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Abstract

We show that (electronic) designated market makers are not necessarily beneficial to the
stock market during flash crashes. They actually consume liquidity when it is most needed,
even if they are rewarded by the exchange to provide immediacy. This behavior exacerbates
the transient price impact, unrelated to fundamentals, typically observed during a flash
crash. In their place, slow traders provide liquidity, taking advantage of the discounted
price. We thus uncover a trade-off between the greater liquidity and efficiency provided
by designated market makers in normal times, and the disruptive consequences of their
quoting/trading activity during distressed times.
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1 Introduction

Market making is a fundamental service that facilitates the allocation of wealth and transfer of

risk in financial markets with search costs. Although any financial intermediary can in principle

supply liquidity on a voluntarily basis, nowadays market making is overwhelmingly managed via

electronic trading. Among electronic traders, some may adopt the role of “designated market

maker” (DMM) by entering into a binding agreement with the exchange to supply liquidity (the

exact role of DMMs in the market and the details of such agreements vary across exchanges).

This paper studies liquidity provision by electronic DMMs during flash crashes (events such

as the Flash Crash of May 6, 2010) to examine whether they are in keeping with their agree-

ment with the exchange during episodes of severe market distress. In contrast to Anand and

Venkataraman (2016), Clark-Joseph, Ye, and Zi (2017) and Bessembinder, Hao, and Zheng

(2020), who find that DMMs alleviate the effects of illiquidity shocks, we show that DMMs do

not mitigate these effects during flash crashes. We actually document that DMMs reinforce

the transient price change associated with these disruptive events. In particular, we find that,

on average, DMMs do not provide enough liquidity to avoid flash crashes occurring in isolated

stocks, and that they even consume liquidity when crashes affect several stocks at once. In their

place, liquidity is endogenously provided by traditional “slow” traders, who take advantage of

the discounted price.

Our findings can be reconciled by several mechanisms suggested by the existing literature

on liquidity provision, mostly put forward to explain the behavior of High Frequency Traders

(HFTs), who typically largely overlap with DMMs. For example, van Kervel and Menkveld

(2019) document a “leaning-with-the-wind” behavior of HFTs during institutional orders. They

motivate this by the strategic attempt of HFTs to profit on private information. An alternative

explanation is offered by Cespa and Vives (2022), who show that liquidity providers may lean-

with-the-wind if the market lacks transparency (modeled by a private endowment shock, which

motivates the initial seller to change her optimal asset allocation). In these circumstances, the

fear of trading against private information overshadows the foreseen revenue earned by providing

liquidity, which increases market fragility.
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Our analysis is performed on a unique data-set, obtained from the BEDOFIH database,1

of tick-by-tick order-level data on 37 liquid French stocks belonging to the CAC40 index and

traded on NYSE-Euronext Paris in 2013. The main feature of this dataset is its granularity

that permits to uncover the role of different market participants, including DMMs and HFTs,

during market distress. Indeed, order and trade data come with a flag indicating the trader class

(slow or HFT) and the partecipation to the designated market making scheme (flagged MM), as

determined by the French market authority (AMF, 2017), as well as the trader account provided

by NYSE-Euronext. Another distinctive feature of our study is the definition of a “flash crash”,

or “mini flash crashes” (Biais and Foucault, 2014), or more broadly of market distress. We

rely on the econometric “drift burst” approach of Christensen, Oomen, and Renò (2022), which

identifies periods where the price is trending sharply.

We investigate in detail the behavior of different group of traders during the events detected

by this test. We show that flash crashes are mostly originated either by proprietary trading

of investment banks, or by clients trading from investment banks via sponsored access,2 and

that this trading is, on average, informed. The crash is then magnified by the reaction of

investment bank DMMs, especially when crashes are systematic, i.e. when they affect several

stocks simultaneously. Pure HFT firms, both those having the role of DMMs in this market

and those that voluntarily provide liquidity, contribute to the price decline with their quoting

activity. One direct policy implication is thus that the compensation scheme offered by the

exchange is not always a sufficient incentive for DMMs (neither of investment banks nor of pure

HFT firms) to prevent, halt or even attenuate flash crashes.

These results provide new insights to the recent literature on electronic liquidity provision

under distress market conditions, which is mainly focused on the behavior of algorithmic traders,

and in particular HFTs. The literature has broadly suggested that the presence of electronic

traders enhances both market efficiency (see, e.g., Chaboud, Chiquoine, Hjalmarsson, and

Vega, 2014) and market liquidity (see, e.g. Hendershott, Jones, and Menkveld, 2011; Jones,

2013). However, the beneficial impact of algorithmic trading on market liquidity has recently

1www.eurofidai.org/en/high-frequency-data-bedofih.
2We refer to “client” access when the Euronext member is granting access to the market via an Automated

Routing System or a sponsored access. A detailed overview of the traders’ classes is presented in Section 2.
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been challenged,3 in particular in distressed market conditions. Kirilenko, Kyle, Samadi, and

Tuzun (2017) could not find a change in the trading pattern of HFTs when prices of the E-

mini S&P 500 stock index futures contract fell sharply during the Flash Crash on May 6, 2010.

On our data, we show that this is not always true, since DMMs (including HFTs in the sense

intended by Kirilenko et al., 2017) are found to exacerbate the price drop via their trading and

quoting activity, especially for systematic crashes affecting several stocks. Regarding the specific

role of DMMs, Anand and Venkataraman (2016) show, as we do, that market makers (mostly

HFTs) scale back in unison when market conditions are unfavorable. However, they show that

DMMs mitigate illiquidity when HFTs withdraw synchronously from the market. By contrast,

our results show that DMMs are not always maintaining liquidity provision, and can actually

reverse it, when illiquidity spreads across several stocks. A change in HFT behavior during

distress is also documented by Hautsch, Noè, and Zhang (2017), who study high-impact news-

driven events, and Megarbane, Saliba, Lehalle, and Rosenbaum (2018), who study releases of

macroeconomic information also for stocks belonging to the CAC40 index. We differ from these

contributions by the ability to describe the behavior of granular trader groups (in particular,

DMMs) during market distress as defined by price records, instead of public announcements.

A related study is Brogaard, Carrion, Moyaert, Riordan, Shkilko, and Sokolov (2018), who

use high-frequency price records to study HFTs during “extreme price movements” (EPMs). Our

work is complementary to their analysis along different dimensions. First, the highly directional

and sustained price trends experienced during flash crashes cannot be ascribed to EPMs, since

the latter interpretation merely implies a wider price dispersion and materializes as large market

volatility or jumps, but not as a directional move. Second, flash crashes can be associated with

known market frictions, such as large trading imbalances with low market depth (Grossman

and Miller, 1988), asymmetric information (Barlevy and Veronesi, 2003), costly market presence

(Huang and Wang, 2009), or predatory trading (Brunnermeier and Pedersen, 2005). Third, flash

crashes allow to identify a sample of distressed events covering a relatively short time span that

3For example, Anand and Venkataraman (2016) show that liquidity provision is highly correlated among
high-frequency traders (HFTs, see Section 2.2 for a definition of this category), which increases market fragility.
Furthermore, van Kervel and Menkveld (2019) and Korajczyk and Murphy (2019) show that HFTs increase the
cost of large institutional trades.
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did not trigger a trading halt. This feature is shared with the EPMs of Brogaard et al. (2018).

However, as we show in Section 3 and Appendix A, the volatility-based EPMs are a different

sample compared to flash crashes, with limited overlap. Fourth, our procedure identifies the

exact crash peak time and disentangles various phases of a flash crash, such as the beginning of

the price drop and the subsequent recovery. Finally, Brogaard et al. (2018) conclude that HFTs

do provide liquidity, on average, during EPMs, but they switch to the demand side if several

stocks are affected. However, they do not disentangle endogenous from designated liquidity

provision as we do.

In comparison to van Kervel and Menkveld (2019), this paper provides several additional

contributions. First, we document that DMMs “lean-with-the-wind” also during flash crashes.

Second, we show that this mostly happens during systematic flash crashes. Third, we disentangle

the role of pure HFT DMMs from that of investment bank DMMs. Finally, while according to

van Kervel and Menkveld (2019) leaning-with-the-wind during institutional orders makes the

market more efficient in the short run, our results suggest that the behavior of DMMs during

flash crashes makes the market less efficient in the short run.

The rest of the paper is organized as follows. Section 2 describes the data and presents

the classification of market participants. Section 3 is dedicated to the methodology of flash

crash detection and identification. The empirical results are presented in Section 4. Section 5

concludes. An Appendix contains additional results and statistical analysis.

2 Data description

2.1 Institutional structure and data

The Euronext stock market operates as an order-driven market with a limit order book.

Euronext Paris is the division of the exchange that includes all the French instruments, including

equities and derivatives. The daily schedule for the most liquid stocks is divided into different

segments. The trading session starts at 7:15 a.m. with a pre-opening phase, followed by an

auction at 9:00 a.m. The main trading phase starts at 9:00 a.m. and ends at 5:30 p.m. The

daily schedule is followed by a closing auction and a further trading session called “trading-at-
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last,” where additional trades can be executed at the closing price. In this study, we only look

at the main trading phase, where the vast majority of trading activity is concentrated, thus

opening and closing activity are excluded from our analysis.

According to the Rule 4403/2 of Rulebook I (Euronext, 2014), during the continuous trading,

Euronext has in place a set of trading safeguards that prevents price movements outside certain

thresholds. Specifically, traded prices are constrained into a “collar,” defined by a reference price

plus/minus a percentage price change. If the execution of an order causes the breach of the collar,

two outcomes are possible: 1) the order is partially executed inside the collar, without halting

the continuous trading; 2) the trading process is halted, and the market is put in “reservation

mode.” Continuous trading resumes after an auction. None of the flash crashes considered in

our analysis triggers any of these measures. Thus, the collars are ineffective against preventing

the occurrence of our detected flash crashes.

The market model of Euronext Paris relies on the provision of liquidity by electronic market

makers. Since 2011, NYSE Euronext have in place a program, called Supplemental Liquidity

Provision, where electronic traders agree to post two-sided quotes during the day and to provide

a minimum passive execution volume. This program identifies our DMMs. Liquidity provision

is rewarded with a rebate, whereas aggressive executions by DMMs are available at reduced

trading fees.4 The orders sent by DMMs must be electronic, using only their own funds, and

excluding customer orders.5 We should point out that this agreement does not contain any

special incentive for DMMs to provide liquidity during stressed market conditions. However,

a recent review report by these European Securities and Markets Authority (ESMA) is now

looking into this design (ESMA, 2021).

The database is provided by the Base Européenne de Données Financières à Haute Fréquence

(BEDOFIH), and it is composed of tick-by-tick data for 37 liquid stocks that are included in the

CAC40 Index in 2013.6 We can track the entire history of the orders, from the initial submission

4The details are available in NYSE-Euronext (2012). Bellia (2017) provides a detailed description of the
Supplemental Liquidity Provision scheme and the role of electronic market makers in the NYSE Euronext.

5Differently from the NYSE (US) market, Euronext Paris does not have a single Designated Market Maker
(DMM) for each stock, but relies on the DMMs that act as non-voluntarily liquidity providers under a market
making agreement with the exchange.

6The three stocks of the CAC40 that are excluded from our analysis are Arcelor Mittal, Gemalto, and Solvay,
since their main trading venue is not the Paris branch of Euronext.

5



to the execution or the cancellation, with a timestamp at the microsecond level. Each trade

struck during the main trading phase has a flag that indicates the trade initiator, allowing to

unambiguously identify on the one hand which trader-account is trading aggressively (demanding

liquidity) and on the other hand which trader-account is trading passively (supplying liquidity).

2.2 Trader classification

Euronext requires each trader to flag every order in compliance with the Euronext (2014)

“Rulebook,” according to the following list of possible accounts (see NYSE-Euronext, 2012):

orders submitted pursuant to the Supplemental Liquidity Provision agreement (MM); own ac-

count (OWN) for proprietary trading; account of an affiliate, or when operating from a parent

company of the Euronext main member (PARENT);7 account of a third party (CLIENT), when

the Euronext member grants access to his client via an Automated Routing System or through

sponsored access;8 orders submitted for retail investors only.9

An interesting feature of this specific database is that the data from the stock exchange are

complemented with an high-frequency trading (HFT) identification flag, provided by the French

stock market regulator (the Autorité des Marchés Financiers, AMF). The classification is based

on the lifetime of cancelled orders and a trader is classified as HFT if one of the two criteria

below is met:

1. “the average lifetime of its cancelled orders is less than the average lifetime of all orders in

7According to rule 3.4 of the Rulebook, the “Relevant Euronext Market Undertaking may consider an ap-
plication from a Member who wishes to obtain direct access to an Euronext Market for its Affiliate(s). The
Affiliates are a person who (i) owns 95 per cent or more of the Member; or (ii) is owned 95 per cent or more by
the Member; or (iii) is owned 95 per cent or more by a third party who also owns 95 per cent or more of the
Member.”

8Euronext members can grant access to the market and the facilities like co-location, via a sponsored access,
according to Rule 3.2 and 3.3 of the Rulebook. However, “All business undertaken by a Client via an Automated
Order Routing System or via Sponsored Access on an Euronext Market will be done in the name of the Member
and the Member retains full responsibility for the conduct of all such business” (Rule 3201/2).

9Orders for retail investors are flagged as RLP (Retail Liquidity Provider) or RMO (Retail Mem-
ber Organisation) and belong to a specific program designated for them on Euronext. Euronext mem-
ber banks and brokers can execute their retail orders flow via the Retail Matching Facility (RMF)
against new price-improving liquidity provided by RLPs. Details about the program are available at
https://www.euronext.com/en/media/4053/download. However, the amount of liquidity provided via this chan-
nel is not visible in the central limit order book and is only accessible to retail clients under the RMO. The amount
of trades and orders categorized with this flag is negligible compared to the overall market activity carried out
by the remaining trading accounts.
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the book and if it has cancelled at least 100,000 orders during the year.”

2. “the participant must have cancelled at least 500,000 orders with a lifetime of less than

0.1 second (i.e. the participant quickly updates the orders in the limit order book) and the

top percentile of the lifetime of its cancelled orders must be less than 500 microseconds

(i.e. the participant regularly uses fast access to the market).”

HFTs are further divided by AMF into two sub-categories: pure HFTs companies, such as

Citadel or Virtu, and investment banks with HFT activity such as Goldman Sachs (labelled

“mixed” by AMF). This classification is revised yearly, and the groups are mutually exclusive.

[Figure 1 about here.]

We merge the AMF definition of high-frequency trading with the memorandum of the SEC

(SEC, 2014), which adds proprietary trading as typical feature of HFTs and we group traders

in the following categories (displayed in Figure 1):

• pure HFTs companies according to AMF are labelled, according to their trading accounts,

as PURE-HFT MM, PURE CLIENT and PURE-HFT OWN. We remove the flag “HFT”

from clients given that the AMF classification does not guarantee that these trades are

proprietary. PURE-HFT MM are DMMs.

• mixed HFTs companies according to AMF are labelled IB-HFT MM, IB CLIENT, IB-

HFT OWN and IB-HFT PARENT. Again, we remove the flag “HFT” from clients. We

prefer the label “IB” to the label “MIXED” because we think this is clearer in defining

the trading groups. IB-HFT MM are DMMs.

• non-HFTs according to AMF are labelled NON-HFT CLIENT and NON-HFT OWN.

In the above definitions, we leave out groups with negligible trading activity (such as RMO),

accounting for only 0.56% of total volume. Figure 1 shows that most of the trading activity in

our sample is due to PURE-HFT MM, IB-HFT MM, IB-CLIENT, and IB-HFT OWN. Together,

they account for roughly 76% of the total double-counted volume (buy and sell). NON-HFTs

account for 18%.

7



3 Identification of flash crashes

Flash crashes got the attention of financial economists after the infamous S&P 500 flash

crash of May 6, 2010 (Easley, de Prado, and O’Hara, 2011; Madhavan, 2012; Andersen and

Bondarenko, 2014; Andersen, Bondarenko, Kyle, and Obizhaeva, 2015; Menkveld and Yueshen,

2019). The existence of flash crashes casts doubts on the orderliness of the financial market

architecture. However, the S&P 500 flash crash was not an isolated event. Indeed, the data

supports the presence of a substantial number of flash crashes. Commenting on the Sterling

flash crash of October 7, 2016, Bank for International Settlements (2017) writes: “This event

does not represent a new phenomenon but rather a new data point in what appears to be a series

of flash events occurring in a broader range of fast, electronic markets than was previously the

case in the post-crisis era, including those markets whose size and liquidity used to provide some

protection against such events.”

How do we define a flash crash? According to Bank of England (2019), “Flash episodes

are large and rapid changes in the price of an asset that do not coincide with – or in some

cases substantially overshoot – changes in economic fundamentals, before typically retracing those

moves shortly afterwards”. These events are sometimes called “mini flash crashes” (Biais and

Foucault, 2014). Based on a formal implementation of these ideas, Christensen, Oomen, and

Renò (2022) provide evidence of frequent flash crashes in the futures markets on the S&P 500,

gold, oil, EUR/USD, Treasury notes, and corn; a result echoed in Golub, Keane, and Poon

(2017) for the US equity market. Thus, even supposedly liquid markets are subject to flash

crashes. Invariably, suspicion is directed towards automated trading as a potential culprit for

these events, although the evidence is mostly anecdotal.

In this section, we describe how we build our flash crashes database. We detect flash crashes

using a novel econometric approach, proposed by Christensen, Oomen, and Renò (2022), which

supports the notion that a flash crash is (in relative terms) a large downtick in the price over a

short time horizon. As we will show, this is typically accompanied by a reversion in the price.

[Figure 2 about here.]

Before explaining the mechanics of the procedure in detail, we look at an example of a
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distressed event, reported in Figure 2. The top panel of the figure shows the evolution of the

price of Technip on June 25, 2013. Around 11:50am the price starts to decline rapidly until it

reaches a minimum a few seconds after 12:05. The return over the 15-minutes is −2.35 %. After

the crash, the price partially recovers. This is an example of what we consider a “flash crash”:

a large price drop in a short time followed by a partial recovery. The intermediate panel shows

the test statistics of Christensen, Oomen, and Renò (2022). As it can be seen, the peak of the

test statistics coincides with the peak of the crash.

Figure 2 highlights an important difference between our flash crash detection technique and

those based on volatility (or jumps), such as Extreme Price Movements (EPMs) by Brogaard

et al. (2018). The basic EPMs detection consists of extracting—often disconnected—10-second

absolute midquote returns exceeding the 99.9th percentile of the distribution of such returns

for a stock. However, despite of the cumulated price drop being large during a flash crash,

the individual high-frequency (10-second) returns, displayed in the bottom panel of Figure 2,

are typically small and compatible with the overall volatility of that day. The largest negative

10-second return (−0.25%) occurred inside the volatility cluster before 11:00am. In fact, the

price level did not change significantly in the surrounding 30-minute window, as highlighted by

the pink shaded area. Hence, in this instance EPMs would identify intervals of high volatility

(or jumps) before identifying the flash crash.

To lay down our flash crash identification procedure, we need a minimal amount of notation.

Let (pt)t≥0 be the log-price process of an asset, which is defined on a filtered probability space

(Ω,F , (Ft)t≥0,P). We assume pt evolves according to the model:

dpt = µtdt+ σtdWt + dJt, (1)

where µt is the instantaneous drift, σt is the associated spot volatility, Wt is a standard Brownian

motion, and Jt is a jump process. The log-price pt is observed on [0, T ] at irregular time points

0 = t0 < t1 < . . . < tn = T , such that maxi(ti − ti−1) → 0 as n → ∞. The discretely sampled

log-return is defined as:

rti = pti − pti−1
, i = 1, . . . , n. (2)
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In model (1), the price changes, dpt, include three components: σtdWt and dJt are responsible for

volatility clusters and jumps, while the drift term µtdt represents the local trend. As discussed,

our methodology relies on the drift term. A natural estimator of µt is the kernel estimator:

µ̂nt =
1

hn

n∑
i=1

K

(
ti−1 − t
hn

)
rti , (3)

where K is a kernel (a localizing function) and hn is a bandwidth (approximatively, the local-

ization window). The estimator (3) is asymptotically unbiased, however, its variance does not

decrease as hn → 0, hence the estimator is inconsistent (Bandi, 2002; Kristensen, 2010).

To circumvent this issue, it is sufficient to rescale the drift estimator properly, as shown by

Christensen, Oomen, and Renò (2022) who propose the following test statistics:

T nt =

√
hn
K2

µ̂nt
σ̂nt
, (4)

where

σ̂nt =

√√√√ 1

hn

n∑
i=1

K

(
ti−1 − t
hn

)
r2
ti (5)

is a consistent estimator the spot volatility and K2 =
∫
RK

2(x)dx.

The ratio µ̂nt /σ̂
n
t can be interpreted as a measure of the current price velocity. In “normal”

markets (if the instantaneous drift is locally bounded) the ratio is small, as evident from Figure

2 in the morning and afternoon. If the price is moving too fast relative to the volatility (i.e.,

price changes are directional) the ratio is large, as evident from Figure 2 during the flash crash

at noon. Christensen, Oomen, and Renò (2022) formalize the latter condition by assuming that

there exists a “drift burst” time point τdb, where µt → ±∞ as t → τdb. They prove that, in

such points, |T nt | → ∞ as t→ τdb. In points in which the drift µt is bounded, the test statistic

is instead standard normal. Therefore, T nt can be used for identifying a flash crash around time

t by rejecting the “normal” market conditions in favour of the presence of a drift burst, when

|T nt | is larger than a quantile of the standard normal distribution.

The drift burst test statistic is robust to compound Poisson jumps, infinite activity small
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jumps, autocorrelated market microstructure noise and pre-announced jumps which occur at a

pre-determined time, e.g. as a consequence of dividends or macro announcements. Further, the

test is robust to volatility spikes. Thus, our distress measure is not picking up neither jumps

nor large volatility episodes, but genuine directional trends.

How good is this test in identifying the typical V-shape behavior of a flash crash? Christensen,

Oomen, and Renò (2022) show that the test is effective along several dimensions. First, the test

statistics is able to detect all the major flash crashes popularized in the press (such as S&P 500

flash crash of May 6, 2010, the Treasury market flash crash of October 15, 2014, or the Twitter

flash crash of April 23, 2013, and many more). Second, extensive Monte Carlo simulations

show that the test is correctly sized, and that for events with a sufficiently large test statistic,

the probability of contamination by false positives is essentially zero. We refer the reader to

Christensen, Oomen, and Renò (2022) for details.

To implement the test, we compute the estimator of the drift and volatility based on a kernel-

weighted average of observations in the vicinity of t, as defined in Eq. (5). The bandwidth hn

determines how fast we down-weight observations further away from t, with weights decided by

the kernel function. We set K(x) = exp(−|x|)1(x ≤ 0), such that µ̂nt and σ̂nt are computed

with a left-sided exponential moving average based on backward-looking data to avoid look

ahead bias. We employ a 5-minute bandwidth for the mean and a 25-minute bandwidth for the

volatility. This means that, by construction, we are interested in flash crashes which develop

on a time span of roughly 10 minutes. Transaction prices are pre-averaged following Jacod, Li,

Mykland, Podolskij, and Vetter (2009) to soften the impact of market microstructure noise, and

the volatility estimator in (5) is robustified with a HAC correction. This setup is consistent with

Christensen, Oomen, and Renò (2022).

We compute the test statistic every second during the course of a trading session. To account

for multiple testing, we exploit the simulation-based algorithm from Christensen, Oomen, and

Renò (2022) to set an appropriate critical value. We use a 99.9% confidence interval. The

average threshold value is −4.9: drift burst test statistics below this threshold are labelled as

flash crashes. We search for crashes after 9:30am. Appendix A is devoted to the comparison

of the events detected by the drift burst test statistics with those detected with the EPM
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methodology of Brogaard et al. (2018), showing that the flash crashes we detect and EPMs are

largely disjoint samples with limited overlap.

4 Empirical results

4.1 Anatomy of flash crashes

Table 1 reports summary statistics of events identified by the procedure explained in Section

3. The average crash duration is 9.5 minutes. The average price drop during a flash crash is

−1.35%. During the largest crash, which occurred in ST Microelectronics on March 12, 2013,

the price fell by −5.18%, while during the smallest one, which occurred in Pernod Ricard on

October 2, 2013, the price declined by −0.37%. Table 1 also shows that while the crash duration

represents only 1.87% of the duration of the trading day, on average, the crash accounts for

5.43% of daily trading volume (in days with a flash crash), nearly 6% of the number of trades,

and roughly 21% of total selling volume in that day.

[Table 1 about here.]

A detailed summary of all 148 identified flash crashes is provided in Table E.1 and E.2 in

Appendix E. Additionally, Table E.3 in Appendix E reports a summary of the detected flash

crashes grouped according to each stock. It shows that in our sample flash crashes occur in 34

different stocks. For one stock, flash crashes occur only once. The largest number of crashes

in a single stock is ten for Alstom (ISIN FR0010220475). There is no apparent relationship

among the number of flash crash occurrences and the stocks’ market capitalization, volatility

and average return.

A pictorial representation of the temporal distribution of the 148 crashes over the year and

the trading hour during the day is provided in Figure 3. The figure shows that crash events are

scattered across the year and the time of the day uniformly, without a clear pattern emerging,

for example around a specific time of the day. In two prominent cases, clearly visible in the

figure, we have crashes affecting multiple stocks simultaneously: on April 17, 2013 (with 14
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stocks involved) and on September 3, 2013 (with 13 stocks involved).10 From now on, we label

these 27 events as “systematic”. The remaining 121 events will be labelled as “non-systematic”.

[Figure 3 about here.]

For each event, we denote by tcrash the point in time associated with the lowest value of the

t-statistics after crossing the significance threshold. The beginning of the crash, labelled tstart

is identified by the first crossing time of the t-statistics with −1 before tcrash. The difference

τ = tcrash − tstart is the crash duration. The end of the recovery period is identified by the time

tend = tcrash +3τ . We also consider a pre-crash period, starting at the time tpre = tstart−2τ . The

analysis in this paper is based on price and order information, for each crash, from time tpre to

time tend.11

[Figure 4 about here.]

Figure 4 shows the average cumulative return for systematic and non-systematic crashes,

together with 10% and 90% quantiles for all events. This figure clearly illustrates the output of

our identification strategy, described in Section 3, and also allows for a qualitative description of

the average price process. The overall pattern of the detected events is the typical “skewed V”

displayed by a flash crash. While on average the market price moves towards a new price level,

it substantially overshoots and declines to a price which is lower than the new fundamental level.

This picture is consistent with informed trading conveying new information into a permanent

price impact (from the beginning to the end of the recovery period). The V-shape is deeper and

more pronounced for systematic events, indicating more overshooting than for non-systematic

events, on average.

10The collective flash crashes of April 17, 2013 are likely due to the announcement, that morning, of new
austerity budget measures due to the pessimistic revision of growth figures by the French government, see
e.g. https://lexpansion.lexpress.fr/actualite-economique/ce-qu-il-faut-retenir-du-nouveau-plan-budgetaire-de-la-
france 1404490.html; the event of September 3 cannot instead be associated to any news, to the best of our
knowledge. However, flash crashes in several stocks with no news can be explained by the phenomenon of
liquidity spillovers, see e.g. Cespa and Foucault (2014). The behavior of the 37 stocks around the two crashes is
shown in Figure F.1 in the Appendix F.

11In the figures, we harmonize time units to the average crash duration, which is 10.59 minutes. That is, in
Figure 4 and subsequent ones, each trade time (after subtracting tstart) is multiplied by 10.59 minutes and divided
by the actual duration of the flash crash event. When this is done, the resulting time units, still in minutes, are
indicated with “average elapsed time”.
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For each event, we define the permanent price impact (PPI) as:

PPI = log ptend − log ptpre−crash
, (6)

that is the logarithmic return from beginning to recovery12, while the crash price impact (CPI)

is defined as:

CPI = log ptcrash − log ptpre−crash
, (7)

and the transient price impact (TPI) is defined as:

TPI = CPI− PPI = log ptcrash − log ptend . (8)

To better understand who is contributing to the transient and permanent components of the

crash return, we further subdivide the crash period (from tstart to tend) in three stages with equal

duration: early, intermediate and late crash, as shown in Figure 4.

Figure 5 shows the relation between PPI and TPI, as well as the relation between CPI and

crash duration. From Panel A, we can see that both the average PPI and the average TPI

are highly significant in our detected sample, and this is true for both systematic and non-

systematic events. The fact that PPI is mostly negative (with few exceptions) is an indication of

informed trading. The fact the TPI is always negative (with one exception) is an indication of

overshooting. In particular, the transient component of systematic events is −0.78% on average,

half of the average permanent component, and it is still −0.33% (and significantly negative) for

non-systematic events, roughly one third of the permanent component. Panel B shows that the

typical duration of the crash event ranges from a few minutes to 45 minutes, with an average

duration of 9.5 minutes. The longer the crash, the more negative the CPI.

[Figure 5 about here.]

12Our choice of using the price after, on average 27 minutes, is in line with the typical approach of the market
microstructure literature when estimating effective spreads, see e.g. Glosten (1987). Alternatively, we could
employ the price observed at the end of the day, or in the next day, as in van Kervel and Menkveld (2019). No
differences would emerge in the subsequent analysis.
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4.2 Liquidity during a flash crash

In Figure 6, we report average volume, market depth, bid-ask spread and executed order age

for the 121 non-systematic flash crashes (the corresponding and qualitatively identical figures for

systematic events are reported in Figure F.2 in Appendix F). Market depth is the total number

of shares offered across the first ten price levels on the bid and the ask side. The bid-ask spread

is calculated as the logarithmic difference between the one minute average of the best bid and

the best ask price. The executed order age is the time between trade and the time stamp at

which the order was posted (or last modified). The mean cumulative return shown in Figure

4 is superimposed in all the figures as a visual landmark of the average crash development.

Statistical significance of these quantities across crash phases is presented in Table 2.

[Figure 6 about here.]

[Table 2 about here.]

Panel A of Figure 6 shows that the crash is associated with a large selling pressure, as

expected, and that recovery starts after selling stops. The fact that selling produces a permanent

price change is consistent with informed trading. Panel B shows that the bid-ask spread steadily

increases during a flash crash, indicating increasing cost of transacting during these events, as

well as the increased uncertainty on market fundamentals which is indeed typically accompanied

by a widening of the bid-ask spread. Panel C shows that market depth, that is the ability of

the market to absorb orders, is strongly reduced during a crash, recovering slower than the

price itself, in line with the finding in Kirilenko, Kyle, Samadi, and Tuzun (2017) during the

Flash Crash of May 6, 2010. This is consistent with Grossman and Miller (1988), since the price

change in their model is predicted to be deeper in illiquid market conditions. Panel D shows that

the age of the average executed order increases during the sell-off. This is in line with “quote

sniping”, i.e. stale limit orders that were posted before the start of the crash are executed on the

way down (e.g., Kirilenko, Kyle, Samadi, and Tuzun, 2017). Table 2 indicates that the effects

are statistically significant, and largely so for the executed order age and market depth change.

Overall, Figure 6 suggests that a flash crash occurs when selling pressure increases and there is

insufficient liquidity in the market to accommodate the demand.
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Figure 7 shows the average Euro volume traded per minute, divided in buyer-initiated (Panel

A) and seller-initiated (Panel B) trades for the non-systematic events (the corresponding and

qualitatively identical figure for systematic events is reported in Figure F.3 in Appendix F).

The two patterns are similar even if the trading intensity of selling is much higher. We observe

a sudden peak in average trading activity associated with the beginning of the crash. This

behavior in correspondence of the initial price drop is compatible with a large selling order which

is executed in a series of child trades. Then trading slows down, only to strongly accelerate again

before the end of the crash. During recovery, the intensity of trading reverts back to normal

activity. Figures 4 and 7 suggest that there are two distinct phases of the crash: an initial phase,

triggered by sudden selling pressure, and a final phase, which occurs in a more illiquid market

and precipitates the price much more.

[Figure 7 about here.]

4.3 Trade analysis

We now turn to the analysis of the trading behavior of different trader groups during a flash

crash, answering the following questions: Who is responsible for the permanent price impact?

Who is responsible for the transient price impact? And what motivates the trading behavior of

different traders?

We analyze net trade imbalances (or net inventories) of each trader group. We split imbal-

ances in initiating and liquidity supplying trades as follows. For each trade, denote by i the

category which is initiating the trade with its demand, and by j the category who is accepting

the offer (i and j may coincide). The quantity of money exchanged in the trade t is Qt · Pt,

where Qt is the number of stocks exchanged and Pt is the stock price. Thus, for category i, the

imbalance on initiating trades on a given period is computed as:

I(i),init
period =

∑
t∈period

st ·Qt · Pt · I{t initiated by (i)},

where st = +1 for buy orders, and st = −1 for sell orders, while I{·} is the indicator function.
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The imbalance on liquidity supplying trades for category j in a given period is:

I(j),liq
period =

∑
t∈period

st ·Qt · Pt · I{t accepted by (j)}.

The monetary net imbalance for category i (or j) in a given period is then computed as:

I(i)
period = I(i),init

period + I(i),liq
period. (9)

This measure is equivalent to that used by Brogaard et al. (2018), except they use number of

traded shares instead of Euro volume.

Figure 8 reports average net imbalance, computed as in Eq. (9), and prices for systematic

flash crashes (in Panel A) and non-systematic flash crashes (in Panel B). In both cases the figure

shows that the selling activity of IB-HFT OWN (followed by IB CLIENT for non-systematic

events) can be associated with the beginning of the crashes. This appears to be informed selling

since it moves the price toward a new fundamental level. By market design, the order imbalance

generated by sellers should be absorbed by DMMs, either PURE-HFT MM or IB-HFT MM,

without generating overshooting in the price. Figure 8 focuses on IB-HFT MM only since

PURE-HFT MM mostly affect the price with their quoting activity (see Section 4.5) and keep

zero inventory across all the stages of the crash.13

[Figure 8 about here.]

For non-systematic events, IB-HFT MM do provide liquidity during the crash, albeit it is

not sufficient to avoid price over-reaction. However, they do not provide additional liquidity

during the recovery, which is left to NON-HFT, most likely due to an attempt to restore the low

inventory target level. Nevertheless, when the flash crash affects several stocks simultaneously

(systematic events), IB-HFT MM do not provide liquidity on average. Actually, they sell during

the crash, contributing to the transient price impact. The order imbalance of systematic flash

crashes is again absorbed, especially in the late phase of the crash, by “slow” NON-HFT traders,

13We concentrate on the most active group of traders in this section. Appendix B reports average imbalances
for all groups, across all stages of the crash.
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who buy at a discount price mostly through limit orders posted far before the crash started.

Not only these traders, who do not use extensively algorithmic trading strategies, absorb the

selling generated by “sellers” and market makers, but they also mostly contribute to the partial

recovery of the price. Thus, IB-HFT OWN appears to generate the crash (through informed

selling) and, when crashes are systematic, additional selling by IB-HFT MM precipitates the

crash.

To identify the main significant patterns in the behaviour of different traders during flash

crashes, for every trader type j, we estimate the following multivariate panel model:

I(j)
i,t = α

(j)
0 +

5∑
k=1

β
(j)
k Dk

i,t + f
(j)
i + α(j)Controlsi,t + ε

(j)
i,t , (10)

where I(j)
i,t denotes the ten-seconds net trading imbalance of trader j, computed for the t-th 10-

second interval of the i-th event day using Equation (9), Dk
i,t are the dummy variables indicating

the particular phase of the crash with k ∈ {pre-crash, early crash, intermediate crash,late crash,

recovery} (for example, Dlate crash
i,t = 1 if the t-th interval of the i-th event day belong to the

period of the late crash and Dlate crash
i,t = 0 otherwise), Controlsi,t is a vector of control variables

and ε
(j)
i,t is the stochastic error term. The control variables include five lagged values of net

trading imbalances (although we do not find significant autocorrelation in their time series),

the 10-second stock return, the (log) traded euro volume and the percentage quoted spread.

All non-dummy variables are standardized on the stock level, and the regressions are estimated

with stock fixed effects and heteroskedasticity robust standard errors, for different sub-samples

both in terms of flash-crash type (systematic vs non-systematic) and aggregating different type

of traders. Given the 10-second time interval to aggregate the imbalances, some flash-crash are

excluded from the regressions (specifically, when their duration is smaller than 100 seconds).

[Table 3 about here.]

Table 3 reports the estimated coefficients of the crash dummies and the corresponding t-

statistics for both systematic and non-systematic events, using the model of Equation (10), for

the most active group of traders.14 Panel A shows that for systematic events, the coefficient of

14The estimation of the full model with all trader groups is presented in Appendix B.
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early crash and intermediate crash is negative and statistically significant for IB-HFT OWN,

while for the late crash and for the recovery is negative for IB-HFT MM. These two type of

traders, as already shown in the graphical analysis, are the ones that push the price down

during the systematic flash crashes. NON-HFT, on the other side, do absorb the selling pressure

in all phases of the crash. Panel B instead reports the results of the panel regression for non-

systematic events. Even in this case, IB-HFT OWN appears to trigger the selling pressure,

followed in a later stage by IB CLIENT. As said before, IB-HFT MM do provide liquidity in all

the stages of the crash, but leave the recovery to NON-HFT.

Figure 9 shows the average trading imbalance changes per minute for the two most important

trading categories (all trading categories are shown in Appendix F, Figures F.5 and F.6), that

is IB-HFT MM and IB-HFT OWN. The intensity of imbalance change is further dissected

into initiated buy, initiated sell, supplying buy and supplying sell. A positive value of the

average means that the net imbalance is increasing; a negative value means that net imbalance

is decreasing.

[Figure 9 about here.]

Panel B and D show that the IB-HFT OWN are, on average, originating crashes, both sys-

tematic and non-systematic ones. Their increase in the intensity of selling is strongly correlated

with the decline in price, and their selling accelerates till the peak of the crash. They also

provide some liquidity (each group consists of several individual traders), but their net effect is

strongly negative, especially at the beginning and end of the crash.

Panel A and C point again at the ambivalent behavior of IB-HFT MM. For non-systematic

events, they provide liquidity either at the beginning or at the end of the crash. However, a

fraction of them starts selling intensely just before the peak of the crash, as indicated in Panel

A, thus consuming liquidity instead of providing it. For systematic events, there is no average

liquidity provision at the beginning of the crash. Even if some liquidity is provided at the end

of the crash, as shown in Panel C, the net effect is strongly negative, and almost as intense as

that produced by IB-HFT OWN.

Table 4 provide the estimates of the panel regression in Equation (10) with the aggressive

trades (consume liquidity) and the passive trades (provide liquidity) as dependent variables,

19



instead of net imbalance. These variables assume a positive value when buying a stock, and a

negative value when selling it. Looking at the aggressive trades (which are in the direction of

return, since the coefficient of Return is positive and significant), IB-HFT OWN have a negative

and significant coefficient for the early crash, which confirm the graphical intuition that a large

selling from this group of traders trigger the subsequent reaction and thus the building-up of the

flash crash. For systematic events, the effect on the intermediate crash phase is even reinforced,

followed in the subsequent phases by IB-HFT MM, which magnify the effect in the late phase of

the crash. For the passive trades, which goes in the opposite direction of the return by definition,

the estimated coefficients show that IB-HFT MM provides liquidity in non-systematic events in

all phases of the flash crash but the recovery, while for IB-HFT OWN the coefficients are never

significant, indicating that the selling aggressive pressure dominates the liquidity provision during

the crash. For systemic events, as already shown in the previous table, IB-HFT MM provide

liquidity only on the selling side (negative sign in front of the coefficients), thus exacerbating the

crash especially in the intermediate and late phases of the crash. Overall, the results of these

models confirm the graphical assessment discussed before using averages.15

[Table 4 about here.]

Figure 10 shows the distribution, across events, of trading imbalances changes of IB-HFT MM

and IB-HFT OWN in the different phases of the crash and during recovery (the corresponding

Figure F.7 in Appendix F shows the associated results for non-systematic events). The figure

highlights that IB-HFT OWN mostly sell at the beginning of the crash, whereas IB-HFT MM

start selling immediately after. In particular, IB-HFT MM is always selling in the late phase of

the crash.

[Figure 10 about here.]

Why do investment bank DMMs sell when flash crashes affect several stocks, instead of

providing liquidity (when it is needed the most) in line with their liquidity provision agreement?

Their change in the trading strategy, visible in Panel A of Figure 9, may be motivated by several

15As before, we look at the subset of most active traders for this analysis. The model estimations for all trader
groups is presented in Appendix B.
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rationales. First, IB-HFT MM carry little to no inventory, so they need to recover their stock to

maintain a zero balance. Moreover, market makers face the adverse selection problem that selling

may not be motivated by pure immediacy, but it could be informed (as it actually is, on average).

Thus, IB-HFT MM may sell opportunistically to profit from the information, as postulated by

the backrunning theory of Yang and Zhu (2020) or predatory trading of (Brunnermeier and

Pedersen, 2005). Indeed, we observe a surge in initiated buying from this category immediately

before the crash peak, which is consistent with both backrunning and predatory trading. A

mixed behavior is to be expected, since market makers do not know a priori if the price is

going to recover or not (see also van Kervel and Menkveld, 2019). An alternative explanation is

provided in Cespa and Vives (2022), where lack of transparency leads to additional selling even

when prices are below the fundamental value.

[Table 5 about here.]

Table 5 supports the conjecture that IB-HFT MM lose money during crashes. The table

reports estimates of the panel regression, akin to Equation (10), for every trader type j:

Profits
(j)
i,t = α

(j)
0 + β(j)Di,t + f

(j)
i + α(j)Controlsi,t + ε

(j)
i,t , (11)

where now Profits
(j)
i,t are the profits calculated for each 10-second intervals for trader j at interval

t for the i-th event, and Di,t is a dummy which is equal to one for the entire duration of the

crash (from the pre-crash until the end of the recovery). The control variables and lags are as

in Equation (10).

The estimation results show that, on average, IB-HFT MM lose a significant amount of

money by providing liquidity during non-systematic crashes. On the other side, IB-HFT OWN

realize positive and significant profits by selling at a higher price, possibly trading on private

information.

Liquidity provision would not compensate IB-HFT MM for these losses. We estimate the

average monetary profit they would obtain by providing all the required liquidity to the sellers

in the French market to be a meager 28 euros.16 One may argue that they still do make

16This back-of-the-envelope estimate is obtained by multiplying the total liquidity need, taken from Panel A
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profits on average, since providing liquidity in tranquil times should be enough to cover these

losses. However, if they have the option to meet the requirements as liquidity providers without

penalties, it is rational to not provide liquidity during distress. That is exactly what they appear

to do, since Table 5 show that IB-HFT MM avoid losses during systematic events, passing the

“hot potato” to slow traders. Our results thus highlight that, even if the behavior of IB-HFT MM

is perfectly rational at individual level, in aggregate it exacerbates the transient price impact.

Their behavior impairs market efficiency since the traded price overshoots. From a policy angle,

our results question the effectiveness of the compensation scheme offered by the exchange.

The last aspect we investigate is whether trader groups change their trading behavior during

flash crashes with respect to normal times. We perform this analysis using the methodology of

Kirilenko, Kyle, Samadi, and Tuzun (2017), applied to the 148 flash crashes in our sample. The

full analysis is detailed in Appendix C. Analyzing multiple crash events, we find that DMMs

modify their behavior substantially, contrary to what is found on the single May 6, 2010 event

and in line with our previous findings.

Summarizing, our results on trades point out the limited willingness of DMMs to provide

liquidity during a flash crash. They provide some liquidity during non-systematic crashes, but

during systematic crashes IB-HFT MM are selling in the late phase of the crash. Thus, the role

of market makers loses effectiveness exactly when the market mostly needs it, which exacerbates

the crash. The role of liquidity providers is instead played by “slow” NON-HFT traders, through

passive trades that they posted before the flash crash took place and which were not re-positioned

fast enough in the market.

4.4 Who prevents flash crashes under high selling pressure?

In this section, we conduct a counterfactual experiment in order to study what prevents flash

crashes when selling pressure is high. To this end, we identify the episodes of extreme sales of

similar or larger magnitudes as those observed during our sample of flash crashes. We compare

the behavior of DMMs with other traders during these events.

in Figure 6 to be 1.4 millions of Euro, times the compensation per Euro, taken to be 0.20 bps per Euro (in 2013,
this number changed from 0.20 to 0.22 to be back to 0.20). This estimate does not include the standard gain
from market making activity, i.e. the bid-ask spread, which is included in the net monetary profit in Table 5.
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In order to identify the episodes of extreme sales, for each day and stock in our sample and

for each one-minute interval, we compute a multiscale measure of the (instantaneous) selling

pressure defined as:

SP(day,stock)
m = γ(stock)

m · min
u=0,1,...,30

 ∑
t∈[m−u,m]

st ·Qt · Pt

 , (12)

where m runs over one-minute equispaced partition of a trading day, γ
(stock)
m denotes the intraday

periodicity adjustment factor, while st, Qt and Pt are defined as above. That is, for each

time instant m, we compute the signed Euro volume over the previous u minutes of trading:∑
t∈[m−u,m] st ·Qt ·Pt. Since large selling volumes may flow at differing speed and last for differing

amounts of time, the signed Euro volume is computed for various intervals ranging from one

to 30 minutes. To get a single measure for each time instant, we then take the minimum, e.g.

the largest cumulated drawdown in 30 minutes. Finally, the SP(day,stock)
m measure is adjusted

for intraday periodicity by multiplying it with a factor γ
(stock)
m computed as the inverse of the

stock-specific average SP(day,stock)
m , where the average is taken over all days in the sample for

each stock. This ensures that the SP(day,stock)
m measure is comparable across time and stocks.

Figure 11 shows the distribution of SP(day,stock)
m (black dashed line with dots). We see that

during flash crashes the selling pressure is very high. The distribution of SP(day,stock)
m condi-

tionally on a flash crash (blue line with circles) is centered at the tail of the unconditional

distribution. Thus, extreme values of SP(day,stock)
m correspond to episodes of potential crashes.

[Figure 11 about here.]

We extract the 0.1% of events (pooled over all stocks) with the most negative selling pressure,

as measured by SP(day,stock)
m . For each of these tail events, we compute the changes of the

inventory for different traders in the time window [m−u,m], which corresponds to the minimum.

As a comparison, we juxtapose these inventory changes to the ones during systematic and non-

systematic flash crashes. Figure 12 shows the histograms of the inventory changes of different

trader groups during high selling pressure intervals excluding flash crashes (Column A) and

during systematic and non-systematic crashes (Columns B and C).
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[Figure 12 about here.]

It is evident that the main difference between the occurrence and non-occurrence of flash

crashes is the behavior of NON-HFT. When they offer liquidity to sellers (Column A) the flash

crash does not appear even if selling pressure is high, with some of this emanating from DMMs

(which both show a distribution skewed to the left, more prominently so for IB-HFT MM). Also,

DMMs do not provide liquidity to large sellers, while NON-HFT do. The cases in which a flash

crash occurs (Column B for systematic ones and C for non-systematic), neither NON-HFT nor

DMMs provide adequate liquidity. NON-HFT provide some liquidity (as also shown in Panel

A of Figure 8) during systematic events, but not enough to avoid a transient price change.

Nevertheless, during systematic events NON-HFTs remain the main liquidity providers. These

findings indicate that slow traders are preventing the occurrence of flash crashes when selling

pressure is high, while when they either leave the order book or their quoting depth is small,

a flash crash occurs. This result reinforces the view that DMMs are not incentivized to fully

supply liquidity when it is needed the most.

4.5 Quoting activity analysis

We finally evaluate the impact of order submissions and cancellations on price changes, in

line with the recent literature that suggests quotes play a dominant role for price discovery

(Brogaard, Hendershott, and Riordan, 2019). In Figure 13, we look at the average volume of

cancelled orders (Panel A) and the average volume of new orders (Panel B), both proxies of the

level of activity of the traders, especially for HFTs. The figure is for non-systematic events (the

corresponding figure for systematic events is reported in Appendix F, Figure F.4). Cancellations

and new orders follow a nearly identical pattern, indicating that limit orders are heavily used

to change the positioning of traders in the book. The pattern displays the two-peaks structure

of volume intensity in Figure 7. The first peak corresponds to the beginning of the crash. The

cancellation volume then declines, only to accelerate again at the end of the crash, whereafter it

slowly reverts back to normal. Quote revision is almost exclusively used by HFTs. In particular,

PURE-HFT MM cancel and revise most of their orders. This supports the presence of two
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distinct phases for a flash crash: an initial one, in which selling pressure is accommodated with

a price drop, and an accelerating one which exacerbates the original price decline. The results

are also confirmed for systematic events, as documented in Appendix F.

[Figure 13 about here.]

This suggests orders are a primary channel to impact the price for HFTs. To assess the

impact of quoting activity on the price, we estimate the impulse responses of mid-price changes

on unit shocks in trader group mid-prices, computed as the average between best bid and best ask

of each trader group. The impulse-response functions (IRFs) are estimated for each flash crash

event in four periods: pre-crash, crash, late crash and recovery. The IRFs are estimated with

the local projection method developed by Jordà (2005), which constitutes a robust alternative

to standard VAR models (a brief review is available in Appendix D). Figure 14 shows estimated

IRFs, averaged across systematic and non-systematic events, of the changes of mid-price on unit

shocks in the changes of the average between best bid and best ask of different trader groups. The

results are compelling in showing that DMMs (both PURE-HFT and IB-HFT) play a dominant

role in determining, through their quote revisions, mid-price changes during crash and recovery.

Their role is particularly strong during systematic crashes, and this is especially true for PURE-

HFT MM. This suggests market makers are actively moving the market through their quote

activity instead of transactions. The role played by other market participants is not visible in

the average impact. Further, the impact of PURE-HFT MM is stronger in the late phase of

the crash and for systematic events, signaling that they are mostly responsible for the transient

price impact with respect to quoting activity.

[Figure 14 about here.]

Taken together, the evidence presented in this section about quoting activity provides statisti-

cal support to the main themes of this paper. First, quoting activity follows the pattern observed

in trading volume. Second, quoting activity has an impact on prices, most prominently impacted

by market makers, in particular PURE-HFT MM. Again, the impact is stronger for systematic

events than for non-systematic ones. And, again, the pattern can explain the overshooting as-

sociated with the transient price change. Concluding, market efficiency is compromised in the
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late phase of the flash crashes due to the combined effect of the quoting activity of PURE-HFT

MM and the trading activity of IB-HFT MM, both DMMs in this market.

5 Conclusions

This paper shows that DMMs do not necessarily play a beneficial role to market efficiency and

liquidity during periods of pronounced market distress. Using a novel econometric methodology

proposed by Christensen, Oomen, and Renò (2022) we detect 148 flash crashes in one year

(2013) of blue-chip French stocks. The granularity of our database allow us to distinguish

different trading groups, including pure HFT firms, which have been largely investigated in

the literature, and investment bank HFTs. Our analysis shows that electronic traders, and in

particular those of investment banks, play a significant role during flash crashes. IB-HFT OWN

push the price down with informed selling at the beginning of the crash; IB CLIENT follow suit

to profit opportunistically on this information, especially during non-systematic crashes; IB-HFT

MM, who are DMMs in this market, also follow, especially when the crash is systematic; PURE-

HFT MM, who are also DMMs, employ intense quote revisions to bring the price down during

crashes, contributing to an overshooting in the late phase. The behavior of DMMs in a market

turning illiquid can be associated with overshooting and a transitory price impact. Even if

DMMs contribute to the price overshooting, especially during systematic crashes, their behavior

is rational. When crashes affect several stocks, they sell increasingly as the crash develops to

avoid big losses against informed trading. This behavior is very different from what they normally

do in “tranquil” times. The main category that stops the crash when there is significant selling

pressure and supports recovery after flash crashes is the NON-HFT, who receive a compensation

from buying at discount. Our paper thus documents that under severe market distress, traders

react rationally but, unfortunately, not in the direction of efficient market functioning. Thus,

our empirical findings can be informative for market design, to provide the right incentives or

an entirely different market structure (see, e.g., Budish, Cramton, and Shim, 2015).

Our results have important policy implications. Electronic liquidity providers can indeed

recover zero net inventory and provide liquidity on average, but that is not enough to prevent
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flash crashes from happening. Our study recommends a deeper evaluation of the recent MiFID

II regulation, which recognizes algorithmic liquidity provision as pivotal to the functioning of

financial markets. The regulation endorses automatic liquidity provision by electronic market

makers, imposing binding agreements between the exchange and the trading firms. What our

analysis shows is that this rule, already in place at the NYSE Euronext Paris stock exchange,

is not sufficient to prevent flash crashes, and it should be revised in light of this objective.

Possible solutions to this problem are: a change in their compensation scheme; or a change in

the mechanism of trading halts, which does not work with flash crashes, since the latter cannot

be associated with excess volatility.
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Hautsch, N., M. Noè, and S. S. Zhang, 2017, “The Ambivalent Role of High-Frequency Trading

in Turbulent Market Periods,” Working paper.

Hendershott, T., C. M. Jones, and A. J. Menkveld, 2011, “Does algorithmic trading improve

liquidity?,” The Journal of Finance, 66(1), 1–33.

Huang, J., and J. Wang, 2009, “Liquidity and market crashes,” Review of Financial Studies,

22(7), 2607.

Jacod, J., Y. Li, P. A. Mykland, M. Podolskij, and M. Vetter, 2009, “Microstructure noise in the

continuous case: The pre-averaging approach,” Stochastic Processes and their Applications,

119(7), 2249–2276.

Jones, C. M., 2013, “What do we know about high-frequency trading?,” Columbia Business

School Research Paper 13-11.
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Table 1 Summary statistics of Flash Crash events

Mean Std Min Max Quantile(0.1) Quantile(0.5) Quantile(0.9)

Return -1.35 0.80 -5.18 -0.37 -2.42 -1.11 -0.62
Duration (min) 9.53 8.45 0.07 41.60 2.12 7.32 19.34
Duration (%) 1.87 1.66 0.01 8.16 0.42 1.44 3.81

N. trades during crash 582.10 442.32 89.00 2612.00 182.90 452.50 1191.70
N. trades daily 10337.07 5710.67 2501.00 44264.00 5258.50 8823.00 19025.90

N. trades during crash (%) 5.99 4.29 1.07 35.98 2.46 5.01 9.66

Signed volume during crash -1276.37 1347.86 -9291.14 1722.17 -2942.18 -1049.13 -19.78
Signed volume daily -4848.60 15259.88 -128877.88 42409.70 -16296.97 -3218.63 4980.44

Signed volume during crash (%) 21.07 182.75 -667.12 1592.26 -58.15 9.19 64.44

Trading volume during crash 4598.60 3789.11 537.53 18268.03 1210.75 3521.45 9530.02
Trading volume daily 93943.52 69076.44 16946.98 435185.60 34809.38 75966.21 183647.23

Trading volume during crash (%) 5.43 4.06 0.71 34.71 2.02 4.50 9.03

Note. This table reports summary statistics of the price drop during Flash Crashes, flash crash duration and trading activity for the
stocks in which flash crashes occur: returns during the crash (per cent), duration of crashes in minutes and as a fraction of length
of the trading session, number of trades, signed and total trading volume (in thousands of euros) over the whole trading session and
during the crash period in the same units and relative to the whole trading day (per cent). The database is composed of 37 stocks
traded on NYSE Euronext Paris that belong to the CAC40 index, for the year 2013. Order flow and trade data, with trader group
and account flags, are from BEDOFIH.
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Table 2 Liquidity measures during non-systematic flash crashes

pre-crash early crash intermediate crash late crash recovery

Signed Volume (millions of Euro)

Mean -0.01 -0.49 -0.71 -1.05 -1.52
Median -0.04 -0.45 -0.68 -0.89 -1.45
s.e. (mean) 0.57 0.58 0.59 0.61 0.66

Bid-ask spread (%)

Mean 1.59 1.79 1.97 1.79 1.97
Median 1.22 1.31 1.35 1.35 1.42
s.e. (mean) 0.12 0.17 0.33 0.14 0.18

Market depth change (%)

Mean 4.14 -1.96 -2.40 -7.79 -8.44
Median 1.81 -2.44 -4.06 -9.94 -10.53
s.e. (mean) 1.18 1.99 2.11 2.55 2.49

Executed order age (seconds)

Mean 2.05 6.47 11.47 15.40 3.50
Median 0.42 2.35 5.35 12.53 0.61
s.e. (mean) 0.39 0.87 1.27 1.11 0.58

Note. This table reports the cross-sectional average, median and standard error of the mean of the average quantities displayed
in Figure 6 in the five different periods of the crash described in Figure 4. The standard error of the mean is computed assuming
independence across different events. The sample is composed of 37 stocks traded on NYSE Euronext Paris that belong to the
CAC40 index, for the year 2013. Order flow and trade data are from BEDOFIH.
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Table 3 Trading imbalances during flash crashes

Panel A: Systematic flash crashes

IB-HFT MM IB-HFT OWN IB CLIENTS NON-HFT

Pre-crash -0.010 -0.024 0.019 0.017
(-0.46) (-1.23) (1.14) (1.02)

Early crash 0.002 -0.155** 0.049 0.183**
(0.02) (-2.15) (0.56) (2.74)

Intermediate crash -0.183 -0.364*** 0.141 0.480**
(-1.59) (-3.82) (1.15) (2.78)

Late crash -0.395** -0.089 -0.003 0.559***
(-2.66) (-0.92) (-0.04) (3.72)

Recovery -0.043** 0.027 -0.015 0.016
(-2.27) (1.33) (-0.83) (1.25)

Perc. Spread -0.007 -0.004 0.003 0.003
(-0.57) (-0.69) (0.31) (0.46)

Volume (log) -0.143*** -0.022 0.047*** 0.103***
(-11.19) (-1.34) (3.04) (4.82)

Return -0.075*** 0.007 0.030* -0.034***
(-3.76) (0.65) (1.97) (-3.38)

Observations 79404 79404 79404 79404
Adj R2 0.067 0.020 0.029 0.036

Panel B: NON-Systematic flash crashes

IB-HFT MM IB-HFT OWN IB CLIENTS NON-HFT

Pre-crash 0.031** -0.011 -0.019 0.015
(2.69) (-1.17) (-1.53) (1.31)

Early crash 0.294*** -0.136** -0.018 -0.036
(3.37) (-2.41) (-0.49) (-0.71)

Intermediate crash 0.186*** -0.047 -0.087* -0.027
(4.30) (-1.19) (-1.90) (-0.69)

Late crash 0.241*** 0.012 -0.267*** -0.004
(3.31) (0.15) (-3.95) (-0.07)

Recovery -0.009 -0.017 -0.017 0.042**
(-0.54) (-0.82) (-0.91) (2.52)

Perc. Spread 0.006 -0.009* 0.001 -0.002
(1.18) (-1.81) (0.16) (-0.43)

Volume (log) 0.025* 0.008 -0.026* 0.011
(1.94) (0.57) (-1.78) (0.75)

Return -0.188*** 0.012 0.031*** 0.016
(-11.01) (1.16) (3.78) (1.43)

Observations 342032 342032 342032 342032
Adj R2 0.055 0.023 0.038 0.019

Note. This table presents the estimates of the coefficients β
(j)
k of the crash phase dummies from the regression equation 10 estimated

for different trader groups separately for systematic and non-systematic events. Perc. Spread is the percentage quoted spread,
Volume is the log of the total trading volume, Return is the stock return calculated for each 10-second interval. Non-dummy
variables are standardized at stock level. Coefficients of lagged variables are not reported for brevity. The panel regressions are
estimated with stock fixed effects and robust standard errors. t-statistics are in parenthesis. *p<0.1; **p<0.05; ***p<0.01.
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Table 4 Trading imbalances during flash crashes: aggressive and passive trades

Panel A: Systematic flash crashes

Aggressive trades Passive trades

IB-HFT MM IB-HFT OWN IB-HFT MM IB-HFT OWN

Pre-crash 0.041*** 0.023 -0.047* -0.055*
(3.04) (1.51) (-1.74) (-2.03)

Early crash 0.075 -0.184* -0.062 -0.008
(0.73) (-2.02) (-1.69) (-0.12)

Intermediate crash -0.055 -0.353*** -0.177** -0.055
(-0.45) (-3.70) (-2.31) (-1.27)

Late crash -0.306** -0.071 -0.308** -0.025
(-2.22) (-0.92) (-2.65) (-0.28)

Recovery -0.074*** -0.032** -0.010 0.080**
(-4.32) (-2.56) (-0.48) (2.75)

Perc. Spread 0.010 0.010* -0.015 -0.020***
(0.94) (1.88) (-1.32) (-3.61)

Volume (log) -0.108*** -0.065*** -0.089*** 0.049***
(-9.62) (-3.75) (-7.59) (2.95)

Return 0.179*** 0.118*** -0.226*** -0.134***
(10.79) (11.23) (-11.96) (-11.30)

Observations 79404 79404 79404 79404
Adj R2 0.081 0.039 0.088 0.054

Panel B: NON-Systematic flash crashes

Aggressive trades Passive trades

IB-HFT MM IB-HFT OWN IB-HFT MM IB-HFT OWN

Pre-crash 0.004 -0.017* 0.033** 0.004
(0.43) (-2.03) (2.70) (0.42)

Early crash -0.032 -0.160*** 0.352*** 0.004
(-1.06) (-2.87) (4.11) (0.13)

Intermediate crash 0.042 -0.053 0.194*** 0.012
(1.13) (-1.53) (4.40) (0.39)

Late crash 0.027 -0.052 0.242*** 0.089
(0.50) (-0.71) (3.27) (1.47)

Recovery -0.012 -0.036* -0.006 0.013
(-0.95) (-1.89) (-0.35) (0.60)

Perc. Spread 0.006 -0.006 0.003 -0.003
(1.24) (-1.02) (0.63) (-0.57)

Volume (log) -0.012 -0.015* 0.036*** 0.024**
(-1.51) (-1.78) (3.09) (2.15)

Return 0.142*** 0.199*** -0.311*** -0.207***
(11.92) (24.08) (-28.41) (-20.93)

Observations 342032 342032 342032 342032
Adj R2 0.028 0.049 0.104 0.058

Note. This table presents the estimates of the coefficients β
(j)
k of the crash phase dummies from the regression equation 10 estimated

for different trader groups separately for systematic and non-systematic events. In this case, the dependent variables are the Aggressive
trades (trades initiated) and the passive trades (liquidity provision). Perc. Spread is the percentage quoted spread, Volume is the log
of the total trading volume, Return is the stock return calculated for each 10-second interval. Non-dummy variables are standardized
at stock level. Coefficients of lagged variables are not reported for brevity. The panel regressions are estimated with stock fixed
effects and robust standard errors. t-statistics are in parenthesis. *p<0.1; **p<0.05; ***p<0.01.
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Table 5 Profits during flash crashes

Panel A: Systematic flash crashes - Profits

PURE
CLIENT

PURE-
HFT
OWN

PURE-
HFT
MM

IB-HFT
MM

IB
CLIENTS

IB-HFT
OWN

IB-HFT
PARENT

NON-
HFT

CLIENT

NON-
HFT
OWN

Crash -0.054 -0.021 0.343 0.331* -0.418** 0.878*** 0.521** -0.882** -0.467
(-0.93) (-0.52) (1.09) (1.96) (-2.36) (3.15) (2.18) (-2.69) (-1.46)

Perc. Spread 0.018 -0.025 -0.010 -0.054 0.259* 0.225** 0.056 -0.235* -0.201*
(1.30) (-0.86) (-0.13) (-0.61) (1.83) (2.72) (0.95) (-2.00) (-1.81)

Volume (log) -0.008 -0.031 1.050*** -0.029 0.057 -0.069 0.283*** -0.705*** -0.469**
(-0.92) (-1.08) (4.50) (-0.28) (0.44) (-0.44) (5.12) (-3.95) (-2.61)

Return 0.032 -0.018 -0.001 -1.092*** 0.070 0.196 -0.662*** 0.759*** 0.715***
(1.22) (-1.21) (-0.00) (-5.15) (0.45) (0.74) (-5.67) (4.04) (5.25)

Observations 79404 79404 79404 79404 79404 79404 79404 79404 79404
Adj R2 0.001 0.000 0.010 0.022 0.002 0.002 0.021 0.015 0.010

Panel B: NON-Systematic flash crashes - Profits

PURE
CLIENT

PURE-
HFT
OWN

PURE-
HFT
MM

IB-HFT
MM

IB
CLIENTS

IB-HFT
OWN

IB-HFT
PARENT

NON-
HFT

CLIENT

NON-
HFT
OWN

Crash -0.008 0.055 0.042 -0.367** 0.138 0.410** -0.094** -0.355** 0.171
(-0.26) (0.70) (0.60) (-2.66) (1.05) (2.28) (-2.06) (-2.51) (1.38)

Perc. Spread -0.040** 0.105 0.354* -0.028 -0.029 0.016 0.002 -0.159 -0.218
(-2.17) (1.32) (1.72) (-0.26) (-0.17) (0.07) (0.05) (-0.84) (-1.48)

Volume (log) -0.004 0.055 0.476*** -0.114 -0.019 0.159* 0.066*** -0.655*** 0.034
(-0.47) (1.24) (4.03) (-1.67) (-0.19) (1.73) (2.86) (-3.75) (0.36)

Return 0.009 -0.019 0.071 0.076 -0.390 0.058 0.017 0.372 -0.194
(0.19) (-0.11) (0.36) (0.36) (-1.19) (0.16) (0.14) (1.09) (-0.92)

Observations 342032 342032 342032 342032 342032 342032 342032 342032 342032
Adj R2 0.001 0.001 0.006 0.003 0.002 0.001 0.002 0.003 0.001

Note. This table presents the estimates of the coefficients β
(j)
k from the regression equation 10 estimated for different trader groups

separately for systematic and non-systematic events. In this case, the dummy variable crash assumes the value of one for the entire
duration of the crash (from the pre-crash until the end of the recovery). In this case, the dependent variable is the profit calculated
for each 10-second interval, groos of fees and rebates. Perc. Spread is the percentage quoted spread, Volume is the log of the total
trading volume, Return is the stock return calculated for each 10-second interval. Non-dummy variables are standardized at stock
level. Coefficients of lagged variables are not reported for brevity. The panel regressions are estimated with stock fixed effects and
robust standard errors. t-statistics are in parenthesis. *p<0.1; **p<0.05; ***p<0.01.
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Figure 1. Trading Activity by trader category

Note. This figure displays the percentage of total double-counted volume (buy plus sell) averaged across stocks, for each trader
group, using the AMF flag for HFT and the account flag from the exchange. The sample is composed of 37 stocks traded on NYSE
Euronext Paris that belong to the CAC40 index, for the year 2013. Order flow and trade data are from BEDOFIH.
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Figure 2. An example of a crash event

Note. This figure reports the evolution of the price of Technip over a flash crash events on June 25, 2013, which is detected using the
methodology of Christensen, Oomen, and Renò (2022), but not detected by the extreme price movement approach of Brogaard et
al. (2018). The upper panel reports the time-series traded price sampled at the 10-seconds grid. The middle panel reports the drift
burst (DB) test statistics we use to detect flash crashes in our sample. The lower panel shows the basic test used to detect extreme
price movement (EPM), that is 10-second returns. Dashed-red lines in the figure represent 99.9% confidence bands.
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Figure 3. Temporal distribution of crash events in the data
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Note. This figure presents, for each of the 148 crash events which are analyzed in the empirical application, on the x axis, the time
of the crash start t0 (with a cross) and the time of the crash end t1 (with a circle) connected by a segment. The y axis report the
day of the year. For each crash, the ticker of the corresponding stock is also reported. Tickers are connected by a “+” sign when
the crash is simultaneous. The sample is composed of 37 stocks traded on NYSE Euronext Paris that belong to the CAC40 index,
for the year 2013. Order flow and trade data are from BEDOFIH.
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Figure 4. Average cumulative return dynamics during a crash event
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Note. This figure reports the average of the price evolution over systematic and non-systematic flash crash events, as well as the
10-90% quantiles for all the 148 events. The vertical lines separate the different periods in the evolution of the crash as labelled
in the figure and described in the text. The sample is composed of 37 stocks traded on NYSE Euronext Paris that belong to the
CAC40 index, for the year 2013. Order flow and trade data are from BEDOFIH.
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Figure 5. Average cumulative return dynamics during a Flash Crash

Panel A: Permanent vs. Transitory price impact Panel B: Crash price impact vs crash duration
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Note. This figure presents the permanent and transitory price impact. Panel A reports the scatter plot of the Transient Price Impact
(negative log-return from peak to end) with the Permanent Price Impact (log-return from beginning to end). Means and standard
deviations (in parenthesis) are reported for both systematic and non-systematic events. Panel B reports the scatter plot of the Crash
Price Impact (log-return from beginning to peak) with the duration of the crash. A longer duration implies a deeper crash. The
sample is composed of 37 stocks traded on NYSE Euronext Paris that belong to the CAC40 index, for the year 2013. Order flow
and trade data are from BEDOFIH.
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Figure 6. Liquidity measures during non-systematic flash crashes

Panel A: Signed volume. Panel B: Bid-ask spread.
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Panel C: Market depth. Panel D: Executed order age.
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Note. This figure reports four measures of liquidity averaged across non-systematic flash crash events considered in this study. Panel
A: cumulative signed monetary volume (negative volume = sell). Panel B: bid-ask spread. Panel C: market depth (difference from
beginning). Panel D: the age of the executed orders (we exclude orders with age less than 0.1 seconds and those coming from the
previous day). On each panel, we superimpose the average price evolution for visual comparison. The sample is composed of 37
stocks traded on NYSE Euronext Paris that belong to the CAC40 index, for the year 2013. Order flow and trade data are from
BEDOFIH.
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Figure 7. Volume per minute for initiated buyer and initiated seller trades (non-
systematic)

Panel A: buyer-initiated volume Panel B: seller-initiated volume
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Note. This figure depicts the average euro volume traded per minute during crash events, separated in buyer-initiated trades (Panel
A) and seller-initiated trades (Panel B). On each panel, we superimpose the average price evolution for visual comparison The sample
is composed of 37 stocks traded on NYSE Euronext Paris that belong to the CAC40 index, for the year 2013. Order flow and trade
data are from BEDOFIH.
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Figure 8. Average trading imbalance of different trading categories during a flash
crash
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Note. The figure reports the average monetary net imbalance (negative corresponding to selling, positive corresponding to buying)
of Investment Bank HFT Market Makers, IB CLIENT, IB-HFT OWN, and the sum of NON-HFT CLIENT and NON-HFT OWN.
We superimpose the average cumulative return during the events for visual comparison. In Panel A, the average is applied to
121 standalone, non-systematic events. In Panel B, the average is applied to the remaining 27 systematic events of April, 17 and
September 3. The sample is composed of 37 stocks traded on NYSE Euronext Paris that belong to the CAC40 index, for the year
2013. Order flow and trade data are from BEDOFIH.
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Figure 9. Average trading imbalance changes per minute

Panel A: NON-systematic flash crashes. Panel B: NON-systematic flash crashes.
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Panel C: systematic flash crashes. Panel D: systematic flash crashes.

0 10 20 30 40 50

Average elapsed time (minutes)

-100

-50

0

50

100

In
v
e

n
to

ry
 c

h
a

n
g

e
 p

e
r 

m
in

u
te

 (
th

o
u

s
a

n
d

s
 o

f 
E

u
ro

 p
e

r 
m

in
u

te
)

IB-HFT MM

Aggressive buy

Passive buy

Aggressive sell

Passive sell

Total inventory change

Aggressive selling

Liquidity supply

0 10 20 30 40 50

Average elapsed time (minutes)

-300

-200

-100

0

100

200

300

In
v
e

n
to

ry
 c

h
a

n
g

e
 p

e
r 

m
in

u
te

 (
th

o
u

s
a

n
d

s
 o

f 
E

u
ro

 p
e

r 
m

in
u

te
)

IB-HFT OWN

Aggressive buy

Passive buy

Aggressive sell

Passive sell

Total inventory change

Initial selling

Additional selling

Note. The figure displays the trading imbalance change per minute for IB-HFT Market Makers and IB-HFT Owners. separated in
buyer initiated, seller initiated, buyer passive and seller passive trades. Only non-systematic events are averaged. Panel A and B
report averages for non-systematic flash crashes. Panel C and D report averages for systematic flash crashes. The y-units are not
uniform across different trader categories. Back-running in Panel A refers to the theory of Yang and Zhu (2020). The sample is
composed of 37 stocks traded on NYSE Euronext Paris that belong to the CAC40 index, for the year 2013. Order flow and trade
data are from BEDOFIH.
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Figure 10. Monetary net imbalances changes per minute of systematic events

Column A: IB-HFT MM Column B: IB-HFT OWN
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Note. The figure depicts the empirical distribution of monetary net imbalances for IB-HFT MM and IB-HFT OWN at different
stages of the crash for systematic events. Column A is for IB-HFT MM. Column B is for IB-HFT OWN. We can see that IB-HFT
MM sell more intensely as price declines. In particular, during the late phase of the crash, they are always selling. The sample is
composed of 37 stocks traded on NYSE Euronext Paris that belong to the CAC40 index, for the year 2013. Order flow and trade
data are from BEDOFIH.
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Figure 11. The distribution of selling pressure.
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m based on the pooled (over all days stocks and one-minute grid-points) data and based

on the measures corresponding to the grid-points which belong to a crash period (pooled over all days stocks and flash crashes).
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Figure 12. Inventory changes during flash crashes and high selling pressure episodes.

Column A: High selling pressure, Column B: Systematic Column C: Non-systematic

no flash crashes flash crashes flash crashes

Note. Distribution of the inventory changes of NON-HFT, IB-HFT MM and PURE-HFT MM during high selling pressure episodes.
Column A shows the the distribution conditional on the absence a flash crash. Columns B and C corresponds to the intervals of
high selling pressure coinciding with respectively systematic and non-systematic flash crashes.
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Figure 13. Cancellations and new orders volume by trader category (non-
systematic)

Panel A: cancellations Panel B: new orders
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Note. This figure displays the average per minute euro volume of cancelled orders (Panel A) and new orders (Panel B). On each
panel, we superimpose the average price evolution for visual comparison. The sample is composed of 37 stocks traded on NYSE
Euronext Paris that belong to the CAC40 index, for the year 2013. Order flow and trade data are from BEDOFIH.
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Figure 14. Average Estimated Impulse Response Functions

Column A: NON-systematic flash crashes Column B: Systematic flash crashes.
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Note. The figure shows impulse response functions of the changes of mid-price on unit shocks in the changes of the average between
best bid and best ask of different trader groups, for non-systematic (Column A) and systematic (Column B) events, in four different
phases of the crash/recovery. Impulse response functions are estimated using the local projection methodology developed by Jordà
(2005).
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Appendix

A A comparison with the EPM method

In Brogaard, Carrion, Moyaert, Riordan, Shkilko, and Sokolov (2018), distress events are

mainly identified using Extreme Price Movements (EPMs). EPMs are detected with one of the

following methods. The first methods simply labels all 10-second intervals that belong to the

99.9th percentile of 10-second absolute midpoint returns for each stock as EPMs. The second

method identifies EPMs based on the residuals from the return autoregression. We apply the

same methodology to our data set.

Table A.1 compares the identified (negative) EPMs with the flash crashes detected using our

methodology. On average, for each stock, both EPM detection methods label 0.05% of 10-seconds

intervals as EPMs. However, only a little fraction of our flash crashes is identified as EPMs: the

first method detects roughly 26.35% of flash crashes, while the second one – only 18.92%. The

pure power of the EPM approach is rather natural, as the typical flash crash episodes are not

exhausted by a few large price movements, but represent a “dense” series of different magnitude

price changes leaning to the same direction. On the other hand, EPM approach exhibit a large

number of false-positives due to oversampling periods of high volatility, as also admitted by the

authors. Summarizing, we compute that the overlap between flash crashes and EPMs is limited,

and thus that our distressed sample is different from that analyzed by Brogaard et al. (2018).

Figure A.1 is the same as Figure 4, now computed with events identified with EPMs. While

there is a slight evidence of extreme price movement, on average, it is clear that EPMs are

not capturing the V-shapes of a flash crash. The Figure makes clear that EPMs look more at

“volatility”-induced price changes, while our methodology looks more at “drift”-induced price

changes. This explaines why the two samples identified by EPMs and the flash crash test of

Christensen, Oomen, and Renò (2022) are substantially different.

51



Table A.1 Compares detected EPMs and flash crashes

# of EPMs per stock Detected flash crashes

First method 286.48 (0.05%) 39 (26.35%)
Second method 282.19 (0.05%) 28 (18.92%)

Note. This table reports in the first column the average (across stocks) number of EPMs detected in a single stock in absolute value
and as a fraction (per cent) of the total number of the 10-second returns in our sample. The second column reports the number
of our flash crashes episodes identified as EPMs according to the methodology presented by Brogaard, Carrion, Moyaert, Riordan,
Shkilko, and Sokolov (2018). The sample is composed of 37 stocks traded on NYSE Euronext Paris that belong to the CAC40 index,
for the year 2013. Order flow and trade data are from BEDOFIH.

Figure A.1. Average cumulative return dynamics around an Extreme Price Move-
ment.
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Note. This figure reports the average of the price evolution around extreme price movements (EMPs), as well as the 10-90%
quantiles for all the events. The EPMs are detected detected by labelling the 10-second intervals that belong to the 99.9th percentile
of 10-second absolute midpoint returns for each stock as EPMs over the full year for each stock.
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B Supplementary statistical assessment and robustness

checks

This section contains additional statistical assessments of the trading behavior of all trading

categories during a flash crash. Having 148 different crash events allows us to assess whether what

we observe is statistically significant, i.e. that the observed trading behavior are precise trading

strategies which are constantly implemented, and not the artifact of statistical fluctuations.

Table B.1 reports the cross-sectional average and standard deviation of net trade imbalances

I(j)
period in the five different periods of a flash crash, for the trading categories for which this

number is non-negligible and divided into systematic and non-systematic flash crashes. In order

to separate liquidity provision from aggressive trading, we analyze the monetary imbalances,

invested by a trader who is initiating a trade separately from the money invested when providing

liquidity (I(i),init
period and I(j),liq

period, respectively). The aim of this analysis is to investigate whether the

net imbalance is due to a low activity (i.e. low initiated trading and low liquidity provision) or

to a significant large activity (i.e. high initiated trading and high liquidity provision). To add

information with respect to Table B.1, we now report net imbalance per minute, to measure

the intensity of accumulated inventory. This also allows to compare fairly among periods with

different duration.

Substantial heterogeneity emerges in the behavior of trader groups. PURE-HFTs do not

accumulate any significant inventory during the crash, which is consistent with their trading

mandate. The only exception is the liquidity they provide to recovery for non-systematic events.

However, they do not stop trading, as concluded in Kirilenko, Kyle, Samadi, and Tuzun (2017)

by looking at the Flash Crash of May 6, 2010 only. This result also complements the findings

in Bellia (2017), who instead shows that in “normal” market periods, PURE-HFT MM activity

improves market liquidity significantly. This conclusion does not hold anymore in distressed

times.

Regarding the remaining HFT categories, IB-HFTs, we observe more heterogeneity. The

imbalance of IB-HFT OWN is largely negative across the whole crash, consistent with their role

of big sellers, and selling is particularly massive and prolonged during non-systematic events.
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IB CLIENT are also net sellers, but they follow IB-HFT OWN and mostly sell in the late

crash for non-systematic events, while their net inventory is non-significant during systematic

events. This shows that informed trading seems to originate from the IB-HFT OWN, and then

propagates to the IB CLIENT. The attempt of clients to profit from the information coming

from owners generates the big part of the second wave of selling which, in a liquidity deprived

market, contributes to the transient price impact crash.

Regarding IB-HFT MM, the table shows that they do provide significant liquidity during

the price drop and (mildly) during price recovery, but only for non-systematic events. However,

the liquidity they provide is not sufficient to prevent the transitory price impact. For systematic

events, they are significant big sellers along all stages. They also increase their net inventory

as the IB-HFT OWN decrease their selling pressure. In the late phase of the crash and during

recovery, they are the largest sellers. This is the main result of the paper and is shown here to

be strongly statistically significant. IB-HFT Parents are also particularly active in becoming big

sellers in the late phase of the crash. Analyzing the flash crash of May 6, 2010, Menkveld and

Yueshen (2019) argue that it has been caused by large investors. However, they do not provide

information on whether large investors employ HFTs or NON-HFTs for placing their orders,

whether they split their orders or not, the reason why large investors sell, and whether large

investors are the investment banks or the clients on their accounts, nor they clarify the role of

market makers in providing liquidity during the crash. Our analysis supplies this information.

Importantly, Table B.1 also shows that NON-HFTs play an important role in reducing the

negative effects of the crash and in helping the price recovery afterwards. The trade imbalance

of NON-HFT CLIENT is positive and highly significant during both price drop and recovery,

and especially for systematic events, where they play the role of liquidity providers in place of

the market makers. Their net inventory becomes increasingly positive as the crash develops and

then price recovers. NON-HFT OWN instead contribute mildly to the non-systematic crashes,

while they also become significant net liquidity providers in the late phase of systematic crash.

Table B.2 provides the estimates of the panel regression model 10 for all trader groups. The

results, which integrates Table 3 are qualitatively similar to the one presented in Table B.1.

Table B.3 reports the estimation of the panel model using the aggressive trades only as
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dependend variable (I(i),init
period ) by different trader categories at different stages of a flash crash,

divided for systematic and non-systematic crashes. In addition to what has been presented in

Section 4.3, we highlight that for systematic events, PURE-HFT MM (in the initial stage) and

IB-HFT PARENT (in the intermediate stage) are contributing to the build-up of the flash crash,

while for NON-systematic also NON-HFTs plays a role, together with IB CLIENTS.

Table B.4 complements Table B.3 by showing the liquidity provision trades, which is the flip

side of the aggressive order. NON-HFT Clients are the big liquidity suppliers, especially in the

late crash phase and especially for systematic crashes. The fact that they provide liquidity is

always significant. The second-best liquidity supplier during the late phase of systematic crashes

are NON-HFT OWN. IB-HFT MM provide significant liquidity only for non-systematic events.

They are the first liquidity providers in the initial phase of the crash, which is in line with their

contractual role. As the crash develops, their relative role as liquidity providers declines, and in

the late phase of non-systematic crash they are even surpassed by NON-HFT CLIENT. As said,

they do not provide any liquidity through limit orders during systematic crashes. PURE-HFT

MM are mildly significant as liquidity providers for NON-systematic events, but the net amount

is small compared to other trader groups. Overall, Table B.4 confirms and complements the

previous finding on categorized traders activity during flash crashes.
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Table B.1 Average trade imbalances (ke).

Panel A: Systematic flash crashes.
pre-crash early crash intermediate crash late crash recovery

PURE CLIENT −1.11 0.00 6.17 10.90 13.12
(1.11) (0.00) (5.80) (10.90) (8.83)

PURE-HFT MM 44.55 −4.67 −26.43 −17.27 137.12
(31.31) (31.34) (28.10) (34.33) (84.56)

PURE-HFT OWN −20.02 3.34 18.98 4.46 −3.83
(14.97) (2.57) (12.33) (9.26) (7.36)

IB CLIENT 28.58 52.73 27.81 −24.47 63.41
(32.60) (72.55) (46.09) (72.98) (63.21)

IB-HFT MM −127.32∗∗∗ −105.36∗∗ −117.98∗∗∗ −274.55∗∗∗ −491.03∗∗∗

(34.88) (44.97) (39.24) (49.16) (94.87)
IB-HFT OWN −94.98 −168.84∗ −265.59∗∗∗ −59.06 165.76

(67.02) (88.80) (90.44) (85.93) (206.97)
IB-HFT PARENT −53.57∗∗ −1.52 −86.08∗∗∗ −224.09∗∗∗ −197.01∗∗∗

(23.23) (19.36) (31.48) (60.60) (56.69)
NON-HFT CLIENT 195.74∗∗ 226.00∗∗∗ 308.02∗∗∗ 372.75∗∗∗ 74.32

(91.39) (74.38) (72.49) (83.01) (85.02)
NON-HFT OWN 28.09 27.46 134.87∗ 209.58∗∗∗ 194.80∗∗

(39.45) (35.85) (74.83) (65.23) (97.68)

Panel B: NON-systematic flash crashes.

pre-crash early crash intermediate crash late crash recovery

PURE CLIENT 5.93 −4.80 15.44∗∗ 4.38 −1.44
(8.49) (8.14) (7.20) (11.07) (19.64)

PURE-HFT MM −37.96 27.01 −12.64 −0.80 −108.51∗∗∗

(23.72) (17.03) (13.15) (20.07) (29.86)
PURE-HFT OWN −28.41 2.55 5.27 4.91 27.89

(30.68) (5.31) (4.20) (4.62) (18.84)
IB CLIENT −84.77∗∗ −39.52∗ −58.51∗∗∗ −137.66∗∗∗ −57.33

(35.12) (22.36) (20.48) (36.75) (88.78)
IB-HFT MM 93.29∗∗∗ 143.54∗∗∗ 85.04∗∗∗ 127.89∗∗∗ −55.14

(24.16) (29.56) (16.29) (20.01) (42.87)
IB-HFT OWN −16.27 −117.70∗∗ −31.21 −73.52 −86.56

(53.84) (49.69) (30.65) (52.83) (132.57)
IB-HFT PARENT 3.79 13.85 19.17∗∗ 42.87∗∗∗ −20.73

(14.37) (9.29) (9.35) (10.67) (52.54)
NON-HFT CLIENT 87.81∗ 38.79∗∗ 31.60∗ 107.58∗∗∗ 309.31∗∗∗

(50.25) (19.62) (19.00) (35.08) (104.48)
NON-HFT OWN −23.45 −63.92∗∗ −54.14∗∗ −73.83∗∗∗ −1.02

(25.18) (28.09) (27.34) (28.41) (58.19)

Note. This table reports the cross-sectional average, and standard errors in brackets, of the trade imbalances measured in ke, in the
five different periods of the crash described in Figure 4. Panel A: reports averages on the 27 flash crashes which happen in several
stocks on April 17 and September 3, 2013. Panel B: reports averages on all the other flash crashes.The significance of the mean is
evaluated with a standard t-test. *p<0.1; **p<0.05; ***p<0.01 The sample is composed of 37 stocks traded on NYSE Euronext
Paris that belong to the CAC40 index, for the year 2013. Order flow and trade data are from BEDOFIH.
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Table B.2 Trading imbalances during flash crashes - All trader groups

Panel A: Systematic flash crashes

PURE
CLIENT

PURE-
HFT
OWN

PURE-
HFT
MM

IB-HFT
MM

IB
CLIENTS

IB-HFT
OWN

IB-HFT
PARENT

NON-
HFT

CLIENT

NON-
HFT
OWN

Pre-crash -0.005 -0.017 0.016 -0.010 0.019 -0.024 -0.010 0.039* -0.017
(-0.91) (-0.94) (0.89) (-0.46) (1.14) (-1.23) (-0.56) (1.95) (-1.09)

Early crash 0.001 0.012 -0.053 0.002 0.049 -0.155** 0.022 0.303*** -0.139
(0.14) (0.78) (-1.16) (0.02) (0.56) (-2.15) (0.31) (3.37) (-1.03)

Interm. crash 0.061 0.132* -0.108** -0.183 0.141 -0.364*** -0.254* 0.460*** 0.151
(1.27) (1.98) (-2.73) (-1.59) (1.15) (-3.82) (-1.91) (2.94) (0.90)

Late crash 0.131 0.155 -0.047 -0.395** -0.003 -0.089 -0.705*** 0.505*** 0.221**
(1.04) (1.62) (-0.65) (-2.66) (-0.04) (-0.92) (-4.49) (3.08) (2.76)

Recovery 0.017 -0.010 0.017 -0.043** -0.015 0.027 -0.045** 0.018 0.010
(1.65) (-0.83) (0.70) (-2.27) (-0.83) (1.33) (-2.65) (1.68) (0.53)

Perc. Spread -0.004 0.005 0.007 -0.007 0.003 -0.004 0.003 -0.006 0.012
(-1.12) (0.79) (0.70) (-0.57) (0.31) (-0.69) (0.46) (-0.79) (1.68)

Volume (log) 0.011** 0.006 -0.022 -0.143*** 0.047*** -0.022 -0.102*** 0.061** 0.074***
(2.42) (1.30) (-1.29) (-11.19) (3.04) (-1.34) (-8.23) (2.54) (2.92)

Return -0.000 0.018*** 0.031 -0.075*** 0.030* 0.007 0.055*** -0.028** -0.019*
(-0.00) (3.52) (1.18) (-3.76) (1.97) (0.65) (5.20) (-2.73) (-1.97)

Observations 79404 79404 79404 79404 79404 79404 79404 79404 79404
Adj R2 0.032 0.003 0.005 0.067 0.029 0.020 0.025 0.029 0.030

Panel B: NON-Systematic flash crashes

PURE
CLIENT

PURE-
HFT
OWN

PURE-
HFT
MM

IB-HFT
MM

IB
CLIENTS

IB-HFT
OWN

IB-HFT
PARENT

NON-
HFT

CLIENT

NON-
HFT
OWN

Pre-crash 0.022 0.006 -0.008 0.031** -0.019 -0.011 0.014** 0.027 -0.009
(1.25) (0.44) (-0.89) (2.69) (-1.53) (-1.17) (2.18) (1.66) (-0.72)

Early crash 0.004 0.073*** 0.071 0.294*** -0.018 -0.136** 0.075** 0.043 -0.104*
(0.07) (3.03) (1.37) (3.37) (-0.49) (-2.41) (2.16) (1.13) (-1.73)

Interm. crash 0.199*** 0.020 -0.034 0.186*** -0.087* -0.047 0.112*** 0.012 -0.046
(2.84) (0.54) (-0.88) (4.30) (-1.90) (-1.19) (4.47) (0.29) (-1.08)

Late crash 0.122 0.028 0.002 0.241*** -0.267*** 0.012 0.220*** 0.106 -0.142***
(1.26) (0.57) (0.04) (3.31) (-3.95) (0.15) (5.30) (1.62) (-2.76)

Recovery 0.007 0.015 -0.025** -0.009 -0.017 -0.017 0.005 0.054*** -0.009
(0.48) (1.35) (-2.46) (-0.54) (-0.91) (-0.82) (0.40) (3.32) (-0.61)

Perc. Spread 0.005 0.013** 0.002 0.006 0.001 -0.009* 0.005 -0.003 -0.001
(0.92) (2.58) (0.48) (1.18) (0.16) (-1.81) (0.97) (-0.60) (-0.15)

Volume (log) 0.008 0.004 -0.018** 0.025* -0.026* 0.008 -0.019*** 0.016 -0.005
(1.18) (0.61) (-2.50) (1.94) (-1.78) (0.57) (-2.95) (0.93) (-0.45)

Return 0.012 0.012 0.021 -0.188*** 0.031*** 0.012 0.023** 0.002 0.024***
(1.49) (1.28) (1.42) (-11.01) (3.78) (1.16) (2.52) (0.18) (3.06)

Observations 342032 342032 342032 342032 342032 342032 342032 342032 342032
Adj R2 0.008 0.005 0.002 0.055 0.038 0.023 0.014 0.02 0.023

Note. This table presents the estimates of the coefficients β
(j)
k of the crash phase dummies from the regression equation 10 estimated

for different trader groups separately for systematic and non-systematic events. Perc. Spread is the percentage quoted spread,
Volume is the log of the total trading volume, Return is the stock return calculated for each 10-second interval. Non-dummy
variables are standardized at stock level. Coefficients of lagged variables are not reported for brevity. The panel regressions are
estimated with stock fixed effects and robust standard errors. t-statistics are in parenthesis. *p<0.1; **p<0.05; ***p<0.01.
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Table B.3 Trading imbalances during flash crashes - Aggressive trades

Panel A: Systematic flash crashes - Aggressive trades

PURE
CLIENT

PURE-
HFT
OWN

PURE-
HFT
MM

IB-HFT
MM

IB
CLIENTS

IB-HFT
OWN

IB-HFT
PARENT

NON-
HFT

CLIENT

NON-
HFT
OWN

Pre-crash 0.018* -0.000 0.045** 0.041*** 0.030 0.023 -0.002 0.036** 0.010
(1.96) (-0.03) (2.36) (3.04) (1.49) (1.51) (-0.14) (2.32) (0.66)

Early crash -0.006 0.007 -0.083* 0.075 -0.072 -0.184* 0.010 0.106*** -0.161
(-0.23) (0.24) (-1.95) (0.73) (-0.96) (-2.02) (0.15) (3.08) (-1.06)

Interm. crash 0.063 0.098* -0.060 -0.055 -0.023 -0.353*** -0.285** 0.068 -0.036
(1.22) (1.84) (-1.64) (-0.45) (-0.54) (-3.70) (-2.13) (1.08) (-0.46)

Late crash 0.118*** 0.201*** 0.192** -0.306** -0.118 -0.071 -0.507*** 0.072 0.216***
(3.98) (2.87) (2.79) (-2.22) (-1.43) (-0.92) (-3.34) (0.94) (3.12)

Recovery -0.022 -0.023* 0.014 -0.074*** -0.038** -0.032** -0.046** -0.010 -0.029
(-1.42) (-1.75) (0.53) (-4.32) (-2.69) (-2.56) (-2.83) (-0.61) (-1.27)

Perc. Spread 0.001 0.002 0.018* 0.010 0.007 0.010* 0.009 -0.010 0.021**
(0.19) (0.26) (1.88) (0.94) (0.61) (1.88) (1.21) (-1.22) (2.46)

Volume (log) 0.005 -0.000 -0.010 -0.108*** -0.003 -0.065*** -0.086*** 0.005 0.043***
(1.16) (-0.04) (-0.73) (-9.62) (-0.24) (-3.75) (-9.53) (0.30) (3.33)

Return 0.073*** 0.075*** 0.248*** 0.179*** 0.125*** 0.118*** 0.116*** 0.088*** 0.065***
(8.77) (10.13) (16.07) (10.79) (5.98) (11.23) (12.26) (9.18) (8.67)

Observations 79404 79404 79404 79404 79404 79404 79404 79404 79404
Adj R2 0.010 0.012 0.086 0.081 0.041 0.039 0.036 0.017 0.017

Panel B: NON Systematic flash crashes - Aggressive trades

PURE
CLIENT

PURE-
HFT
OWN

PURE-
HFT
MM

IB-HFT
MM

IB
CLIENTS

IB-HFT
OWN

IB-HFT
PARENT

NON-
HFT

CLIENT

NON-
HFT
OWN

Pre-crash -0.003 -0.005 -0.007 0.004 -0.024** -0.017* 0.005 -0.008 -0.006
(-0.30) (-0.38) (-0.69) (0.43) (-2.22) (-2.03) (0.59) (-0.86) (-1.02)

Early crash -0.013 0.039 0.023 -0.032 -0.080* -0.160*** 0.059 -0.063** -0.110**
(-0.30) (1.49) (0.50) (-1.06) (-1.95) (-2.87) (1.64) (-2.05) (-2.18)

Interm. crash 0.060* 0.003 0.010 0.042 -0.118** -0.053 0.090*** -0.055* -0.055
(1.76) (0.11) (0.23) (1.13) (-2.25) (-1.53) (2.91) (-1.89) (-1.29)

Late crash 0.022 0.048 0.052 0.027 -0.342*** -0.052 0.203*** -0.187*** -0.165***
(0.57) (1.26) (1.10) (0.50) (-4.76) (-0.71) (4.73) (-3.35) (-3.45)

Recovery 0.009 0.010 -0.015 -0.012 -0.024 -0.036* 0.001 0.037* -0.003
(0.59) (0.82) (-1.40) (-0.95) (-1.46) (-1.89) (0.05) (1.93) (-0.27)

Perc. Spread 0.005 0.010* 0.001 0.006 0.008 -0.006 0.009* -0.007 0.004
(1.17) (1.86) (0.18) (1.24) (1.22) (-1.02) (1.89) (-1.16) (0.53)

Volume (log) -0.007 -0.009 -0.021*** -0.012 -0.033*** -0.015* -0.020*** -0.015 -0.014
(-1.06) (-1.53) (-3.33) (-1.51) (-2.86) (-1.78) (-3.62) (-1.36) (-1.47)

Return 0.087*** 0.091*** 0.238*** 0.142*** 0.161*** 0.199*** 0.113*** 0.173*** 0.117***
(13.03) (9.21) (22.62) (11.92) (19.21) (24.08) (18.24) (25.79) (14.44)

Observations 342032 342032 342032 342032 342032 342032 342032 342032 342032
Adj R2 0.008 0.010 0.054 0.028 0.048 0.049 0.018 0.034 0.028

Note. This table presents the estimates of the coefficients β
(j)
k of the crash phase dummies from the regression equation 10 estimated

for different trader groups separately for systematic and non-systematic events. For these models, the dependent variables are the
aggressive trades only (trades that take liquidity from the market) Perc. Spread is the percentage quoted spread, Volume is the log
of the total trading volume, Return is the stock return calculated for each 10-second interval. Non-dummy variables are standardized
at stock level. Coefficients of lagged variables are not reported for brevity. The panel regressions are estimated with stock fixed
effects and robust standard errors. t-statistics are in parenthesis. *p<0.1; **p<0.05; ***p<0.01.
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Table B.4 Trading imbalances during flash crashes - Passive trades

Panel B: Systematic flash crashes - Passive trades

PURE
CLIENT

PURE-
HFT
OWN

PURE-
HFT
MM

IB-HFT
MM

IB
CLIENTS

IB-HFT
OWN

IB-HFT
PARENT

NON-
HFT

CLIENT

NON-
HFT
OWN

Pre-crash -0.028** -0.036* -0.032** -0.047* -0.006 -0.055* -0.010 0.026 -0.030
(-2.46) (-1.97) (-2.27) (-1.74) (-0.38) (-2.03) (-0.91) (1.19) (-1.45)

Early crash -0.002 0.005 0.020 -0.062 0.073 -0.008 0.039 0.300** -0.013
(-0.06) (0.15) (0.50) (-1.69) (0.82) (-0.12) (1.27) (2.71) (-0.34)

Interm. crash -0.023 0.073 -0.090* -0.177** 0.166 -0.055 -0.022 0.518*** 0.258
(-0.39) (0.76) (-1.75) (-2.31) (1.09) (-1.27) (-0.45) (3.13) (1.40)

Late crash -0.029 -0.133*** -0.298*** -0.308** 0.053 -0.025 -0.350*** 0.559*** 0.140
(-0.26) (-3.75) (-3.67) (-2.65) (0.57) (-0.28) (-3.91) (2.97) (1.47)

Recovery 0.029* 0.012 0.005 -0.010 0.005 0.080** -0.015 0.033** 0.036**
(1.81) (0.67) (0.56) (-0.48) (0.22) (2.75) (-0.96) (2.36) (2.23)

Perc. Spread -0.001 0.000 -0.012 -0.015 -0.003 -0.020*** -0.009* 0.002 -0.001
(-0.12) (0.01) (-1.34) (-1.32) (-0.89) (-3.61) (-1.99) (0.26) (-0.15)

Volume (log) 0.001 0.010 -0.017* -0.089*** 0.066*** 0.049*** -0.042** 0.069*** 0.061**
(0.18) (1.28) (-1.74) (-7.59) (3.90) (2.95) (-2.62) (3.36) (2.34)

Return -0.084*** -0.073*** -0.266*** -0.226*** -0.077*** -0.134*** -0.076*** -0.099*** -0.073***
(-10.46) (-8.06) (-14.00) (-11.96) (-9.11) (-11.30) (-8.21) (-8.10) (-6.47)

Observations 79404 79404 79404 79404 79404 79404 79404 79404 79404
Adj R2 0.010 0.012 0.086 0.081 0.041 0.039 0.036 0.017 0.017

Panel B: NON-Systematic flash crashes - Passive trades

PURE
CLIENT

PURE-
HFT
OWN

PURE-
HFT
MM

IB-HFT
MM

IB
CLIENTS

IB-HFT
OWN

IB-HFT
PARENT

NON-
HFT

CLIENT

NON-
HFT
OWN

Pre-crash 0.022 0.004 -0.008 0.033** -0.010 0.004 0.018*** 0.037** -0.011
(1.17) (0.25) (-0.77) (2.70) (-0.79) (0.42) (2.81) (2.17) (-0.74)

Early crash 0.007 0.026 0.084** 0.352*** 0.059 0.004 0.042 0.086** -0.039
(0.19) (1.30) (2.20) (4.11) (1.57) (0.13) (1.21) (2.26) (-0.90)

Interm. crash 0.150* 0.004 -0.068** 0.194*** -0.030 0.012 0.064* 0.049 -0.013
(1.92) (0.15) (-2.56) (4.40) (-0.94) (0.39) (1.80) (0.99) (-0.43)

Late crash 0.055 -0.015 -0.077* 0.242*** -0.017 0.089 0.077*** 0.251*** -0.034
(0.81) (-0.59) (-1.81) (3.27) (-0.37) (1.47) (3.19) (3.59) (-0.61)

Recovery -0.005 0.007 -0.023*** -0.006 -0.009 0.013 0.012 0.039*** -0.006
(-0.68) (0.65) (-2.81) (-0.35) (-0.49) (0.60) (1.37) (2.76) (-0.43)

Perc. Spread -0.004 0.004 0.001 0.003 -0.006 -0.003 -0.003 0.003 -0.007
(-1.07) (0.85) (0.11) (0.63) (-0.98) (-0.57) (-0.49) (0.62) (-1.25)

Volume (log) 0.014** 0.013** -0.002 0.036*** -0.000 0.024** -0.008 0.034** 0.008
(2.59) (2.07) (-0.24) (3.09) (-0.00) (2.15) (-0.89) (2.36) (0.87)

Return -0.082*** -0.086*** -0.299*** -0.311*** -0.111*** -0.207*** -0.117*** -0.129*** -0.077***
(-12.32) (-7.54) (-27.19) (-28.41) (-10.32) (-20.93) (-11.69) (-11.15) (-10.14)

Observations 342032 342032 342032 342032 342032 342032 342032 342032 342032
Adj R2 0.008 0.009 0.081 0.104 0.034 0.058 0.021 0.040 0.021

Note. This table presents the estimates of the coefficients β
(j)
k of the crash phase dummies from the regression equation 10 estimated

for different trader groups separately for systematic and non-systematic events. For these models, the dependent variables are the
passive trades only (trades that provide liquidity to the market) Perc. Spread is the percentage quoted spread, Volume is the log of
the total trading volume, Return is the stock return calculated for each 10-second interval. Non-dummy variables are standardized
at stock level. The panel regressions are estimated with stock fixed effects and robust standard errors. t-statistics are in parenthesis.
*p<0.1; **p<0.05; ***p<0.01.
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C Change of trading behavior

This section addresses the question of whether HFTs change their trading behavior during

flash crashes by estimating the Kirilenko, Kyle, Samadi, and Tuzun (2017) model for inventory

changes of different trader groups. Kirilenko, Kyle, Samadi, and Tuzun (2017) answered in the

negative by using data from the flash crash of May 6, 2010 only. We instead answer in the

positive, and this is made possible by the fact that we analyze 148 crashes instead of a single

one.

The model reads:

∆yt =α + φ∆yt−1 + δyt−1 +
3∑
i=0

βi(∆ log p)t−i

+DD

(
αD + φD∆yt−1 + δDyt−1 +

3∑
i=0

βDi (∆ log p)t−i

)

+DU

(
αU + φU∆yt−1 + δUyt−1 +

3∑
i=0

βUi (∆ log p)t−i

)
+ εt,

(13)

where DD is a dummy which is activated during the crash period (from tstart to tcrash, according

to our definitions), DU is a dummy which is activated during the recovery period (from tcrash

to tend), yt is the net inventory of each category (measured in million euros and starting at the

beginning of each day) at time t, and ∆yt is the change in inventory over the period from t−1 to

t; (∆ log p)t is the logarithmic return of mid-prices from t− 1 to t.17 We estimate model (13) for

each day in which one of the 148 crash events occurs, and for each trading category separately.

The inventories and prices are recorded on grids of 10 seconds. Significance of the variables

associated with the crash (recovery period) would imply a different trading behavior during that

phase. Average coefficients, together with their associated t-statistic (robustified to account for

heteroskedasticity using the White correction) are reported in Table C.1 for non-systematic flash

crashes, and Table C.2 for systematic flash crashes.18

17The model here is slightly modified with respect to Kirilenko, Kyle, Samadi, and Tuzun (2017). Specifically,
we use 3 ten-seconds lags (instead of 20 one-second lags) and we regress on logarithmic returns instead of price
changes, since we consider different stocks and days and we need to guarantee uniformity across different price
levels.

18To compute the t-statistic on average coefficients, we assume that coefficient estimates are independent across
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Table C.1 Non-systematic flash crashes

PURE-HFT PURE-HFT IB-HFT IB-HFT IB NONHFT NONHFT
MM OWN MM OWN CLIENT CLIENT OWN

constant −0.000∗∗∗ 0.000 0.000∗ 0.000 −0.000∗∗∗ 0.000 0.000
(−4.62) (0.73) (1.74) (1.09) (−4.85) (1.22) (1.34)

∆yt−1 0.004 0.029∗∗∗ 0.065∗∗∗ 0.091∗∗∗ 0.099∗∗∗ 0.081∗∗∗ 0.080∗∗∗

(1.15) (3.73) (15.01) (19.59) (13.81) (14.70) (8.35)
yt−1 −0.002∗∗∗ −0.001 0.000 0.000 −0.000 −0.001∗∗∗ −0.000

(−13.82) (−1.37) (0.91) (1.12) (−0.77) (−7.44) (−1.55)
∆pt 0.181∗∗∗ 0.002 −0.227∗∗∗ −0.064∗∗ 0.050 −0.107∗∗∗ 0.061∗∗∗

(11.34) (0.13) (−14.12) (−2.37) (1.60) (−3.99) (2.61)
∆pt−1 −0.086∗∗∗ −0.020∗∗ 0.030∗∗∗ 0.097∗∗∗ 0.018 −0.054∗∗∗ 0.020

(−9.13) (−2.22) (3.82) (5.24) (1.39) (−2.88) (1.20)
∆pt−2 −0.041∗∗∗ −0.008 −0.011∗ 0.003 0.039∗∗∗ −0.004 0.004

(−4.79) (−1.06) (−1.75) (0.13) (3.81) (−0.20) (0.28)
∆pt−3 −0.050∗∗∗ −0.003 −0.011∗ 0.045∗∗∗ 0.025∗∗ −0.012 −0.006

(−5.84) (−0.49) (−1.74) (2.93) (2.34) (−0.73) (−0.30)
DD*constant −0.000 0.000 0.001∗∗∗ 0.001 0.003 0.006∗∗∗ −0.000

(−0.26) (0.27) (4.47) (0.81) (0.86) (2.90) (−0.21)
DD∆yt−1 −0.029∗ −0.063∗∗ −0.076∗∗∗ −0.051∗∗∗ −0.040∗ −0.061∗∗∗ −0.032

(−1.87) (−2.08) (−4.37) (−3.04) (−1.85) (−3.85) (−1.37)
DDyt−1 −0.092∗∗∗ −0.047∗∗∗ −0.040∗∗∗ −0.061∗∗∗ −0.035∗∗∗ −0.027∗∗∗ −0.036∗∗∗

(−9.86) (−3.22) (−7.38) (−7.68) (−4.35) (−3.73) (−4.88)
DD∆pt 0.045 0.012 −0.676∗∗∗ 1.034∗∗∗ 0.076 −0.834∗∗∗ 0.205∗

(0.47) (0.14) (−7.47) (7.04) (0.63) (−4.45) (1.91)
DD∆pt−1 −0.063 0.068 −0.088 −0.282∗∗ 0.148 0.001 0.307∗∗∗

(−0.91) (1.40) (−1.40) (−2.36) (1.48) (0.00) (2.70)
DD∆pt−2 0.014 0.059 0.040 0.085 0.095 0.030 −0.084

(0.25) (1.49) (0.79) (0.80) (1.06) (0.28) (−1.07)
DD∆pt−3 0.054 0.025 −0.113∗∗ −0.164∗ 0.046 −0.045 0.127∗

(0.91) (0.60) (−2.20) (−1.74) (0.59) (−0.48) (1.73)
DU*constant −0.001∗ −0.001∗ 0.003∗∗∗ 0.001 −0.003∗∗ 0.003∗∗∗ −0.001∗∗∗

(−1.78) (−1.94) (6.70) (0.82) (−2.35) (2.96) (−3.68)
DU∆yt−1 −0.019 0.042∗ −0.043∗∗∗ −0.037∗∗∗ −0.013 −0.022 −0.029

(−1.60) (1.66) (−3.05) (−2.83) (−0.82) (−1.59) (−1.27)
DUyt−1 −0.052∗∗∗ −0.071∗∗∗ −0.054∗∗∗ −0.047∗∗∗ −0.033∗∗∗ −0.036∗∗∗ −0.037∗∗∗

(−12.37) (−5.59) (−9.18) (−11.21) (−9.89) (−8.67) (−6.37)
DU∆pt −0.303∗∗∗ 0.226∗∗ −0.222∗∗∗ 0.167∗ −0.107 0.424∗∗∗ −0.101

(−4.99) (2.10) (−4.30) (1.84) (−1.40) (3.67) (−1.45)
DU∆pt−1 0.090∗∗ 0.023 −0.058∗ −0.129∗ −0.017 −0.024 0.006

(2.31) (0.24) (−1.74) (−1.85) (−0.26) (−0.37) (0.12)
DU∆pt−2 0.010 0.205∗ 0.023 −0.061 0.123∗∗ −0.052 −0.071

(0.31) (1.89) (0.81) (−1.10) (2.14) (−0.89) (−1.45)
DU∆pt−3 0.086∗∗ 0.167 −0.017 0.015 −0.069 −0.004 0.027

(2.02) (1.29) (−0.52) (0.25) (−1.32) (−0.05) (0.50)

Note. The significance of the mean is evaluated with a standard t-test, adjusted for heteroskedasticity. One star denotes 90%
significance, two stars 95% significance and three stars 99% significance. The sample is composed of 37 stocks traded on NYSE
Euronext Paris that belong to the CAC40 index, for the year 2013. Order flow and trade data are from BEDOFIH.

The first thing we immediately notice is that, in the crash and recovery periods, the regression

model yields significant differences in many instances, for both systematic and non-systematic

different events.
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Table C.2 Systematic flash crashes

PURE-HFT PURE-HFT IB-HFT IB-HFT IB NONHFT NONHFT
MM OWN MM OWN CLIENT CLIENT OWN

constant −0.000∗∗∗ −0.000 0.000 0.000∗∗ 0.000 0.000 −0.000
(−4.11) (−1.11) (0.46) (2.17) (1.51) (1.18) (−0.13)

∆yt−1 −0.006 0.011 0.060∗∗∗ 0.083∗∗∗ 0.037∗ 0.058∗∗∗ 0.097∗∗∗

(−0.73) (1.21) (5.60) (6.23) (1.93) (5.98) (4.29)
yt−1 −0.005∗∗∗ 0.000 0.000∗∗∗ 0.000 0.000 −0.000 0.000

(−8.43) (0.20) (5.16) (0.08) (1.56) (−1.06) (1.34)
∆pt −0.036 0.006 −0.038∗ 0.021 0.081∗∗∗ 0.025 −0.072∗∗

(−1.19) (0.69) (−1.87) (0.43) (3.78) (0.59) (−2.35)
∆pt−1 −0.067∗∗∗ −0.004 0.040∗∗∗ 0.050∗∗ 0.010 −0.005 −0.030∗

(−4.35) (−0.97) (3.95) (1.97) (0.52) (−0.46) (−1.92)
∆pt−2 −0.048∗∗∗ −0.003 0.012 0.007 0.029∗∗∗ 0.019 0.003

(−3.73) (−1.17) (1.29) (0.34) (2.64) (1.64) (0.14)
∆pt−3 −0.038∗∗∗ 0.001 0.014 −0.006 0.022∗ 0.009 0.026

(−2.82) (0.23) (1.47) (−0.27) (1.70) (0.66) (1.24)
DD*constant 0.000 −0.000 0.000 0.000 −0.000∗ 0.001∗∗∗ 0.000

(1.02) (−0.99) (0.19) (0.06) (−1.89) (2.71) (1.53)
DD∆yt−1 −0.039 −0.043 −0.075∗ −0.020 0.045 −0.048 −0.010

(−1.06) (−1.19) (−1.77) (−0.64) (1.17) (−1.48) (−0.19)
DDyt−1 −0.089∗∗∗ −0.055∗∗∗ 0.006 −0.060∗∗∗ −0.032∗∗∗ −0.025∗∗∗ −0.017

(−5.14) (−2.71) (0.48) (−3.25) (−2.71) (−2.67) (−1.51)
DD∆pt 0.341∗∗∗ 0.036 0.119∗∗ −0.019 0.029 −0.652∗∗∗ −0.397∗

(3.50) (0.90) (2.05) (−0.11) (0.25) (−4.45) (−1.65)
DD∆pt−1 −0.095 0.016∗ 0.079∗ 0.128 −0.080 −0.138∗ 0.032

(−1.27) (1.76) (1.88) (1.07) (−1.10) (−1.88) (0.24)
DD∆pt−2 −0.052 0.020 −0.008 0.016 0.050 −0.118 0.198

(−0.79) (1.22) (−0.17) (0.09) (0.61) (−1.24) (1.28)
DD∆pt−3 −0.038 0.010 −0.061 0.211∗ −0.033 −0.039 −0.037

(−0.74) (0.98) (−1.44) (1.85) (−0.59) (−0.56) (−0.53)
DU*constant −0.001∗∗∗ −0.000∗∗ −0.001∗∗∗ 0.001 0.000 0.001 0.005∗∗∗

(−4.67) (−2.45) (−4.46) (1.12) (0.52) (0.77) (6.50)
DU∆yt−1 −0.001 −0.013 −0.068∗∗∗ −0.021 0.002 −0.037 −0.037

(−0.03) (−0.52) (−2.59) (−0.81) (0.05) (−1.20) (−1.14)
DUyt−1 −0.085∗∗∗ −0.036∗∗∗ −0.023∗∗∗ −0.050∗∗∗ −0.059∗∗∗ −0.016∗∗ −0.119∗∗∗

(−6.42) (−3.91) (−4.55) (−4.61) (−4.59) (−2.09) (−10.76)
DU∆pt 0.153∗∗∗ −0.006 −0.052 −0.072 −0.089 −0.062 −0.010

(2.70) (−0.60) (−1.27) (−0.68) (−1.47) (−0.82) (−0.14)
DU∆pt−1 −0.000 0.010∗ 0.078∗∗∗ −0.055 0.007 0.082 −0.101

(−0.00) (1.90) (2.64) (−0.67) (0.13) (1.35) (−1.18)
DU∆pt−2 0.073∗∗ 0.011∗∗ 0.016 0.012 0.007 0.014 −0.056

(2.00) (2.22) (0.66) (0.15) (0.19) (0.26) (−1.18)
DU∆pt−3 0.089∗∗ 0.002 0.074∗∗∗ −0.077 0.033 −0.004 −0.147∗∗

(2.38) (0.38) (2.62) (−0.73) (0.87) (−0.08) (−2.10)

Note. The significance of the mean is evaluated with a standard t-test, adjusted for heteroskedasticity. One star denotes 90%
significance, two stars 95% significance and three stars 99% significance. The sample is composed of 37 stocks traded on NYSE
Euronext Paris that belong to the CAC40 index, for the year 2013. Order flow and trade data are from BEDOFIH.

events. For example, Kirilenko, Kyle, Samadi, and Tuzun (2017) report a significant negative

coefficient on the lagged inventory level in the pre-crash period (and interpret this as an in-
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dication of mean-reversion), but no significant changes in the crash and recovery period. We

instead see that mean-reversion is much stronger for all categories during crash and recovery,

with respect to the pre-crash and post-recovery period. There is only one exception to this

regularity: the positive (but insignificant) coefficient of IB-HFT MM during the crash period

(and normal periods, in this case significant) for systematic events, denoting lack of mean rever-

sion for these traders which, instead, should hold a capacity limit. This is consistent with their

reported behavior during systematic events, see Figure 8, panel A.

In Kirilenko, Kyle, Samadi, and Tuzun (2017), HFT inventory changes are positively related

to contemporaneous and lagged price changes for the first few seconds, then they become nega-

tively correlated, while Market Makers are negatively related to contemporaneous price changes

and positively to lagged ones. We broadly confirm this finding, which has just to be specialized

to our trader groups. For example, IB-HFT MM and IB-HFT OWN inventory changes behave

like the Market Makers of Kirilenko, Kyle, Samadi, and Tuzun (2017), while PURE-HFT MM

behave like the HFTs of Kirilenko, Kyle, Samadi, and Tuzun (2017). The main difference with

their finding is the significant changes for the price/inventory coefficients during the crash and

recovery period. For example, while IB-HFT Market Makers become more significantly neg-

atively correlated to contemporaneous price changes during non-systematic crashes (signalling

more inventory absorption), the opposite holds for systematic crashes, since they become net

sellers (see again Figure 8). Slow traders (NON-HFT CLIENT and NON-HFT OWN) turn the

correlation of their inventory changes with contemporaneous price changes to negative during

systematic crashes, consistent with the fact they have been shown to be the main liquidity

providers for these events.

Summarizing, the analysis of the regression model (13) yields two conclusions. The first one is

to provide further statistical significance on the results on net inventories, by showing significant

changes in inventory management of different traders during flash crashes at an alternative

frequency and with a fully blown statistical model. The second conclusion is that the significant

change in the management of net inventory is robust to the interaction with prices: when price

changes are added to the model, the behavior of the traders is still different during flash crashes

with respect to normal times, and in line with what shown in the previous sections. In particular,
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the estimated model parameters confirm that IB-HFT MM consume liquidity during systematic

crashes, and the role of liquidity providers is left to slow traders, who buy at a discount with

respect to the fundamental price.
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D The local projection methodology

Let yt be a (7×1)-vector with the first component being the mid-price at time t, and the other

components representing the averages between best bid and best ask for the six trader groups:

PURE HFT MM, IB CLIENT, IB-HFT OWN, IB-HFT MM, NON-HFT CLIENT and NON-

HFT OWN. yt is a non-stationary vector with cointegrated components, where cointegrating

equation represent the long-run equilibrium between “mid-prices” of different trader group (the

presence of cointegration is revealed using Johansen’s methodology). Hence, ∆yt is a stationary

process following a vector error correction model of the form:

∆yt+1 = Ψ1∆yt + . . .Ψp∆yt−p+1 + Ψ0yt + εt+1, (14)

where Ψ1, . . . ,Ψp are the parameter matrices, Ψ0 = −Φ(1), with Φ(1) being a reduced-rank (with

rank 1 as we have single cointegrating relation) matrix which can be expressed as Φ(1) = BA′,

where B is an (7 × 1) parameter matrix and zt = A′yt is a stationary variable representing

cointegrating relationship. Equation (14) can be rewritten in the state space form:



zt+1

∆yt+1

∆yt
...

∆yt−p+1


=



I − A′B A′Ψ1 . . . A′Ψp−2 A′Ψp−1

−B Ψ1 . . . Ψp−2 Ψp−1

0 I . . . 0 0
...

... . . .
...

...

0 0 . . . I 0





zt

∆yt

∆yt−1

...

∆yt−p+2


+



A′εt+1

εt+1

0
...

0


, (15)

or more compactly, as

ξt+1 = Gξt + ε̃t+1. (16)

Notice that the state-space representation implies that, for for h = 1, . . . , H, linear forecasts of

∆yt+h can be computed as:

∆yt+h = Gh
[2,1]zt +Gh

[2,2]∆yt +
∑p−2

j=3 G
h
[2,j]∆yt−j+2 + vt+h,

vt+h = εt+h + C1εt+h−1 + · · ·+ Ch−1εt+1,

(17)
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where Gh
[i,j] denotes the [i, j] block of the matrix G raised to the h-th power and C1, . . . Ch−1

are (7 × 7) matrices from the Wold representation ∆yt =
∑∞

j=0 Cjεt−j. This implies that the

impulse response at lag h of ∆yt on a shock εt = δ can be calculated as:

IR(∆yt+h, δ) = E(∆yt+h|εt = δ; yt−1, . . . )−E(∆yt+h|εt = 0; yt−1, . . . ) = Gh
[2,1]A

′δ+Gh
[2,2]δ. (18)

Following Jordà (2005) and Chong, Jordà, and Taylor (2012) we first estimate the cointegration

equation by OLS and then directly estimate the impulse responses as:

ÎR(∆yt+h, δ) = Ĝh
[2,1]A

′δ + Ĝh
[2,2]δ, (19)

with 
Ĝ1

[2,1] Ĝ1
[2,2]

...
...

ĜH
[2,1] ĜH

[2,1]

 = Y ′HMWX(X ′MWX)−1, (20)

where the matrices ZH , YH , X and W collect respectively the observations {z′t+1, . . . z
′
t+H},

{∆y′t+1, . . .∆y
′
t+H}, {z′t,∆y′t} and {1,∆y′t−1, . . .∆y

′
t−p+2}, with t = p+ 1, . . . , T −H, and MW =

I −W (W ′W )−1W . We use p = 2 and take δ = δj to be a vector with unit j-th element and the

other elements being zero, for j = 2, . . . , 7.
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E Additional tables

Tables E.1 and E.2 provides the detailed list of the 148 flash crash events in our sample. For

each event it shows the date and time (of the crash beginning and the peak) of a flash crash

occurrence, the duration of a flash crash and the name and isin code of a corresponding stock.

Table E.3 reports a summary of the detected flash crashes groped according to each stock.

It shows that in our sample flash crashes occur in 30 different stocks. The number of flash

crashes per year ranges from 1 to 5 with an average rate of 2.2 events per year. For 9 stocks

flash crashes occur only once. The largest number of crashes per year (five events) correspond

to Société Générale.
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Table E.1 Flash Crash Events constituting the distressed sample (i)

Date Isin Company Time Begin Time Peak Duration (min:sec) Date Isin Company Time Begin Time Peak Duration (min:sec)
4-Jan FR0000131708 Technip 10:19:27 10:29:29 0:10:01 10-Apr FR0000125338 Cap Gemini 13:11:55 13:13:52 0:01:57
8-Jan FR0010220475 Alstom 14:47:54 15:03:40 0:15:46 15-Apr FR0000130577 Publicis Groupe SA 14:46:08 14:56:04 0:09:56
9-Jan FR0000120172 Carrefour 10:07:42 10:25:18 0:17:36 16-Apr FR0010208488 ENGIE 12:36:04 12:47:55 0:11:51
11-Jan FR0000130809 Société Générale 10:53:06 10:57:35 0:04:30 17-Apr FR0000131906 Renault 9:30:08 9:51:45 0:21:37
11-Jan FR0000131708 Technip 10:39:28 10:54:05 0:14:37 17-Apr FR0010220475 Alstom 9:30:01 9:51:26 0:21:24
14-Jan FR0000125338 Cap G\’emini 16:45:52 16:52:20 0:06:28 17-Apr FR0010208488 ENGIE 9:44:54 9:51:34 0:06:41
14-Jan FR0000125007 Saint-Gobain 15:21:35 15:27:45 0:06:10 17-Apr FR0000073272 Safran 9:29:55 9:51:56 0:22:00
14-Jan FR0000120354 Vallourec 15:48:07 15:52:15 0:04:08 17-Apr FR0000127771 Vivendi Universal 9:42:54 9:51:24 0:08:30
15-Jan FR0010307819 Legrand 12:04:25 12:08:24 0:03:58 17-Apr FR0000125486 Vinci 9:30:09 9:51:45 0:21:36
22-Jan FR0000127771 Vivendi Universal 13:46:51 13:50:10 0:03:19 17-Apr FR0000120628 Axa 9:42:50 9:51:45 0:08:56
22-Jan FR0000121261 Michelin 9:54:07 10:06:05 0:11:58 17-Apr FR0000120354 Vallourec 9:30:02 9:51:25 0:21:23
23-Jan FR0010220475 Alstom 15:59:27 15:59:30 0:00:04 17-Apr FR0000120578 Sanofi Synthelabo 9:42:55 9:51:30 0:08:35
29-Jan FR0000120537 Lafarge 9:52:51 10:05:06 0:12:15 17-Apr FR0000120172 Carrefour 9:42:34 9:51:29 0:08:55
29-Jan FR0000045072 Credit Agricole 10:02:42 10:15:25 0:12:43 17-Apr FR0000120073 Air Liquide 9:41:34 9:51:30 0:09:56
31-Jan FR0000120644 Danone 11:54:52 12:12:21 0:17:28 17-Apr FR0000121261 Michelin 9:42:50 9:51:40 0:08:50
4-Feb FR0000131104 BNP 14:08:05 14:15:11 0:07:06 17-Apr FR0000120271 Total 9:30:09 9:51:34 0:21:26
11-Feb FR0000120578 Sanofi Synthelabo 15:31:45 15:36:10 0:04:25 17-Apr FR0000121972 Schneider 9:30:00 9:51:29 0:21:29
20-Feb FR0000133308 Orange 9:32:28 9:49:00 0:16:33 23-Apr FR0000120404 Accor 16:50:24 17:14:07 0:23:43
22-Feb FR0000131906 Renault 14:59:51 15:15:05 0:15:14 26-Apr FR0000120693 Pernod Ricard 10:18:56 10:27:19 0:08:23
26-Feb NL0000235190 EADS 16:29:03 16:38:35 0:09:32 29-Apr FR0000127771 Vivendi Universal 13:55:11 14:02:29 0:07:19
1-Mar FR0000045072 Credit Agricole 13:17:21 13:20:15 0:02:54 30-Apr FR0000127771 Vivendi Universal 15:48:25 15:57:40 0:09:15
6-Mar FR0000133308 Orange 15:22:29 15:24:25 0:01:56 7-May NL0000235190 EADS 15:46:36 16:01:39 0:15:03
6-Mar FR0000120404 Accor 15:23:22 15:34:03 0:10:41 7-May FR0000121972 Schneider 12:17:56 12:27:00 0:09:04
7-Mar FR0000130809 Société Générale 10:42:26 10:49:45 0:07:19 10-May FR0010220475 Alstom 10:01:03 10:12:20 0:11:17
8-Mar FR0000125338 Cap G\’emini 13:59:34 14:10:35 0:11:01 22-May FR0000125338 Cap Gemini 15:44:54 15:47:05 0:02:11
12-Mar NL0000226223 STMicroelectronics 17:18:25 17:24:55 0:06:30 23-May FR0000120172 Carrefour 15:46:17 15:48:51 0:02:34
12-Mar FR0000121261 Michelin 16:22:32 16:28:04 0:05:33 29-May FR0000120271 Total 16:13:10 16:17:20 0:04:10
15-Mar FR0000130809 Société Générale 11:51:19 11:55:10 0:03:52 5-Jun FR0000120172 Carrefour 11:23:47 11:26:35 0:02:48
20-Mar FR0000073272 Safran 15:17:00 15:45:28 0:28:28 7-Jun FR0000121485 Kering 12:02:29 12:09:09 0:06:41
21-Mar FR0000125338 Cap Gemini 15:15:37 15:33:26 0:17:49 14-Jun FR0010220475 Alstom 15:01:31 15:02:23 0:00:52
25-Mar FR0010220475 Alstom 16:00:55 16:20:45 0:19:49 14-Jun FR0000127771 Vivendi Universal 15:39:05 15:51:09 0:12:05
25-Mar NL0000235190 EADS 16:14:00 16:23:06 0:09:05 19-Jun FR0010220475 Alstom 13:08:27 13:10:54 0:02:27
26-Mar FR0000073272 Safran 12:50:52 13:06:22 0:15:30 24-Jun FR0000130809 Soci\’et\’e G\’en\’erale 10:15:26 10:33:25 0:17:59
4-Apr NL0000235190 EADS 16:19:32 16:29:26 0:09:54 24-Jun FR0000125007 Saint-Gobain 10:15:02 10:33:25 0:18:23
5-Apr FR0000131104 BNP 11:49:35 11:53:15 0:03:39 1-Jul FR0000120537 Lafarge 16:39:15 16:41:45 0:02:30
5-Apr FR0010242511 EDF 14:53:00 14:54:55 0:01:55 11-Jul FR0010242511 EDF 11:13:35 11:18:55 0:05:20
5-Apr FR0000120073 Air Liquide 11:47:43 11:53:20 0:05:37 18-Jul FR0000130577 Publicis Groupe SA 13:51:35 13:51:56 0:00:21

Note. The table reports the detailed list of the 148 flash crash events in our sample. For each event it shows the date and time
(of the crash beginning and the peak) of a flash crash occurrence, the duration of a flash crash and the name and isin code of a
corresponding stock. The sample is composed of 37 stocks traded on NYSE Euronext Paris that belong to the CAC40 index, for the
year 2013. Order flow and trade data are from BEDOFIH.
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Table E.2 Flash Crash Events constituting the distressed sample (ii)

Date Isin Company Time Begin Time Peak Duration (min:sec) Date Isin Company Time Begin Time Peak Duration (min:sec)
23-Jul FR0010220475 Alstom 11:18:39 11:22:57 0:04:18 2-Oct FR0000121261 Michelin 14:34:11 14:45:30 0:11:19
25-Jul FR0000131708 Technip 11:52:35 12:05:16 0:12:41 2-Oct FR0000120693 Pernod Ricard 17:21:58 17:25:05 0:03:08
31-Jul FR0000120404 Accor 13:59:14 14:03:35 0:04:21 2-Oct FR0010220475 Alstom 15:39:45 15:43:00 0:03:15
31-Jul NL0000235190 EADS 16:54:15 17:01:15 0:07:00 2-Oct FR0000121667 Essilor International 15:21:32 15:28:50 0:07:18
16-Aug FR0000120578 Sanofi Synthelabo 15:30:00 15:35:45 0:05:45 3-Oct FR0010220475 Alstom 9:29:40 9:48:00 0:18:20
20-Aug FR0000120537 Lafarge 9:54:11 10:07:20 0:13:09 9-Oct FR0000120172 Carrefour 14:01:46 14:05:45 0:04:00
23-Aug FR0000124141 Veolia Environnement 14:48:18 14:48:39 0:00:21 9-Oct FR0000120537 Lafarge 12:30:21 12:38:28 0:08:07
27-Aug FR0000120578 Sanofi Synthelabo 9:39:30 9:51:30 0:12:00 18-Oct FR0000120172 Carrefour 11:23:12 11:34:48 0:11:35
27-Aug FR0000125007 Saint-Gobain 9:44:07 9:51:35 0:07:28 23-Oct NL0000226223 STMicroelectronics 16:16:06 16:24:16 0:08:10
27-Aug FR0000120537 Lafarge 9:44:47 9:51:56 0:07:09 24-Oct FR0000073272 Safran 14:29:39 14:42:41 0:13:02
27-Aug FR0000121667 Essilor International 9:44:59 9:51:29 0:06:30 25-Oct FR0000120628 Axa 15:31:14 15:47:16 0:16:02
29-Aug FR0000120693 Pernod Ricard 12:25:04 12:59:15 0:34:12 28-Oct FR0000120628 Axa 13:00:01 13:11:11 0:11:11
29-Aug FR0000121667 Essilor International 15:01:36 15:04:20 0:02:44 28-Oct FR0000125486 Vinci 17:25:06 17:29:35 0:04:29
2-Sep FR0000131906 Renault 16:44:04 16:44:31 0:00:26 28-Oct FR0000125007 Saint-Gobain 13:02:45 13:15:25 0:12:39
3-Sep FR0000121485 Kering 10:52:46 10:54:56 0:02:10 29-Oct FR0000124141 Veolia Environnement 9:29:59 9:40:05 0:10:06
3-Sep FR0000121014 Lvmh Moet 10:52:45 10:54:54 0:02:09 30-Oct FR0000131708 Technip 12:29:41 12:31:48 0:02:07
3-Sep FR0000131104 BNP 10:53:21 10:55:15 0:01:55 5-Nov FR0000120693 Pernod Ricard 14:55:14 15:10:07 0:14:53
3-Sep FR0000130809 Société Générale 10:53:18 10:55:10 0:01:52 5-Nov FR0000130809 Société Générale 14:46:45 14:50:15 0:03:30
3-Sep FR0000120628 Axa 10:53:09 10:55:10 0:02:01 5-Nov FR0000120628 Axa 14:40:25 14:48:38 0:08:13
3-Sep FR0000125486 Vinci 10:52:56 10:55:14 0:02:18 7-Nov FR0000130809 Société Générale 16:32:20 16:36:35 0:04:15
3-Sep FR0000120073 Air Liquide 10:51:15 10:54:55 0:03:40 20-Nov FR0000131708 Technip 15:37:23 16:09:40 0:32:17
3-Sep FR0000120578 Sanofi Synthelabo 10:52:54 10:54:55 0:02:01 21-Nov NL0000226223 STMicroelectronics 13:56:25 13:58:30 0:02:06
3-Sep FR0000120271 Total 10:53:00 10:54:55 0:01:55 22-Nov FR0000133308 Orange 12:17:19 12:27:59 0:10:41
3-Sep FR0000125007 Saint-Gobain 10:51:03 10:55:04 0:04:01 22-Nov FR0000127771 Vivendi Universal 12:16:49 12:22:49 0:06:00
3-Sep NL0000235190 EADS 10:52:56 10:54:55 0:01:59 25-Nov FR0000125338 Cap Gemini 10:08:52 10:13:24 0:04:32
3-Sep FR0000120537 Lafarge 10:52:40 10:54:59 0:02:19 26-Nov FR0000120404 Accor 11:49:31 11:59:05 0:09:34
3-Sep FR0000121972 Schneider 10:52:38 10:55:07 0:02:29 26-Nov FR0000121667 Essilor International 16:37:43 16:41:02 0:03:18
6-Sep FR0000121014 Lvmh Moet 15:39:26 15:47:35 0:08:09 27-Nov FR0000120404 Accor 13:27:19 13:47:55 0:20:36
6-Sep FR0000124141 Veolia Environnement 15:24:16 15:43:00 0:18:44 3-Dec FR0000133308 Orange 9:58:45 10:03:55 0:05:10
9-Sep FR0000125338 Cap Gemini 16:45:34 17:12:40 0:27:07 3-Dec FR0000131906 Renault 10:09:54 10:13:25 0:03:30
10-Sep FR0000120354 Vallourec 14:47:32 14:50:04 0:02:32 3-Dec FR0000131708 Technip 9:53:52 10:03:48 0:09:56
16-Sep FR0000120644 Danone 11:23:54 11:30:20 0:06:26 5-Dec FR0000130577 Publicis Groupe SA 15:31:10 15:43:04 0:11:55
17-Sep FR0000120354 Vallourec 16:37:51 16:40:15 0:02:24 17-Dec FR0000120404 Accor 11:05:41 11:16:16 0:10:35
20-Sep FR0010208488 ENGIE 10:37:10 10:40:05 0:02:55 18-Dec FR0000120354 Vallourec 9:30:00 9:46:41 0:16:41
24-Sep FR0000121485 Kering 15:37:05 15:44:04 0:06:58 19-Dec FR0000045072 Credit Agricole 14:48:57 14:53:20 0:04:23
24-Sep FR0000121261 Michelin 15:25:05 15:30:00 0:04:55 19-Dec FR0000131906 Renault 16:54:09 17:07:10 0:13:01
24-Sep FR0000120693 Pernod Ricard 16:18:15 16:25:20 0:07:05 23-Dec FR0000133308 Orange 10:46:27 11:02:27 0:16:00

Note. The table reports the detailed list of the 148 flash crash events in our sample. For each event it shows the date and time
(of the crash beginning and the peak) of a flash crash occurrence, the duration of a flash crash and the name and isin code of a
corresponding stock.
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Table E.3 Summary of Flash Crashes grouped by stocks

Isin Name Market Cap
(M Euro)

Average
daily

trading (N.
trades)

Average
daily

volume (M
Euro)

No.
DBs

Mean
return

Median
return

Std
return

Mean
Dura-
tion

Median
Dura-
tion

Std Du-
ration

FR0000045072 Credit Agricole 23’221 12’774 88 3 -1.13 -0.89 0.47 0:06:40 0:04:23 0:05:17
FR0000073272 Safran 21’064 8’569 60 4 -1.11 -0.98 0.53 0:19:45 0:18:45 0:06:56
FR0000120073 Air Liquide 32’047 12’821 128 3 -0.99 -0.99 0.30 0:06:24 0:05:37 0:03:12
FR0000120172 Carrefour 20’858 13’152 116 6 -1.53 -1.57 0.74 0:07:55 0:06:27 0:05:58
FR0000120271 Total 145’995 26’025 348 3 -1.23 -1.01 0.49 0:09:10 0:04:10 0:10:40
FR0000120354 Vallourec 5’035 9’902 51 5 -1.18 -0.78 0.60 0:09:26 0:04:08 0:08:57
FR0000120404 Accor 7’822 7’872 49 6 -1.10 -1.07 0.48 0:13:15 0:10:38 0:07:21
FR0000120537 Lafarge 15’652 11’512 76 6 -1.12 -0.97 0.40 0:07:35 0:07:38 0:04:37
FR0000120578 Sanofi Synthélabo 101’851 27’238 400 5 -0.94 -0.87 0.57 0:06:33 0:05:45 0:03:52
FR0000120628 Axa 48’784 19’042 200 5 -1.24 -1.02 0.71 0:09:16 0:08:56 0:05:05
FR0000120644 Danone 30’688 14’526 176 2 -1.40 -1.40 0.02 0:11:57 0:11:57 0:07:49
FR0000120693 Pernod Ricard 21’799 10’385 96 5 -0.88 -0.69 0.59 0:13:32 0:08:23 0:12:18
FR0000121014 LVMH Moet Henessy 66’353 13’133 200 2 -1.27 -1.27 0.33 0:05:09 0:05:09 0:04:14
FR0000121261 Michelin B 14’350 12’618 99 5 -1.50 -1.77 0.72 0:08:31 0:08:50 0:03:13
FR0000121485 Kering 19’395 6’899 83 3 -0.89 -0.84 0.29 0:05:16 0:06:41 0:02:42
FR0000121667 Essilor International 16’592 10’950 86 4 -0.98 -0.93 0.15 0:04:58 0:04:54 0:02:17
FR0000121972 Schneider 35’628 16’767 164 3 -1.79 -1.43 1.15 0:11:01 0:09:04 0:09:39
FR0000124141 Veolia Environnement 6’338 10’989 68 3 -2.46 -2.79 1.21 0:09:44 0:10:06 0:09:12
FR0000125007 Saint-Gobain 22’193 13’639 116 5 -1.36 -1.34 0.33 0:09:44 0:07:28 0:05:47
FR0000125338 Cap Gémini 7’876 9’677 61 7 -0.87 -0.87 0.28 0:10:09 0:06:28 0:09:20
FR0000125486 Vinci 28’713 14’361 124 3 -1.25 -1.18 0.79 0:09:28 0:04:29 0:10:34
FR0000127771 Vivendi Universal 25’660 13’320 143 6 -1.39 -1.34 0.66 0:07:45 0:07:54 0:02:59
FR0000121667 Essilor International 16’592 10’950 86 3 -1.52 -1.26 0.54 0:07:24 0:09:56 0:06:11
FR0000130809 Société Générale 33’722 32’204 317 7 -1.62 -1.52 0.83 0:06:11 0:04:15 0:05:27
FR0000131104 BNP 70’354 33’015 364 3 -1.14 -1.03 0.28 0:04:13 0:03:39 0:02:38
FR0000131708 Technip 7’942 10’665 75 6 -1.17 -1.08 0.48 0:13:36 0:11:21 0:10:06
FR0000131906 Renault 17’064 14’722 118 5 -1.57 -1.33 0.88 0:10:46 0:13:01 0:08:41
FR0000133308 Orange 23’630 21’114 167 5 -1.47 -1.25 0.82 0:10:04 0:10:41 0:06:28
FR0010208488 ENGIE 40’349 13’831 148 3 -2.02 -1.68 0.81 0:07:09 0:06:41 0:04:29
FR0010220475 Alstom 8’126 11’838 81 10 -1.45 -1.47 0.67 0:09:45 0:07:47 0:08:29
FR0010242511 EDF 47’729 9’368 64 2 -1.40 -1.40 0.67 0:03:37 0:03:37 0:02:25
FR0010307819 Legrand 10’633 6’387 45 1 -1.08 -1.08 0:03:58 0:03:58
NL0000226223 STMicroelectronics 7’098 8’668 44 3 -2.60 -1.41 2.16 0:05:35 0:06:30 0:03:08
NL0000235190 EADS 43’550 20’886 212 6 -0.88 -0.96 0.25 0:08:46 0:09:19 0:04:15

Note. This table reports summary of Flash Crashes, which occurred in 30 different stocks during the year 2013. For each stock,
which experienced a flash crash, the table reports average yearly market capitalization, average daily number of trades and
trading volume, the number of detected events, mean, median and standard deviation of flash crash durations and of the price
drop during the crash.The sample is composed of 37 stocks traded on NYSE Euronext Paris that belong to the CAC40 index,
for the year 2013. Order flow and trade data are from BEDOFIH. Market capitalizations are from Bloomberg.
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F Additional figures

This section presents additional figures which complement the analysis in the main text.

Figure F.1. Price evolution during systematic flash crashes.

Panel A: April, 17. Panel B: September, 3.
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Note. This figure shows the price evolution of the 37 blue-chips French stocks during the systematic flash crashes of April 17, 2013
(Panel A) and September 3, 2013 (Panel B). 6 for systematic events. The sample is composed of 37 stocks traded on NYSE Euronext
Paris that belong to the CAC40 index, for the year 2013. Order flow and trade data are from BEDOFIH.
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Figure F.2. Liquidity measures during systematic flash crashes.

Panel A: Signed volume. Panel B: Bid-ask spread.
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Panel C: Market depth. Panel D: Executed order age.
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Note. This figure reports four measures of liquidity averaged across the systematic flash crash events (compared to Figure 6 for
non-systematic events). Panel A: cumulative signed monetary volume (negative volume = sell). Panel B: bid-ask spread. Panel C:
market depth (difference from beginning). Panel D: the age of the executed orders (we exclude orders with age less than 0.1 seconds
and those coming from the previous day). On each panel, we superimpose the average price evolution for visual comparison. The
sample is composed of 37 stocks traded on NYSE Euronext Paris that belong to the CAC40 index, for the year 2013. Order flow
and trade data are from BEDOFIH.
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Figure F.3. Volume per minute for initiated buyer and initiated seller trades
(systematic).

Panel A: buyer-initiated volume Panel B: seller-initiated volume
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Note. This figure shows the average euro volume traded per minute during crash events, separated in buyer-initiated trades (Panel
A) and seller-initiated trades (Panel B) only for systematic events (compared to Figure 7 for non-systematic events) The sample is
composed of 37 stocks traded on NYSE Euronext Paris that belong to the CAC40 index, for the year 2013. Order flow and trade
data are from BEDOFIH.

Figure F.4. Cancellations and new orders volume by trader category (systematic).

Panel A: cancellations Panel B: new orders
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Note. This figure display the average per minute euro volume of cancelled orders (Panel A) and new orders (Panel B) only for
systematic events. The sample is composed of 37 stocks traded on NYSE Euronext Paris that belong to the CAC40 index, for the
year 2013. Order flow and trade data are from BEDOFIH.
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Figure F.5. Cumulative net trading imbalances per minute of different trader groups
(non-systematic).
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Note. This figure reports inventory change per minute for the most active trading categories not considered in Table 9 during
non-systematic events, separated in buyer initiated, seller initiated, buyer passive and seller passive trades. The y-units are not
uniform across panels. The sample is composed of 37 stocks traded on NYSE Euronext Paris that belong to the CAC40 index, for
the year 2013. Order flow and trade data are from BEDOFIH.
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Figure F.6. Cumulative net trading imbalances per minute of different trader groups
(systematic).

Panel A. Panel B.

0 10 20 30 40 50

Average elapsed time (minutes)

-300

-200

-100

0

100

200

300

In
v
e

n
to

ry
 c

h
a

n
g

e
 p

e
r 

m
in

u
te

 (
th

o
u

s
a

n
d

s
 o

f 
E

u
ro

 p
e

r 
m

in
u

te
)

PURE HFT MM

Aggressive buy

Passive buy

Aggressive sell

Passive sell

Total inventory change

0 10 20 30 40 50

Average elapsed time (minutes)

-150

-100

-50

0

50

100

150

In
v
e

n
to

ry
 c

h
a

n
g

e
 p

e
r 

m
in

u
te

 (
th

o
u

s
a

n
d

s
 o

f 
E

u
ro

 p
e

r 
m

in
u

te
)

IB CLIENT

Aggressive buy

Passive buy

Aggressive sell

Passive sell

Total inventory change

Panel C. Panel D.

0 10 20 30 40 50

Average elapsed time (minutes)

-250

-200

-150

-100

-50

0

50

100

150

200

250

In
v
e

n
to

ry
 c

h
a

n
g

e
 p

e
r 

m
in

u
te

 (
th

o
u

s
a

n
d

s
 o

f 
E

u
ro

 p
e

r 
m

in
u

te
)

Non-HFT CLIENT

Aggressive buy

Passive buy

Aggressive sell

Passive sell

Total inventory change

0 10 20 30 40 50

Average elapsed time (minutes)

-150

-100

-50

0

50

100

150

In
v
e

n
to

ry
 c

h
a

n
g

e
 p

e
r 

m
in

u
te

 (
th

o
u

s
a

n
d

s
 o

f 
E

u
ro

 p
e

r 
m

in
u

te
)

Non-HFT OWN

Aggressive buy

Passive buy

Aggressive sell

Passive sell

Total inventory change

Note. This figure reports inventory change per minute for the most active trading categories not considered in Table 9 during
systematic events, separated in buyer initiated, seller initiated, buyer passive and seller passive trades. The y-units are not uniform
across panels. The sample is composed of 37 stocks traded on NYSE Euronext Paris that belong to the CAC40 index, for the year
2013. Order flow and trade data are from BEDOFIH.
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Figure F.7. Monetary net imbalances per minute of non-systematic events.
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Note. Same as Figure 10 for non-systematic events.
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