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Abstract

This paper explores an algebraic relationship between two types of coefficients for a regression
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1 Introduction

The computation of regression coefficients by ordinary least squares (OLS) has the elementary

algebraic property that if the data are split into two subsets

y = (y0, y1) and X = (X0, X1),

then

b = (X ′X)−1X ′y

= (X ′0X0 +X ′1X1)
−1(X ′0 y0 +X ′1 y1)

= (H0 +H1)−1H0b0 + (H0 +H1)−1H1b1

where H0 = X ′0X0, H
1 = X ′1X1, b

0 = (H0)−1X ′0 y0 and b1 = (H1)−1X ′1 y1.

Hence, the overall vector of regression coefficients is a X-variance-weighted average of subset specific

regression coefficients. This is a mechanical property of OLS. Whether or not it is a “desirable”

feature depends on context. For instance, when considering Bayesian updating for the normal

linear model with homoskedastic errors, the property says that the posterior mean b is obtained as

a precision-matrix weighted average of the prior location vector b0 and the sample location vector

b1 (e.g. Zellner, 1973), which seems like an intuitively reasonable way of combining information.1

In other contexts, such variance-weighting can lead to unexpected, and perhaps undesirable, results.

One such case is neglected slope heterogeneity in linear regression models. Suppose for illustrative

purposes that there are two groups only. b0 denotes the coefficients when a regression is fit to group-

0 data, whereas b1 are the group-1 coefficients. In general, b0 6= b1. We know from above that

pooling over both groups yields an overall coefficient vector that is a variance-weighted average

of the group specific coefficients. But a matrix-weighted average of vectors does not mean that

element by element, the pooled coefficients lie algebraically between b0 and b1, except for very

specific circumstances. For example, element by element convex averages are obtained if both

weighting matrices are diagonal, or if one matrix is proportional to the other (See Chamberlain and

Leamer, 1976). In general, however, each coefficient is a mixture of all group-specific coefficients,

with weights that can be negative. I demonstrate this property of least squares by deriving the

exact averaging weights in a regression where there are two predictors and two groups.

1Chamberlain and Leamer (1976) provide a general characterization of matrix weighted averages of pairs of

vectors in the context of a Bayesian analysis of the linear regression model, deriving bounds for the posterior location

parameter when the prior precision matrix is unknown, and thus a kind of sensitivity analysis.
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The problem addressed in this paper is related to, but different from a sizeable literature on

heterogeneous partial effects and the question what linear constant-coefficients regression estimates

in such a case. For example, Stoker (1986) shows that the regression slope coincides with the

average partial effect for a general class of non-linear conditional expectation functions as long as

the regressor is normally distributed. Angrist (1998) considers a scalar binary treatment and a single

discrete confounder, where OLS gives a variance-weighted average (see also Yitzhaki, 1996). Apart

from least squares regression, numerous covariate adjustments methods exist that actually recover

the average treatment effect under the conditional independence assumption (see Wooldridge and

Imbens, 2009, for a survey of such methods).

The extension to multiple treatment arms has been considered by Goldsmith-Pinkham et al. (2021).

These authors point to the close connection with the recent literature on heterogenous effects in

difference-in-differences regressions (e.g., Goodman-Bacon, 2021). For continuous, and potentially

multiple, regressors of interest, methods for consistent estimation of average partial effects are

discussed in Wooldridge (2004) and Graham and Pinto (2022), among others.

While most of this literature is model-based (Goodman-Bacon, 2021, being a notable exception),

the current paper solely exploits algebraic properties of ordinary least squares. Thus, results hold

regardless of model assumptions, which may or may not be valid. Also, they hold for purely

descriptive regressions, and for any sample size as they do not rely on asymptotic properties. On

the other hand, this is not a framework to address questions of causality, population estimands and

efficiency.

Understanding the algebra of least squares can be helpful for applied research, as the set-up dis-

cussed in this paper is encountered quite frequently in practice, both in the context of causal

analysis or that of descriptive regression. An early example is Griliches (1977) who considers a

regression of earnings on years of schooling and experience as main predictors, with a person’s IQ

as an additional control. Schooling and experience coefficients are not allowed to vary by IQ. As

another example from education research, the Project STAR trial randomized students within, but

not across, schools to either a small classroom treatment, a teaching aide treatment, or a control

condition. The results in this paper speak to the consequences of regressing the outcome on treat-

ment status and a school dummy, when there are heterogeneous, school specific treatment effects

(this example is borrowed from Goldsmith-Pinkham et al. 2022).
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2 Linear regression with group-specific heterogeneity

2.1 A single regressor

Let X denote the single regressor and W ∈ {0, 1} denote the binary group variable. The regression

Y = b0 + bxX + bwW + e (1)

can then be solved for bx by first partialling out W . The auxiliary regression of X on W gives

predicted values

X̄0 =
1

N0

N∑
i=1

(1−Wi)Xi, N0 =

N∑
i=1

(1−Wi)

X̄1 =
1

N1

N∑
i=1

WiXi, N1 =
N∑
i=1

Wi

and therefore, we can obtain bx from the bivariate regression of y on X−X̄w. Using the partitioning

of y and X as described in the introduction, we get the scalar least squares expression

bx =
(X0 − ιN0X̄0)

′(X0 − ιN0X̄0) b
0
x + (X1 − ιN1X̄1)

′(X1 − ιN1X̄1) b
1
x

(X0 − ιN0X̄0)′(X0 − ιN0X̄0) + (X1 − ιN1X̄1)′(X1 − ιN1X̄1)

=
S0
xx

S0
xx + S1

xx

b0x +
S1
xx

S0
xx + S1

xx

b1x

where ιN is a (N × 1) vector of ones, S0
xx =

∑N0
i=1(Xi − X̄0)

2 = N0 σ̂
2
x,w=0 and S1

xx =
∑N1

i=1(Xi −

X̄1)
2 = N1 σ̂

2
x,w=1. b

0
x is the least squares coefficient in a separate group-0 regression (of y0 on X0),

b1x that in a separate group-1 regression. Hence, the pooled coefficient bx is a convex average: it

lies between b0x and b1x. The weights depend on relative group sizes, N0 and N1, as well as on the

within-group variances, σ̂2x,w=0 and σ̂2x,w=1. A population version of this result is given in Angrist

(1998).2 As I will show, it unfortunately does not generalize when there are two or more regressors.

2.2 Extension to two regressors

With two regressors of interest, from now on labeled X and Z, and one group indicator W ∈ {0, 1},

the regression takes the form:

Yi = b0 + bxXi + bzZi + bwWi + ei for i = 1, . . . , N (2)

2To be precise, this is Angrist (1998) in reverse, as he considers the regression coefficient of a dummy predictor

after partialling out a multivalued, discrete or continuous, confounder.
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where ei is a regression residual such that Cov(e,X) = Cov(e, Z) = Cov(e,W ) = 0. The regressors

X and Z can be binary, discrete, or continuous, and it is assumed that there are two groups only.

Regression (2) allows the constant to shift depending on Wi but imposes homogeneous slopes bx

and bz. After partialling out, as before, the constant and Wi, we obtain the trivariate regression

Yi = bx(Xi − X̄w) + bz(Zi − Z̄w) + ui

where w ∈ {0, 1}, groups do not necessarily need to be of equal size, and X̄0, X̄1, Z̄0 and Z̄1

are group-specific means. Assuming sorted data (W = 0 observations first, followed by those for

W = 1), the ((N0 +N1)× 2) matrix of regressors after partialling out can written as X0 − ιN0X̄0 Z0 − ιN0Z̄0

X1 − ιN1X̄1 Z1 − ιN1Z̄1


Define

S0
xx =

N0∑
i=1

(Xi − X̄0)
2 S0

zz =

N0∑
i=1

(Zi − Z̄0)
2

S0
xy =

N0∑
i=1

(Xi − X̄0)yi S0
zy =

N0∑
i=1

(Zi − Z̄0)yi

S0
zx =

N0∑
i=1

(Zi − Z̄0)(Xi − X̄0)

and same for S1
xx, S

1
zz, etc. Then the least squares coefficients b = (bx, bz)

′ in (2) are obtained as

b =

 S0
xx + S1

xx S0
xz + S1

xz

S0
zx + S1

zx S0
zz + S1

zz

−1 S0
xy + S1

xy

S0
zy + S1

zy

 (3)

Alternatively, consider the heterogeneous coefficients as computed from two separate regressions of

y on X and Z, one using the W = 0 observations only, say b0, and the other one using W = 1

observations only, say b1

bw =

 Sw
xx Sw

xz

Sw
zx Sw

zz

−1 Sw
xy

Sw
zy

 for w ∈ {0, 1} (4)

Comparing (3) and (4), it is clear that the algebraic variance weighting property is satisfied:

b = (H0 +H1)−1(H0 b0 +H1 b1) (5)

where

Hw =

 Sw
xx Sw

xz

Sw
zx Sw

zz

 for w ∈ {0, 1}
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is proportional to the within-group variances and covariances of the two regressors. In the following,

I will derive the element by element relationship between bx and the heterogeneous coefficients b0x,

b1x, b0z and b1z.

2.3 Decomposing the regression coefficient bx

With two regressors, computation of least squares coefficients requires the inversion of the (2 ×

2) variance-covariance matrix. Without loss of generality, I will focus on the first element of b,

pertaining to X and denoted as b0x and b1x when considering heterogeneity, and as bx for the pooled

regression. The results for bz follow from symmetry. For the subsamples (conditional on W being

either 0 or 1), the coefficients are given by

bwx =
Sw
zzS

w
xy − Sw

xzS
w
zy

Sw
xxS

w
zz − Sw

xzS
w
xz

w ∈ {0, 1} (6)

For estimation of a common bx without heterogeneity, we simply need to replace each term of the

right-hand side fraction in (6) with its respective sum over the two groups (see the definition of

(bx, bz)
′ in equation (3)), such that

bx =
(S0

zz + S1
zz)(S

0
xy + S1

xy)− (S0
xz + S1

xz)(S
0
zy + S1

zy)

(S0
xx + S1

xx)(S0
zz + S1

zz)− (S0
xz + S1

xz)
2

(7)

In the Appendix, I show how to express bx as a relatively simple function of four group-specific

coeffients b0x, b1x, b0z and b1z. In particular, the numerator of (7) can be written as

(S0
xxS

0
zz − S0

xzS
0
xz + S1

zzS
0
xx − S1

xzS
0
xz)b

0
x + (S1

xxS
1
zz − S1

xzS
1
xz + S0

zzS
1
xx − S0

xzS
1
xz)b

1
x

+(S1
zzS

0
xz − S1

xzS
0
zz)b

0
z + (S0

zzS
1
xz − S0

xzS
1
zz)b

1
z

To obtain the aggregate bx coefficient, we need to divide this numerator by the original denominator

(S0
xx + S1

xx)(S0
zz + S1

zz)− (S0
xz + S1

xz)
2. Comparing coefficients, we can see that

bx =
Ab0x + Bb1x + C(b1z − b0z)

A+ B
(8)

where

A = S0
xxS

0
zz − S0

xzS
0
xz + S1

zzS
0
xx − S1

xzS
0
xz

B = S1
xxS

1
zz − S1

xzS
1
xz + S0

zzS
1
xx − S0

xzS
1
xz

5



and

C = S0
zzS

1
xz − S0

xzS
1
zz = S0

zzS
1
zz(g1 − g0)

where g1 and g0 are the slopes of a regression of X on Z in group 1 and group 0, respectively. It

follows that C(b1z − b0z) can be an arbitrarily large positive or negative number.

To shed light on the interpretation of weights A and B, consider the auxiliary regression of X on

Z and W for the pooled data. The slope is equal to Sxz/Szz, and the covariance between residuals

ui = (Xi − X̄w)− Sxz/Szz(Zi − Z̄w) and Xi for group 0 is equal to

Cov0(ui, Xi) =
1

N0

N0∑
i=1

(
(Xi − X̄0)−

Sxz
Szz

(Zi − Z̄0)

)
Xi

=
S0
xx(S0

zz + S1
zz)− (S0

xz + S1
xz)S

0
xz

N0(S0
zz + S1

zz)
=

A
N0Szz

In this case, A is proportional to a group-specific covariance, rather than to a group-specific vari-

ance. While X̂i is by definition orthogonal to ui in the full sample, and hence Cov(ui, Xi) =

Cov(ui, Xi − X̂i) = V ar(ui), this equivalence does not hold in the subset. Subset-orthogonality of

ui and X̂i fails, because the auxiliary regression omits the interaction between Z and W and is thus

not “saturated” in W .3 Adding the interaction is equivalent to separate group-wise regressions of

X on Z, which restores orthogonality of ui and X̂i in each group. But this would not correspond

to the regression equation (2) we are considering.

Since A is proportional to a covariance, it can be positive or negative. On the other hand, A+ B,

the denominator in equation (7), is always positive since it equals the determinant of a positive

definite matrix. Hence the least-squares weights for b0x and b1x, A/(A+ B) and B/(A+ B), can be

negative or greater than unity.

The decomposition result (8) is quite remarkable. Clearly, bx is not a convex combination of b0x and

b1x in general. By symmetry, the same argument holds for bz. The reasons for the non-convexity are

twofold. First, weights can be negative even in the absence of the C-term, depending on the within-

group covariance between X from a regression of X on Z and W . On top of that, the aggregate

X-coefficient in the regression of Y depends directly on the heterogeneous coefficients of the other

regressor Z. Thus, there can be a spill-over of neglected heterogeneity, or a “contamination” as

3Angrist (1998) also noted that the variance-weighting result for the case of a single predictor requires an auxiliary

regression saturated in the confounder. By definition, a binary confounder as in (1) satisfies this requirement.
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described recently by Goldsmith-Pinkham et al. (2022). Even if both sub-sample coefficients of X

are zero, the estimated overall effect bx can be non-zero, because the Z-coefficients matter as well.

2.4 Determinants of contamination “bias”

We can write

“bias” =
(b1z − b0z)(S0

zzS
1
xz − S1

zzS
0
xz)

(S0
xx + S1

xx)(S0
zz + S1

zz)− (S0
xz + S1

xz)
2

=
C(b1z − b0z)
A+ B

Intuitively, it makes sense to talk about bias here, although in slight abuse of language. No

population model is defined and I merely exploit algebraic properties of regression. The key point

is that this term would not exist if one were to run instead a regression of Y on X, Z, W and the

interaction terms XW and ZW . The bias arises since heterogeneity in the coefficients is neglected.

For example, the thus defined bias is positive, if

b1z > b0z and S0
zzS

1
xz − S1

zzS
0
xz = S0

zzS
1
zz(g

1
z − g0z) > 0

where g0z and g1z are the group-specific bivariate regression slopes in a regression of X on Z. The

heterogeneous effect of Z positively spills over into estimation of the X-effect if in the group with

a large direct-Z-effect, changes in Z also predict larger, or less negative, changes in X.

We can now state conditions that make contamination through bz disappear. For example:

� b0z = b1z = 0: In this case, the second regressor Z could be dropped, leading back to the

bivariate case.

� b0z = b1z: the coefficient of Z is homogenous across groups.

� S0
xz = S1

xz = 0. Note: in the case of mutually exclusive treatment arms (when X and Z are

both dummy variables) and Z = 0 whenever X = 1, X and Z can’t be uncorrelated.

� The regressors in both groups are the same, for example S0
zz = S1

zz etc. In this case, one can

show that the overall effect of bx is simply the arithmetic mean of b0x and b1x (if the two groups

have equal size). So it is equal to the “average treatment effect”.

Finally, note that contamination does not depend on actual confounding: it arises also if (X,W )

and (Z,W ) are uncorrelated but the coefficient of X and / or Z varies with W . With a single

7



regressor, one could simply drop W from the model and obtain an estimate of the average effect.

With multiple regressors and effect heterogeneity, this is not the case.

3 Generalizations

In practice, one will rarely encounter an application with two regressors and two groups only, so

the question is whether any algebraic results can be derived for more complex regression situations.

In particular, what happens as the number of regressors or the number of groups is increased?

Increasing the number of groups does not change the nature of the argument. For instance, with

three groups instead of two, (5) generalizes to

b = (H0 +H1 +H2)−1(H0 b0 +H1 b1 +H2 b2)

where the weight matrices Hw and the subset regression coefficients bw, w ∈ {0, 1, 2} are defined

as before. As a practical problem it becomes tedious to derive closed form results on the relation

between bx and the six subset coefficients (for X and Z, respectively), as the number of terms in

the numerator and denominator of the bx equation increases quadratically in the number of groups.

Similar issues arise if the number of groups is kept at two but the dimensionality of the regressor

vector is increased. While the trivariate problem studied above was manageable, higher order

regressions are less so. General results are given in Chamberlain and Leamer (1976). They show

for example that for two arbitrary positive definite weighting matrices H0 and H1, and given subset

coefficient vectors b0 ad b1, the aggregate coefficient vector b can lie essentially anywhere. Only

if the weighting matrices H0 and H1 are of specific forms (e.g. diagonal or proportional to each

other) does the matrix weighted average guarantee an element by element convex combination of

the heterogeneous coefficients.

4 Numerical examples

In this section, I present three different illustrations for non-convex weighting of heterogeneous

coefficients in pooled regressions. The first two are based on simulated data while the third uses a

real dataset on wages and worker characteristics.
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4.1 Negative residual covariance

Non-convexity due to a negative A-weight depends entirely on the predictors and thus does not

require any knowledge of the regression model for y. Consider the least squares regression of X on

Z and W . A negative correlation between residuals X − X̂ and X for W = 0 can be obtained by

judiciously defining the subsets W ∈ {0, 1}.

For example, assume that Z ∼ Normal(0, 1), X = β1Z + u, where u ∼ Normal(0, σ2). Moreover,

let

W =

 0 when X < 0 and u ≥ 0 or X ≥ 0 and u < 0

1 else

Under these assumptions, subset coefficients are heterogenous. For example, for X < 0 and W = 0,

we obtain

E(X|X < 0,W = 0, Z) = β0 + β1Z + σE(u|0 < u < −β1Z))

for Z < 0. Hence, increasing Z (towards zero) reduces the mean residual in the selected subset,

and the least squares coefficient will be smaller than β1. Nevertheless, it can be shown that the

least squares regression of X on Z and W recovers a variance-weighted average (for W = 0 and

W = 1), that is converging to β1.

−3 −2 −1 0 1 2 3
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0
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x

−4 −2 0 2 4

−
3

−
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−
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0
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2
3

x
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x$
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si

du
al
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Figure 1
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The covariance between least squares errors and X conditional on W = 0 is given by Cov(u,X|W =

0) = E(uX|W = 0)−E(u|W = 0)E(X|W = 0). Because of symmetry of the multivariate normal, in

this case E(u|W = 0) = E(X|W = 0) = 0, and Cov(uX|W = 0) = E(uX|W = 0) < 0, because there

are two cases to consider whenever W = 0, and both of them lead to negative products uX. In a

similar way, following from the definition of W = 1, E(uX|W = 1) only involves positive products

and hence is positive overall.

The right panel of Figure 1 illustrates the covariance between residuals and X for β1 = σ = 1 for

a sample of 1000 random draws from the joint (bivariate normal) distribution of X and Z. It is

negative for W = 0 (blue) and positive for W = 1 (orange).

In this case, the weights are A/(A + B) = −0.064 and B/(A + B) = 1.064. If in the outcome

equation, the X-coefficient is zero in group 0 and 1 in group 1, the estimated average effect over

both groups will be 1.064, and thus larger than any of the two sub-coefficients.

4.2 Contamination bias

The following numerical example illustrates the potential for contamination bias. In order to

generate data, I need to take a stance regarding the full data generating process: there are two

normally distributed regressors that are uncorrelated in group 0 but correlated in group 1. The

group level binary confounder shifts the intercept of the regression as well as the slopes. The two

groups are of equal size of 100, so 200 data points are generated as follows:

Z0, Z1, and X0 are i.i.d standard normal random variables. In group 1, X1 and Z1 are related by

a regression model

X1 = g1Z1 + rnorm(100)

Since g0 = 0, i.e. X0 and Z0 are uncorrelated, g1 = g1 − g0 indicates the differential “response”

of X to Z in group 1 relative to group 0. One goal of the simulations is to show the sensitivity of

results to changes in g1, which increases stepwise from −1 to +1. By construction, an increase in

the absolute value of g1 also affects the group-1 variance of X, since Var(X1) = g21 + 1.

Outcome data are generated as

y0 = 1 and y1 = 2 + 1×X1 + 4× Z1

For the fully interacted regression, this means that bw = 1, b0x = 0, b0z = 0 and b1x = 1, b1z = 4.

10



In the full model, there is no estimation uncertainty, as the outcome equation does not have an

additional error term.

The regression of Y on X, Z, and W has sampling variation, however, due to the mis-specification

and random draws of the regressors. To account for the effect of sampling variation, the estimation

is repeated for 1000 different samples.

Figure 2 shows the means and error bands (± 2 standard deviations obtained from the repeated

samples), for four types of statistics: the aggregate estimate bx (in green), together with the weights

A/(A+B) (in black), B/(A+B) (in light blue) and C/(A+B) (in red) associated with b0x, b1x and

b1z, respectively, for varying degrees of departure from zero-correlation between X and Z in group

1.

−0.5

0.0

0.5

1.0

1.5

−1.0 −0.5 0.0 0.5 1.0
g1

y

Figure 2

We know that the true heterogenous effects of X on Y are 0 in group 0 and 1 in group 1. The

groups are of equal size and hence, in the absence of contamination, the non-interacted coefficient

would be equal to 0.5 as long as the within-group X-covariances are identical. This is the case in

the present DGP only if g1 = 0, because otherwise, the conditional covariance of X1 is larger than

that of X0 and hence the weight B/(A+ B) moves quadratically away from 0.5.

However, this effect alone would not lead to substantial changes in the obtained average coefficient.

In the numerical example, the first order issue is contamination with the large group-1 specific

effect of Z (in combination with no effect in group 0), that can enter the estimation of bx with
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positive or negative weight, depending on the sign of g1. Overall, the estimated bx coefficient can

be negative or greater than one, thus falling outside of the actual effects sizes of b0x and b1x and

illustrating the issue of non-convexity in this set-up.

4.3 Wages of men and women

In this example I use a textbook dataset on wages and worker’s characteristics from Wooldridge

(2012), an extract from the 1976 Current Population Survey.4 The dependent variable is the

logarithm of average hourly earnings. Explanatory variables include years of education, years

of potential experience and its square, years with current employer and its square, number of

dependents, indicators for being nonwhite, married, living in a metropolitan area, as well as three

regional and nine industry dummies. Thus, there is a total of 21 regressors and the dataset provides

526 observations. As group variable of interest, I consider here the gender of the worker. This choice

is of course somewhat arbitrary, but wage related regression analyses that do not stratify by gender

have been conducted in the literature (e.g. Oreopolous, 2006).

Table 1: Wages of U.S. workers

Dependent variable: logarithmic hourly wage
b bmen bwomen weight

years of education 0.047 0.052 0.043 0.41
experience 0.025 0.032 0.020 0.44
experience squared -0.001 -0.001 0.000 0.48
tenure 0.022 0.025 0.024 -4.82
tenure squared 0.000 0.000 -0.001 1.06
nonwhite -0.004 0.051 -0.093 0.62
married 0.056 0.159 -0.054 0.52
number of dependents -0.022 -0.032 -0.022 -0.09
lives in SMSA 0.139 0.142 0.101 0.91
lives in north central U.S -0.058 -0.118 -0.023 0.37
lives in southern region -0.044 -0.112 0.013 0.46
lives in western region 0.055 0.018 0.067 0.26
construc. indus. -0.053 0.026 -0.081 0.26
nondur. manuf. indus. -0.107 -0.060 -0.109 0.03
trans, commun, pub ut -0.096 -0.073 -0.142 0.67
trade (wholesale or retail) -0.303 -0.271 -0.271 -771.9
services indus. -0.309 -0.255 -0.236 3.83
prof. serv. indus. -0.095 -0.172 0.013 0.58
profess. occupation 0.225 0.215 0.193 1.44
clerical occupation 0.038 0.115 0.022 0.18
service occupation -0.094 -0.087 -0.149 0.88
female -0.268

4The data file ”wage1” can be obtained from the R-repository, package name ”wooldridge”: https://cran.r-

project.org/web/packages/wooldridge/wooldridge.pdf.
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To obtain heterogeneous effects, the sample is split and two regressions are conducted, one using

the subset of 274 men and one the using the subset of 252 women. Results are shown in Table 1.

For 6 out of 21 coefficients, the aggregation weights are non-convex. This is seen in the last column

of Table 1, where the equation bx = α× bmen
x + (1−α)× bwomen

x is solved for α. In three instances,

this weight is negative (for tenure, for the number of dependents and for the wholesale dummy).

In another three instances, it is greater than one (for tenure squared, services and professional

occupations). This can lead to quite counterintuitive results. For instance, if one were to use these

results to rank industries by their wage differentials, some reversals would occur. For example, for

both genders, services pays higher wages than trade, ceteris paribus. Yet, in the aggregate, trade

wages are estimated to lie above those of service workers.

Note that this crude assessment of non-convex weighting cannot discriminate between the two

sources of non-convexity. So we do not know whether it is primarily due to contamination, or

to covariance-weighting of own heterogeneous coefficient contrasts, or both. Since the formulae

derived in this paper only dealt with the two-regressor-case, and not with a high-dimensional

regressor vector as presently, such a decomposition is not feasible.

5 Discussion

There are substantial perils of ignoring group-level heterogeneity in the context of a regression

with multiple regressors: if one wants to estimate the effect of multiple regressors, adding a group

dummy to allow for shifts in the constant can lead to counterintuitive results, as the estimated

coefficients are not necessarily convex combinations of the group-level coefficients.

The non-convexity result follows directly from regression algebra: subgroup regression coefficients

are aggregated using matrix level variance-covariance weighting, but this does not imply element

by element convex aggregation. This result mirrors recent findings by Goldsmith-Pinkham et al.

(2022), although their set-up is different: They consider a partially linear model with a set of mu-

tually exclusive (binary) treatment variables and an additive function of a continuous confounder.

Moreover, they provide population-level identification results and do not exploit the regression

algebra as I do here.

Both approaches provide the same key insight: with several regressors of interest, non-convex

weighting can arise due to two reasons. The first one is technical, since residuals in the partialling
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out equation cannot be mean independent, implying covariance-weighted averaging; the second

reason is substantive, as coefficients in general suffer from spill-overs, or contamination, from het-

erogeneous coefficients of other regressors.

As a remedy to these problems, one should better conduct group-wise (i.e. fully interacted) regres-

sions, from where one can obtain “average coefficients”, for example by weighting the heterogeneous

coefficients by the relative group sizes.

An application to estimating a wage regression illustrated that non-convex weights arise quite

commonly in practice. When enforcing common coefficients on 21 regressors, rather than letting

them vary by gender, six out of these 21 estimates did not lie between the female and the male

estimates. This is not a “paradox” but rather a fluke of regression algebra in connection with

neglected heterogeneity.
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Appendix

Deriving equation (8)

All notation is as defined in the main text. It holds that bx is defined by the following fraction.

bx =
(S0

zz + S1
zz)(S

0
xy + S1

xy)− (S0
xz + S1

xz)(S
0
zy + S1

zy)

(S0
xx + S1

xx)(S0
zz + S1

zz)− (S0
xz + S1

xz)
2

(9)

The numerator can be re-written by multiplying out and re-ordering terms first into those involving

group 0 and group 1 only, followed by all mixed terms:

S0
zzS

0
xy − S0

xzS
0
zy + S1

zzS
1
xy − S1

xzS
1
zy + S0

zzS
1
xy + S1

zzS
0
xy − S0

xzS
1
zy − S1

xzS
0
zy

= (S0
xxS

0
zz − S0

xzS
0
xz)b

0
x + (S1

xxS
1
zz − S1

xzS
1
xz)b

1
x + S0

zzS
1
xy + S1

zzS
0
xy − S0

xzS
1
zy − S1

xzS
0
zy

where we have substituted

Sw
zzS

w
xy − Sw

xzS
w
zy = (Sw

xxS
w
zz − Sw

xzS
w
xz)b

w
x

using equation (6). Next, consider the mixed terms in the numerator of (9):

S0
zzS

1
xy + S1

zzS
0
xy − S0

xzS
1
zy − S1

xzS
0
zy

We can substitute all covariance terms involving y using short-long regression algebra. For instance

S1
xy = S1

xx(b1x + S1
xz/S

1
xxb

1
z)
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where the term in parentheses is the coefficient of the bivariate subset regression of y1 on X1

expressed in terms of the direct effect of X1 plus the effect of X1 on Z1 times the direct effect of

Z1 in the trivariate regression. Hence, for instance,

S0
zzS

1
xy = S0

zzS
1
xxb

1
x + S0

zzS
1
xzb

1
z

etc.; In conclusion, the mixed terms can be written as

S0
zzS

1
xxb

1
x + S0

zzS
1
xzb

1
z + S1

zzS
0
xxb

0
x + S1

zzS
0
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0
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xzS
1
zzb

1
z − S0

xzS
1
xzb

1
x − S1

xzS
0
zzb

0
z − S1

xzS
0
xzb

0
x

Putting things back into (9) and collecting terms, we can write the numerator as an explicit function

of the four group-specific, heterogeneous effects of X and Z:

(S0
xxS

0
zz − S0

xzS
0
xz + S1

zzS
0
xx − S1

xzS
0
xz)b

0
x + (S1

xxS
1
zz − S1

xzS
1
xz + S0

zzS
1
xx − S0

xzS
1
xz)b

1
x (10)

+(S1
zzS

0
xz − S1

xzS
0
zz)b

0
z + (S0

zzS
1
xz − S0

xzS
1
zz)b

1
z

To obtain the aggregate bx coefficient, simply divide the numerator (10) by the original denominator

(S0
xx + S1

xx)(S0
zz + S1

zz)− (S0
xz + S1

xz)
2.
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