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Due to a growing number of initiatives and regulations, predictions of modern Artificial Intelligence

(AI) systems increasingly come with explanations about why they behave the way they do. In this paper,

we explore the impact of feature-based explanations on users’ information processing. We designed two

complementary empirical studies where participants either made incentivized decisions on their own, with

the aid of opaque predictions, or with explained predictions. In Study 1, laypeople engaged in the deliberately

abstract investment game task. In Study 2, experts from the real-estate industry estimated listing prices for

real German apartments. Our results indicate that the provision of feature-based explanations paves the way

for AI systems to reshape users’ sense-making of information and understanding of the world around them.

Specifically, explanations change users’ situational weighting of available information and evoke mental model

adjustments. Crucially, mental model adjustments are subject to the confirmation bias so that misconceptions

can persist and even accumulate, possibly leading to suboptimal or biased decisions. Additionally, mental

model adjustments create spillover effects that alter user behavior in related yet disparate domains. Overall,

this paper provides important insights into potential downstream consequences of the broad employment of

modern explainable AI methods. In particular, side effects of mental model adjustments present a potential

risk of manipulating user behavior and promoting discriminatory inclinations. Our findings may inform the

refinement of current efforts of companies building AI systems and regulators that aim to mitigate problems

associated with the black-box nature of many modern AI systems.
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1. Introduction

Contemporary AI systems’ high predictive performance frequently comes at the expense of users’

understanding of why systems produce a certain output (Gunning et al. 2019, Meske et al. 2022).

For AI systems that provide predictions to augment highly consequential processes such as hiring

decisions (Hoffman et al. 2018), investment decisions (Ban et al. 2018), or medical diagnosing (Jus-

supow et al. 2021), this “black box” nature can create considerable downsides. These issues include

impaired user trust, reduced error safeguarding, restricted contestability, and limited accountability

(see Rosenfeld and Richardson 2019, for a review). Having recognized these problems, organizations

developing AI and governments increasingly adopt principles and regulations (see, e.g., GoogleAI

2019, MetaAI 2021, EU 2016, 2021) effectively stipulating that AI systems need to provide mean-

ingful explanations about why they make certain predictions (Goodman and Flaxman 2017, Cabral

2021). In light of these developments, the implementation and use of explainable AI (XAI) methods

are becoming more widespread and mandated by law.

The purpose of XAI methods is to make AI systems’ hidden logic intelligible to humans by

answering the question: why does an AI system make the predictions it does? Thereby, XAI methods

aim to achieve high predictive performance and interpretability at the same time. Many state-of-

the-art XAI techniques convey insights into AI systems’ logic post-training and explain behaviors

by depicting the contribution of individual input features to the outputted prediction (Doshi-

Velez and Kim 2017). While there is reason to believe that XAI can mitigate black-box problems

(Bauer et al. 2021), the pivotal question is how users respond to modern explanations, given that

the human factor frequently creates unanticipated, unintended consequences even in well-designed

information systems (see, e.g., Willison and Warkentin 2013, Chatterjee et al. 2015).

Nascent research on human-XAI interaction examines how explainability affects humans’ per-

ceptions, attitudes, and use of the system, e.g., trust (Erlei et al. 2020), detection of malfunction-

ing (Poursabzi-Sangdeh et al. 2021), (over)reliance (Bussone et al. 2015), and task performance

(Senoner et al. 2021). Prior research, however, does not consider the potential consequences of

providing explanations for users’ situational information processing (the use of currently avail-

able information in the given situation) and mental models (cognitive representations that encode

beliefs, facts, and knowledge). By depicting the contribution of individual features to specific pre-

dictions, feature-based XAI enables users to recognize previously unknown relationships between

features and ground truth labels that the AI system autonomously learned from complex data struc-

tures. In that sense, XAI may constitute the channel through which AI systems impact humans’

conceptualization and understanding of their environment. This effect could reinforce the already

considerable influence contemporary AI systems have on human societies (see, e.g., Rahwan et al.
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2019) by, for better or worse, allowing human users to adopt systems’ inner logic and problem-

solving strategies. Despite the increasing (legally required) implementation of XAI methods, a

systematic study of these effects is yet missing. The paper at hand aims to fill this important gap.

We ask three research questions: Does the additional provision of feature-based explanations

affect AI system users’ situational processing of observed information? Does it affect users’ under-

lying mental models? What are important moderating factors? Consider, for instance, a loan officer

who works with an AI system to predict an applicant’s risk parameters and determine the credit

approval. Due to legal requirements (e.g., Artificial Intelligence Act (EU 2021)), the AI system

recently started to provide feature-based explanations, showing that it strongly relies on people’s

smartphone charging behavior to predict creditworthiness.1 While previous research examines how

this explanation may affect the loan officer’s perceptions of the system, we conjecture that the

explanation also, and maybe more importantly, affects his processing of currently available informa-

tion and his underlying mental models of the determinants of creditworthiness. By changing mental

models, explanations may even reshape the loan officer’s behaviors in related domains beyond the

loan approval decision, e.g., assessing the faithfulness of his daughter’s new boyfriend based on the

smartphone charging behavior.2

Considerable challenges arise when trying to answer our research questions. First, measuring how

XAI methods affect users’ situational processing of information and mental models is extremely

difficult because these cognitive processes are typically unobserved. Second, we need to control

for possible external cues, unintended stimuli, additionally attainable information, and preferences

that may affect these cognitive processes in any given situation. Third, whether people interact

with an (X)AI system, let alone rely on it, is highly endogenous and depends on factors such

as culture, technological literacy, and the socio-technological environment. Thus, isolating effects

associated with the provision of explanations in addition to predictions is particularly demanding,

if not outright impracticable, in a natural (organizational) setting. To address these challenges, we

rely on two complementary, incentivized experimental studies.

In Study 1 (N=607), laypeople played a series of investment games (Berg et al. 1995), making

sequential economic transaction decisions in an intentionally abstract setting. In Study 2 (N=153),

experts from the real-estate industry predicted listing prices for real apartments located in Ger-

many. Study 2 extends Study 1 by testing the generalizability of our findings and elaborating on

mechanisms driving the results. In both studies, conditional on the treatment, participants either

1 For anecdotal evidence of such non-traditional data usage see, e.g., LenddoEFL.com or
https://money.cnn.com/2016/08/24/technology/lenddo-smartphone-battery-loan/index.html,

2 On a high level, both decisions effectively constitute sequential economic transactions under uncertainty that strongly
depend on trust.
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received no decision support, support from an AI system in the form of opaque predictions, or an

XAI system with predictions plus feature-based explanations. We answer our research questions

by eliciting and comparing changes in both participants’ decision-making patterns and their beliefs

about feature-label relationships.

The two studies strongly complement each other for three reasons. First, laypeople (Study 1)

and experts (Study 2) are the two diametrical archetypes of AI system users affected by growing

explainability requirements. Studying both types’ responses to XAI methods enables us to identify

possibly differential effects, and make inferences about the generalizability of our findings. Second,

we consider two fundamental types of prediction problems where AI systems are frequently in use:

transaction outcome predictions (Study 1) and price predictions (Study 2) (see, e.g., Ban et al.

2018, Rico-Juan and de La Paz 2021). Examining the two settings allows us to understand better

whether the interplay between XAI and cognitive processes is task-specific. Third, employing LIME

(Study 1) and SHAP explanations (Study 2) – the two most popular feature-based XAI methods

(Gramegna and Giudici 2021) – allows us to draw more general conclusions about the interplay

between feature-based explainability and cognitive processes.

Our findings paint a consistent picture: providing explanations is the critical factor that enables

AI systems to influence the way people make sense of and leverage information, both situationally

and more permanently. Crucially, we find an asymmetric enduring effect that can foster precon-

ceptions and spill over to other decisions, thereby promoting certain (possibly biased) behaviors.

Our paper proceeds as follows. Section 2 presents theoretical foundations, while Section 3 explains

our experimental studies and results. Section 4 concludes by discussing our results, the limitations

of our work, and directions for future research.

2. Theory

In this section, we first discuss modern XAI methods (section 2.1). Subsequently, we outline the

relation between providing explanations and cognitive processes (section 2.2) and discuss our work’s

contribution to the literature (section 2.3).

2.1. Explainable Artificial Intelligence

Following Doshi-Velez and Kim (2017), we conceptualize XAI as methods that possess the ability

to present in understandable terms to a human why an AI system makes certain predictions. Over

the last couple of years, researchers developed ample XAI methods that help elucidate the opaque

logic of machine learning (ML) based AI systems (see, e.g., Ribeiro et al. 2016, Lundberg and Lee

2017, Koh and Liang 2017, Lakkaraju et al. 2019). Very generally, XAI methods aim to alleviate

problems associated with the black-box nature (e.g., distrust, lack of accountability, and error

safeguarding) while maintaining a high level of prediction accuracy (Bauer et al. 2021).
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Our study focuses on feature-based XAI methods – hereafter XAI methods – that can explain

the behavior of any ML-based AI system by showing the contribution of individual features to the

prediction. We do so for several reasons. First, these explanations are the most widespread in prac-

tice (Bhatt et al. 2020, Senoner et al. 2021, Gramegna and Giudici 2021). Second, they are highly

intuitive and straightforward to interpret as they satisfy most requirements for human-friendly

explanations (Molnar 2020). Third, they are typically applicable to systems using structured and

unstructured data (see, e.g., Garreau and Luxburg 2020). Fourth, these methods can explain indi-

vidual predictions – local explainability – which might be the only method legally compliant with

(upcoming) regulations (Goodman and Flaxman 2017).

Many researchers recognize two related XAI methods as state-of-the-art: LIME and SHAP

(Gramegna and Giudici 2021, Molnar 2020). LIME (Ribeiro et al. 2016) and SHAP (Lundberg and

Lee 2017) provide explanations through additive feature attributions, i.e., linear models that depict

the numeric contribution of each feature value to the overall black box model prediction. Both

approaches learn these interpretable “surrogate models” on input-prediction pairs of the black box

model and are applicable to virtually all classes of ML models, i.e., are model agnostic. On the

individual level, SHAP and LIME provide contrastive explanations that inform users why predic-

tions for a specific instance diverge from the prediction for an average instance (Molnar 2020).

For example, if the SHAP value for the feature Balcony equals +500 (-200), it indicates that hav-

ing a balcony marginally increases (decreases) the current apartment’s listing price prediction by

500$ (200$). The big difference between LIME and SHAP is the way of estimating the additive

feature attributions. LIME creates synthetic, perturbed data points in the local neighborhood of

the observation of interest and fits a weighted linear model to explain the relationship between

the synthetic data and the relevant black box predictions. Importantly, LIME weights synthetic

instances based on their proximity to the original data point. By contrast, SHAP is inspired by

coalitional game theory and treats input features as a team of players that cooperate to generate a

payoff (the prediction). The method essentially estimates the marginal contribution of each player

to the overall payoff – Shapley values (Shapley 1953) – using a linear model that weights instances

based on characteristics of coalitions. Given these mathematical differences, the two methods can

produce (slightly) different feature-attributions for the same instance. However, from the perspec-

tive of a user who is not familiar with these details, the intuition and interpretation of the two

methods’ explanations are reasonably similar (Molnar 2020). Notably, LIME and SHAP closely

relate to Gregor and Benbasat’s (1999) seminal description of “why and why not explanations” in

the context of knowledge-based expert systems.

With the development of modern explainability methods, research on the impact of contempo-

rary XAI on user behavior has become increasingly essential (Vilone and Longo 2021). Nascent
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research in this domain typically focuses on how explanations affect user attitudes and reliance on

the AI system (see, e.g., Lu and Yin 2021). These studies produce mixed evidence on the conse-

quences of XAI on decision performance, user trust, perception, and decision-making performance.

Several studies depict that explanations can enhance trust in and positive perceptions of the sys-

tem (see, e.g., Dodge et al. 2019, Rader et al. 2018, Yang et al. 2020), whereas others provide

reversed evidence (see, e.g., Erlei et al. 2020, Poursabzi-Sangdeh et al. 2021). While prior studies

produce important insights regarding the interplay between XAI and user perceptions, none of

them considers that the additional provision of explanations may also reshape users’ information

processing, both situationally and more permanently. For instance, employing SHAP to show the

contribution of input features to a creditworthiness prediction may not only affect a loan officer’s

perception of the AI system in use. Instead, she may process currently available information about

the applicant differently and develop a novel understanding of the determinants of creditworthi-

ness, i.e., adjust her mental model. With the increasing adoption of explainability principles by

organizations (see, e.g., GoogleAI 2019, MetaAI 2021) and the growing number of regulatory trans-

parency requirements (see, e.g., EU 2016, 2021), it is pivotal to understand how contemporary XAI

methods influence cognitive processes that lie at the heart of people’s knowledge, behavior, and

problem-solving capabilities.

2.2. Cognitive Perspective on XAI Employment

Through feature-based explanations about an AI system’s prediction, human users can observe

possibly unknown feature-label relationships that the system learned from complex data structures

by itself (Agarwal and Dhar 2014, Berente et al. 2021). While providing explanations, in general, can

have a variety of cognitive effects, researchers across disciplines generally agree that they primarily

enhance people’s understanding of someone or something, improve reasoning, and facilitate learning

(Malle 2006, Gregor 2006). From a cognitive perspective, obtaining explanations can entail two

effects: First, it may change people’s situational processing of available information – their use

of available information while observing explanations. Second, it can lead to an adjustment of

their beliefs about feature-label relationships the AI system inherently models – their mental

representation of real-world processes. In this paper, we follow previous work in information systems

and rely on the “Mental Models Framework” to conceptualize relevant cognitive processes (see,

e.g., Vandenbosch and Higgins 1996, Lim et al. 1997, Alavi et al. 2002).

Mental models are “all forms of mental representation, general or specific, from any domain,

causal, intentional or spatial” (Brewer 1987, p.193), encoding beliefs, facts, and knowledge (Jones

et al. 2011). Through imaginary manipulations of model components, people can reason and make

inferences about how to solve problems (Rouse and Morris 1986). Much of the people’s decision-

making is based on these simulations which figuratively create informal algorithms for carrying out
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specific tasks (see, e.g., Johnson-Laird et al. 2017). For instance, real estate agents can mentally

simulate how listing prices might change if an apartment for sale had a balcony.

When people perform tasks, they draw upon relevant mental models that guide their processing

of incoming information to form expectations and make (expectedly) optimal decisions. Working

with an AI system that provides black box predictions, i.e., information relevant to the task,

allows people to reflect on their own expectations and compare it to the machine prediction (Schön

2017). This mental process might entice people to revise their expectations and thus make different

decisions because the machine prediction effectively substitutes for people’s own mental model

driven formation of expectations (Agrawal et al. 2019). However, the black box nature does not

allow users to directly compare their underlying beliefs and logic with that of the AI system. This

comparison can only occur when they learn how the system combines available information to arrive

at a prediction. In the previous example, the real estate agent may have access to an XAI system

that provides a listing price prediction together with an explanation of how specific apartment

attributes contribute to it. The agent can compare the explanation to her own initial perception

of the individual attribute contributions to the listing price. As a result, the agent may detect

inconsistencies that prompt her to revise her logic by putting more or less emphasis on specific

information currently available to evaluate the apartment. This explanation-enabled situational

process (Schön 2017) can reconcile the distinct logic that humans and machines apply to arrive

at a certain assessment. From this perspective, providing explanations on top of predictions may

constitute a pivotal factor in allowing users to reflect on how they leverage information to solve a

problem and adapt it according to the AI system’s logic for the given task.

Apart from situationally changing cognitive processes that shape the current decision, the inter-

action between mental models and explanations may also yield lasting effects because mental

models possess the dynamic capacity to change (Jones et al. 2011). Repeatedly observing explana-

tions about how feature X contributes to prediction Ŷ and engaging in reflection processes may

evoke adjustments of the underlying mental model in use. Following Vandenbosch and Higgins

(1996), exposure to external stimuli – here explanations – can lead to two mental model adjustment

processes: maintenance and building. Under mental model maintenance, people feel encouraged

to maintain or reinforce current beliefs and decision-making rules. This process occurs when they

perceive or select new information to fit into their current beliefs and routines. Under mental model

building, individuals profoundly restructure or build new mental models in response to handling

novel, disconfirming information. As a result of these processes, individuals may adopt different

beliefs about how X contributes to the real label Y , enticing them to process information differ-

ently even when explanations are no longer present. Put differently: users may not merely combine

situationally observed explanations with their own logic to solve a given task. Instead, observing
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the system’s logic may more fundamentally reshape users’ way of solving problems in general, i.e.,

evoke learning. Therefore, users may exhibit different problem-solving strategies whenever they

draw upon the explanation-adjusted mental model, even in situations where they do not observe

explanations anymore.

In sum, cognitive theories give reason to believe that providing explanations in addition to

predictions can influence users’ processing of information about feature X, both situationally and

more fundamentally. Due to the latter effect, modern XAI methods may constitute a cornerstone

of effective knowledge transfers from ML-based AI systems to human users, helping them to learn

from the AI how X relates to Y . Hence, explanations could facilitate learning machine knowledge –

new knowledge AI systems autonomously learned from Big Data and previously missed by domain

experts (Teodorescu et al. 2021, van den Broek et al. 2021).

2.3. Contribution to the Literature

Our study complements three different streams of literature. The first and most closely related

line of work studies the interplay between XAI techniques and user behavior (see Rosenfeld and

Richardson 2019, Vilone and Longo 2021, for an overview). About two decades ago, several studies

found that suitably designed explanations about the functioning and purpose of legacy knowledge-

based expert systems can increase users’ trust in the systems, improve users’ perceptions of the

system, and enhance decision-making performance (Dhaliwal and Benbasat 1996, Gregor and Ben-

basat 1999, Ji-Ye Mao 2000, Wang and Benbasat 2007). However, these expert systems codify

knowledge from human experts as explicit procedures, instructions, rules, and constraints in a dig-

ital format. They do not represent machine knowledge that modern ML-based AI systems learn

independently of domain experts by training on large data sets (van den Broek et al. 2021). Given

the inherent distinctions between expert systems and ML-based AI systems in terms of encoded

knowledge, contemporary explainability methods present an entirely different form of reasoning to

users, namely that of machines (Vilone and Longo 2021, Meske et al. 2022). More recent research

on the impact of explainability on user behavior mainly focuses on how contemporary XAI meth-

ods impact users’ perceptions of the AI system. This nascent literature shows that explainability

often improves reliance on and trust in the system (Bussone et al. 2015), fairness perceptions

(Dodge et al. 2019), human-AI collaboration (Yang et al. 2020), task efficiency (Senoner et al.

2021), and users’ understanding of the system’s malfunctions (Rader et al. 2018). However, there is

also evidence of disadvantages relating to informational overload (Poursabzi-Sangdeh et al. 2021),

reduced user trust (Erlei et al. 2020), and overreliance (Bussone et al. 2015). Moreover, explana-

tions that are unstable and sensitive even to small perturbations to inputs have the potential to

mislead human users into trusting a problematic black box, e.g., by selectively providing expla-

nations that conceal biased behaviors and malfunctions (Lakkaraju and Bastani 2020, Kaur et al.
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2020). Hence, explanations may be a security concern if adversaries use perturbations of inputs and

model attributes to produce intentionally misleading explanations that manipulate users’ trust and

behaviors (Ghorbani et al. 2019). We complement this pivotal and insightful work by examining

the impact of contemporary XAI on users’ situational information processing and mental models.

Understanding how the provision of explanations about the workings of ML-based AI systems may

reshape these cognitive processes is pivotal for anticipating the downstream consequences of this

technology on human societies and designing effective transparency and explainability regulations.

The second literature we complement explores the mechanisms of learning in socio-technological

environments. A common theoretical foundation builds upon Bayes rule as a rational benchmark

of how humans accommodate new information (see, e.g., Holt and Smith 2009). However, research

has shown systematic deviations from Bayes’ rule. Reasons include over- or underweighting of

new information (Rabin and Schrag 1999) and a general tendency to asymmetrically discount

information conflicting with prior beliefs while readily internalizing confirming information (Yin

et al. 2016). We complement this research stream by showing how human users deviate from Bayes

rule in the context of learning from modern AI systems. Notably, there exists a limited number of

prior research examining how black box predictions change users’ decision-making habits (Abdel-

Karim et al. 2020, 2022, Jussupow et al. 2021, Fügener et al. 2021a,b). Relatedly, in a formal

model, Agrawal et al. (2019) show that the predictions of black box AI systems can alter users’

abilities by providing them with incentives to learn to assess the (negative) consequences of their

actions for the task supported by the AI.3 None of these studies, however, examines the role of

feature-based explanations in learning, which could pave the way for more fundamental changes

in the way users understand real-world processes. Our paper intends to fill this gap. We study

how the provision of explanations about how an AI system solves prediction tasks allows users

to integrate the presented machine knowledge into their mental models, i.e., learn from XAI. A

better understanding of how explainability may contribute to machine teaching – the notion that

AI systems first learn novel knowledge that experts neither conceive nor anticipate from data and

then transfer this knowledge to human users (Abdel-Karim et al. 2020) – is particularly significant

given the growing requirements to implement explainability methods when using AI systems.

The third stream of literature we add to studies how humans collaborate with computerized sys-

tems to solve problems. Previous research in this area dates back decades. Several studies document

3 Explainability may enter Agrawal et al.’s model by changing the prediction reliability. Following proposition 2, the
necessity for providing explanations decreases with the users’ judgment. However, the model does not consider the
idea presented in our paper that explainability may also affect users’ understanding of the process that determines the
uncertain state of the world the AI tries to predict. One could integrate this notion into the framework by modeling
that explanations affect users’ judgment capabilities by influencing beliefs about underlying processes. Extending
Agrawal et al.’s model in this direction may be a fruitful endeavor to understand better whether explainability
modulates the relationship between prediction and judgment. However, an extension of the formal model is beyond
the scope of this paper and left for future research.
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that humans resist using computerized decision aids, despite possible performance benefits (e. g.,

Kleinmuntz 1990), while others find that humans possess a strong preference for using them (e. g.,

Dijkstra 1999). With the growing employment of modern AI systems in a broad range of domains,

the examination of human-machine collaboration has seen a considerable resurgence, e.g., in the

domain of finance (Ge et al. 2021), medicine (Jussupow et al. 2021), customer service (Schanke

et al. 2021), and on-demand tasks (Fügener et al. 2021a). Research on “centaur” systems (e. g.,

Goldstein et al. 2017, Case 2018) documents how hybrid human-AI systems (i. e., centaur systems)

achieve superior results in comparison to the entities operating independently (see, e.g., Deller-

mann et al. 2019, Tschandl et al. 2020), promising considerable benefits from successful human-AI

collaboration. Several factors moderate the interaction of humans and AI systems including the

perceived subjectivity of the task (Castelo et al. 2019, Logg et al. 2019), seeing the system err

(Dietvorst et al. 2015), being able to modify predictions (Dietvorst et al. 2018), the divergence

between actual and expected predictive performance (Jussupow et al. 2020), and, most importantly

for our research, understanding the system’s internal logic (Gregor and Benbasat 1999, Hemmer

et al. 2021). Following our conjecture that explanations pave the way for AI systems to affect

people’s cognitive processes, contemporary XAI methods introduce another layer of complexity in

human-AI interaction and its success: an interaction between machine and human problem solving

strategies. Our work provides novel insights into whether and under what circumstances people

prefer to rely on their own way of leveraging information or willingly adjust it according to machine

explanations. In this sense, our work contributes to the literature on (hybrid) human-AI collabo-

ration by analyzing the underlying cognitive processes that may facilitate or hinder the realization

of the promise of this technology.

3. Empirical Studies

We now present the design and results of Studies 1 and 2. In both studies, participants made

decisions under uncertainty (providing loans and predicting apartment listing prices) either with

the aid of an opaque AI, an explainable AI or without any support. We paid participants according

to their decision-making performance to reveal actual preferences and beliefs.4 We implemented

both studies using oTree, Python, and HTML and ran them online. In Study 1, we recruited 607

participants on Prolific and let them engage in deliberately abstract investment games (Berg et al.

1995). Results allow us to observe how the provision of explanations on top of predictions shapes

information processing and mental models for laypeople in a very general sequential transaction

domain. Study 2 extends the first study by testing the generalizability of mental model adjustments

4 See the supplementary material for details on the experimental procedures including payments, instructions, and
screenshots.
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(a) Design Study 1 (b) Design Study 2

Figure 1 Structure of empirical studies

Notes: We provide an overview of the main sequence of our two empirical studies. Panel (a) and (b) respectively show how Studies 1 and 2
proceed.

regarding the task domain (listing price predictions), decision-maker expertise, and the explanation

presentation, and elaborates on important asymmetric effects. With the help of our industry partner

the Real Estate Association Germany (IVD) we recruited 153 experts from the real estate industry

to participate in Study 2. We report the designs and results of the two studies consecutively.

Figure 1 portrays an overview of the experimental designs.

3.1. Study 1

3.1.1. Design. In Study 1, participants repeatedly engaged in one-shot investment games

(Berg et al. 1995) that possess the following structure. An investor receives 10 monetary units

(MU). The investor initially observes ten deliberately abstract borrower characteristics and decides

whether or not to invest her 10 MU with the borrower. If she does not invest, the game ends without

the borrower making a decision and both the investor and borrower earn a payoff of 10 MU. If

she invests, the borrower possesses 30 MU and can keep the whole amount without repercussions.

Crucially, the borrower can repay the investor 10 MU, thereby reciprocating the investor’s initial

trust. In case of repayment, the investor receives 20 MU (we double the amount); otherwise, the

investor earns 0 MU while the borrower gets 30 MU. The borrower, in the absence of sufficiently

strong social motives, e.g., altruism, egalitarian concerns, or moral preferences (see, e.g., Miettinen

et al. 2020), will not make a repayment and maximize his personal income. As a result, the payoff

structure of the investment game is of an adversarial nature from the investor’s perspective since

her material well-being is at the mercy of the borrower if she invests. The investor loses her

initial investment of 10 MU whenever the borrower pursues pure income-maximizing or adversarial

motives like wanting to minimize the investors’ payoffs. Given this payoff structure, an income-

maximizing investor in the experiment will only invest if (i) her belief that the borrower’s motive

leads him to repay her is sufficiently strong, and (ii) she ultimately judges that the prospect of
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doubling her income is worth risking the loss of her investment.5 Study 1 participants always played

as investors. Borrowers are subjects from a previous incentivized field study who had to decide

upon repayment assuming an initial investment, i.e., they have already committed to a repayment

decision and cannot strategically change this choice ex-post. We did not provide intermediary

feedback to prevent the development of idiosyncratic expertise, experience, or investment strategies

that may confound our results. We randomly matched investor and borrower decisions to determine

game outcomes at the end of the study and pay both according to the earned MU.

Study 1 comprised a baseline (AI) and a treatment (XAI) condition, each with three stages.6

In Stage I, each participant made 10 investment decisions for distinct, randomly drawn borrowers

without intermediary feedback. They always observed the ten characteristics of a borrower and

did not obtain any aid. The idea is that the ten borrower characteristics allow investors to get an

idea of the likelihood that an individual borrower will make a repayment – for whatever motives –

and to assess whether it is worth taking the risk of losing their investment. We deliberately chose

ten unintuitive traits correlated with a person’s repayment inclination so that participants did not

possess strong prior beliefs about the informativeness of characteristics for someone’s repayment

behavior (see Table 4 in the supplementary material).

Stage II introduced our treatment variation. Participants made 20 decisions for new random

borrowers observing all ten borrower traits. Additionally, baseline participants saw an AI system’s

prediction about whether borrowers will repay an initial investment. Again we did not provide

intermediary feedback. We trained the AI system on 1,054 distinct data points collected in a previ-

ous field study, the same data set that the borrowers that participants encounter in the experiment

stem from (see the supplementary material for details). The system did not continue to learn

during the experiment. Treatment participants, on top of predictions, observed LIME explana-

tions (Ribeiro et al. 2016) for each borrower characteristic, informing them of its contribution to

the repayment prediction. Revealing LIME values on top of identical predictions constituted the

treatment variation. As is often the case, we depicted LIME values graphically using colored bars

of different lengths. Participants received detailed information about the model, input features,

performance on a representative test set, and how to interpret LIME explanations.

5 When a risk-neutral, purely self-interested investor expects that the borrower repays her with a probability of
p > 0.5, e.g., because she believes the borrower to possess altruistic, efficiency, or fairness preferences, they have a
strict incentive to invest because they maximize their expected earning. Importantly, holding such expectations about
the borrower’s preferences is justified and frequently observed in sequential games – a considerable share of people
does respond reciprocally in sequential exchanges if they are trusted (see, e.g., Miettinen et al. 2020, for an overview).

6 Note: To reduce the complexity for the reader, we only report the three main stages of the experiment. Right before
and after Stage II, we additionally measured participants’ prior and posterior preferences to observe three borrower
characteristics. We use these measures as robustness and consistency checks. We provide a detailed description of
these measurements in the supplementary material.
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Stage III perfectly mirrored Stage I. Importantly, participants engaged with the same borrowers

from Stage I in random order. We did not draw participants’ attention to this fact to alleviate

concerns about the experimenter’s demand effect. The study concluded with a brief questionnaire

on socio-economic control variables.

3.1.2. Results. Throughout our analyses of Study 1, we mainly rely on the following regression

model:

Yijs = β1 ·Xj +β2 · (Xj × Is) +β3 · (Xj ×Expli) +β4 · (Xj ×Expli × Is) + γijs + ε. (1)

Yijs is a dummy indicating whether participant i invested with borrower j in Stage s. Hence, β

coefficients measure variation in the probability to invest with a borrower. Xj is a vector reflecting

the ten observed borrower traits, the overall prediction, and LIME values.7 Most relevant to our

analyses, Is and Expli are dummy variables respectively indicating whether a decision takes place in

Stage s compared to Stage I (i.e., Stage I serves as the reference category) and whether participant

i is in the XAI treatment (observes explanations on top of predictions in Stage II). γis represents

individual-state fixed effects. We report standardized regression coefficients with robust standard

errors. Our main interest lies in the interaction terms β3 and β4 respectively capturing the isolated

effects of observing the prediction and additionally observing LIME explanations.As β4 constitutes

a Difference-in-Difference (DiD) estimator, it is pivotal to check that before the intervention, there

are no treatment differences (parallel trends assumption). Regression analyses reveal that baseline

and treatment participants in Stage I did not place significantly different weight on any trait, hence

the use of a DiD identification strategy appears generally valid. Nevertheless, because participants

placed significant weight on Gender, Conscientiousness, Neuroticism, and Younger Siblings in only

one of the two conditions participants, there is still some concern about the appropriate interpre-

tation of DiD estimates for these traits.8 To avoid drawing incorrect conclusions, we conservatively

refrain from interpreting these traits’ estimates.

Situational information processing. We start analyzing how participants’ weighting of bor-

rower characteristics changed from Stage I to II, i.e., changes in participants’ situational informa-

tion processing. Figure 2 illustrates our results. Panel (a) depicts the average LIME values (color

saturation) participants observed for different feature values (y- and x-axis). Higher positive (neg-

ative) LIME values depict a higher positive (negative) contribution of a given feature value to the

7 For most traits, values and LIME values are almost perfectly correlated producing severe problems of multicollinear-
ity (see Table 7 in the supplementary material). Therefore, in our regression analyses, we only include LIME expla-
nations for which there exists a tolerable correlation between the trait and LIME values: Openness, Agreeableness,
and Conscientiousness.

8 See Table 8 in the supplementary material.
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predicted probability that a borrower makes a repayment. Panel (b) portrays how the provision of

predictions and explanations affected the weighting of a given borrower trait. The diamond marker

represents the original weighting in Stage I (β1). The dashed and solid arrows respectively illustrate

the isolated effects of observing predictions (β3) and additional explanations (β4). Depicted results

stem from regressions reported in Table 9 in the supplementary material.

(a) LIME Explanations (b) Weight changes from Stage I to II

Figure 2 Illustration of prediction and explanation effects on situational information processing.

Notes: We illustrate how the provision of opaque predictions and LIME explanations on top of predictions affect participants situational
information processing. Panel (a) shows the LIME values (z-axis) for different feature values (x-axis) participants observed in the study.
For the binary feature Older siblings, we show the LIME values for No and Yes at the outer limits of the continuous feature scale. Panel
(b) depicts with the estimated prediction and explanation effects – respectively β3 and β4 in model (1) with s= 2. Initial values represent
β1. We denote significance levels by ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01

There are two main insights. First, prediction effects in Panel (b) suggest that the provision of

opaque predictions generally decreased the weight participants placed on observed borrower traits.

Although only the estimates for Agreeableness, Patience, and Older Siblings are significant, predic-

tions reduced the absolute magnitude of all variables. Second, the provision of explanations on top

of predictions entailed significant weight changes that mirror the relationship between borrower

traits and repayment behavior as depicted by the LIME values. Panel (a) shows that the predicted

repayment probability markedly decreases (increases) with a borrower’s level of Competitiveness

(Patience). Panel (b) reveals that these are the two traits whose weighting the provision of explana-

tions significantly fostered: observing explanations rendered the relationship between a borrower’s

Competitiveness (Patience) and a participant’s investment likelihood significantly more negative

(positive). LIME values reveal that Agreeableness – the trait participants initially weighted the

most – has almost no impact on the repayment prediction. Accordingly, we find that the provision

of explanations led to a significant decrease in the magnitude of the weight participants placed

on this trait. Additional analyses confirm that LIME values for these three characteristics had a

significantly positive influence on participants’ investment decisions, corroborating the notion that
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participants paid attention to and adjusted their weighting of traits according to observed expla-

nations (see Table 11 in the supplementary material). Taken together, participants significantly

adjusted their weighting of information in the direction of observed explanations for (i) the trait

they initially perceived as most important, and (ii) the traits LIME highlighted as most impor-

tant.9 Finally, while not shown in the Figure 2 for ease of interpretation, regression analyses further

reveal that explanations significantly reduced the weight participants placed on the prediction as

such, i.e., they were less likely to follow a prediction that a borrower makes a repayment.10

Result 1.1: Observing explanations changed participants’ situational processing of the overall

prediction and borrower traits that explanations or they themselves consider most important. The

direction of adjustments mirrors explanations.

Result 1.1 accords with our theoretical elaborations: people adjust their situational informa-

tion processing in response and according to explanations they currently observe. Notably, elicited

expectations about the prediction accuracy did not differ significantly for predictions with or with-

out explanations (71.8% and 70.6% respectively, p = 0.751, Wilcoxon rank-sum test). Therefore,

changes in the weighting of predictions do not seem to result from lower performance expecta-

tions. Next, we test the conjecture that explanations affect beliefs about the relationship between

borrower characteristics and repayment behavior, i.e., mental models.

Mental model adjustments. We compare participants’ information weighting across Stages

I and III, to test the conjecture that explanations affect mental models about the relationship

between borrower traits and repayment behavior. We rely on the regression model (1), setting s= 3

and excluding controls for the prediction and LIME values. Figure 3 illustrates regression results

which we report in Table 12 in the supplementary material.

Figure 3 portrays how the provision of predictions and explanations lastingly changed the weight-

ing of a given borrower trait across Stages I and III, where participants had no (X)AI aid. The

9 Note that these results do not allow us to isolate how explanations affect what investors consider to be a borrower’s
motivation to repay them or not. The change in the weighting of competitiveness could stem from a reinforced percep-
tion that competitiveness predicts a low repayment likelihood because it proxies for anti-social, income-maximizing,
or relative income-maximizing motives. While we cannot isolate investors’ latent belief(s) about borrowers’ motives,
our results effectively show that the provision of explanations does entail a change in at least one of these perceived
latent motives, i.e., that XAI can change the processing of information. A similar argument applies regarding mental
model adjustments outlined below.

10 Reported results are robust to excluding participants who always or never invested in our analyses, respectively
alleviating concerns that our results are driven by pure altruists or players who always choose the game-theoretically
dominant strategy (see the subsection on additional robustness checks in the supplementary material). Instead, our
results stem from those participants whose behavior suggests that they try to invest with borrowers whom they
believe will make a repayment, i.e., individuals who, from a conceptual point of view, should be most inclined to
learn to recognize repaying borrowers. Results 1.2 and 1.3 are equally robust to excluding these “extreme” types,
warranting a similar interpretation.
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Figure 3 Mental model adjustments.

Notes: We depict participants’ mental model adjustments as measured by their change in the weighting of borrower traits across Stages I
and III. The estimated prediction and explanation effects respectively represent β3 and β4 in model (1) with s= 3. Initial values represent
β1. We denote significance levels by ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01

diamond marker depicts the original weighting in Stage I (β1). The dashed and solid arrows respec-

tively show how having observed predictions (β3) and explanations on top of predictions (β4) did

fundamentally alter participants’ information processing, i.e., mental models.

Observing opaque predictions did not result in a significant change in participants’ weighting

of borrower traits. By contrast, depicted results suggest that providing explanations entailed an

asymmetric adjustment of mental models. Specifically, explanations led participants to place signif-

icantly more weight on borrowers’ Competitiveness and Patience in Stage III than in Stage I. The

weight changes again mirror the observed LIME explanations. After observing explanations that

the AI system places the most weight on borrowers’ Competitiveness and Patience, participants

increased their weighting of these attributes even for investment decisions where they no longer

observed explanations. Intriguingly, we do not find that explanations about the low relevance of

Agreeableness led participants to adjust their marked weighting of this trait significantly. Although

participants weighted Agreeableness significantly less while observing explanations, they returned

to their original weighting of it once they lost access to the XAI system. Naturally, one may wonder

about this asymmetry’s origins. One plausible interpretation is that explanations are less likely to

evoke pronounced mental model adjustments when they conflict with strong preconceptions. Put

differently: people are more inclined to engage in mental model maintenance rather than building

because it is less cognitively demanding and creates less psychological distress (Vandenbosch and

Higgins 1996). In Stage I, participants put by far the most emphasis on a borrower’s Agreeableness

to decide upon investing. LIME values, however, suggested that this conception is incorrect because

it is among the least relevant predictors for borrowers’ repayment inclination. Even though one

would expect that participants engaged in mental model building to reshape their beliefs about the
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relationship between Agreeableness and repayment behavior, we do not find significant adjustments.

For Competitiveness (Patience), explanations depicted an important negative (positive) influence

which, given their initial weighting of it, confirmed participants’ prior beliefs. Following the Men-

tal Models framework, confirming explanations should evoke the maintenance or reinforcement of

prior beliefs. Given the significant explanation effects, it seems that participants willingly engaged

in this process. This inclination to engage in mental model maintenance rather than building more

generally concurs with the frequently documented confirmation bias (see, e. g., Yin et al. 2016),

i.e., the tendency to selectively process information in a way that allows for the continuation or

strengthening of beliefs. We elaborate on this issue in Study 2 and the discussion.11

Result 1.2: Machine explanations entailed asymmetric mental model adjustments. Participants

reinforced priors that explanations confirmed but did not abandon priors that explanations markedly

contradicted.

Investment performance. So far it remains open how providing explanations on top of pre-

dictions affected participants’ decision-making performance in our setting. Table 1 summarizes

participants’ performance measured by the accuracy (share of payoff maximizing decisions) and

recall (share of investments with repaying borrowers). We also report p-values of F -tests to illus-

trate significant treatment differences.12

Stage I (no aid) Stage II (with aid) Stage III (no aid)

Accuracy Recall Accuracy Recall Accuracy Recall

Baseline (AI) in % 60.3 64.9 63.1 64.6 62.7 65.1
Treatment (XAI) in % 60.7 67.4 57.5 57.5 56.5 60.2

F-test: Base. v. Treat. p= 0.79 p= 0.31 p < 0.01∗∗∗ p < 0.01∗∗∗ p < 0.02∗∗ p < 0.04∗∗

Table 1 Investment performance across stages.

Notes: We depict participants’ investment performance as measured by their accuracy (share of payoff maximizing decisions) and recall
(share of investments with repaying borrowers) in Stages I, II, and III. We report results separately for Baseline (AI) and Treatment (XAI)
participants. F -tests reveal the significance of treatment differences per measure and stage. We denote significance levels by ∗ p < 0.1, ∗∗

p < 0.05, ∗∗∗ p < 0.01

While there are no differences in Stage I, treatment participants performed significantly worse

than baseline ones in Stage II.13 Treatment participants’ relatively lower performance in Stage II

11 Note: the significant explanation effect for Openness and Extraversion may be a consequence of participants’ signif-
icantly stronger weighting of borrowers’ Competitiveness and Patience and a limited capacity to process information.
Specifically, XAI participants in Stage III place similarly low weight on all borrower traits but Competitiveness, Agree-
ableness, and Patience. This pattern may suggest that participants heuristically focus on the three characteristics
that they themselves and the AI system deemed most relevant to the decision. As a result, they place less weight on
all other traits, which for Openness led to a statistically significant effect.

12 We show ROC curves in Figures 17 to 19 in the supplementary material

13 Note: Participants neither knew their own nor the AI system’s performance because we did not provide intermediate
feedback. Therefore, they could not see how much better or worse the system performs compared to themselves.
While unknown to participants, predictions are accurate in about 69.3% of the cases. This performance holds equally
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stems from not investing with the most competitive borrowers (with most negative LIME values)

while the overall prediction implies doing so, i.e., from overruling positive predictions.14

They overruled positive predictions and refrained from investing in 46.5% of these cases, resulting

in a decision accuracy of merely 53.5%. Baseline participants, for most competitive borrowers,

overruled positive predictions only in 21.2% of the cases and achieved a decision accuracy of 78.9%.

For all other borrowers, treatment (baseline) participants overruled positive predictions and made

optimal decisions in 23% (19.4%) and 69.6% (71.1%) of the cases, respectively. Hence, treatment

participants seem to have placed too much weight on very high competitiveness, leading them to

overrule the overall prediction inefficiently often.

Examining Stage III, we find that this overweighting of the highest competitiveness level persisted

even when participants did not observe explanations anymore (see Table 13). In Stage III, treatment

(baseline) participants invested with most competitive borrowers in 44.7% (54.7%, p < 0.01,F -test)

of the cases; with other borrowers in 68.2% (67.6%, p= 0.7,F -test) of the cases. As a result, treat-

ment (baseline) participants achieved a decision accuracy of 51.7% (57.2%, p < 0.01,F -test) for

most competitive borrowers and 59.5% (62.8%, p < 0.05,F -test) for other borrowers. Notably, par-

ticipants already associated very high competitiveness with a low repayment likelihood in Stage I:

most competitive borrowers received an investment in 56.3% of the cases, while all others did so in

69.5% of the cases (there do no exist treatment differences). Against this background, explanations

seem to have exacerbated this inaccurate pattern15 to an extent that treatment participants made

significantly worse decisions than before. Put differently, confirming explanations inappropriately

reinforced preconceptions about most competitive borrowers not repaying an investment in our

setting.

Result 1.3: Participants excessively increased the isolated weighting of a trait they already believe

to be evidence against repayment. This reaction inefficiently decreased participants’ likelihood to

invest with repaying borrowers that were highly competitive.

for both repaying (69.7%) and non-repaying borrowers (67.7%). Participants in Stage I correctly invest with (non-
)repaying borrowers in 66.1% (41.2%) of the cases and overall in 60.5% of the cases. Put differently, the AI system
outperforms them regarding both types of borrowers and especially for the identification of non-repaying ones. As
a result, participants could have benefited from relying on the predictions – which baseline participants did at least
partially.

14 Across Stages I and II, baseline participants’ access to the AI system significantly increased the accuracy by
4.6% (p < 0.01, F − test), whereas the recall effectively remained constant (p = 0.82, F − test). XAI participants
performance significantly decreased regarding both the accuracy (-5.3%; p < 0.01, F − test) and recall score (-14.6%;
p < 0.01, F − test).

15 A purely linear distinction between most competitive and other borrowers does not allow to draw conclusions about
their repayment likelihood: they respectively made a repayment in 77.4% and 79.8% of the cases (p= 0.85, F -test).
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In sum, the results for Study 1 are highly consistent with the notion that the provision of

explanations creates a novel channel through which AI systems may reshape users’ way of pro-

cessing information, both situationally and more permanently. For the latter effect, we observe an

asymmetry that is reminiscent of a confirmation bias and, in our setting, decreased participants’

decision-making performance by excessively reinforcing inaccurate preconceptions.

3.2. Study 2

The goal of Study 2 is twofold. First, we extend Study 1 results by testing the generalizability

of mental model adjustment findings regarding the task domain, user expertise, and explanation

presentation and examining whether the asymmetry we found for explanation-driven mental model

adjustments in Study 1 is indeed a manifestation of the confirmation bias. Second, we explore if

mental model adjustments spill over to related but disparate domains.

3.2.1. Design. Study 2 comprises four consecutive stages, where recruited real-estate experts

estimated the listing price per square meter in Euro of apartments that we previously collected from

a large online platform.16 Participants saw ten apartment characteristics to make an informed guess

and did not receive intermediate feedback. To reduce the task complexity and avoid informational

overload, we fixed seven apartment characteristics across all stages, i.e., apartments only differed

regarding the same three characteristics: Location (Frankfurt/Cologne), Balcony (Yes/No), Green

voter share in the district (Below city average/City average/Above city average).17 We provide

screenshots of the interfaces from each stage in the supplementary material.

In Stage I, we elicited participants’ initial beliefs about the relationship between the three vari-

able apartment characteristics and listing prices. Participants estimated the listing price of four

random apartments with different combinations of the variable attributes by entering their marginal

contributions to the price using a slider. Sliders ranged from minus to plus 2.500€ in steps of 50€.

We initially set the marginal contributions and overall price estimation to 0€ and the average

listing price (9600€), respectively. Participants additionally stated their confidence in the entered

marginal contributions and the resulting price estimation on a five-point scale.

Stage II introduced our treatment variations. In all variations, participants estimated listing

prices for eight random apartments with different combinations of variable attributes they did not

16 We scraped data from a large online platform in February 2022. We collected observations for all apartments listed
for sale in the seven major cities of Germany (“A-Cities”) and a medium-sized eastern German city (Chemnitz). We
constructed a dataset consisting of eight apartment attributes and the listing price directly obtained from the platform,
and two additionally collected features from public statistics. We provide summary statistics in the supplementary
material (Table 6).

17 Note: We selected these three characteristics for technical reasons regarding the ML model and based on the
input from our industry partner. The notion is that these characteristics together are (i) sufficiently relevant to the
prediction, and (ii) familiar/accessible to experts.
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encounter in Stage I. In contrast to Stage I, participants directly entered the estimated listing

price. As a reference point, they again observed the average listing price for an apartment. Partici-

pants stated their confidence on a five-point scale. In our baseline condition (NoAid), participants

estimated the price without any aid. Participants in the AI condition observed opaque listing price

predictions of a steady, i.e., non-learning, AI system trained on 4,975 collected observations.18 In

our XAI condition, in addition to observing these predictions, participants also saw numerically

presented SHAP values for the three variable apartment characteristics, i.e., marginal contribu-

tions to the prediction in Euro. After they entered all eight listing price estimates, participants

in treatments with decision support filled out a survey containing items on their trust, degree of

reliance, and perceived transparency of the AI system (and explanations).

Stage III replicated Stage I to measure posterior beliefs. Independent of the condition, partici-

pants again made decisions without any aid for the same apartments.

Finally, in Stage IV, participants estimated the listing price for one last apartment without any

decision aid. Across participants, we varied the balcony and green voter attribute of the apartment,

while the seven fixed attributes were identical to the previous listings. Most importantly, the

apartment was in a midsize city in Eastern Germany (Chemnitz). For historical, demographic, and

socioeconomic reasons, Chemnitz is very different from “A-cities” such as Frankfurt and Cologne,

so the housing market is very different, too. Germans in general and real estate agents in particular

are usually aware of this East-West disparity.19 The study concluded with a questionnaire on

participants’ socio-demographics.

3.2.2. Results. We report our results in three steps. First, we outline the experts’ belief

adjustments from Stage I to Stage III. Second, we examine the occurrence of confirmation bias in

these adjustment processes. Finally, we analyze experts’ listing price estimates in Stage IV.

Mental model adjustments. Figure 4 shows the distribution of absolute differences between

experts’ beliefs about the marginal contribution of the three variable attributes before and after the

treatment intervention. We show results for the NoAid, AI, and XAI conditions. The distributions

for the NoAid and AI conditions are remarkably similar and skewed towards 0, indicating that

experts frequently did not adjust beliefs. The distribution for XAI participants is considerably less

right-skewed, i.e., they adjusted their beliefs across Stages I and III more. On average, NoAid, AI,

and XAI participants adjusted their beliefs by 166.4€, 165.4€, and 299.1€, respectively. Only the

differences between NoAid v. XAI (p < 0.01, F -test), and AI v. XAI (p < 0.01, F -test) conditions are

statistically significant (see Table 24 in the supplementary material). Our notion is that real-estate

18 The AI system is a Random Forest that achieves a performance of R2 = 0.72 on unseen test data. See the supple-
mentary material for additional information.

19 For instance, A-cities exhibit considerably higher average wages, more liberal political attitudes, and faster popu-
lation growth (see, e. g., Cajias et al. 2020)
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Figure 4 Distribution of absolute belief changes.

Notes: We depict the distribution of experts’ absolute belief adjustments across Stages I and III. We aggregate the belief adjustments over
all apartment attributes. Different distributions show results separately for NoAid, AI, and XAI participants.

experts updated initially held mental models about the relationship between apartment attributes

and listing prices as they encountered SHAP explanations. Contrasting our first study, we directly

measure participants’ prior and posterior beliefs about the contribution of distinct apartment

characteristics to listing prices in Study 2. This design facet enables us to estimate mental model

adjustments directly, leveraging the accepted framework by DeGroot (1974). Specifically, we assume

that agent i’s posterior belief about the relationship of characteristic j and the listing price Posti,j =

ai,j ·Priori,j +(1−ai,j) ·Expli,j is a weighted combination of the corresponding prior belief Priori,j

and the personally observed explanation Expli,j. 1−ai,j represents the extent of belief adaptation

in the direction of the explanation, while ai,j describes the anchoring of the previous belief. For

instance, in the extreme case of 1 − ai,j = 1, individual i completely abandons her prior mental

model and adopts the observed explanation as her new one. We estimate the weights (1− ai) and

ai for our three study conditions using a regression model comprising treatment interactions that

has the following form:

Posijk = β1 ·Priijk +β2 · (AIi ×Priijk) +β3 · (Expli ×Priijk)

+β4 ·SVij +β5 · (AIi ×SVij) +β6 · (Expli ×SVij) + γi + δk + ε
(2)

Posijk and Priijk respectively represent expert i’s posterior and prior beliefs about attribute j’s

contribution to apartment k’s listing price in Euro. Most importantly, AIi is a dummy variable

indicating that expert i observed a prediction, while the dummy Expli equals 1 if a participant

additionally observed explanations. SVij represents the average SHAP value for apartment attribute

j of the apartments participant i encountered in Stage II. γi and δk are expert and apartment

controls.
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On an individual level, model (2) estimates how observed SHAP values affected participants’

adjustments of beliefs about the relationship between a given characteristic and the listing price. It

enables us to quantify the “stickiness” of prior beliefs (β1−β3) and “gravitational pull” of explana-

tions (β4−β6), and directly test the occurrence of confirmation bias. Importantly, this estimation is

only possible for Study 2, where we elicited prior and posterior beliefs about distinct feature-label

relationships. In Study 1, we measured the ultimate investment decisions only and observed belief

changes indirectly through changes in those decisions. As a result, we cannot individually quantify

the impact of observed explanations on specific beliefs, nor can we analyze confirmation bias – a

key contribution of our second study.

Dep. variable: (1) (2)

Posterior belief

Prior belief (β1) 0.634∗∗∗ 0.782∗∗∗

(0.060) (0.063)
Prior belief × AI (β2) 0.070 -0.027

(0.104) (0.084)
Prior belief × Expl. (β3) -0.276∗∗∗ -0.240∗∗∗

(0.084) (0.075)

Avg. SHAP (β4) 0.025 0.033
(0.040) (0.039)

Avg. SHAP × AI (β5) 0.078 0.083

(0.053) (0.050)
Avg. SHAP × Expl. (β6) 0.265∗∗∗ 0.249∗∗∗

(0.053) (0.052)

Fixed Effects No Yes

N 1836 1836

R2 0.740 0.787

Table 2 Posterior belief formation.

Notes: We depict results from OLS regression models with robust standard errors reported in parentheses. The dependent variable equals
participants’ posterior belief about the marginal contribution of apartment attributes to the listing price in euros. The main independent
variables of interest are participants’ prior beliefs, the average SHAP values for apartment attributes in Stage II, a dummy indicating that
participants observed a prediction in Stage II (AI), a dummy indicating that participants observed explanations in Stage II (XAI), and
interaction terms. We further control for the overall posterior listing price participants entered for the apartment and its interaction with
treatment dummies, and the average prediction they observed in Stage II. In column (2), we additionally include individual and apartment
fixed effects. We denote significance levels by ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 2 depicts regression results for model (2). Results show that in our NoAid and AI condition

condition where participants did not observe explanations, SHAP values (unsurprisingly) have

no significant explanatory power regarding posterior beliefs (see β4 and β5).
20 When participants

did not obtain machine aid or only observed predictions, their prior and posterior beliefs were

more than 60% positively correlated (β1 and β2), i.e., participants barely adjusted their beliefs.

Only when participants observed explanations in addition to predictions did the displayed SHAP

values have positive, statistically significant effects. β6 reveals that XAI participants significantly

adjusted their beliefs in the direction of observed explanations. According to the estimate, posterior

20 Note: the positive coefficient for β5 may be related to the fact that SHAP values and overall predictions are
inextricably linked. Merely observing high (low) predictions may lead to adjustments of reported beliefs upward
(downward), creating a positive, however, insignificant correlation with underlying SHAP values in the data.
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beliefs resembled SHAP values more closely in the XAI treatment condition compared to the

NoAid and AI conditions. Observing explanations also caused XAI participants’ posterior beliefs

to resemble their prior significantly less (β3), i.e., prior beliefs became less “sticky” compared to

the NoAid and AI conditions. In sum, these results suggest that observing SHAP explanations led

participants to adjust their beliefs in the direction of explanations and abandon their priors. This

insight corroborates our result 1.2 in Study 1 on an individual level, revealing that explanation-

driven mental model adjustments also occur for experienced experts, who are arguably familiar

with apartment traits and listing price predictions.21

Confirmation bias. In Study 1, we observed asymmetric mental model adjustments that are

reminiscent of the confirmation bias. The design of Study 2 allows us to test for confirmation

bias in mental model adjustment processes more directly by examining whether XAI participants’

adjustments depended on the alignment of explanations and prior beliefs.

We define that explanations confirmed an expert’s preconception about the price contribution of a

specific apartment attribute if the prior and the observed average SHAP value for the corresponding

attribute have the same sign. With this definition, observed explanations confirm prior beliefs in

49.6% of the cases.22 We analyze differences in belief adjustments with respect to confirming and

conflicting explanations using a modified version of model (2). Specifically, we are interested in

whether the convergence of XAI participants’ posterior beliefs toward observed SHAP values only

occurred when explanations confirmed prior beliefs. Therefore, we focus on the subsample of XAI

participants allowing us to omit treatment dummies and interaction terms which facilitates the

interpretation of results. Along the lines of model (2), we regress XAI participants’ posterior beliefs

about the relationship between apartment characteristics and the listing price on their prior beliefs

and observed SHAP values. Most importantly, we now add a dummy variable (Confirm) indicating

whether explanations confirmed prior beliefs and its interaction with average SHAP values and prior

beliefs as independent variables. The interaction Avg. SHAP × Confirm will provide insights into

whether the influence of observed SHAP values on belief adjustments depended on the alignment

of explanations and prior beliefs – insights we can not obtain from study 1 using model (1).

Corroborating our interpretation of result 1.2 from Study 1, we find that explanation-driven

belief adjustment processes depended on whether explanations confirmed or conflicted with prior

beliefs. The estimate for the interaction term Avg. SHAP × Confirm is positive and statistically

21 Participants, on average, have worked in the real estate industry for 13.8 years and, on a scale from 1-10, report
that their experience level in rating apartment listing prices equals 5.7.

22 Our main insights are robust to defining more restrictively that explanations confirm priors if the absolute distance
between the prior and the observed average SHAP value is smaller than the absolute distance between the prior and
0€ and, at the same time, smaller than the absolute distance between the prior and the closest extreme, i.e., +/-
2500€ (see Table 25in the supplementary material).
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Dep. variable: (1) (2) (3)

Posterior belief Overall Low confidence High confidence
beliefs beliefs

Prior belief 0.492∗∗∗ 0.483∗∗∗ 0.496∗∗∗

(0.091) (0.105) (0.136)

Avg. SHAP 0.303∗∗∗ 0.344∗∗∗ 0.145∗∗

(0.043) (0.055) (0.067)

Confirm 12.039 -10.838 115.724

(27.949) (39.552) (73.702)
Avg. SHAP × Confirm 0.166∗∗∗ 0.107 0.301∗∗∗

(0.059) (0.077) (0.094)

N 708 481 222

R2 0.746 0.725 0.843

Table 3 Confirmation bias and posterior belief formation

Notes: We depict results from OLS regression models with individual and apartment fixed effects. We report robust standard errors reported
in parentheses. The dependent variable equals XAI participants’ posterior belief about the marginal contribution of apartment attributes to
the listing price in euros. The main independent variables of interest are participants’ prior beliefs, the average SHAP values for apartment
attributes in Stage II, a dummy indicating that observed SHAP values in Stage II confirmed participants’ priors – measured by an equal
sign of prior beliefs and average SHAP values for a given attribute – and interaction terms. We further control for the overall posterior
listing price participants entered for the apartment and the average prediction they observed in Stage II. Column (1) presents results for all
decisions. Columns (2) and (3) respectively depict results for the shares of decisions where XAI participants report low and high confidence
in their prior. We denote significance levels by ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

significant (see column (1) in Table 3). Following the estimate, posterior beliefs resembled observed

SHAP values significantly more closely (about 50% more) if they confirmed their prior beliefs.

Hence, consistent with confirmation bias, the belief adjustment was asymmetric regarding the

confirmatory nature of explanations. If participants had updated beliefs rationally according to

Bayes rule, the interaction term should be insignificant as Bayesian observers would not weight

explanations conditional on their alignment with prior beliefs (Rabin and Schrag 1999).

To elaborate on the notion that these asymmetric belief adjustments are a manifestation of

confirmation bias, we further consider the role of experts’ confidence in their prior beliefs. Prior

research shows that confirmation bias is strongest for entrenched beliefs (see, e.g., Pyszczynski and

Greenberg 1987, Knobloch-Westerwick and Meng 2009). To test the existence of such heterogeneity,

we consider experts’ reported confidence in prior beliefs and define that an expert possessed low

(high) confidence in a prior, if, on a 5-point scale, they reported a confidence level of less than 4 (at

least 4). In columns (2) and (3) of Table 3, we respectively repeat the regression analysis reported

in column (1) for the subsamples of low- and high-confidence prior beliefs.

Reported estimates provide further evidence that explanation-enabled mental model adjustments

were subject to confirmation bias. According to the estimated coefficient of Avg. SHAP × Confirm,

for low-confidence priors, the influence of observed SHAP values on posterior beliefs did not depend

on whether explanations confirmed prior beliefs (see column (2)). Considering the positive and

significant estimate of Avg. SHAP, the belief updating was in line with Bayes rule. By contrast, for

high-confidence priors, belief adjustments were highly sensitive to whether SHAP values confirmed

priors (see column (3)). The estimate for Avg. SHAP × Confirm suggests that the magnitude of

the adjustment of high-confidence priors was about two times larger when observed explanations

were in line with them.
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Result 2.1: Study 1 findings extend to expert users, SHAP explanations, and the domain of

apartment price predictions: SHAP explanations led real-estate experts to adjust prior beliefs about

the relation between apartment attributes and listing prices. Adjustment processes were subject to

the confirmation bias.

Spillover effects. While we observe that real-estate experts (asymmetrically) adjusted prior

beliefs, all previously reported results pertain to the same market: participants observed SHAP

explanations for the same two A-cities in Western Germany, for which we elicited prior and poste-

rior beliefs. What remains open is whether explanation-driven belief adjustments spilled over to the

listing price estimation for apartments in different markets. We put this idea to the test by exam-

ining the distribution of participants’ final price predictions for an apartment in a medium-sized

eastern German city that is not an “A city”: Chemnitz.23

(a) Low green voter share. (b) High green voter share.

Figure 5 Price distributions in Chemnitz.

Notes: We depict the distribution of experts’ listing price estimates in Chemnitz. Panel (a) and (b) depict price distribution for apartments
in a district with a low and high share of green voters, respectively. Different distributions show results separately for NoAid, AI, and XAI
participants.

Figure 5 shows the distribution of listing price estimates conditional on the share of green

voters in the district for NoAid, AI, and XAI participants. The results indicate that observing

explanations impacted participants’ price estimates for Chemnitz apartments in neighborhoods

with high and low proportions of green voters. Panel (a) shows that the distribution of listing

prices for an apartment in a district with a low green voter share is considerably more right-skewed

for XAI than NoAid or AI participants, i.e., they estimate relatively low prices more frequently.

23 Note that we did not include Chemnitz observations in the data to train the AI model. We conducted several
analyses showing that the most important predictors for listing prices in Frankfurt and Cologne (cities in Stages I
to III) differ considerably from listing price predictors in Chemnitz. Real-estate experts are arguably aware of the
structural differences in apartment markets.
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NoAid, AI, and XAI participants on average estimated a listing price of 4752€, 5141€, and 3140€,

respectively. Only the differences between NoAid v. XAI and AI v. XAI are statistically significant

in regression analyses (p < 0.05,F -test, for both). The distribution of price estimates in districts

with high shares of green voters has a stronger left-skew for XAI participants than their NoAid

and AI counterparts (see Panel (b)). On average, NoAid, AI, and XAI participants estimated a

listing price of 5231€, 4600€, and 6092€, respectively, for an apartment in a district with a high

percentage of green voters. Again, we only find significant explanation effects (p < 0.1,F -Test, for

both). As one might expect, the direction of the difference in experts’ evaluation of the green voter

share attribute is in line with explanations observed in Stage II: SHAP values indicated that in

Frankfurt and Cologne, a high (low) share of green voters marginally contributes to listing prices by

about +652€ (-613€). We do not find any effect for experts who only observed opaque predictions

in Stage II.

To elaborate on these findings, we also perform a median split and analyze the subsamples of

experts whose average absolute belief adjustment for the attribute “Green voter” is below and

above the median. Consistent with the idea that belief spillover effects drive differences in listing

price estimates in Chemnitz, experts who strongly adjusted their beliefs about the relevance of

“Green voters” from Stage I to III drive our aggregate-level results. Note that we do not find

significant treatment differences in the accuracy of participants’ listing price estimates, as measured

by the absolute deviation from actual prices. Nevertheless, our results show that using XAI as a

decision support tool in one market can affect aggregate listing prices in another market, which is

not the case for opaque systems. This result demonstrates that XAI methods can link disparate

decision-making tasks.

Result 2.2: Pronounced explanation-driven belief adjustments spill over to experts’ listing price

estimation in a fundamentally different market.

In summary, our results from Study 2 (i) demonstrate the robustness of our results from Study 1

on mental model adjustments in terms of system user expertise, explanation representation, and

decision domain, (ii) provide strong evidence that explanation-driven mental model adjustments are

subject to confirmation bias, and (iii) that explanation-driven mental model adjustments generate

significant spillover effects.

4. Discussion and Conclusion

We report results from two empirical studies that provide novel insights into the interplay between

the employment of feature-based XAI methods and users’ cognitive processes. Our main contribu-

tion is the identification of considerable side effects of providing feature-based explanations – the
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most popular form of XAI methods – on users’ situational information processing and mental mod-

els. We find that the latter effect (i) is subject to the confirmation bias so that misconceptions can

persist and even accumulate, possibly leading to suboptimal decisions, and (ii) can create spillover

effects into other decision domains. These overarching results suggest that the growing, partially

legally required, employment of feature-based XAI methods opens a new channel through which AI

systems may fundamentally reshape the way humans understand real-world relationships between

features X and target variables Y . In the following, we discuss our results, present implications

for organizations and society, and, based on the limitations of our studies, provide directions for

future research.

Discussion of results. Study 1 demonstrates that the provision of explanations can situationally

lead lay users to weigh features marked as important considerably more and put less emphasis

on the overall prediction. Explanations also evoked asymmetric changes in lay users’ conceptions

about the relationship between borrower traits and repayment inclinations that influence behaviors

even when they do not observe explanations anymore, i.e., explanations affect mental models.

Explanation-driven effects decreased lay users’ decision-making performance in our setting. Study

2 extended these results showing that even expert users in a considerably more applied domain

adjusted mental models, that asymmetric mental model adjustments were a manifestation of the

confirmation bias, and that mental model adjustments created spillover effects.

From a theoretical perspective, our results contribute to our understanding of the role of popular

XAI methods in effective knowledge transfers from ML-based AI systems to human users. A key

promise of modern AI systems is that the application of ML techniques will discover new knowledge

from Big Data that has previously eluded even experienced experts (van den Broek et al. 2021,

Berente et al. 2021). This “machine knowledge” is typically codified in the form of a complex

predictive model that outperforms humans. We show that providing predictions alone is insufficient

to achieve systematic knowledge transfers from AI systems to human users. In both our studies,

neither laymen nor experts adapted their understanding of the relationships between features X

and label Y according to “machine knowledge” when observing only opaque predictions. Merely

in treatments where users also had access to explanations, they began to adapt their approach

to solving the task so that it more closely matched the strategy of the AI system. Therefore,

XAI methods appear to be a pivotal factor contributing to an effective channel through which

AI systems can pass on their self-learned knowledge to human users. Crucially, feature-based XAI

methods seem to induce an asymmetry in mental model adjustments: users adjust their beliefs more

in the direction of observed explanations if they confirm rather than disconfirm their priors. This

asymmetry contradicts with the updating behavior of a Bayesian observer who would neither over-

nor underweight explanations conditional on them confirming or disconfirming prior beliefs. This
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asymmetry occured regardless of whether we provide graphically visualized LIME or numerically

represented SHAP explanations. It, therefore, seems as if additive feature-based explanations more

generally evoke cognitive processes leading users to learn from the machine selectively. Researchers

across disciplines commonly refer to such an asymmetry as confirmation bias (Yin et al. 2016).

Study 2 provides consistent evidence that explanation-driven knowledge transfers from an AI to

a human similarly suffer from confirmation bias as knowledge transfers in the human-to-human

domain. For example, confidence in prior conceptions and their difference from the new information

moderate confirmation bias (Pyszczynski and Greenberg 1987). Similar to learning from other

humans, users seem unwilling to internalize potentially helpful, XAI-channeled machine knowledge

if it is inconsistent with what they already, perhaps incorrectly, believe to be true. From the

perspective of the Mental Models framework, individuals more frequently engage in maintaining

rather than in building mental models of the relationships between features and labels. One reason

for this effect could be the need to attain or maintain a high level of self-esteem (Klayman 1995),

leading users to focus inappropriately on explanations that make them feel competent. In other

words, they may derive a positive intrinsic benefit from being in the right (e. g., Gilad et al. 1987).

From this perspective, people may misuse the XAI as a tool to enhance their self-esteem. If left

unaddressed, the asymmetric adaptation of mental models by humans may prevent modern (X)AI

applications from fulfilling their promise of making humans smarter, which (ironically) may also

hinder the further development of AI applications by humans.

Interpreting our results in the light of the model by Agrawal et al. (2019) yields another theoret-

ical insight regarding the ramifications of XAI. Our results indicate that users’ willingness to follow

XAI predictions depends on whether the explanations conform with their mental models. One way

to rationalize this behavior is that their objective function includes a component that accounts for

experiencing some positive (negative) intrinsic utility when obtaining a signal that their mental

model may (not) be accurate (see, e.g., Gilad et al. 1987, Festinger 1962, Harmon-Jones 2019). In

the model by Agrawal et al. (2019), AI systems make predictions about uncertain states of the

world that relate to the profitability of taking specific actions. Human users, in turn, assess the

expected payoffs associated with specific actions, i.e., make judgments. Our results suggest that

human judgment in this model encompasses not only the material consequences of an action, but

also the psychological impact of receiving a signal that implicitly shows whether current mental

models are correct. If explanations reveal that the AI system arrived at a prediction in a way

that contradicts their held mental models, taking an action that follows this prediction effectively

constitutes a signal to oneself that the current mental model is incorrect, creating psychological

distress, e.g., in the form of a cognitive dissonance (Harmon-Jones 2019). This mental toll may lead
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users not to follow the prediction in the first place. Conversely, users may follow unreliable predic-

tions more often if the explanations are consistent with their current mental models because doing

so provides a psychologically valuable self-signal that they are in the right (see, e.g., Gilad et al.

1987). Against this background, users’ inclination to follow predictions of an XAI system, and thus

their ultimate decisions and gains, is subject to greater variance than with a black-box AI. That

is because users’ propensity to follow predictions depends on the consistency of the explanations

with their mental models.

Another theoretical contribution of our work is to show the potential of feature-based XAI to

link different decision domains by influencing users’ beliefs about the feature-label relationship.

Study 2 results show that observing explanations for listing price predictions for apartments in

Market A influenced the price estimation of experts in a different Market B, where the learned

pattern does not exist and they did not have access to XAI decision support. We find that listing

prices estimated by experts who observed explanations differed significantly from those estimated

by experts who either had no decision aid or only observed opaque predictions. This spillover effect

seems to occur due to the adjustment of mental models that experts draw upon in both situations.

Therefore, as an unintended side effect, increasing public and private efforts to promote the use

of XAI methods may extend the already significant influence of AI systems from areas where we

interact with them (Rahwan et al. 2019) to areas where such systems are not in use. Feature-based

XAI methods’ potential to link different domains is particularly concerning given recent evidence

on their susceptibility to intentional manipulation and adversarial attacks (Lipton 2018). Many

modern XAI methods, including LIME and SHAP, optimize fidelity, i.e., ensure that explanations

accurately mimic the predictions of the black box model. However, even small perturbations of the

input data (e.g., deliberate manipulation and measurement errors) can lead to considerably different

explanations for identical predictions, i.e., depict different feature-label relations (Ghorbani et al.

2019, Lakkaraju and Bastani 2020). The potential instability of explanations allows manipulating

user behaviors. Following our results, the creation of misleading explanations may not only affect

users’ trust in the AI system (Lakkaraju and Bastani 2020), but also lead to an (asymmetric)

adjustment of mental models that affect users’ decision making beyond the XAI augmented decision

at hand. Specifically, the depiction of certain feature-label relationships that are not present can

evoke inappropriate mental model adjustments that, given the documented asymmetry, will cause

users who already believe these patterns to be true, to feel vindicated and reinforce these beliefs.

In general, the documented spillover effects may magnify the reach and impact of intentional

manipulations of explanations, increasing deceiving parties’ incentive to do so.

Implications. Reported results have important practical implications for organizations and policy-

makers. Our finding that XAI can change human thinking points to potential pitfalls for companies
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that want, or have to, use XAI. Consider a company that plans to implement XAI methods to

explain to its employees why an AI system makes certain predictions. As Study 1 shows, providing

explanations in addition to predictions may draw users’ attention excessively to the explanations,

to the detriment of the prediction itself. Users may place too much emphasis on individual expla-

nations that confirm their prior beliefs, rather than adhering to the overall prediction. As a result,

employees’ decision-making performance for the task at hand may deteriorate, which is in line

with evidence from related research (see, e.g., Poursabzi-Sangdeh et al. 2021). In domains where

explanations are becoming a regulatory standard, managers need to take such potential downsides

into account and contemplate the ramifications of implementing explainability measures. Following

our results, managers who, in the future, are obliged to put XAI methods in place, should not take

these steps too lightly. From a business perspective, our documented downsides of explainability

could render the continued use of AI-based decision support systems unattractive. Considering that

AI systems are often deeply interwoven with business processes, this XAI-driven discontinuance

may entail considerable organizational change. As a result, managers may be well-advised to assess

potential inconsistencies between the AI system’s internal logic and employees’ understanding of

the task it supports before rolling out explainability measures. This puts managers in a position

to evaluate the magnitude of the potential downside of explainability and employ countermea-

sures. For example, managers may obviate confirmation bias by openly discussing explanations that

conflict with employees’ mental models and showcasing arguments in support of the explanation.

Another pitfall for companies concerns the transfer of knowledge from AI systems to human

users. As Study 2 shows, even experts can overgeneralize learned feature-label relationships that

are only applicable in the context in which they interact with the system. With the confirmatory

learning from explanations, existing differences in employees’ initial conceptions may lead to dif-

ferences in how they collaborate with and what they learn from the XAI, e.g., fostering the biased

weighting of certain information. From this perspective, providing explanations might decrease

individual level noise in the decision-making process (Kahneman et al. 2021), because individuals’

decisions become more consistent. This is in line with Fügener et al. (2021b) who find decisions

to be increasingly consistent among users engaging with opaque predictions. On a more aggregate

level, however, our results suggest that explained predictions may additionally foster differences in

the decision-making process across subgroups of users that possess heterogeneous priors. As a con-

sequence, the variation of decisions on a group-level can grow. As pointed out by Kahneman et al.

(2021), variation in decisions can substantially contribute to errors and ultimately harm business

performance. Consider our previous example of loan officers. XAI may cause loan approval decisions

to increasingly depend on the particular employee – with idiosyncratic mental models – assessing

the applicant’s creditworthiness. This increase in loan approval variation may create considerable
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business, legal, and reputational risks. Against this background, managers should closely monitor

the introduction of XAI to identify a possible increase in decision variance. For instance, managers

could complement XAI with “noise audits” and the development of “reasoned rules” (as proposed

by Kahneman et al. 2021) to overcome the hidden costs of XAI-driven increases in inconsistent

decision-making.

From a societal perspective, our results indicate that broad, indiscriminate implementation of

XAI methods may create unintended downstream ramifications. Our finding that XAI can lead

users to adjust mental models in a confirmatory way and carry over learned patterns to other

domains may, in an extreme case, may foster discrimination and social divisions. Assume all

recruiters start to collaborate with an XAI system to support hiring decisions. For example, a

subgroup of recruiters may discriminate against women because they believe female applicants to

be less productive on the job. If the XAI (occasionally) provides local explanations that depict

being female as negative evidence for high future performance, the subgroup that statistically

discriminates based on gender will readily reinforce its prior belief, i. e., engage in mental model

maintenance. As a result, these recruiters may become more biased and less noisy in their behav-

ior as they hire female applicants consistently less. Given the spillover effects we find, they may

even carry over their strengthened conceptions about women’s productivity to other jobs, fur-

ther reinforcing discriminatory patterns. Additionally, because non-discriminating recruiters will

most likely refrain from adjusting their mental model, i. e., not engage in mental model building,

social divisions among recruiters may develop and accumulate along the lines of gender biases.

Hence, without any malicious intent, the broad employment of XAI may ironically foster human

discriminatory tendencies and divide social groups. Notably, with the possibility to manipulate

explanations, deceiving third parties could also intentionally cause explanations to exhibit specific

prediction contributions for sensitive attributes such as race, gender, or age. This effect could lead

human users who already hold prejudices, stereotypes, or discriminatory tendencies to reinforce

their views, which could promote certain political agendas, for example.

Limitations and future research. As with any other research study, ours is not without limi-

tations. In light of increasing regulatory requirements and private initiatives, we believe that these

limitations open up fruitful avenues for future research. One limitation of our work concerns the

lack of feedback on the decision outcomes and, thus, the performance of the AI system. In both

our studies, we did not provide feedback for two reasons. First, it adds a considerable layer of com-

plexity that impedes the measurement and interpretation of isolated explanation-driven effects on

users’ cognitive processes. Second, in practice, many AI-supported decisions do not yield immediate

feedback, or only yield feedback for some of the predictions. Hence, users have to interact with the
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system without learning its prediction accuracy, at least for a certain period. Examples include hir-

ing decisions supported by an on-the-job performance predicting AI system, investment decisions

supported by a return predicting AI system, and drug treatment decisions supported by an effec-

tiveness predicting AI system. Consequently, explanations may alter users’ situational information

processing and mental models before feedback on system performance arrives. Nonetheless, we

strongly encourage future research to examine the role of feedback as it may introduce unexpected

dynamics in the cognitive effects we document. For instance, the (selective) reinforcement of their

mental models through explanations, may lead users to be more forgiving and maintain trust in

the AI system, even if they eventually see it making mistakes. In this way, the interaction between

feedback and explanations might constitute a factor contributing to unwarranted algorithm appre-

ciation (Logg et al. 2019), leading users to rely on incorrect outcomes blindly. Additionally, people’s

adjustments of the situational information processing and existing mental models possibly depend

on the extent to which the XAI system’s predictions outperform their own. If users learn that an

XAI system’s predictions perform considerably better than their subjective ones, the magnitude

of reported confirmation biases may vary. Conversely, when users’ predictions are better than the

XAI, their confirmation bias might be even stronger. Future research could examine to what extent

our reported effects, at the intensive margin, depend on users’ perceptions about differences in

their own and the XAI system’s predictive performance.

Another limitation of our work originates from letting participants interact with local, feature-

based XAI methods. We opted to employ these explanations because they are already widely in use

in practice and because there are arguments that feature-based explanations on an individual level

are necessary to comply with (upcoming) regulatory requirements (Goodman and Flaxman 2017).

Yet, there exist other forms of explanations, e.g., global feature-based explanations or even example-

based explanations. Even though an investigation and comparison of the interplay between different

forms of explanations and cognitive processes are beyond the scope of this paper, it is worthwhile

for future research to explore whether, and if so why, the effects we document would change if

users (additionally) obtain other forms of explanations. Consider, for instance, global explanations.

While local explanations help understand why an AI system produces a prediction on a case-

by-case basis, global explanations reveal important high-level patterns and non-linearities in the

system’s logic. Such global explanations effectively aggregate individual-level information for the

user and help to understand the system’s overall logic. By taking over this information aggregation

task, global explainability could mitigate concerns about the selective processing of isolated local

explanations that arguably contribute to the occurrence of confirmation bias. Additionally, the

global representation may facilitate comparison and reflection processes which ultimately improves

the transfer of knowledge from the AI system to the user.
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Conclusion. A concluding remark is worth making. Of course, our work is not meant to be an

argument, let alone a plea, against making “black box” AI systems more explainable or transpar-

ent. Instead, we comprehend our findings as a warning that the indiscriminate use of modern XAI

methods as an isolated measure may lead to unintended, unforeseen problems because it creates a

new channel through which AI systems can affect human behaviors across domains. The pervasive

human inclination to process information in a way that confirms their preconceptions while ignor-

ing potentially helpful yet conflicting information needs addressing if explainability is to become

an effective means to combat accountability, transparency, and fairness issues without creating

adverse second-order effects. For instance, one might restrict the provision of explanations of sen-

sitive features for end-users of the system and only use them to ensure the proper and unbiased

functioning of the AI system during the development process. Additionally, it might be important

to provide developers and data scientists with cognitive awareness trainings to make them more

sensitive to their own biased mental processes.
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Supplementary material

Our Supplementary material comprises four parts. In parts 1 and 2 (Study 1: Study design

and Study 2: Study design), we provide detailed descriptions on the design of Study 1 and 2,

respectively. In part 3 (Study 1: Analyses), we report the analyses for Study 1 results that we

refer to in the main text. In part 4 (Study 2: Analyses), we do so for the Study 2 results.

Study 1: Experimental design

Overview. The experiment comprises 3 consecutive stages (see Figure 6 for an overview). In

each stage, participants repeatedly engaged in a modified version of the one-shot investment game

(Berg et al. 1995) that is detailed in the following.

Figure 6 Sequence of the experiment

Notes: Sequence and overview of the 3 different stages in the experiment.

An investor and a borrower possess an initial endowment of 10 monetary units (MU). The investor

initially observes up to ten of the borrower’s characteristics and decides whether to invest her 10

MU with the borrower or keep the 10 MU for herself. If the investor keeps her endowment, both

the investor and borrower receive a payoff of 10 MU. If she invests her endowment, the borrower

receives 20 MU and has to decide whether or not to repay the investor by giving up 10 MU. In

case of repayment, the investor receives 20 MU so that the initial investment pays off; otherwise

the investor ends up with 0 MU while the borrower earns 30 MU (see Figure 7).

This investment game mimics the fundamental structure of many sequential, strategic decisions

under uncertainty (e.g., lending decisions, market transactions, and hiring decisions) (Fehr and

Fischbacher 2003) while at the same time providing a level of abstraction that mitigates concerns

about investors’ prior task-related knowledge and stereotypes. At the end of the experiment, we paid

investors and borrowers according to game outcomes, i.e., the experiment is incentivized allowing

us to measure revealed preference which is superior to purely self-reported answers (Camerer and

Hogarth 1999).
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Figure 7 Investment game structure

Notes: Structure of the modified investment game employed as the main workhorse throughout the experiment.

In a nutshell, our experiment works as follows. There are three subsequent stages, with every sin-

gle stage being individually incentivized. In Stage I we elicit participants’ prior investment behavior

by letting them make several investment decisions without intermediary feedback. In Stage II,

investors make another series of decisions with the additional aid of an AI that provides predictions

about the borrowers’ repayment behavior and, depending on the experimental condition, comes

with or without explanations about how the observed characteristics relate to the prediction. Stage

III mirrors Stage I, allowing us to elicit investors’ posterior behavior. We show the developed inter-

faces in Figure 8 and Figure 9, respectively. To prevent the development of expertise, idiosyncratic

investment strategies, and path dependencies based on the consequences of investment decisions

that might confound our results, we do not provide intermediary feedback.

In addition to the three stages detailed above, we additionally measure participants’ prior and

posterior preferences to observe borrower characteristics. We measure the preferences right before

and after Stage II and use them for robustness and consistency checks.

Details on borrowers, the AI, and explanations. Participants in our online study always

take on the role of the investor. Borrowers are subjects from a previous incentivized field study

where we elicited repayment decisions using the strategy method, i.e., participants had to decide

upon repayment under the assumption that their opponent initially invests. More specifically, the

field study comprises a variation of an incentivized one-shot investment game and a broad set of

survey items on participants’ demographics, socio-economic background, cognitive abilities, and

other personality traits. Overall, we collected more than 2,500 individual observations over three

years (2016-2019). After careful cleaning and preprocessing of the overall data set, we are left with

1,104 observations that we are confident to use for the online study.
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Figure 8 Interface of Study 1 in Stage I and III.

Notes: We show the interface developed to let participants in Study 1 make investment decisions in Stage I and III, i. e., without any aid.

In preparation for the online study, we randomly split the 1104 observations into two representa-

tive subsets: a training set (n=1054) and a player set (n=50).24 We use the training set to build a

Gradient Boosted Random Forest (GBRF) that uses ten socio-demographic borrower characteris-

tics to predict whether or not a person will repay an investment (see Table 4 in the supplementary

material).The randomly drawn 50 observations serve as the population of borrowers with whom

participants play in our study. We choose to select 50 borrowers, even though each participant only

interacts with 32 borrowers (the same 10 in Stages I and III, 20 in Stage II, and 2 for elciting prior

24 Note: a Kolmogorov-Smirnov test cannot reject the hypothesis that both sets stem from the same underlying
population p= 0.781
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Figure 9 Interface of Study 1 in Stage II, XAI treatment

Notes: We show the interface developed to let participants in the XAI treatment in Study 1 make investment decisions in Stage II. Notably,
in the AI treatment, participants did not observe the graphically visualized explanations.

and posterior preferences). Our intention is to create variation on the side of the borrower so that

participants not always interact with the same 32 borrowers which might bias our results.

Investors in our online study always observe these ten borrower characteristics before making

their decision (see Table 4 for an overview).
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Distribution of continuous values
Item Very low Low Medium High Very High

1. Big 5: Openness 6% 18% 26% 26% 24%
2. Big 5: Conscientiousness - 4% 16% 48% 32%
3. Big 5: Extraversion 2% 14% 24% 20% 40%
4. Big 5: Agreeableness - 4% 8% 34% 54%
5. Big 5: Neuroticism 16% 32% 16% 26% 10%
6. Competitiveness 12% 14% 14% 22% 38%
7. Patience 6% 28% 16% 26% 24%

Distribution of binary values
Item No Yes

8. Gender (male) 40% 60%
9. Person has younger siblings 50% 50%
10. Person has older siblings 46% 54%

Table 4 Features used to train the Machine Learning Model.

Notes: We show the features used to train the ML model together with the distribution of values for the sample of observations used in
the experiment.

The main motivation for choosing these borrower characteristics in Study 1 is that we wanted to

develop a high-performing AI model that uses relevant input features, over which participants do

not hold strong beliefs that they bring into the controlled environment of the experiment. From a

theoretical point of view, extensive literature in the field of Economics and Psychology documents

the strong relationship between the used personality traits and social preferences, including positive

reciprocity that plays a pivotal role in the motivation of second movers to make a repayment in

investment/trust games (see, e.g., Dohmen et al. 2009, Becker et al. 2012).25

We render the “black box” GBRF model explainable, using feature-based explanations provided

by the Python library InterpretML (Nori et al. 2019), an open-source package that incorporates

state-of-the-art machine learning explainability techniques. Specifically, we generate local feature-

based explanations about why the AI system produces individual predictions for the player set using

the model-agnostic surrogate technique LIME (Local Interpretable Model-Agnostic Explanations)

(Ribeiro et al. 2016). LIME is one of the most popular and widely used explainability techniques

as of today (see e.g., Gramegna and Giudici 2021, Bhatt et al. 2020). LIME belongs to the class of

feature-based linear surrogate models that explain the AI’s behavior for individual observations.

Notably, “local” refers to the possibility to explain how a certain combination of input features

shape the associated, individual prediction.

In a nutshell, it works as follows. LIME first creates artificial, perturbed data points in the

local proximity around the instance for which it produces explanations. For every artificial data

point, the original “black box” model produces a prediction. Subsequently, LIME fits a linear,

intrinsically interpretable model (here: Ridge regression) on the created data set, whereby it weighs

artificial data points according to their distance to the real data point. Estimated local coefficients

25 Using the standard ten-fold cross-validation, the model achieves an average performance of about 74% accuracy.
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for the input features of the real data point then depict how this very attribute contributes to the

overall prediction of the “black box” model. For instance, for a specific male borrower who is highly

competitive, LIME might estimate that for this very person being male decreases the likelihood of

repayment by 10 %, while his high competitiveness increases the likelihood of repayment by 5 %.

Following the standard approach suggested by Ribeiro et al. (2016), we visualize explanations

graphically using red and green colored bars, respectively depicting a negative or positive contri-

bution of the corresponding characteristic to the GBRF’s prediction. The length of bars indicates

the quantitative strength of the contribution. For instance, a long red bar indicates that, for the

given borrower, the corresponding characteristic is strong evidence against him paying back an

investment. A short green bar indicates that, for the given borrower, the corresponding charac-

teristic is weak evidence in favor of him paying back an investment. To avoid biases associated

with subjective interpretations of probabilities, we did not display underlying probability values.

Instead, we only depict estimated local coefficients as colored bars. We explain to participants in

detail how they have to interpret the bars.

Notably, although we use LIME, it more broadly reflects model-agnostic methods that produce

local explanations about how individual input factors contribute to given predictions. Instead of

LIME, we could also have used local explanations produced by SHAP (Lundberg and Lee 2017).

Hence, our results should be interpreted in the light of potential effects associated with local,

model-agnostic explanations that, at least partially, rely on intuitive graphical visualizations.

While we use the training set as the basis of our (explainable) GBRF, the player set serves as the

representative out-of-sample population of borrowers against which participants in our experiment

play. On the player set, the GBRF achieves a performance of 69.8% accuracy, i.e., correctly predicts

borrowers’ repayment behavior in more than two-thirds of the cases. To determine the outcomes

and payoffs for a given investment decision, we match the online study participants’ corresponding

investment decision with the conditional decision of the field study participant. Notably, to imple-

ment an actual strategic setting, we recontact and pay field study participants according to the

outcomes of a randomly drawn subset of investment games. We make online study participants

explicitly aware of this feature so that they understand that their decisions affect the material

well-being of other people as well as their payoff in this study.

Using the participants from the previous field study as borrowers has two advantages. First, due

to this procedure borrowers are drawn from the same population as the training data, ensuring

that the Gradient Boosted Forest performs reasonably well. Second, it reduces the complexity of

the experiment for online participants so that we mitigate fatigue concerns while at the same time

maximizing the number of observations we are mainly interested in.
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Stage I. In Stage I, participants played ten rounds of the outlined one-shot investment game

against different borrowers. For every participant, we randomly draw ten different borrowers with-

out replacement from the player set. This way, we control for order effects. Before participants

make their investment decisions they observe the ten characteristics of the borrower they can invest

with in the given round. While we fix the order in which we present the characteristics to a given

investor across all investment decisions she makes, we randomized the order across investors. We

do so to control for order effects while at the same time reducing the cognitive effort associated

with processing information to decide. We do not provide intermediary feedback to prevent the

development of expertise, idiosyncratic investment strategies, and path dependencies based on the

consequences of investment decisions, because such effects might confound our results.

Stage I serves two purposes. First, despite the absence of feedback, participants can familiarize

themselves with the investment task for the subsequent stages and form prior beliefs about the

relevance of borrower characteristics and their relation to repayment behavior. Second, elicited

investment decisions allow us to identify participants’ prior choice patterns and thereby developed

beliefs about the relationship between borrowers’ characteristics and repayment behavior.

Stage II. Stage II comprises 20 rounds of the investment game against distinct random borrow-

ers from the player set that participants have not encountered before. There is no feedback on game

outcomes between rounds. As in Stage I, participants observe all of the borrowers’ ten personal

characteristics before making their investment decision. Additionally, participants also observe the

(explainable) AI system’s prediction about whether the borrower repays an initial investment.

To reduce potential initial skepticism towards the AI, we explain to participants in detail how

the model operates, how it has been trained, and reveal its performance on a representative test set,

i.e., we provide global explanations about the AI. Notably, we explicitly inform participants that

the model produces the prediction only using the borrowers’ ten personal characteristics they also

observe. That is, we emphasize that the model does not have access to any additional information

about the borrower. This way, we make sure that participants understand that the AI has no

information advantage due to additionally observed signals. Subjects observe a binary prediction

that we formulated as an unambiguous text to avoid misinterpretations.26

Our between-subject treatment variation is whether or not participants, in addition to the pre-

diction as such, also receive a human-interpretable explanation about the contribution of borrower

characteristics to a specific prediction using LIME (Local Interpretable Model-Agnostic Explana-

tion, Ribeiro et al. 2016). In our treatment condition, participants observe LIME explanations for

26 If the produced probability that the borrower reciprocates a transfer is greater than 50%, we inform participants
that the borrower will most likely repay an initial investment.
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each borrower characteristic, informing them whether it is evidence for or against the borrower

repaying an investment and how strong it is. To avoid confusion, we explain to participants in detail

how they should interpret the explanations. By contrast, baseline participants do not see any addi-

tional explanation. At this point it is important to understand that participants in both conditions

actually interact with the same AI, producing the same predictions for the same borrower. The

only difference is that in the treatment, we also provide post-hoc, model-agnostic explanations.

We measure baseline (treatment) participants’ trust in the (explainable) AI’s predictive perfor-

mance for the first and the second ten rounds of investment decisions. In both cases, participants

have to guess the share of accurate predictions for the preceding ten rounds. Subjects receive a

payoff of 3 MU for every guess that is off by at most 20 percentage points. Hence, we obtain

incentive compatible measures of participants’ trust in the machine performance.

Stage III. Finally, in Stage III, participants play another ten rounds of the investment game

without feedback. Notably, participants play against the same ten individuals that they have

encountered in Stage I. We randomize the order in which participants play against the borrowers

from Stage I. Participants again only observe borrowers’ ten personal characteristics before making

their transfer decision, but no AI prediction at all. Notably, we do not explicitly explain this detail

to participants in order to avoid anchoring their choice.

Preference measures. In addition to the three main stages, we additionally measure partici-

pants’ prior and posterior preferences to observe borrower characteristics.

We measure the prior preferences right before Stage II. Participants play one investment game

against a random borrower from the player set whom they do not encounter in the main stages.

In contrast to the main stages, participants can only observe three out of the ten borrower charac-

teristics, before making their investment decision. Participants have to choose the characteristics

they prefer to see. Specifically, we ask them to select three distinct characteristics and mark them

as first, second, and third choice. They observe the characteristics marked as the first choice before

making their investment decision with a probability of 1. They see their second and third choices

with a probability of 0.9 and 0.8, respectively. With the corresponding inverse probabilities of 0.1

and 0.2, they instead observe distinct characteristics of the borrower that we randomly draw from

the remaining seven characteristics that the participant does not select. We randomly determine

the three characteristics participants actually observe according to the outlined probabilities. To

ensure incentive compatibility the investment decision in this round is payoff relevant in any case.

Again, participants do not receive feedback on the outcome of the game.

We measure the posterior preferences right after Stage II. Participants again play one investment

game that mirrors the one from eliciting the prior preferences, but against a different random
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borrower. Again, the investment decision is payoff relevant in any case and participants do not

receive feedback.

The preference measures are intended as a robustness check to test whether the presence of

explanations affected participants’ initially most pronounced preferences. Specifically, letting par-

ticipants choose three characteristics allows us to obtain ranking preferences by observing specific

borrower traits, in an arguably credible and incentive-compatible way. We restricted the choice to

three features because we wanted to (i) have a relatively small choice set that motivated partici-

pants to contemplate seriously which trait they preferred to observe, and (ii) decrease the likelihood

that participants could choose larger combinations of features making sense only together, i.e.,

reducing concerns about the complementarity of isolated preferences over traits.

Completion After participants have made all investment decisions, the experiment ends with a

questionnaire containing items on participants’ socio-demographics and social preferences. Partic-

ipants’ answers serve as controls for some of our regression analyses. At the end of the experiment,

we inform participants about the outcomes of payoff relevant investment games and their payoffs.

Experimental summary. Overall, 607 individuals participated in our study (301 Treatment

condition and 306 Baseline condition). We run the experiment as an online experiment on the

popular and widely used platform Prolific. The experiment is implemented using oTree, Python,

and HTML. Participants’ earnings equal the sum of MU they earn in each stage. We match par-

ticipants’ investor decisions with corresponding borrower decisions to determine payoffs according

to the previously outlined structure. For each of the three main stages where participants make

multiple investment decisions, we randomly select one of the rounds. We informed participants of

this randomness in every single stage. Notably, to mitigate concerns about participants not paying

attention to displayed information and rush through the investment decisions, they were allowed

to submit investment decisions after at least 5 seconds. On average, participants earned $5.52 ($4

participation fee; $1.52 due to actual decisions) and took about 27 minutes to finish the experiment.

For every transfer decision that is ultimately payoff relevant for participants in the experiment, we

randomly draw a number between 0 and 20. If the drawn number is equal to 20, we contact and pay

the corresponding borrower according to the game’s outcome. We inform participants about this

payoff procedure in the instructions. Under the reasonable assumption that participants maximize

expected utility, these (probabilistic) payouts to borrowers ensure incentive compatibility regarding

preferences over borrower’s material well-being that investor decisions affect.
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Instructions. In the following, we present the instructions of Study 1. Please note that Stage

I, II, and III correspond to Parts 1, 3, and 5. The elicitation of prior and posterior preferences

correspond to Parts 2 and 4, respectively.

Part 1

In part 1 of the experiment, you play 10 rounds of a game that has the following structure (see the

figure for an illustration).

At the beginning of every round, you are randomly matched with a new anonymous person from

another study. Both you and the other person receive 10 monetary units. Your task is always the

same: You start making a decision about whether you want to keep your 10 monetary units or

transfer all of them to the other person. Note: You can not transfer only a part of your endowment.

Keeping and transferring your monetary units has the following consequences:

Keeping your 10 monetary units: If you decide to keep your 10 monetary units for yourself,

the game in this round ends. In this case, your personal and the other person’s earnings in this

round both equal 10 monetary units, i.e., the initial endowment.

Transferring your 10 monetary units: If you decide to transfer the 10 monetary units, we

double this amount so that the other person receives 20 monetary units which are added to this

person’s initial endowment. After you transfer your monetary units, the other person learns about

your transfer and has to decide whether to transfer 10 monetary units back to you or to keep the

monetary units she/he now possesses.

• If the other person transfers 10 monetary units back to you, we double this amount so that

you receive 20 monetary units. In this case, your personal and the other person’s earnings in this

round both equal 20 monetary units.

• If the other person does not transfer 10 monetary units back to you, your personal earnings

equal 0 monetary units while the other person’s earnings equal 30 monetary units in this round.
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Before you have to choose between transferring or keeping your 10 monetary units, you will receive

information about 10 personal characteristics of the other person that is matched with you in a

given round. The information might help you anticipate whether this other person will transfer

10 monetary units back to you so that you receive 20 monetary units, in case you initially decide

to make a transfer. Note: The scale of characteristics that are not binary always reach from ’very

low’, ’low’, ’medium’, ’high’, ’very high’.

Between rounds, you will not see the decision of the persons you are matched with. Part 1 ends

once you have played 10 rounds of this game. We will then randomly select one of the rounds. The

monetary units you own at the end of this round constitute your earnings for part 1. The other

person matched to you in this round earns the number of monetary units she/he owns at the end

of this round as well. Whether the earnings are payoff relevant for the other person is randomly

determined. We will inform you about the decision of the other person, your earnings, and the

other person’s earnings from the selected round at the end of the experiment.
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Part 2

In part 2 of the experiment, you are randomly matched with another anonymous person from

another study that you have not been matched with in part 1. You play one game that has the

same structure as before:

Both you and the other participant receive 10 monetary units. Your task: You start making a

decision about whether you want to keep your 10 monetary units or transfer all of them to the

other person. Note: You can not transfer only a part of your endowment.

Keeping and transferring your monetary units has the same consequences as before:

Keeping your 10 monetary units: If you decide to keep the 10 monetary units for yourself,

the game and part 2 end. In this case, your personal and the other person’s earnings in part 2

both equal 10 monetary units, i.e., the initial endowment.

Transferring your 10 monetary units: If you decide to transfer the 10 monetary units, we

double this amount so that the other person receives 20 monetary units which are added to this

person’s initial endowment. After you transfer your monetary units, the other person learns about

your transfer and has to decide whether to transfer 10 monetary units back to you or to keep the

monetary units she/he now possesses.

• If the other person transfers 10 monetary units back to you, we double this amount so that

you receive 20 monetary units. In this case, your personal and the other person’s earnings in part

2 both equal 20 monetary units.

• If the other person does not transfer 10 monetary units back to you, your personal earnings

equal 0 monetary units while the other person’s earnings equal 30 monetary units in part 2.

Before you have to choose between transferring or keeping your 10 monetary units, you will

receive information about 3 out of 10 personal characteristics of the other person that is matched
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with you. The information might help you anticipate whether the other person will transfer 10

monetary units back to you so that you receive 20 monetary units, in case you initially decide to

make a transfer. Note: The scale of characteristics that are not binary always reach from ’very

low’, ’low’, ’medium’, ’high’, ’very high’.

You decide which 3 characteristics of the other person you want to receive information about. You

have to select one characteristic as the first choice, one characteristic as the second choice, and one

characteristic as the third choice:

• First choice: The other person’s characteristic you select as the first choice will be shown to

you with a probability of 100%.

• Second choice: The other person’s characteristic you select as the second choice will be

shown to you with a probability of 90%. With a probability of 10% you will observe one of the

other characteristics of this person that you neither selected as first, second, or third choice; which

of these it is will be randomly determined.

• Third choice: The other person’s characteristic you select as the third choice will be shown

to you with a probability of 80%. With a probability of 20% you will observe one of the other

characteristics of this person that you neither selected as first, second, or third choice and is not

drawn before; which of these it is will be randomly determined.

After your selection decision, we will determine the three characteristics of the other person you

will be able to see. You will then see the characteristics and be asked to make your transfer

decision.

The monetary units you own at the end of the game constitute your earnings for part 2. The other

person matched to you earns the number of monetary units she/he owns at the end of this part

as well. Whether the earnings are payoff relevant for the other person is randomly determined. As

before, you will not immediately learn about the decision of the other person. We will inform you

about the decision of the other person, your earnings, and the other person’s earnings from part 2

at the end of the experiment.
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Part 3

In part 3 of the experiment, you play 20 rounds of a game that has the same structure as in the

previous parts of the experiment:

At the beginning of every round, you are randomly matched with a new anonymous person from

another study. Both you and the other person receive 10 monetary units. Your task is always the

same: You start making a decision about whether you want to keep your 10 monetary units or

transfer all of them to the other person. Note: You can not transfer only a part of your endowment.

Keeping and transferring your monetary units has the following consequences:

Keeping your 10 monetary units: If you decide to keep the 10 monetary units for yourself,

the game in this round ends. In this case, your personal and the other person’s earnings in this

round both equal 10 monetary units, i.e., the initial endowment.

Transferring your 10 monetary units: If you decide to transfer the 10 monetary units, we

double this amount so that the other person receives 20 monetary units which are added to this

person’s initial endowment. After you transfer your monetary units, the other person learns about

your transfer and has to decide whether to transfer 10 monetary units back to you or to keep the

monetary units she/he now possesses.

• If the other person transfers 10 monetary units back to you, we double this amount so that

you receive 20 monetary units. In this case, your personal and the other person’s earnings in this

round both equal 20 monetary units.

• If the other person does not transfer 10 monetary units back to you, your personal earnings

equal 0 monetary units while the other person’s earnings equal 30 monetary units in this round.

Before you have to choose between transferring or keeping your 10 monetary units, you will receive

information about 10 personal characteristics of the other person that is matched with you in a

given round. These information might help you anticipate whether this other person will transfer
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10 monetary units back to you so that you receive 20 monetary units, in case you initially decide

to make a transfer. Note: The scale of characteristics that are not binary always reach from ’very

low’, ’low’, ’medium’, ’high’, ’very high’.

In every round, a Machine Learning System produces a prediction about whether the person

currently matched with you is most likely to transfer 10 monetary units back to you so that you

receive 20 monetary units, if you initially decide to make a transfer. To make a prediction about

a specific person, the Machine Learning System only uses the person’s 10 personal characteristics

that you also observe in the corresponding round.

The Machine Learning System is a Gradient Boosted Gradient Boosted Random Forest that was

trained and tested on data from a previous study. Gradient Boosted Random Forest Classifier,

despite their simplicity, are among the most powerful Machine Learning algorithms available

today. They are widely used in a variety of domains by scientists and practitioners alike. In a

test, the System used in the experiment reaches a recall score of 79.3%, which means that it

correctly recognizes roughly 4 out of 5 people who actually reciprocate in case of a transfer. In

other words, the Machine Learning System’s prediction might help you better anticipate whether

you will receive 20 monetary units in case you initially decide to make a transfer. Below you can

find additional information about the structure of the system.

[ TREATMENT TEXT BEGIN

Together with the prediction you will receive an explanation about why the Machine Learning

System makes a specific prediction about a person. For each the other person’s 10 characteristics

that the System uses to make the prediction the other person’s individual characteristics that led

to the prediction will be highlighted. More specifically, you will learn (i) the relative importance

of the characteristic for the prediction about this specific person, and (ii) whether the specific

characteristic (e.g. being female or male) contributes positively to the prediction that the person

will return a transfer (in green) or is evidence against it (in red). Below you will find an example.

In other words, for every prediction, you will receive an explanation why this prediction was made

and which characteristics caused the prediction?

The importance of a characteristic and the direction of its impact are illustrated using colored

bars.
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• The relative length of a bar indicates the importance of a feature for the prediction. The longer

the bar, the more pivotal is the characteristic for the specific prediction.

• A red bar indicates that the characteristic has a negative impact on the likelihood that the

person returns monetary units back to you.

• A green bar indicates that the characteristic has a positive impact on the likelihood that the

person returns monetary units back to you.

Example:

(i) The relatively long red bar indicates that, for this example, the Machine Learning System

sees being highly competitive as relatively strong evidence against the person returning monetary

units to you.

(ii) The relatively short green bar indicates that, for this example, the Machine Learning System

sees having a high propensity to become upset as relatively weak evidence in favor of the person

returning monetary units to you.

The technique to produce insights into why the Machine Learning System makes a specific

prediction is called LIME (Local Interpretable Model-Agnostic Explanations). LIME attempts to

understand black-box Machine Learning Systems by approximating individual predictions locally

with an interpretable model. LIME was first introduced in 2016 by computer scientists from the

University of Washington and has since become a state-of-the-art technique to render Machine

Learning outputs transparent and interpretable. ’Explaining a prediction’ refers to providing a

human-interpretable understanding of the relationship between the inputs of a model (here the

other person’s 10 personal characteristics) and the model’s prediction (whether the other person

will reciprocate a transfer). For more information on LIME we refer the interested participant to

the original research: (Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). “Why should I

trust you?” Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD

international conference on knowledge discovery and data mining (pp. 1135-1144).)

TREATMENT TEXT END ]
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Gradient Boosted Random Forest, like its name implies, consists of a large number of individual

decision Trees that operate as an ensemble. Based on examples, individual decision Trees learn

logical rules which assign a certain label to new observations. These rules can be imagined as a

sequence of consecutive questions. In the context of the game at hand, a single Tree could, for

example, identify the following sequence of questions: 1. is the person open to new experiences?

- Yes; 2. is the person female? - No; 3. is the person highly competitive? - Yes. Result: Given

the answers to the question sequence, the person will most likely return monetary units back to

you if you initially make a transfer. During the training process, the algorithm (more or less)

automatically identifies the most informative questions to classify people as quickly as possible.

Notably, each Tree in the Forest tries to correct the inaccuracies of previous Trees, thereby

trying to boost the performance of the overall Forest. Gradient Boosted Random Forests typically

comprise hundreds or even thousands of individual Trees.

Each individual Tree in a Gradient Boosted Random Forest spits out a prediction and the class (i.e.

whether or not the other person returns 10 monetary units or not) with the most votes becomes

the Gradient Boosted Random Forest’s prediction. In other words: Knowing that individual Trees

can be (randomly) wrong, we rely on the wisdom of the crowd, so that non-systematic errors of

individual Trees cancel each other out. As a type of Ensemble Learner, Gradient Boosted Random

Forests are among the most powerful Machine Learning algorithms currently available.

Between rounds, you will not see the decision of the persons you are matched with. part 3 ends

once you have played 20 rounds of this game. We will then randomly select one of the rounds. The

monetary units you own at the end of this round constitute your earnings for part 3. The other

person matched to you in this round earns the number of monetary units she/he owns at the end

of this round as well. Whether the earnings are payoff relevant for the other person is randomly

determined. We will inform you about the decision of the other person, your earnings, and the

other person’s earnings from the selected round at the end of the experiment.

Now that you have finished all 20 rounds, we ask you to guess how good the Machine Learning

System’s predictions are. Overall you have to make three distinct guesses. For every guess that

is not off by more than +/- 10 percentage points from the actual value, you receive 5 monetary

units.

Guess after 10 and 20 rounds: On a scale from 0% to 100% in steps of one percentage points,

how often do you think the System produced a correct prediction for the first (second) 10 different

persons you were matched with? A prediction was correct, whenever (i) the System predicted the
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person to transfer 10 monetary units back to you, and the person would actually have done so

if you had made a transfer, or (ii) the System predicted the person not to transfer 10 monetary

units back to you, and the person would actually not have done so if you had made a transfer.
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Part 4

In part 4 of the experiment, you are randomly matched with another anonymous person from

another study that you have not been matched with in any previous part. You play one game that

has the same structure as before:

Both you and the other participant receive 10 monetary units. Your task: You start making a

decision about whether you want to keep your 10 monetary units or transfer all of them to the

other person. Note: You can not transfer only a part of your endowment.

Keeping and transferring your monetary units has the same consequences as before:

Keeping your 10 monetary units: If you decide to keep the 10 monetary units for yourself,

the game and part 4 end. In this case, your personal and the other person’s earnings in part 4

both equal 10 monetary units, i.e., the initial endowment.

Transferring your 10 monetary units: If you decide to transfer the 10 monetary units, we

double this amount so that the other person receives 20 monetary units which are added to this

person’s initial endowment. After you transfer your monetary units, the other person learns about

your transfer and has to decide whether to transfer 10 monetary units back to you or to keep the

monetary units she/he now possesses.

• If the other person transfers 10 monetary units back to you, we double this amount so that

you receive 20 monetary units. In this case, your personal and the other person’s earnings in part

4 both equal 20 monetary units.

• If the other person does not transfer 10 monetary units back to you, your personal earnings

equal 0 monetary units while the other person’s earnings equal 30 monetary units in part 4.

Before you have to choose between transferring or keeping your 10 monetary units, you will

receive information about 3 out of 10 personal characteristics of the other person that is matched
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with you. The information might help you anticipate whether the other person will transfer 10

monetary units back to you so that you receive 20 monetary units, in case you initially decide to

make a transfer. Note: The scale of characteristics that are not binary always reach from ’very

low’, ’low’, ’medium’, ’high’, ’very high’.

You decide which 3 characteristics of the other person you want to receive information about. You

have to select one characteristic as the first choice, one characteristic as the second choice, and one

characteristic as the third choice:

• First choice: The other person’s characteristic you select as the first choice will be shown to

you with a probability of 100%.

• Second choice: The other person’s characteristic you select as the second choice will be

shown to you with a probability of 90%. With a probability of 10% you will observe one of the

other characteristics of this person that you neither selected as first, second, or third choice; which

of these it is will be randomly determined.

• Third choice: The other person’s characteristic you select as the third choice will be shown

to you with a probability of 80%. With a probability of 20% you will observe one of the other

characteristics of this person that you neither selected as first, second, or third choice and is not

drawn before; which of these it is will be randomly determined.

After your selection decision, we will determine the three characteristics of the other person you

will be able to see. You will then see the characteristics and be asked to make your transfer

decision.

The monetary units you own at the end of the game constitute your earnings for part 4. The other

person matched to you earns the number of monetary units she/he owns at the end of this part

as well. Whether the earnings are payoff relevant for the other person is randomly determined. As

before, you will not immediately learn about the decision of the other person. We will inform you

about the decision of the other person, your earnings, and the other person’s earnings from part 4

at the end of the experiment.
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Part 5

In part 5 of the experiment, you play rounds of a game that has the structure as before.

At the beginning of every round, you are randomly matched with a new anonymous person from

another study. Both you and the other person receive 10 monetary units. Your task is always the

same: You start making a decision about whether you want to keep your 10 monetary units or

transfer all of them to the other person. Note: You can not transfer only a part of your endowment.

Keeping and transferring your monetary units has the following consequences:

Keeping your 10 monetary units: If you decide to keep your 10 monetary units for yourself,

the game in this round ends. In this case, your personal and the other person’s earnings in this

round both equal 10 monetary units, i.e., the initial endowment.

Transferring your 10 monetary units: If you decide to transfer the 10 monetary units, we

double this amount so that the other person receives 20 monetary units which are added to this

person’s initial endowment. After you transfer your monetary units, the other person learns about

your transfer and has to decide whether to transfer 10 monetary units back to you or to keep the

monetary units she/he now possesses.

• If the other person transfers 10 monetary units back to you, we double this amount so that

you receive 20 monetary units. In this case, your personal and the other person’s earnings in this

round both equal 20 monetary units.

• If the other person does not transfer 10 monetary units back to you, your personal earnings

equal 0 monetary units while the other person’s earnings equal 30 monetary units in this round.

Before you have to choose between transferring or keeping your 10 monetary units, you will receive

information about 10 personal characteristics of the other person that is matched with you in a

given round. The information might help you anticipate whether this other person will transfer

10 monetary units back to you so that you receive 20 monetary units, in case you initially decide
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to make a transfer. Note: The scale of characteristics that are not binary always reach from ’very

low’, ’low’, ’medium’, ’high’, ’very high’.

Between rounds, you will not see the decision of the persons you are matched with. Part 5 ends

once you have played 10 rounds of this game. We will then randomly select one of the rounds. The

monetary units you own at the end of this round constitute your earnings for part 5. The other

person matched to you in this round earns the number of monetary units she/he owns at the end

of this round as well. Whether the earnings are payoff relevant for the other person is randomly

determined. We will inform you about the decision of the other person, your earnings, and the

other person’s earnings from the selected round at the end of the experiment.

Questionnaire

The final part of the experiment consists of a questionnaire. Please read each question carefully

and answer it truthfully. Once you have answered all questions, please press the “Next” button on

your screen.

• What is your age?

• What is the highest academic degree you possess?

• What is your biological sex?

• How many years of working experience do you have?

• How would you classify the area you live in?

• Do you consider yourself more intelligent than the average person in the US?

• Do you consider yourself a better judge of character than the average person in the US?

• Do you consider yourself more talented than the average person in the US?

• I feel apprehensive about using technology:

• I have avoided technology because it is unfamiliar to me:

How well do the following statements describe you as a person? Please indicate your answer on

a scale from 0 to 10. A 0 means ”does not describe me at all” and a 10 means ”describes me

perfectly”. You can also use any numbers between 0 and 10 to indicate where you fall on the scale,

like 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

• When someone does me a favor I am willing to return it.

• If I am treated very unjustly, I will take revenge at the first occasion, even if there is a cost

to do so.

• I assume that people have only the best intentions.

• I enjoy being daring:



Bauer, von Zahn, and Hinz: Explainable AI and Information Processing
62 Information Systems Research 00(0), pp. 000–000, © 0000 INFORMS

Please use a scale from 0 to 10, where 0 means you are ”completely unwilling to take risks” and a

10 means you are ”very willing to take risks”. You can also use any numbers between 0 and 10 to

indicate where you fall on the scale, like 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

• In general, how willing or unwilling you are to take risks.

Imagine the following situation: Today you unexpectedly received 1.000$. How much of this

amount would you donate to a good cause? (Values between 0 and 1.000 are allowed)? How much

do you donate?

You are in an area you are not familiar with, and you realize that you lost your way. You ask a

stranger for directions. The stranger offers to take you to your destination. Helping you costs the

stranger about 20$ in total. However, the stranger says he or she does not want any money from

you. You have 6 presents with you. The cheapest present costs 5$, the most expensive one costs

30$. Do you give one of the presents to the stranger as a ”thank-you”-gift? If so, which present do

you give to the stranger? Please indicate the present you would give.

We will now use the computer to simulate the draw of a marble from a “cup”. There are two cups,

with different mixes of colored marbles, and you will be asked to guess the cup that is being used.

First, we draw a computer-generated random number which will be either 1, 2, ... 6. Think of this

as the throw of a die with 6 sides, with each side being equally likely.

• If the roll of the die yields 1 - 3, then the draw will be from the Green cup, which contains 2

green marbles and 1 yellow marble.

• If the roll of the die yields 4 - 6, then the draw will be from the Yellow cup, which contains 2

yellow marbles and 1 green marble.

You will not be told in advance the result of the die throw, so you will not know which cup is

being used. Once the computerized die throw determines the cup to be used, you will be shown a

randomly drawn marble from that cup.

You will get a chance to indicate the cup that you think is being used. Your money payoff will

depend on whether your prediction turns out to be correct.

You will earn 2 monetary units for a correct prediction, and zero for an incorrect prediction.

Considering the drawn marble, what cup do you think is it?
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Prior field study (for Study 1). We collected this data in an incentivized field study that

we conducted at a large German university over three years (2016–2019). Most important for the

experiment at hand, the field study included an incentivized one-shot prisoners’ dilemma where we

anonymously matched participants in pairs of two and initially endowed each one with 10 Euro.

Participants could either keep the 10 Euro for themselves or transfer them to their opponent.

Whenever one player transferred her 10 Euro, we doubled the amount so that the other player

received 20 Euro. Players made their choices sequentially. The second moving player received

information about the first mover’s choice before deciding upon the transfer herself. For each

subject, we elicited both conditional choices in the role of the second mover and the unconditional

choice as a first mover. In addition to the incentivized game, the field study included a broad

set of survey items on students’ demographics, including socio-economic background, cognitive

abilities, personal traits, and other preferences. We show the exact instructions of the field study

in the following:

How far do you live from your parents?

Please select only one of the following answers:

• I live at my parents

• 1-10 KM away

• 11-50 KM away

• 51-150 KM away

• More than 150 KM away

Have you, due to your studies,changed your place of residence?

Please select only one of the following answers:

• Yes

• No

How many siblings do you have?

Please enter your answers below:

• Younger siblings [ ]

• Older siblings [ ]

Please indicate with which hand you prefer to perform the following activities:

(Always right, mostly right, both hands, mostly left, always left)

• Write [ ]
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• Throw [ ]

• Tooth brushing [ ]

• Holding a spoon [ ]

What languages do you speak at home? (multiple answers are possible)

Please select all applicable answers:

• German

• Another language

Please indicate with which hand you prefer to perform the following activities:

(Mother and father)

• University

• University of applied science

• Technical college (former GDR)

• Technician or master craftsman examination

• Apprenticeship

• No educational background

• Unknown

How do you finance yourself? (multiple answers are possible)

(Please select all applicable answers:)

• My parents support me financially

• BAföG

• Scholarship

• Job as student assistant (Hiwi) at the university

• Job as a tutor at the university

• Job outside the university

• Other

At which type of school did you get your university entrance qualification?

(Please select only one of the following answers:)

• Grammar School

• Comprehensive school

• Vocational school

• Other
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After how many school years did you receive your university entrance qualification?

(Please select only one of the following answers:)

• After less than 12 years

• After 12 years

• After 13 years

• After more than 13 years

In which federal state of Germany did you acquire your university entrance quali-

fication?

(Please enter only one answers:)

[ ]

Which of the following subjects did you take at school in the upper school and what

grades (between 1.0 and 4.0) did you have in these subjects in your Abitur certificate?

(Please select all applicable answers:)

• German

• English

• Physics

• Math

Which of these subjects did you take as advanced courses at school?

(Please select all applicable answers:)

• German

• English

• Physics

• Math

• None of these subjects

On a scale from 1 (completely correct) to 6 (completely incorrect) please indicate

the accuracy of the following statements.

I chose my present course of study because...

• ...it particularly interested me and I wanted to.

• ...it corresponds to my inclinations and talents.

• ...as a graduate of this course of studies I expect particularly good earning and employment

opportunities.

• ...I didn’t know what else to do.
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• ...I was influenced in my decision by my family / friends.

Is your current course of study your dream study?

(Please select only one of the following answers:)

• Yes

• No

On a scale from 1 (completely sure) to 5 (completely unsure) please indicate the

accuracy of the following statements.

• How confident are you in your choice of study?

• How satisfied are you today with your choice of study?

• How certain are you that you will complete your studies?

• How certain are you that you will complete your studies at this University?

Did you do one or more of the following activities before starting your current

studies?

Please select all applicable answers:

• Internship related to your field of study

• Internship not related to the field of study

• Training

• Completed studies

• Aborted studies

• Voluntary social year, German Armed Forces, Federal Voluntary Service etc.

• Other:

How many semesters do you estimate you will need in total until you graduate from

your current course?

Please enter your answer below:

• Please enter your answer here [ ]

What are your plans for the time after graduation from your current course of

study?

(Please select only one of the following answers:)

• Begin a further study (e.g. Master’s degree)

• Start working
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• Other

Based on my grade point average, I expect to belong to...

(Please select only one of the following answers:)

• the top [ ] percent of my year of study.

How important is it to you to maintain your grade point average in your studies or

even improve?

(Please select only one of the following answers:)

• Very important

• Rather important

• Indifferent

• Rather unimportant

• Very unimportant

How many hours a week do you think you should invest in your studies?

Please enter your answer below:

• Please enter your answer here [ ]

How many hours do you think you will actually invest in your studies each week?

Please enter your answer below:

• Please enter your answer here [ ]

How many hours a week do you currently invest in your studies?

Please enter your answer below:

• Please enter your answer here [ ]

Do you believe that your future earnings will depend on your final grade in your

studies?

Please select only one of the following answers:

• Completely applicable

• Mostly applicable

• Applies

• Mostly not applicable

• Completely not applicable
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How do you personally assess yourself? Are you generally a person willing to take

risks or do you try to avoid risks?

Please answer using the following scale, where the value 0 means: “Not willing to take risks at

all”, and the value 10: “Very willing to take risks”. With the values in between you can grade your

assessment.

• Please enter your answer here [ ]

How do you personally assess yourself? Are you generally a person who is impatient

or who is always very patient?

Please answer using the following scale, where the value 0 means “very impatient” and the value

10 means “very patient”. With the values in between you can grade your assessment.

• Please enter your answer here [ ]

To what extent do you agree with the following statement: “I’m a narcissist.” (Note:

A narcissist is selfish, self-centered, vain.)?

Please answer using the following scale, where a value of 1 means “do not agree at all” and a value

of 5 means “agree completely”. With the values in between you can grade your assessment.

• Please enter your answer here [ ]

How would you assess yourself in the context of the following statements?

Please answer using the following scale, where 1 means “do not agree at all” and 5 means “agree

completely”. The values in between allow you to grade your assessment.

• I like to find myself in situations where I am in competition with others.

In the list below are different characteristics a person can have. It is likely that some

characteristics will apply fully to you personally and others not at all. For others, you

may be undecided.

Please answer using the following scale from 1 to 5: A score of 1 means not applicable at all; 5

means fully applicable. With the values between 1 and 5 you can grade your opinion. I am someone

who...

• works thoroughly

• is communicative, talkative

• is sometimes a little rough on others

• is original, brings in new ideas

• is forgiving

• is rather lazy
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• can come out of herself/himself

• is sociable

• appreciates artistic, aesthetic experiences

• is easily nervous

• completes task effectively and efficiently

• is reserved

• is considerate and friendly with others

• has a vivid imagination

• is relaxed, can handle stress well

For the following decision situation, another survey participant will be assigned to

you randomly. You and this other person make different decisions, which then result

in your payout and the payout of the other person. At the beginning you and the

other person will each receive 10 Euros from us. You have the following two options

to choose from:

Option A: You keep your 10 Euros.

Option B: You give your 10 euros to the other person. The 10 Euros are doubled, i.e.

the other person receives 20 Euros.

The other person also has these two options to choose from. Hence, there are four

possible outcomes, depending on how you and the other person decide: If you and

the other person both choose option A, you will both end up with 10 Euros each. If

you and the other person both choose option B, both of you will each have 20 euros.

If you choose option A and the other person chooses option B, you will have 30 euros

and the other person 0 euros. And vice versa, if you choose option B and the other

person chooses option A, you have 0 euros and the other person has 30 euros. In

the following two situations, please decide whether you would rather choose option

A or option B. The situations differ in whether you or the other person makes their

decision first.

Situation 1: You decide first and the other person is informed of your decision. Which option do

you choose?

• A / B

Situation 2: The other person makes their decision first, and you are informed of their decision.

Which option do you choose if the other person has chosen option A?
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• A / B

Which option do you choose if the other person has chosen option B?

• A / B
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Study 2: Experimental design

Overview. Our experiment takes place in the domain of real-estate where realtors, based on

10 observable apartment characteristics, need to predict property listing prices per square meters

for several different objects. As AI-systems are increasingly available to produce first estimates

of listing prices to support human evaluations, e.g., on Zillow.com in the US or Immowelt.de in

Germany, this is a highly relevant domain.

Figure 10 Sequence of Study 2

Notes: Sequence and overview of the four different stages in the experiment.

The experimental protocol comprises 4 stages (see Figure 10 for an overview). In Stage I, we elicit

participants’ prior beliefs about the relation between apartment characteristics and the listing price.

Stage II serves as our treatment manipulation. Conditional on the experimental condition they are

in, participants make a series of listing price predictions without any aid, with the aid of an AI-

system without explanations, or with the aid of an AI-system providing local explanations. In Stage

III, we measure participants’ posterior beliefs of the relation between apartment characteristics

and the listing price. Finally, in Stage IV participants make one final price prediction without

any aid for a different apartment market. In the following subsections, we fill in the details of our

experimental protocol.

Details on listing price data and participant pool. Throughout the study, participants, in

one form or another, have to predict the listing price per square meter (hereafter listing price) for

different apartments in German cities. To make their prediction, participants always observe ten

features of the apartment. Importantly, the apartments participants encounter, differ only in regard

to three out of ten features: whether or not the apartment has a balcony/terrace, the city where

it is located, and the share of green voters in the city district (hereafter variable features). The

other features are always fixed and identical across encountered listings (hereafter fixed features).

The following Table 5 provides an overview of all apartment features. Always holding the same

seven characteristics of an apartment fixed simplifies the price prediction task for participants,
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Feature Variability Feature values
Apartment has balcony/terrace Variable Yes/No
Location Variable Frankfurt/Cologne (Chemnitz in Stage IV)
Share of green voters in district Variable Below city average / City average / Above city average
Year of construction Fix Between 2012 and 2022
Garden Fix No
Basement Fix Yes
Elevator in house Fix Yes
Floor Fix Second or third
Number of rooms Fix 3
Unemployment numbers in district Fix Below city average / City average / Above city average

Table 5 Used apartment features.

Notes: We show the apartment attributes that participants observed to make a decision.

mitigates potential concerns about information overload on the part of participants, and facilitates

our analyses.

The listings participants encounter are real apartments that we scraped from a large German

real-estate platform (www.immonet.de) over a period of 3 weeks in February 2022. The entire data

set we collected comprises 5090 distinct observations. Excluding the observations that participants

encounter in the study, we use the scraped data to develop an ML-based AI system that relies on

the ten characteristics to predict listing prices. The ten characteristics include standard informa-

tion available on the platform and additionally collected socio-economic information on the district

where the apartment is located. The underlying ML model is a random forest whose hyperparam-

eters we optimized via 5-fold cross-validation. The final model’s average R2 on a representative

test set equals 72%. Importantly, in every experimental condition where participants interact with

an AI system, the system’s overall listing price predictions for a given apartment are identical,

i.e., originate from the exact same ML model. The explanations we provide in the corresponding

treatment variations result from the post-hoc SHAP method (Lundberg and Lee 2017).

Our participant pool comprises experts from the real estate industry. More specifically, to recruit

experts for our study, we collaborate with our industry partner Immobilienverband Deutschland

(IVD). The IVD is a large German business association in the housing and real estate industry in

the legal form of a registered association. Through our industry partner, we are able to contact

approx. 6000 experts from the real estate industry in Germany which includes real estate agents,

valuation experts, and property developers. We contact experts via the mail and invite them to take

part in our study via a link. To ensure incentive compatibility and reduce attrition, we implement

a contest incentive scheme. That is, we inform participants that for every correct listing price

prediction they earn one point. A predicted listing price is correct if it does not differ from the

scraped listing price by more than 500€. Participants only learn their overall score after finishing

the entire experiment. After two weeks, we paid the ten participants with the highest scores 100€

each and issue an award-like certificate for their performance in accurately predicting listing prices.
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If two participants earned the same number of points, we determine their ranking according to the

sum of their predictions’ absolute deviation from the actual listing price.

Stage I. The purpose of Stage I is to elicit participants’ prior beliefs about the relationship

between the three variable apartment characteristics and the objects’ actual listing price. To do

so, we implement the following task. Participants encounter four apartments. As outlined above,

the apartments differ only regarding having a balcony/terrace, location, and the share of green

voters in the district, whereas all other features are fixed and identical. We randomly draw the four

observed listings from the pool of the main examples (N=12 given the permutations of variable

features). For each listing participants encounter, they have to indicate marginal contributions of

the given apartment’s variable features to its listing price. Participants can do so using a slider

that ranges from minus to plus 2500€ in steps of 50€. As a reference point, we inform participants

that the average listing price for an apartment that possesses seven fixed features is 9600€. By

adjusting the three sliders whose default we set to 0€, participants change the overall estimated

listing price for a given object whose default we set to the average of 9600€. For instance, assume

that for a given apartment the values of the features Balcony/Terrace, Location, and Green voter

share equal Cologne, Yes, Above average, respectively. If a participant sets the slider for Location

to +1.000€, for Balcony/Terrace to -400€, and for Green voter share to 200€, the overall listing

price prediction equals 11200€ (=9600+1000-400+200). Additionally, we ask participants to state

their confidence in their beliefs and the overall price prediction on a five-point scale. This procedure

leaves us with point estimates for conditional prior beliefs (and confidence levels), which we can

compare to identically elicited conditional posterior beliefs to identify adjustments on the individual

level. Importantly, we randomize the draw of listings on the individual level so that we obtain

the distribution of point estimates at the population level. Screenshots are provided in Figure 11

(original) and Figure 12 (English translation).

Stage II. In Stage II, participants have to predict the listing price for 8 listings. In contrast

to Stage I, participants do not have to enter the contribution for the three variable apartment

attributes. Instead, they only predict the overall listing price. We again ask participants to state

their confidence in the price prediction on a five-point scale. Stage II introduces our treatment

manipulations. We randomly assign participants to one of three different experimental conditions

which differ in whether, and if so what type of AI-system support participants receive. In our

baseline condition (NoAid), participants do not receive any support and make the price prediction

entirely on their own. Participants in the AI condition observe the overall listing price prediction

of the AI system, but do not obtain additional SHAP explanations about the system’s inner logic,

i.e., they interact with a “black box” AI system. In our XAI condition, in addition to observing
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(a) Original

Figure 11 Stage I and 3: Belief elicitation (Original).

Notes: We show the original interface (in German) developed to let participants in Study 2 make listing price estimations in Stage I and 3.
Participants entered their beliefs about the marginal contribution of apartment features to the overall listing price.
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(a) English translation

Figure 12 Stage I and 3: Belief elicitation (English translation).

Notes: We show the interface (English translation) developed to let participants in Study 2 make listing price estimations in Stage I and 3.
Participants entered their beliefs about the marginal contribution of apartment features to the overall listing price.
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the AI-system’s overall price prediction, participants also receive local SHAP explanations. More

specifically, for every single listing they encounter, participants in the XAI condition observe the

instance’s idiosyncratic SHAP values for the three variable apartment characteristics. We depict the

local SHAP values right below the instance’s feature value. After they have finished all prediction

tasks, participants in treatments with AI-system support (and explanations) fill out a survey

containing items on their trust, degree of reliance, and perceived transparency of the AI-system

(and explanations). These items serve as additional control variables in our analyses to detect

potential treatment heterogeneities. Screenshots of the price prediction in the treatment stage are

provided in Figure 13 (NoAid), in Figure 14 (AI), and in Figure 15 (XAI).

Stage III. In Stage III we again elicit participants’ beliefs about the relationship between the

three variable apartment characteristics and the objects’ actual listing price, i.e., posteriors after

making decisions (with the aid of an AI system) in Stage II. We elicit participants’ posterior

beliefs simply by replicating Stage I, i.e., the same apartments. Note that independent of the

treatment condition, participants do not receive any additional aid or information than they had

previously. Again we also ask participants to state their confidence in their beliefs and overall

listing price prediction. On an individual level, the measurement of posterior point estimates for

beliefs, confidence levels, and importance levels allow us to observe adjustments per participant.

A comparison of posterior distributions across different experimental variations further enables us

to observe treatment effects on the population level distributions.

Stage IV. In Stage IV, we ask participants to make one final listing price prediction in the

fashion of Stage II, i.e., provide an overall price prediction for a given listing and state the prediction

confidence on a five-point scale. The seven fixed characteristics are again identical to all previously

encountered apartments. The apartment is randomly drawn from a pool of instances with the

same distribution of the Balcony and Green Voter characteristics, however, located in Chemnitz

which is a mid-sized city in Eastern Germany. Participants do not obtain any additional aid. Given

its location, we argue that the apartment is in a different apartment market (a mid-sized city in

Eastern Germany). A comparison of aggregate distributions across treatments allows us to detect

how belief adjustments affect listing prices in a different apartment market. Screenshots of this

out-of-sample estimation are provided in Figure 16. After Stage IV, the study concludes with a

brief questionnaire on participants’ socio-demographics including their age, gender, and working

experience.
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(a) Original

(b) English translation

Figure 13 Stage II: Treatment manipulation for NoAid condition.

Notes: We show the interfaces developed to let participants in Study 2 in the NoAid condition make listing price estimations in Stage II.
For participants in this condition (NoAid), the interface shows only the fixed and variable characteristics of the apartment.
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(a) Original

(b) English translation

Figure 14 Stage II: Treatment manipulation for AI condition.

Notes: We show the interfaces developed to let participants in Study 2 in the AI condition make listing price estimations in Stage II. For
participants in this condition (AI), the interface shows the characteristics of the apartment and additionally the prediction of the AI system.
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(a) Original

(b) English translation

Figure 15 Stage II: Treatment manipulation for XAI condition.

Notes: We show the interfaces developed to let participants in Study 2 in the AI condition make listing price estimations in Stage II. For
participants in this condition (XAI), the interface shows the characteristics, the AI prediction, and additionally SHAP values representing
the impact of the three variable characteristics to the prediction (figures e/f).
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(a) Original

(b) English translation

Figure 16 Stage IV: Out-of-sample estimation

Notes: We show the interface developed to let participants in Study 2 make an out-of-sample listing price estimation in Stage IV. Panel
(a) shows the original interface in German when participants entered their estimated listing price for an apartment in Chemnitz, Panel (b)
shows the English translation.
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Instructions.

Part 1

In part 1, your task is to estimate the price per square meter of four apartments offered on a real

estate portal (i.e., it is the price called by the seller). For each estimate that differs from the real

list price by no more than 500 EUR, you get one point. To help you make an informed decision,

we always show you ten attributes of the apartments. Seven of the ten attributes are fixed (i.e.

identical) for all apartments, so only three attributes vary.

[Table with 7 fixed properties]

Using sliders, you can specify the individual contribution of the three variable attributes to the

offered price per square meter in euros. By adjusting the three sliders, you change the estimated

price. As a reference and starting point, we show you the average price per square meter offered

on the real estate portal for an apartment that has the seven fixed attributes and is located in a

German “A-city”. A-cities are the seven most important German cities, namely Munich, Hamburg,

Berlin, Stuttgart, Frankfurt am Main, Düsseldorf and Cologne.

[predicting prices of 4 apartments with sliders]

To conclude Part 1, we ask you to indicate how important you think the three variable attributes

are for evaluating the price per square meter of the apartments. To do this, you can distribute 100

stars between the 3 attributes. The more stars you assign to a property, the more important you

consider that property to be in evaluating the price. Please note that there are no right or wrong

answers in these responses. We just want to better understand how you make the assessment.

[assigning attribute importance]

Part 2

Your task now is to estimate the price per square meter offered on a real estate portal (i.e. the

price called by the seller) for eight apartments. For each estimate that does not differ by more

than 500€ from the real list price, you receive one point. Identical to Part 1, the apartments differ

only in three out of ten attributes.

In contrast to part 1, you should now enter the offered price per square meter as a whole for each

apartment. Again, we show you the average offered price per square meter of an apartment in a

German A-city, which has the seven fixed attributes.

[BEGIN TEXT AI AND XAI

As an aid to decision-making, this part provides you with the price prediction of an artificial

intelligence (AI) previously developed by researchers at Goethe University. The AI was developed
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to support real-estate experts in their valuation decisions. Note that you are not bound by the

prediction.

The AI uses the ten displayed attributes of apartments to predict the price per square meter

offered. The AI is based on a Random Forest, one of the simplest but also one of the most powerful

AI methods. A Random Forest uses a large number of different decision trees, each predicting

a single value (in this case, the price/sqm). The majority prediction of all decision trees then

determines the final prediction. In other words, the Random Forest uses the “wisdom of crowds.”

Several performance metrics show that the AI trained for this study is good at predicting the

offered price per square meter of apartments. In one test, the AI was able to explain over 70 % of

the variation in price per square meter. Thus, the AI can potentially help you make an accurate

valuation.

END TEXT NoAid AND XAI]

[BEGIN TEXT XAI

In addition to the AI’s prediction, you will receive explanations on how the AI arrives at individual

price predictions for specific apartments. For this purpose, the AI system explains to you the

individual contribution of the three variable attributes to the prediction of the price per square

meter of individual apartments in German A-cities. These explanations should help to make the

behavior of the AI transparent and interpretable. You will find the individual contributions next

to each of the variable attributes.

END TEXT XAI]

[predicting prices for 8 apartments directly]

Part 2 questionnaire (AI and XAI only)

To conclude Part 2, we ask you to answer a few questions about the AI truthfully. Please note

that there is no right or wrong in these answers. We just want to better understand how you

approach the evaluation.

[BEGIN QUESTIONS AI AND XAI

Please indicate your agreement with the following statements on a scale of 1 (strongly disagree) to

7 (strongly agree).

• I include AI’s advice in my evaluation of the price per square meter.

On a scale from 0 to 100%:
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• How accurate do you think the AI’s price predictions are?

Please indicate your agreement with the following statements on a scale of 1 (strongly disagree) to

7 (strongly agree).

• The AI is competent and effective in predicting the listed price per square meter.

• The AI does a very good job at predicting the listed price per square meter.

• Overall, the AI is a competent help for my evaluation of the price per square meter.

Please indicate your agreement with the following statements on a scale of 1 (strongly disagree) to

7 (strongly agree).

• The AI gives unbiased assessments.

• The AI is honest.

• I consider this AI to have integrity.

Please indicate your agreement with the following statements on a scale of 1 (strongly disagree) to

7 (strongly agree).

• I feel safe relying on the AI to make my decision.

• I feel comfortable relying on the AI to make my decision.

• I feel satisfied when I rely on the AI to make my decision.

END QUESTIONS AI AND XAI]

[BEGIN QUESTIONS XAI

Please indicate your agreement with the following statements on a scale of 1 (strongly disagree) to

7 (strongly agree).

• I include explanations in my evaluation of the price per square meter.

On a scale from 0 to 100%:

• How accurate do you think the AI’s explanations are?

Please indicate your agreement with the following statements on a scale of 1 (strongly disagree) to

7 (strongly agree).

• The explanations are competent and effective at conveying the logic of AI.

• The explanations do your job of conveying the logic of AI very well.

• Overall, the explanations are a competent help to understand the logic of AI.

Please indicate your agreement with the following statements on a scale of 1 (strongly disagree) to

7 (strongly agree).

• The explanations are unbiased.

• The explanations are honest.

• I consider the explanations to have integrity.
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Please indicate your agreement with the following statements on a scale of 1 (strongly disagree) to

7 (strongly agree).

• I feel safe relying on the explanations to make my decision.

• I feel comfortable relying on the explanations to make my decision.

• I feel satisfied when I rely on the explanations to make my decision.

END QUESTIONS XAI]

Part 3

In Part 3, your task is to estimate the price per square meter offered on a real estate portal (i.e.,

it is the price called by the seller) for four apartments.

[Table with 7 fixed properties]

Using sliders, you can specify the individual contribution of the three variable attributes to the

offered price per square meter in euros. By adjusting the three sliders, you change the estimated

price. As a reference and starting point, we show you the average price per square meter offered

on the real estate portal for an apartment that has the seven fixed attributes and is located in a

German “A-city”. A-cities are the seven most important German cities, namely Munich, Hamburg,

Berlin, Stuttgart, Frankfurt am Main, Dusseldorf and Cologne.

[predicting prices of 4 apartments with sliders]

To conclude Part 3, we again ask you to indicate how important you think the three variable

attributes are in evaluating the price per square meter of apartments. To do this, you can distribute

100 stars between the 3 attributes. The more stars you assign to a property, the more important you

consider that property to be in evaluating the price. Please note that there are no right or wrong

answers in these responses. We just want to better understand how you make the assessment.

[assigning attribute importance]

Part 4

In the last part of this study, your task is to estimate the offered price per square meter (so it is

the price called by the seller) for one final apartment. If estimate that does not differ from the real

list price by more than 500€, you will receive one point. As before, we show you ten attributes of

the apartment, with the fixed seven apartments identical to the previous apartments.

Analogous to part two, you should enter the offered price per square meter for the two apart-

ments.

[predict prices of Chemnitz apartment directly]
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Questionnaire

To complete the study, we ask you to truthfully fill out a short questionnaire.

• How old are you?

• What is your gender?

• What is your highest academic degree?

• How many years of professional experience in the real estate industry do you have?

On a scale of 0 (not at all) to 10 (extremely much):

• How much experience in the valuation of apartments do you have?

On a scale of 1 (strongly disagree) to 7 (strongly agree):

• I think I’m better at accurately valuing real estate properties than the average real-estate

expert in Germany.

• I think that I am smarter than the average German.

On a scale from 0 (not at all) to 10 (extremely much):

• In general, how willing are you to take risks?

• I am familiar with predictive software that provides information to support human decision-

making.

Your e-mail address [ ]
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Information on the dataset and AI system. We obtained the dataset by crawling apart-

ments listed on large online platform in February 2022. Specifically, we considered apartments listed

for sale in the seven major cities of Germany (“A-cities”) and scraped multiple different attributes

reflecting the number of rooms in the apartment or whether it has a balcony. We disregarded apart-

ments for which the information on one or several attributes was missing. In order to characterize

the location of the apartment within the city, we joined third party data from public statistics: the

share of voters for the German green party and the unemployment rate. Both attributes are cap-

tured on the level of districts and, subsequently, bagged to lower, mid, and upper third within the

respective city. For example, if an apartment in Berlin is in the low third for unemployment, then

it is located in a district for which the unemployment rate is below the average unemployment rate

in Berlin. We further treat the top 0.5% of apartments with regard to the listing price as outliers

and exclude them from our data. The final, preprocessed dataset comprises 5090 apartments and

is described in Table 6.

Continuous attributes average standard dev 0.25 quantile median 0.75 quantile

Listing price/m2 [€]: 7158.55 3217.37 4500.0 6500.0 8500.0
Construction [year]: 1971.18 43.07 1937.0 1972.0 2018.0

Nmbr of rooms: 2.72 1.25 2.0 3.0 3.0
Floor (storey): 1.80 2.56 0.0 1.0 3.0

Ordinal attributes lower third mid third higher third

Unemployment 44.7 % 30.8 % 24.6 %
Green party electorate 39.1 % 25.8 % 35.1 %

Binary attributes Yes No

Basement 68.1 % 31.9 %
Elevator 45.3 % 54.7 %

Balcony 60.1 % 39.9 %

Garden 21.5 % 78.5 %

Multicat. attributes Distribution (shares)

City Berlin (39.2 %), Hamburg (19.4 %), Munich (16.1 %)

Cologne (8.9 %), Frankfurt (7.0 %), Stuttgart (4.8 %)
Dusseldorf (4.7 %)

Table 6 Descriptive statistics of real-estate data.

Notes: We scraped the data from a large real-estate platform in Germany and joined the ordinal attributes (unemployment and green
party electorate) by drawing from public statistics. We considered the seven major cities in Germany (“A-Cities”, the east German city of
Chemnitz is not included here). We excluded real-estate for which the price or any of the remaining attributes were not listed. This left us
with 5090 observations.

We randomly split the data into different sets for training (95%) and testing (5%) of our AI

system, following common conventions. Moreover, we ensure that the apartments directly featured

in our experiment fall into the test set.

Our AI system is based on a random forest. To yield a prediction, the random forest averages

across the predictions of multiple, randomized decision trees. In our case, the random forest predicts

the listing price per square meter based on the remaining 10 attributes as predictors. We determine

the hyperparameters for the random forest by applying a grid search in a 5-fold cross-validation
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on the training set. Subsequently, we assess the performance of our AI system based on the test

data (R2 = 0.72).

Our explanations are based on SHAP values. We compute SHAP values for all predictors using

the tree implementation of the SHAP value method. As a result, for each of the 12 apartments

featured in the experimental Stages I to III, we yield both the predicted listing price per square

meter and the contribution of each of the 10 predictors.
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Study 1: Analyses

Relationship between LIME and feature values. Table 7 provides information about the

relationship between borrower characteristics and associated LIME values. We depict the estimated

coefficient and the adjusted R2 resulting from simple OLS regressions where the trait serves as the

dependent variable and the LIME value is the only independent variable. We also report p-values

for the estimated coefficients.

Attribute Coefficient Adj. R2

Competit. -0.91, p < 0.01 0.81

Openness 0.36, p < 0.01 0.12

Conscient. -0.13, p= 0.37 0.00
Agreeabln. -0.07, p= 0.61 0.00

Neuro. 0.85, p < 0.01 0.70

Extrav. 0.78, p < 0.01 0.63
Patience 0.68, p < 0.01 0.45

Younger sibl. -0.85, p < 0.01 0.73

Older sibl. -0.66, p < 0.01 0.41
Gender -0.98, p < 0.01 0.96

Table 7 Multicollinearity between characteristics and LIME.

Notes: We depict coefficients, associated p-values, and adjusted R2 measures from OLS regressions, where LIME values for a borrower
trait serve as the only independent and the actual borrower traits as dependent variables. Reported results provide insights into the
multicollinearity between LIME and trait values.

For most borrower traits, there is a strong relationship between their actual value and the

associated LIME value. This relationship manifests in coefficient estimates depicting high, almost

perfect correlations and high adjusted R2 values revealing strong explanatory power for the

variation in the characteristic. Hence, using borrower characteristics and associated LIME values

simultaneously as independent variables in regression analyses creates multicollinearity problems

(e.g., measured by the Variance Inflation Factor). Depicted values reveal that only for Openness,

Conscientiousness, and Agreeableness the correlation seems somewhat contained.

Parallel trends assumption. Table 8 reports regression results where participants’ investment

decisions in Stage I serve as the dependent and observed borrower traits as the independent vari-

ables. Columns (1) and (2) show estimates for baseline and treatment participants, respectively.

Column (3) reports estimates for treatment differences between estimates reported in columns (1)

and (2), i.e., coefficients for borrower trait and treatment interaction terms in a pooled regres-

sion. In all three models, we include individual fixed effects and report robust standard errors in

parentheses. Reported estimates are standardized to facilitate comparability.

Depicted regression results provide insights into the validity of interpreting Difference-in-

Difference estimates for distinct borrower traits. Put differently, the analyses in Table 8 test the

parallel trends assumption. According to our regression results, there are no statistically significant
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Dep. variable: (1) (2) (3)

Investing in Stage I Baseline (AI) Treatment (XAI) ∆(1)− (2)

Competit. -0.038∗∗∗ -0.037∗∗∗ 0.001
(0.011) (0.010) (0.015)

Openness 0.025∗∗∗ 0.027∗∗∗ 0.002

(0.008) (0.008) (0.012)
Conscien. 0.004 0.018∗∗ 0.014

(0.008) (0.008) (0.012)

Agreeabln. 0.082∗∗∗ 0.083∗∗∗ 0.000
(0.010) (0.010) (0.014)

Neuroticism -0.031∗∗∗ -0.009 0.022

(0.010) (0.010) (0.015)
Extrav. 0.028∗∗∗ 0.033∗∗∗ 0.006

(0.009) (0.009) (0.013)

Patience 0.031∗∗∗ 0.037∗∗∗ 0.006
(0.008) (0.008) (0.011)

Younger sibl. -0.005 -0.018∗∗ -0.013
(0.009) (0.008) (0.012)

Older sibl. 0.027∗∗∗ 0.025∗∗∗ -0.001

(0.008) (0.008) (0.012)
Gender (Male) -0.038∗∗∗ -0.015 0.023

(0.009) (0.010) (0.014)

N 3060 3010 6070

p 0.000 0.000 0.000
R2 0.385 0.446 0.416

Table 8 Check for parallel trends assumption.

Notes: We depict results for OLS regressions with fixed effects. We report robust standard errors in parentheses. Participants’ investment
decisions in Stage I serve as the dependent variable. As independent variables, we include all borrower traits and the borrower’s actual type.
Column (1) shows results for baseline (AI) participants, column (2) shows results for treatment (XAI) participants, and column (3) shows
estimated differences between coefficients in columns (1) and (2). Estimates are standardized. We denote significance levels by ∗ p < 0.1,
∗∗ p < 0.05, ∗∗∗ p < 0.01.

treatment difference in participants’ initial weighting of borrower traits (see column (3)). However,

looking at the magnitude and significance of estimates in columns (1) and (2) together, we find

that only in one of the two conditions do participants consider Conscientiousness, Neuroticism,

Younger Siblings, and gender. Hence, despite the statistical insignificance of these estimated

treatment differences, there is reason to believe that there is a relevant difference, calling into

question the interpretation of corresponding DiD estimates. Against this background, we will

refrain from interpreting these DiD estimates.

Situational information processing. Table 9 reports results from fixed-effects OLS regression

according to model (1), setting s = 2. Different columns show results for different subsamples of

our data. Using different subsamples renders some of the dummy variables in model (1) constant,

effectively reducing the model. Columns (1) and (2) show β1 estimates for baseline participants’

decisions in Stages I and II, respectively. Columns (3) and (4) do so for treatment participants.

Column (5) shows β2 estimates for baseline participants, measuring weight changes driven by the

provision of explanations. Finally, column (6) shows DiD estimates β4, i.e., isolated explanation-

driven weight changes.
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Baseline Treatment (5) (6)

Dep. variable: (1) (2) (3) (4) Prediction Explanation
Investing Stage I Stage II Stage I Stage II Effect Effect

Competit. -0.039∗∗∗ -0.020∗∗∗ -0.035∗∗∗ -0.096∗∗∗ 0.019 -0.084∗∗∗

(0.011) (0.007) (0.011) (0.007) (0.012) (0.017)

Openness 0.024∗∗∗ 0.011∗∗ 0.029∗∗∗ 0.013∗ -0.013 -0.004
(0.008) (0.005) (0.008) (0.007) (0.009) (0.014)

Agreeabln. 0.081∗∗∗ 0.049∗∗∗ 0.085∗∗∗ 0.009 -0.032∗∗∗ -0.038∗∗

(0.010) (0.007) (0.010) (0.007) (0.012) (0.017)
Extrav. 0.027∗∗∗ 0.012∗∗ 0.034∗∗∗ 0.002 -0.016 -0.006

(0.009) (0.006) (0.009) (0.011) (0.011) (0.017)

Patience 0.031∗∗∗ 0.005 0.037∗∗∗ 0.029∗∗∗ -0.026∗∗∗ 0.035∗∗

(0.008) (0.006) (0.008) (0.009) (0.009) (0.014)

Older sibl. 0.028∗∗∗ 0.000 0.023∗∗∗ 0.025∗∗∗ -0.028∗∗∗ 0.020

(0.009) (0.005) (0.008) (0.009) (0.010) (0.014)
Repayment pred. 0.224∗∗∗ 0.164∗∗∗ -0.051∗∗∗

(0.012) (0.008) (0.016)

N 3060 6120 3010 6020 9180 18210

p 0.000 0.000 0.000 0.000 0.000 0.000
R2 0.385 0.453 0.446 0.410 0.386 0.430

Table 9 Change in information weighting across Stages I and II.

Notes: We depict results for OLS regressions with fixed effects. We report robust standard errors in parentheses. Participants’ investment
decisions in Stages I and II serve as the dependent variable. As independent variables, we include all borrower traits, LIME values that
do not create multicollinearity, and the borrower’s actual type. Columns (1) and (2) show estimates for baseline participants’ decisions
in Stages I and II, respectively. Columns (3) and (4) do so for treatment participants. Column (5) shows estimated differences between
(1) and (2), measuring weight changes driven by the provision of opaque predictions. Finally, column (6) shows DiD estimates, revealing
explanation-driven weight changes. Estimates are standardized. We denote significance levels by ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Depicted regression results provide insights into the effects of providing predictions and

explanations on situational information processing. The estimates form the basis of our Figure 2.

We mainly rely on fixed-effect OLS models instead of non-linear models such as logit or probit

for our analyses. That is because our main interest lies in interaction terms capturing the iso-

lated effects of observing predictions and explanations, i.e., cross-partial derivatives. For non-linear

models like logit or probit, marginal effects are not constant over their range. As a consequence,

the statistical significance of interaction term coefficients cannot be tested with simple asymptotic

z-statistics. In addition to this limitation, the sign of interaction term coefficients not necessarily

indicates the direction of the cross-partial effect (see, e.g., Ai and Norton 2003). Given the variation

in the ten borrower traits and different interaction levels, there is a valid concern that estimates

for non-linear models provide inappropriate insights into the existing effects. Notably, despite the

possible pitfalls in using non-linear models, the estimates marginal effects for OLS models and

estimated marginal effects at the mean for logit models are convincingly similar in direction and

significance so we are confident that our results are not an artifact of our model selection. We

rerun models depicted in Table 9 using a logit model to demonstrate the similarity. Table 10 shows

estimated marginal effects at the mean. A comparison of Tables 9 and 10 reveals that the estimates

are almost identical.
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Baseline Treatment (5) (6)

Dep. variable: (1) (2) (3) (4) Prediction Explanation
Investing Stage I Stage II Stage I Stage II Effect Effect

Competit. -0.072∗∗∗ -0.045∗∗∗ -0.072∗∗∗ -0.156∗∗∗ 0.031 -0.116∗∗∗

(0.019) (0.014) (0.021) (0.016) (0.021) (0.034)

Openness 0.036∗∗ 0.022∗∗ 0.048∗∗∗ 0.026∗∗ -0.017 0.002
(0.014) (0.011) (0.016) (0.011) (0.017) (0.028)

Agreeabln. 0.127∗∗∗ 0.097∗∗∗ 0.149∗∗∗ 0.011 -0.035∗ -0.094∗∗∗

(0.017) (0.014) (0.020) (0.012) (0.020) (0.033)
Extrav. 0.047∗∗∗ 0.020∗ 0.067∗∗∗ 0.035∗∗ -0.031∗ 0.058

(0.014) (0.012) (0.016) (0.016) (0.019) (0.041)

Patience 0.054∗∗∗ 0.015 0.075∗∗∗ 0.082∗∗∗ -0.037∗∗ 0.044∗

(0.013) (0.012) (0.015) (0.013) (0.016) (0.026)

Older sibl. 0.041∗∗∗ -0.001 0.045∗∗∗ 0.020∗∗ -0.046∗∗∗ 0.010

(0.013) (0.009) (0.015) (0.009) (0.017) (0.026)
Repayment pred. 0.311∗∗∗ 0.243∗∗∗ -0.074∗∗

(0.019) (0.017) (0.036)

Observations 2380 5580 2240 5580 7960 15780

p 0.000 0.000 0.000 0.000 0.000 0.000
Pseudo R2 0.134 0.353 0.17 0.291 0.294 0.279

Table 10 Change in information weighting across Stages I and II – Logit.

Notes: We depict results for logit regressions with fixed effects. We report robust standard errors in parentheses. Participants’ investment
decisions in Stages I and II serve as the dependent variable. As independent variables, we include all borrower traits, LIME values that
do not create multicollinearity, and the borrower’s actual type. Columns (1) and (2) show estimates for baseline participants’ decisions
in Stages I and II, respectively. Columns (3) and (4) do so for treatment participants. Column (5) shows estimated differences between
(1) and (2), measuring weight changes driven by the provision of opaque predictions. Finally, column (6) shows DiD estimates, revealing
explanation-driven weight changes. Estimates are standardized. We denote significance levels by ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Influence of LIME values on decision making. Table 11 shows regression results where

participants’ investment decisions in Stage II serve as the dependent variable. As independent

variables, we include the LIME values, the observed prediction, and the borrowers’ Openness,

Conscientiousness, and Agreeableness (we exclude the others due to the aforementioned multi-

collinearity problems), and these LIME values and feature values interaction with a treatment

dummy. We further include individual fixed effects and report robust standard errors in parenthe-

ses. Reported estimates are standardized to facilitate comparability. Importantly, we report the

estimates for LIME × Treatment interaction effects. The reason is that LIME values are strongly

related to predictions so we find significant LIME effects even for baseline participants, who did

not observe them in Stage II. By looking at the additional effect that the actually observing LIME

values have, we are able to draw appropriate conclusions about their influence on participants’

investment decisions.

Dep. variable: (1)
Investing in Stage II

LIME Competit. 0.088∗∗∗

(0.012)
LIME Openness 0.006

(0.008)
LIME Agreeabln. 0.016∗∗

(0.008)
LIME Extrav. 0.010

(0.009)
LIME Patience 0.026∗∗∗

(0.008)
LIME Older sibl. 0.005

(0.007)

N 12140
p 0.000
R2 0.435

Table 11 Relationship between LIME values and investments for treatment participants.

Notes: We depict results for OLS regressions with fixed effects. Participants’ investment decisions in Stages II serve as the dependent
variable. As independent variables, we include all LIME values, borrower traits that do not create multicollinearity, observed predictions, the
borrower’s actual type, and interaction effects for these variables with a treatment dummy. Reported estimated represent LIME × Treatment
dummy interaction terms so that we can control for correlations between predictions and LIME values. Estimates are standardized. We
report robust standard errors in parentheses. We denote significance levels by ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Depicted results provide direct insights into whether, and if so how, participants’ investment

decisions depend on the actually observed LIME values. Two results are important to our

argumentation. First, we find that all estimates for LIME values are positive, indicating that

treatment participants’ investment decisions do indeed vary with the observed LIME values. For

instance, participants are ceteris paribus more (less) likely to invest when observing positive

(negative) LIME values for competitiveness. Second, we find that only the two highest LIME

values (for Competitiveness and Patience) and the trait participants initially put most emphasis
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on (Agreeableness) are statistically significant. Hence, participants do not seem to consider all

explanations equally but only look at some of them more closely. Notably, the LIME values they

put the most weight on belong to the traits for which we observe significant explanation effects.

Mental model adjustments. Table 12 reports results from fixed-effects regression according

to model (1), setting s= 3. Different columns show results for different subsamples of our data.

Baseline Treatment (5) (6)
Dep. variable: (1) (2) (3) (4) Prediction Explanation

Investing Stage I Stage III Stage I Stage III Effect Effect

Competit. -0.039∗∗∗ -0.044∗∗∗ -0.035∗∗∗ -0.087∗∗∗ -0.005 -0.048∗∗

(0.011) (0.011) (0.011) (0.013) (0.013) (0.019)
Openness 0.024∗∗∗ 0.026∗∗∗ 0.029∗∗∗ -0.001 0.001 -0.031∗∗

(0.008) (0.009) (0.008) (0.009) (0.011) (0.015)

Agreeabln. 0.081∗∗∗ 0.097∗∗∗ 0.085∗∗∗ 0.078∗∗∗ 0.016 -0.023
(0.010) (0.011) (0.010) (0.010) (0.011) (0.016)

Extrav. 0.027∗∗∗ 0.045∗∗∗ 0.034∗∗∗ 0.024∗∗ 0.018∗ -0.027∗

(0.009) (0.010) (0.009) (0.010) (0.011) (0.016)
Patience 0.031∗∗∗ 0.016∗ 0.037∗∗∗ 0.059∗∗∗ -0.015 0.036∗∗

(0.008) (0.009) (0.008) (0.010) (0.010) (0.015)

Older sibl. 0.028∗∗∗ 0.033∗∗∗ 0.023∗∗∗ 0.018∗∗ 0.005 -0.010
(0.009) (0.009) (0.008) (0.009) (0.011) (0.015)

N 3060 3060 3010 3010 9180 12140

p 0.000 0.000 0.000 0.000 0.000 0.000

R2 0.385 0.387 0.446 0.393 0.386 0.404

Table 12 Change in information weighting across Stages I and III.

Notes: We depict results for OLS regressions with fixed effects. We report robust standard errors in parentheses. Participants’ investment
decisions in Stages I and III serve as the dependent variable. As independent variables, we include all borrower traits, LIME values that
do not create multicollinearity, and the borrower’s actual type. Columns (1) and (2) show estimates for baseline participants’ decisions
in Stages I and III, respectively. Columns (3) and (4) do so for treatment participants. Column (5) shows estimated differences between
(1) and (2), measuring weight changes driven by the provision of opaque predictions. Finally, column (6) shows DiD estimates, revealing
explanation-driven weight changes. Estimates are standardized. We denote significance levels by ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Using different subsamples renders some of the dummy variables in model (1) constant, effectively

reducing the model. Columns (1) and (2) show β1 estimates for baseline participants’ decisions in

Stages I and III, respectively. Columns (3) and (4) do so for treatment participants. Column (5)

shows β2 estimates for baseline participants, measuring weight changes driven by the provision of

explanations. Finally, column (6) shows DiD estimates β4, i.e., isolated explanation-driven weight

changes.

Depicted regression results provide insights into the effects of providing predictions and

explanations on mental model adjustment processes. The estimates form the basis of our Figure 3.

Investment decision performance. Table 13 reports regression results for different models

in which either the accuracy or recall measures serve as the dependent variable. Our independent

variables of main interest are the treatment dummy XAI, a dummy for borrowers with the highest

competitive levels, and the interaction of these two dummies. We additionally control for observed
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borrower traits, and, for regressions in columns (2) and (5), the observed prediction and LIME

values. We report robust standard errors in parentheses.

Accuracy Recall

(1) (2) (3) (4) (5) (6)

Stage I Stage II Stage III Stage I Stage II Stage III

XAI (α1) 0.006 -0.013 -0.032 0.033 -0.015 -0.016
(0.020) (0.016) (0.020) (0.027) (0.020) (0.026)

Very high -0.082∗∗∗ -0.037∗∗ -0.112∗∗∗ 0.011 -0.009 0.021

Competit. (α2) (0.027) (0.017) (0.028) (0.035) (0.021) (0.037)

XAI × Very high -0.004 -0.109∗∗∗ -0.023 -0.024 -0.149∗∗∗ -0.089∗∗∗

Competit. (α3) (0.026) (0.019) (0.026) (0.031) (0.024) (0.033)

F-test: α1 +α3 = 0 p= 0.91 p < 0.01 p < 0.03 p= 0.77 p < 0.01 p < 0.01

N 6070 12140 6070 4697 9752 4697
p 0.000 0.000 0.000 0.000 0.000 0.000

R2 0.023 0.072 0.022 0.046 0.139 0.066

Table 13 Treatment differences for different performance measures.

Notes: We depict results for OLS regressions. We report robust standard errors in parentheses. In columns (1) to (3), we use a dummy as
the dependent variable that indicates whether a participant made the payoff maximizing investment decision – Accuracy. In columns (4) to
(6), we use a dummy as the dependent variable that indicates whether a participant correctly invested with a repaying borrower – Recall.
The independent variables of main interest are a treatment dummy, a dummy indicating that the borrower is most competitive, and their
interaction term. We additionally control for borrowers’ other traits, and, if appropriate, for the observed prediction and LIME values.
Estimates are standardized. We denote significance levels by ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Depicted estimates reveal that the treatment differences in participants’ accuracy and recall in

decision-making stem from instances where borrowers are most competitive. In Stages II and III

we do not find that observing explanations does generally decrease the investment performance.

Instead, treatment differences only occur for borrowers with the highest levels of competitiveness.

Importantly, participants observe the most negative LIME values (also highest in absolute terms)

for this level of Competitiveness. It, therefore, seems that observing these highly negative LIME

values leads participants to make worse decisions.

In the following, we depict ROC curves that provide insights into the optimality of participants’

investment decisions. To construct the plots, the borrowers’ actual repayment behavior serves as the

actual class (1=Repayment, 0=No repayment), whereas participants investment decisions serve as

the predicted class (1=Making an investment, 0=Not making an investment). Importantly, neither

of these plots depicts the pure performance of the (X)AI system’s prediction. For Stage II, where

participants interacted with the system and observed predictions, the corresponding ROC curve

depicts the performance of participants’ final decision that may or may not be affected by the

observed prediction (and explanations). We depict the performance of the underlying system alone

in Stage II in Figure 20. We show images separately for participants’ decisions before, during,

and after the treatment intervention. In each Figure, we show ROC plots for the AI and the XAI

conditions.
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Figure 17 ROC prior to the treatment intervention.

Notes: We depict ROC plots for our baseline (AI) and treatment (XAI) conditions in the pre-treatment phase, where neither type of
participants had access to an AI-based decision aid when making their investment decision. The actual class for the plot is the repayment
behavior of an encountered borrower, while the predicted class is participants investment behavior.
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Figure 18 ROC during the treatment intervention.

Notes: We depict ROC plots for our baseline (AI) and treatment (XAI) conditions during the treatment phase, where AI participants
observed opaque predictions and XAI participants observed explained predictions. The actual class for the plot is the repayment behavior
of an encountered borrower, while the predicted class is participants investment behavior.
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Figure 19 ROC after the treatment intervention.

Notes: We depict ROC plots for our baseline (AI) and treatment (XAI) conditions in the in the post-treatment phase, where neither type of
participants had access to an AI-based decision aid when making their investment decision. The actual class for the plot is the repayment
behavior of an encountered borrower, while the predicted class is participants investment behavior.

The three plots corroborate our finding 1.3 reported in the main text: during and after inter-

action with the AI system, participants who observed explanations performed significantly worse

than those who observed opaque predictions. In the pre-treatment phase, baseline and treatment

participants’ performance as measured by the ROC-AUC score equaled 0.54 and 0.53 (p= 0.18, χ2-

test). During the treatment phase where participants observed predictions, baseline and treatment

participants’ performance as measured by the ROC-AUC score equaled 0.61 and 0.58 (p < 0.01, χ2-

test). Finally, In the post-treatment phase, baseline and treatment participants’ performance as

measured by the ROC-AUC score equaled 0.55 and 0.52 (p < 0.04, χ2-test). Importantly, as the

Figures suggest, baseline participants during and after the treatment intervention outperform their

treatment counterparts across the entire range of FPR values.
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Figure 20 ROC after the treatment intervention.

Notes: We depict the ROC plot for the underlying AI system’s prediction performance in Stage II, i.e., the system’s pure performance
independent of human participants actual choices. The actual class for the plot is the repayment behavior of an encountered borrower,
while the predicted class is the AI systems prediction of the repayment behavior.

Figure 20 depicts the actual (X)AI system’s predictive performance. We find that the AI system

substantially outperforms human users in the second stage of our experiment: the ROC-AUC score

of the AI system in Stage II of study 1 equals 71.6%. This result reveals that the users could

have significantly increased their investment performance had they always followed the observed

predictions, i.e., machine predictions as such do seem to possess economic value.
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Elicited preferences for observing borrower traits. We compare participants’ preferences

for the borrower traits they want to see before and after they interacted with the AI. For each

borrower trait, Figure 21 shows the share of investors who selected it among the three traits to see

for their investment decision.27 Different colored bars represent participant shares before (prior)

and after (posterior) participants engaged with the AI. Panel (i) and (ii) portray baseline and

treatment results, respectively.

Figure 21 Preferences over observing borrower traits

Notes: We depict prior and posterior shares of participants who selected a given borrower trait as one of three traits they prefer to see when
making the investment decision. Different panels show results for baseline and treatment participants.

Figure 21 corroborates our finding that the provision of explanations not only changes partic-

ipants’ situational information processing but more fundamentally their conceptions about the

relationship between borrower traits and repayment behaviors.

Table 14 depicts regression results that provide additional insights into how the provision of

explanations affects participants’ preferences to see borrower traits. We interpret the revealed pref-

erence to see a specific borrower trait as the belief about its relevance so that these analyses serve

as a robustness check for our result on mental model adjustments (Result 1.2). In all regressions, we

use a dummy as a dependent variable that indicates whether participants included a given borrower

27 Note: For ease of interpretation we aggregate the ordinal ranking decision so that we consider whether a charac-
teristic has been included in the selection or not.
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Dep. variable: (1) (2) (3) (4) (5) (6)
Including trait in selection Competitiveness Openness Agreeableness Extraversion Patience Older siblings

XAI -0.049 0.024 0.011 -0.002 0.045 -0.003
(0.041) (0.033) (0.032) (0.036) (0.032) (0.016)

Post 0.003 0.023 -0.020 0.003 0.007 0.003
(0.026) (0.023) (0.026) (0.028) (0.024) (0.013)

XAI × Post 0.173∗∗∗ -0.070∗∗ -0.057 -0.060 0.067∗ 0.003
(0.039) (0.032) (0.037) (0.041) (0.039) (0.019)

Constant 0.635∗∗∗ 0.101 0.818∗∗∗ 0.256∗∗ 0.101 0.135∗

(0.140) (0.110) (0.116) (0.118) (0.100) (0.070)

N 1206 1206 1206 1206 1206 1206
p 0.000 0.002 0.000 0.054 0.039 0.048
R2 0.044 0.049 0.088 0.034 0.035 0.060

Table 14 Changes in preferences over observing borrower traits.

Notes: We depict results for OLS regressions. We report robust standard errors in parentheses. In each regression, revealing the preference
to see the corresponding borrower trait by selecting it either on place 1,2, or 3 serves as the dependent (dummy) variable. The independent
variables of main interest are a treatment dummy, a dummy indicating the posterior selection decision, and their interaction term. We
denote significance levels by ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

trait in their selection of the three traits they want to see. As independent variables, we include

a dummy variable controlling for the participation in the XAI treatment, a dummy indicating the

posterior selection decision, and their interaction term. Our main interest lies in the interaction

term that depicts pure explanation-driven changes in participants’ revealed preferences. Note that

the reported results are robust to the inclusion of additional participant controls such as gender,

education, risk aversion, etc.

We find that observing opaque predictions alone did not entail a significant change in partici-

pants’ selection of the three borrower traits they want to see (Panel(i) and Table 14). By contrast,

Panel (ii) depicts that after observing explanations, participants’ preferences to see specific bor-

rower traits changed selectively. Before and after interacting with the XAI, 56.5%, and 74.1% of

participants opted to see a borrower’s Competitiveness. This increase is statistically significant (see

column (1) in Table 14). Regarding Patience the respective shares equal 20.6% and 28.2%, i.e., the

share increases by 7.6% which is statistically significant (see column (5) in Table 14). Consider-

ing prior and posterior preferences to see a borrower’s Agreeableness, we do not find a significant

explanation effect (see column (3) in Table 14). Hence, corroborating our results reported in the

main text, we find that observing explanations led participants to place more emphasis on a bor-

rower’s Competitiveness and Patience – the traits that explanations depict as highly important to

a borrower’s repayment behavior – while their preferences over Agreeableness – the trait partici-

pants initially consider most important and explanations depict as virtually irrelevant – remained

unchanged.
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Additional robustness checks. To ensure that our analyses do not implicitly select against

participants who either always or never invest – in the following respectively referred to as types

A and B –, we next perform robustness checks. Specifically, we rerun our main regression analyses

on subsamples of our data that exclude either or both of these types. Overall, these two types

only make up a small minority of our sample. Only 2.5% (3.8%) of our participants always (never)

invest, i.e., are of type A (B). In the following, we will report robustness checks for our main

results regarding the situational information processing and mental model adjustment process.

We always report regression results for subsamples that exclude (i) type A participants, (ii) type

B participants, and (iii) type A and B participants. Overall, these analyses reveal that our results

reported in the main text are robust to excluding type A, type B, or both. In other words, our

results are driven by participants who are neither pure altruists nor players who always play

the subgame-perfect strategy of not making an investment. Instead, our results stem from those

participants whose behavior suggests that they try to invest with borrowers whom they believe

will make a repayment, i.e., individuals who, from a conceptual point of view, should be most

inclined to learn to recognize repaying borrowers.

Tables 15, 16, and 17 replicate the analysis reported in Table 9, i.e., situational information

processing, for subsamples that exclude type A participants, type B participants, and type A

and B participants, respectively. These analyses show that our results on situational information

processing are robust to excluding either or both of the aforementioned types, i.e., that selection

against certain types of behaviors does not enter into our statistical exercises.
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Baseline Treatment (5) (6)

Dep. variable: (1) (2) (3) (4) Prediction Explanation
Investing Stage I Stage II Stage I Stage II Effect Effect

Competit. -0.042∗∗∗ -0.021∗∗∗ -0.036∗∗∗ -0.099∗∗∗ 0.021∗ -0.09∗∗∗

(0.012) (0.007) (0.011) (0.007) (0.012) (0.017)

Openness 0.025∗∗∗ 0.011∗∗ 0.03∗∗∗ 0.012∗ -0.015 -0.001
(0.009) (0.005) (0.008) (0.007) (0.01) (0.016)

Agreeabln. 0.086∗∗∗ 0.052∗∗∗ 0.088∗∗∗ 0.008 -0.033∗∗∗ -0.041∗∗

(0.010) (0.007) (0.010) (0.007) (0.012) (0.018)
Extrav. 0.029∗∗∗ 0.012∗ 0.035∗∗∗ 0.003 -0.017 0.038

(0.009) (0.006) (0.009) (0.011) (0.011) (0.025)

Patience 0.032∗∗∗ 0.007 0.038∗∗∗ 0.03∗∗∗ -0.026∗∗∗ 0.035∗∗

(0.008) (0.007) (0.008) (0.009) (0.01) (0.014)

Older sibl. 0.029∗∗∗ 0.000 0.024∗∗∗ 0.027∗∗∗ -0.029∗∗∗ 0.020

(0.009) (0.005) (0.009) (0.009) (0.011) (0.014)
Repayment pred. 0.235∗∗∗ 0.164∗∗∗ -0.051∗∗∗

(0.012) (0.008) (0.016)

N 2910 5820 2930 5860 9180 17520

p 0.000 0.000 0.000 0.000 0.000 0.000
R2 0.385 0.453 0.446 0.410 0.386 0.430

Table 15 Change in information weighting across Stages I and II – robustness check.

Notes: We depict results for OLS regressions with fixed effects for a subsample that excludes participants who always invest their 10 MU.
We report robust standard errors in parentheses. Participants’ investment decisions in Stages I and II serve as the dependent variable. As
independent variables, we include all borrower traits, LIME values that do not create multicollinearity, and the borrower’s actual type.
Columns (1) and (2) show estimates for baseline participants’ decisions in Stages I and II, respectively. Columns (3) and (4) do so for
treatment participants. Column (5) shows estimated differences between (1) and (2), measuring weight changes driven by the provision of
opaque predictions. Finally, column (6) shows DiD estimates, revealing explanation-driven weight changes. Estimates are standardized. We
denote significance levels by ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Baseline Treatment (5) (6)
Dep. variable: (1) (2) (3) (4) Prediction Explanation
Investing Stage I Stage II Stage I Stage II Effect Effect

Competit. -0.04∗∗∗ -0.021∗∗∗ -0.036∗∗∗ -0.098∗∗∗ 0.018 -0.085∗∗∗

(0.011) (0.007) (0.011) (0.007) (0.012) (0.019)

Openness 0.024∗∗∗ 0.01∗ 0.029∗∗∗ 0.013∗∗ -0.014 -0.000
(0.008) (0.005) (0.009) (0.007) (0.01) (0.015)

Agreeabln. 0.083∗∗∗ 0.051∗∗∗ 0.087∗∗∗ 0.009 -0.032∗∗∗ -0.04∗∗

(0.010) (0.007) (0.010) (0.007) (0.012) (0.018)
Extrav. 0.028∗∗∗ 0.011∗ 0.035∗∗∗ 0.000 -0.017 0.036

(0.009) (0.006) (0.009) (0.011) (0.011) (0.024)

Patience 0.032∗∗∗ 0.005 0.039∗∗∗ 0.028∗∗∗ -0.027∗∗∗ 0.035∗∗

(0.008) (0.007) (0.008) (0.009) (0.01) (0.014)
Older sibl. 0.028∗∗∗ 0.001 0.024∗∗∗ 0.026∗∗∗ -0.028∗∗∗ 0.018

(0.009) (0.005) (0.009) (0.009) (0.01) (0.015)
Repayment pred. 0.229∗∗∗ 0.177∗∗∗ -0.05∗∗∗

(0.012) (0.011) (0.016)

N 2990 5980 2930 5860 8970 17760

p 0.000 0.000 0.000 0.000 0.000 0.000
R2 0.361 0.444 0.417 0.396 0.415 0.414

Table 16 Change in information weighting across Stages I and II – robustness check.

Notes: We depict results for OLS regressions with fixed effects for a subsample that excludes participants who never invest their 10 MU.
We report robust standard errors in parentheses. Participants’ investment decisions in Stages I and II serve as the dependent variable. As
independent variables, we include all borrower traits, LIME values that do not create multicollinearity, and the borrower’s actual type.
Columns (1) and (2) show estimates for baseline participants’ decisions in Stages I and II, respectively. Columns (3) and (4) do so for
treatment participants. Column (5) shows estimated differences between (1) and (2), measuring weight changes driven by the provision of
opaque predictions. Finally, column (6) shows DiD estimates, revealing explanation-driven weight changes. Estimates are standardized. We
denote significance levels by ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Baseline Treatment (5) (6)

Dep. variable: (1) (2) (3) (4) Prediction Explanation
Investing Stage I Stage II Stage I Stage II Effect Effect

Competit. -0.043∗∗∗ -0.022∗∗∗ -0.037∗∗∗ -0.101∗∗∗ 0.02 -0.09∗∗∗

(0.012) (0.007) (0.011) (0.007) (0.013) (0.02)

Openness 0.026∗∗∗ 0.01∗ 0.029∗∗∗ 0.013∗ -0.015 -0.001
(0.009) (0.006) (0.009) (0.007) (0.01) (0.016)

Agreeabln. 0.087∗∗∗ 0.055∗∗∗ 0.091∗∗∗ 0.008 -0.033∗∗∗ -0.043∗∗

(0.010) (0.008) (0.011) (0.007) (0.012) (0.019)
Extrav. 0.03∗∗∗ 0.011∗ 0.036∗∗∗ 0.001 -0.019∗ 0.036

(0.009) (0.006) (0.009) (0.011) (0.011) (0.025)

Patience 0.034∗∗∗ 0.007 0.04∗∗∗ 0.029∗∗∗ -0.027∗∗∗ 0.034∗∗

(0.008) (0.007) (0.008) (0.009) (0.01) (0.015)

Older sibl. 0.03∗∗∗ 0.001 0.025∗∗∗ 0.028∗∗∗ -0.029∗∗∗ 0.019

(0.009) (0.005) (0.009) (0.009) (0.011) (0.015)
Repayment pred. 0.24∗∗∗ 0.182∗∗∗ -0.057∗∗∗

(0.012) (0.011) (0.017)

N 2840 5680 2850 5700 8520 17070

p 0.000 0.000 0.000 0.000 0.000 0.000
R2 0.346 0.437 0.412 0.39 0.408 0.408

Table 17 Change in information weighting across Stages I and II – robustness check.

Notes: We depict results for OLS regressions with fixed effects for a subsample that excludes participants who always or never invest their 10
MU. We report robust standard errors in parentheses. Participants’ investment decisions in Stages I and II serve as the dependent variable.
As independent variables, we include all borrower traits, LIME values that do not create multicollinearity, and the borrower’s actual type.
Columns (1) and (2) show estimates for baseline participants’ decisions in Stages I and II, respectively. Columns (3) and (4) do so for
treatment participants. Column (5) shows estimated differences between (1) and (2), measuring weight changes driven by the provision of
opaque predictions. Finally, column (6) shows DiD estimates, revealing explanation-driven weight changes. Estimates are standardized. We
denote significance levels by ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Tables 18, 19, and 20 replicate the analysis reported in Table 12, i.e., mental model adjustments,

for subsamples that exclude type A participants, type B participants, and type A and B partici-

pants, respectively. These analyses show that our results on mental model adjustments are robust

to excluding either or both of the aforementioned types, i.e., that selection against certain types

of behaviors does not enter into our statistical exercises.

Baseline Treatment (5) (6)
Dep. variable: (1) (2) (3) (4) Prediction Explanation

Investing Stage I Stage III Stage I Stage III Effect Effect

Competit. -0.042∗∗∗ -0.047∗∗∗ -0.036∗∗∗ -0.089∗∗∗ -0.005 -0.048∗∗

(0.012) (0.012) (0.011) (0.013) (0.014) (0.02)
Openness 0.025∗∗∗ 0.027∗∗∗ 0.03∗∗∗ -0.001 0.001 -0.032∗∗

(0.009) (0.01) (0.009) (0.009) (0.011) (0.016)
Agreeabln. 0.086∗∗∗ 0.102∗∗∗ 0.088∗∗∗ 0.081∗∗∗ 0.017 -0.024

(0.010) (0.011) (0.010) (0.010) (0.012) (0.017)

Extrav. 0.029∗∗∗ 0.048∗∗∗ 0.035∗∗∗ 0.025∗∗ 0.019∗ -0.029∗

(0.009) (0.010) (0.009) (0.010) (0.011) (0.017)

Patience 0.032∗∗∗ 0.017∗ 0.038∗∗∗ 0.061∗∗∗ -0.016 0.038∗∗

(0.008) (0.009) (0.008) (0.010) (0.010) (0.015)
Older sibl. 0.029∗∗∗ 0.035∗∗∗ 0.024∗∗∗ 0.018∗∗ 0.006 -0.011

(0.009) (0.01) (0.009) (0.009) (0.011) (0.016)

N 2910 2910 2930 2930 5820 11680

p 0.000 0.000 0.000 0.000 0.000 0.000
R2 0.37 0.373 0.441 0.385 0.371 0.393

Table 18 Change in information weighting across Stages I and III – robustness check.

Notes: We depict results for OLS regressions with fixed effects for a subsample that excludes participants who always invest their 10 MU.
We report robust standard errors in parentheses. Participants’ investment decisions in Stages I and III serve as the dependent variable.
As independent variables, we include all borrower traits, LIME values that do not create multicollinearity, and the borrower’s actual type.
Columns (1) and (2) show estimates for baseline participants’ decisions in Stages I and III, respectively. Columns (3) and (4) do so for
treatment participants. Column (5) shows estimated differences between (1) and (2), measuring weight changes driven by the provision of
opaque predictions. Finally, column (6) shows DiD estimates, revealing explanation-driven weight changes. Estimates are standardized. We
denote significance levels by ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Baseline Treatment (5) (6)

Dep. variable: (1) (2) (3) (4) Prediction Explanation
Investing Stage I Stage III Stage I Stage III Effect Effect

Competit. -0.04∗∗∗ -0.044∗∗∗ -0.036∗∗∗ -0.089∗∗∗ -0.005 -0.049∗∗

(0.012) (0.012) (0.011) (0.013) (0.013) (0.019)

Openness 0.024∗∗∗ 0.026∗∗∗ 0.029∗∗∗ -0.002 0.001 -0.032∗∗

(0.008) (0.01) (0.009) (0.009) (0.011) (0.016)

Agreeabln. 0.083∗∗∗ 0.099∗∗∗ 0.087∗∗∗ 0.08∗∗∗ 0.016 -0.023

(0.010) (0.011) (0.010) (0.010) (0.012) (0.016)
Extrav. 0.028∗∗∗ 0.046∗∗∗ 0.035∗∗∗ 0.026∗∗ 0.018 -0.027

(0.009) (0.010) (0.009) (0.010) (0.011) (0.017)

Patience 0.032∗∗∗ 0.017∗ 0.039∗∗∗ 0.061∗∗∗ -0.015 0.037∗∗

(0.008) (0.009) (0.008) (0.010) (0.010) (0.016)

Older sibl. 0.028∗∗∗ 0.034∗∗∗ 0.024∗∗∗ 0.019∗∗ 0.006 -0.011

(0.009) (0.009) (0.009) (0.009) (0.011) (0.015)

N 2910 2910 2930 2930 5820 11680
p 0.000 0.000 0.000 0.000 0.000 0.000

R2 0.37 0.373 0.441 0.385 0.371 0.393

Table 19 Change in information weighting across Stages I and III – robustness check.

Notes: We depict results for OLS regressions with fixed effects for a subsample that excludes participants who never invest their 10 MU.
We report robust standard errors in parentheses. Participants’ investment decisions in Stages I and III serve as the dependent variable.
As independent variables, we include all borrower traits, LIME values that do not create multicollinearity, and the borrower’s actual type.
Columns (1) and (2) show estimates for baseline participants’ decisions in Stages I and III, respectively. Columns (3) and (4) do so for
treatment participants. Column (5) shows estimated differences between (1) and (2), measuring weight changes driven by the provision of
opaque predictions. Finally, column (6) shows DiD estimates, revealing explanation-driven weight changes. Estimates are standardized. We
denote significance levels by ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Baseline Treatment (5) (6)
Dep. variable: (1) (2) (3) (4) Prediction Explanation
Investing Stage I Stage III Stage I Stage III Effect Effect

Competit. -0.043∗∗∗ -0.048∗∗∗ -0.037∗∗∗ -0.092∗∗∗ -0.005 -0.05∗∗

(0.012) (0.012) (0.011) (0.013) (0.014) (0.02)

Openness 0.026∗∗∗ 0.027∗∗∗ 0.029∗∗∗ -0.002 0.001 -0.033∗∗

(0.009) (0.01) (0.009) (0.009) (0.012) (0.016)
Agreeabln. 0.087∗∗∗ 0.104∗∗∗ 0.091∗∗∗ 0.084∗∗∗ 0.017 -0.024

(0.010) (0.011) (0.011) (0.010) (0.012) (0.017)
Extrav. 0.03∗∗∗ 0.049∗∗∗ 0.036∗∗∗ 0.027∗∗∗ 0.019∗ -0.028

(0.01) (0.010) (0.009) (0.010) (0.011) (0.017)

Patience 0.034∗∗∗ 0.018∗ 0.04∗∗∗ 0.063∗∗∗ -0.016 0.038∗∗

(0.009) (0.01) (0.008) (0.010) (0.011) (0.016)
Older sibl. 0.03∗∗∗ 0.036∗∗∗ 0.025∗∗∗ 0.019∗∗ 0.006 -0.012

(0.009) (0.009) (0.009) (0.009) (0.011) (0.016)

N 2840 2840 2850 2850 5680 11380
p 0.000 0.000 0.000 0.000 0.000 0.000

R2 0.346 0.35 0.412 0.363 0.348 0.369

Table 20 Change in information weighting across Stages I and III – robustness check.

Notes: We depict results for OLS regressions with fixed effects for a subsample that excludes participants who always or never invest their 10
MU. We report robust standard errors in parentheses. Participants’ investment decisions in Stages I and III serve as the dependent variable.
As independent variables, we include all borrower traits, LIME values that do not create multicollinearity, and the borrower’s actual type.
Columns (1) and (2) show estimates for baseline participants’ decisions in Stages I and III, respectively. Columns (3) and (4) do so for
treatment participants. Column (5) shows estimated differences between (1) and (2), measuring weight changes driven by the provision of
opaque predictions. Finally, column (6) shows DiD estimates, revealing explanation-driven weight changes. Estimates are standardized. We
denote significance levels by ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Tables 21, 22, and 23 replicate the analysis reported in Table 13, i.e., the investment performance

of participants, for subsamples that exclude type A participants, type B participants, and type A

and B participants, respectively. These analyses show that our results on participants’ investment

performance are robust to excluding either or both of the aforementioned types, i.e., that selection

against certain types of behaviors does not enter into our statistical exercises.

Accuracy Recall

(1) (2) (3) (4) (5) (6)

Stage I Stage II Stage III Stage I Stage II Stage III

XAI (α1) 0.012 -0.012 -0.027 0.041 -0.01 -0.009
(0.020) (0.016) (0.020) (0.027) (0.020) (0.026)

Very high -0.077∗∗∗ -0.043∗∗ -0.107∗∗∗ 0.008 -0.012 0.02

Competit. (α2) (0.027) (0.017) (0.028) (0.035) (0.021) (0.037)

XAI × Very high -0.005 -0.108∗∗∗ -0.025 -0.019 -0.147∗∗∗ -0.086∗∗

Competit. (α3) (0.026) (0.019) (0.027) (0.032) (0.024) (0.034)

F-test: α1 +α3 = 0 p= 0.761 p < 0.01 p < 0.03 p= 0.482 p < 0.01 p < 0.01

N 5840 11680 5840 4523 9386 4523

p 0.000 0.000 0.000 0.000 0.000 0.000
R2 0.023 0.14 0.024 0.05 0.237 0.07

Table 21 Treatment differences for different performance measures – robustness check.

Notes: We depict results for OLS regressions for a subsample that excludes participants who always invest their 10 MU. We report robust
standard errors in parentheses. In columns (1) to (3), we use a dummy as the dependent variable that indicates whether a participant made
the payoff maximizing investment decision – Accuracy. In columns (4) to (6), we use a dummy as the dependent variable that indicates
whether a participant correctly invested with a repaying borrower – Recall. The independent variables of main interest are a treatment
dummy, a dummy indicating that the borrower is most competitive, and their interaction term. We additionally control for borrowers’ other
traits, and, if appropriate, for the observed prediction and LIME values. Estimates are standardized. We denote significance levels by ∗

p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Accuracy Recall
(1) (2) (3) (4) (5) (6)

Stage I Stage II Stage III Stage I Stage II Stage III

XAI (α1) 0.006 -0.011 -0.032∗ 0.035 -0.012 -0.015

(0.019) (0.024) (0.019) (0.025) (0.018) (0.024)

Very high -0.102∗∗∗ -0.034∗∗ -0.131∗∗∗ 0.007 -0.01 0.005
Competit. (α2) (0.027) (0.017) (0.028) (0.035) (0.022) (0.037)

XAI × Very high -0.002 -0.113∗∗∗ -0.023 -0.021 -0.155∗∗∗ -0.088∗∗∗

Competit. (α3) (0.026) (0.019) (0.026) (0.031) (0.024) (0.033)

F-test: α1 +α3 = 0 p= 0.858 p < 0.01 p < 0.02 p= 0.652 p < 0.01 p < 0.01

N 5920 11840 5920 4576 9510 4576

p 0.000 0.000 0.000 0.000 0.000 0.000

R2 0.027 0.147 0.025 0.05 0.243 0.071

Table 22 Treatment differences for different performance measures – robustness check.

Notes: We depict results for OLS regressions for a subsample that excludes participants who never invest their 10 MU. We report robust
standard errors in parentheses. In columns (1) to (3), we use a dummy as the dependent variable that indicates whether a participant made
the payoff maximizing investment decision – Accuracy. In columns (4) to (6), we use a dummy as the dependent variable that indicates
whether a participant correctly invested with a repaying borrower – Recall. The independent variables of main interest are a treatment
dummy, a dummy indicating that the borrower is most competitive, and their interaction term. We additionally control for borrowers’ other
traits, and, if appropriate, for the observed prediction and LIME values. Estimates are standardized. We denote significance levels by ∗

p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Accuracy Recall

(1) (2) (3) (4) (5) (6)
Stage I Stage II Stage III Stage I Stage II Stage III

XAI (α1) 0.012 -0.008 -0.028 0.043∗ -0.006 -0.009

(0.019) (0.015) (0.019) (0.025) (0.018) (0.025)

Very high -0.097∗∗∗ -0.04∗∗ -0.127∗∗∗ -0.01 -0.004 0.003

Competit. (α2) (0.028) (0.018) (0.028) (0.035) (0.023) (0.038)

XAI × Very high -0.003 -0.112∗∗∗ -0.025 -0.016 -0.153∗∗∗ -0.085∗∗∗

Competit. (α3) (0.026) (0.019) (0.027) (0.032) (0.024) (0.034)

F-test: α1 +α3 = 0 p= 0.706 p < 0.01 p < 0.03 p= 0.389 p < 0.01 p < 0.01

N 5690 11380 5690 4402 9144 4402
p 0.000 0.000 0.000 0.000 0.000 0.000

R2 0.027 0.152 0.026 0.054 0.255 0.075

Table 23 Treatment differences for different performance measures – robustness check.

Notes: We depict results for OLS regressions for a subsample that excludes participants who always or never invest their 10 MU. We report
robust standard errors in parentheses. In columns (1) to (3), we use a dummy as the dependent variable that indicates whether a participant
made the payoff maximizing investment decision – Accuracy. In columns (4) to (6), we use a dummy as the dependent variable that indicates
whether a participant correctly invested with a repaying borrower – Recall. The independent variables of main interest are a treatment
dummy, a dummy indicating that the borrower is most competitive, and their interaction term. We additionally control for borrowers’ other
traits, and, if appropriate, for the observed prediction and LIME values. Estimates are standardized. We denote significance levels by ∗

p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Study 2: Analyses

Prior beliefs and absolute belief adjustments. Table 24 shows results for different regres-

sion models. In column (1) the dependent variable is participants’ beliefs about the contribution of

apartment attributes to apartments’ listing prices in Stage I. In column (2) the dependent variable

is the absolute difference between these beliefs elicited in Stages I and III, i.e., before and after the

treatment intervention. In both columns, the independent variables of main interest are dummies

indicating whether participants observed predictions in Stage II (Prediction) and on top of predic-

tions SHAP explanations (SHAP). We additionally included participants’ controls, and apartment

fixed effects. We report robust standard errors in parentheses.

(1) (2)

Prior Abs. belief

belief adjustment

Prediction (α1) 51.617 -3.713
(33.397) (51.199)

Expl. (α2) 20.513 135.410∗∗∗

(32.298) (40.726)

F-test: α1 +α2 = 0 p= 0.33 p < 0.01

N 1836 1836

p 0.009 0.000
R2 0.115 0.04

Table 24 Differences in prior beliefs and absolute belief adjustments.

Notes: We depict results for OLS regressions with apartment fixed effects. We report robust standard errors in parentheses. In column (1)
and (3), we respectively use participants’ prior belief about the marginal contribution of apartment attributes to the listing price in euros,
and their absolute change in a belief as dependent variables. As independent variables, we include a dummy indicating that participants
observed a prediction in Stage II (Prediction), and a dummy indicating that they observed SHAP explanations in Stage II (Expl.). We
denote significance levels by ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Regression results reveal that there do not exist significant treatment differences in prior beliefs

(see column (1)). However, estimates in column (2) show that observing explanations on top of

predictions significantly increases the absolute adjustment of beliefs by about 135€ on average.

These observations suggest that explanations evoke belief adjustments for real-estate experts.



Bauer, von Zahn, and Hinz: Explainable AI and Information Processing
Information Systems Research 00(0), pp. 000–000, © 0000 INFORMS 109

Robustness of confirmation bias measures. Table 25 depicts regression results that serve

as a robustness check regarding the presence of confirmation bias in the mental model adjustment

processes. We repeat the regression exercises from table 3 in the main text. We regress participants’

posterior beliefs on their prior beliefs, the observed average SHAP values, a dummy indicating

that average SHAP values confirm prior beliefs, and their interaction effects. We report robust

standard errors in parentheses. Importantly, and in contrast to the main text analyses, we define

that explanations confirm prior beliefs in a more restrictive way: explanations confirm priors if

the absolute distance between the prior and the observed average SHAP value is smaller than the

absolute distance between the prior and 0€ and between the prior and the closest extreme, i.e.,

+/- 2500€.

Dep. variable: (1) (2) (3)

Posterior belief Overall Low confidence High confidence

beliefs beliefs

Prior belief 0.496∗∗∗ 0.463∗∗∗ 0.748∗∗∗

(0.061) (0.070) (0.105)

Avg. SHAP 0.397∗∗∗ 0.424∗∗∗ 0.249∗∗∗

(0.028) (0.037) (0.047)
Confirm -21.026 -51.430 131.448∗

(30.661) (45.167) (77.220)

Prior belief × Confirm 0.117 0.250∗∗ -0.342∗

(0.093) (0.112) (0.190)

Avg. SHAP × Confirm -0.123 -0.324∗∗ 0.231∗∗

(0.087) (0.139) (0.110)

N 708 481 222
p 0.000 0.000 0.000

R2 0.743 0.728 0.840

Table 25 Confirmation bias and posterior belief formation – Robustness check

Notes: We depict results from OLS regression models with individual and apartment fixed effects. We report robust standard errors reported
in parentheses. The dependent variable equals XAI participants’ posterior belief about the marginal contribution of apartment attributes to
the listing price in euros. The main independent variables of interest are participants’ prior beliefs, the average SHAP values for apartment
attributes in Stage II, a dummy indicating that observed SHAP values in Stage II confirmed participants’ priors – explanations confirm
priors if the absolute distance between the prior and the observed average SHAP value is smaller than the absolute distance between the
prior and 0€ and between the prior and the closest extreme, i.e., +/- 2500€ – and interaction terms. We further control for the overall
posterior listing price participants entered for the apartment and the average prediction they observed in Stage II. Column (1) presents
results for all decisions. Columns (2) and (3) respectively depict results for the shares of decisions where XAI participants report low and
high confidence in their prior. We denote significance levels by ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Even with this more restrictive definition of confirming explanations, we continue to find

evidence for the presence of confirmation bias. Namely, for high confidence compared to low

confidence beliefs, experts are generally less inclined to adjust beliefs in the direction of the

observed explanation. However, when the SHAP values confirm their priors, they are significantly

more inclined to change beliefs according to explanations. By contrast, for prior beliefs where

participants report low confidence, we find that they adjust their beliefs more strongly in the

direction of the explanation, in case the explanation was contradicting their prior. Hence, as the

literature suggests (see, e.g., Knobloch-Westerwick and Meng 2009), the confirmatory adjustment

of beliefs is considerably more pronounced for beliefs in which experts have high confidence.
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Spillover effects. Table 26 shows results for regression analyses on participants listing price

estimations for the apartment in Chemnitz they observe at the end of the study. The dependent

variable is the entered listing price estimate.

Dep. variable: (1) (2) (3)

Price estimate Chemnitz Overall Below Median Above Median
belief adjustment belief adjustment

Balcony × AI -298.992 -233.176 -2073.208

(801.443) (884.999) (1736.720)

Balcony × Expl. -79.185 -687.224 283.148
(746.115) (1567.682) (1339.158)

Low green × AI 894.361 483.990 2575.297

(993.437) (1086.211) (2197.200)
High green × AI -390.458 717.449 -2551.901

(1064.479) (1019.652) (2056.778)

Low green × Expl. -1902.323∗∗ 495.868 -3459.922∗∗

(877.642) (2091.666) (1632.984)

High green × Expl. 1742.126∗ 84.433 3906.959∗∗∗

(911.520) (1736.347) (1312.532)

N 153 72 81
p 0.000 0.000 0.000

R2 0.289 0.471 0.527

Table 26 Listing price estimation for apartments in Chemnitz.

Notes: We depict results from OLS regression models with individual and apartment fixed effects. We report robust standard errors reported
in parentheses. The dependent variable equals the listing price estimate for a Chemnitz apartment in euros. The main independent variables
of interest are dummies indicating that the participants observed predictions in Stage II (AI), that the participants observed explanations
in Stage II (Expl.), that the evaluated apartment has a balcony (Balcony), that the evaluated apartment is in a district where the share of
green voters is low (Low green), that the evaluated apartment is in a district where the share of green voters is high (High green), and their
interaction effects. As additional controls, we include participants’ age, experience in the real estate industry, experience with estimating
listing prices, general overconfidence, contextualized overconfidence for the task, risk aversion, familiarity with AI decision support, gender,
and education level. Column (1) depicts results across all participants. Columns (2) and (3) respectively show results for regression analyses
performed on the subsample of participants whose belief adjustment across Stages I and III for the “Green Voter” attribute lies below and
above the median. We denote significance levels by ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

In all columns, the independent variables of main interest are dummies indicating that the

participants observed predictions in Stage II (AI), that the participants observed explanations

in Stage II (Expl.), that the evaluated apartment has a balcony (Balcony), that the evaluated

apartment is in a district where the share of green voters is low (Low green), that the evaluated

apartment is in a district where the share of green voters is high (High green), and their interaction

effects. As additional controls, we include participants’ reported socio-demographics. Columns (2)

and (3) respectively show results for regression analyses performed on the subsample of participants

whose belief adjustment across Stages I and III for the “Green Voter” attribute lies below and

above the median.

Regression results reveal significant explanation effects regarding the “Green Voter” attribute.

The estimates for Low green × XAI and High green × XAI are both statistically significant in

column (1). Hence, observing explanations for Cologne and Frankfurt in Stage II led experts to

change their strategy of estimating listing prices for an apartment in Chemnitz. Results in columns

(2) and (3) further reveal that these effects are driven by experts who strongly adjusted their beliefs

for this attribute across Stages I and III.
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