posterior mean estimates of the fundamental and non-

fundamental (blue) components, i.e. E(pdft |=T ) and E(bt|=T ), t = 1, 2, · · · , T . The figure

also shows periods of EU-27 negative quarterly real GDP growth (shaded areas) to facilitate

the interpretation of the components in the context of real economic developments. Indeed,

the price components show strong co-movement with economic activity especially during

the great recession (2008-2009) and the sovereign debt crisis (2011-2013). The European

stock market was slightly overvalued before the great recession and between the end of

the sovereign debt crisis and 2020. Since 2016, the model captures a gradual increase in

the non-fundamental component, possibly driven by unconventional monetary policy (see

Hudepohl et al., 2021).

The bottom panel of Figure 1 shows the smoothed posterior probability of the surviving
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Figure 1 Top panel: price-dividend ratio (dashed), fundamental and non-fundamental
components. Bottom panel: posterior probability of the surviving regime.
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Notes: The sample starts in February 2005 and ends in January 2022. The price-dividend ratio is normalised to 100,
and the fundamental is expressed as the relative percentage times the price-dividend ratio. The non-fundamental
expressed on the right hand side is percentages over the total price-dividend ratio. Shaded areas describe periods of
EU-27 negative quarterly real GDP growth.

regime, Pr[St = 0|=T ], t = 1, 2, · · · , T . We define a posterior probability lower than one

half as a collapse. The collapses of the non-fundamental component are strongly related

to economic recessions, which provides validation to the results. Moreover, there are two

further episodes in 2007 and 2015, when the non-fundamental component collapses, which

correspond to a weak global economic momentum.

Finally, Figure 2 shows the posterior mean (black line) and the estimated uncertainty for the

non-fundamental component. The dashed lines denote the 10-th and 90-th percentiles of the

posterior distribution at each point in time. The colored area includes the extremes of the

density distribution. Periods with significant departures from zeros, at the 80% confidence

level, are observed during the double-dip recession and the very last sample period. By 2021,

we see a surge in the non-fundamental component from 12 to 25% of the total price. While

acknowledging a higher estimation uncertainty in the last periods, this strong increase is
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Figure 2 Posterior mean, 10-th and 90-th percentile (dashed) for the non-fundamental
component.
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Notes: The sample starts in February 2005 and ends in January 2022. The non-fundamental component is expressed
in terms of percentage over the total price-dividend ratio. Shaded areas describe periods of EU-27 negative quarterly
real GDP growth.

likely the result of a combination of factors unfolding their effects. Among them, the

pandemic emergency purchase programme, a non-standard monetary policy program by

the ECB to fight the pandemic. In addition, many small stock investors entered the market

and the EC announced their “rebuild better” legislative and fiscal programmes.

Further estimation results such as the plots exhibiting the prior and posterior distribution of

model parameters, the inefficiency factors of the simulated chain, and the posterior mean of

the innovations can be found in Appendix C.1. This appendix also includes some robustness

checks. In particular, we find that modeling the non-fundamental component as a simple

random walk, albeit yielding broadly similar dynamics, results in a comparatively higher

dispersion of the estimate.

4.2 ESG, green, and high-carbon portfolios

The abnormal stock market rally since 2021 caused much debate whether the market or only

some niches are inflated and whether there is “too much, too quickly of a good thing” with

respect to ESG assets.11 We try to answer this question by performing the same analysis

as above for relevant market niches , notably ESG, green and high-carbon stocks. We find

broadly similar results, but also some important differences.

1120 September 2021: “Central bank group BIS warns of green asset bubble risk” https://www.reuters.

com/business/sustainable-business/global-markets-bis-esg-urgent-2021-09-20/.
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Figure 3 Non-fundamental components: posterior mean, 10-th and 90-th percentile
(dashed) for the ESG (top panel), Green (mid panel), and High-carbon (bottom panel)
portfolios.
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The top panel in Figure illustrates the posterior mean (black line) and the estimated un-

certainty for the non-fundamental component of the ESG portfolio, as well as the posterior

mean (blue line) of the non-fundamental component of the market portfolio. The non-

fundamental components have the same weight in the two portfolios till 2016, when the
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non-fundamental component starts to gradually become more important in the ESG port-

folio. This could be an indication that investors valued sustainability already back then.

The mid panel displays the non-fundamental component of the green portfolio. Dynamics

have been historically less volatile compared to the non-fundamental components for the

market or the ESG portfolio. Interestingly, the non-fundamental component of the green

portfolio seems having been less affected by unconventional monetary policy measures prior

to 2020. By 2020, possibly as a result of further policy announcements, the green non-

fundamental component started to increase in line with the market.

Finally, the bottom panel displays the posterior mean and estimated uncertainty for the non-

fundamental component of the high-carbon portfolio. Compared to its market counterpart,

it is surrounded by a higher estimation uncertainty, due to the higher volatility in the price-

dividend ratio in this market segment. Already during the great recession, the estimation

uncertainty was huge. Since late 2019, the price-dividend ratio in the high-carbon portfolio

started to rise in line with the market. However, also the estimation uncertainty on the

size of the non-fundamental component became increasingly large, particularly since 2021.

This might reflect uncertainties as regards the actual value of these assets.

4.3 Contrasting non-fundamentals across market segments

The EU Green Deal formulates various incentives for investors to prefer sustainable assets.

In a context where exceptional monetary policy measures and fiscal packages were put in

place, with an impact on the market as a whole, the question is whether these policies

had a stronger impact on sustainability-linked assets. To understand whether some market

niches have been significantly more inflated than others, we compare density estimates

of various portfolios’ non-fundamental components at different points in time. This is of

practical relevance for assessing which segments are exposed to sudden collapses in equity

prices, but also to investigate whether EU legislation proved successful in shifting investors’

preferences. The main results are summarised in Figure 4, while Figure C.6 in the Appendix

provides a more detailed picture. The findings suggest that by January 2011, in between

the double-dip recession, the non-fundamental components of all portfolios, including the

market as a whole, were aligned. In particular, they were all close to zero meaning that

14



Figure 4 Relative inflatedness of non-fundamental components across market segments

Notes: The density estimates refer to the non-fundamental component that is expressed in percentage points of the
total price. The boundaries of the boxplot coincide with the second and third quartile.

prices were in line with the fundamental values of the stocks. This is as expected, as indeed

by 2011 the sustainability discussion in finance hadn’t even started. Even after the stock

market rally in the second half of 2020, by January 2021 the non-fundamental component

for the entire European stock market only accounted for 12% of total prices. In fact, the

non-fundamental component of the green portfolio had about the same weight as the one

of the market during the pandemic, which discredits the often made claims of a green

bubble. In contrast, by January 2021 the ESG non-fundamental component accounted for

almost 20% of the total price. As shown in Figure 4, this difference is highly statistically

significant. This is possibly the result of a massive capital inflow into the ESG segment (e.g.

see van der Beck, 2021). Since then, the ESG portfolio has been leading developments but

the market did follow. As a result, the overvaluation of the ESG portfolio remains in line

with the one of the total market. The non-fundamental component of the ESG portfolio

achieved a maximum of 35% in January 2022, which however corresponds to the end of

the sample and is therefore associated with higher estimation uncertainty. These findings,

coupled with the high uncertainty in the high-carbon portfolio, suggest that a transition

towards sustainability may be gaining traction in financial markets.
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5 Concluding remarks

In response to the Paris climate agreement in 2015, EU policy institutions announced mea-

sures to promote sustainable economic growth. In particular, policies were set in place

to ease the transition towards a lower-carbon economy by shifting investor preferences to-

wards sustainable activities. This paper tries to answer the question whether, against a

background of unprecedented inflation in European stock prices, a ‘green bubble’ or ‘sus-

tainability bubble’ might be inflating. To investigate to what degree stock prices are deviat-

ing from economic fundamentals in various market niches, we utilise a present-value model

that allows to estimate the size of the non-fundamental component in stock prices, as well

as the likelihood of a ‘burst’.

The model unveils that the entire EU stock market suffers from a substantial deviation from

its underlying fundamental values by January 2022, with the non-fundamental component

constituting about 25% of total prices. While the green portfolio is in line with the market,

the ESG portfolio appears slightly overvalued as compared to the market. These findings

suggest that EU regulation starts having some impact on shifting investor preferences to-

wards sustainability objectives as measured by firms’ ESG scores, suggesting a “transition

on the move” in financial markets. In support of this argument, markets appear uncertain

about the actual value of high-carbon assets, which is reflected in huge uncertainty around

the estimates of the fundamental component of the price for this category of assets. All

in all, while we find a statistically significant difference between the ESG segment and the

market as a whole, the overvaluation in this particular market segment is only slightly larger

compared to the market as a whole - at least for the moment. Based on these results, a

careful monitoring of the ESG niche is warranted, due to the large inflow of capital into this

segment. However, the inflatedness of the entire market seems to be the major concern, also

considering that abrupt market adjustments may unfold in response to shocks of various

nature.
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A Data construction

We use monthly firm-level data such as the unadjusted price (PU), market value (MV),

measure for the number of shares (NOSH, gaps filled with WC05301), and the dividend

yield (DY) for 1200 companies that are listed in Europe with all data in Euro.12 In a first

step, we calculate aggregate variables from firm-level data weighting them with the market

value. We construct an aggregate price index (PI) for each portfolio j with N being the

number of companies in the portfolio.13

PIjt = PIjt−1 ·

N∑
i=1

PUi,t ·NOSHi,t

N∑
i=1

PUi,t−1 ·NOSHi,t−1

with PIj0 = 100 (A.11)

The aggregate dividend yield for portfolio j is calculated as

DYj
t =




N∑
i=1

DYi,t ·MV i,t

N∑
i=1

MV i,t


 (A.12)

The figure below reports raw data for the four markets.

12To correct for cases where the company market data should not be denominated in Euro, we apply the
DS currency conversion function.

13To validate the proposed aggregation procedure in the context of non-availability of DS aggregate market
data for the EU, we’ve applied it to the US constituents listed in the Datastream US market index. The
algorithm can recover the aggregate variables though with minor differences.
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Figure A.1 Raw data for market (black), green (green), high-carbon (brown) and ESG
(red). Top panel: price-dividend ratio. Mid panel: dividend yield. Bottom panel: price
index.
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Note: The charts display the evolution of the price-dividend ratio for the EU market portfolio, the Refinitiv time-

varying ESG score (>50) portfolio, as well as the time-varying environmental portfolios (green, high-carbon) as

provided by Alessi et al. (2021). Early periods are not displayed due to small firm coverage at the beginning of some

series.

B Bayesian estimation

This appendix details the Bayesian approach used for estimating the Markov-switching

model reported in the main text. The first section explains how to cast the model in

a state-space form, the second section is devoted to the prior elicitation, finally the third
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section highlights the MCMC algorithm employed to approximate the posterior distribution

of the unobserved states and model parameters.

B.1 State-space format

The model described by equations (8)-(10) admits the general state-space representation:

yt = Hξt + Gut

ξt = at + Ftξt−1 + Rtut (B.13)

where t = 1, · · · , T, yt = (pdt, dt)
′ is the 2×1 vector of observed variables, ξt = (bt, pd

f
t , gmt,

gmt−1, gt, gt−1, µt, e
d∗
t , e

g∗
t , e

µ∗
t , e

b∗
t )′ is the 11× 1 state vector, and ut = (edt , e

g
t , e

µ
t , e

b
t)
′ is the

4× 1 vector of shocks. The possibly time-varying vectors and matrices, determined by the

model parameters and by the discrete latent variables St, are equal to:

H =




1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 1 0 0 0


 ;

G is a 2× 4 matrix of zeros;

at =

(
0

ln(1+exp(p̄d))−ρSt p̄d−α
µ
St

+αgSt
1−ρSt

αgSt 0 0 0 0 0 0 0 0

)′
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Ft =




1− ρSt 0 0 0 0 0 0 0 0 0 0

0 0 0 0
φgSt

1−ρStφ
g
St

0
φµSt

1−ρStφ
µ
St

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 φgSt 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 φµSt 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0




;

and

Rt =




V b(St) 0 0 0

0 V g(St)
1−ρStφ

g
St

0 0

0 0 V µ(St)
1−ρStφ

µ
St

0

0 V g(St) 0 0

0 0 0 0

0 0 V µ(St) 0

V d(St) 0 0 0

0 V g(St) 0 0

0 0 V µ(St) 0

0 0 0 V b(St)




.

where V x(St) = St
√
V x + (1− St)

√
V xδx, x = d, b, g, µ.
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B.2 Prior distributions

Let θ denote the full set of model parameters, i.e. θ = (ρj , α
x
j , φ

x
j , V

y, δy), j = 1, 2, x = g, µ,

y = d, b, g, µ, and π = (π00, π01) the vector of transition probabilities to be estimated (the

remaining probabilities satisfy π10 = 1− π00, and π11 = 1− π01). We assume:

A0. All parameters in θ are a priori independent, and θ is independent from π.

Furthermore we elicitate the following densities:

ρj ∼ N(mρ, sρ)1A, j = 0, 1.

αxj ∼ N(mαx , sαx), j = 0, 1, x = g, µ.

φxj ∼ N(mφx , sφx), j = 0, 1, x = g, µ.

V y ∼ IG(mV x , sV x), y = d, g, µ, b.

δy ∼ B(mδx , sδx)1A, y = d, g, µ, b.

π ∼ Dirichlet(a1,a2).

where N(m, s)1A is the Gaussian distribution with mean m and variance s, defined over

A ⊂ <, IG(m, s) is the inverted gamma distribution with mean equal to m/(s − 2) and

variance 2m2/((s − 2)2(s − 4)) (see Bauwens et al., 1999), and B(m, s)1A is the (shifted)

beta distribution with support A ⊂ <. Since the number of states of the Markov process

is two, assuming a Dirichlet distribution for π is equivalent to elicitate independent Beta

distributions for p00 and p01. Table B.3 reports the mean, standard deviation, and the

extremes of the support A, specified in the empirical exercise.

The bounds on (ρ0, ρ1) are imposed to identify collapsing and surviving regimes, those on

(φx0 , φ
x
1) are imposed to enforce stationarity, and the bounds on δy impose a larger variance

for the collapsing regime. The priors on π00 and π01 assume highly persistent states. The

idea is to have a low volatility for the S sequence. The parameter p̄d that appears in (9) is

set to the time series average of pdt.
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Table B.3 Prior distributions

type mean sd lb ub

ρ0 N 0.87 0.01 0 0.95

ρ1 N 1.15 0.01 1.05 1.25

αxj N 0 0.05 −∞ ∞
φxj N 0.8 0.05 0 .99

V y IG 0.001 0.001 0 ∞
δy B 34 17.64 1 100

π00 B 0.96 0.04 0 1

π01 B 0.04 0.04 0 1

Notes: j = 0, 1, x = g, µ, y = d, g, µ, b, sd denotes standard deviation, lb and ub denote the extremes of the
support.

B.3 Posterior distributions

For any variable wt let w denote the vector w = (w1, · · · ,wT). In order to derive the

MCMC scheme which delivers draws from the posterior distributions p(θ, π,S, ξ|y), we rely

on the following assumptions:

A1. Shocks are independent and Gaussian: ut
iid∼ N(0, I).

A2. St is a Markov process with transition probabilities πij ≡ Pr(St = i|St−1 = j),

i, j = 1, 2.

A3. The system matrices at, Ft, and Rt are known function of the model parameters

θ and of the contemporaneous variable St only.

A4. Given St, the matrices at, Ft, and Rt, do not depend on the transition probabil-

ities π.

As underlined in A1 we focus on conditionally Gaussian state-space models. Assumption A2

restricts the dynamics of the discrete latent variables to Markov processes. Assumptions A3

and A4 are standard hypothesis that help simplifying the MCMC simulations. Furthermore

we allow the matrix Ft to have real eigenvalues greater than one. This circumstance is

tackled by the diffuse Kalman filter initialisation put forward by Koopman (1997).
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Samples from the joint posterior distribution p(θ, π,S, ξ|y) are obtained using the factor-

ization:

p(θ, π,S, ξ|y) = p(ξ|θ, π,S,y)p(θ, π,S|y)

Posterior samples of the state vector ξ are drawn off-line using the simulation smoother

proposed by Durbin and Koopman (2002). Samples from p(θ, π,S|y) are obtained with the

following Gibbs scheme:

p(θ|S, π,y), Pr(S|θ, π,y), p(π|θ,S,y)

Assumptions A0 and A4 imply that the first full conditional verifies:

p(θ|S, π,y) ∝ p(y|S, θ) p(θ)

The conditionally Gaussian hypothesis A1 makes possible the evaluation of the augmented

likelihood p(y|S, θ) by Kalman filtering (see Kalman, 1960). For non-stationary state vari-

ables, diffuse initial conditions are handled as in Koopman (1997). For stationary state

variables say ξ∗t , the recursions are initialised using the unconditional mean and covariance

matrix E(ξ∗1 |θ,S) and V (ξ∗1 |θ,S). The unconditional covariance matrix of the stationary

elements of the state vector is calculated as in Kitagawa (1977). Draws of θ are obtained one

parameter at-a-time from the full conditional distribution p(θi|θ−i,S,y) using the stepping

out slice sampler proposed by Neal (2003).

The S-sequence is drawn with the multi-move adaptive MH sampler given in Fiorentini

et al. (2014) which reduces chain autocorrelation when the discrete latent variables are

conditionally dependent. It samples St in blocks: given a block length h, the multi-move

sampler draws from Pr(St,St+1, · · · ,St+h−1|S−t,··· ,t+h−1, θ, π,y). This scheme yields the

full S sequence marginally to ξ in O(T ) operations.

It remains to show the sampler of π given S, θ, and y. Assumptions A0 and A4 imply that
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given S, π does not depend on θ and y: p(π|θ,S,y) ∝ Pr(S|π)p(π). By factorizing we get:

p(π00, π01|S) ∝ Pr(S|π00, π01)

1∏

k=0

p(π0k)

∝ Pr(S1|π00, π01)
T∏

t=2

Pr(St|St−1, π1, π2)
1∏

k=0

p(π0k)

∝ Pr(S1|π00, π01)
1∏

k=0

T∏

t∈Ik
Pr(St|St−1 = k, π0k)p(π0k)

where Ik = {t ≥ 2 : St−1 = k}. The term
∏1
k=0

∏T
t∈Ik Pr(St|St−1 = k, π0k)p(π0k) is pro-

portional to the product of independent Dirichlet distributions. Under the assumption

π ∼ Dirichlet(a1, a2), the full conditional p(π|S) is a Dirichlet distribution with hyperpa-

rameters (α∗1, α
∗
2) such that:

α∗j = αj +
T∑

t=1

1(St=j), j = 1, 2

where 1(·) is the indicator function.

To remove dependence on the initial condition S1, the term
∏1
k=0

∏T
t∈Ik Pr(St|St−1 =

k, π0k)p(π0k) is taken as proposal in a MH step with acceptance probability given by

min{1,Pr(S1|π∗)/Pr(S1|π}, where π∗ is the candidate vector and π is the previously sam-

pled value.

In all empirical exercises reported in the main text we record ten thousand draws after

descanting the five hundred from the scheme outlined above. Estimates of the unobserved

components ξt, t = 1, · · · , T are obtained as the average (1/G)
∑G

g=1 ξ
g
t . These averages are

estimates of the conditional expectation E(ξt|y). As such they take into account parameter

uncertainty.

To illustrate the uncertainty incorporated in the estimate, we apply fan charts (blue fan)

to display the non-fundamental component. The differing layers of the fan represent the

underlying percentiles. To improve the interpretability of these charts, the 10 and 90 percent

confidence intervals are shown in the form of dashed black lines. Further, the uncertainty

at a specific point in time is illustrated by using so called rain-cloud plots. Based on the
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estimated values at one point in time, the kernel density is calculated for each portfolio.

Below, the estimates from the draws are plotted in one band with a box plot overlaying

the observations. The y-data doesn’t have a meaning to these plots. The box defines the

median as well as the lower and upper quartiles, while the whiskers define the minimum

and maximum which are the lower/upper quartiles minus/plus the interquartile range.
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C Additional results

C.1 Detailed estimation results for the European composite portfolio

The figure below shows kernel estimate of posterior distribution of model parameters to-

gether with the relative prior distribution (red-dashed).

Figure C.2 Prior and posterior distributions, European market portfolio
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Notes: The graph illustrates prior (red) and posterior (blue) distributions for all estimated parameters for the Euro-
pean market portfolio. The sample span ranges from February 2005 to January 2022.
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Figure C.3 Dividends and expected dividends, European market portfolio
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Notes: The graph reports the dividend growth rate data (dashed) and the expected dividend growth rates (blue).
Shaded areas describe periods of EU-27 negative quarterly real GDP growth. The sample starts in February 2005
and ends in January 2022.
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Table C.1 reports the lag(k)-autocorrelation (k = 1, 10, 100) and the inefficiency factor (IF)

of the draws generated by our MCMC scheme used to estimate features of the posterior

distribution of model parameters. The inefficiency factor is defined as follows:

IF = 1 + 2

L∑

k=1

ωkρk (C.14)

with ρk being the lag-k sample autocorrelation of a given parameter, ωk the Parzen-weights,

and L=500 the maximum lag length.

Table C.4 Autocorrelations and ineffieciency factors of posterior draws.

1 10 100 IF

αg0 0.853 0.323 0.003 16.081

αg1 0.981 0.846 0.204 96.322

αµ0 0.934 0.576 0.102 62.315

αµ1 0.987 0.886 0.277 117.185

ρ0 0.786 0.371 0.098 45.122

ρ1 0.312 0.019 0.009 2.639

φg0 0.529 0.028 0.015 7.018

φg1 0.495 0.053 -0.004 6.452

φµ0 0.919 0.586 0.150 69.047

φµ1 0.770 0.325 0.084 35.570

V g 0.711 0.250 0.071 32.428

δg 0.642 0.199 0.073 30.342

V µ0 0.485 0.023 0.003 5.998

δµ 0.623 0.328 0.098 43.011

V d0 0.739 0.367 0.086 41.630

δd 0.431 0.050 -0.007 5.368

V b0 0.445 0.027 0.007 2.470

δb 0.361 0.021 0.012 5.332

b 0.123 0.045 0.006 6.043
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Figure C.4 Unobservable states
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Notes: The graphs illustrate the estimated unobservable states. Shaded areas describe periods of EU-27 negative
quarterly real GDP growth. The sample starts in February 2005 and ends in January 2022.
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Figure C.5 Innovations
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Notes: The graphs illustrate the model innovations yt−E(yt|=t−1). Shaded areas describe periods of EU-27 negative
quarterly real GDP growth. The sample starts in February 2005 and ends in January 2022.
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C.2 Contrasting non-fundamental components

Figure C.6 Contrasting non-fundamental components across market segments

Notes: The non-fundamental component is expressed in percentage of the total price. The boundaries of the boxplot
describe the second and third quartile.
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C.3 Comparison with a naive model

To asses the robustness of our baseline results we compare them with that of a model

without Markov switching mechanism where the non-fundamental component evolves as a

random walk. This model is described by the observational equations:

∆divt = gt−1 + ed

pdt = pdft + bt

The dynamics of the latent variables are now given by:

pdft = (κ+ αg − αµ)/(1− ρ)− (µt − αµ)/(1− ρφµ) + (gt − αg)/(1− ρφg)

bt = bt−1 + ε∗b

gt = αg + φg(gt−1 − αg) + eg

µt = αµ + φµ(µt−1 − αµ) + eµ

The shock (εd, εg, εµ, εb) are uncorrelated white noises with variances (V d, V g, V µ, V b). The

parameters (κ, ρ, αµ) are calibrated on the basis of the log gross return time series which is

computed by eq (1)). To the rest of model parameters a flat prior was assigned. Figure C.7

illustrates the comparison between the unobservable states for the market portfolio. The

results suggest that the Markov-switching model provides a more conservative estimate of

the bubble, or conversely, a better fit of varying fundamentals to the observable data. As

indicated in Figure C.8 also the uncertainty around the estimate appears to be smaller in the

Markov-switching model as compared to a model where the non-fundamental is modelled

as a random walk. The findings support the application of a Markov-switching model in

this context.
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Figure C.7 Unobservable states European market portfolio, Markov-switching bubble pro-
cess (black), random walk bubble process (blue), data (dashed).
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Figure C.8 Posterior mean, 10-th and 90-th percentile (dashed) for the non-fundamental
component in model with Markov-switching bubble process (top panel) and in model with
a random walk bubble process (bottom panel).
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Notes: The non-fundamental component is expressed in terms of percentage points of the total price-dividend ratio.
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