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Abstract
This paper characterizes the stationary equilibrium of a continuous-time neoclas-

sical production economy with capital accumulation in which households can insure
against idiosyncratic income risk through long-term insurance contracts. Insurance
companies operating in perfectly competitive markets can commit to future contrac-
tual obligations, whereas households cannot. For the case in which household labor
productivity takes two values, one of which is zero, and where households have log-
utility we provide a complete analytical characterization of the optimal consumption
insurance contract, the stationary consumption distribution and the equilibrium aggre-
gate capital stock and interest rate. Under parameter restrictions, there is a unique
stationary equilibrium with partial consumption insurance and a stationary consump-
tion distribution that takes a truncated Pareto form. The unique equilibrium interest
rate (capital stock) is strictly decreasing (increasing) in income risk. The paper pro-
vides an analytically tractable alternative to the standard incomplete markets general
equilibrium model developed in Aiyagari (1994) by retaining its physical structure, but
substituting the assumed incomplete asset markets structure with one in which limits
to consumption insurance emerge endogenously, as in Krueger and Uhlig (2006).
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1 Introduction

In this paper we provide a fully micro-founded, analytically tractable general equilibrium
macroeconomic model of neoclassical investment, production and the cross-sectional con-
sumption distribution in which the limits to insurance to idiosynchratic income risk are
explicitly derived from contractual frictions.

With this model we seek to integrate two foundational strands of the literature on
macroeconomics with household heterogeneity. The first strand has developed and applied
the standard incomplete markets model with uninsurable idiosyncratic income shocks and
neoclassical production, see Bewley (1986), Imrohoroglu (1989), Uhlig (1990), Huggett
(1993) and Aiyagari (1994). In that model, households can trade assets to self-insure
against income fluctuations, but these assets are not permitted to pay out contingent on
a household’s individual income realization, thereby ruling out explicit insurance against
income risk. The second branch is the broad literature on recursive contracts and endoge-
nously incomplete markets which permits explicit insurance but in which the extent of such
insurance is restricted by informational or contract enforcement frictions. Specifically, in
this paper we incorporate dynamic insurance contracts offered by competitive financial
intermediaries, as analyzed in Krueger and Uhlig (2006), into a neoclassical production
economy. Financial intermediaries can commit to long-term financial contracts, but house-
holds cannot.

As a result we make three contributions: one substantive, one methodological and one
technical in nature. On the substantive side, we provide a macroeconomic model with
household heterogeneity that links the accumulation of the aggregate capital stock in the
economy to the insurance provided by financial intermediaries to households. In practice,
capital held for financing insurance commitments is a substantial part of the capital stock.
In our model we make the arguably extreme assumption that this accounts for all of it.1

On the methodological side we fully analytically (as well as numerically) characterize a
dynamic optimal insurance model with one-sided limited commitment and production as
well as capital accumulation. On the technical side, we extend the discrete-time analysis
of recursive dynamic contracting problems in Marcet and Marimon (2019) to a continuous
time setting as well as establish the appropriate mathematical framework and key results,
see Appendix A and Online Appendices B, C and D.

1One can argue that models of the Aiyagari-Huggett-Uhlig variety also assume that insurance against
idiosyncratic income fluctuations accounts for the entire holdings of capital: agents with constant income and
the same discount factor would not accumulate capital and financial institutions are absent in these models.
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In a seminal paper, Aiyagari (1994) analyzed an economy in which households self-
insure against idiosyncratic income fluctuations by purchasing shares of the aggregate cap-
ital stock. Variants of the model differ in the set of assets households can trade, but by
assumption agents do not have access to financial instruments that provide direct insurance
against the idiosyncratic income risk they face, despite the fact that such insurance would
be mutually beneficial, given the underlying physical environment. A large literature is now
building on that model to link microeconomic inequality to macroeconomic performance,
including applied policy (reform) analysis.2 Any analysis of welfare in such models then
necessarily comes with the caveat that households may already be able to do better for
themselves if only the model builder allowed them to do so. As parameters or policies
change, one may be concerned that these missing gains from trade shift, too.3 Alternative
general equilibrium workhorse models are therefore needed, in which households are al-
lowed to pursue all contractual possibilities, limited only by informational or commitment
constraints. The purpose of this paper is to provide one such alternative model.

The contractual friction in our model arises from the inability of households to commit
to future obligations implied by full-insurance risk sharing contracts. We postulate financial
markets in which perfectly competitive intermediaries offer long-term insurance contracts
to households. These financial intermediaries receive all incomes from a customer that
has signed a contract, and can commit perfectly to future state-contingent consumption
payments. Competition among intermediaries implies that the present discounted value of
profits from these contracts is zero at the time of contract signing. The crucial friction that
prevents perfect consumption insurance in the model is that households, at any moment,
can costlessly switch to another intermediary, signing a new contract there. That is, we
model relationships between financial intermediaries and private households as long-term
contracts with one-sided limited commitment: the intermediary is fully committed, the
household is not. This structure of financial markets is identical to the one assumed in the
discrete-time, partial equilibrium model of Krueger and Uhlig (2006), which in turn builds
on the seminal work of Harris and Holmstrom (1982), Thomas and Worrall (1988), Kehoe
and Levine (1993, 2001), Phelan (1995), Kocherlakota (1996) and Alvarez and Jermann
(2000), and in economies with storage, by Abraham and Laczo (2018).

In our previous paper, and in accordance with the contract theory literature, we showed

2See surveys by Heathcote, Storesletten and Violante (2011) and Krueger, Mitman and Perri (2016, 2017).
3A recent and general approach to assessing welfare consequences in models with heterogeneous agents

is contained in Dàvila and Schaab (2022b)
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that the one-sided limited commitment friction induces contracts with payments from the
household to the intermediary that are front-loaded: when income is high, the household
effectively builds up a stock of savings with the intermediary, which then finances the in-
surance offered by the intermediary against low income realizations down the road. In this
paper we embed these contracts and the implied asset demand by the intermediaries in a
neoclassical production economy, as in Aiyagari (1994). The contractual savings implied
by back-loaded insurance contracts fund the aggregate capital stock of the economy. Fi-
nancial intermediaries buy shares of the capital stock to finance their future liabilities from
the insurance contracts they have signed with households. Aggregate capital itself is ac-
cumulated and used together with inelastically supplied labor in an aggregate neoclassical
production function by a competitive sector of production firms.

Households supply labor inelastically to these firms, but as in Bewley (1986), Imro-
horoglu (1989), Uhlig (1990), Huggett (1993) and Aiyagari (1994), their labor productiv-
ity and thus earnings are subject to idiosyncratic risk. This risk induces household insur-
ance needs and thus generates a savings motive, which in turn finances the capital stock.
Our model therefore provides a third (and intermediate) alternative neoclassical production
economy with capital, relative to the self-insurance framework of Aiyagari (1994) and the
full-insurance (representative agent) framework.

As a methodological innovation to the limited commitment general equilibrium litera-
ture we describe our model in continuous time. This is useful since an optimal insurance
contract is akin to an optimal stopping problem, and the use of continuous time avoids inte-
ger problems (the optimal stopping time falling in between two periods) that arise in a dis-
crete time setting. In order to obtain our sharp analytical characterization of the equilibrium
for a full understanding of the forces at work, we focus on the case where households have
logarithmic utility and labor productivity can take only two values, one of which is zero.
For this case, we provide a complete analytical characterization of the optimal consumption
insurance contract as well as the stationary consumption distribution. Under restrictions on
the parameters, we show that there is a unique equilibrium that features partial consump-
tion insurance. We provide explicit closed-form expressions for this equilibrium, including
the steady-state capital stock and its rate of return. The stationary consumption distribu-
tion is also available in closed form, and we show that this distribution has a Pareto form,
truncated by an upper mass point. Comparative statics with respect to the deep parameters
of the model (and, specifically, the parameters determining income risk, preferences and
production technologies) deliver unambiguous results. We submit that this full analytical

3
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characterization of a stationary equilibrium is an additional, attractive benefit of our model,
and a welcome methodological advance, noting that Aiyagari-type models (as standard
limited commitment economies with a continuum of households, as in Krueger and Perri,
2006) and Broer, 2013) typically require numerical solutions.

Our results complement work on and provide a foundation for understanding proper-
ties of richer structures, which one may confront directly with the data, but are likely to
be less tractable. The paper shares that ambition with the characterization of the two-state
continuous-time Aiyagari model in Achdou et al. (2022). Like us, they aim for a deeper
understanding of these models rather than an empirically appealing quantification. As here,
they characterize the equilibrium by two differential equations: one governing the optimal
solution of the consumption insurance problem, and one characterizing the associated sta-
tionary distribution. They derive an analytical characterization of the wealth distribution,
given the savings function. While the latter cannot be characterized analytically there,
we achieve complete characterization in this paper, and thus can proceed all the way to
provide closed-form solutions for all equilibrium objects. Methodologically, the papers
complement each other by characterizing equilibria in the same physical environment, but
under two fundamentally different market structures.

In principle, contracts can depend on the entire history up to the present. As a tech-
nical innovation, we thus provide a mathematical framework and appropriate language to
describe histories and measurability in continuous time (see Online Appendix C) and then
proceed to expand the discrete-time analysis of recursive dynamic contracting problems in
Marcet and Marimon (2019) to a continuous time setting (see Appendix A.1 and Online
Appendix D.2). This is in contrast to the recursive representation with current capital and
productivity as the state space in Achdou et al. (2022).4 We show how to study expected
payoffs by splitting the future into parts without a state change as well as the first state
change, and use it to establish a number of non-trivial properties as well as the Hamilton-
Jacobi-Bellman equations, see Appendix A.4 and Online Appendices D.4 and D.5. While
tailored to the specific environment at hand, these techniques should prove considerably
useful beyond the model studied here. A road map to these technical contributions is in
Online Appendix B.

4We derive rather than assume a state space representation, and establish key properties without it.
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1.1 Relation to the Literature

As discussed above, our broad aim in this paper is to connect the dynamic contracting liter-
ature with income risk and limited commitment to the quantitative general equilibrium lit-
erature in macroeconomics. Our dynamic limited commitment risk sharing contract model
builds on the theoretical work characterizing optimal contracts in such environments. Es-
pecially relevant is the subset of the literature that has done so in continuous time.

As highlighted above, the paper by Achdou et al. (2022) is most closely related to
our work. Zhang (2013) studies a consumption insurance model with limited commitment
similar to that in Krueger and Uhlig (2006), but permits income to be a serially corre-
lated finite state Markov chain, rather than a sequence of iid random variables. He also
allows the household’s outside option to be a general function of the current income state,
rather than simply autarky. The author derives the optimal consumption insurance contract.
Grochulski and Zhang (2012) characterize the optimal contract in continuous time, under
the assumption that the market return equals the discount rate, the outside option is autarky,
and the income process follows a general geometric Brownian motion. The work by Miao
and Zhang (2015) shares related results with Grochulski and Zhang (2012).

Like us, Dàvila and Schaab (2022a) generalize Marcet and Marimon (2019) to continuous-
time heterogeneous-agent settings, but in a rather different context. They introduce “time-
less penalties” in order to analyze Ramsey optimal policies. Our explicit derivation of the
cumulative Lagrange multipliers complements their formulation and can aid in providing a
foundation. Overall, our approach is related in spirit to recent approaches such as Achdou
et al (2022), Alvarez and Lippi (2022) and Alvarez, Lippi and Souganidis (2022) who ex-
plicitly characterize equilibrium quantities by pushing far the analytics of aggregating the
continuous-time dynamics of heterogeneous actors and exploring mean field games.

Turning to general equilibrium treatments, in the context of the sovereign debt and de-
fault literature, Hellwig and Lorenzoni (2009) and the generalization in Martins-da-Rocha
and Santos (2019) consider an endowment economy, in which two agents optimally share
their risky income stream over time, subject to contractual constraints. The market return
in their economy is shown to be zero under appropriate assumptions. Gottardi and Kubler
(2015) study an endowment economy with finitely many (types of) agents and complete
markets, but under the assumption that the short sales of the Arrow securities have have to
be collateralized. Default on debt results in the loss of the collateral, but as in our work
there is no additional punishment. The focus of their work is to study the existence and the
efficiency properties of equilibria in their model without capital. Although our focus is dif-
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ferent, the long-term risk-sharing consumption allocations we characterize and then embed
in a neoclassical production economy with capital accumulation can also be decentralized
as competitive equilibria in a model where households trade a full set of Arrow securities
and physical capital, and where the short sales of the Arrow securities have to be collater-
alized by capital, as in the market structure of Gottardi and Kubler (2015). We explore this
formulation in Ando, Krueger and Uhlig (2022) and Krueger, Li and Uhlig (2022).

On the applied side, there is now considerable evidence that individual consumption
smoothing is larger than what standard approaches of self-insurance via asset savings would
generate. In a benchmark contribution, Blundell, Pistaferri and Preston (2008) have shown
that there is a fairly low pass-through of income shocks to consumption. Using improved
methods and data as well as alternative approaches, their results have been largely con-
firmed by the more recent literature such as Arellano, Blundell and Bonhomme (2017),
Eika et al. (2020), Chatterjee, Morley and Sigh (2020), Braxton et al. (2021), Com-
mault (2021), and Balke and Lamadon (2022). Thus, alternatives to the conventional
self-insurance approach are needed. Our paper connects to this literature by allowing for
endogenously incomplete insurance against income risk.

One interpretation of the contractual arrangements of our paper is that of firms that
provide workers with long-term employment-wage contracts. A recent literature, building
on the work of Harris and Holmstrom (1982), emphasizes that firms provide insurance to
its workers against idiosyncratic productivity fluctuations. Lamadon (2016) and Balke and
Lamadon (2022) have calculated the optimal within-firm insurance mechanism, in the pres-
ence of a variety of sources of risk, including firm-specific risk, worker productivity risk
and unobservable effort. Guiso, Pistaferri and Schivardi (2005) also argue, empirically, that
the insurance of worker productivity by firms is an important mechanism to insulate work-
ers from idiosyncratic shocks. Finally, Saporta-Eksten (2014) shows that wages are lower
after a spell of unemployment, which he interprets as a loss in productivity. In the context
of our model this observation can also be rationalized as part of the optimal consumption
insurance contract, in the event that the productivity of the worker has dropped temporarily.

In Section 2 we set out the model, and Section 3 characterizes the optimal risk-sharing
contract. Section 4 derives the associated stationary consumption distribution and Section
5 characterizes the stationary general equilibrium. We contrast this stationary equilibrium
with one emerging in the standard incomplete markets model in Section 6. Section 7 dis-
cusses the possibility of multiple stationary equilibria when we depart from log-utility.
Section 8 concludes. The Appendix and Online Appendices provide the formal analysis.

6
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2 The Model

2.1 Preferences and Endowments

Time is continuous. There is a population of a continuum of infinitely lived agents of mass
1. Agents have a strictly increasing, strictly concave and twice continuously differentiable
period utility function u : IR++ → IR and discount the future at rate ρ > 0. Expected
lifetime utility of a newborn household is given by

E

[∫ ∞
0

e−ρtu(c(t))dt

]
.

For our analytical results, we impose that

u(c) = log(c)

Labor productivity zit of an individual agent i at time t is assumed to follow a two-
state Markov process that is independent across agents. Productivity can be either high,
zit = ζ > 0 or zero zit = 0. Let Z = {0, ζ}. The transition from high to low productivity
occurs at rate ξ > 0, whereas the transition from low to high productivity occurs at rate
ν > 0. Since labor income will equal labor productivity times a common wage w for each
household, we will use the terms (labor) productivity and income interchangeably.5

Given the stochastic structure of the endowment process, the share of households with
low and high income is equal to

(ψl, ψh) =

(
ξ

ξ + ν
,

ν

ξ + ν

)
We assume that newborn households draw their productivity from the stationary income
distribution and that the average labor productivity in the economy is equal to 1. Thus we
assume that

ν

ξ + ν
ζ = 1. (1)

5We assume that households with low labor productivity also have some nontradable endowment χ > 0
that they can consume if they do not sign up for a consumption risk-sharing contract. This assumption avoids
the complication that individuals who initially have not yet received the high income realization at least once
and thus will not be provided with consumption insurance (as we will show) are forced to consume 0. Denote
the utility from consuming the nontradable endowment by u = u(χ) > −∞. In the steady-state equilibrium
the mass of these individuals will be zero, of course, and thus this assumption is irrelevant for the remainder
of this paper focusing on long-run stationary equilibria.
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2.2 Technology

There is a competitive sector of production firms that uses labor and potentially capital to
produce the final output good according to the Cobb-Douglas production function

AF (K,L) = AKθL1−θ.

where θ ∈ (0, 1) denotes the capital share. Production firms seek to maximize profits,
taking as given the market spot wage w per efficiency unit of labor and the market rental
rate per unit of capital. Capital accumulation is linear and depreciates at rate δ. There is a
resulting equilibrium rate of return or interest rate r for investing in capital. We dropped the
subscript t to economize on notation, since we shall concern ourselves only with stationary
equilibria in which aggregate variables are constant.

There is a competitive sector of risk-neutral intermediaries who seek to maximize prof-
its. Agents seek to insure themselves against these income fluctuations with financial in-
termediaries. However, the commitment is one-sided only: while the intermediary can
commit to the contract for the entire future, agents are free to leave the contract at any time
they please without punishment and sign up with the next intermediary. Intermediaries
compete for agents, and do not have resources on their own. Similar to Krueger and Uhlig
(2006), these assumptions will imply that newborn agents will have to wait until the first
time they receive the high income before signing an insurance contract. They then provide
their chosen intermediary with a stream of “insurance premium payments”while in the high
income state, to finance subsequent payments for a potential “dry spell” of low productiv-
ity, until they transit to high income again. We assume that the law of large numbers applies
to each individual intermediary or, alternatively, that there is full mutual insurance among
intermediaries, so that intermediaries are not exposed to any risk The intermediaries invest
the premium payments in capital and therefore discount future streams of payments and
incomes at the rate of return r on capital.

2.3 Timing of Events

At time zero, a newborn household first draws labor productivity z from the stationary in-
come distribution and then signs a long-term consumption insurance contract with one
of the many competing financial intermediaries, delivering lifetime utility U out(z). At
any subsequent instant t > 0, first the current labor productivity z is realized from the

8
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household-level Markov process. The household then has the option of sticking with its
current intermediary or signing up with another intermediary, in the latter case receiving a
contract delivering lifetime utility U out(z). Consumption is then allocated to the household
according to the consumption insurance contract this household has signed.

2.4 Stationary Equilibrium

Intermediary contracts promise some lifetime utility U for the household from delivering
a stochastic stream of future consumption. Given U and the current labor productivity
z of the household, the profit maximization objective of intermediaries is equivalent to
minimizing the net present value V (z, U) of the contract costs, i.e., to minimize the net
present value of the difference between the household’s stream of consumption and its
income. The income is given by the labor productivity z (τ) at future dates τ multiplied
by the wage w. It will likewise be convenient to scale consumption by the wage level. In
slight abuse of notation, let c (τ)w denote the consumption of the household at date τ . It
is an adapted process, that is, it may depend on events known at date τ . In particular, it
will depend on the history of the productivity process z(s), s ≤ τ for that agent, up to and
including τ . In Online Appendix C, we provide precise notation to express this history
dependence, but skip it in the main text for ease of notation. In designing the contract, the
intermediary needs to take into account that the household will leave whenever residual
lifetime utility drops below the outside option U out(z) that is available to the agents when
signing a new contract with a competing intermediary.

Definition 1. For fixed outside options U out(z), with z ∈ Z, a starting date t and a fixed

wagew and rate of return on capital or interest rate r, an optimal consumption insurance
contract c(τ ; z, U) and the cost function V (z, U) solve

V (z, U) = min
〈c(τ)〉≥0

E

[∫ ∞
t

e−r(τ−t) [wc(τ)− wz(τ)] dτ

∣∣∣∣ z(t) = z

]
subject to the promise-keeping constraint

E

[∫ ∞
t

e−ρ(τ−t)u(wc(τ))dτ

∣∣∣∣ z(t) = z

]
≥ U (2)

9
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and the limited commitment constraints

E

[∫ ∞
s

e−ρ(τ−s)u(wc(τ))dτ

∣∣∣∣ z(s)

]
≥ U out(z(s)) for all s > t (3)

for all τ ≥ t, for all z ∈ Z and all U ∈
[
U out(z), ū

ρ

)
.

Note that the stationary structure of the model ensures that the optimal consumption
insurance contract does not depend on calendar time, but rather only on the income z with
which the household starts the contract. Moreover, there will never be a reason to leave
the current contract and take the outside option, restarting a contract at some particular
date. For the equilibrium definition, we therefore implicitly confine ourselves to contracts
starting at date t = 0.

Definition 2. A stationary equilibrium consists of outside options {U out(z)}z∈Z , consump-

tion insurance contracts c(τ, z, U) : R+ × Z ×
[
U out(z), ū

ρ

)
→ R+ and V : Z ×[

U out(z), ū
ρ

)
→ R, an equilibrium wage w and interest rate r and a stationary consump-

tion probability density function φ(c) such that

1. Given {U out(z)}z∈Z and r, the consumption insurance contract c(τ, z, U), V (z, U)

is optimal in the sense of definition 1.

2. The outside options lead to zero profits of the financial intermediaries: for all z ∈ Z

V (z, U out(z)) = 0.

3. The interest rate and wage (r, w) satisfy

r = AFK(K, 1)− δ (4)

w = AFL(K, 1) (5)

4. The goods market clears ∫
wcφ(c)dc+ δK = AF (K, 1). (6)

10
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5. The capital market clears

w
[∫
cφ(c)dc− 1

]
r

= K (7)

6. The stationary consumption probability density function is consistent with the dy-

namics of the optimal consumption contract as well as the stochastic structure of

birth and death in the model.

Several elements of this definition are noteworthy. The first two items formalize the no-
tion that financial intermediaries compete for households by offering optimal consumption
insurance contracts (item 1), and that their profits are driven to zero by perfect competition
(item 2). These equilibrium requirements are identical to those in the endowment economy
of Krueger and Uhlig (2006), but accounting for the fact that the current model is cast in
continuous time. Whereas item 3 contains the standard optimality conditions of the repre-
sentative production firm, the statement of the capital market clearing condition (7), as well
as the inclusion of both the capital market clearing condition and the goods market clearing
condition (6) require further discussion.

In the capital market clearing condition (7), the right-hand side K = Kd is the demand
for capital by the representative firm. The numerator on the left-hand side is the excess
consumption, relative to labor income, of all households, that is, the capital income required
to finance the consumption that exceeds labor income. Dividing by the return to capital r
gives the capital stock that households, or financial intermediaries on behalf of households,
need to own to deliver the required capital income. Thus we can think of

Ks =
w
[∫
cφ(c)dc− 1

]
r

(8)

as the supply of capital by the household sector, intermediated through financial markets
by the intermediaries. By restating the capital market clearing condition as

Ks(r) = Kd(r)

where Ks(r) is defined in (8) and Kd(r) is defined through (4) we can provide a graphical
analysis of the existence and uniqueness of the stationary equilibrium in the (K, r) space,
analogously to the well-known figure from Aiyagari (1994) for the standard incomplete
markets model.
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Finally, we note that as long as r 6= 0, the usual logic of Walras’ law applies and one of
the two market clearing conditions is redundant. To see this, note that the right-hand side
of equation (6) can be written as

AF (K, 1) = AFL(K, 1) + AFK(K, 1)K

and from equations (4) and (5) it follows that

AF (K, 1) = w + (r + δ)K.

Using this in equation (6) and rearranging implies, for r 6= 0, the capital market clearing
condition (7). Thus for all r 6= 0 we can use either of the market clearing conditions
in our analysis. The case r = 0, however, will require special attention, and we will
argue in Section 5 that even though the goods market clears for r = 0 under fairly general
conditions, the capital market generically does not, indicating that a) r = 0 is generically
not a stationary equilibrium interest rate and b) at r = 0 we need to study both the goods
and the capital market clearing conditions when analyzing a stationary equilibrium.

In order to do so, in the next sections we now aim to characterize the entire steady-state
equilibrium, including the stationary consumption distribution whose cumulative distribu-
tion function we denote by Φ (with associated probability density function φ). First, we
characterize the optimal consumption contract under various assumptions on the relation-
ship between the constant interest rate r and the constant time discount rate ρ of the house-
hold. Then we discuss aggregation and the equilibrium determination of interest rates.

3 The Optimal Risk-Sharing Contract

The nature of the optimal consumption insurance contract depends crucially on the re-
lationship between the subjective time discount factor ρ and the endogenous stationary
equilibrium interest rate r. We discuss the relevant cases in turn. First, we discuss the case
r = ρ, which will deliver a sharp and very simple characterization of the optimal con-
sumption contract that features full consumption insurance of the household after the first
instance of having received high income. We then analyze the case r < ρ, which will result
in partial consumption insurance, the relevant case for the general equilibrium of the model
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in a wide range of model parameterizations.6. We shall examine the range r ∈ (−δ, ρ] for
the equilibrium interest rate. In order to ensure that capital supply is well defined over that
range, we need the following assumption (see Online Appendix E.1.1).7

Assumption 1.
ξ > δ (9)

The key property of the optimal contract is that the limited commitment constraint is
binding for individuals with high productivity z = ζ , whereas the constraint is slack for
low-productivity agents and a standard complete markets Euler equation holds. For this
characterization, the following useful and intuitively appealing result is crucial. It says that
intermediaries have to offer, in equilibrium, a contract to high-productivity individuals that
yields higher lifetime utility than the one for low-productivity agents.

Lemma 1.
U out(ζ) > U out(0) (10)

The proof is in Appendix A.3 and Online Appendix E.1. The key idea of the proof is that
an agent with currently high productivity (and thus with higher expected lifetime income
transferred to the intermediary) can be provided with the contract of the low-productivity
agent, delivering the same utility and a profit to the principal, a contradiction to perfect
competition between (and, thus, zero profits of) the intermediaries.8

3.1 Full Insurance in the Long Run: ρ = r

We first characterize the optimal consumption insurance contract under the assumption
r = ρ, and for productivity z = ζ and outside option U out(ζ)), and then discuss the
relevance of other (z, U) combinations. A visual representation is provided in the left
panel of Figure 1.

6In our model we cannot a priori exclude the possibility of equilibria in which the real interest rate exceeds
the household time discount factor, and we analyze the optimal consumption contract under the assumption
that r > ρ, a case we call superinsurance, in Online Appendix G. There we also argue that this case cannot
result in a stationary general equilibrium.

7Ultimately, we only need that the equilibrium interest rate r∗ calculated in (36) satisfies r∗ > −ξ. The
exposition of the theory is more transparent with the stronger assumption in equation (9), though.

8The details of the construction of the contract are subtle and require the construction of a three-state
stochastic process in order to make starting a contract in the high and the low productivity state formally
comparable. There we also describe how the three-state process generates the two-state process z(s) assumed
throughout the main body of the paper.
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Figure 1: These two figures show the implied path for the optimal contract consumption,
given a sample path for productivity. If the agent always had (near) zero income in the past,
the agent will also consume (near) zero. Upon the first instance of high productivity, the
agent signs a long-term contract, surrendering part of his current income for consumption
insurance in the future. When r = ρ as in the left panel, consumption is then constant
forever. While productivity is high, consumption is also constant for r < ρ as shown in the
right panel, since an otherwise optimally declining consumption path would lead agents
to abandon the current contract and sign up with a new intermediary at a higher starting
consumption amount. When productivity switches to zero, consumption follows a standard
continuous-time Euler equation. These properties are established in Lemma 2.

Proposition 1. Suppose that ρ = r. In that case, the household consumes the nontradable

endowment cl = χ as long as zit = 0, and signs a consumption contract that has constant

consumption ch =
(

ρ+ν
ρ+ν+ξ

)
ζ and remains there forever the instant labor productivity rises

to ζ . Households born with income ζ immediately sign a contract and consume ch forever.

The formal proof is in Online Appendix E.2.1; here we give a heuristic derivation of the
main components of the contract. To do so, in what follows, let the wage-deflated cost of
the consumption insurance contracts be denoted by v = V/w. As further shorthand, denote
as

vl = V (0, U out(0))/w

vh = V (z, U out(ζ))/w

and let vhl denote the wage-deflated cost of a contract for the financial intermediary in
which the household had high income in some previous periods (and thus currently con-
sumes ch) but currently has productivity z = 0 and, thus, no labor income.
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Generally per Proposition 12 in Appendix A.4 or specifically per Corollary 3 in Online
Appendix E.2.1, the flow costs of the financial intermediary satisfy the Hamilton-Jacobi-
Bellman equations

rvl = cl + ν(vh − vl)

rvh = ch − ζ + ξ(vhl − vh)

rvhl = ch + ν(vh − vhl)

Due to perfect competition of financial intermediaries (item 2 of the equilibrium definition)
vh = vl = 0. Using this in the above equations to solve for (cl, ch, vhl) and imposing r = ρ

delivers:

cl = 0 (11)

ch =

(
ρ+ ν

ρ+ ν + ξ

)
ζ = ch(ρ) (12)

vhl =
ch

ρ+ ν
=

(
1

ρ+ ν + ξ

)
ζ (13)

Thus the optimal risk-sharing contract collects a net insurance premium

ζ − ch =

(
ξ

ρ+ ν + ξ

)
ζ

from households with high income realizations and uses it to pay consumption insurance
ch to those households that have obtained insurance (those with previously high income
realizations) and have currently low income. The expected net present discount value of this
insurance, recognizing that with Poisson intensity ν the household receives high income
and leaves the current insurance spell, is given by vhl in equation (13).

3.2 Partial Insurance: r < ρ

We now characterize the optimal consumption contract when r < ρ. A visual representa-
tion is provided in the right panel of Figure 1.

Proposition 2. Suppose r < ρ and

u(c) = log(c) (14)
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1. Whenever a household has high productivity, it consumes a constant wage-deflated

amount ch =
(

ρ+ν
ρ+ν+ξ

)
ζ.

2. When productivity switches to 0, consumption is continuous and subsequently drifts

down according to the full-insurance Euler equation

ċ(t)

c(t)
= r − ρ < 0 (15)

3. Let τ denote the time elapsed since productivity last switched from z = ζ to 0. Then,

c(τ) = che
(r−ρ)τ (16)

Equation (15) follows from (55) for the log-case σ = 1. Note that the proposition
implies that consumption jumps back up to ch upon a switch to high productivity, a property
established in the key lemma 2. The complete proof for a more general utility function
including the CRRA case, is in Online Appendix E.2.2.

We now again heuristically derive this result for logarithmic period utility. By perfect
competition, contract costs are zero when entering the contract with high income, vh = 0,

and similarly for entering the consumption contract with low income, vl = 0. Denote by
τ the time elapsed since having had the high productivity and by vhl(τ) the remaining
wage-deflated costs of the contract, at that point. Asymptotically, consumption c(τ) con-
verges to cl = 0, as τ → ∞ and as long as no switch back to high productivity occurs.
Generally per Proposition 12 in Appendix A.4 or specifically per Corollary 4 in Online
Appendix E.2.2, the Hamilton-Jacobi-Bellman equations characterizing the wage-deflated
costs in the high-productivity state, the low-productivity state prior to having had a high-
productivity realization, and after time τ since having had high productivity read as

rvh = ch − ζ + ξ(v(0)− vh) (17)

rvl = cl + ν(vh − vl) (18)

rvhl(τ) = c(τ) + ν(vh − vhl(τ)) + v̇hl(τ) (19)

with terminal condition
vhl(∞) = vl = 0.

Simplifying equations (17) to (19) again delivers cl = 0. As before cl = 0, and individ-
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uals with initially low income do not obtain any consumption insurance in the risk-sharing
contract. Insurance would require prepayment by the insurance company, and perfect com-
petition plus limited commitment on the household side implies that this prepayment cannot
be recouped later. The other two equations simplify to

ξvhl(0) = ζ − ch (20)

(r + ν)vhl(τ) = c(τ) + v̇hl(τ) (21)

The first equation states that in the case of high income, the household, as before in the
case where r = ρ, pays an insurance premium ζ − ch that has to compensate the financial
intermediary for the cost incurred during the low-income spell in which the losses for the
intermediary amount to vhl(0). This equation relates the two endogenous variables ch and
vhl(0) to each other.

Equation (21) is a linear ordinary differential equation and can be integrated using the
consumption path in (16) to obtain

vhl(τ) =
c(τ)

ρ+ ν
=
che

(r−ρ)τ

ρ+ ν
(22)

This result can be verified by differentiating (22) and verifying that it solves equation (21).
Additional details and results for the general CRRA case are provided in Online Appendix
E.2.2.

We can evaluate (22) at t = 0 to obtain9

vhl(0) =
ch

ρ+ ν
(23)

The optimal consumption path drifts downward at rate r−ρ from ch toward cl = 0. Thus the
entry consumption level ch fully characterizes the consumption contract. Using equation
(20) to substitute out vhl(0) in equation (23) delivers this consumption level as

ch =

(
ρ+ ν

ρ+ ν + ξ

)
ζ (24)

exactly as (12) in the full-insurance case. Notably, for logarithmic utility ch only depends

9Note that this cost v(0) is the counterpart to the insurance cost in equation (13) for the full-insurance
case; if r = ρ then v(0) = vhl where vhl was defined in (13).
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on exogenous parameters, but not the equilibrium interest rate r < ρ. This makes the
log-case especially tractable and does not hold true for general CRRA period utility.

We summarize the optimal consumption contract for the full-insurance and the partial-
insurance cases and for log utility in the following proposition.

Proposition 3. If r ≤ ρ and u(c) = log(c), then there exists a unique consumption level

ch =

(
ρ+ ν

ρ+ ν + ξ

)
ζ =

(
1

1 + ξ
ρ+ν

)
ζ = ch(ρ)

with the following properties:

1. Agents with currently high productivity receive the wage-deflated consumption ch.

2. Agents with currently low productivity, who switched from high productivity τ peri-

ods ago, receive the wage-deflated consumption

c(t) = che
(r−ρ)τ

3. ch is independent of the interest rate r, proportional to ζ , strictly decreasing in ξ and

strictly increasing in ρ+ ν.

Individuals who never had high income consume the nontradable endowment cl = χ until

the first occurrence of high income and then sign the consumption risk-sharing contract.

The proof is provided through the calculations above. Proposition 18 in Online Ap-
pendix E.2.2 provides the generalization to the CRRA case.10

4 The Invariant Consumption Distribution

In the previous section we have shown that the optimal consumption insurance contract
depends on the relationship between the endogenous market interest rate r and the subjec-

10Note that the expected present discounted value of the cost of the consumption contract is always finite
as equation (22) reveals. That the expected present discounted value of the revenue from the first phase of
the contract (when the agent has high productivity but consumes ch < ζ) remains finite requires that r > −ξ,
but this will be ensured with Assumption 1 in equilibrium.

Finally, note that optimal insurance contracts can also be characterized for the case in which the interest
rate exceeds the time preference rate. Online Appendix G argues that the optimal consumption contract has
the same features as the one for full insurance, but that consumption grows at rate r − ρ > after the first
time productivity turns high. We show in the Online Appendix that in this case no stationary consumption
distribution with finite aggregate consumption exists.
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tive discount factor ρ, which determines whether the contract is characterized by full or
partial consumption insurance. The risk-sharing contract in turn determines the long-run,
stationary consumption distribution, which we now derive.

4.1 Full Insurance in the Long Run: ρ = r

In this case, the optimal consumption contract has only two consumption levels, cl = 0 and
ch, as characterized in Section 3.1. Since individuals flow out of cl at positive rate ν and
there is no inflow to this consumption level, the stationary consumption distribution places
all mass φh = 1 on ch; in the long run, consumption of all individuals is constant at ch.

4.2 Partial Insurance: r < ρ

In Section 3.2 we characterized the optimal consumption contract under the parametric
restriction that r < ρ. We showed that all households with high income consume ch =(
ρ
r
· r+ν
r+ν+ξ

)
ζ, independent of the interest rate. Thus the stationary consumption distribu-

tion has a mass point at ch with mass φ(ch) = ν
ν+ξ

.

Households with currently low income have a consumption process that satisfies

ċ(t) = (r − ρ)c(t). (25)

Finally, since there is positive outflow out of consumption level cl = 0 at rate ν and no
inflow, the invariant consumption distribution has no second mass point at cl.

Proposition 4. On (0, ch) the stationary consumption distribution satisfies the Kolmogorov

forward equation or Fokker-Planck equation

0 = −d [(r − ρ)cφ(c)]

dc
− νφ(c) (26)

Proof. The easiest way to see this is to note that the equation is the Kolmogorov forward
equation for a drift-diffusion process with negative drift (r − ρ)c and zero diffusion (see
Theorem 2.8 in Pavliotis (2014) or equation (3.40) in Stokey, 2009), and thus for the process
(25), if there were no jumps. The second term then arises from the fact that the household
switches to high income with Poisson intensity ν. Alternatively, this is a version of equation
(8) in Achdou et al. (2022).
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Since
d [(r − ρ)cφ(c)]

dc
= (r − ρ) [φ(c) + cφ′(c)]

we find that on c ∈ (0, ch) the stationary distribution satisfies

(ρ− r) [φ(c) + cφ′(c)] = νφ(c)

and thus
cφ′(c)

φ(c)
=

ν

ρ− r
− 1.

Thus on this interval the stationary consumption distribution is Pareto with tail parameter
ν
ρ−r − 1, that is

φ(c) = φ1c
( ν
ρ−r−1)

where φ1 is a constant that is determined by the requirement that the stationary consump-
tion distribution integrates to the share ξ/(ν + ξ) of zero productivity households over the
interval c ∈ (0, ch). A straightforward calculation delivers:

Proposition 5. For any given r < ρ, the stationary consumption distribution is given by a

mass point at ch of mass ν/(ν + ξ) and a Pareto density below this mass point,

φr(c) =

{
ξν(ch)

− ν
ρ−r

(ρ−r)(ν+ξ)
c

ν
ρ−r−1 if c ∈ (0, ch)

ν
ν+ξ

δδδch if c = ch

where δδδch indicates a Dirac mass point at ch.

Aside from ρ and ch, the shape of the consumption probability function for zero pro-
ductivity depends on ν, which governs the hazard rate of moving to high productivity, the
ratio ν/ξ of the two exit rates as well as the interest rate r. Figure 2 shows three examples
when r is varied and all other parameters are held constant. The growth rate of the pdf is
given by

d log φr(c)

d log c
=

ν

ρ− r
− 1

We therefore have the following corollary.

Corollary 1. If ν < ρ− r, then the pdf is strictly decreasing in c. If ν > ρ− r then the pdf

is strictly increasing in c. If ν ∈ (ρ − r, 2(ρ − r)), then the pdf is strictly increasing and

strictly concave in c. Finally, if ν > 2(ρ− r) then the pdf is strictly increasing and strictly

convex in c.
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Figure 2: Consumption distributions as stated in Proposition 5 for three different values of
r, when ρ = 0.05, ν = 0.05 and ξ = 0.04. There is a mass point at the same ch ≈ 1.3
of mass ≈ 0.56 independent of r (see equation (24)) and indicated by a black square. For
zero productivity, consumption has a density that depends on r. Corollary 1 informs us
about the shape. For r = 0, we have ν = ρ − r and the density is flat. For r = 0.02,
ρ− r < ν < 2(ρ− r), and the density is strictly concave. For r = 0.04, ν > 2(ρ− r) and
the density is strictly convex.

5 General Equilibrium: Market Clearing Interest Rate r

In equilibrium, the goods market clearing condition (6) and the capital market clearing
condition (7) have to hold and these are the remaining equations to satisfy. By Walras’ law,
the latter implies the former. We proceed by parameterizing both sides of these equations
and hence demand and supply for capital and consumption goods with the equilibrium
interest rate r. It will be convenient to always divide by the equilibrium wage w = w(r).

5.1 Supply of Consumption Goods and Demand for Capital

The supply of consumption goods and the demand for capital can be derived in a straight-
forward fashion from the production side of the economy. Exploiting the production
first-order conditions (4) and (5) and as in Aiyagari (1994) we can express aggregate
demand for capital and the wage as a function of the interest rate, K = Kd(r) and
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w = w(r) = AFL(Kd(r), 1). Define the capital demand normalized by the wage, as

κd(r) =
Kd(r)

w(r)

and the consumption goods supply, normalized by the wage, as

G(r) =
AF (Kd(r), 1)− δKd(r)

w(r)

The following result then immediately follows from straightforward calculations (see On-
line Appendix E.3):

Proposition 6. Let the production function be of the form

Y = AKθL1−θ.

Then

G(r) = 1 +
θr

(1− θ) (r + δ)
(27)

κd(r) :=
Kd(r)

w(r)
=

θ

(1− θ)(r + δ)
(28)

The functions G(r), κd(r) are continuously differentiable on r ∈ (−δ,∞), and G(r) is

strictly increasing, with limr↘−δ G(r) = −∞, G(r = 0) = 1 and limr↗∞G(r) = 1 +
θ

1−θ and κd(r) is strictly decreasing, with limr↘−δ κ
d(r) = ∞, κd(r = 0) = θ

(1−θ)δ and

limr↗∞ κ
d(r) = 0.

5.2 Demand for Consumption Goods and Supply of Capital

Aggregate consumption, normalized by the aggregate wage w, is

C(r) =

∫
cφr(c)dc (29)

where φr was calculated explicitly in Section 4. Aggregate consumption in excess of total
wage earnings is financed by returns on capital. Define capital supply, normalized by wage,
as κs(r) = Ks(r)/w(r). Per the left-hand side of the capital market clearing condition (7),
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it is given by

κs(r) =
C(r)− 1

r
(30)

For r = 0, we need to determine κs(0) through an application of L’Hopital’s rule.
In the case of r = ρ and thus full insurance, the invariant consumption distribution puts

unit mass on consumption ch given by (12). Substituting out ζ in equation (12) per the
normalization in equation (1), the wage-normalized aggregate consumption demand and
the wage-normalized aggregate capital supply in the case of r = ρ are

C(ρ) = ch = 1 +
ρξ

ν(ν + ρ+ ξ)
(31)

κs(ρ) := κFI =
ξ

ν(ν + ρ+ ξ)
(32)

In the case of r < ρ, there is partial insurance. After tedious algebra (see Online
Appendix E.4), we obtain

C(r) = 1 +
rξ

(ν + ρ− r)(ν + ρ+ ξ)
(33)

κs(r) =
ξ

(ν + ρ− r) (ν + ρ+ ξ)
(34)

The next proposition is proved in Online Appendix E.4 and summarizes useful properties
of the capital supply function.

Proposition 7. The capital supply function κs(r) is continuously differentiable and strictly

increasing on r ∈ [−δ, ρ), with

κs(−δ) =
ξ

(ν + ρ+ δ) (ν + ρ+ ξ)
<∞ and lim

r↗ρ
κs(r) = κFI .

5.3 Characterization of the Equilibrium and Comparative Statics

There is a unique time discount factor ρFI such that capital demand (28) equals full-
insurance capital supply (32). It satisfies

θ

(1− θ)(ρFI + δ)
=

ξ

ν(ν + ρFI + ξ)
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In that case, consumption supply (27) is equal to full-insurance consumption demand (31).
The following assumption will ensure the existence of a unique equilibrium:

Assumption 2. Let the exogenous parameters of the model satisfy θ, ν, ξ, ρ > 0 and

θ

(1− θ)(ρ+ δ)
≤ ξ

ν(ν + ρ+ ξ)
(35)

Theorem 1. Let Assumption 2 be satisfied. Then there exists a unique stationary equi-

librium. If ρ = ρFI then the equilibrium features full insurance. If ρ 6= ρFI , then the

equilibrium features partial insurance. In contrast, if Assumption 2 is violated, then no

stationary equilibrium exists.

Proof. The proof builds on Propositions 6 and 7 as well as the calculations above. If
Assumption 2 holds with equality, the previous discussion showed that in this knife-edge
case, the unique stationary equilibrium satisfies full insurance with r∗ = ρ. Suppose then
that Assumption 2 holds with strict inequality and that therefore

κd(ρ) < lim
r↗ρ

κs(r) = κFI

Since κs(r) and κd(r) are continuous on (−δ, ρ) and since κs(r) is strictly increasing, while
κd(r) is strictly decreasing, and since κs(r = −δ) <∞ = limr↘−δ κ

d(r), the intermediate
value theorem implies that there exists a unique r∗ ∈ (−δ, ρ) such that

κs(r∗) = κd(r∗)

Finally, if instead Assumption 2 is violated, then

lim
r↗ρ

κs(r) = κFI < κd(ρ)

and thus any stationary equilibrium must satisfy r∗ > ρ. However, for any r > ρ, as argued
in Online Appendix G, there is no stationary equilibrium.

The unique equilibrium interest rate satisfies κs(r∗) = κd(r∗). Exploiting equations
(28) and (34), we find

r∗ =
θ(ν + ρ+ ξ)(ν + ρ)− ξδ(1− θ)

ξ + θ(ν + ρ)
(36)
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This is our central result: the equilibrium interest rate and, with it, all other equilibrium
quantities can be calculated explicitly. Associated with this interest rate is a stationary con-
sumption distribution with mass point at ch and a truncated Pareto distribution below chwith
Pareto coefficient κ = ν

ρ−r∗ − 1, given in Proposition 5 at r = r∗. The comparative statics
of this unique equilibrium are immediate and summarized in the following proposition:

Proposition 8. Let Assumption 2 be satisfied with strict inequality. Then the unique equilib-

rium interest rate r∗ ∈ (−δ, ρ) is a strictly increasing function of ρ+ ν and θ and a strictly

decreasing function of ξ and δ. The associated equilibrium capital stock K∗ > KFI = is a

strictly increasing function of ξ and a strictly decreasing function of ρ+ ν as well as δ.

Proof. Write

r∗ =
(ν + ρ+ ξ)(ν + ρ) + ξδ − ξδ

θ
ξ
θ

+ ν + ρ

to see that r∗ is increasing in θ, since the numerator is increasing in θ and the denominator
is decreasing in θ. Proceed likewise for the other claims, except calculating the derivative
for the dependence on ξ.

The unique equilibrium can be represented graphically, as in the standard incomplete
markets models. Aiyagari (1994) plots asset demand and supply in (r,K) space. We do
the same here, in Figure 3a for a specific parameterization chosen in the welfare analysis
conducted in the next section. As shown above, there is a unique equilibrium with an
interest rate r < ρ that clears the capital market.

Figure 3b and direct calculation show that the goods market clears at r = 0. However11

and as shown in Figure 3a, capital demand by firms differs from capital supplied by house-
holds through the financial intermediaries at r = 0 and there is no equilibrium at r = 0,
except for the knife-edge case where the capital market also clears at r = 0, i.e.,

ξ

(ν + ρ+ ξ)(ν + ρ)
=

θ

(1− θ)δ

In the case where r∗ > 0 and therefore κs(0) < κd(0) as in Figure 3a, one could slightly
expand the model and implement r = 0 as an equilibrium by having a government own just

11We thank Marcus Hagedorn and Matt Rognlie for very helpful discussions on this issue. Auclert and
Rognlie (2020) show that the same argument applies to the standard incomplete markets model (as originally
described in Aiyagari, 1994). Our discussion here is an adaptation of their argument.
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(a) Capital Demand κd(r) and Supply κs(r) as a
Function of the Interest Rate r

(b) Goods Demand w(r)C(r) and Net Supply
Y (r)− δK(r) as a Function of r

Figure 3: The left panel shows wage-normalized capital demand by production firms κd(r)
and capital supply by financial intermediaries κs(r), as a function of the interest rate. As
proved in the previous subsection, κd(r) is strictly decreasing on [−δ, ρ] and approaches∞
as r approaches−δ. Capital supply is strictly increasing on [−δ, ρ], and the figure is drawn
with Assumption 1 in place, guaranteeing a unique intersection and thus a unique station-
ary equilibrium interest rate r∗ < ρ. The right panel plots consumption demand C(r) by
the household sector versus consumption goods supply G(r). There are two intersections:
one at the stationary equilibrium interest rate r∗ (in this case positive) and one at r = 0;
we argue below that, generically, r = 0 is not an equilibrium interest rate.

the right amount of capital Kg > 0 such that

Ks(0) +Kg = Kd(0) (37)

Since r = 0, the government does not collect any revenue from this ownership that would
need to be distributed, and thus a simple adjustment of the equilibrium definition that has
the government own just the right amount of the capital stock would implement r = 0 as
an equilibrium, with associated partial-insurance consumption allocation.12 For the case
r∗ < 0 and therefore κs(0) > κd(0), the government could issue bonds at zero interest to
implement the r = 0 equilibrium; that is, Kg < 0 in equation (37) is now a liability rather

12This discussion appears to suggest that Walras’ law breaks down at r = 0.We observe that capital market
clearing always implies consumption goods market clearing. If r 6= 0 the reverse is also true, but not at r = 0.
Walras’ law p ∗ z(p) = 0 only implies the statement that if N-1 markets clear (excess demand di(p) = 0 for
all i = 1, ...N − 1), then the N-th market clears if the price vector p has only non-zero elements. It simply
does not follow from Walras’ law at r = 0 that one market clearing condition implies the other.
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than an asset of the government.

6 Comparison to the Standard Incomplete Markets Model

Our model presents an alternative general equilibrium model with idiosyncratic income
shocks to the canonical standard incomplete markets model. It is therefore instructive to
compare stationary equilibria in both models. To clarify the sources of the differences it
is instructive to formulate the Hamilton-Jacobi-Bellman equations for both versions of the
model.

Consider first the household problem in the standard representative agent neoclassical
growth model. For that model, the Hamilton-Jacobi-Bellman equation reads as

ρU(k) = max
c,x
{u(c) + U ′(k)x}

s.t. c+ x = rk + w

or plugging in the budget constraint to substitute out the (marginal) change in the capital
stock x, one obtains the perhaps more familiar form

ρU(k) = max
c
{u(c) + U ′(k)(rk + w − c)}

Introducing idiosyncratic productivity risk z with Poisson transitions as above, but under
the assumption of incomplete insurance markets we obtain the HJB equation (see, e.g.,
Achdou et al., 2022):

ρU(k, z) = max
c,x
{u(c) + U ′(k)x+ pz(U(k, z̃)− U(k, z))} (38)

s.t. c+ x = rk + wz (39)

where the value function U(k, z) now depends on the idiosyncratic productivity state z in
addition to the capital stock owned by the household and pz denotes the Poisson intensity
with which the productivity state changes from the current state z to the other state z̃, i.e.,
pz = ξ if z = ζ and pz = ν if z = 0. With intensity pz lifetime utility changes from U(k, z)

to U(k, z̃), and the incomplete markets assumption is reflected in the fact that the capital
stock upon a state change from z to z̃ remains the same.

Our model instead has complete markets but limited commitment. In Krueger and Uh-
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lig (2006) we show that one way to interpret (or decentralize) the optimal consumption
contract is through a financial market in the spirit of Alvarez and Jermann (2000) in which
households trade Arrow securities that pay off contingent on the realization of the idiosyn-
cratic productivity state, but with endogenously determined shortsale constraints. Without
any punishment for default, Krueger and Uhlig (2006) show that these shortsale constraints
prevent negative asset positions altogether. The prices of the Arrow securities reflect the
transition rates across idiosyncratic states. As we show in Proposition 13 of Appendix A.4,
the HJB equation in this decentralized version of our model then reads as

ρU(k, z) = max
c,x,k̃

{
u(c) + U ′(k)x+ pz(U(k̃, z̃)− U(k, z))

}
(40)

s.t. c+ x+ pz(k̃ − k) = rk + wz (41)

k̃ ≥ 0, x ≥ 0 if k = 0 (42)

In contrast to the HBJ equation in (38), the capital stock with which the household enters
the next period is state-contingent and thus allowed to differ between the contingency of
no state transition (lifetime utility U(k, z)) and a state transition (lifetime utility U(k̃, z̃)).
These state-contingent capital stocks are reflected in equation (40) and contrast with (38)
for the standard incomplete markets model where the capital stock is restricted to be the
same across the two productivity states. In the budget constraint (41), the term pz(k̃ − k)

reflects the state-contingent addition (or subtraction) of capital, at the actuarially fair price
pz, and the constraints in equation (42) ensure that the capital stock in the case of a state
transition cannot go negative, and that the capital stock, conditional on remaining in the
same state, cannot go from zero to negative.

In Figure 4 we plot the (normalized by the wage) capital demand by firms and the
capital supply, and display the market clearing real interest rate, both in our model and in
the standard incomplete markets model, as pioneered by Aiyagari (1994), and characterized
in continuous time with two income shocks by Achdou et al. (2022).13

We observe that for every interest rate, the supply of assets from the household sec-
tor is higher in the standard incomplete markets model than in the limited commitment
model with endogenous consumption insurance contracts. In the presence of explicit in-
come insurance (subject to the endogenous limit that state-contingent assets cannot become
negative) the need to accumulate capital for precautionary reasons is reduced. As a conse-

13See also Sargent et al. (2021)
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Figure 4: This figure compares equilibria in our economy and the Aiyagari (1994) model. It
displays the equilibrium determination in the capital market. Following Aiyagari (1994) it
has the interest rate on the y-axis and (normalized by the wage) capital demand by firms and
capital supply by the household sector on the x-axis. Capital demand (in black) is common
between both models. Capital supply in our model was already plotted in Figure 3a, as was
the equilibrium (but with x-axis and y-axis interchanged). Figure 4 also shows the familiar
asset supply curve from the Aiyagari model that diverges to ∞ as r approaches the time
discount rate ρ from below. Asset supply in the standard incomplete markets economy
is larger for every interest rate, and the resulting equilibrium interest rate is lower, and
equilibrium capital stock is higher in that model, relative to ours.

quence of the larger supply of capital for a given r, the equilibrium interest rate is lower
and the equilibrium capital stock is higher in the Aiyagari model.

7 Multiple Partial-Insurance Equilibria When the Elas-
ticity of Substitution Is Not Unity

In the previous sections we have shown that with log-utility at most one stationary equi-
librium exists. We now argue that deviating from a unit elasticity of substitution raises the
possibility of multiple stationary equilibria. Assume now that the period utility function is
given by

u(c) =
c1−σ

1− σ
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where σ 6= 1 is the coefficient of relative risk aversion (and the inverse of the intertemporal
elasticity of substitution). All other model elements are completely unchanged.

Evidently, the normalized capital demand function κd(r) is unaffected since it is deter-
mined purely from the production side of the economy. The argument that there cannot
be a stationary equilibrium with r > ρ and the condition for a full-insurance equilibrium
remain unchanged as well, since the full-insurance allocation does not depend on σ. Thus,
we continue to assume that Assumption 2 holds with strict inequality, so that we can focus
on partial-insurance equilibria with r < ρ.

In Online Appendix F we show that the optimal consumption insurance contract has
exactly the same properties as in the log-case: consumption jumps up upon receiving high
productivity and drifts down at a constant rate when productivity turns low as long as it
remains low. The key difference is that this decay rate is now given by rate r−ρ

σ
< 0 instead

of the rate r − ρ. The stationary consumption distribution is still characterized by a mass
point at the top and a truncated Pareto distribution below the top. In the Online Appendix
we also show that the normalized supply of capital is now given by

κs(r) =
ξ(

ν + ρ−r
σ

+ r + ξ
) (
ν + ρ−r

σ

)
which of course specializes to the log-case analyzed above for σ = 1. Capital demand
κd(r) remains as in equation (28). The capital market clearing condition κs(r) = κd(r)

now reads14

ξ(
ν + ρ−r

σ
+ r + ξ

) (
ν + ρ−r

σ

) =
θ

(1− θ)(r + δ)
(43)

The characterization of equilibrium remains fully analytically tractable since any equilib-
rium interest rate is a solution r to this equation, which can be rewritten as a quadratic
equation in r for all σ ∈ (0,∞) (see Online Appendix F.3.2). Only when σ = 1 and
the income and substitution effects cancel in the optimal consumption contract, the term
ρ−r
σ

+r in (43) vanishes, capital supply is unambiguously increasing in the interest rate and
the market clearing condition becomes linear in r.

14Note that the total cost of the optimal consumption contract is only finite, and thus the capital supply
function κs(r) for the partial-insurance case is only well-defined for interest rates satisfying ν+ ρ−r

σ +r > 0.
For σ ≤ 1, this imposes no further restrictions and κs(r) is well-defined on (−∞, ρ). However, for σ > 1
the domain of κs(r) is restricted since the interest rate cannot be too negative. Concretely, it is given by(
−σν+ρ

σ−1 , ρ
)

.
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We will now demonstrate that as long as σ is sufficiently small (the IES is sufficiently
large and the substitution effect is strong relative to the income effect), the capital supply
function κs(r) is upward-sloping in the interest rate on r ∈ [−δ, ρ] and the equilibrium
remains unique. While there are two solutions to the quadratic equation in principle, only
one of them is of economic relevance, corresponding to a positive amount of capital. On
the other hand, for large enough σ (small enough IES and thus small enough substitution
effect), capital supply might be downward sloping, and is downward sloping if σ =∞ and
the lifetime utility function is of Leontieff form. This opens up the possibility of multiple
stationary equilibria. We now discuss these results more formally.

7.1 Intertemporal Elasticity of Substitution Equal to Zero: Leontieff
Preferences

In the limit case σ = ∞, households are not willing to intertemporally substitute, the op-
timal consumption contract resembles that of the full-insurance case (consumption jumps
upon the receipt of first high income and stays constant thereafter), and the stationary con-
sumption distribution has unit mass at this consumption level. Equation (43) becomes

ξ

ν (ν + r + ξ)
=

θ

(1− θ)(r + δ)
(44)

It can be rewritten as a linear equation in r. The following result is the limit case σ → ∞
of Proposition 10 in the next subsection, and stated here to motivate that proposition.

Proposition 9. Let σ =∞ and thus the lifetime utility function is Leontieff. Suppose that15

ν > δ. Then κs(r) is well-defined and strictly decreasing in the interest rate on the interval

(−ν,∞). There is a unique equilibrium interest rate r∗ > −δ.

Proof. Examine κs(r) on the left-hand side of (44). Calculate the unique solution to this
linear equation in r.

7.2 General IES σ 6= 1

The possibility that normalized capital supply is downward sloping in the interest rate for
sufficiently large values of σ (sufficiently weak substitution effect) admits the possibility

15This is needed for the NPV calculations in Section F.1 and is implied by (45) as σ →∞.

31

Electronic copy available at: https://ssrn.com/abstract=4364334



of multiple equilibria, as already suggested by the (very) special case in the previous sub-
section. The next proposition shows that the equilibrium remains unique for σ ≤ 2, but
the possibility of exactly two stationary equilibria emerges for larger σ. These equilibrium
interest rates are solutions to a quadratic equation, and thus the characterization of equi-
librium remains analytically tractable even for the case σ 6= 1, although we might lose the
uniqueness of a partial-insurance stationary equilibrium.

Proposition 10. Let Assumption 2 be satisfied with strict inequality.

1. If σ < 1, then κs(r) is well-defined, continuous and strictly increasing on r ∈ [−δ, ρ].

There exists a unique stationary equilibrium with interest rate r ∈ (−δ, ρ).

2. Let σ > 1 and
σν + ρ

σ − 1
> δ. (45)

Then κs(r) is well-defined16 and continuous on r ∈ [−δ, ρ]. There exists at least one

stationary equilibrium with r ∈ (−δ, ρ).

(a) Suppose σ ∈ (1, 2] and ξ ≥ δ. Then κs(r) is increasing on r ∈ [−δ, ρ) and the

stationary equilibrium with interest rate r ∈ (−δ, ρ) is unique.

(b) There exist parameter combinations with 2 < σ < ∞ such that κs(r) has

decreasing parts on [−δ, ρ) and that there are two stationary equilibria with

r ∈ (−δ, ρ) solving (43).

Proof. See Online Appendix F.3.1. For the last part, see the example in Figure 5.

This proposition shows that for wide parameter combinations, uniqueness of equilib-
rium can be guaranteed (parts 1 and 2a), and identifies (in part 2b) the range of parameters
where multiple equilibria can emerge. The condition in part 2a of the proposition ensures
that κs(r) is increasing at r = −δ (and thus is increasing for all r ∈ [−δ, ρ]).

Prior to exploring the multiplicity of stationary equilibria numerically, we observe that
equilibrium interest rate(s) scale in the parameters representing rates per unit of time, i.e.,
the time discount rate, the income transition rates and the depreciation rate. Cutting each
of these rates in half will cut the equilibrium interest rate in half, and will also preserve the
number of equilibria.

16This last assumption ensures that the effective discount rate r+ ν+ g(r) used to determine ch is positive
at r = −δ, and thus ch is finite at that interest rate and at all higher interest rates.
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Corollary 2. Suppose that r∗ ∈ (−δ, ρ) is an equilibrium interest rate for parameters

ρ, δ, ξ, ν, σ, θ, A. Let α > 0. Then r = αr∗ ∈ (−αδ, αρ] is an equilibrium interest rate for

parameters αρ, αδ, αξ, αν, σ, θ, A.

Proof. See Online Appendix F.3.2

Since all equilibrium interest rates are solutions to the quadratic equation, we could in
principle characterize regions of the six-dimensional parameter space (σ, θ, δ, ν, ξ, ρ) for
which multiple equilibria emerge. Rather than doing so, we display an example parameter
combination with σ = 10 that exhibits the two stationary equilibria in Figure 5. This
example is not meant to be empirically realistic, but rather to demonstrate graphically that
our model can indeed have multiple stationary equilibria.

Figure 5: Two equilibria with partial insurance when σ > 2.

(a) Capital Market Clearing (b) Equilibrium Consumption Distributions

This figure plots an example of two equilibria, both with partial insurance, under parameter values σ =
10, θ = 0.25, δ = 0.16, ν = 0.05, ξ = 0.02, ρ = 0.4. The two equilibrium interest rates are given by r∗1 =
−0.0246, r∗2 = 0.1357. Left panel: solid line represents the capital supply curve ks (r), dashed line represents
the capital demand curve kd (r). The right panel displays the two equilibrium consumption distributions.

Figure 5a plots normalized capital demand κd(r) and supply κs(r) against the interest
rate r. As shown in the proposition above, since σ > 2, both capital demand and supply
are downward-sloping in the interest rate, and thus can intersect more than once. Figure
5b displays the consumption (normalized by the wage) distributions φr(c) associated with
the two equilibrium interest rates. The blue x-ed line corresponds to the low equilibrium
interest rate and the red circled line to the high equilibrium interest rate. Both distributions
have a mass point equal to ψh = ν

ξ+ν
and a truncated power distribution below this mass

33

Electronic copy available at: https://ssrn.com/abstract=4364334



point. The consumption mass point ch(r) is increasing in the (equilibrium) interest rate as
long as the IES 1/σ is less than 1, and thus the remaining probability mass spreads out
over a larger support of the consumption distribution in the high interest rate equilibrium,
falling more rapidly as consumption approaches zero. Thus, the consumption distribution
has fewer individuals with very low consumption in the equilibrium with the high interest
rate, and therefore better consumption insurance. Note that by Proposition 6 aggregate
normalized consumption C(r) =

∫
cφrdc is increasing in the interest rate r, a fact clearly

visible when comparing the two consumption distributions.

Figure 6: Equilibrium Set as Function of Depreciation Rate.

The figure plots the equilibrium interest rates r∗1 , r
∗
2 as δ changes. Other parameters are σ = 10, θ = 0.25, ν =

0.05, ξ = 0.02, ρ = 0.4.

Finally, we display how the set of equilibrium interest rates changes as we change pa-
rameters. Specifically, we vary the depreciation rate and keep all other parameters constant
in Figure 6. The figure shows that the example above with two stationary equilibria is
not a knife-edge case, but rather emerges for a range of parameter values, as long as σ is
sufficiently large, and therefore the intertemporal elasticity of substitution is sufficiently
small and the income effect sufficiently potent relative to the substitution effect. The figure
also shows that both equilibrium interest rates are positive for a positive-length interval of
δ-values. Finally, note that condition (45) in Proposition 10 fails and a partial-insurance
equilibrium ceases to exist, when the deprecation rate δ becomes too large.
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7.3 Welfare Ranking of Stationary Equilibria

Given that we have identified the possibility of multiple stationary equilibria, the natural
question arises as to whether they can be ranked in terms of their welfare properties. On
one hand, a lower interest rate is associated with a higher capital stock and thus higher
wages. On the other hand, a lower interest rate implies a faster decline in consumption
after receiving adverse income shocks, and thus potentially less consumption insurance,
also depending on the entry consumption level ch. One of the benefits of our environment
is that we can characterize both components of welfare in closed form.

With our focus on stationary equilibria, individual welfare in such an equilibrium can
be defined as expected utility at birth in the stationary equilibrium.17 To rank the normative
properties of two equilibria, one can ask by what constant α > 0 one has to scale consump-
tion in a low interest rate equilibrium to be indifferent to being born into a high interest rate
equilibrium. This consumption equivalent welfare measure is derived in Online Appendix
H and characterized in the following proposition.

Proposition 11. Assume σ > 1 and suppose there exist two stationary equilibria, with

r1 < r2. Then the equivalent variation α is given by

α =
w(r2)

w(r1)
·
[
ch(r2)

ch(r1)

] σ
σ−1

= αwage · αcontract (46)

The aggregate wage component satisfies αwage = w(r2)
w(r1)

< 1 and the contract component

satisfies αcontract =
[
ch(r2)
ch(r1)

] σ
σ−1

> 1.

In principle, the wage effect might dominate and thus the low interest rate equilibrium
has higher steady-state welfare (α < 1) for some set of parameter values exhibiting multi-
plicity of equilibria, while the better consumption insurance effect dominates and the high
interest rate equilibrium has higher steady-state welfare (α > 1) for the complementary set
of parameter values. While one could characterize these sets precisely to establish which
of them are nonempty and under what conditions, the economic insight obtained is of more
value: in this model, when there are multiple stationary equilibria, there is a welfare trade-
off between higher aggregate wages and consumption and more consumption inequality.

It is important to note that the focus on stationary equilibria in this paper ignores the
potential benefits of consuming part of the capital stock along the transition, and thus a

17Alternatively, we could define it as expected period utility. The characterization below goes through
almost unchanged under this alternative notion of equilibrium welfare, as Online Appendix H demonstrates.
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finding that attaches higher welfare to the low interest (high capital and wage) steady state
is subject to the usual caveat that it ignores transitional dynamics during which this higher
capital stock needs to be accumulated.18

8 Conclusion

In this paper we have analytically characterized stationary equilibria in a neoclassical pro-
duction economy with idiosyncratic income shocks and long-term one-sided limited com-
mitment contracts. For an important special case (log-utility, two income states, zero in-
come in the lower state) the equilibrium is unique and can be given in closed form, with
complete comparative statics results.

Given these findings, we can identify three immediately relevant next questions for fur-
ther investigation. First, on account of our use of a continuous time setting, the endogenous
optimal contract length is analytically tractable even outside the special case we have fo-
cused on thus far. However, this length will in general depend on the interest rate in the
economy, which complicates the analytical aggregation step of the analysis.

Second, thus far we have focused on stationary equilibria, thereby sidestepping the
question of whether this stationary equilibrium is reached from a given initial aggregate
stock, and what the qualitative properties of the associated transition path are. This question
is especially relevant for a full welfare (and possibly associated policy) analysis.

Finally, thus far we have focused on an environment that has idiosyncratic but no ag-
gregate shocks, rendering the macro economy deterministic. Given our sharp analytical
characterization of the equilibrium in the absence of aggregate shocks, we conjecture that
the economy with aggregate shocks might be at least partially analytically tractable as well.
We view these questions as important topics for future research and take a first step toward
them in Krueger, Li and Uhlig (2022) as well as Ando, Krueger and Uhlig (2022).
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Appendix

A A selection of results and proofs.

A precise analysis of the model requires an exact mathematical underpinning, and a tight
proof of each claim. We provide a full version in the Online Appendix, see the road map
Section B there. Here, we highlight a few key results and their proofs, focusing on parts
that are of particular significance or are less straightforward to establish.

A.1 Histories, Contracts and Multipliers

The stochastics for an agent is governed by a finite-state continuous time Markov processes
in a state x ∈ X . Productivity at date t is zt = z(xt) ∈ {0, ζ}. Contracts will generally
depend on more than just current productivity. They should not be constrained a priori
to depend on some additional low-dimensional state, but rather may depend on the entire
history, up to that date. Building on, e.g., Puterman (2005) and as explained in greater
detail and with additional notation in Online Appendix C, histories are denoted by their
beginning and end date as well as all the Markov switching dates and the values of the
Markov process at these dates,

ht,τ = (τ, n, t0 = t, t1, . . . , tn, x0 = x, x1, . . . , xn) (47)

All histories between t and τ starting from some Markov state x shall be denoted with
Ht,τ (x). Pt,τ denotes the probability distribution across histories. With this, contracts can
be more formally defined as mappings c(ht,τ ;x, U) from histories ht,τ , the initial state
x and promised utility U , see definition 3. The cost minimization problem can be more
formally defined. For example, the limited commitment constraints are now stated as∫ ∞

s

∫
Hs,τ (x(ht,s))

e−ρ(τ−s)u(wc([ht,s, hs,τ ];x, U))dPs,τdτ ≥ U out(z(x(ht,s)))

for all s > t and ht,s ∈ Ht,s(x) (48)

for all x ∈ X and U ∈ U(x). We will make repeated use of this constraint below. Basic
properties of the cost function such as concavity and differentiability are established (see
Online Appendix D.1). The contract cost minimization problem can be rewritten as a
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Lagrangian, (see Online Appendix D.2). Using partial integration, the Lagrangian can
be rewritten with cumulative Lagrange multipliers λ(ht,τ ) and the history notation as

L =

∫ ∞
t

∫
Ht,τ

e−r(τ−t) [wc(ht,τ )− wz(x(ht,τ ))] dPt,τdτ (49)

−
∫ ∞
t

∫
Ht,τ

λ(ht,τ )e
−ρ(τ−t)u(wc(ht,τ ))dPt,τdτ

+λ(ht,t)U +

∫ ∞
s=t

∫
Ht,s

e−ρ(s−t)U out(z(x(ht,s)))dPt,s × dλ,

restated with further explanations as equation (49) in the Online Appendix D.2. The cumu-
lative Lagrange multiplier reformulation in (49) provides a version of Marcet and Marimon
(2019) in continuous time. This formulation, together with differentiability properties,
yield the first-order condition

e(ρ−r)(τ−t) = λ(ht,τ )u
′(wc(ht,τ ;x, U)) (50)

A.2 A Key Property of the Contracts

The following central lemma, also in Online Appendix D.3, expresses key properties of the
contract. The proof is non-trivial. It draws on some material in the Online Appendices C
and D, which should be consulted for additional detail and explanations.

Lemma 2 (key properties of the contract). 1. Suppose that the constraint (48) does

not bind at history ht,s. Then λ̇(ht,s)+ = 0 and the derivative ċ+(ht,s) exists. If the

last jump occurred strictly before date s, i.e., if tn < s, then λ̇(ht,s) = 0 and c is

differentiable at ht,s.

2. Suppose c is differentiable at history ht,s. Then λ is differentiable at history ht,s and

ρ− r =

(
u′′(wc)wc

u′(wc(ht,s))

)
ċ(ht,s)

c(ht,s)
+

λ̇(ht,s)

λ(ht,s)
(51)

The statement and equation likewise hold for the left-derivatives, if c is left-differentiable

at history ht,s, and for the right-derivatives, if c is right-differentiable at history ht,s.

3. Suppose that the limited commitment constraint (48) binds at history ht,s. Suppose

that ρ = r. Alternatively, suppose that ρ > r and that Assumption 3 holds. Then

c(ht,s;∆) is constant in ∆ ≥ 0 and ċ+(ht,s) = 0.
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4. λ−(ht,s) 6= λ(ht,s), i.e. λ is discontinuous at history ht,s, if and only if c−(ht,s) 6=
c(ht,s). In that case, c−(ht,s) < c(ht,s), λ−(ht,s) < λ(ht,s) and (48) binds at history

ht,s with tn = s, i.e., just when the state change occurred.

Proof. 1. If the constraint does not bind at ht,s, then it will not bind either for the no-
state-change history extensions ht,s;∆, provided ∆ > 0 is sufficiently small. Thus,
λ(ht,s) = λ(ht,s;∆) is locally constant19 and thus λ̇+(ht,s) = 0. The existence of ċ+

at ht,s now follows from (50). If tn < s, the same argument applied to the truncated
histories ht,s(t, s−∆) shows that λ̇(ht,s) = 0 and the differentiability of c at ht,s.

2. Differentiation of (50) with respect to τ shows that λ is also differentiable20 at τ and
delivers (51), when replacing τ with s.

3. By assumption, the limited commitment constraint (48) binds at ht,s. For ease of
notation, write x for x(s) and z for z(x). Consider the no-state-change history exten-
sion ht,s;∆ = [ht,s, (s + ∆, 0, s, x)] for ∆ > 0. The proof proceeds in two parts. For
part A, suppose that the limited commitment constraint (48) binds again at ht,s;∆̄ for
some ∆̄ > 0. We use an averaging argument to establish that consumption must be
the same at s and at s+∆̄. With the help of the first two parts as well as some careful
analysis, we then show that the limited commitment constraint (48) must bind for all
ht,s;Delta and 0 < ∆ ≤ ∆̄ and thus establish the claim for part A. For part B, suppose
that the constraint (48) never binds again for ht,s;∆ at any ∆ > 0. We show that this
leads to a contradiction.

A. For the first part, suppose that the limited commitment constraint (48) binds at
ht,s as well as at ht,s;∆̄ for some (possibly large) ∆̄ > 0. Compare the contract
going forward conditional on these two histories: we will argue that one can do
better by averaging them, should they be different. To that end and to express
this precisely, let hs,τ be some continuation at the current state x of the history
ht,s to ht,τ = [ht,s, hs,τ ]: for a graphical illustration, see Figure 7 in the On-
line Appendix. Construct the corresponding continuation ht,τ+∆̄ = [ht,s;∆̄, h

∆̄
s,τ ]

of ht,s;∆̄ with the ∆̄-time-shifted history h∆̄
s,τ (see equation (58)). This corre-

spondence is one-one and measure preserving. Suppose now that the contract
c(ht,τ ) differs from the corresponding c(ht,τ+∆̄) for a set S of extensions hs,τ

19Returning to our original Lagrange multipliers, µ(ht,s;∆) = 0 for ∆ ≥ 0 sufficiently small.
20This is a standard calculus argument.
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with positive measure, i.e., suppose that
∫∞
τ=s

∫
Hs,τ 1hs,τ∈SdPs,τdτ > 0. Con-

sider then a new contract, which is the average between the original contract
and the contract following ht,s;∆̄, i.e., consider

c̃(ht,τ ) =
(
c([ht,s, hs,τ ]) + c([ht,s;∆̄, h

∆̄
s,τ ])

)
/2 (52)

defined for all continuations ht,τ = [ht,s, hs,τ ] of ht,s. In words, c̃ is the av-
erage between the current contract as well as the contract portion following
ht,s;∆̄ shifted backward by ∆̄. Since utility is strictly concave, this contract
now delivers strictly higher continuation utility at history ht,s, while its costs
stay unchanged, a contradiction to the hypothesis that the constraint (48) binds
at ht,s, i.e. a contradiction to the assertion that the original contract was cost-
minimizing, see Lemma 3. It follows that consumption at s + ∆̄ will be the
same as at s for any ∆̄ > 0, where (48) binds: let us denote that consumption
level as c.

If the limited commitment constraint (48) binds for all 0 < ∆̃ < ∆̄, we would
be done with this part, since consumption would then be constant at c(ht,s;∆̃) ≡
c. Indeed, we would be done, if this is true for some sufficiently small ∆̄ > 0,
since it must then be true for all ∆̄ per “shifting” the contract by ∆̄/2 into the
future. Suppose thus that (48) binds at some21 ∆∗ ≤ ∆̄, but does not bind for all
0 < ∆̃ < ∆∗. According to the first part of the lemma, the derivative ċ(ht,s;∆̃)

exists and λ̇(ht,s;∆̃) = 0.

i. Consider the case ρ = r. According to the second part of the lemma,
ċ(ht,s;∆̃) = 0. Thus, consumption is constant at c(ht,s;∆̃) ≡ c for all 0 <

∆̃ < ∆̄, regardless of whether the constraint (48) binds or does not bind at
∆̃, establishing our claim.

ii. Consider the case ρ > r and current state x. We will show that we arrive
at a contradiction; see Figure 8 in the Online Appendix. According to the
second part of the lemma, ċ(ht,s;∆̃) < 0 for 0 < ∆̃ < ∆∗. Fix such a ∆̃.
It follows that c(ht,s;∆̃) < c(ht,s;∆∗) = c; that is, consumption jumps up
at ∆∗, even though Uht,s;∆̃ > Uht,s;∆∗ = U out(z(x)). We will show that the
contract at history ht,s;∆̃ can therefore not have been cost-minimizing. For
x′ 6= x and ∆ > 0, let ht,s;∆,x′ = [ht,s, (s + ∆, 1, s, x, x(s + ∆) = x′] be

21∆∗ exists, because Uht,s;∆̃
is continuous in ∆̃.
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the extensions of the original history ht,s with a first state change to a new
state x′ occurring at date s+ ∆.
Define Uht,s;∆̃ as the continuation utility starting at the history ht,s;∆̃. De-
ploying the construction of Online Appendix D.4 leading up to equation (82),
it is given by

Uht,s;∆̃ =

∫ ∆∗−∆̃

0

e(αx,x−ρ)τu(wc(ht,s;∆̃+τ ))dτ (53)

+e(αx,x−ρ)(∆∗−∆̃)U out(z(x))

+
∑
x′ 6=x

∫ ∆∗−∆̃

0

αx,x′e
(αx,x−ρ)τUht,s;∆̃+τ,x′

dτ

The first term captures the present discounted utility over the time interval
from t + s + ∆̃ to t + s + ∆∗, conditional on no state change, the second
term captures the associated continuation utility from t + s + ∆∗ onward
in that case; and the last term captures the expected continuation utility
conditional on some state change from x to x′ during the time interval
∆∗ − ∆̃ following history ht,s;∆̃.
Compare this to the similar continuation at s+ ∆∗,

Uht,s;∆∗ =

∫ ∆∗−∆̃

0

e(αx,x−ρ)τu(wc(ht,s;∆∗+τ ))dτ (54)

+e(αx,x−ρ)(∆∗−∆̃)Uht,s;∆∗+(∆∗−∆̃)

+
∑
x′ 6=x

∫ ∆∗−∆̃

0

αx,x′e
(αx,x−ρ)τUht,s;∆∗+τ,x′dτ

Note that c(ht,s;∆̃+τ ) < c(ht,s;∆∗+τ ) and that U out(z) ≤ Uht,s;∆∗+(∆∗−∆̃)
.

Since Uht,s;∆̃ > Uht,s;∆∗ = U out(z), it must be the case that the inequality
is reversed for the last term,

∑
x′ 6=x

∫ ∆∗−∆̃

0

αx,x′e
(αx,x−ρ)τUht,s;∆̃+τ,x′

dτ

>
∑
x′ 6=x

∫ ∆∗−∆̃

0

αx,x′e
(αx,x−ρ)τUht,s;∆∗+τ,x′dτ
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Recall, though, that the contract is cost-minimizing at history ht,s;∆̃. Per the
principle of optimality established in Lemma 9 of Online Appendix D.4,
we thus arrive at a contradiction.

B. For the second part, suppose instead that (48) never binds for any ∆ > 0 at
the no-state-change history extensions ht,s;∆ = [ht,s, (s + ∆, 0, s, x(s))]. The
first part of the lemma shows that λ̇(ht,s;∆) = 0 for all ∆ > 0 as well as
λ̇+(ht,s) = 0. If ρ = r, then the second part of the lemma shows that ċ+(ht,s) =

0 and hence the claim. If ρ > r, then (76) shows that ċ(ht,s;∆)/c(ht,s;∆) <

(r − ρ)/σ̄ < 0 and hence c(ht,s;∆)→ 0 as ∆→∞.

i. Suppose then that there is some ∆ > 0, so that the continuation utility
promises upon a state change to x′ 6= x(s) binds at all extended histories

ht,s;∆,x′ = [ht,s, (s+ ∆, 1, s, s+ ∆, x(s), x′)]

for ∆ > ∆ and any x′ ∈ X . The continuation contract at the no-state-
change history extension ht,s;∆ is feasible when shifted backward in time
to s, i.e., consider the contract

c̃(ht,τ ) = c([ht,s;∆, h
∆
s,τ ])

defined for all continuations ht,τ = [ht,s, hs,τ ] of ht,s. Contract c̃ is cheaper
for the principal than contract c, since consumption along the ht,s;∆-histories
keeps declining and since one cannot do better upon a state change than to
achieve a binding constraint there. This is a contradiction to the assertion
that the contract was cost-minimizing c.

ii. Suppose instead that for any ∆ > 0, there is a positive measure of dates
s + ∆ with ∆ > ∆, at which the utility promised upon a state change is
not binding. But then and with sufficiently large ∆ and thus sufficiently
small c(ht,s;∆) along the no-state-change path, the principal can achieve a
higher promised utility for the agent by promising less consumption upon
the state change for some positive interval of time and more consumption
along the no-state-change path, again a contradiction to the contract being
cost-minimizing.

4. Since λ is weakly increasing, λ(ht,s) − λ−(ht,s) > 0. The claim now follows from
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(50) and exploiting the fact that u′(·) is strictly decreasing, as well as from noting that
λ(ht,s) is only increasing if (48) binds. Furthermore, it must be the case that tn = s,
i.e., that the state change just occurred on date s, since otherwise the derivative of
consumption would have been zero per the third part of the lemma.

For the CRRA utility function u(c) = c1−σ−1
1−σ , equation (51) implies

ċ(s)

c(s)
= − ρ− r

σ
+

1

σ

λ̇(s)

λ(s)
(55)

A.3 Three States and Ordering of Outside Options

While Lemma 1 is intuitive the proof requires the comparison of a contract starting at high
productivity to a contract starting at low productivity. This in turn requires the expansion of
the state space to some underlying state x that can take three values x(t) ∈ X = {0, 1, 2},
evolving independently from each other (See also Online Appendix E). The transition
rates αi,j to transit from state x = i to x = j are α0,1 = α2,1 = ν, α1,0 = α2,0 = ξ and
α0,2 = α1,2 = 0. Let αi,i = −

∑
j 6=i αi,j , so that α is a intensity matrix or infinitesimal

generator matrix. The following proof of Lemma 1 assumes 0 < r ≤ ρ and is also in
Online Appendix E.1, together with explanations on how to handle the case of r < 0 < ρ.

Proof of Lemma 1. The key idea is that an agent currently at high productivity can be pro-
vided with the contract of the low-productivity agent, delivering the same utility and a
profit to the principal, a contradiction to perfect competition between the principals. Some
care needs to be taken to implement this idea, however. Contracts depend on the history of
states. Thus, if the history was expressed only in terms of productivities, it would be mean-
ingless to give an agent starting with high productivity “the same” contract as an agent
starting with low productivity. The underlying state and the corresponding productivity
need to be decoupled. It is here where the three-state construction described at the begin-
ning of this section and the careful distinction between the state and the productivity at that
state as described at the beginning of Online Appendix C pay off.

Suppose by contradiction to the claim (10) that

U out(0) ≥ U out(ζ) (56)
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Fix the productivity mapping z : X → Z to be zA. Recall that zA(0) = zA(2) = 0 and
zA(1) = ζ , and that the three-state process starting at x(t) = 0 or x(t) = 2 now generates
the same stochastic process as the original two-state stochastic process for an agent starting
at z(t) = 0. Consider an optimal consumption contract c(τ ; 0, U out(0)) given to an agent
at date t = 0, say, and starting off with productivity z(0) = 0, delivering date-0 promised
utility U = U out(0) in (2) and generating costs V (0, U out(0)) = 0. Wlog, we shall impose
the condition that x(0) = 2: any contract as defined per history dependence in Online
Appendix C and starting at x(0) = 0 can be written22 as a contract starting at x(0) = 2

delivering the same outcomes, per ignoring transitions from x = 2 to x = 0. Thus, the
optimal consumption contract c(τ ; 0, U out(0)) is a mapping c : H0 → IR+ from x-histories
into consumption outcomes, where all hs,0 ∈ H0 satisfy x(0) = 2, and which satisfies the
constraints (48).

Next, fix the productivity mapping z : X → Z to be zB. Recall that zB(0) = 0 and
zB(1) = zB(2) = ζ , and that the three-state process starting at x(t) = 1 or x(t) = 2

now generates the same stochastic process as the original two-state stochastic process for
an agent starting at z(t) = ζ . The contract c delivers the same expected utility U out(0).
The contract c satisfies the constraints (48) for states x(s) = 0 and states x(s) = 1, where
zA and zB coincide. With equation (103), the constraints are also satisfied for the state
x(s) = 2 and zB(2) = ζ rather than zA(2) = 0. The consumption portion generates the
same costs for the principal, as nothing has changed regarding the consumption process,
but the expected revenue from productivity income is now strictly higher per Lemma 10. It
follows, that the contract c now delivers strictly negative costs V (ζ, U out(0)). Per Lemma 3
and equation (103), 0 > V (ζ, U out(0)) ≥ V (ζ, U out(ζ)). However, V (ζ, U out(ζ)) = 0 per
the definition of equilibrium. With that, we have arrived at a contradiction.

A.4 The Hamilton-Jacobi-Bellman Equations

Proposition 12 (the cost-minimizing HJB equation). The cost function V (x, U) solves

the Hamilton-Jacobi-Bellman equation

rV (x, U) = min
c,U̇ ,(U(x′))x′∈X/{x}

wc− wz(x) + V ′−(x, U)U̇ +
∑
x′ 6=x

αx,x′(V (x′, U(x′))− V (x, U))

22This argument can be made precise with some tedious notation.
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subject to

ρU = u(wc) + U̇ +
∑
x′ 6=x

αx,x′(U(x′)− U)

U̇ ≥ 0, if U = UOut(z(x))
ū

ρ
> U(x′) ≥ UOut(z(x′))

for all x(t) = x ∈ X and all U ∈
[
U out(z(x)), ū

ρ

)
, provided that (2) binds.

This is a restatement of Proposition 14 in the Online Appendix D.4 which also contains
the proof. For the dual perspective of maximizing utility, subject to the costs expressed as
capital, one obtains the following version, see Online Appendix D.5 for details.

Proposition 13 (the utility-minimizing HJB equation). The utility functionU(k;x) solves

the Hamilton-Jacobi-Bellman equation

ρU(k;x) = max
c,k̇,(k(x′))x′∈X/{x}

u(c) +
∂U(k;x)

∂k
k̇ +

∑
x′ 6=x

αx,x′(U(k(x′);x′)− U(k;x))

subject to

c+ k̇ +
∑
x′ 6=x

αx,x′(k(x′)− k) = rk + wz(x)

k(x′) ≥ 0 for all x′ ∈ X/{x}

k̇ ≥ 0 if k = 0

for all x ∈ X and all k ≥ 0.
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Online Appendix

B Road Map

The following Sections C and D provide a precise language to analyze contracts in con-
tinuous time with finite state stochastic processes and establish key results of the optimal
contract. They provide the basis for proving the specific lemmas and propositions in the
paper, starting with Section E, but are more general than that. As such, Sections C and D
are useful considerably beyond the particular model studied in the paper.

Section C describes the mathematical framework for finite state continuous time Markov
processes and history dependence of allocations. Such a framework is necessary for the
mathematically precise description of contracts in Section D . Histories are encoded by a
beginning and end date, the number and dates of Markov switches in between and the value
of the Markov process for all episodes (see equation (57)). Notation is introduced to de-
scribe smaller segments of a history or for how to concatenate two adjacent histories. With
that, the Markov transition probability law can be stated as a probability measure on the set
of all histories (see equation (59)). We proceed, using this as the appropriate probability
space. Equation (61) states how to calculate conditional expectations of functions of future
histories, using this probability law.

Section D describes and analyzes contracts for finite-state continuous time Markov pro-
cesses in five subsections. The key properties of the contracts are established in Lemma 7
of subsection D.3. That lemma is foundational for the description of the contract properties
in the main body of the text as well as for proving the results in Section E. Subsections D.1,
D.2 and D.4 are the necessary preliminaries to establish this lemma, but useful in their own
right. In particular, subsection D.2 extends Marimon-Marcet (2019) to continuous time.
Subsection D.5 provides the dual perspective of utility maximization as an “add-on.”

1. Subsection D.1 introduces contracts as mappings from histories, the current state and
a promised utility level U in definition 3 and defines optimal contracts as minimizing
the appropriate cost function of the principal in definition 4. Three lemmas establish
that the cost function is increasing, convex and differentiable in U .

2. Subsection D.2 describes a Lagrangian approach to the cost minimization problem
of subsection D.1. Starting from the somewhat heuristic formulation in equation
(67), it provides for a precise definition in equation (71), using recursive Lagrange
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multipliers. This extends the Marimon-Marcet (2019) approach to the continuous-
time finite-state Markov case. It leads to the key first-order condition (74) and the
contract property in Lemma 6 that consumption is either constant or declining when
ρ ≥ r.

3. The key Lemma 7 is established in subsection D.3. It establishes several differentia-
bility properties, necessary for equation (80) following that lemma. That equation,
together with the properties of the cumulative Lagrange multiplier and differentia-
bility results provided by Lemma 7 in turn, is foundational for the derivatives-based
analysis in the main body of the paper.

Part 3 of the lemma establishes that consumption remains constant if the limited com-
mitment constraint binds. That property and its proof is a central piece of the analysis
and not trivial. It frequently resorts to a technique of splitting the future life of the
contract into a short and immediate future of length ∆ and the subsequent future
history as in equation (78). That technique is more formally established and studied
in subsection D.4. The proof of the lemma here builds on results established there,
in particular the crucial principle of optimality in Lemma 9. From the perspective
of mathematical logic, subsection D.4 precedes subsection D.3, but is only neces-
sary for understanding the proof of Lemma 7 here. In the interest of readability, we
therefore chose the current ordering.

4. Subsection D.4 proceeds to establish an equivalent recursive formulation (see defini-
tion 5). It proceeds by splitting the future into three parts as in equation (82). First,
there is a short time interval ∆ > 0 without a state change. Second, there is the future
beyond ∆ and no state change until ∆. Finally, there are all of the first state changes
before ∆ and their continuation values. Lemma 9 establishes the principle of opti-
mality, i.e., a key monotonicity result of the optimal contract: if the promised utility
is higher, then consumption during the no-state-change epoch ∆ as well as promised
utility upon the first state change as well as the continuation utility beyond ∆ will be
higher. The proof is not entirely straightforward and requires a careful examination
of inequalities and the Lagrange multipliers provided in subsection D.2. Almost as a
by-product of the recursive formulation, we establish the Hamilton-Jacobi-Bellman,
or HJB, equation in Proposition 14.

5. Subsection D.5 considers the dual perspective of maximizing utility, given costs.
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Much of the properties here parallel the developments before, allowing us to be brief.
Proposition 15 establishes equivalence. Proposition 16 provides the HJB equation.

C Mathematical Preliminaries

The purpose of this section is to provide a precise mathematical framework to describe the
stochastic nature of consumption contracts in the next sections. It will turn out that we need
to allow the contracts to depend on a bit more than just the history of productivities, see
in particular the proof of Lemma 3 below. Furthermore, we provide these mathematical
preliminaries for more than just two productivity states, in order to allow building on these
in future work. The material here is not easily available elsewhere in concise form. The
approach taken here and some of the material are in chapter 11 of Puterman (2005), though
we need a bit more for the analysis in subsequent sections.

We assume throughout that there is a k-state Markov process for an underlying state
x(t) ∈ X = {0, . . . , k − 1} for each agent. The state for one agent evolves independently
from that of any other agent and with constant Markov transition rates αi,j from state x = i

to state x = j. We impose that αi,i = −
∑

j 6=i αi,j , so that α is an intensity matrix or
infinitesimal generator matrix. We assume that there is a mapping z : X → Z determining
individual labor productivity z = z(x) if the individual state is s. Note that k may be
larger than the cardinality of Z. The beginning of Section E provides the specific details
for the case with two labor productivities used in the main text and an underlying state x
that can take three values. This construction will be used in the proof of Lemma 1 (see
subsection E.1).

Given dates t < τ < ∞, let x0 = x(t) be the state at date t0 = t. Suppose there are
n ≥ 0 switches between t and τ at switch dates t0 < t1 . . . < tn ≤ τ . Let x(tj) = xj for
j > 0 denote the new values of the state at these switching dates. The history of the state
between time t and time τ > t, denoted compactly as ht,τ , and explicitly given by

ht,τ = (τ, n, t0 = t, t1, . . . , tn, x0 = x, x1, . . . , xn) (57)

keeps track of all this information. The starting history at time t is ht,t = (t, 0, t, x), when
the state is at x(t) = x and by construction no state change has occurred yet. Generally,
when n = 0, no switch occurs and the state remains at the initial state x0 from t to τ . We
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impose23 the condition that n < ∞; i.e., we only examine histories between the two dates
t and τ with finitely many switching dates. This is true with probability 1.

Given some history ht,τ as in (57) and some ∆ > 0, define the time-shifted history

h∆
t,τ = (τ + ∆, n, t0 = t+ ∆, t1 + ∆, . . . , tn + ∆, x0 = x, x1, . . . , xn) (58)

This construction will be of help in the proof of Lemma 7. Given some history ht,τ between
dates t and τ and any two intermittent dates s, s′ with t ≤ s ≤ s′ ≤ τ , it will be useful
to construct the history between s and s′ and denote it by ht,τ (s, s′). To do so, starting
from (57), let m = argmax{j | tj ≤ s} be the index of the last switching date before
the date s. Likewise, let m′ = argmax{j | tj ≤ s′} be the index of the last switching
date before the date s′. Therefore there are m′ − m state transitions between dates s and
s′. Starting from the new initial date t̃0 = s rewrite the dates of these state transitions as
t̃1 = tm+1, . . . , t̃m′−m = tm′ . Likewise, denote the states at these redefined transition dates
as x̃0 = xm, . . . , x̃m′−m = xm′ . Using this construction we can now define the history
ht,τ (s, s

′) between s and s′ implied by the history ht,τ between t and τ as

ht,τ (s, s
′) = (s′,m′ −m, t̃0, t̃1, . . . , t̃m′−m, x̃0, . . . , x̃m′−m)

The most relevant purpose of this construction is to split the history ht,τ into two non-
overlapping parts ht,τ (t, s) and ht,τ (s, τ), where t ≤ s ≤ τ , or conversely, define a con-
catenated history ht,τ = [ht,s, hs,τ ] by gluing two histories ht,s and hs,τ

ht,s = (s,m, ta0 = t, ta1, . . . , t
a
m, x

a
0, x

a
1, . . . , x

a
m)

hs,τ = (τ, n, tb0 = s, tb1, . . . , t
b
n, x

b
0, x

b
1, . . . , x

b
n)

together. This construction requires that the state xam at the end of history ht,s equals the
state xb0 = xam at the beginning of history hs,τ .24 Note that the last switch date before or
including s is the date tam, while the first subsequent switch date is tb1. The date s itself
drops out from the switching date history, and is contained in the interval tam ≤ s ≤ tb1. The

23Or better: we work with a subset of the probability space, so that this is true.
24We stipulate that this condition must be satisfied whenever the notation for concatenation is utilized. A

more explicit notation would be cumbersome.
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concatenated history is then given explicitly as

ht,τ = [ht,s, hs,τ ]

= (τ,m+ n, t0 = t, t1 = ta1, . . . , tm = tam, tm+1 = tb1, . . . , tm+n = tbn,

xa0, x
a
1, . . . , x

a
m, x

b
1, . . . , x

b
n)

In particular, note that
ht,τ = [ht,τ (t, s), ht,τ (s, τ)]

for t ≤ s ≤ τ .
Let Ht,τ (x) be the set of all possible histories ht,τ between two given dates τ ≥ t,

starting at x0 = x. Let Ht(x) be their union across τ , i.e. the set of all histories ht,τ for
any date τ ≥ t, given t, and starting at x0 = x. LetHt be the unions of allHt(x) across all
x ∈ X . The transition rates αi,j deliver a probability measure Pt,τ on Ht,τ (x) for histories
ht,τ between two dates t and τ , given by

dPt,τ (ht,τ ) = exp ((τ − tn)αxn,xn)
n∏
j=1

exp
(
(tj − tj−1)αxj−1,xj−1

)
αxj−1,xjdtj (59)

where the dtj are to be arranged in the sequence dtn dtn−1 ... dt1, when writing this out
explicitly. This is important for appropriately writing the integral in equation (61). Note
that a history ht,τ = (τ, 0, t, x) with n = 0 and thus without transitions has the point mass

dPt,τ (τ, 0, t, x) = exp((τ − t)αx,x)

More generally, and as an arbitrary example, consider a history h0,3 between the two dates
t = 0 and τ = 3 and two switching dates, given by

h0,3 = (τ = 3, n = 2, t0 = 0, t1 = 1.3, t2 = 2.3, x0 = 0, x1 = 1, x2 = 0)

The probability for this history is

dPt,τ (h0,3) = exp((3− 2.3)α0,0 + (2.3− 1.3)α1,1 + (1.3− 0)α0,0)α1,0dt2α0,1dt1

= α0,1α1,0 exp(2α0,0 + α1,1)dt2dt1
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Note that25

Pt,τ (ht,τ ) = Pt,s(ht,τ (t, s))Ps,τ (ht,τ (s, τ)) (60)

Write Pt for the overall probability measure Pt(ht,τ ) = Pt,τ (ht,τ ). While not essential,
this also allows a precise construction of a suitable probability space. Formally, let Ht(x)

be the set of underlying events. Note that Ht(x) can be written as the countable union of
the sets

Ht,n(x) = {(τ, n, t, t1, . . . , tn, x, x1, . . . , xn) |

(τ, t1 . . . , tn, x1, . . . , xn) ∈ IRn+1 ×Xn, t < t1 . . . < tn ≤ τ}

of IRn+1×Xn, n ≥ 0. The sets Ht,n(x) have the usual Borel-σ-algebra26 of subsets, which
we shall denote with Bt,n(x). Their union Bt(x) is the Borel-σ-algebra of the measur-
able subsets of Ht(x). With the probability measure Pt defined above, (Ht(x),Bt(x), Pt),

becomes a probability space.
The set S(x) of stochastic processes on Ht(x) is the set of measurable functions from

Ht(x) to the real line,

S(x) = {f : Ht(x)→ IR | f−1([a, b]) ∈ Bt(x) for a, b ∈ IR, a ≤ b}

The value f(τ) = f(ht,τ ) is the value of the stochastic process f at date τ , given the
history up to and including τ . (Re-)define the stochastic process x ∈ S(x) as the mapping
defined by x(ht,τ ) = xn for ht,τ as described in (57). Proceeding this way, the number of
switches between two dates is finite by construction. The stochastic process x generates
the σ-algebra Bt(x).

Equipped with these probabilities, one can define expectations and conditional expec-
tations. For example, the expectation of the stochastic process f(τ) at some date τ > t and

25One could start from a description of the probability law, imposing this consistency condition and some
other mild assumptions, allowing us to move beyond the Markov structure imposed in (59). We do not pursue
this here.

26It is generated by the Cartesian products of open subsets of IRn+1 with any subset of X .
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f ∈ S(x) amounts to integration with respect to Pt,τ over the setHt,τ (x). It is given by

E[f(τ) | x(t) = x] =

∫
Ht,τ (x)

f(ht,τ )dPt,τ

=
∞∑
n=0

∑
(x1,...,xn)∈Xn

∫ t1=τ

t1=t

∫ t2=τ

t2=t1

. . .

∫ tn=τ

tn=tn−1

f(τ, n, t, t1, t2, . . . , tn, x, x1, . . . , xn)

dPt,τ (τ, n, t, t1, t2, . . . , tn, x, x1, . . . , xn) (61)

As an arbitrary example with t = 0, τ = 3 and x(0) = 0, the term for n = 2 and x1 =

1, x2 = 0 becomes∫ 3

0

∫ 3

t1

f(3, 2, 0, t1, t2, 0, 1, 0)α0,1α1,0 exp((2− t2 + t1)α0,0 + (t2 − t1)α1,1)dt2dt1,

integrating the value of the stochastic process f(3) over all histories from t = 0 to τ = 3

with exactly n = 2 switches from x0 = 0 to x1 = 1 and back to x2 = 0 across all the
switching dates.

D Analysis of the Optimal Risk-Sharing Contract

We assume 0 < r ≤ ρ throughout this section.

D.1 Basic Properties

Given the apparatus of Appendix C, we can restate definition 1 more formally. We impose
the condition that a consumption contract starting at date t is a mapping from histories
in Ht, starting state x and promised utility levels U to the real line, with c(ht,τ ;x, U) the
amount of consumption at date τ , after observing the history ht,τ . The resulting stochastic
process27 c(τ ;x, U) = c(ht,τ ;x, U) is adapted to the stochastic process (xτ )τ≥t. Note that
this allows for processes that are functions of the last switch date tn, the current date τ as
well as the current state xn = x(τ). These suffice to describe the contracts in the main body
of the paper. Here we repeat this definition, but now we use the notation of Appendix C.

Definition 3 (contracts). For fixed outside options U out(z), with z ∈ Z and a starting date

27Formally, given τ , x and U , c(τ ;x, U) is a random variable, mappingHt,τ (x) into IR.
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t, let U(x) =
[
U out(z(x)), ū

ρ

)
for x ∈ X and let C be the set of all consumption contracts,

C = {c | c : {(ht,τ ;x, U) | x ∈ X, ht,τ ∈ Ht(x), U ∈ U(x)} → IR+} (62)

Definition 4 (cost-minimizing contracts). For a fixed wage w and rate of return on cap-

ital or interest rate r, an optimal consumption insurance contract c ∈ C and the cost
function V : {(x, U) | x ∈ X,U ∈ U(x)} → IR solve

V (x, U) = min
c∈C

∫ ∞
t

∫
Ht,τ (x)

e−r(τ−t) [wc(ht,τ ;x, U)− wz(x(ht,τ ))] dPt,τdτ (63)

subject to the promise keeping constraint∫ ∞
t

∫
Ht,τ (x)

e−ρ(τ−t)u(wc(ht,τ ;x, U))dPt,τdτ ≥ U (64)

and the limited commitment constraints∫ ∞
s

∫
Hs,τ (x(ht,s))

e−ρ(τ−s)u(wc([ht,s, hs,τ ];x, U))dPs,τdτ ≥ U out(z(x(ht,s)))

for all s > t and ht,s ∈ Ht,s(x) (65)

for all x ∈ X and U ∈ U(x).

Lemma 3 (monotonicity of the cost function). V (x, U) is increasing in U . It is strictly

increasing in U , if (64) binds.

Proof of Lemma 3. Consider two levels U = UA and U = UB, with UA > UB. Any
consumption contract that satisfies (64) for U = UA as well as (65) also satisfies (64) for
U = UB as well as (65). This is true in particular for the cost-minimizing contract at
U = UA. Thus, the costs for UB cannot be larger, that is, V (x, UB) ≤ V (x, UA).

Now suppose that V (x, UB) = V (x, UA). That means that utility level U = UA could
have been delivered for the same costs when a contract delivering U = UB is sought; that
is, (64) could not have been binding at U = UB, and thus V (x, UB) < V (x, UA); that is,
V is strictly increasing in U as along as (64) is binding at U = UB.

Lemma 4 (convexity of the cost function). V (z, U) is convex in U . It is strictly convex in

U , if (64) binds.
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Proof of Lemma 4. Let λ ∈ [0, 1]. Consider two levels U = UA and U = UB. Suppose
w.l.o.g. that UB < UA. Now consider the linear combination cλ = λcA+(1−λ)cB. Since
u(·) is concave, cλ will satisfy constraint (65), since cA and cB both do. Let V (cλ) be the
costs of the contract cλ per the right hand side of equation (92). Likewise, let U(cλ) be the
present value of the utility of the contract cλ per the right hand side of equation (65). Note
that V (cλ) = λV (x, UA) + (1− λ)V (x, UB). Since u(·) is strictly concave, U(cλ) ≥ Uλ.
The inequality is strict, if cB 6= cA on a set of positive measure. Thus, V (cλ) ≥ V (x, Uλ)

and strictly so, if (64) binds for UA, per Lemma 3.
If (64) binds for UB, it also binds for UA and Uλ = λUA + (1 − λ)UB. Let cA =

c(·;x, UA) and cB = c(·;x, UB) be the parts of the optimal consumption contract solving
the cost minimization problems for (x, UA) and (x, UB). If (64) binds for UB, then cA

cannot be the solution for UB, i.e. cB 6= cA on a set of positive measure.

Lemma 5 (differentiability of the cost function). The cost function V (x, U) is continu-

ous. It is differentiable in U on the right and left.

Proof of Lemma 5. Continuity and right- as well as left-differentiability follow from the
concavity of V (x, ·) for interior points. Continuity and differentiability to the right at the
lower bound U out(z(x)) follow, because V (x, ·) is increasing and convex.

We shall denote the right-hand side derivatives and the left-hand side derivatives of V
with V ′+ and V ′−, Let

V ′+(x, U) = lim
h>0,h→0

V (x, U + h)− V (x, U)

h
, V ′−(x, U) = lim

h<0,h→0

V (x, U + h)− V (x, U)

h
.

(66)
For U = U out(z(x)), we define the left-hand side derivative as V ′−(U out(z(x))) = 0, since
V (x, ·) is an increasing function.

D.2 A Lagrangian Approach

The analysis of the optimal contract and the derivation of the relevant first-order conditions
follows in spirit the approach of Marimon and Marcet (2019) (see also Golosov et al. (2016)
as well as the generalization of Marcet-Marimon (2019) to continous-time heterogeneous-
agent settings and the introduction of “timeless penalties” in Dàvila and Schaab (2022a)).
We first restate the optimization problem as a Lagrangian in this subsection, provide a
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recursive perspective in subsection D.4 and then establish some key properties in subsec-
tion D.3.

As a first pass at the problem and for notational clarity, we shall drop the explicit history
dependence and conditioning information in the constraint (3). Heuristically, let ζ be the
Lagrange multiplier on (2) and let µ(s) be the Lagrange multiplier on (3). Integrating the
constraints (3) discounted at e−ρ(s−t), the Lagrangian would then be

L = E

[∫ ∞
t

e−r(τ−t) (wc(τ)− wz(τ)) dτ (67)

−ζ
(∫ ∞

t

e−ρ(τ−t)u(wc(τ))dτ − U
)

−
∫ ∞
t

e−ρ(s−t)µ(s)

(∫ ∞
s

e−ρ(τ−s)u(wc(τ))dτ − U out(z(s))

)
ds

]
This can be rewritten as

L = E

[∫ ∞
t

e−r(τ−t) [wc(τ)− wz(τ)] dτ (68)

−
∫ ∞
t

λ(τ)e−ρ(τ−t)u(wc(τ))dτ

+λ(t)U +

∫ ∞
t

e−ρ(s−t)U out(z(s))dλ(s)

]
provided that

λ(τ) = ζ +

∫ τ

t

µ(s)ds (69)

We shall call λ(·) the cumulative Lagrange multiplier. We proceed with (68) as the La-
grangian function without imposing that λ(τ) is differentiable or even continuous. We
drop the multipliers µ(s) from the problem, though we keep the restriction from (69) that
λ(τ) is a weakly increasing and nonnegative function of τ and that it is only increasing, if
(3) binds. Given a path for λ up to date s, the integral with respect to dλ(s) on the last line
of (68) is a Riemann-Stieltjes integral, given the state history up to s.

λ(τ) is an adapted stochastic process and depends on the history of the state. To be
more precise, we build on the formulation in definition 4. Let ζ be the Lagrange multiplier
on (64) and let µ(ht,s) be the Lagrange multiplier on (65). Integrating the constraints (65)
discounted at e−ρ(s−t), the Lagrangian is

10

Electronic copy available at: https://ssrn.com/abstract=4364334



L =

∫ ∞
t

∫
Ht,τ

e−r(τ−t) (wc(ht,τ )− wz(x(ht,τ ))) dPt,τdτ (70)

−ζ

(∫ ∞
t

∫
Ht,τ

e−ρ(τ−t)u(wc(ht,τ ))dPt,τdτ − U

)

−
∫ ∞
t

∫
Ht,s

e−ρ(s−t)µ(ht,s)

(∫ ∞
s

∫
Hs,τ

e−ρ(τ−s)u(wc([ht,s, hs,τ ]))dPs,τdτ − U out(z(x(ht,s)))

)
dPt,sds

This can be rewritten as

L =

∫ ∞
t

∫
Ht,τ

e−r(τ−t) [wc(ht,τ )− wz(x(ht,τ ))] dPt,τdτ (71)

−
∫ ∞
t

∫
Ht,τ

λ(ht,τ )e
−ρ(τ−t)u(wc(ht,τ ))dPt,τdτ

+λ(ht,t)U +

∫ ∞
s=t

∫
Ht,s

e−ρ(s−t)U out(z(x(ht,s)))dPt,s × dλ

provided28 that the cumulative Lagrange multiplier is given by

λ(ht,τ ) = ζ +

∫ τ

t

µ(ht,τ (t, s))ds (72)

The cumulative Lagrange multiplier reformulation in (71) provides a version of Marcet
and Marimon (2019) in continuous time. We proceed with (71) as the Lagrangian function
without imposing that the mapping τ 7→ λ(ht,s[t, τ ]) for some ht,s and t ≤ τ ≤ s is
differentiable or even continuous, but keep the restriction from (72) that these mappings
are weakly increasing and nonnegative and that they are only increasing, if (3) binds.

Differentiating the Lagrangian (68) with respect to c(τ) resp (71) with respect to c(ht,τ ;x, U)

yields the first-order condition

e(ρ−r)(τ−t) = λ(τ)u′(wc(τ)) (73)

28Regarding the measure dPt,s × dλ for the double integral s ∈ [t,∞), ht,s ∈ Ht,s, use (61), replace τ
with s, and integrate over s ∈ [t,∞). As one of the terms, consider n = 2 and x0 = 2, x1 = 0, x2 = 1.
Exchange the order of integration and calculate

∫∞
t1=t

∫∞
t2=t1

∫∞
s=t2

f(t1, t2, s)dλ(s, 2, t, t1, t2, 2, 0, 1)dt2dt1,
where f(t1, t2, s) collects the remaining terms and where the integral with respect to dλ(s, 2, t, t1, t2, 2, 0, 1)
is a Riemann-Stieltjes integral, using the weakly increasing and possibly discontinuous function s 7→
λ(s, 2, t, t1, t2, 2, 0, 1) of s ≥ t2. Proceed likewise with all other terms. We drop a further discussion, as
the integral with respect to dPt,s × dλ is a constant and drops out in the first-order conditions.

11

Electronic copy available at: https://ssrn.com/abstract=4364334



or
e(ρ−r)(τ−t) = λ(ht,τ )u

′(wc(ht,τ ;x, U)) (74)

Lemma 6 (consumption is not increasing). c(ht,τ ;x, U) is decreasing at τ for r < ρ and

constant for r = ρ, when the limited commitment constraint (65) does not bind at τ .

Proof. In that case, the Lagrange multiplier λ(ht,τ ) remains constant. The claim now fol-
lows from (74) and u′′ < 0.

D.3 Key Properties of the Optimal Contract

From here on, we drop the dependency on x and U in the consumption contract, in order
to save on notation.

For the next result, the following assumption is helpful.

Assumption 3 (bounded risk aversion). The utility function u(·) satisfies

0 < − u
′′(x)x

u′(x)
< σ̄ <∞ (75)

for all x > 0 and some σ̄.

Assumption 3 is obviously satisfied for all nonlinear CRRA utility functions. For c and
a given history ht,s, s > t, define the left limit

c−(ht,s) = lim
∆→0,∆>0

c(ht,s(t, s−∆))

and likewise the left derivative

ċ−(ht,s) = lim
∆→0,∆>0

c(ht,s)− c(ht,s(t, s−∆))

∆
,

provided they exist. For the right limit, observe that c(ht,s+∆) is stochastic, and a prob-
abilistic limit needs to be taken. Since the probability of a state change within the time
interval from s to s + ∆ vanishes, the probabilistic limit is equal to the limit, when only
the future histories without a state change are taken into account. Formally, let x(s) be the
current state, x(s) = x(ht,s) = xn. The extension of the current history without a state
change until ∆ or no-state-change history extension can be written as the concatenated
history

ht,s;∆ = [ht,s, (s+ ∆, 0, s, x(s))].
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Define29

c+(ht,s) = lim
∆→0,∆≥0

c(ht,s;∆)

and likewise the right derivative

ċ+(ht,s) = lim
∆→0,∆>0

c(ht,s;∆)− c(ht,s)

∆
,

provided they exist. Continuity as well as differentiability at a given history ht,s, s > t are
defined, when the left and right limits exist and coincide. The derivative in that case will
be denoted with ċ(ht,s) or simply ċ(s). We proceed likewise for λ.

Lemma 7 (key properties of the contract). 1. Suppose that the constraint (65) does

not bind at history ht,s. Then λ̇(ht,s)+ = 0 and the derivative ċ+(ht,s) exists. If the

last jump occurred strictly before date s, i.e., if tn < s, then λ̇(ht,s) = 0 and c is

differentiable at ht,s.

2. Suppose c is differentiable at history ht,s. Then λ is differentiable at history ht,s and

ρ− r =

(
u′′(wc)wc

u′(wc(ht,s))

)
ċ(ht,s)

c(ht,s)
+

λ̇(ht,s)

λ(ht,s)
(76)

The statement and equation likewise hold for the left-derivatives, if c is left-differentiable

at history ht,s, and for the right-derivatives, if c is right-differentiable at history ht,s.

3. Suppose that the limited commitment constraint (65) binds at history ht,s. Suppose

that ρ = r. Alternatively, suppose that ρ > r and that Assumption 3 holds. Then

c(ht,s;∆) is constant in ∆ ≥ 0 and ċ+(ht,s) = 0.

4. λ−(ht,s) 6= λ(ht,s), i.e. λ is discontinuous at history ht,s, if and only if c−(ht,s) 6=
c(ht,s). In that case, c−(ht,s) < c(ht,s), λ−(ht,s) < λ(ht,s) and (65) binds at history

ht,s with tn = s, i.e. just when the state change occurred.

The proof of the lemma builds on techniques and results for the subsequent subsec-
tion D.4 and the recursive formulations there. In terms of mathematical logic, that sub-
section precedes rather than builds on the material here. Since it is only necessary for
understanding the proof here, we chose the current ordering in the interest of readability.

29Note that we use ∆ ≥ 0 for defining c+(ht,s), as the processes c(s) = c(ht,s) may generally often be
cadlag, i.e. right-continuous, but with a left limit.

13

Electronic copy available at: https://ssrn.com/abstract=4364334



Proof. 1. If the constraint does not bind at ht,s, then it will not bind either for the no-
state-change history extensions ht,s;∆, provided ∆ > 0 is sufficiently small. Thus,
λ(ht,s) = λ(ht,s;∆) is locally constant30 and thus λ̇+(ht,s) = 0. The existence of ċ+

at ht,s now follows from (73). If tn < s, the same argument applied to the truncated
histories ht,s(t, s−∆) shows that λ̇(ht,s) = 0 and the differentiability of c at ht,s.

2. Differentiation of (74) with respect to τ shows that λ is also differentiable31 at τ and
delivers (76), when replacing τ with s.

3. By assumption, the limited commitment constraint (65) binds at ht,s. For ease of
notation, write x for x(s) and z for z(x). Consider the no-state-change history exten-
sion ht,s;∆ = [ht,s, (s + ∆, 0, s, x)] for ∆ > 0. The proof proceeds in two parts. For
part A, suppose that the limited commitment constraint (65) binds again at ht,s;∆̄ for
some ∆̄ > 0. We use an averaging argument to establish that consumption must be
the same at s and at s+∆̄. With the help of the first two parts as well as some careful
analysis, we then show that the limited commitment constraint (65) must bind for all
ht,s;Delta and 0 < ∆ ≤ ∆̄ and thus establish the claim for part A. For part B, suppose
that the constraint (65) never binds again for ht,s;∆ at any ∆ > 0. We show that this
leads to a contradiction.

A. For the first part, suppose that the limited commitment constraint (65) binds at
ht,s as well as at ht,s;∆̄ for some (possibly large) ∆̄ > 0. Compare the contract
going forward conditional on these two histories: we will argue that one can do
better by averaging them, should they be different. To that end and to express
this precisely, let hs,τ be some continuation at the current state x of the history
ht,s to ht,τ = [ht,s, hs,τ ]: for a graphical illustration, see Figure 7. Construct the
corresponding continuation ht,τ+∆̄ = [ht,s;∆̄, h

∆̄
s,τ ] of ht,s;∆̄ with the ∆̄-time-

shifted history h∆̄
s,τ (see equation (58)). This correspondence is one-one and

measure preserving. Suppose now that the contract c(ht,τ ) differs from the
corresponding c(ht,τ+∆̄) for a set S of extensions hs,τ with positive measure,
i.e., suppose that

∫∞
τ=s

∫
Hs,τ 1hs,τ∈SdPs,τdτ > 0. Consider then a new contract,

which is the average between the original contract and the contract following

30Returning to our original Lagrange multipliers, µ(ht,s;∆) = 0 for ∆ ≥ 0 sufficiently small.
31This is a standard calculus argument.
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time

ℎ𝑡𝑡,𝑠𝑠 ℎ𝑠𝑠,�∆

ℎ𝑠𝑠,𝜏𝜏

ℎ𝑠𝑠,𝜏𝜏
�∆

𝑡𝑡 𝑠𝑠 𝑠𝑠 + �∆ 𝜏𝜏 𝜏𝜏 + �∆

shift forward 
by �∆

ℎ𝑡𝑡,𝜏𝜏

ℎ𝑡𝑡,𝜏𝜏+�∆

𝑠𝑠 + ∆∗𝑠𝑠 + �∆

Limited commitment constraint does not bind

Figure 7: Timeline for part 3.A of the proof for Lemma 7. Starting point is the history ht,s.
Consider a time interval ∆̄ and the history extended to ht,s;∆ without a state change between
s and s+∆̄. Suppose that the limited commitment constraint (65) binds at ht,s as well as at
ht,s;∆̄. Consider some τ > s and history ht,τ = [ht,s, hs,τ ] coinciding with ht,s until s: there
may be state changes at several points between s and τ . Shift the continuation piece hs,τ
forward by ∆̄ and append it to the history ht,s;∆̄. Consider the original contract for ht,τ and
the contract for this shifted-and-appended history. Averaging the original contract and the
shifted contract as in (77) shows that consumption must be the same at s and s+∆̄. Hence,
if (65) binds for all ∆̄ > 0, we’d be done: consumption would need to be constant, while
the state does not change. Thus, suppose that for some ∆∗ that the limited commitment
constraint (65) does not bind at the no-change histories ht,s;∆ for all 0 < ∆ < ∆∗. In
part 3.A.i and 3.A.ii of the proof and illustrated in Figure 8, we show that this leads to a
contradiction.
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time

ℎ𝑡𝑡,𝑠𝑠

𝑡𝑡 𝑠𝑠 𝑠𝑠 + �∆ 𝑠𝑠 + ∆∗

Limited commitment constraint does not bind

𝑠𝑠 + ∆ 𝑠𝑠 + ∆∗ + ∆ − �∆

Limited
commitm.
binds

𝑥𝑥𝑥 𝑥𝑥𝑥

𝑐𝑐

𝑠𝑠 + 2∆∗ − �∆

𝑠𝑠 + �∆ + 𝜏𝜏 𝑠𝑠 + ∆∗ + 𝜏𝜏

A
B

length ∆∗ − �∆ length ∆∗ − �∆

𝑈𝑈ℎ𝑡𝑡,𝑠𝑠;�∆
𝑈𝑈ℎ𝑡𝑡,𝑠𝑠;∆∗

𝑈𝑈ℎ𝑡𝑡,𝑠𝑠;2∆∗−�∆Limited
commitm.
binds

Figure 8: Timeline for part 3.A.ii of the proof for Lemma 7. This zooms in on a portion
of Figure 7 and extends it with some additional detail. Suppose the limited commitment
constraint (65) binds at ht,s as well as at ht,s;∆∗ , where ∆∗ is chosen as small as possible.
That means, that consumption must be declining between s and s + ∆∗, when r < ρ, and
jumps back up at s + ∆∗ to the consumption level at s. Compare now the continuation
utility Uht,s;∆̃ at some s + ∆̃, 0 < ∆̃ < ∆∗ to the continuation utility Uht,s;∆∗ at s + ∆∗.
Since the limited commitment constraint does not bind at s + ∆̃, that continuation utility
must be higher there than at s + ∆∗. However, along the no-change-in-state, consumption
at every s+ ∆̃ + τ is smaller than at s+ ∆∗ + τ as long as τ < ∆∗ − ∆̃. One can see this
by comparing points A and B, where the shaded area indicates the range of consumption
values beyond s + ∆∗ and the lower bound results, if the outside option does not bind
between s+ ∆∗ and s+ 2∆∗ − ∆̃. Furthermore, Uht,s;∆∗ = U out(z(x)) < Uht,s;2∆∗−∆̃

. The
principle of optimality of Lemma 9 delivers the result that this cannot be “compensated”
for by the state change points, comparing s + ∆ to s + ∆∗ + (∆ − ∆̃) or comparing the
continuation utility at s + ∆∗ (as a portion for the s + ∆̃ calculation) to the continuation
utility at s+ 2∆∗ − ∆̃ (as a portion for the s+ ∆∗ calculation). This is a contradiction.
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ht,s;∆̄, i.e., consider

c̃(ht,τ ) =
(
c([ht,s, hs,τ ]) + c([ht,s;∆̄, h

∆̄
s,τ ])

)
/2 (77)

defined for all continuations ht,τ = [ht,s, hs,τ ] of ht,s. In words, c̃ is the av-
erage between the current contract as well as the contract portion following
ht,s;∆̄ shifted backward by ∆̄. Since utility is strictly concave, this contract
now delivers strictly higher continuation utility at history ht,s, while its costs
stay unchanged, a contradiction to the hypothesis, that the constraint (65) binds
at ht,s, i.e. a contradiction to the assertion that the original contract was cost-
minimizing, see lemma 3. It follows that consumption at s+∆̄ will be the same
as at s for any ∆̄ > 0, where (65) binds: let us denote that consumption level
as c.

If the limited commitment constraint (65) binds for all 0 < ∆̃ < ∆̄, we would
be done with this part, since consumption would then be constant at c(ht,s;∆̃) ≡
c. Indeed, we would be done if this is true for some sufficiently small ∆̄ > 0,
since it must then be true for all ∆̄ per “shifting” the contract by ∆̄/2 into the
future. Suppose thus that (65) binds at some32 ∆∗ ≤ ∆̄, but does not bind for all
0 < ∆̃ < ∆∗. According to the first part of the lemma, the derivative ċ(ht,s;∆̃)

exists and λ̇(ht,s;∆̃) = 0.

i. Consider the case ρ = r. According to the second part of the lemma,
ċ(ht,s;∆̃) = 0. Thus, consumption is constant at c(ht,s;∆̃) ≡ c for all 0 <

∆̃ < ∆̄, regardless of whether the constraint (65) binds or does not bind at
∆̃, establishing our claim.

ii. Consider the case ρ > r and current state x. We will show that we arrive at
a contradiction; see Figure 8. According to the second part of the lemma,
ċ(ht,s;∆̃) < 0 for 0 < ∆̃ < ∆∗. Fix such a ∆̃. It follows that c(ht,s;∆̃) <

c(ht,s;∆∗) = c; that is, consumption jumps up at ∆∗, even though Uht,s;∆̃ >

Uht,s;∆∗ = U out(z(x)). We will show that the contract at history ht,s;∆̃
can therefore not have been cost-minimizing. For x′ 6= x and ∆ > 0, let
ht,s;∆,x′ = [ht,s, (s + ∆, 1, s, x, x(s + ∆) = x′] be the extensions of the
original history ht,s with a first state change to a new state x′ occurring at
date s+ ∆.

32∆∗ exists, because Uht,s;∆̃
is continuous in ∆̃.
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Define Uht,s;∆̃ as the continuation utility starting at the history ht,s;∆̃. De-
ploying the construction of Appendix D.4 leading up to equation (82), it is
given by

Uht,s;∆̃ =

∫ ∆∗−∆̃

0

e(αx,x−ρ)τu(wc(ht,s;∆̃+τ ))dτ (78)

+e(αx,x−ρ)(∆∗−∆̃)U out(z(x))

+
∑
x′ 6=x

∫ ∆∗−∆̃

0

αx,x′e
(αx,x−ρ)τUht,s;∆̃+τ,x′

dτ

The first term captures the present discounted utility over the time interval
from t + s + ∆̃ to t + s + ∆∗, conditional on no state change; the second
term captures the associated continuation utility from t + s + ∆∗ onward
in that case; and the last term captures the expected continuation utility
conditional on some state change from x to x′ during the time interval
∆∗ − ∆̃ following history ht,s;∆̃.
Compare this to the similar continuation at s+ ∆∗,

Uht,s;∆∗ =

∫ ∆∗−∆̃

0

e(αx,x−ρ)τu(wc(ht,s;∆∗+τ ))dτ (79)

+e(αx,x−ρ)(∆∗−∆̃)Uht,s;∆∗+(∆∗−∆̃)

+
∑
x′ 6=x

∫ ∆∗−∆̃

0

αx,x′e
(αx,x−ρ)τUht,s;∆∗+τ,x′dτ

Note that c(ht,s;∆̃+τ ) < c(ht,s;∆∗+τ ) and that U out(z) ≤ Uht,s;∆∗+(∆∗−∆̃)
.

Since Uht,s;∆̃ > Uht,s;∆∗ = U out(z), it must be the case that the inequality
is reversed for the last term,

∑
x′ 6=x

∫ ∆∗−∆̃

0

αx,x′e
(αx,x−ρ)τUht,s;∆̃+τ,x′

dτ

>
∑
x′ 6=x

∫ ∆∗−∆̃

0

αx,x′e
(αx,x−ρ)τUht,s;∆∗+τ,x′dτ

Recall, though, that the contract is cost-minimizing at history ht,s;∆̃. Per
the principle of optimality established in Lemma 9 of Appendix D.4 below,
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we thus arrive at a contradiction.

B. For the second part, suppose instead that (65) never binds for any ∆ > 0 at
the no-state-change history extensions ht,s;∆ = [ht,s, (s + ∆, 0, s, x(s))]. The
first part of the lemma shows that λ̇(ht,s;∆) = 0 for all ∆ > 0 as well as
λ̇+(ht,s) = 0. If ρ = r, then the second part of the lemma shows that ċ+(ht,s) =

0 and hence the claim. If ρ > r, then (76) shows that ċ(ht,s;∆)/c(ht,s;∆) <

(r − ρ)/σ̄ < 0 and hence c(ht,s;∆)→ 0 as ∆→∞.

i. Suppose then that there is some ∆ > 0, so that the continuation utility
constraints upon a state change to x′ 6= x(s) bind at all extended histories

ht,s;∆,x′ = [ht,s, (s+ ∆, 1, s, s+ ∆, x(s), x′)]

for ∆ > ∆ and any x′ ∈ X . The continuation contract at the no-state-
change history extension ht,s;∆ is feasible when shifted backward in time
to s, i.e., consider the contract

c̃(ht,τ ) = c([ht,s;∆, h
∆
s,τ ])

defined for all continuations ht,τ = [ht,s, hs,τ ] of ht,s. Contract c̃ is cheaper
for the principal than contract c, since consumption along the ht,s;∆-histories
keeps declining and since one cannot do better upon a state change than to
achieve a binding constraint there. This is a contradiction to the assertion
that the contract was cost-minimizing c.

ii. Suppose instead that for any ∆ > 0, there is a positive measure of dates
s + ∆ with ∆ > ∆, at which the utility promised upon a state change is
not binding. But then and with sufficiently large ∆ and thus sufficiently
small c(ht,s;∆) along the no-state-change path, the principal can achieve a
higher promised utility for the agent by promising less consumption upon
the state change for some positive interval of time and more consumption
along the no-state-change path, again a contradiction to the contract being
cost-minimizing.

4. Since λ is weakly increasing, λ(ht,s) − λ−(ht,s) > 0. The claim now follows from
(74) and, exploiting the fact that u′(·) is strictly decreasing, as well as from noting that
λ(ht,s) is only increasing if (65) binds. Furthermore, it must be the case that tn = s,
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i.e., that the state change just occurred on date s, since otherwise the derivative of
consumption would have been zero per the third part of the lemma.

Using the simplified notation c(s) = c(ht,s) and λ(s) = λ(ht,s), note that (76) implies
that

ċ(s)

c(s)
= − ρ− r

σ
+

1

σ

λ̇(s)

λ(s)
(80)

for the CRRA utility function

u(c) =
c1−σ − 1

1− σ
(81)

The utility function u(c) = log(c) is the special case, where σ = 1.

D.4 A Recursive Approach

Consider some ∆ > 0. Using the principle of optimality, one can rewrite the cost mini-
mization problem for the optimal insurance contract by examining τ ∈ [t, t + ∆] and then
use the minimized costs for τ ≥ t + ∆. More precisely, let x(t) = x ∈ X be the state at
the beginning date t of the contract. The histories beyond t are of two kinds. There is the
no-change-in-state path h0

t,s = (s, 0, t0 = t, x0 = x) all the way up to s = t+ ∆, where the
superindex 0 indicates zero state changes.33 This includes in particular the starting point
h0
t,t = ht,t. Then there are paths with a jump to state x′ 6= x at some date s ∈ [t, t + ∆],

starting with the histories h1
t,s;x′ = (s, 1, t0 = t, t1 = s, x0 = x, x1 = x′), where the su-

perindex 1 indicates one state change. Consider the continuation costs and continuation
utility promises following these histories discounted to the new starting dates. Writing
c(ht,τ ) rather than c(ht,τ ;x, U) to save on notation,

Vh0
t,t+∆

=

∫ ∞
t+∆

∫
Ht+∆,τ (x)

e−r(τ−t−∆)
(
wc([h0

t,t+∆, ht+∆,τ ])− wz([h0
t,t+∆, ht+∆,τ ])

)
dPt+∆,τdτ

Vh1
t,s;x′

=

∫ ∞
s

∫
Hs,τ (x′)

e−r(τ−s)
(
wc([h1

t,s;x′ , hs,τ ])− wz([h1
t,s;x′ , hs,τ ])

)
dPs,τdτ

Uh0
t,t+∆

=

∫ ∞
t+∆

∫
Ht+∆,τ (x)

e−ρ(τ−t−∆)u(wc([h0
t,t+∆, ht+∆,τ ])))dPt+∆,τdτ

Uh1
t,s;x′

=

∫ ∞
s

∫
Hs,τ (x′)

e−ρ(τ−s)u(wc([h1
t,s;x′ , hs,τ ])))dPs,τdτ

33The superindex notation was avoided in the proof of Lemma 7 in order to declutter the notation there.
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With that and using the appropriate probabilities, the continuation utility after date τ ∈
[t, t+ ∆] and no-change-in-state between t and τ is

Uh0
t,τ

=

∫ t+∆

τ

e(αx,x−ρ)(s−τ)u(wc(h0
t,s))ds (82)

+e(αx,x−ρ)(t+∆−τ)Uh0
t,t+∆

+
∑
x′ 6=x

∫ t+∆

τ

αx,x′e
(αx,x−ρ)(s−τ)Uh1

t,s;x′
ds

The cost function in definition 4 can likewise be rewritten. Formally,

Definition 5 (recursive cost-minimization). For a fixed ∆ > 0, fixed outside options

U out(z), with z ∈ Z, a starting date t, and a fixed wage w and rate of return on capital or

interest rate r, a recursive cost function V (x, U) optimally chooses c(h0
t,τ )τ∈[t,t+∆] ≥ 0,

Uh0
t,t+∆

and (Uh1
t,s;x′

)s∈[t,t+∆],x′∈X/{x} to solve

V (x, U) = min

∫ t+∆

t

e(αx,x−r)(τ−t)
[
wc(h0

t,τ )− wz(x)
]
dτ (83)

+e(αx,x−r)∆V (x, Uh0
t,t+∆

)

+
∑
x′ 6=x

∫ t+∆

t

αx,x′e
(αx,x−r)(s−t)V (x′, Uh1

t,s;x′
)ds

subject to the promise-keeping constraint

Uht,t ≥ U (84)

and the limited commitment constraints

ū

ρ
> Uh0

t,τ
≥ UOut(z(x)) for all τ ∈ [t, t+ ∆] (85)

ū

ρ
> Uh1

t,s;x′
≥ UOut(z(x′)) for all s ∈ [t, t+ ∆] (86)

for all x(t) = x ∈ X and all U ∈
[
U out(z(x)), ū

ρ

)
.

Lemma 8 (equivalence). The two definitions 4 and 5 coincide.

Proof. Clear from the calculations above.
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Lemma 9 (principle of optimality). Fix the state x. Consider two utility levels UA > UB

and suppose that (84) binds at both. Suppose there is some ∆ > 0, so that (85) does not

bind for all τ ∈ [t, t + ∆] and the no-change histories h0
t,s, starting from the promise34

U = UB. Consider the optimal recursive cost function choices cΨ(h0
t,τ )τ∈[t,t+∆] ≥ 0,

cΨ(h0
t,τ ) and (UΨ

h1
t,s;x′

)s∈[t,t+∆],x′∈X/{x} for Ψ ∈ {A,B}. Then

cA(h0
t,τ ) ≥ cB(h0

t,τ ) for almost all τ ∈ [t, t+ ∆]

UA
h0
t,t+∆

≥ UB
h0
t,t+∆

UA
h1
t,s;x′

≥ UB
h1
t,s;x′

for almost all s ∈ [t, t+ ∆] and all x′ ∈ X/{x}

Proof of Lemma 9. This is due to the similar structure of the utility formula (82) and the
cost function (83). With (83), only the constraints (84,85,86) have to be taken into account,
using their Lagrange multipliers: the constraints beyond that are part of the continuation
cost functions. Start at the promised utility UB. Since (85) does not bind for all τ ∈
[t, t + ∆] and the no-change histories h0

t,s, λ(h0
t,τ ) ≡ ζ for τ ∈ [t, t + ∆] (where ζ is

the Lagrange multiplier on (84)), utilizing that the Lagrange multipliers on the limited
commitment constraint (85) for the no-state-change histories h0

t,τ with t ≤ τ ≤ t + ∆ are
zero, write the “original” Lagrangian (70) as

L =

∫ t+∆

t

e(αx,x−r)(τ−t)
(
wc(h0

t,τ )− wz(x)
)
− ζe(αx,x−ρ)(τ−t)u(wc(h0

t,τ )) dτ (87)

+e(αx,x−r)∆V (x, Uh0
t,t+∆

)− ζe(αx,x−ρ)∆Uh0
t,t+∆

+ const.

+
∑
x′ 6=x

∫ t+∆

t

αx,x′e
(αx,x−r)(s−t)V (x′, Uh1

t,s;x′
)− (ζ + µ(h1

t,s;x′))αx,x′e
(αx,x−ρ)(s−t)Uh1

t,s;x′
ds

This is legitimate at U = UB: we will show that this is legitimate for all U ∈ [UB, UA].
Note that µ(h1

t,s;x′) 6= 0 only if (86) binds at h1
t,s;x′: in that case, it must be the case

that Uh1
t,s;x′

= U out(z(x′)). Differentiate with respect to c(h0
t,τ )τ∈[t,t+∆] ≥ 0, c(h0

t,τ )

and (Uh1
t,s;x′

)s∈[t,t+∆],x′∈X/{x}. Noting the dependency of the Lagrange multipliers on the

34Suppose that UB > Uout(z(x)). Per continuity in τ of integrating the future consumption path starting
at the lower bound τ , one can show that such a ∆ > 0 exists.

22

Electronic copy available at: https://ssrn.com/abstract=4364334



promised utility U by including it as an argument, the first-order conditions at U = UB are

e(ρ−r)(τ−t) = ζ(U)u′(wc(h0
t,τ )) (88)

e(ρ−r)(∆−t)V ′−(x, Uh0
t,t+∆

) ≤ ζ(U) ≤ e(ρ−r)(∆−t)V ′+(x, Uh0
t,t+∆

) (89)

e(ρ−r)(s−t)V ′−(x′, Uh1
t,s;x′

) ≤ ζ(U) + µ(h1
t,s;x′ ;U) ≤ e(ρ−r)(s−t)V ′+(x′, Uh1

t,s;x′
) (90)

Given the Lagrange multipliers ζ(U) and µ(h1
t,s;x′ ;U), let c(h0

t,τ ;U) for τ ∈ [t, t + ∆],
Uh0

t,t+∆;U and Uh1
t,s;x′ ;U

for s ∈ [t, t+∆], and x′ ∈ X/{x} be the solution to these equations.
Given the strict concavity of u(·), c(h0

t,τ ;U) for τ ∈ [t, t + ∆] is strictly increasing in
ζ(U). Given the convexity of V (x, ·) according to Lemma 4, Uh0

t,t+∆;U is weakly increasing
in ζ(U) per equation (89). Likewise, equation (90) shows that Uh1

t,s;x′ ;U
is either weakly

increasing in ζ(U) or constant and equal to the lower bound U out(z(x′)) of equation (86).
It follows that ζ(U) is increasing in U . Note now that these statements are all correct at
U = UB and that (85) does not bind for τ ∈ [t, t + ∆] by assumption. Exploiting the
local monotonicity of the solutions, equation (82) then shows that (85) does not bind for
τ ∈ [t, t + ∆] for all UB < U < UB + ε, when ε > 0 is sufficiently small, and that (87) is
the appropriate Lagrangian for these U as well. Continuing that argument all the way to UA

shows that (85) does not bind for τ ∈ [t, t + ∆] for any U ∈ [UB, UA]. Thus, c(h0
t,τ ;U),

Uh0
t,t+∆;U and Uh1

t,s;x′ ;U
are weakly increasing functions of U . The statements comparing

cA(h0
t,τ ) = c(h0

t,τ ;U
A) to cB(h0

t,τ ) = c(h0
t,τ ;U

B) now follow as do the others.

As a consequence of (88), note that c(h0
t,τ ) is a weakly decreasing and continuous

function of τ . As a consequence of (89), note that Uh0
t,t+∆

is a weakly decreasing function
of ∆. With some work, one can show that Uh1

t,s;x′
for any x′ ∈ X is continuous in s at

s = t. With that, we shall examine the limit, as ∆→ 0.

Proposition 14 (the cost-minimizing HJB equation). For fixed outside options U out(z),

with z ∈ Z, a starting date t, and a fixed wage w and rate of return on capital or interest

rate r > 0, a recursive cost function V (x, U) solves the Hamilton-Jacobi-Bellman equation

rV (x, U) = min
c,U̇ ,(U(x′))x′∈X/{x}

wc− wz(x) + V ′−(x, U)U̇ +
∑
x′ 6=x

αx,x′(V (x′, U(x′))− V (x, U))
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subject to

ρU = u(wc) + U̇ +
∑
x′ 6=x

αx,x′(U(x′)− U)

U̇ ≥ 0, if U = UOut(z(x))
ū

ρ
> U(x′) ≥ UOut(z(x′))

for all x(t) = x ∈ X and all U ∈
[
U out(z(x)), ū

ρ

)
, provided that (84) binds.

Proof of Proposition 14. The continuity of c(h0
t,s) and Uh1

t,s;x′
in s at s = t, together with

equation (82), shows that that Uh0
t,τ

is continuous in τ at τ = t . Equation (82) furthermore
implies that Uh0

t,τ
is differentiable with respect to τ at τ = t. Denote that derivative by

U̇ = U̇ht,t . The arguments preceding the proposition imply U̇ ≤ 0. Equation (82) implies
that

U̇ht,t = −u(wc(ht,t)) + (ρ− αx,x)Uht,t −
∑
x′ 6=x

αx,x′ lim
s→t

Uh1
t,s;x′

Use the cost function definition (83) evaluated at the minimizing choices as well as U̇ ≤ 0

and calculate

V (x, Uht,t) = [wc(ht,t)− wz(x)] ∆

+(1 + (αx,x − r)∆)V (x, Uht,t) + V ′−(x, Uht,t)U̇ht,t∆

+
∑
x′ 6=x

αx,x′V (x′, Uh1
t,s;x′

)∆ + o(∆),

Subtract V (x, Uht,t), divide by ∆ and let ∆ → 0. Write x and x′ in place of ht,t and
ht,t+∆;x′ . The lemma follows, noting that αx,x +

∑
x′ 6=x αx,x′ = 0.

The following will be useful. Let V̇ denote the derivative of V (x, Uh0
t,τ

) with respect to
τ at τ = t. Then,

V̇ = V ′−(x, U)U̇ (91)
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D.5 The Dual Problem: Utility Maximization

The dual problem to the contractual cost minimization problem above is a utility maxi-
mization problem, subject to a budget constraint. The budget is the resources provided by
the intermediary. The intermediary uses capital in order to fund the consumption claims
by contracted agents, effectively maintaining an account for each agent denoted in units of
capital to do so. Thus, write k rather than v for the budget available. Rather than provide
the contract formulation for arbitrary levels of outside options, we note that these outside
options are available to agents starting from scratch, i.e. when signing up with a new in-
termediary. Starting from scratch is thus the same as starting from zero capital. With this,
the dual problem becomes one of choosing state contingent capital and consumption sub-
ject to the constraint that capital must be non-negative: negative amounts would trigger the
selection of the outside option and a default on future obligations.

Definition 6 (utility-maximizing contract). For a starting date t, a starting state x and an

initial amount of capital kt ≥ 0, a fixed wagew and rate of return on capital or interest rate

r, an optimal consumption plan c : Ht(x) → IR+ and optimal savings plan k : Ht(x) →
IR+ with k(ht,t) = kt solve

max
c,k

U(kt;x) =

∫ ∞
t

∫
Ht,τ (x)

e−ρ(τ−t)u(wc(ht,τ ))dPt,τdτ (92)

subject to

k(ht,τ ) =

∫
Hτ,s(x(ht,τ ))

(
e−r(s−t)k([ht,τ , hτ,s]) (93)

+

∫ s

τ

e−r(τ−t) (wc([ht,τ , hτ,s(τ, s
′)])− wz([ht,τ , hτ,s(τ, s

′)])) ds′
)
dPt,s

for all s ≥ τ ≥ t and ht,τ ∈ Ht,τ .

Equation (93) is the budget constraint for the agent. For τ = t and s→∞, one obtains
that kt is the expected net present value of future consumption in excess of wage income,

kt =

∫ ∞
t

∫
Ht,τ (x)

e−r(τ−t) (wc(ht,τ )− wz(ht,τ )) dPt,τdτ, (94)

changing the order of integration and index of integration and noting that ht,s[t, τ ] ∈
Ht,τ (x). However, (93) is a stricter constraint, since we have imposed the condition that
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k : Ht(x) → IR+ is nonnegative. Conversely, it provides for more choices than the
Aiyagari-style saving constraint

kt = e−r(s−t)k(ht,s) +

∫ s

t

e−r(τ−t) (wc(ht,s[t, τ ])− wz(ht,s[t, τ ])) dτ (95)

and k(ht,s) ≥ 0, for all s and ht,s ∈ Ht,s(x), as (93) allows for state-contingent realloca-
tion of capital and thus insurance against future state changes, subject to the constraint that
capital cannot be negative. The next proposition establishes the equivalence between the
cost-minimization problem in definition 4 and the utility-maximization problem in defini-
tion 6.

Proposition 15 (equivalence of cost-minimizing and utility-maximizing). 1. Given a

cost-minimizing contract as defined in definition 4, suppose that V (x, U out(z(x))) =

0 for all x ∈ X . For x ∈ X and some U ∈ U(x), define the continuation utilities,

U(ht,τ ) =

∫ ∞
τ

∫
Hτ,s(x(ht,τ ))

e−ρ(s−τ)u(wc([ht,τ , hτ,s])))dPτ,sds (96)

Define

k(ht,τ ) = V (x(ht,τ ), U(ht,τ )) for all τ and ht,τ ∈ Ht,τ (x) (97)

Then c(·;x, U) and k are utility-maximizing consumption and savings plans for the

initial capital kt = V (x, U), as defined in definition 6, resulting in U(kt;x) =

U(ht,t) ≥ U .

2. Suppose that the optimal cost function of definition 4 is continuous in U 35. For all

x ∈ X and kt ≥ 0, calculate U(kt;x) and the optimal consumption and savings

plans per definition 6. Denote them by cx,kt and kx,kt . Let U out(z(x)) = U(0;x) for

all x ∈ X . Define

c(ht,τ ;x, U(kt;x)) = cx,kt(ht,τ ) for all τ and ht,τ ∈ Ht,τ (x) (98)

Then c is an optimal consumption contract as defined in definition 4, resulting in the

cost

V (x, U(kt;x)) = kt (99)
35With some work, this can probably be shown to be true.
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Proof. 1. Similar to the recursive construction for (83), note that k(ht,τ ), defined as
V (x(ht,τ ), U(ht,τ )) satisfies (93). Since V (x, U out(z(x))) = 0 and since V (x, U) is
increasing in U , it follows that k(ht,τ ) ≥ 0. Since V (x, ·) is strictly increasing at the
promise U(ht,t), there is no other consumption and savings plan, resulting in a higher
utility.

2. Note that V (x, U(kt;x)) = kt satisfies (94) and thus the equation for the cost func-
tion in definition 4. Suppose that the optimal contract achieves U(kt;x) at a lower
cost. Since the optimal cost function is increasing and continuous in U , there is some
utility level U > U(kt;x) resulting still in a cost below kt. Exploiting the preced-
ing reverse construction of proceeding from the cost-minimizing contract to a utility
maximizing plan in the previous step then shows that the plan for kt cannot have been
optimal.

Similar to Proposition 14 and with the same assumptions, we obtain

Proposition 16 (the utility-minimizing HJB equation). For a fixed wage w and rate of

return on capital or interest rate r > 0, a recursive utility function U(k;x) solves the

Hamilton-Jacobi-Bellman equation

ρU(k;x) = max
c,k̇,(k(x′))x′∈X/{x}

u(c) +
∂U(k;x)

∂k
k̇ +

∑
x′ 6=x

αx,x′(U(k(x′);x′)− U(k;x))

subject to

c+ k̇ +
∑
x′ 6=x

αx,x′(k(x′)− k) = rk + wz(x)

k(x′) ≥ 0 for all x′ ∈ X/{x}

k̇ ≥ 0 if k = 0

for all x ∈ X and all k ≥ 0.

The proof is analogous to the proof of Proposition 14. We skip the details.
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E Proofs of Lemmas and Propositions in the Main Text

In this section we provide the proofs for propositions in the main text as well as provide
further details of the mathematical derivations. These are straightforward but tedious ma-
nipulations that were therefore excluded from the main text.

We wish to formally compare contracts starting from high productivity to those starting
from low productivity. Therefore and from here on, we assume that there is a three-state
Markov process for an underlying state x(t) ∈ X = {0, 1, 2} for each agent, evolving
independently from each other. The transition rates αi,j to transit from state x = i to x = j

are α0,1 = α2,1 = ν, α1,0 = α2,0 = ξ and α0,2 = α1,2 = 0. Let αi,i = −
∑

j 6=i αi,j , so that
α is an intensity matrix or infinitesimal generator matrix.

Additionally, we assume that there is a mapping z : X → Z so that the implied Markov
process z(t) = z(X(t)) has the transition rates ξ for transiting from z = ζ to z = 0 and
ν for transiting from z = 0 to z = ζ , as stated in subsection 2.1 and given some initial
productivity. There are two options in particular. For the first option, let the mapping
z = zA be given by zA(0) = zA(2) = 0 and zA(1) = ζ . The three-state process starting at
x(t) = 0 or x(t) = 2 now generates the same stochastic process as the original two-state
stochastic process for an agent starting at z(t) = 0: the exit rate out of zero productivity
is ν, regardless of whether the underlying state is x = 0 or x = 2, and the transitions
between these two states play no role. The transition out of high productivity only happens
from state x = 1 at rate ξ, exactly as in the two-state formulation. For the second option,
let the mapping z = zB be given by zB = 0 and zB(1) = zB(2) = ζ . The three-state
process starting at x(t) = 1 or x(t) = 2 now generates the same stochastic process as the
original two-state stochastic process for an agent starting at zt = ζ: the exit rate out of
z = ζ productivity is ξ, regardless of whether the underlying state is x = 1 or x = 2, and
the transitions between these two states play no role. The transition out of low productivity
only happens from state x = 0 at rate ν, exactly as in the two-state formulation.

E.1 Ordering of the Outside Utilities

Assume r > 0. Let the net present value of future income be defined as

NPV (z) = E

[∫ ∞
t

e−r(τ−t)wz(τ)dτ

∣∣∣∣ z(t) = z

]
conditional on the starting income z at date t.
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Lemma 10. NPV (z) is increasing in z. Specifically,

NPV (z) =

{
ν

r+ν+ξ
ζ
r

if z = 0
r+ν
r+ν+ξ

ζ
r

if z = ζ
(100)

Proof of Lemma 10. Using Bellman logic, the two NPV s satisfy

(r + ν)NPV (0) = νNPV (ζ) (101)

(r + ξ)NPV (ζ) = ζ + ξNPV (0) (102)

Solve.

Proof of Lemma 1. The key idea is that an agent currently at high productivity can be pro-
vided with the contract of the low-productivity agent, delivering the same utility and a
profit to the principal, a contradiction to perfect competition between the principals. Some
care needs to be taken to implement this idea, however. Contracts depend on the history of
states. Thus, if the history was expressed only in terms of productivities, it would be mean-
ingless to give an agent starting with high productivity “the same” contract as an agent
starting with low productivity. The underlying state and the corresponding productivity
need to be decoupled. It is here where the three-state construction described at the begin-
ning of this section and the careful distinction between the state and the productivity at that
state as described at the beginning of Appendix C pay off.

Suppose by contradiction to the claim (10) that

U out(0) ≥ U out(ζ) (103)

Fix the productivity mapping z : X → Z to be zA. Recall that zA(0) = zA(2) = 0 and
zA(1) = ζ , and that the three-state process starting at x(t) = 0 or x(t) = 2 now generates
the same stochastic process as the original two-state stochastic process for an agent starting
at z(t) = 0. Consider an optimal consumption contract c(τ ; 0, U out(0)) given to an agent
at date t = 0, say, and starting off with productivity z(0) = 0, delivering date-0 promised
utility U = U out(0) in (2) and generating costs V (0, U out(0)) = 0. Wlog, we shall impose
the condition that x(0) = 2: any contract as defined per history dependence in Appendix C
and starting at x(0) = 0 can be written36 as a contract starting at x(0) = 2 delivering
the same outcomes, per ignoring transitions from x = 2 to x = 0. Thus, the optimal

36This argument can be made precise with some tedious notation.
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consumption contract c(τ ; 0, U out(0)) is a mapping c : H0 → IR+ from x-histories into
consumption outcomes, where all hs,0 ∈ H0 satisfy x(0) = 2, and which satisfies the
constraints (65).

Next, fix the productivity mapping z : X → Z to be zB. Recall that zB(0) = 0 and
zB(1) = zB(2) = ζ , and that the three-state process starting at x(t) = 1 or x(t) = 2 now
generates the same stochastic process as the original two-state stochastic process for an
agent starting at z(t) = ζ . The contract c delivers the same expected utility U out(0). The
contract c satisfies the constraints (65) for states x(s) = 0 and states x(s) = 1, where zA

and zB coincide. With equation (103), the constraints are also satisfied for the state x(s) =

2 and zB(2) = ζ rather than zA(2) = 0. The consumption portion generates the same
costs for the principal, as nothing has changed regarding the consumption process, but the
expected revenue from productivity income is now strictly higher per Lemma 10. It follows,
that the contract c now delivers strictly negative costs37 V (ζ, U out(0)). Per Lemma 3 and
equation (103), 0 > V (ζ, U out(0)) ≥ V (ζ, U out(ζ)). However, V (ζ, U out(ζ)) = 0 per the
definition of equilibrium. With that, we have arrived at a contradiction.

E.1.1 The Case of −ξ < r < 0

The proof of Lemma 10, and thus the proof of Lemma 1, required that r > 0 since con-
sumption insurance contracts last forever and thus discounting has to be positive to render
present discounted values of future incomes and costs of the contract finite. However,
since contracts will effectively end and reset every time a high income shock is realized,
the same arguments as in the proofs of Lemma 10, and thus of Lemma 1 can be used as
long as r > −ξ.

The expected net present value of income during such a contract that starts with high
income z = ζ , extends through a spell of low income z = 0, and ends the instant a new
high-income spell starts solves

rNPV (ζ) = ζ + ξ(NPV (0)−NPV (ζ)) (104)

as in equation (102), but now NPV (0) = 0 since the contract ends the next time high
productivity is reached. Thus NPV (ζ) = ζ

r+ξ
, which is finite as long as r > −ξ. Thus,

for the class of contracts that turn out to be optimal (for which the incentive constraint is

37In slight abuse of notation, we calculate the costs, given a contract, rather than insisting that V (·, ·) are
the minimized costs.
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binding every time high productivity is realized, effectively resetting the contract), only the
restriction r > −ξ rather than the restriction r > 0 has to be imposed.

Note that all calculations that lead to Proposition 2 go through under this weaker restric-
tion. During the high-productivity spell (which has a length with exponential distribution
with parameter ξ) the intermediary makes expected discounted profits∫ ∞

0

(ζ − ch)e−rte−ξtdt =
ζ − ch
r + ξ

(105)

which are finite as long as r > ξ. Similarly, the expected discounted cost of the low-
productivity spell (in which consumption drifts down at rate −(ρ − r) < 0) that starts at
random start date t and lasts a random, exponentially distributed (with parameter ν) time τ
is given by

e−rt
∫ ∞

0

e−rτche
−(ρ−r)te−νtdt =

e−rtch
ρ+ ν

(106)

and taking expectation with respect to the random time t at which productivity switches
from high to low gives the expected cost of the low-productivity spell as∫ ∞

0

e−rtch
ρ+ ν

ξe−ξtdt =
ξch

(ρ+ ν)(r + ξ)
(107)

which again is finite as long as r > −ξ. Equating expected profits and cost on the contract
spell yields

ζ − ch
r + ξ

=
ξch

(ρ+ ν)(r + ξ)
(108)

which yields ch in Proposition 2 from the main text and shows that the relevant net present
value calculations are all finite as long as r > −ξ.

The fact that the Poisson rate ξ of a productivity drop is helpful in relaxing the constraint
required to keep present discounted values finite is intuitive since it determines the expected
length of the initial high-income spell. What is perhaps surprising is that ν does not play
a role in keeping the present discounted value of the cost of the low-income spell finite.
This is because a low-income spell consumption is discounted at rate r and consumption
itself falls at rate −(ρ− r) and the spell ends at rate ν, and thus the effective discount rate
is r + ρ − r + ν = ρ + ν and thus the present discounted value is finite independent of
the interest rate r. This in turn is a reflection of the income effect and substitution effect
canceling out with log-utility (and would not be the case for σ 6= 1).
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E.2 Optimal Consumption Insurance Contract

E.2.1 Full Insurance: r = ρ

Proof of Proposition 1: If (3) does not bind, then the first two parts of Lemma 7 show that
consumption is constant. If (3) does bind, then consumption is locally constant to the right
of ċ+(ht,s), as the third part of Lemma 7 shows. Note that the argument there does not
require Assumption 3 in the case that r = ρ. The fourth part of the lemma shows that
consumption may jump upward upon a state transition. Lemma 1 implies that the jump
may occur for a transition from z = 0 to z = ζ , but not vice versa.

The optimal consumption contract is fully characterized by the constant consumption
level and associated insurance premium charged to high-income households:

ch(ρ) =
ρ+ ν

ρ+ ν + ξ
ζ

vhl =
ch

ρ+ ν
> 0

Corollary 3. Impose the conditions of Proposition 14. Define the wage-deflated contract

costs by vh = V (x, U out(ζ))/w, if z(x) = ζ and vl = V (x, U out(0))/w, if z(x) = 0 and

there never was a high income in the past and finally vhl = V (x, U out(ζ))/w, if z(x) = 0,

if there was. Then

rvl = cl + ν(vh − vl)

rvh = ch − ζ + ξ(vhl − vh)

rvhl = ch + ν(vh − vhl)

Proof. The transition rates αx,x′ correspond to the transition rates from productivity z(x)

to z(x′) per the construction in Appendix C. Note that U̇ = 0 in Proposition 14 for all
U . Rewriting the Hamilton-Jacobi-Bellman equation in Proposition 14 at the optimal con-
sumption choices cl and ch yields the equations here.

E.2.2 Partial Insurance: r < ρ

In order to prove Proposition 2, we prove the more general version

Proposition 17. Suppose that the utility function satisfies Assumption 3.
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1. Whenever a household has high productivity, it consumes a constant wage-deflated

amount ch.

2. When productivity switches to 0, consumption is continuous and subsequently drifts

down according to the full-insurance Euler equation

ċ(t)

c(t)
= −g < 0 (109)

where the negative of the consumption growth rate g satisfies

g =

(
−u′′(wc(t))wc(t)

u′(wc(t))

)−1

(ρ− r)

If the utility function is of the CRRA variety (81), then g = (ρ − r)/σ as in (80). In

that case, let τ be the time elapsed, since productivity last switched to 0. Then,

c(t) = che
−gτ (110)

Proof of Proposition 17. Let ch(0; ζ, U out(ζ)) be the consumption level at starting date t =

0 in a contract that just delivers the outside option U out(ζ) at high productivity z(0) = ζ .
The limited commitment constraint (3) binds; see the proof of Lemma 3. Alternatively,
note that it must bind, since otherwise consumption will drift down according to (76) with
λ̇ = 0 and the outside option would be better shortly after t = 0 , if no further state switch
occurred. The third part of Lemma 7 thus implies that consumption is constant while
productivity is high. Upon a switch to low productivity, the limited commitment constraint
(3) never binds. Thus, the fourth part of Lemma 7 implies that consumption is continuous,
that λ̇+(ht,s) = 0 and that consumption drifts down according to (76) or (109), applied only
to the right-derivatives at the date of the switch. The rest follows with some algebra.

Corollary 4. Impose the conditions of Proposition 14. Denote by τ the time elapsed

since having had high productivity and by vhl(τ) the remaining wage-deflated costs of the

contract, at that point. The Hamilton-Jacobi-Bellman equations characterizing the wage-

deflated costs in the high-productivity state, the low-productivity state prior to having had
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a high-productivity realization, and after time τ since having had high productivity read as

rvh = ch − ζ + ξ(v(0)− vh) (111)

rvl = cl + ν(vh − vl) (112)

rvhl(τ) = c(τ) + ν(vh − vhl(τ)) + v̇hl(τ) (113)

with terminal condition

vhl(∞) = vl = 0.

Proof. The transition rates αx,x′ correspond to the transition rates from productivity z(x)

to z(x′) per the construction in Appendix C. Note that U̇ = 0 in Proposition 14, if
U = U out(ζ) and U = U out(0). Rewriting the Hamilton-Jacobi-Bellman equation in
Proposition 14 yields equations (111) and 112. For equation (113), suppose that U =

U(τ) > U out(0), but that z(x) = 0. Rewriting the Hamilton-Jacobi-Bellman equation in
Proposition 14 at the optimal consumption choice c(τ) and exploiting equation (91) yields
equation (113) here.

We proceed to provide the details for the cost calculations, allowing the utility function
u(c) to be of the CRRA form (81). Equation (21) is a standard linear ODE. It can be
integrated, using the fact that c(τ) = che

−gτ with g = (ρ− r)/σ to obtain

vhl(τ) =

∫ ∞
τ

e−(r+ν)(s−τ)che
−gsds = che

−gτ
∫ ∞
τ

e−(r+ν+g)(s−τ)ds =
e−gτ

r + ν + g
ch (114)

either using standard formulas for ODEs or checking the result per differentiating the solu-
tion to back out the original differential equation.

We can evaluate (114) at t = 0 to obtain38

vhl(0) =
ch

r + ν + g
(115)

The optimal consumption contract has consumption declining at rate −g = r − ρ from
ch toward cl = 0, and asymptotically it reaches cl = 0. Thus the consumption level ch
fully characterizes the consumption contract. Using equation (20) to substitute out vhl(0)

38Note that this cost v(0) is the counterpart to the insurance cost in equation (13) for the full-insurance
case; if r = ρ and thus g = 0, v(0) = vhl in (13).
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in equation (115) yields
ch

r + ν + g
=
ζ − ch
ξ

or
ch =

r + ν + g

r + ν + g + ξ
ζ (116)

With this, we obtain a generalization of Proposition 3 to the CRRA case.

Proposition 18. If ρ > r, there exists a unique consumption level

ch =
r + ν + g

r + ν + g + ξ
ζ

which is strictly increasing in ζ and with the following properties:

1. Agents with currently high productivity receive the wage-deflated consumption ch.

2. Agents with currently low productivity who switched from high productivity τ periods

ago receive the wage-deflated consumption

c(t) = che
−gτ

Households that never have had high income consume the nontradable endowment cl = χ

until the first time they receive high income and sign the consumption risk-sharing contract.

E.3 Goods Supply and Capital Demand

Proof of Proposition 6: Calculating the capital stock and wages for Cobb-Douglas produc-
tion from the production first-order conditions (4) and (5) yields

K(r) =

(
θA

r + δ

) 1
1−θ

w(r) = (1− θ)AKθ

and thus

[AFK(K(r), 1)− δ]K(r)

AFL(K(r), 1)
=

r

(1− θ)AK(r)θ−1
=

rθ

(1− θ) (r + δ)
.
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With Euler’s theorem,

G(r) = 1 +
[AFK(K(r), 1)− δ]K(r)

AFL(K(r), 1)

= 1 +
rθ

(1− θ) (r + δ)

κd(r) =
Kd(r)

w(r)
=

[
Kd(r)

]1−θ
(1− θ)A

=
θ

(1− θ)(r + δ)

The properties of these functions stated in the main text follow directly from inspection.

E.4 Capital Supply and Consumption Demand for r < ρ

In this section we collect the details of the derivations about the properties of the capital
supply function κs(r) in the partial insurance case. Substitute ζ from equation (1) into
equation (24) to obtain

ch =
ν + ρ

ξ + ν + ρ

ξ + ν

ν

Direct calculations and exploiting the explicit functional form of φr in Proposition 5 reveal
that wage-normalized aggregate consumption demand and capital supply are given by

C(r) =
ν

ν + ξ
ch +

∫ ch

0

c
ξν (ch)

− ν
ρ−r

(ρ− r)(ν + ξ)
c

ν
ρ−r−1dc =

ν

ν + ξ

ν + ρ− r + ξ

ν + ρ− r
ch

=
ν + ρ− r + ξ

ν + ρ− r
ν + ρ

ν + ρ+ ξ

=

(
1 +

ξ

ν + ρ− r

)(
1− ξ

ν + ρ+ ξ

)
= 1 +

ξ

ν + ρ− r
− ξ

ν + ρ+ ξ
− ξ2

(ν + ρ+ ξ)(ν + ρ− r)

= 1 +
rξ

(ν + ρ+ ξ)(ν + ρ− r)

κs(r) =
ξ

(ν + ρ+ ξ) (ν + ρ− r)

Proof of Proposition 7: It follows immediately from the equations above that the function
κs(r) is continuously differentiable and strictly increasing on [−δ, ρ). Aggregate consump-
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tion demand and capital supply are continuous in the interest rate at r = ρ since

lim
r↗ρ

C(r) = 1 +
ρξ

ν(ρ+ ν + ξ)
= C(r = ρ) (117)

lim
r↗ρ

κs(r) =
ξ

ν(ξ + ν + ρ)
= κs(r = ρ) (118)

coincide with the values in equations (31) and (32) for the full-insurance case r = ρ.

F General CRRA Utility

The analysis for the full-insurance case goes through completely unchanged, since at r = ρ

the growth rate of consumption and thus the aggregate consumption demand and capital
supply are unaffected by the intertemporal elasticity of substitution 1/σ. Here we focus on
the case ρ > r.

F.1 Optimal Consumption Contract

As in the log-case, whenever a household has high income, it consumes ch, and when
income switches to 0, consumption drifts down according to the full-insurance Euler equa-
tion39

ċ(t)

c(t)
= −ρ− r

σ
= −g < 0

where the growth rate of consumption is now defined as

g =
ρ− r
σ

> 0.

The log-utility case is of course just a special case where σ = 1 and thus g = ρ− r.
The steps of deriving the optimal consumption contract and associated cost then pro-

ceeds completely in parallel to the log-case. Consumption is given as

c(t) = che
−gt (119)

39The proof of Proposition 2 in Appendix E.2.2 is conducted for a general CRRA function and thus applies
here.
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and the cost of the contract is given by

v(t) =
che
−gt

r + ν + g
(120)

Evaluating (22) at t = 0 gives
v(0) =

ch
r + ν + g

(121)

Using equation (20), which continues to hold unchanged, to substitute out v(0) into equa-
tion (23) yields

ch
r + ν + g

=
ζ − ch
ξ

or
ch(r) =

r + ν + g

r + ν + g + ξ
ζ =

1

1 + ξ

r(1− 1
σ )+ν+ ρ

σ

ζ (122)

Note that ch(r) together with v(t) > 0 requires r + ν + g > 0. For σ ≤ 1 this is satisfied
for all r ≤ ρ. For σ > 1, this is satisfied at r = −δ and thus for all r ∈ [−δ, ρ], if condition
(45) of Proposition 10 holds. For σ →∞, condition (45) becomes δ < ν.

F.2 Invariant Consumption Distribution

As in the log-case, on c ∈ (0, ch) the consumption process follows a diffusion process
with drift −g (and no variance) and thus on (0, ch) the stationary consumption distribution
satisfies the Kolmogorov forward equation (for the case of Poisson jump processes):

0 = −d [−gcφ(c)]

dc
− νφ(c)

where the second term comes from the fact that with Poisson intensity ν the household has
a switch to high income. Since

−d [−gcφ(c)]

dc
= − [−gφ(c)− gcφ′(c)] = g [φ(c) + cφ′(c)]

we find that on c ∈ (0, ch) the stationary distribution satisfies

cφ′(c)

φ(c)
=
ν

g
− 1
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and thus on this interval the stationary consumption distribution is Pareto with tail param-
eter κ = ν

g
− 1, that is

φ(c) = φ1c
( νg−1)

where φ1 is a constant that needs to be determined. Now we need to determine the constant
φ1. Because of the mass point at ch it is easier to think of the cdf for consumption on
(0, ch) given by Φ(c) = φ1(c)κ+1

κ+1
. The inflow mass into this range is given by the mass of

individuals at ch given by φ(ch) = ν
ν+ξ

times the probability ξ of switching to the low-
income state, whereas the outflow is due to receiving the high-income shock, and thus the
stationary cdf has to satisfy

νΦ(ch) =
ξν

ν + ξ

and therefore

ν
φ1 (ch)

κ+1

κ+ 1
=

ξν

ν + ξ

Exploiting the fact that κ+ 1 = ν
g

we find

φ1g (ch)
ν
g =

ξν

ν + ξ

and thus

φ1 =
ξν (ch)

− ν
g

g(ν + ξ)

and therefore the density on (0, ch) is given by

φ(c) =
ξν (ch)

− ν
g

g(ν + ξ)
c
ν
g
−1.

Therefore the stationary consumption distribution is now given by:

φr(c) =

{
ξν(ch(r))

− νg

g(ν+ξ)
c
ν
g
−1 if c ∈ (0, ch)

ν
ν+ξ

δδδch if c = ch

where δδδch indicates a Dirac mass point at ch. Thus, for a given interest rate r the in-
variant consumption distribution is completely characterized by the upper bound ch(r) =
r+ν+g
r+ν+g+ξ

ζ.
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F.3 Equilibrium

We now determine the aggregate consumption demand C(r) and the normalized capital
supply function κs(r). Direct calculations reveal that aggregate consumption demand and
capital supply are given by:

C(r) =
ν

ν + ξ
ch(r) +

∫ ch(r)

0

c
ξν (ch(r))

− ν
g

g(ν + ξ)
c
ν
g
−1dc =

ν

ν + ξ

ξ + ν + g(r)

ν + g(r)
ch(r)

=
ξ + ν + g(r)

ν + g(r)

r + ν + g(r)

ξ + r + ν + g(r)

=

(
1 +

ξ

ν + g(r)

)(
1− ξ

ξ + ν + g(r) + r

)
= 1 +

ξ

ν + g(r)
− ξ

ξ + ν + g(r) + r
− ξ2

(ξ + ν + g(r) + r)(ν + g(r))

= 1 +
rξ

(ξ + ν + g(r) + r)(ν + g(r))

κs(r) =
ξ(

ξ + ν + ρ−r
σ

+ r
) (
ν + ρ−r

σ

) (123)

where we have repeatedly used g(r) = ρ−r
σ

.

F.3.1 Proof of Proposition 10

Proof. The first step of the proof is to establish that the normalized capital supply function
is well-defined and continuous on r ∈ [−δ, ρ]. The previous section gave κs(r) in closed
form, and it is evidently continuous and well-defined on [−δ, ρ] as long as both terms of
the denominator are strictly positive. Since r ≤ ρ, the second term in the denominator of
equation (123) is always strictly positive. The first term is always positive for σ ≤ 1 and
r ≤ ρ. For σ > 1, it is positive for r ≥ δ due to condition (45). That condition is also
needed for ch > 0 and v(t) > 0; see the remarks at the end of Appendix F.1.

Since by Assumption 2 we have κs(r = ρ) > κd(r = ρ) and since κs(r = −δ) <∞ =

κd(r = −δ), it follows that κs and κd intersect at least once in (−δ, ρ). This establishes the
existence of a stationary equilibrium.

The uniqueness of equilibrium follows if κs(r) is increasing (given that κd(r) is strictly
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decreasing). The derivative of κs(r) is given by

dκs(r)

dr
= ξ

[
2
σ
− 1
] [

ρ−r
σ

+ ν
]

+ ξ+r
σ[(

ξ + ν + ρ−r
σ

+ r
) (
ν + ρ−r

σ

)]2
A sufficient condition for this expression to be positive is σ < 1 (part 1 of the proposition)
or σ ∈ (1, 2] and ξ ≥ δ (part 2a of the proposition). Part 2b follows from the fact that
equation (43) is a quadratic equation, and thus has at most two solutions (and we have
already established that under the assumptions made it has at least one solution). The
numerical example in the main text shows that the statement in 2b of the proposition is not
vacuous.

F.3.2 Proof of Corollary 2

Proof. In general equilibrium interest rates are real-valued solutions to the quadratic equa-
tion

0 = F (r) ≡ A2r
2 + A1r + A0 (124)

where

A0 = (σ − 1)2 [ξδ − θν2 − ξθ (δ + ν)
]

+ (σ − 1) [−2θν (ν + ρ)− ξ (2δ (θ − 1) + θ (2ν + ρ))]

−θ (ν + ρ)2 − ξ (δ (θ − 1) + θ (ν + ρ))

A1 = − (σ − 1)2 (θ (ν + ξ)− ξ)− (σ − 1) (θ (ρ+ ξ)− 2ξ) + θ (ρ+ ν) + ξ

A2 = θ (σ − 1)

The coefficients A0, A1, A2 defined above are functions of the parameters. Note that

A0 (αρ, αδ, αξ, αν;σ, θ) = α2A0 (ρ, δ, ξ, ν;σ, θ)

A1 (αρ, αξ, αν;σ, θ) = αA1 (ρ, ξ, ν;σ, θ)

and A2 (σ, θ) does not depend on ρ, δ, ξ, ν. Define

F (r;α) = A2 (σ, θ) r2 + A1 (αρ, αξ, αν;σ, θ) r + A0 (αρ, αδ, αξ, αν;σ, θ)
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Then

α2F (r; 1) = F (αr;α)

Hence, if r̄ solves F (r̄; 1) = 0, then r = αr̄ solves F (r;α) = 0.

G Superinsurance

In this appendix we characterize the optimal consumption insurance contract when the
interest rate r exceeds the rate of time preference ρ, that is, r > ρ, and then discuss the
possibility of a stationary distribution associated with that consumption contract.

G.1 The Optimal Contract for Superinsurance: ρ < r

If the limited commitment constraint is not binding, as in the partial-insurance case, con-
sumption grows at a constant rate,

ch(t) = ch(0)e(r−ρ)t

but now ρ > r; that is, consumption grows at a positive rate. As in the full and partial-
insurance case, households born with low income cannot obtain insurance until their in-
come switches to ζ , at which point it jumps to ch(0), as in the partial and full-insurance
cases. From that point on, the household obtains income insurance (as in the full insur-
ance case), but now consumption grows at rate r− ρ > 0 (rather than remaining constant),
until the household dies. The level ch(0) is determined by the zero profit condition of the
intermediary, equating the expected revenue from the household’s income stream with the
expected cost of the consumption contract.

To determine this level, ch(0), first calculate the present discounted revenue (al, ah) for
the intermediary from a currently productive and currently unproductive individual (nor-
malized by the wage) as follows. These PDV revenues satisfy

rah(t) = ζ + ξ(al(t)− ah(t)) + ȧh(t)

ral(t) = ν(ah(t)− al(t)) + ȧl(t)
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Evidently these two functions do not depend on time and solve

rah = ζ + ξ(al − ah)

ral = ν(ah − al)

Solving yields

ah =
r + ν

r(r + ν + ξ)
ζ

al =
ν

r(r + ν + ξ)
ζ

both of which are finite since r > ρ > 0. Now we derive the present discounted value for
the cost of the contract that starts at entry consumption ch(0) and grows at rate r − ρ > 0

over time. This gives

κ =

∫ ∞
0

e−rτche
(r−ρ)τdτ =

ch(0)

ρ

Equating κ = ah delivers

ch(0) =

(
ρ

r
· r + ν

r + ν + ξ

)
ζ < ch(ρ) (125)

Note that the entry-level consumption in this case is smaller than in the full-insurance case
r = ρ in order to compensate for the higher cost of growing consumption. The household
pays an insurance premium ζ − ch(0) in exchange for future consumption insurance and
consumption growth. Note that since r > ρ and consumption grows along the contract,
the insurance premium must be larger (and initial consumption ch(0) smaller) than in the
full-insurance case (r = ρ) to finance future consumption growth, and as the interest rate
r converges to the time discount rate ρ from above, the entry-level consumption and the
insurance premium converge to the full-insurance consumption level ch(ρ) from below.

G.2 A Stationary Consumption Distribution?

Although we can characterize the optimal consumption insurance contract in this case,
since, conditional on having received the high income, once the consumption of all indi-
viduals continues to drift up at the constant (and identical) rate r− ρ, there is no stationary
consumption distribution for the case r > ρ, and thus we can discard this case as a possi-
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bility for a stationary equilibrium.
Formally, all households experiencing a jump to high income jump to ch(0) and imme-

diately their consumption drifts up at rate r − ρ > 0, so there is no mass point at ch(0).

Instead, there is a continuous consumption density on [ch(0),∞) with power and scale
parameters that need to determined in the same way as we did for the r < ρ case.

In c ∈ [ch(0),∞) the consumption process follows a diffusion process with drift r−ρ >
0 (and no variance) and thus on this interval the stationary consumption distribution satisfies
the Kolmogorov forward equation

0 = −d [−gcφ(c)]

dc

Since
−d [−gcφ(c)]

dc
= − [−gφ(c)− gcφ′(c)] = g [φ(c) + cφ′(c)]

we find that on c ∈ (ch(0),∞) the stationary distribution satisfies

0 = g [φ(c) + cφ′(c)]

and thus the consumption distribution is Pareto on [ch(0),∞) with power

−cφ
′(c)

φ(c)
= 1

But this implies that stationary aggregate consumption∫ ∞
ch

cφ(c)dc =∞

(as a Pareto distribution with tail parameter 1 has infinite mean) and thus no stationary
consumption distribution with finite aggregate consumption can exist in the case of ρ < r,

ruling out the existence of a stationary equilibrium in this case.
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H Welfare in Stationary Equilibrium for IES σ 6= 1

The wage-deflated consumption allocation in a partial-insurance stationary equilibrium is
given by

c(t) = ch(r)e
−g(r)t

ch(r) =
1

1 + ξ
r+ν+g(r)

ζ =
1

1 + ξ

r+ν+ ρ−r
σ

ζ =
1

1 + ξ

ρ+ν+(ρ−r)( 1
σ
−1)

ζ

g(r) =
ρ− r
σ

H.1 Lifetime Utility for Given Interest rate r

Expected lifetime utility is the weighted sum of lifetime utility from being born with low
(no) income and being born with high income z. It is given, for interest rate r, by

EU(r) =
ξUl(r) + νUh(r)

ξ + ν

where Ui(r) is lifetime utility being born with income i = l, h. For the low-income state
lifetime utility is given by

ρUl(r) = u+ ν(Uh(r)− Ul(r))

and thus
Ul(r) =

u+ νUh(r)

ρ+ ν

Thus

EU(r) =
ξ u+νUh(r)

ρ+ν
+ νUh(r)

ξ + ν
=

ξ

(ξ + ν)(ρ+ ν)
u+

(ξ + ρ+ ν)ν

(ξ + ν)(ρ+ ν)
Uh(r)

and lifetime utility is linear in lifetime utility conditional on being born with high income.
For being born with high income (for now, suppressing dependence on r), lifetime

utility is given by
ρUh = u(w(r)ch(r)) + ξ(U(0)− Uh)

where U(t) is the lifetime continuation utility from the consumption contract after having
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had low income for t units of time. It is given by the differential equation

ρU(t) = u(w(r)ch(r)e
−g(r)t) + ν(Uh − U(t)) + U̇(t)

Now define

u(t) =
U(t)

w(r)1−σ

uh(r) =
Uh(r)

w(r)1−σ

as wage-deflated lifetime utility. Lifetime utility can be decomposed in this way since the
period utility function is CRRA (and thus lifetime utility is homothetic), and the aggregate
wage is constant over time in a stationary equilibrium, and can be expressed as a function
of the interest rate r (and exogenous parameters) only. The so-defined deflated lifetime
utility function follows the Hamilton-Jacobi-Bellman equation:

ρuh(r) = u(ch(r)) + ξ(u(0)− uh(r))

ρu(t) = u(ch(r))e
−(1−σ)g(r)t + ν(uh − u(t)) + u̇(t)

or rewriting the second equation

u̇(t) = (ρ+ ν)u(t)− u(ch(r))e
−(1−σ)g(r)t − νuh

Solving the differential equation (one can differentiate with respect to time t using Leibnitz’
rule to check that the solution is correct) yields, for now suppressing the dependence of
uh(r) on r:

u(t) =

∫ ∞
t

e−(ρ+ν)(s−t) [νuh + u(ch(r))e
−(1−σ)g(r)s

]
ds.
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Evaluating at t = 0 one obtains

u(0) =

∫ ∞
0

e−(ρ+ν)s
[
νuh + u(ch(r))e

−(1−σ)g(r)s
]
ds

= νuh

∫ ∞
0

e−(ρ+ν)sds+ u(ch(r))

∫ ∞
0

e−[ρ+ν+(1−σ)g(r)]sds

= − νuh
ρ+ ν

e−(ρ+ν)s
∣∣∞
0
− u(ch(r))

ρ+ ν + (1− σ)g(r)
e−[ρ+ν+(1−σ)g(r)]s

∣∣∞
0

=
νuh
ρ+ ν

+
u(ch(r))

ρ+ ν + (1− σ)g(r)

and thus the two equations

u(0) =
νuh
ρ+ ν

+
u(ch(r))

ρ+ ν + (1− σ)g(r)

(ρ+ ξ)uh = u(ch(r)) + ξu(0)

can be solved for uh, u(0). This delivers

(ρ+ ξ)uh = u(ch(r)) +
ξνuh
ρ+ ν

+
ξu(ch(r))

ρ+ ν + (1− σ)g(r)[
1 +

ξ

ρ+ ν

]
ρuh =

[
1 +

ξ

ρ+ ν + (1− σ)g(r)

]
u(ch(r))

and thus

uh(r) =
1 + ξ

ρ+ν+(1−σ)g(r)

1 + ξ
ρ+ν

u(ch(r))

ρ
=

1 + ξ
ρ+ν+(1−σ)g(r)(

1 + ξ
ρ+ν

)
ρ

ch(r)
1−σ

1− σ

and
EU(r) =

ξ

(ξ + ν)(ρ+ ν)
u+

(ξ + ρ+ ν)ν

(ξ + ν)(ρ+ ν)
w(r)1−σuh(r)

Now suppose we scale consumption in all periods by a factor α > 0. Expected lifetime
utility from this scaled consumption process, denoted by EU(r;α), is given by

EU(r;α) =
ξ

(ξ + ν)(ρ+ ν)
u+

(ξ + ρ+ ν)ν

(ξ + ν)(ρ+ ν)
w(r)1−σuh(r;α)

=
ξ

(ξ + ν)(ρ+ ν)
u+ α1−σ (ξ + ρ+ ν)ν

(ξ + ν)(ρ+ ν)
w(r)1−σuh(r; 1)
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since

uh(r;α) =
1 + ξ

ρ+ν+(1−σ)g(r)(
1 + ξ

ρ+ν

)
ρ

[αch(r)]
1−σ

1− σ
= α1−σ

1 + ξ
ρ+ν+(1−σ)g(r)(

1 + ξ
ρ+ν

)
ρ

[ch(r)]
1−σ

1− σ
= α1−σuh(r; 1)

H.2 Comparing Welfare Across Equilibria with Interest Rates r1, r2

Now we want to compare welfare across two interest rates. For that, we ask by what factor
α we have to scale equilibrium consumption under interest rate r1 so that the household is
indifferent to living under interest rate r2 > r1. That is, we are looking for α such that

EU(r1;α) = EU(r2; 1)

where α < 1 indicates that the low interest rate equilibrium is preferred, and α > 1

indicates that the high interest rate equilibrium is preferred. Using the results from the
previous section, we solve for α such that

ξ

(ξ + ν)(ρ+ ν)
u+ α1−σ (ξ + ρ+ ν)ν

(ξ + ν)(ρ+ ν)
w(r1)1−σuh(r1; 1)

=
ξ

(ξ + ν)(ρ+ ν)
u+

(ξ + ρ+ ν)ν

(ξ + ν)(ρ+ ν)
w(r2)1−σuh(r2; 1)

and thus, using the expression for ch(r) = 1

1+ ξ

r(1− 1
σ )+ν+

ρ
σ

z from equation (24):

α =
w(r2)

w(r2)
·
[
uh(r2; 1)

uh(r1; 1)

] 1
1−σ

(126)

=
w(r2)

w(r1)
·


(

1 + ξ
ρ+ν+(1−σ)g(r2)

)
(

1 + ξ
ρ+ν+(1−σ)g(r1)

)


1
1−σ

ch(r2)

ch(r1)
(127)

=
w(r2)

w(r1)
·
[
ch(r2)

ch(r1)

] σ
σ−1

= αwage · αcontract (128)
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where

αwage =
w(r2)

w(r1)

αcontract =

[
ch(r2)

ch(r1)

] σ
σ−1

A higher interest rate means a lower capital stock and thus lower wages. Therefore,
unambiguously,

αwage =
w(r2)

w(r1)
< 1.

The second term captures lifetime utility from the wage-deflated consumption contract:

αcontract =

[
ch(r2)

ch(r1)

] σ
σ−1

> 1

A higher interest rate leads to a better consumption contract, since a higher interest rate
is associated with better consumption insurance (consumption starts higher and falls less
slowly).40

Given that αcontract > 1 and αwage < 1, the overall welfare term α can be smaller or
larger than 1. Since both αcontract, αwage are closed-form expressions of the two equilibrium
interest rates, and these in turn are closed-form solutions of a quadratic equation, we could
in principle give conditions on parameters under which the low interest rate yields higher
welfare, and alternative conditions under which the reverse is true. However, that these
parameter sub-spaces are both nonempty can also be verified numerically.

Note that we could also have defined welfare as expected period utility in the steady

40For σ > 1, we have ch(r2) > ch(r1) and for σ < 1 the reverse is true (but then the ratio is taken to a
negative exponent.)
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state. Doing so, we obtain, when scaling consumption by a constant α

W (r, α) =

∫ ch(r)

0

(αw (r) c)1−σ

1− σ
φ (c, r) dc+

(αw (r) ch (r))1−σ

1− σ
φ (ch, r)

=

∫ ch(r)

0

(αw (r) c)1−σ

1− σ
ξν

(ξ + ν) g (r)
ch (r)−

ν
g(r) c

ν
g(r)
−1dc

+
(αw (r) ch (r))1−σ

1− σ
ν

ξ + ν

=
(αw (r))1−σ

1− σ
ν

ξ + ν
ch (r)1−σ

(
1 +

ξ

ν + (1− σ) g (r)

)
Again comparing welfare across two equilibria yields

W (r1, α) = W (r2, 1)

(αw (r1))1−σ

1− σ
ch (r1)1−σ

(
1 +

ξ

ν + (1− σ) g (r1)

)
=

(w (r2))1−σ

1− σ
ch (r2)1−σ

(
1 +

ξ

ν + (1− σ) g (r2)

)

α̂ =
w (r2)

w (r1)

(
1 + ξ

ν+(1−σ)g(r2)

1 + ξ
ν+(1−σ)g(r1)

) 1
1−σ

ch (r2)

ch (r1)

= αwage · α̂contract

where

αwage =
w(r2)

w(r1)

α̂contract =


(

1 + ξ
ν+(1−σ)g(r2)

)
(

1 + ξ
ν+(1−σ)g(r1)

)


1
1−σ

· ch(r2)

ch(r1)

This alternative welfare measure therefore results in a similar decomposition. The aggre-
gate wage factor αwage is exactly the same, and the contract factor only differs by discount-
ing. Thus both welfare measures give similar welfare comparisons; the second just contains
an additional time discounting term, since in the first measure every contract starts with ch,
and in the other, the agent is randomly placed in the stationary consumption distribution.
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