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Abstract

We consider a class of additively time-separable life-cycle consumption-savings models

with iso-elastic per period power utility featuring resistance to inter-temporal substitution

of θ with linear consumption policy functions. The utility maximization problem is dynam-

ically inconsistent for almost all specifications of effective discount factors. Pollak (1968)

shows that the savings behavior of a sophisticated and a naive agent is identical with loga-

rithmic utility (θ = 1). We extend this result by showing that the sophisticated agent saves

in any period a greater fraction of her wealth than the naive agent if and only if θ ≥ 1,

irrespective of the discount function.
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1 Introduction

How time preferences and beliefs about the future affect consumption savings decisions is a clas-

sical economic question. The workhorse model of inter-temporal allocation is the life-cycle model

of Modigliani and Brumberg (1954) and Ando and Modigliani (1963). Standard deterministic

models assume an additively separable per period utility function, where future utility is dis-

counted exponentially (Samuelson 1937). Models with survival beliefs express those as additive

probability measures. Standard discounting as the combination of exponential time-discounting

with additive survival beliefs results in a dynamically consistent life-cycle model in which the

future selves of the economic agent have no incentives to deviate from her ex ante optimal con-

sumption and savings plan. This paper instead analyzes life-cycle models with arbitrary effective

discount factors. In this setup the generic case is dynamic inconsistency, that is, the optimal

consumption plan from the perspective of some ex-ante agent does—for almost all specifications

of discount factors—not coincide with the optimal consumption plan from the perspective of

some ex-post agent.

We follow the literature since Strotz (1956) and Pollak (1968) and compare a naive agent—

who does not foresee that her future selves will deviate from the current self’s optimal consump-

tion savings plan—with a sophisticated agent—who is aware of these deviating incentives. Our

main research question is as follows:

How does the underlying effective discounting process impact on the question whether the naive

or the sophisticated agent saves a greater fraction of her wealth in any given time-period?

From an economic policy perspective this question is relevant because governments worldwide

look for ways to induce more prudent savings behavior. If it was the case that a sophisticated

agent will always save more than a naive agent under an empirically relevant discounting scenario

such as, e.g., hyperbolic time discounting (Laibson 1997), awareness campaigns about people’s

dynamic inconsistencies may usefully complement financial incentives schemes. Closer to our

own theoretical interests is the comparison between our economic intuition and the formal impli-

cations of life-cycle models. Intuitively, we had expected that the nature of effective discounting

processes would have some impact on the question whether a naive agent saves more than her

naive counterpart or vice versa.

1



We address our research question within a class of life-cycle models with a per period iso-

elastic power utility function in which the consumption policy functions are linear in total wealth.

We denote the concavity parameter of the per period utility function by θ so that 1/θ measures

the inter-temporal elasticity of substitution (IES). For this class of models our answer to the

posed research question proves that our intuition was wrong:

Irrespective of the effective discount process, the sophisticated agent will save more than her

naive counterpart in any given time period if and only if the IES is smaller than one.

Thus, the question which agent type saves a greater fraction of her wealth in any given time

period is exclusively determined by the IES. This holds regardless of whether in any future

period the naive agent consumes—or plans to consume—more or less than her sophisticated

counterpart. We regard this finding as surprising because the effective discount process is the

sole reason for why the model might be dynamically inconsistent to begin with.

Our result extends Pollak (1968)’s finding that for an IES of unity the naive and the so-

phisticated agent save exactly the same fraction of their wealth in every period irrespective

of their effective discount function. This knife-edge case is often taken as a reference point

for interpreting consumption behavior in models with a presence bias.1 In these models, the

sophisticated agent’s life-cycle savings decision is shaped by two opposing forces—on the one

hand, (i) restricting her future selves decisions because they understand they will over-consume

and, on the other hand, (ii) providing sufficient resources to finance her consumption needs and

thereby to smooth consumption. One may therefore conclude that the answer to our research

question is obvious for models with a presence bias: With a low value of the inter-temporal

elasticity of substitution (IES) relative to a value of one, the sophisticated agent cares more

about inter-temporal consumption smoothing and thus it is plausible that motive (ii) is stronger

than motive (i) and vice-versa for a high value of the IES.

Even in these models with a presence bias, however, this intuition provides only limited

guidance because it relates to an intra-personal comparison of the consumption behavior of the

sophisticated agent and not to the inter-personal comparison across the two types of agents. In

fact, our main result shows that this intuition is misleading because irrespective of the shape

1A related literature studies observational (in)equivalence results to models with exponential discounting,

where θ = 1 serves as a reference point, cf., e.g., Strulik (2015), Cabo et al. (2016) and Cabo et al. (2020).
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of the discount function—i.e., whether it induces a presence or a future bias—the sophisticated

agent saves more than the naive agent if and only if the IES is less than one.

We start with a cake eating problem with finite horizon 2 ≤ T < ∞. In this model, we

assume that households discount the future with age-dependent effective discount factors ρh,t,

with ρh,t > 0 and ρt,t = 1, where h is the current age of the household and t is the age with the

respective future period consumption delivery. We are agnostic about the nature of the discount

process. In deterministic models it reflects pure time-discounting and in models with survival

uncertainty a combination of pure time-discounting and survival beliefs.2 Because the discount

factors of the h-old agent, h = 0, ..., T − 1, can be any strictly positive real-numbers, our life

cycle model is very general and it encompasses relevant extensions of the standard model such

as (quasi-)hyperbolic time-discounting models (cf. Phelps and Pollak 1968; Laibson 1997; 1998;

O’Donoghue and Rabin 1999; Harris and Laibson 2001) and Choquet expected utility or/and

Prospect theory life-cycle models with non-additive subjective survival beliefs (cf. Bleichrodt

and Eeckhoudt 2006; Ludwig and Zimper 2013; Drouhin 2015; Groneck, Ludwig, and Zimper

2016; Grevenbrock, Groneck, Ludwig, and Zimper 2021 and references therein). To make this

latter point explicit, one can show that the discount factors of an h-old Choquet expected utility

decision maker are ρh,t = βh,tνh,t, where βh,t stands for pure time-discounting between present

age h and future age t and νh,t stands for the decision maker’s non-additive belief to survive

from age h to age t.3

To deal with the generic case of dynamic inconsistency, we solve the life-cycle model for the

realized consumption paths of a sophisticated and a naive agent, respectively. Despite the fact

that both agents share the same preferences, their realized consumption paths result from very

different optimization problems. The sophisticated agent chooses her per-period consumption

as if she plays a strategic game against her future selves. In contrast, the naive agent chooses

her per-period consumption under the misperception that her future selves will stick to the

consumption plan that is optimal from her ex ante perspective.

Denoting by mi
h, for i ∈ {n, s} the marginal propensity to consume out of total wealth wh

2Compare, e.g., Halevy (2008), Epper, Fehr-Duda, and Bruhin (2011), Saito (2011), Chakraborty, Halevy,

and Saito (2020) who discuss the relationship between pure time-preferences and preferences under uncertainty

or/and risk.
3A formal proof can be found in the earlier version of this paper (Groneck, Ludwig, and Zimper 2021).
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at age h of the naive and the sophisticated agent, respectively, we derive as our main result

Theorem 1, which states that for all (arbitrary) specifications of the effective discount factors4,

(i) θ < 1 implies mn
h ≤ ms

h and θ > 1 implies mn
h ≥ ms

h. This result is directly derived

from a comparison of the respective MPCs, thus it holds globally and hinges on the linearity

of consumption policy functions. For the special case of a three-period model (T = 2) we

further show analytically that the concavity parameter θ additionally determines the strength5

of the response of the sophisticated relative to the naive agent’s savings decision in response

to any (local) departure from standard discounting. This straightforward first-order condition

argument thus directly illustrates for the three-period model that only the concavity parameter θ

but not the effective discount process drives our main finding. Beyond determining the degree

of inter-temporal smoothing through the IES = 1
θ
, the concavity parameter θ therefore plays an

additional role for the inter-personal comparison of savings behavior between the naive and the

sophisticated agent. In a quantitative illustration we further show that the differences in MPCs

across the two types of agents can be large for plausible values of θ.

Finally, we extend our main finding in Theorem 1 to models with return risk, a portfolio

choice and homothetic Epstein-Zin-Weil (EZW) preferences (Epstein and Zin 1989; Epstein and

Zin 1991; Weil 1989), again for the multi-period model where T ≥ 2. This also encompasses

models with risky human capital (Krebs 2003) and thus may also allow for self imposed borrowing

constraints if there exists a strictly positive probability of loosing the wealth endowment from a

risky investment. Our main result therefore holds in a broad class of economic models. What is

decisive is the linearity of consumption policy functions. With this extension we also formally

establish that it is the value of the deviation of the IES from unity which governs the relative

consumption-savings response of the two agents to deviations from geometric discounting and

not risk aversion.6

4At ages h ∈ {T − 1, T} we always have mn
h = ms

h irrespective of the value of θ.
5The impact of θ on the inter-personal comparison between both types is non-monotonic. We show for

θ ≥ 1 that the relative size of the reaction of a sophisticated over a naive agent to any deviation from standard

discounting increases up to a threshold value θ̄ > 1 whereby it decreases afterwards. This non-monotonicity

in θ ≥ 1 arises because the naive and the sophisticated agent have identical MPCs for θ = 1 as well as in the

limit θ = ∞.
6In this extension, θ takes (at least) a triple role as a consumption smoothing parameter, a relative smoothing

parameter of the naive and sophisticated savings response to deviations from standard discounting and as a

parameter partially controlling precautionary savings behavior. For the latter point see Kimball and Weil (2009)
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The remainder of our analysis proceeds as follows. Section 2 solves the model for the re-

alized consumption path of the sophisticated agent as well as for the planned versus realized

consumption paths of the naive agent. Section 3 formally defines dynamic consistency versus

inconsistency of our life-cycle model in terms of the realized versus planned MPCs of the naive

agent. Section 4 comprehensively answers our research question. Section 5 presents the ex-

tension to EZW preferences, and Section 6 concludes. All formal proofs are relegated to the

Appendix.

2 The Life-Cycle Model

We study an additively time-separable life-cycle model with final period T ≥ 1 such that every

h-old agent’s life-time utility over the consumption stream (ch, ch+1..., cT ) ∈ RT−h+1
>0 is given as

Uh (ch, ch+1..., cT ) =
T∑

t=h

ρh,tu (ct) , (1)

where the age-dependent effective discount factors must only satisfy ρh,t > 0 and ρt,t = 1. There

exists an initial amount of total wealth w0 > 0 that the agent can spend over her life-cycle so

that the budget constraint becomes

wt+1 = wt − ct ≥ 0 for t ∈ {0, 1, . . . , T − 1} . (2)

We restrict attention to period-utility functions belonging to the family of iso-elastic power

utility functions, that is, u (c) must be differentiable on R>0 such that

u(c) =
c1−θ

1− θ
(3)

and u′ (c) = c−θ for concavity parameter 0 < θ <∞.

2.1 Optimal Consumption Plan

For fixed period consumption ct and wealth wt let

ct = mtwt

and Krueger, Ludwig and Villalvazo (2021).
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where mt denotes the agent’s marginal propensity to consume (MPC). Because the optimal

period consumption is linear in total wealth for power period utility functions, it will sometimes

be convenient to consider MPCs rather than absolute consumption levels.7 Expressed in terms

of MPCs for the periods h + 1, ..., T and period h wealth lifetime utility (1) of the h-old agent

from consumption stream (ch, ..., cT ) becomes

Uh (ch;mh+1, ...,mT , wh) = u(ch) +
T∑

t=h+1

ρh,tu

(
(wh − ch)mt

t−1∏
j=h+1

(1−mj)

)
. (4)

Next we derive the MPCs that would maximize this utility function from the perspective of the

h-old agent. In what follows, we denote by m∗,h
h : [0, 1]T−h → [0, 1] the function that gives us,

for any given argument

(mh+1, ...,mT ) ∈ [0, 1]T−h ,

the (unique) MPC that maximizes through the absolute consumption level

c∗,hh = m∗,h
h (mh+1, ...,mT )wh

the utility function (4) over all admissible consumption levels ch. In game-theoretic terms,

m∗,h
t (mh+1, ...,mT ) would correspond to the best reply/response of an h-old agent who assumes

that her future selves will be choosing (mh+1, ...,mT ) as their respective MPCs.

Proposition 1. The MPCs m∗,h
t that are optimal from the perspective of the h-old agent for

fixed mt+1, ...,mT are given as

m∗,h
t (mt+1, ...,mT ) =


1 for t = T

1

1+

(∑T
s=t+1

ρh,s
ρh,t

(ms
∏s−1

j=t+1(1−mj))
1−θ

) 1
θ

for h ≤ T − 1
(5)

For T ≥ 2 our life-cycle model will be, generically, dynamically inconsistent in the sense

that for almost all specifications of discount factors there is some t-old agent with t > h, where

h ≤ T − 2, who will have a strict incentive to deviate from a consumption plan that would be

optimal from the perspective of the h-old agent. To solve for models that might be dynamically

inconsistent, the literature distinguishes between the two extreme cases of a naive versus a

7Linearity of consumption policy functions in models with a deterministic labor income stream and no bor-

rowing constraints is a well-established result in the consumption literature, cf., e.g., Deaton (1992).
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sophisticated agent (cf. O’Donoghue and Rabin 1999). The remainder of this section defines

both types of agents in terms of the optimal MPCs of Proposition 1.

2.2 Sophisticated versus Naive Saving Choices

In game-theoretic terms, m∗,h
t : [0, 1]T−h → [0, 1] given by (5) is the h-old agent’s best response

function according to which she chooses for a given wealth level wt the utility maximizing

consumption level

c∗,ht = m∗,h
t (mt+1, ...,mT )wt

for the t-old agent whereby she assumes that the agents who are older than t choose

(mt+1, ...,mT ) ∈ [0, 1]T−t

as their respective MPCs. In what follows we distinguish between an agent who is either sophis-

ticated or naive throughout her whole life-cycle. Whereas the h-old sophisticated agent chooses

a best response against the actual savings behavior of all her future selfs, the h-old naive agent

chooses a best response against her most preferred savings behavior of her future selfs—which

may or may not coincide with the actual savings behavior of these future selfs.

2.2.1 The Sophisticated Agent

Definition 1. We speak of a “sophisticated agent” if and only if this agent correctly anticipates

at every age h her future behavior.

Denote by ms
t the realized MPC of the t-old sophisticated agent. Expressed in terms of the

optimal MPCs, the sophisticated agent solves through backward induction at every age h ≥ 0

the problem

ms
h = m∗,h

h

(
ms

h+1, ...,m
s
T

)
.

This gives us, by Proposition 1, the following recursive characterization of the realized MPCs of

the sophisticated agent.

Proposition 2. The realized MPCs of the sophisticated agent are given as follows:

ms
h =


1 for h = T

1

1+(ρh,h+1ζ
h
h+1)

1
θ

for h ≤ T − 1
(6)
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where ζht is the slope of the continue value function of self h in period t and is recursively

defined as

ζht =

1 for t = T

ms1−θ

t +
ρh,t+1

ρh,t
(1−ms

t)
1−θ ζht+1 for t ≤ T − 1

Solving the model for the sophisticated agent through backward induction is equivalent to

solving an extensive form game for the unique subgame-perfect Nash equilibrium where the

agents of different ages are different players who can choose MPCs at each information node.

The only way how an agent can influence through her chosen MPC the future consumption path

in her favor is by restricting the budget, i.e., wealth level, of her future selfs. The MPC ms
0—

being a best response of the 0-old agent against the correctly anticipated MPCs of her future

selfs—is therefore a function in ms
t , for t ≥ h. On the other hand, the MPCs of future agents do

not depend on previously chosen MPCs. This is a consequence of the fact that optimal MPCs

are independent of wealth levels for iso-elastic power period utility functions.

To interpret the marginal propensities to consume against the literature on hyperbolic dis-

counting it is instructive to derive a variant of the generalized Euler equation (Harris and Laibson

2001), which as shown in the Appendix follows from the expressions for marginal propensities

to consume given in Proposition 2 as

uc(c
s
h) = ρh,h+1

(
ms

h+1 +
ρh,h+2

ρh,h+1ρh+1,h+2

ζhh+2

ζh+1
h+2

(
1−ms

h+1

))
uc(c

s
h+1) (7)

Equation (7) is the deterministic model analogue to the “generalized Euler equation with ad-

justment factor” we derived in a model with idiosyncratic productivity risk in Groneck, Ludwig

and Zimper (2016). It reflects two effects on the consumption growth rate from dynamically

inconsistent preferences. The first is through term

ρh,h+2

ρh,h+1ρh+1,h+2

̸= 1 (in general),

which in the familiar quasi-hyperbolic time discounting model is equal to the inverse of the

short-run discount factor. The second is through the ratio

ζhh+2

ζh+1
h+2

̸= 1 (in general),

which captures the difference in the marginal valuation of wealth in period h+2 from the perspec-

tive of the sophisticated agent h and her next period counterpart h+1. In the quasi-hyperbolic
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time discounting model
ζhh+2

ζh+1
h+2

= 1, because continuation value functions from period h+2 onwards

are the same for sophisticated agents h and h+ 1 in that model.

2.2.2 The Naive Agent

Definition 2. We speak of a “naive agent” if and only if this agent assumes at every age h

that her optimal consumption plan from the perspective of age h is also optimal from the

perspective of all her future selfs t > h.

In contrast to the sophisticated agent, the h-old naive agent bases her savings decision on

a—possibly incorrect—assumption about her future behavior. Put differently, the naive agent

completely ignores the possibility that her future selfs might have strict incentives to deviate

from her optimal consumption path. Expressed in terms of the optimal MPCs of Proposition 1,

the h-old naive agent’s planned MPCs for t ≥ h are characterized as

mn,h
t = m∗,h

t

(
mn,h

t+1, ...,m
n,h
T

)
. (8)

Let mn
h = mn,h

h be the realized MPCs of the h-old naive agent, which are stated in the next

Proposition 3. The realized MPCs of the naive agent are given as follows:

(i) Recursive characterization:

mn
h =


1 for h = T

1

1+
(∑T

t=h+1 ρh,t(m
n,h
t

∏t−1
j=h+1(1−mn,h

j ))
1−θ

) 1
θ

for h ≤ T − 1

with planned MPCs

mn,h
t =


1 for t = T

1

1+
ρ

1
θ
t,t+1

m
n,h
t+1

= 1

1+
∑T

k=t+1

(
ρh,k
ρh,t

) 1
θ

for t ≤ T − 1

(ii) Closed form:

mn
h =

1

1 +
∑T

t=h+1

(
ρh,t
) 1

θ

for h ≤ T − 1.
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3 Dynamic Consistency versus Inconsistency

There exists a large behavioral and decision-theoretic literature which convincingly argues that

human decision making is typically prone to violations of dynamic consistency. Dynamic incon-

sistencies arise, for example, within the following three modeling classes: (i) deterministic models

with a presence bias induced by hyperbolic or quasi-hyperbolic time-discounting (Laibson 1997;

1998; O’Donoghue and Rabin 1999); (ii) non-deterministic models with expected utility maxi-

mizing agents who violate Bayes’ rule8; (iii) non-deterministic models with Choquet expected

utility decision makers (Schmeidler 1989; Gilboa 1987) or/and Prospect theory decision makers

(Tversky and Kahneman 1992; Wakker and Tversky 1993; Wakker 2010) who form conditional

non-additive beliefs that may or may not be updated in accordance with some Bayesian up-

date rule (Gilboa and Schmeidler 1993; Eichberger, Grant, and Kelsey 2007; 2012). Within

the context of life-cycle models with time-discounting and survival uncertainty, our model with

arbitrary effective discount factors contains these modeling classes as special cases.

We formally define dynamic consistency versus dynamic inconsistency of the life-cycle model

in terms of possible discrepancies between the planned and the realized MPCs of the naive agent.

It will be analytical insightful to define these concepts with respect to the agent’s age.

Definition 3.

(i) We say that the model is “dynamically consistent at age h” if and only if

mn,h
t = mn

t for all t ≥ h+ 1.

(ii) Conversely, we say that the model is “dynamically inconsistent at age h” if and only if

mn,h
t ̸= mn

t for some t ≥ h+ 1.

The model is always dynamically consistent at ages h ∈ {T, T − 1}. For h ≤ T−2 we obtain,

by Proposition 3, the following equivalent characterization of dynamic consistency in terms of

discount factors.
8The economic literature which considers violations of Bayesian updating includes Rabin and Schrag (1999);

Rabin (2002); Epstein (2006); Epstein, Noor, and Sandroni (2008); Mullainathan, Schwartzstein, and Shleifer

(2008); Gennaioli and Shleifer (2010); Ortoleva (2012). Bayesian updating of additive probability measures is,

through the law of iterated expectations, equivalent to dynamic consistency of expected utility preferences (cf.,

e.g., Epstein and Le Breton 1993; Epstein and Schneider 2003; Ghirardato 2002; Siniscalchi 2011).
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Proposition 4. The life-cycle model is dynamically consistent at age h ∈ {0, ..., T − 2} if and

only if, for all t ∈ {h+ 1, T − 1},

T∑
k=t+1

(
ρh,k
ρh,t

) 1
θ

=
T∑

k=t+1

(
ρt,k
) 1

θ . (9)

Equation (9) is for every t generically violated over the space of all discount factors so that our

model is, for almost all values of discount factors, dynamically inconsistent at any age h ≤ T −2.

Example 1. To give an illustrative example, let T = 3 and observe that dynamic

consistency at age h = 0 is characterized through the following two equations:

mn,h
2 = mn

2 ⇔
ρ0,3
ρ0,2

= ρ2,3

and

mn,h
1 = mn

1 ⇔
(
ρ0,2
ρ0,1

) 1
θ

+

(
ρ0,3
ρ0,1

) 1
θ

=
(
ρ1,2
) 1

θ +
(
ρ1,3
) 1

θ .

Whenever we find some discount factors that satisfy both equations, a small per-

turbation of factors would break down equality. That is, dynamic consistency is

non-generic at h = T −3 because it breaks down for the perturbed values of discount

factors in any open interval—with strictly positive Lebesgue measure—around the

original values.□

The standard way to ensure that (9) holds, and thereby dynamic consistency of the model

at age h, is to impose the following condition standard discounting (SDC) on discount factors:

Definition 4. We say that the discount factors satisfy condition SDC at age h if and only if

ρh,t+1

ρh,t
= ρt,t+1 for all t ∈ {h+ 1, T − 1} , (10)

which is mathematically equivalent to

ρh,k
ρh,t

= ρt,k for all t ∈ {h+ 1, T − 1} and all k > t. (11)

Proposition 5. Suppose that the discount factors satisfy condition SDC at age h. Then the

following holds:
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(i) The model is dynamically consistent at age h.

(ii) The discount factors also satisfy condition SDC at all ages h′ > h.

(iii) By (i) and (ii), the model is dynamically consistent at all ages h′ ≥ h.

To put Proposition 5 into context, it is important to notice two aspects. First, Condition

SDC at h is sufficient but not necessary for ensuring dynamic consistency at h. Second, if

Condition SDC is violated at h although the model is dynamically consistent at h, we may

encounter situations where the model is dynamically inconsistent at some age h′ > h. Both

possibilities are illustrated by the following example.

Example 1 revisited. Suppose that the discount factors violate Condition SDC

(10) but satisfy
ρ0,2
ρ0,1

= ρ1,3 ,
ρ0,3
ρ0,1

= ρ1,2,
ρ0,3
ρ0,2

= ρ2,3,

implying
ρ1,3
ρ1,2

=
ρ0,2
ρ0,3

=
1

ρ2,3
. (12)

The model is dynamically consistent at 0 because of

mn,h
2 = mn

2 ⇔
ρ0,3
ρ0,2

= ρ2,3

and

mn,h
1 = mn

1 ⇔
(
ρ0,2
ρ0,1

) 1
θ

+

(
ρ0,3
ρ0,1

) 1
θ

=
(
ρ1,3
) 1

θ +
(
ρ1,2
) 1

θ .

However, since dynamic consistency at age 1 requires ρ2,3 =
ρ1,3
ρ1,2

the model is, by

(12), dynamically inconsistent at age 1 unless ρ2,3 = 1.□

While condition SDC at h is satisfied for all h ≥ 0 for exponential time-discounting combined

with Bayesian updating of additive survival beliefs, it does typically not hold for (i) (quasi-

)hyperbolic time-discounting models, (ii) for models with additive survival beliefs that are not

updated in accordance with Bayes’ rule, and (iii) for models with non-additive survival beliefs

that are not updated in accordance with the optimistic Bayesian rule (Gilboa and Schmeidler

1993).9

9For detailed formal arguments we refer the reader to the working paper version of this paper (Groneck,

Ludwig, and Zimper 2021).
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4 Who Saves a Greater Fraction of Their Wealth: The

Naive or the Sophisticated Agent?

4.1 Point of Departure

We will see that the sophisticated and the naive agent’s savings behavior will coincide at all ages

if the life-cycle model is dynamically consistent at all ages (cf. Corollary 3 below). Of course,

this finding is not surprising. Quite surprising, however, is the following relationship: Even if

the life-cycle model is dynamically inconsistent, both types of agents exhibit the same savings

behavior whenever the period-utility function is of the logarithmic form. This remarkable finding

goes back to the seminal analysis in Pollak (1968).

Theorem 0 (Pollak 1968). For all (arbitrary) specifications of the effective discount factors

we have at every age h:

θ = 1 implies mn
h = ms

h.

It is straightforward to verify Pollak’s Theorem directly by setting θ = 1 in the MPCs of

Propositions 2 and 3 to obtain

ms
h = mn

h =


1 for h = T

1

1+
∑T

t=h+1 ρh,t
for h ≤ T − 1.

4.2 Main Result

For general θ ̸= 1 it follows also from Propositions 2 and 3 that the MPCs of the T - and T−1-old

agents coincide for the naive and sophisticated type such that

mn
T = ms

T = 1,

mn
T−1 = ms

T−1 =
1

1 +
(
ρT−1,T

) 1
θ

.

For any ages h ≤ T −2, however, it is no longer obvious how the sophisticated and naive agent’s

savings behavior will compare whenever θ ̸= 1. Our main result extends Pollak’s analysis to the

whole class of iso-elastic power utility functions, i.e., to all concavity parameter values θ ̸= 1.
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Theorem 1. For all (arbitrary) specifications of the effective discount factors we have at every

age h ≤ T − 2:

(i) θ < 1 implies mn
h ≤ ms

h;

(ii) θ > 1 implies mn
h ≥ ms

h.

The proof of Theorem 1 is based on the following

Lemma 1. Let h ≤ T − 2.

(i) θ < 1 implies mn
h < ms

h if and only if mn,h
t ̸= ms

t for some t ≥ h+ 1.

(ii) θ > 1 implies mn
h > ms

h if and only if mn,h
t ̸= ms

t for some t ≥ h+ 1.

(iii) θ ̸= 1 and mn
h = ms

h if and only if mn,h
t = ms

t for all t ≥ h+ 1.

Our proof of Lemma 1 is based on an application of Jensen’s inequality. We here sketch the

core of the proof for a three period model (T = 2).10 By comparing the analytical expressions of

the marginal propensities to consume of the sophistic and the naive agent at age h = T − 2 = 0,

we show that mn
0 ≤ ms

0 is equivalent to(
mn,0

1

m1

)θ

m1 +

(
1−mn,0

1

1−m1

)θ

(1−m1) ≤ 1,

where mn,0
1 is the period 0 plan for the period 1 marginal propensity to consume of the naive

agent. This condition is a weighted average of two function values around one—the function

is evaluated at
mn,0

1

m1
and

1−mn,0
1

1−m1
—on a convex function for θ > 1 and on a concave function

for θ < 1. Therefore, the term is less than one so that ms
0 < mn

0 if the function is concave

(θ < 1) and above one so that ms
0 > mn

0 if the function is convex (θ > 1).

Let us use the characterizations of Lemma 1 to identify further conditions such that the

weak inequalities in Theorem 1 either become strict or hold with equality. At first, observe that

ms
T−1 = mn

T−1 implies

mn,h
T−1 ̸= ms

T−1 ⇔ mn,h
T−1 ̸= mn

T−1 ⇔
ρh,T
ρh,T−1

̸= ρT−1,T , (13)

which gives us by Lemma 1 the following (easy-to-check) sufficiency condition for strict inequal-

ities.
10The proof for T > 2 is a straightforward extension of the main idea and is based on backward induction.
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Corollary 1. Let h ≤ T − 2. Whenever the discount factors satisfy inequality (13), we have:

(i) θ < 1 implies mn
h < ms

h;

(ii) θ > 1 implies mn
h > ms

h.

Because inequality (13) holds generically, we can combine these strict inequalities with The-

orem 0 by Pollak (1968) to obtain the following statement.

Corollary 2. Let h ≤ T − 2. We have generically that

mn
h < (>)ms

h if and only if θ < (>) 1.

Recall that we have defined dynamic consistency at age h as

mn,h
t = mn

t for all t ≥ h+ 1.

Proposition 6. Let h ≤ T − 2 and θ ̸= 1. We have mn
h = ms

h whenever the model is

dynamically consistent at all ages t ≥ h.

Combining Proposition 5 with Proposition 6 gives us the following corollary.

Corollary 3. Suppose that the discount factors satisfy Condition SDC (10) at age h. Then

mn
h′ = ms

h′ for all ages h′ ≥ h.

Next, recall our definition of dynamic inconsistency at age h:

mn,h
t ̸= mn

t for some t ≥ h+ 1.

Proposition 7. If the model is dynamically inconsistent at age h ≤ T − 2, we have:

(i) θ < 1 implies mn
t < ms

t for some t ≥ h;

(ii) θ > 1 implies mn
t > ms

t for some t ≥ h.

If the model is dynamically consistent at age h, we have, by Proposition 6, that mn
h = ms

h

provided the model satisfies the additional requirement that it is also dynamically consistent

at all ages h′ ≥ h + 1. Whenever the discount factors satisfy Condition SDC (10) at age h,
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this additional requirement is automatically satisfied (cf. Proposition 5 and Corollary 3). The

following result clarifies that we cannot drop this additional requirement whenever Condition

SDC (10) is violated; that is, dynamic consistency at age h alone is, in general, not sufficient to

guarantee mn
h = ms

h.

Proposition 8. Suppose that the model is dynamically consistent at age h but dynamically

inconsistent at some age h′ ≥ h+ 1. Then we have:

(i) θ < 1 implies mn
h < ms

h;

(ii) θ > 1 implies mn
h > ms

h .

4.3 Interpretation: The three-period model

Why is our main result exclusively driven by the concavity parameter θ and not by properties of

the effective discount process? To offer some intuition, consider the three-period model (T = 2)

for which the MPCs of the sophisticated and the naive agent coincide in the second and third

period, i.e., ms
t = mn

t = mt for t = 1, 2. As a consequence, we can comprehensively describe

any departure from standard discounting in the three-period model through a single parameter

ϵ =
ρ0,2

ρ0,1ρ1,2
− 1 ̸= 0 only.

Denote by di0 =
1−mi

0

mi
0

for i ∈ {n, s} the ratio of the marginal propensity to save to the marginal

propensity to consume for the two agent types. Next define the measure for the relative reaction

between the sophisticated and the naive agent to any departure from standard discounting as

the ratio

y ≡
∂ds0
∂ϵ
∂dn0
∂ϵ

.

In Appendix B.8 we formally derive the relationship

y ≡
∂ds0
∂ϵ
∂dn0
∂ϵ

=

(
1 + ϵ(1−m1)

1 + ϵ

) 1
θ
−1

> 1 if and only if θ > 1, ϵ ̸= 0, (14)

because of 1+ϵ(1−m1)
1+ϵ

< 1. This local argument shows that only θ ≥ 1 versus θ ≤ 1 matters for

the question whether the sophisticated or the naive type reacts stronger to any (small) deviation

ϵ ̸= 0 from standard discounting whereby the direction of this deviation is irrelevant.

Now focus on the case θ ≥ 1. For this case we show that

∂y

∂θ

∣∣∣∣
θ∗
> 0 if and only if θ∗ < θ̄ (15)
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for the threshold value θ̄ > 1 which is uniquely determined as the root of a non-linear equation.

For parameter values θ such that 1 ≤ θ ≤ θ̄ we thus obtain that the relative size of the sophisti-

cated agent’s reaction to any (small) deviation ϵ ̸= 0 from standard discounting increases whereas

it decreases for θ ≥ θ̄.11 This argument illustrates that the role of the concavity parameter θ,

i.e., the IES = 1
θ
, for the inter-personal comparison between the naive and the sophisticated

agent is more complex than the role it plays as an inter-temporal smoothing parameter in models

with standard discounting.

4.4 Quantitative Relevance

We illustrate the quantitative implications of our findings in Figure 1 for a stylized calibration of

a standard hyperbolic time discounting model assuming estimates of θ regarded as plausible in

the literature, cf. Bansal and Yaron (2004). For a typical “finance” calibration with 1/θ = 2 the

percent differences are very large, and also for a standard “macro” calibration where 1/θ = 0.5,

the implied percent differences in consumption range from non-negligible −1% at age h = 0

to 2.3% at age T .12

5 Extension

We extend our main result to a life-cycle model with random returns, a portfolio choice and

Epstein-Zin-Weil (EZW) preferences (Epstein and Zin 1989; Epstein and Zin 1991; Weil 1989)

with arbitrary discount factors. Our extension builds on fundamental insights of the seminal

work by Merton (1969) and Samuelson (1969) that with homothetic preferences and serially un-

correlated returns the policy functions for consumption are linear in total wealth. The according

expressions for the MPCs of the naive and the sophisticated agent are therefore analogous to

those in our baseline model. It is then straightforward to establish that the backward recursive

proof of Theorem 1 readily extends to this setup.

11Whenever θ ≥ θ̄ the differences between the sophisticated relative to the naive agent’s saving reaction

decreases because in the limit θ → ∞ the savings behavior of both types must coincide again.
12For the chosen calibration of the model, details of which are described in Appendix C, the value of θ̄, cf.

Section 4.3, evaluated at age 0 is θ̄0 = 1.9344.
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Figure 1: Percent Differences in MPCs and Consumption Levels
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Notes: Percentage differences between sophisticated and naive hyperbolic discounting agents’ marginal propensity

to consume
(
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)
· 100% (Panel b). See Appendix C for

the calibration of the model.

5.1 Epstein-Zin-Weil Preferences with Arbitrary Discount Factors

The familiar Epstein and Zin (1989, 1991) aggregator with discount factor
ρh,t+1

ρh,t
can be written

as13

Uh
t =

c1−θ
t

1− θ
+
ρh,t+1

ρh,t

1

1− θ

(
E
[(
(1− θ)Uh

t+1

) 1−σ
1−θ

]) 1−θ
1−σ

for all t ≥ h, (16)

where parameter σ > 0 is a measure of risk-aversion whereas parameter θ is a measure of

resistance to inter-temporal substitution. For the parametrization σ = θ the standard additively

time-separable case with CRRA per period utility function (3) is nested as a special case.

We interpret the discount function ρh,t as pure time discounting, thus ρh,t = βh,t. As it

is, there exists an ongoing discussion in the literature regarding interpretational issues of EZW

life-cycle models with survival risks rather than with pure time-discounting only, which we

sidestep here as this discussion is beyond the scope of the present paper (cf. Hugonnier et al.

13Our representation is an often used monotone transformation Uh
t = 1

1−θV
h1−θ

t of the standard textbook

formulation V h
t =

(
c1−θ
t +

ρh,t+1

ρh,t

(
E
[
V h1−σ

t+1

]) 1−θ
1−σ

) 1
1−θ

, which directly nests the additively separable case

where σ = θ.
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2013; Córdoba and Ripoll 2017; Bommier et al. 2020; Bommier et al. 2021).14 Also for the

nested additively separable case where σ = θ we abstract from the possibility that dynamic

inconsistency may be induced by non-additive subjective survival beliefs νh,t, but again solely

assume it through the pure time discounting function βh,t.
15

5.2 Random Return Process with Portfolio Choice

Let Rt be an independently (over time) distributed risky return factor governed by the additive

probability measure π, where Rt takes weakly positive values π-almost surely.16 As in Section 4.4

we think of an economy that is populated by naive and sophisticated agents so that Rt is an

aggregate return process. Additionally, let Rf be a risk-free return factor such that Rf <

E [Rt] =
∫
Rtdπ. The household chooses in period t to invest share αt in stocks with next period

risky return Rt+1 and 1− αt in bonds with risk-free return Rf . The stochastic portfolio return

on the beginning of period t financial wealth holdings is accordingly Rp
t = Rf + αt−1

(
Rt −Rf

)
.

Additionally, let et be a possibly time varying deterministic endowment income stream of the

agent. In our Supplementary Appendix we show that the budget constraint in terms of total

wealth wt = xt + ht—where ht is human wealth (the present value of labor income) and xt =

xt = atR
p
t (αt−1) + et is cash-on-hand—is given by

wt+1 = (wt − ct)R
p
t+1(α̂t) (17)

where

α̂t = αt
xt − ct
wt − ct

. (18)

Observe that a nested model variant is one without labor income and risky returns (with or

without a portfolio choice), where households decumulate a given initial financial wealth endow-

ment over the life-cycle. Furthermore, an alternative model giving rise to the same mathematical

properties is one with risky labor income generated by risky returns to human capital ht and

14In a nutshell, this discussion concerns the question whether homothetic EZW preferences that explicitly

incorporate the utility of possible death can be consistent with the natural assumption that ‘life is better than

death’ for parameter values σ ̸= θ, σ ≥ 1, θ ≥ 1.
15Otherwise we would have to be explicit how to define the resolution of uncertainty with regard to the joint

process of return and survival uncertainty.
16These are standard assumptions on the return process in the portfolio choice literature.
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a linear human capital production function taking monetary human capital investments it as

inputs, cf. Krebs (2003), and thus our results apply to a larger class of models.17

5.3 Main Results from Extension

The main results from this extension can be summarized in the following two corollaries, proven

in the Supplementary Appendix.

Corollary 4. Lemma 1 and thus Theorem 1 extend to the dynamically inconsistent EZW

life-cycle model with arbitrary discount factors.

Corollary 5.Theorem 1 extends to portfolio shares in the dynamically inconsistent EZW life-

cycle model with arbitrary discount factors such that:

(i) θ < 1 implies αn
h ≤ αs

h for all h ;

(ii) θ > 1 implies αn
h ≥ αs

h for all h .

6 Concluding Remarks

Pollak (1968) shows that—irrespective of the specification of discount factors—the sophisticated

agent and her naive counterpart exhibit the same savings behavior whenever their period utility

function is logarithmic. We extend Pollak’s analysis to the class of all iso-elastic power utility

functions by showing that the sophisticated agent saves in every period a greater fraction of her

wealth than her naive counterpart if and only if the resistance to inter-temporal substitution

is larger than one. As a generalization of the additively time-separable life-cycle model (1) we

show that exactly the same relationship holds in a model with return risk, a portfolio choice

and Epstein-Zin-Weil (EZW) preferences. We expect our findings to provide useful guidance for

the interpretation of results in quantitative work where closed form solutions no longer arise but

where the interpretation on the relative consumption responses of the two types of agents in θ

may still hold approximately.

17This encompasses models with self imposed borrowing constraints if there exists a strict positive probability

for the returns on human capital and on financial wealth to be zero.
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Appendix

A Proof of Theorem 1

Our proof of Theorem 1 is based on the recursive presentations of the marginal propensities

to consume of the sophisticated and the naive agent. The different implications for the cases

θ < 1 versus θ > 1 result from a simple application of Jensen’s inequality to strictly concave

and strictly convex functions, respectively. Because the proof of Theorem 1 will be implied by

the proof of Lemma 1, we prove, at first, Lemma 1.

Proof of Lemma 1. Part (i): We show for h ∈ {0, . . . , T − 2}:

(i) θ < 1 implies mn
h = ms

h if mn,h
t = ms

t for all t ≥ h+ 1.

(ii) θ < 1 implies mn
h < ms

h if mn,h
t ̸= ms

t for some t ≥ h+ 1.

Recall from (6) and (28) the following expressions for MPCs

ms
h =

1

1 +
(
ρh,h+1ζ

h
h+1

) 1
θ

where

ζht = ms1−θ

t +
ρh,t+1

ρh,t
(1−ms

t)
1−θ ζht+1 (19)

as well as

mn,h
t =

1

1 +
(

ρh,t+1

ρh,t

) 1
θ
mn,h−1

t+1

. (20)

Using these expressions gives us at age t = h

mn
h ≤ ms

h

⇔(
ρh,h+1ζ

h
h+1

) 1
θ ≤

(
ρh,h+1

ρh,h

) 1
θ

mn,h−1

h+1

⇔

mn,hθ

h+1ζ
h
h+1 ≤ 1.

Next, we appropriately transform ζht . To this purpose, notice from (20) that

ρh,t+1

ρh,t
=

(
1−mn,h

t

mn,h
t

)θ

mn,hθ

t+1 .
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Using this in (19) we get recursively for t = T − 2, . . . , h+ 1

ζht = ms1−θ

t +

(
1−mn,h

t

mn,h
t

)θ

(1−ms
t)

1−θmn,hθ

t+1 ζ
h
t+1

⇔ mn,hθ

t ζht =

(
mn,h

t

ms
t

)θ

ms
t +

(
1−mn,h

t

1−ms
t

)θ

(1−ms
t)m

n,hθ

t+1 ζ
h
t+1. (21)

The remainder of the proof proceeds by backward induction on (21) over t = T −1, . . . , h+1.

Claims: Firstly, we claim that, for all t ∈ {h+ 1, . . . , T − 1}, θ < 1 implies

mn,hθ

t ζht = 1 (22)

if mn,h
t = ms

t for all t ≥ h+ 1.

Secondly, we claim that, for all t ∈ {h+ 1, . . . , T − 1}, θ < 1 implies

mn,hθ

t ζht < 1 (23)

if mn,h
t ̸= ms

t for some t ≥ h+ 1.

Base Case: Recall that mn
T = mn,h

T = ms
T = 1. In period t = T − 1 we have

mn,hθ

T−1ζ
h
T−1 =

(
mn,h

T−1

ms
T−1

)θ

ms
T−1 +

(
1−mn,h

T−1

1−ms
T−1

)θ (
1−ms

T−1

)
.

Suppose, at first, that mn,h
T−1 = ms

T−1. Then our first claim (22) is trivially satisfied for t = T −1

because of

mn,hθ

t ζht = 1

irrespective of the value of θ.

Suppose now that mn,h
T−1 ̸= ms

T−1, implying

mn,h
T−1

ms
T−1

̸=
1−mn,h

T−1

1−ms
T−1

.

By the strict version of Jensen’s inequality, we obtain for θ < 1

mn,hθ

T−1ζ
h
T−1 =

(
mn,h

T−1

ms
T−1

)θ

ms
T−1 +

(
1−mn,h

T−1

1−ms
T−1

)θ (
1−ms

T−1

)
<

((
mn,h

T−1

ms
T−1

)
ms

T−1 +

(
1−mn,h

T−1

1−ms
T−1

)(
1−ms

T−1

))θ

= 1
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because xθ is strictly concave for θ < 1. Consequently, our second claim (23) is satisfied for

t = T − 1.

Backward Induction Step: Suppose that the first claim (22) has been proved for period

i+ 1. That is, we have shown that θ < 1 implies

mn,hθ

i+1 ζ
h
i+1 = 1 (24)

if mn,h
t = ms

t for all t ≥ i+ 1. Rewrite (21) as

mn,hθ

i ζhi =

(
mn,h

i

ms
i

)θ

ms
i +

(
1−mn,h

i

1−ms
i

)θ

(1−ms
i )︸ ︷︷ ︸

=Λ(mn,h
i ,ms

i )

mn,hθ

i+1 ζ
h
i+1.

By the same reasoning as in the base case, we have that θ < 1 implies

Λ(mn,h
i ,ms

i ) ≤ 1 (25)

whereby this inequality is strict if and only if mh,n
i ̸= ms

i . Since

x+ y ≤ 1 and b ≤ 1 implies x+ by ≤ 1,

(24) together with (25) gives us the desired result that θ < 1 implies

mn,hθ

i ζhi = 1 (26)

if mh,n
i = ms

i whereas we have

mn,hθ

i ζhi < 1

if mh,n
i ̸= ms

i .

Next suppose that we have proved the second claim (23) for period i + 1. That is, we have

shown that θ < 1 implies

mn,hθ

i+1 ζ
h
i+1 < 1

if mn,h
t ̸= ms

t for some t ≥ i+ 1. Because of (25), we must have that

mn,hθ

i ζhi < 1.

Combining both cases proves Part (i) of Lemma 1.□
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Proof of Lemma 1. Part (ii): We show for h ∈ {0, . . . , T − 2}:

(i) θ > 1 implies mn
h = ms

h if mn,h
t = ms

t for all t ≥ h+ 1.

(ii) θ > 1 implies mn
h < ms

h if mn,h
t ̸= ms

t for some t ≥ h+ 1.

The proof proceeds exactly as the proof of Part (i) of Lemma 1 whereby we prove the following

two claims:

Firstly, for all t ∈ {h+ 1, . . . , T − 1}, θ > 1 implies

mn,hθ

t ζht = 1

if mn,h
t = ms

t for all t ≥ h+ 1.

Secondly, for all t ∈ {h+ 1, . . . , T − 1}, θ > 1 implies

mn,hθ

t ζht > 1 (27)

if mn,h
t ̸= ms

t for some t ≥ h+ 1.

The only difference to the proof of Part (i) is the reversed strict inequality in claim (27)

which follows, by the strict version of Jensen’s inequality, by strict convexity of xθ for θ > 1.□□

Proof of Theorem 1. To prove Part (i), we have to show that θ < 1 implies mn
h ≤ ms

h. Recall

from the proof of Lemma 1(i) that

mn,hθ

t ζht ≤ 1 for all t ∈ {T − 2, . . . , h+ 1} implies mn
h ≤ ms

h.

Moreover, the proof of Lemma 1(i) had established that θ < 1 implies either mn,hθ

t ζht = 1 or

mn,hθ

t ζht < 1 for all t ∈ {T − 2, . . . , h+ 1}. An analogous argument applies to Part (ii) of

Theorem 1.□□

B Additional Proofs and Derivations

B.1 Proof of Proposition 1

For h = T , we trivially have as optimal consumption c∗,TT = wT with optimal MPC m∗,T
T = 1.

For h < T , the optimal period h consumption c∗,hh from the perspective of the h-old agent is

pinned down by the following FOC:

dUh (ch;mh+1, ...,mT , wh)

dch

∣∣∣∣
ch=c∗,hh

= 0

⇔
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u′(c∗,hh ) =
T∑

t=h+1

ρh,tu
′

((
wh − c∗,hh

)
mt

t−1∏
j=h+1

(1−mj)

)(
mt

t−1∏
j=h+1

(1−mj)

)
,

which becomes for the power period utility function(
c∗,hh

)−θ

=
(
wh − c∗,hh

)−θ
T∑

t=h+1

ρh,t

(
mt

t−1∏
j=h+1

(1−mj)

)1−θ

.

Solving for c∗,hh results in

c∗,hh = m∗,h
h (mh+1, ...,mT )wh

such that the optimal period h MPC for fixed period h+ 1, ..., T MPCs is given as

m∗,h
h (mh+1, ...,mT ) =

1

1 +

(∑T
t=h+1 ρh,t

(
mt

∏t−1
j=h+1 (1−mj)

)1−θ
) 1

θ

.

More generally, by the envelope theorem, the optimal period t ≥ h consumption from the

perspective of the h-old agent given fixed values of mt+1, ...,mT and wealth wt is pinned down

by

ρh,t

(
c∗,ht

)−θ

=
(
wt − c∗,ht

)−θ
T∑

s=t+1

ρh,s

(
mt

s−1∏
j=t+1

(1−mj)

)1−θ

.

B.2 Derivation of Equation (7)

The consumption growth rate of the sophisticated agent is given as

csh+1

csh
=
ms

h+1wh+1

ms
hwh

=
1−ms

h

ms
h

ms
h+1.

Using the expression for ms
h and ζhh+1 from Proposition 2 we obtain

csh+1

csh
= ρ

1
θ
h,h+1ζ

h
1
θ

h+1

= ρ
1
θ
h,h+1

(
ms1−θ

h+1 +
ρh,h+2

ρh,h+1

(
1−ms

h+1

)1−θ
ζhh+2

) 1
θ

ms
h+1

= ρ
1
θ
h,h+1

(
ms

h+1 +
ρh,h+2

ρh,h+1

(
1−ms

h+1

)(1−ms
h+1

ms
h+1

)−θ

ζhh+2

) 1
θ

= ρ
1
θ
h,h+1

(
ms

h+1 +
ρh,h+2

ρh,h+1

(
1−ms

h+1

) ((
ρh+1,h+2ζ

h+1
h+2

) 1
θ

)−θ

ζhh+2

) 1
θ

= ρ
1
θ
h,h+1

(
ms

h+1 +
ρh,h+2

ρh,h+1ρh+1,h+2

ζhh+2

ζh+1
h+2

(
1−ms

h+1

)) 1
θ

.

Noting that uc(c) = c−θ then gives (7).
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B.3 Proof of Proposition 3

Mathematically equivalently, the h-old naive agent’s planned MPCs are pinned down by the

following FOCs for all t such that h ≤ t < T :

ρh,t(m
n,h
t wt)

−θ = ρh,t+1

(
mn,h

t+1wt+1

)−θ

⇔

ρh,t(m
n,h
t wt)

−θ = ρh,t+1

(
mn,h

t+1

(
wt −mn,h

t wt

))−θ

⇔

mn,h
t =

1

1 +
(

ρh,t+1

ρh,t

) 1
θ
(
mn,h

t+1

)−1
. (28)

Substituting

mn,h
t+1 =

1

1 +
(

ρh,t+2

ρh,t+1

) 1
θ
(
mn,h

t+2

)−1

in (28) gives

mn,h
t =

1

1 +
(

ρh,t+1

ρh,t

) 1
θ
+
(

ρh,t+2

ρh,t

) 1
θ
(
mn,h

t+2

)−1
.

By repeating this argument until mn,h
T = 1, we obtain the following closed form description of

planned MPCs

mn,h
t =


1 for t = T

1

1+
∑T

k=t+1

(
ρh,k
ρh,t

) 1
θ

for t ≤ T − 1.

B.4 Proof of Proposition 5

Part (i) is obvious and part (iii) follows from (i) and (ii). It remains to prove part (ii). Suppose

to the contrary that Condition SDC holds at age h but that there exists some h′ > h such that

ρh′,k

ρh′,t

̸= ρt,k (29)

for some t ∈ {h′ + 1, T − 1} and some k > t. Note that (11) implies

ρh,t
ρh,h′

= ρh′,t ,
ρh,k
ρh,h′

= ρh′,k,
ρh,k
ρh,t

= ρt,k
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and therefore
ρh′,k

ρh′,t

=

ρh,k
ρh,h′
ρh,t
ρh,h′

=
ρh,k
ρh,t

= ρt,k;

a contradiction to (29).

B.5 Proof of Proposition 6

For age T − 1 we have trivially

mn,T−1
T = mn

T = ms
T = 1 (30)

so that by the if-part of Lemma 1(iii)

mn
T−1 = ms

T−1. (31)

The model is always dynamically consistent at ages T and T − 1. Suppose now that the model

is dynamically consistent at age t = T − 2, we have, by definition,

mn,T−2
t = mn

t for t ≥ T − 1.

This gives us by (30) and (31)

mn,T−2
t = ms

t for t ≥ T − 1

so that by the if-part of Lemma 1(iii)

mn
T−2 = ms

T−2. (32)

By backward induction, we obtain the proposition for arbitrary h ≤ T − 2.

B.6 Proof of Proposition 7

Focus on θ < 1 and suppose to the contrary that mn
t ≤ ms

t does not become strict for some

t ≥ h but that

mn
t = ms

t for all t ≥ h. (33)

By Lemma 1(iii), mn
h = ms

h implies mn,h
t = ms

t for all t ≥ h+ 1. This gives us, by (33),

mn,h
t = mn

t for all t ≥ h+ 1,

which contradicts the assumption of dynamic inconsistency at age h.
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B.7 Proof of Proposition 8

Focus on θ < 1 and suppose to the contrary that mn
h = ms

h instead of mn
h < ms

h. By Lemma

1(iii), we have that

mn,h
t = ms

t for all t ≥ h+ 1.

If the model is dynamically consistent at age h, we further have

mn,h
t = mn

t for all t ≥ h+ 1,

implying

mn
t = ms

t for all t ≥ h+ 1. (34)

But if the model is dynamically inconsistent at age h′ ≥ h + 1, we obtain, by Proposition 7(i),

mn
t < ms

t for some t ≥ h′, a contradiction to (34).

B.8 Three-period model: Derivation of Equations (14) and (15)

Since m1 =
1

1+ρ
1
θ
1,2

we obtain for the MPCs of the two agents

mn
0 =

1

1 + ρ
1
θ
0,1

(
1 +

(
ρ0,2

ρ0,1ρ1,2

) 1
θ
ρ

1
θ
1,2

)
ms

0 =
1

1 + ρ
1
θ
0,1

( 1

1+ρ
1
θ
1,2

)1−θ

+ ρ
1
θ
1,2

(
1

1+ρ
1
θ
1,2

)1−θ

ρ0,2
ρ0,1ρ1,2

 1
θ

.
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Next, let 1 + ϵ =
ρ0,2

ρ0,1ρ1,2
for ϵ ̸= 0 and define di0 =

1−mi
1

mi
1

for i ∈ {n, s} to get

∂dn0
∂ϵ

=
1

θ
ρ

1
θ
0,1ρ

1
θ
1,2(1 + ϵ)

1
θ
−1 > 0

∂ds0
∂ϵ

=
1

θ
ρ

1
θ
0,1ρ

1
θ
1,2


 1

1 + ρ
1
θ
1,2

1−θ

+ ρ
1
θ
1,2

 1

1 + ρ
1
θ
1,2

1−θ

(1 + ϵ)


1
θ
−1 1

1 + ρ
1
θ
1,2

1−θ

=
1

θ
ρ

1
θ
0,1ρ

1
θ
1,2

 1

1 + ρ
1
θ
1,2

+ ρ
1
θ
1,2

1

1 + ρ
1
θ
1,2

(1 + ϵ)

 1
θ
−1

=
1

θ
ρ

1
θ
0,1ρ

1
θ
1,2

1 + ϵ
ρ

1
θ
1,2

1 + ρ
1
θ
1,2

 1
θ
−1

=
1

θ
ρ

1
θ
0,1ρ

1
θ
1,2 (1 + ϵ(1−m1))

1
θ
−1 > 0

and we thus get

y ≡
∂ds0
∂ϵ
∂dn0
∂ϵ

= z
1
θ
−1 where z ≡ 1 + ϵ(1−m1)

1 + ϵ
.

Furthermore, since

∂ ln y

∂θ
= −

(
1

θ

)2

ln(z)︸ ︷︷ ︸
>0

+

(
1

θ
− 1

)
∂ ln(z)

∂θ︸ ︷︷ ︸
>0

we obtain

∂y

∂θ
> 0, for ψ ≡ 1

θ
>

1

θ̄
∈ (0, 1) (35)

where for the case θ > 1 the threshold value θ̄ is defined as the root of the non-linear equation

−
(
1

θ

)2

ln(z) +

(
1

θ
− 1

)
∂ ln(z)

∂θ
= 0.

which by the intermediate value theorem exists and is unique.

The intuition for the upper bound parameter θ̄ ∈ (1,∞)—and thus corresponding lower

bound IES of ψ ∈ (0, 1) is that for the limiting case θ = ∞ we have perfect complements of

consumption over time so that consumption is constant, csh = cnh = c̄ for all h and therefore the

sophisticated and the naive agent save and consume the same amount if θ = ∞ and θ = 1 and

thus the derivative in (15) changes its sign for θ < θ̄.
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It remains to show that ∂ ln(z)
∂θ

> 0. We have

∂ ln(z)

∂θ
= − 1

1 + ϵ(1−m1)
ϵ
∂m1

∂θ
> 0

because

∂m1

∂θ
= − 1

(1 + ρ1,2)
2

∂ρ
1
θ
1,2

∂θ
< 0.

C Calibration

For the calibration of the quantitative illustration in Section 4.4 we assume that agents live

for T = 60 years, are born with a wealth endowment of w0 = 100, which, to generate a life-

cycle asset profile, we distribute as endowment income of 2 until retirement and a pension

income of 1 after retirement at age 40. We assume two types of agents with θi ∈ {0.5, 2}

with equal measure of 50% and within each preference type we assume equal shares of naive and

sophisticated hyperbolic time discounters with long-run discount factor δ and short-run discount

factor β so that the economy is populated by 4 different agents with equal measure of 25%. To

discipline discounting in our deterministic model with a zero interest rate, we calibrate the long-

run discount factor δ so that the aggregate asset holdings in the model economy match smoothed

data on assets taken from Groneck et al. (2016), whereby we hold constant the difference

between the short and the long-run discount rates ∆ as calibrated by Angeletos et al. (2001),

i.e., ∆ = 1/0.7−1/0.957 = 0.383. Matching asset profiles gives δ = 1.035 and β = δ−∆ = 0.741

for the long- and short-run discount factors, respectively.18

18Note that in our model with a zero interest rate a long-run discount factor above one is not surprising.
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cated Agent? Working paper version, CEPR DP16412.

Halevy, Y. (2008). Strotz Meets Allais: Diminishing Impatience and the Certainty Effect.

American Economic Review 98(3), 1145–62.

Harris, C. and D. Laibson (2001). Dynamic Choices of Hyperbolic Consumers. Econometrica

69(4), 935–957.

Hugonnier, J., F. Pelgrin, and P. St-Amour (2013). Health and (Other) Asset Holdings. Review

of Economic Studies 80, 663–710.

Kimball, M., and P. Weil (2009). Precautionary saving and consumption smoothing across

time and possibilities. Journal of Money, Credit and Banking, 41(2-3), 245–284.

Krebs, T. (2003). Human Capital Risk and Economic Growth. The Quarterly Journal of

Economics 118(2), 709–744.

Krueger, D., Ludwig, A., and S. Villalvazo (2021). Optimal taxes on capital in the OLG model

with uninsurable idiosyncratic income risk. Journal of Public Economics, 201, 104491.

Laibson, D. (1997). Golden Eggs and Hyperbolic Discounting. Quarterly Journal of Economics

62(2), 443–477.

Laibson, D. (1998). Life-cycle Consumption and Hyperbolic Discount Functions. European

Economic Review 42(3), 861–871.

Ludwig, A. and A. Zimper (2013). A Parsimonious Model of Subjective Life Expectancy.

Theory and Decision 75, 519–542.

Merton, R. C. (1969). Lifetime portfolio selection under uncertainty: The continuous-time

case. The Review of Economics and Statistics, 247–257.

33



Modigliani, F. and R. Brumberg (1954). Utility Analysis and the Consumption Function: An

Interpretation of Cross-Section Data. In K. K. Kurihara (ed), Post-Keynesian Economics.

New Brunswick, NJ.: Rutgers University Press.

Mullainathan, S., J. Schwartzstein, and A. Shleifer (2008). Coarse Thinking and Persuasion.

The Quarterly Journal of Economics 123, 577–619.

O’Donoghue, T. and M. Rabin (1999). Doing It Now or Later. American Economic Review

89(1), 103–124.

Ortoleva, P. (2012). Modeling the Change of Paradigm: Non-Bayesian Reactions to Unexpected

News. The American Economic Review 102, 2410–2436.

Phelps, E. S. and R. Pollak (1968). On Second-Best National Saving and Game- Equilibrium

Growth. Review of Economic Studies, 35, 185–199.

Pollak, R. A. (1968). Consistent Planning. Review of Economic Studies 35, 201–208.

Rabin, M. (2002). Inference by Believers in the Law of Small Numbers. The Quarterly Journal

of Economics 117, 775–816.

Rabin, M. and J. L. Schrag (1999). First Impressions Matter: A Model of Confirmatory Bias.

The Quarterly Journal of Economics 114, 37–82.

Saito, K. (2011). Strotz Meets Allais: Diminishing Impatience and the Certainty Effect: Com-

ment. American Economic Review 101(5): 2271–75.

Samuelson, P. A. (1937). A Note on Measurement of Utility. The Review of Eco¡nomic Studies

4(2), 155–161.

Samuelson, P. A. (1969). Lifetime Portfolio Selection by Dynamic Stochastic Programming.

The Review of Economics and Statistics 51(3), 239–246.

Schmeidler, D. (1989). Subjective Probability and Expected Utility Without Additivity. Econo-

metrica 57(3), 571–587.

Siniscalchi, M. (2011). Dynamic Choice under Ambiguity. Theoretical Economics 6, 379–421.

34



Strotz, R. H. (1955). Myopia and Inconsistency in Dynamic Utility Maximization. The Review

of Economic Studies 23(3), 165–180.

Tversky, A. and D. Kahneman (1992). Advances in Prospect Theory: Cumulative Represen-

tations of Uncertainty. Journal of Risk and Uncertainty 5(4), 297–323.

Wakker, P. P. (2010). Prospect Theory: For Risk and Ambiguity. Cambridge, UK: Cambridge

University Press.

Wakker, P. P. and A. Tversky (1993). An Axiomatization of Cumulative Prospect Theory.

Journal of Risk and Uncertainty 7, 147–176.

Weil, P. (1989). The Equity Premium Puzzle and the Risk-free Rate Puzzle. Journal of

Monetary Economics, 24(3), 401–421.

35



Supplementary Appendix
Extension to EZW Preferences

(Not for Publication)

A Dynamic Budget Constraint

The budget constraint in terms of financial wealth et is

at+1 = atR
p
t (αt−1) + et − ct

for a0 = 0 given. In terms of cash on hand xt = atR
p
t (αt−1) + et we can rewrite the budget

constraint as

xt+1 = (xt − ct)R
p
t+1(αt) + et+1. (36)

Since human capital as the discounted sum of future deterministic labor income obeys

ht+1 = htR
f − et+1. (37)

Consolidating budget constraints (36) and (37) gives (17) and (18).

B Solution

The marginal propensities to consume and a characterization of the optimal portfolio choice

resulting from the solution of the consumption savings and portfolio allocation problem of the

naive and the sophisticated agents are given in the next proposition, which we formally prove

below:

Proposition 9. Consider the EZW life-cycle model with arbitrary discount factors. The

marginal propensities to consume are given as follows:

� for the sophisticated agent:

ms,h
h =


1 for h = T

1

1+(ρh,h+1ζ
h
h+1Θ(α̂t,Rf ,Rh+1,π))

1
θ

for h < T,
(38)
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where ζhh+1 follows from the backward recursion in t = T − 1, . . . , h

ζht = ms1−θ

t +
ρh,t+1

ρh,t
(1−ms

t)
1−θ ζht+1 ·Θ

(
α̂∗
t , R

f , Rt+1, π
)

(39)

for ζhT = 1, where for all t = h, . . . , T − 1

Θ
(
α̂t, R

f , Rt+1, π
)
= max

α̂t

{(∫
Rp

t+1(α̂t)
1−σdπ

) 1−θ
1−σ

}
. (40)

� for the naive agent:

mn,h
t =


1 for t = T

1

1+

(
ρh,t+1
ρh,t

Θ(α̂t,Rf ,Rt+1,π)
) 1

θ
(mn,h

t+1)
−1

for t < T,
(41)

where Θ(·) is given by (40).

� for both agents the optimal portfolio choice α̂s
t = α̂n

t = α̂t is the solution to∫
Rp

t+1(α̂t)
−σdπ = 0 (42)

We thus find that the separation between risk attitudes as measured by σ and inter-temporal

attitudes as measured by θ inherent to EZW preferences is reflected in the solution of this

model to the effect that both households choose the same optimal portfolio share α̂t as the

solution to (42)—which due to the convexity of the function Rp
t+1(α̂t)

−σ in the portfolio share is

decreasing in risk aversion σ—, whereas the relationship between the marginal propensities to

consume out of total wealth across the two types of households is exclusively driven by inter-

temporal attitudes as measured by θ. Specifically, as in our recursive proof in Subsection A we

likewise find that

mn
h ≤ ms ⇔

(
mn,h

h+1

)θ
ζhh+1 ≤ 1

and since

ρh,t+1

ρh,t
Θ
(
α̂t, R

f , Rt+1, π
)
=

(
1−mn,h

t

mn,h
t

)θ

mn,h
t+1

we can use the above in equation (39) to obtain (21). An application of the analogous steps as

in the backward recursive proof of Theorem 1 finally gives us Corollary 4.
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C Implications for Portfolio Choice

Our finding on marginal propensities to consume in Theorem 1 combined with the finding of

equal (across the two types) optimal portfolio shares α̂t leads us to the next observation regarding

the portfolio shares as a fraction of financial wealth αi
t for i ∈ {n, s}. Recall from the definition

of α̂i
t in (18) that

αi
t = α̂t

(
1 +

ht
xit − cit

)
and since (the optimal) α̂t and ht are the same for both types of households, differences in

the optimal portfolio choice out of financial wealth, αi
t, across the two types are solely due to

differences in xit − cit. Specifically, we get

αs
t ≤ αn

t ⇔ xst − cst ≥ xnt − cnt ⇔ ws
t (1−ms

t) ≥ wn
t (1−mn

t ).

Next, assume that the return realizations Rt are the same for the naive and the sophisticated

household (aggregate return risk). Then, since at all t wealth accumulation, or decumulation,

obeys (17) and since α̂i
t = α̂t, for i ∈ {n, s} we obtain

ms
t ≤ mn

t ⇔ (1−ms
t)w

s
t ≥ (1−ms

t)w
n
t ⇒ ws

t+1 ≥ wn
t+1.

where the last inequality follows from (17) because α̂i
t = α̂t and by our assumption of aggregate

return risk so that return realizations are the same for the naive and the sophisticated household.

We thus arrive at Corollary 5.

D Proof of Proposition 9

Our proof of Proposition 9 is based on recursive methods.

Sophisticated Agent. Our proof is by backward induction.

Claims: The value function of the sophisticated agent in any period t ≥ h is given by

Uh
t (wt) =

1

1− θ
ζhtw

1−θ
t (43)

with associated policy function

csh = ms
hwh. (44)
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Base case: In period T we have csT = wT and thus Uh
T = 1

1−θ
w1−θ

T and ms
T = 1.

Backward Induction Steps: Suppose the claims (43) and (44) have been shown for all

periods h + 1, . . . , T . Then iterate backward for all t = T − 1, . . . , h + 1 using (43) in (16) to

get, also using resource constraint (17),

Uh
t = u(ct) +

ρh,t+1

ρh,t

1

1− θ

(
E
[(
(1− θ)Uh

t+1

) 1−σ
1−θ

]) 1−θ
1−σ

=
1

1− θ

(
(cst)

1−θ +
ρh,t+1

ρh,t
ζht+1

(
E
[(
w1−θ

t+1

) 1−σ
1−θ

]) 1−θ
1−σ

)
=

1

1− θ

(
(ms

t)
1−θ +

ρh,t+1

ρh,t
(1−ms

t)
1−θ ζht+1Θ

(
α̂t, R

f , Rt+1, π
))

w1−θ
t

=
1

1− θ
ζhtw

1−θ
t , (45)

which defines (40) and establishes the backward recursion of ζht in (39).

Next, in period h use (43) in (16) to get

Uh
h =

1

1− θ
max

csh,wh+1,α̂
s
h

{
(csh)

1−θ + ρh,h+1ζ
h
h+1

(
E
[(
w1−θ

h+1

) 1−σ
1−θ

]) 1−θ
1−σ

}
. (46)

Use the resource constraint (17) in the above to obtain, by the separation between the optimal

consumption and the optimal portfolio choice,

Uh
h =

1

1− θ
max
csh

{
(csh)

1−θ + ρh,h+1 (wh − csh)
1−θ
}
ζhh+1max

α̂h

{(
E
[(
Rp

h+1(α̂h)
1−θ
) 1−σ

1−θ

]) 1−θ
1−σ

}
︸ ︷︷ ︸

=Θ(α̂h,ζ
h
h+1,R

f ,Rh+1,π)

with first-order condition for csh

(csh)
−θ − ρh,h+1 (wh − ch)

−θ ζhh+1Θ
(
α̂h, R

f , Rh+1, π
)
= 0,

where α̂∗
h is the optimal portfolio share further characterized below. We thus get

csh = ms
hwh

where

ms
h =

1

1 +
[
ρh,h+1ζ

h
h+1Θ(α̂h, Rf , Rh+1, π)

] 1
θ

.

which is (46) and proves the claims.

iv



Naive Agent. For the naive agent, we essentially follow the same steps with the following

modifications:

� The maximization problem in (46) is solved for all t = h, . . . , T − 1, thus

Un,h
t =

1

1− θ
max

cn,h
t ,wt+1,α̂

n,h
t

{(
cn,ht

)1−θ

+
ρh,t+1

ρh,t
ζht+1

(
E
[(
w1−θ

t+1

) 1−σ
1−θ

]) 1−θ
1−σ

}
,

which, using the resource constraint and the separation between the optimal consumption

and the portfolio choice, gives

mn,h
t =

1

1 +
[
ρh,t+1

ρh,t
ζht+1Θ(α̂t, Rf , Rt+1, π)

] 1
θ

. (47)

� Using the solution back in the value function as in (45) gives

Un,h
t =

1

1− θ

((
mn,h

t

)1−θ

+
ρh,t+1

ρh,t
ζn,ht+1

(
1−mn,h

t

)1−θ

Θ
(
α̂n,h
t , Rf , Rt+1, π

))
w1−θ

t

=
1

1− θ

(mn,h
t

)1−θ

+
(
1−mn,h

t

)1−θ
(
1−mn,h

t

mn,h
t

)θ
w1−θ

t

=
1

1− θ

(
mn,h

t

)−θ

w1−θ
t .

� We thus find ζht = mh−θ

t . Using this in (47) we finally obtain

mh
t =

1

1 +
(

ρh,t+1

ρh,t
Θ
(
α̂n,h
t , Rf , Rt+1, π

)) 1
θ
(
mn,h

t+1

)−1
.

Optimal Portfolio Choice. Since Θ
(
α̂t, R

f , Rt+1, π
)
is the same for both agents we ob-

tain α̂s
t = α̂n,h

t = α̂t, where from the first-order condition of the optimal portfolio allocation

problem α̂∗
t is the solution to

E
[
Rp

t+1(α̂t)
−σ
]
=

∫
Rp

t+1(α̂t)
−σdπ = 0

and thus the optimal portfolio allocation problem at t is a static decision problem, which is

parameterized by risk aversion σ. □□

v
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