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Abstract

Condorcet domains are sets of preference orders such that the majority relation
corresponding to any profile of preferences from the domain is acyclic. The best
known examples in economics are the single-peaked, the single-crossing, and the
group separable domains. We survey the latest developments in the area since
Monjardet’s magisterial overview (2009), provide some new results and offer two
conjectures concerning unsolved problems. The main goal of the presentation is to
illuminate the rich internal structure of the class of maximal Condorcet domains.
In an appendix, we present the complete classification of all maximal Condorcet
domains on four alternatives obtained by Dittrich (2018).
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1 Introduction

A Condorcet domain is a set of linear orders on a given set of alternatives such that, if
every voter is known to have a preference from that set, the pairwise majority relation
is acyclic. Equivalently, Condorcet domains guarantee that a Condorcet winner exists on
every subset of alternatives. From the perspective of collective decision making, Condorcet
domains thus represent the most regular restricted domains and are therefore of great
importance in applications. In particular, every Condorcet domain admits rich classes
of Arrovian aggregators as well as strategy-proof social choice functions, see e.g., Moulin
(1980); Saporiti (2009); Puppe and Slinko (2019).

Well-known examples of Condorcet domains are the single-peaked domain, the single-
crossing domain and the domain of group separable preferences. Besides continuing and
growing work on these ‘classical’ domains, there has also been an unflagging interest in
identifying ‘large’ Condorcet domains, see Abello and Johnson (1984); Craven (1996);
Fishburn (1997, 2002) and the literature surveyed by Monjardet (2009). Among other
things, this literature has demonstrated the great diversity of Condorcet domains, the
scope of which is far from being understood completely. However, progress has been
made on several counts since Monjardet’s magisterial survey was published, and it seems
to us that the time is ripe to summarize this progress. This is the purpose of the present
paper.

First, the work of Danilov et al. (2012) has led to a deeper understanding of an
important subclass of Condorcet domains, the so-called ‘peak-pit’ domains (with maxi-
mal width) of which the single-peaked, the single-crossing and the ‘Fishburn alternating
scheme domains’ are special cases. Moreover, the subclass of Black and Arrow single-
peaked domains have been axiomatically characterized by Puppe (2018) and Slinko (2019),
respectively, and are now well understood.

Second, an important connection with the theory of median graphs has been estab-
lished in Puppe and Slinko (2019) that helps understanding the structure of Condorcet
domains by visualizing them as graphs.

Third, a complete list of all maximal Condorcet domains on up to five alternatives
has been obtained by Dittrich (2018) using a computational protocol: there are exactly
18 different equivalence classes in the case of four alternatives, and 688 in the case of five
alternatives. We present the complete classification for the case of four alternatives in
the appendix of this paper. By contrast, a detailed qualitative analysis of the class of all
maximal domains on five alternatives is clearly beyond the scope and limits of the present
survey; here, we only review the classification of all peak-pit domains with maximal width
in the case of five alternatives obtained by Li et al. (2021).

Fourth, Danilov and Koshevoy (2013) discovered a series of symmetric maximal Con-
dorcet domains that for any number of alternatives have the size of just 4; we call them
Raynaud domains, as Raynaud (1981) was the first who discovered such a domain in the
case of four alternatives. Raynaud domains were characterized by Karpov and Slinko
(2022b) by means of simple permutations, a well-known object in combinatorics. We con-
jecture that any symmetric maximal domain can be constructed from Raynaud domains
and the trivial ones.
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Finally, recent progress has also been made in the construction of large peak-pit Con-
dorcet domains by Karpov and Slinko (2022a). The long-standing ‘Fishburn hypothesis’
was that Fishburn’s so-called ‘alternating scheme’ produces the largest peak-pit domains
of maximal width for all numbers of alternatives. But this was refuted by Danilov et al.
(2012) who showed that for 42 alternatives the conjecture is false. Karpov and Slinko
(2022a) proved that Fishburn’s conjecture is false already for 34 alternatives. At the
heart of both results is a construction that produces from two given peak-pit maximal
Condorcet domains another maximal peak-pit domain of larger size.

Importantly, the present survey is limited to the case of Condorcet domains of linear
orders, and to the analysis of maximal Condorcet domains. A first step in the analysis of
Condorcet domains of weak orders is taken in Puppe (2018), and some remarkable facts
about ‘closed’ (but not necessarily maximal) Condorcet domains have been established in
Puppe and Slinko (2019).

The remainder of this survey is organized as follows. In Section 2 we review the basic
concepts and results on Condorcet domains. Section 3 analyzes the class of connected
domains and shows that this class is intimately related to the so-called ‘peak-pit’ domains.
In Subsection 3.1, we present the characterization of the ‘Black’ single-peaked domain as
the only maximal Condorcet domain that satisfies three simple conditions: connected-
ness, maximal width (i.e., the existence of two completely reversed orders) and minimal
richness (i.e., for each alternative the existence of an order with that alternative at the
top). Subsection 3.2 contains the generalization of this result which dispenses with the
maximal width condition and shows that the remaining two conditions characterize the
so-called ‘Arrow’ single-peaked domains. Subsection 3.3 is devoted to three equivalent
combinatorial characterizations of the general ‘peak-pit’ domains with maximal width: in
terms of rhombus tilings (Danilov et al., 2012), in terms of arrangements of pseudolines
(Galambos and Reiner, 2008), and in terms of separated ideals (Li et al., 2021). In Sub-
section 3.4 we present the conjecture that the class of all peak-pit maximal Condorcet
domains (with or without maximal width) coincides with the class of connected maximal
Condorcet domains. Section 4 is devoted to the class of symmetric Condorcet domains.
A particular feature of these domains is that they are characterized by a complete set of
‘never-middle’ conditions (i.e., the conditions that require that in the restriction to every
triple of alternatives there is one alternative that never occupies the middle position in the
ranking). We present a construction of indecomposable symmetric Condorcet domains via
‘simple sequences’ and conjecture that this construction exhausts the class of non-trivial
indecomposable symmetric Condorcet domains. Section 5 is devoted to recent advances in
the construction of ‘large’ Condorcet domains, i.e., of maximal Condorcet domains with
a large number of different orders.

We do not reproduce proofs that can be found in the literature, but whenever appro-
priate we do provide the basic intuition behind results.
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2 Basic concepts and results

2.1 Isomorphism and flip-isomorphism

Let A be a finite set and L(A) be the set of all linear orders (transitive, complete and
asymmetric binary relations) on A. Any non-empty subset D ⊆ L(A) will be called a
domain. If a1 � a2 � · · · � am is a linear order on A, it will be denoted by a string
a1a2 . . . am. We will sometimes denote linear orders also with small latin letters, and
write a �v b if a is ranked higher than b in the linear order v (usually associated with a
voter). Let us also introduce notation for reversing orders, i.e., if v = a1a2 . . . am, then
v = amam−1 . . . a1.

Any sequence P = (�1, . . . ,�n) = (v1, . . . , vn) ∈ Dn of linear orders from D will be
called a profile over D. Unlike a domain it can contain several identical linear orders. Pro-
files usually represent a collection of opinions of members of a certain society so v1, . . . , vn
are also called voters (voters and their linear orders are usually denoted with the same
letter).

Definition 1. The majority relation �P of a profile P = (�1, . . . ,�n) is defined as

a �P b ⇐⇒ #{i | a �i b} ≥ #{i | b �i a},

i.e., a �P b means that the number of voters who prefer a to b is at least as large as the
number of voters who prefer b to a. For an odd n, this relation is a tournament, i.e.,
complete and asymmetric binary relation.

The main object of our investigation are Condorcet domains, defined as follows.

Definition 2. A domain D ⊆ L(A) over a set of alternatives A is a Condorcet domain if
the majority relation of any profile P over D with an odd number of voters1 is transitive.
A Condorcet domain D is maximal if for any Condorcet domain D′ ⊆ L(A) the inclusion
D ⊆ D′ implies D = D′.

An equivalent definition of a Condorcet domain requires the majority relation to be
acyclic for all n, see Monjardet (2009); this is why Fishburn (1997, 2002) refers to Con-
dorcet domains also as acyclic sets of linear orders.

As any other abstractly defined object in mathematics, a Condorcet domain can have
several ‘material’ appearances. To relate them together we need a concepts of an iso-
morphism and flip-isomorphism. Let ψ : A → A′ be a bijection between two sets of
alternatives. It can be extended to a mapping ψ : L(A) → L(A′) in two ways: by
mapping linear order u = a1a2 . . . am onto ψ(u) = ψ(a1)ψ(a2) . . . ψ(am)2 or to ψ(u) =
ψ(am)ψ(am−1) . . . ψ(a1).

Definition 3. Let A and A′ be two sets of alternatives (not necessarily distinct) of equal
cardinality. We say that two domains, D ⊆ L(A) and D′ ⊆ L(A′) are isomorphic if
there is a bijection ψ : A → A′ such that D′ = {ψ(d) | d ∈ D}, and flip-isomorphic if
D′ = {ψ(d) | d ∈ D}.

1further referred to as an ‘odd profile’.
2We use the same notation for both mappings since there can be no confusion.
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In the particular case, when D = {u | u ∈ D}, we call the domain D as flipped D;
evidently, the flipped domain D is flip-isomorphic to D, but it is usually not isomorphic
to it.

There is only one maximal Condorcet domain on a set {a, b} of two alternatives, namely
CD = {ab, ba}. Up to an isomorphism, there are three maximal Condorcet domains on a
set of three alternatives {a, b, c}, and up to an isomorphism or a flip-isomorphism there
are only two maximal Condorcet domains on a set of three alternatives. To verify and
illustrate this, consider the following two pairs of domains. The two domains shown in
Fig. 1 belong to the class of so-called group separable domains introduced by Inada (1964).

Figure 1: Two isomorphic group separable domains

Definition 4. A domain D on the set A of alternatives is called group separable if every
subset B ⊆ A with at least two elements can be partitioned into two non-empty subsets B′

and B′′ such that every order in D either (i) ranks all elements of B′ above all elements
in B′′, or (ii) ranks all elements of B′′ above all elements in B′.

Inada (1964) showed that group separability is a sufficient condition for acyclicity
of the majority relation. Indeed, as is easily verified the two domains {abc, bac, cab, cba}
(Fig. 1, left) and {abc, acb, bca, cba} (Fig. 1, right) are maximal Condorcet domains on the
set {a, b, c}. The group separability of the domain on the left side follows via the partition
{{a, b}, {c}} of A, and of the domain on the right side via the partition {{a}, {b, c}} (for
proper subsets of A the condition is trivial). The first domain is in fact isomorphic to the
second, as can be seen by applying the bijection ψ(a) = c, ψ(b) = b, ψ(c) = a. Both are
self flip-isomorphic relative to the identity mapping.

Fig. 2 depicts two other well-known Condorcet domains on the set {a, b, c}, the single-
peaked and the single-dipped domain.

Definition 5. A domain D on the set A of alternatives is called single-peaked if there
exists a linear order (the ‘spectrum’) > on A such that, for every order v ∈ D, the upper
contour set Uv(b) := {a ∈ A : a �v b} is connected in the order > for all b ∈ A. The
domain of all single-peaked orders with respect to a given spectrum > is denoted by SP>.
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Similarly, a domain D on the set A of alternatives is called single-dipped if there exists
a linear order (the ‘spectrum’) > on A such that, for every order v ∈ D, the lower contour
set Lv(b) := {a ∈ A : b �v a} is connected in the order > for all b ∈ A. The domain of
all single-dipped orders with respect to a given spectrum > is denoted by SD>.

Figure 2: Two flip-isomorphic domains: SPabc (left) and SDabc (right)

The two domains shown in Fig. 2 are not isomorphic (this follows, e.g., from the fact
that they have a different number of distinct top alternatives), but flip-isomorphic.

Remark 1. A remark on terminology is in order. The single-peaked domain as defined
above has been introduced by Black (1948, 1958) and discussed in Arrow (1951, 1963).
A weaker (‘local’) concept of single-peakedness only requires the restriction of a domain
to any triple to be single-peaked, see Sen (1970). To distinguish the two concepts, some
authors have called the above ‘global’ notion of single-peakedness ‘Black single-peakedness’
and the weaker local version ‘Arrow single-peakedness.’ We reserve the generic term
‘single-peakedness’ for the global concept, and distinguish the local version by calling it
‘Arrow single-peakedness.’ The distinction will play an important role in Section 3 below.

We will say that a Condorcet domain D is closed if the majority relation corresponding
to any odd profile over D is again an element of D. The following simple observation is
useful (see e.g., Puppe and Slinko (2019)).

Proposition 2.1. Let D be a Condorcet domain and v ∈ L(A) be the majority relation
corresponding to an odd profile over D. Then D ∪ {v} is again a Condorcet domain. In
particular, every Condorcet domain is contained in a closed Condorcet domain and every
maximal Condorcet domain is closed.

2.2 Never Conditions

The domain to the left in Fig. 1 contains all the linear orders on {a, b, c} in which c is
never ranked second, the domain to the right in Fig. 1 contains all the linear orders on
{a, b, c} in which a is never ranked second; following Monjardet (2009), we denote these
conditions as cN{a,b,c}2, and aN{a,b,c}2, respectively. We note that these are the only
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conditions of type xN{a,b,c}i with x ∈ {a, b, c} and i ∈ {1, 2, 3} that these two domains
satisfy. Similarly, the domain to the left in Fig. 2 contains all the linear orders on {a, b, c}
in which b is never ranked last—that is, it satisfies bN{a,b,c}3,—and the domain to the right
in Fig. 2 contains all the linear orders on {a, b, c} in which b is never ranked first satisfying
bN{a,b,c}1. Again, these are the only conditions of type xN{a,b,c}i with x ∈ {a, b, c} and
i ∈ {1, 2, 3} that these domains satisfy.

Definition 6. Any condition of type xN{a,b,c}i with x ∈ {a, b, c} and i ∈ {1, 2, 3} is
called a never condition since it says that in a triple {a, b, c} alternative x never takes ith

position. We say that a family N of

{xN{a,b,c}i | {a, b, c} ⊆ A, x ∈ {a, b, c} and i ∈ {1, 2, 3}}

is a complete set of never-conditions if N contains at least one never condition for every
triple a, b, c of elements of A.

Denote by D(N ) the collection of all linear orders that satisfy the set of never condi-
tions N . If D(N ) is non-empty, we call N consistent.3 Let us also denote by N (D) the
set of all never conditions that are satisfied by all linear orders from D.

Proposition 2.2. A non-empty domain of linear orders D ⊆ L(A) is a Condorcet domain
if and only if it satisfies a complete set of never conditions.4 Moreover, for any complete
and consistent set of never conditions N the domain D(N ) is a closed Condorcet domain.
Conversely, every maximal Condorcet domain is of this form.5

Remark 2. Frequently, a maximal Condorcet domain D satisfies exactly one never con-
dition for any given triple {a, b, c}. In fact, this will be the case whenever the restriction
D{a,b,c} of D to {a, b, c} contains four distinct orders. Slinko (2019) calls domains D with
|D{a,b,c}| = 4 for all triples {a, b, c} copious. But not all maximal Condorcet domains are
copious. Here is an example on five alternatives.6 Let

D := {abcde, caebd, dbeac, edcba}. (1)

The domain D is a maximal Condorcet domain (see Section 4 below). Its restriction to
the triple {a, b, d} is given by D{a,b,d} = {abd, dba}, in particular, D is not copious; in
fact, it satisfies the never conditions aN{a,b,d}2, bN{a,b,d}1, bN{a,b,d}3, and dN{a,b,d}2.

While not every maximal Condorcet is copious, we have the following result. Say that
a Condorcet domain D is ample if, for every pair of distinct alternatives {a, b} we have
|D{a,b}| = 2 which means that some linear orders in D rank a higher than b while other
linear orders rank b higher than a.

3It is easy to construct complete sets of never conditions that are inconsistent, i.e., such that D(N ) is
empty.

4The website https ://nevercondition.de offers an online tool to determine, for m = 4, 5, 6 alternatives,
if a given domain is a Condorcet domain and, if so, which never conditions it satisfies.

5On the other hand, not every closed Condorcet domain must contain all orders compatible with a
given set of complete and consistent never conditions.

6All maximal Condorcet domains on the set of up to four alternatives can be shown to be copious.
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Proposition 2.3. Every maximal Condorcet domain is ample.

Proof. Suppose D ⊆ L(A) is a maximal Condorcet domain that is not ample. Then there
exist a, b ∈ A such that a �u b in every linear order u ∈ D. Let v be a linear order in which
the difference in the ranks of a and b is minimal, v = . . . a . . . b . . .. Consider v′ = . . . ba . . .
where v′ is obtained from v by moving b just beyond a and identical otherwise. Consider
D′ = D ∪ {v′}.

Let c ∈ A be arbitrary. Then D{a,b,c} ⊆ {abc, acb, cab}. Suppose in v we had c �v

a �v b. Then D′{a,b,c} ⊆ {abc, acb, cab, cba} which is a never-top condition. If in v we

had a �v c �v b, then D′{a,b,c} ⊆ {abc, acb, cab, bac} which is never-bottom one. The case

if a �v b �v c is similar. Hence, D′ satisfies a complete (and consistent) set of never
conditions, i.e., D was not maximal.

A domain that, for any triple {a, b, c} ⊆ A, satisfies a condition xN{a,b,c}1 with x ∈
{a, b, c} is called never-top domain, a domain that for any triple {a, b, c} ⊆ A satisfies
a condition xN{a,b,c}2 with x ∈ {a, b, c} is called never-middle domain,7 and a domain
that for any triple {a, b, c} ⊆ A satisfies a condition xN{a,b,c}3 with x ∈ {a, b, c} is called
never-bottom domain. A domain that, for any triple, satisfies either a never-top or a never-
bottom condition is called a peak-pit domain (Danilov et al., 2012). Both the never-top
and the never-bottom conditions are called peak-pit conditions.

2.3 Embedding in the Permutohedron

In mathematics, the universal domain L(A) has many representations. The most useful
one for us is by the permutohedron of order m, which is an (m− 1)-dimensional polytope
embedded in an m-dimensional space. Its vertices are labeled by the permutations of
{1, 2, . . . ,m} from the symmetric group Sm. Two permutations are connected by an
edge if they differ only in two neighboring places. For our purposes geometry is not
important, so for us the permutohedron is the skeleton of this polytope, that is, the graph
whose vertices are the permutations from Sm with edges inherited from the edges of the
aforementioned polytope. The use of permutohedron in social choice was pioneered by
Guilbaud and Rosenstiehl (1963).

The permutahedron is naturally endowed with the following betweenness structure
(Kemeny, 1959). An order v is between orders u and w if v ⊇ u ∩ w, i.e., if v agrees with
all binary comparisons in which u and w agree (see also (Kemeny and Snell, 1960)). The
set of all orders that are between u and w is called the interval spanned by u and w and
is denoted by [u,w]. With this notation, two orders u,w are connected by an edge—we
call them neighbors—if and only if [u,w] = {u,w}.

Figures 1 and 2 show the permutohedron of order three with the different subdomains
shown in red (for a graphic representation of the permutohedron of order four, see below).

7The domain (1) is a never-middle domain notwithstanding the fact that it also satisfies a never-top
and a never-bottom condition on the triple {a, b, d}; indeed, for all other triples, it satisfies exactly one
never-middle condition.

9



One observes an important difference between the two group separable Condorcet do-
mains in Fig. 1 and the single-peaked and single-dipped domains in Fig. 2: the latter are
connected but the former are not. We formalize connectedness in the following definition.

Definition 7. A domain D is called connected if any two orders u,w ∈ D are con-
nected by a path in the permutohedron that stays within D, in other words, if there exist
{v1, . . . , vk} ⊆ D such that, for all j = 1, . . . , k − 1, vj and vj+1 differ only in two neigh-
boring positions, and v1 = u and vk = w. A stronger notion of direct connectedness
requires that the path between u and w satisfies {vh, ..., vl} ⊆ [vh, vl] for all 1 ≤ h < l ≤ k
(Sato, 2013; Puppe, 2016).

3 Connected Domains

3.1 The Single-Peaked Domain

The single-peaked domain SP> is connected (see e.g., Elkind et al. (2014)) and possesses
the following two properties.

Definition 8. A Condorcet domain D is said to have maximal width if together with
some linear order u it also contains u.

The property of maximal width plays an important role in the analysis of Condorcet
domains as the existence of two completely reversed orders simplifies the matters, some-
times considerably.8 This is reflected by the fact that a maximal Condorcet domain can be
naturally endowed with the structure of a distributive lattice if and only if it has maximal
width, see Corollary 3.2 in Puppe and Slinko (2019) and the references there. Also observe
that a maximal connected Condorcet domain can contain at most one pair of completely
reversed orders. Indeed, if we had two such pairs, say u, u and v, v, then we can find a
triple {a, b, c} on which u and v disagree. Without loss of generality we may assume that
the restriction u{a,b,c} of u and the restriction v{a,b,c} of v are, respectively, abc and acb.
But then D{a,b,c} = {abc, cba, acb, bca} which is not connected. In particular, a maximal
connected (or peak-pit) Condorcet domain with maximal width contains a unique pair of
completely reversed orders.

The second property of the single-peaked domain is its ‘minimal richness,’ as follows.

Definition 9. A Condorcet domain D is said to be minimally rich if, for all a ∈ A, there
exists an order in D that has alternative a on top.

From an economic point of view minimal richness is a very natural property, and it
has been considered frequently in the literature on domain restrictions.

The following result shows that the single-peaked domain is the only connected maxi-
mal Condorcet domain to have these two additional properties. The (median) graph of the
single-peaked domain SPabcd is depicted in Fig. 3, its embedding in the 4-permutohedron
is shown in Fig. 4.

8Danilov and Koshevoy (2013) refer to domains with maximal width as ‘normal.’
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Theorem 3.1 (Puppe (2018)). A maximal Condorcet domain D is connected, minimally
rich and has maximal width if and only if there exists a linear order > on A such that
D = SP>.

•
abcd

•
bacd bcad cbad

•

•

• •

•

•
bcda cbda cdba dcba

Figure 3: The graph of the single-peaked domain SPabcd.

Figure 4: Embedding of the single-peaked domain SPabcd in the 4-permutohedron

The idea of the proof of Theorem 3.1 is simple. All three properties of connectedness,
maximal width and minimal richness are inherited from a domain D to its restrictions on
every triple. But the only domain on a triple that has these properties is the single-peaked
domain (see Fig. 2, left). Hence, the restriction of D to every triple is single-peaked,
i.e., satisfies a (unique) never-bottom condition; the maximal width condition guarantees
that these never-bottom conditions are satisfied with respect to a common spectrum.

A similar argument implies that there is a unique maximal connected Condorcet do-
main D that has maximal width and has the property that every alternative occurs at
least once at the bottom of the orders in D, namely the single-dipped domain (cf. Fig. 2,
right).

A different characterization of the single-peaked domain in terms of ‘sign representa-
tions’ of single-peaked orders has been given by Zhan (2022). To describe it, consider
A = {1, 2, , . . . , n} and the class of all single-peaked orders SP> with respect to the nat-
ural order > on {1, 2, ..., n}. Let v = a1 . . . an be a single-peaked order with peak a1. If
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the second ranked alternative a2 is such that a2 > a1, then the first sign in the sequence
corresponding to v is a +; if a2 < a1, then it is a −. Now, suppose that we have already
constructed a string of k − 1 signs from the set {+,−} for the suborder a1 . . . ak. The
next ranked alternative ak+1 either satisfies ak+1 > aj for all j = 1, . . . , k, in which case
the kth sign in the sequence is +, or it satisfies ak+1 < aj for all j = 1, . . . , k, in which
case the kth sign is −. Continuing this way we obtain a sequence of + and − of length
n− 1 that uniquely encodes v.

On the other hand, if we have a sequence of + and −, then counting the number of +
signs gives us the top alternative of the corresponding order: if there are k plusses, then
the top preference is n−k. From the top alternative, the sequence of + and − determines
then the entire order in a straightforward manner. For example, with n = 5, the single-
peaked orders 34251 and 43251 can be encoded as + − +− and − − +−, respectively.
Conversely, + +−+ denotes the single-peaked preference 23415. Specifically, we have the
following result.

Proposition 3.1 (Zhan (2022)). The domain of single-peaked orders SP> on a set A of
cardinality n is in a bijective correspondence with the set of strings of signs + and − of
length n− 1. In particular, we have |SP>| = 2n−1.

3.2 The Arrow Single-Peaked Domains

While the property of minimal richness has a clear economic meaning, the maximal width
condition is arguably less attractive in applications. It is thus natural to ask what happens
if we drop the maximal width condition in the characterization result stated in the previous
subsection.

Call a non-empty domain D an Arrow single-peaked domain if D satisfies a complete
set of never-bottom conditions. It has long been known that the condition of single-
peakedness on all triples does by itself not imply single-peakedness with respect to a
common spectrum (cf. Sen (1970)).9 The following result shows that the Arrow single-
peaked domains are exactly the maximal connected Condorcet domains that are minimally
rich. Fig. 5 shows the graph of an Arrow single-peaked maximal Condorcet domain
without maximal width.

•
abcd

•
bacd bcad cbad

•

•

• •

•

•
bdca cbdabcdadbca

Figure 5: Graph of an Arrow single-peaked domain without maximal width

9The characterization given by Ballester and Haeringer (2011) identifies the additional property on
quadruples needed for this implication.
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Theorem 3.2 (Slinko (2019)). A maximal Condorcet domain is connected and minimally
rich if and only if it is Arrow single-peaked.

In Slinko (2019) it is also shown that all maximal Arrow single-peaked domain are
copious and have cardinality 2|A|−1. Unlike the classical Black maximal single-peaked
domains which are unique up to isomorphism or flip-isomorphism for each number of
alternatives, the number of Arrow single-peaked domains grows rapidly. In an unpub-
lished paper, Leversidge (2019) showed that the number ASP(n) of Arrow single-peaked
Condorcet domains for m ∈ {3, . . . , 8} is given by the following table:

n 3 4 5 6 7 8
ASP(n) 1 2 6 40 560 17024

Table 1: The number of maximal Arrow single-peaked domains depending on the number
of alternatives.

3.3 Connected Domains with Maximal Width

In this subsection, we study the class of connected maximal Condorcet domains that
are not necessarily minimally rich but still satisfy the maximal width conditions. For
this it will often be convenient to identify A with the set {1, 2, . . . ,m}. The two most
prominent examples of such domains, besides the single-peaked domain, are the single-
crossing domains and the so-called Fishburn’s alternating scheme domains.

3.3.1 Maximal Condorcet Domains that are Single-Crossing

A frequently useful sufficient condition for transitivity of the majority relation is the
‘single-crossing property’; it requires that the orders in a domain can be put in a sequence
so that along this sequence the relative positions of any pair of alternatives is reversed
at most once. Roberts (1977) and Gans and Smart (1996) provide a number of economic
applications of this property. Single-crossing domains have a number of attractive char-
acteristics. For instance, in every group with an odd number of voters with preferences
from a single-crossing domain there is always a voter whose preference coincides with the
majority relation — this fact is known as the ‘Representative Voter Theorem’ (Grand-
mont, 1978; Rothstein, 1991). Moreover, the collective choice prescribed by the majority
relation can be implemented in dominant strategies through a simple mechanism (Tohmé
and Saporiti, 2006), among the many social choice functions implementable in dominant
strategies on single-crossing domains (Saporiti, 2009).

Recent research has revealed that understanding single-crossing domains could be
crucial to understanding Condorcet domains in general. Indeed, Galambos and Reiner
(2008) proved that any connected maximal Condorcet domain of maximal width is a union
of single-crossing domains. An important question then is: under which conditions is a
single-crossing domain by itself already a maximal Condorcet domain? We will provide
two (related) answers to this question in this subsection.
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Let us start with the formal definition of single-crossingness.

Definition 10. A domain D ⊆ L(A) is said to be a single-crossing domain if the orders
from D can be written in a sequence (�1, . . . ,�|D|) so that i �1 j implies either i �s j
for every s, or there is an integer k such that i �s j for every s ≤ k and j �s i for every
s > k. Simply put, traveling along �1, �2, . . . the relative positions of i and j swap at
most once. If D is not a proper subset of another single-crossing domain, then we say it
is a maximal single-crossing domain.10

As an example, let us consider the domain D on A = {1, 2, 3, 4} whose orders are
represented as columns of the following matrix

1 2 2 2 2 4 4
2 1 3 3 4 2 3
3 3 1 4 3 3 2
4 4 4 1 1 1 1

 . (2)

Observe that each order can be obtained from its immediate predecessor by swapping
exactly one pair of neighboring alternatives: the second order is obtained from the first
by swapping the pair (1, 2), the third from the second by swapping (1, 3), the fourth from
the third by swapping (1, 4), the fifth from the fourth by swapping (3, 4), the sixth from
the fifth by swapping (2, 4), and finally the seventh from the sixth by swapping (2, 3).
Consequently, the graph corresponding to this domain is a line graph.

The following result summarizes the basic properties of single-crossing domains. Say
that a domain D has the representative voter property if, for all profiles (�1, . . . ,�n) with
odd n, there exists k ∈ {1, . . . , n} such that the pairwise majority relation corresponding
to the profile coincides with �k.

Proposition 3.2. a) Every single-crossing domain has the representative voter prop-
erty. In particular, every single-crossing domain is a Condorcet domain.

b) Every maximal single-crossing domain is connected and has maximal width.

c) A domain on a set of m alternatives is a maximal single-crossing domain if and
only if its associated graph is a line graph of length 1

2
m(m− 1) + 1.

d) Every single-crossing domain on at least four alternatives that is a maximal Con-
dorcet domain is a ‘proper’ peak-pit domain (i.e., it is copious and satisfies some
never-bottom as well as some never-top conditions but no never-middle ones).

Parts a) - c) of Proposition 3.2 follow from the analysis in Puppe and Slinko (2019).11

Part d) follows from two observations. First, every connected domain of maximal width is
a peak-pit domain and copious. Second, if only never-top or only never-bottom conditions

10Observe that a maximal single-crossing domain need not be maximal as a Condorcet domain.
11Theorem 6 in Puppe and Slinko (2019) shows that a maximal Condorcet domain has the representative

voter property if and only if it is either single-crossing or one of the 4-point domains discussed in Section
4 below.
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were satisfied, the domain would be either single-peaked or single-dipped; however, it can
be neither of these (this follows at once from a comparison of their sizes). Moreover,
Slinko et al. (2021) characterize exactly the set of never conditions that a single-crossing
maximal Condorcet domain satisfies.

Every maximal single-crossing domain on a set of m alternatives has k = 1
2
m(m−1)+1

elements12 and is characterized by a sequence of k − 1 pairs of swapped alternatives

(i1, j1), (i2, j2), . . . , (ik−1, jk−1) (3)

from the set {(i, j) | 1 ≤ i < j ≤ n}. The pair (is, js) in this sequence means that
is and js are neighbors in �s and �s+1, with is �t js for t = 1, . . . , s, and js �t is
for t = s + 1, . . . , k, while all other relations between alternatives in �s and �s+1 are
identical. Roughly speaking, the passage from �s to �s+1 is a swap of neighbors is
and js. For instance, as already noted above, the swapping sequence for the domain (2)
is (1, 4), (1, 3), (1, 4), (3, 4), (2, 4), (2, 3).

The following result can be inferred from (Galambos and Reiner, 2008, Th. 2) and is
explicitly stated as Theorem 9 in Puppe and Slinko (2019).

Theorem 3.3. A maximal single-crossing domain D is a maximal Condorcet domain if
and only if the swapping sequence (3) characterizing D satisfies the following ‘pairwise
concatenation’ property:13

{is, js} ∩ {is+1, js+1} 6= ∅ for every s ∈ {1, 2, . . . , k − 1}. (4)

The pairwise concatenation property (4) imposes a very rigid structure on a Condorcet
domain that can alternatively be described via the notion of a relay introduced in Slinko
et al. (2021). Let us use an example to illustrate what a relay looks like. In this example
A = {1, 2, . . . , 7} and the domain is represented by the following matrix where each
column corresponds to an order:

1 2 2 2 2 2 2 2 2 2 2 7 7 7 7 7 7 7 7 7 7 7
2 1 3 3 3 3 3 3 3 3 7 2 3 3 3 3 3 3 6 6 6 6
3 3 1 4 4 4 4 4 4 7 3 3 2 4 4 4 4 6 3 4 4 5
4 4 4 1 5 5 5 5 7 4 4 4 4 2 5 5 6 4 4 3 5 4
5 5 5 5 1 6 6 7 5 5 5 5 5 5 2 6 5 5 5 5 3 3
6 6 6 6 6 1 7 6 6 6 6 6 6 6 6 2 2 2 2 2 2 2
7 7 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


.

This domain is a maximal single-crossing domain as it has 7·6
2

+1 = 22 orders. It evidently
satisfies the pairwise concatenation condition, and is therefore maximal as a Condorcet
domain by Theorem 3.3.

In addition, with the help of the red-coloring, it is not difficult to see that the left-to-
right procession of preferences follows a distinct pattern that leaves behind an undulating

12This is the number of pairs to be switched plus one.
13This condition appeared already in the unpublished lecture notes Monjardet (2007).
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trajectory like a damping wave. In particular, focusing on the red-colored alternatives,
we see that the procession starts with the movement of alternative 1 that keeps going
down from the top until it reaches the bottom. Then alternative 7, which occupies the
bottom just before, as if having received a relay baton from alternative 1 when they meet,
starts moving up until it reaches the top. As alternative 7 reaches the top, the then
top alternative, 2, starts to move down. However, instead of stopping at the bottom,
alternative 2 stops at second-to-bottom position, handing the baton to the then second-
to-bottom alternative, 6, which starts to go up until reaching second-to-top position.
This to and fro relay run continues, each leg ending with the initial kth-to-top alternative
reaching the kth-to-bottom position, or the kth-to-bottom alternative reaching the kth-
to-top position, until, eventually, the initial ranking is completely reversed. The red
trajectory is undulating because of the to and fro relay motion, and it is damping because
a later runner covers a shorter distance than an earlier runner.

The following characterization is due to Slinko et al. (2021); for the precise mathe-
matical definition of a ‘relay representation’ we refer to that paper.

Theorem 3.4 (Slinko et al. (2021)). A domain D is single-crossing and maximal Con-
dorcet if and only if it has a relay representation.

Summarizing, most maximal single-crossing domains are not maximal as Condorcet
domains; in fact, as shown in Slinko et al. (2021), up to isomorphism or flip-isomorphism
there is a unique single-crossing domain that is at the same time maximal as Condorcet
domain. Evidently, among all connected maximal Condorcet domains with maximal width
the single-crossing is the one with the minimal number of elements (namely |A|(|A|−1)/2).
Note finally, that the relay representation shows that a single-crossing domain that is
maximal as a Condorcet domain is necessarily far from being minimally rich.

3.3.2 Fishburn’s Alternating Scheme

In search for ‘large’ Condorcet domains, Fishburn (1997) came up with the following
structure of a complete set of never-conditions.14

Definition 11. Let A = {1, 2, . . . ,m}. A complete set of never-conditions is said to
satisfy the alternating scheme, if for all 1 ≤ i < j < k ≤ m either

(i) jN{i,j,k}1, if j is even, and jN{i,j,k}3, if j is odd, or

(ii) jN{i,j,k}3, if j is even, and jN{i,j,k}1, if j is odd.

The corresponding domains are maximal Condorcet domains which we denote by Fm

in case (i) and Fm in case (ii). The second domain is flip-isomorphic to the first. In
particular, F2 = {12, 21}, F3 = {123, 132, 312, 321} and

F4 = {1234, 1324, 3124, 1342, 3142, 3412, 4312, 3421, 4321}.
14According to some sources, the idea stemmed from a private communication with Bernard Monjardet.
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The latter has the following graph associated with it:

• •
1234 1324

•

•
3124

•
3142

1342

3412

3421 4321

4312
•

••

•

Figure 6: Graph of Fishburn’s domain F4 on four alternatives

Here is an embedding of F 4 into the permutohedron:

Figure 7: Embedding of F 4 into the permutohedron

It is easily seen that Fm and Fm are connected and have maximal width. Also observe
that F4 has cardinality 9 and is in fact the uniquely largest Condorcet domain on a set of
four alternatives up to isomorphism or flip-isomorphism (Raynaud, 1982). Further, it is
known that Fm has the uniquely largest cardinality among all maximal Condorcet domains
for all m ≤ 7 (Monjardet, 2009; Galambos and Reiner, 2008). Remarkably, despite the
fact that Fm is always strictly larger than the single-peaked domain on m alternatives,
the Fishburn domains are never minimally rich as some alternatives are required not to
be first in some triples.

3.3.3 Condorcet Domains of the Tiling Type

In order to characterize the class of all connected maximal Condorcet domains with max-
imal width, Danilov et al. (2012) introduced the ‘rhombus tiling’ representation of a
domain.
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Definition 12 (Danilov et al. (2012)). A rhombus tiling (or simply a tiling) is a subdivi-
sion into rhombic tiles of a regular 2m-gon formed by the points

∑
i aiψi, where 0 ≤ ai ≤ 1

and ψ1, . . . , ψm are unit vectors in the upper half-plane. This centre-symmetric 2m-gon
has its bottom vertex b at the origin and the top vertex t = ψ1 + . . . + ψm. An ij-tile is
a rhombus congruent to the one formed by the points λψi + µψj, where 0 ≤ λ, µ ≤ 1. A
snake is a path from t to b along the boundaries of the tiles which for each i = 1, . . . ,m
contains a unique segment parallel to ψi. Each snake corresponds to a linear order on
{1, . . . ,m} in the following way. If a point traveling from t to b along a snake passes
segments parallel to ψi1 , ψi2 . . . , ψim, then the corresponding linear order will be i1i2 . . . im.
The set of snakes of a rhombus tiling, thus, defines a domain which is called a tiling
domain.

For m = 3 we have a hexagon which can be split into rhombus tiles in two different
ways as shown in Figure 8.

Figure 8: Two tiling domains

These lead to the domains:

{123, 213, 231, 321} and {123, 132, 312, 321},

which are the familiar single-peakedand single-dipped domains, respectively.

Definition 13 (Danilov et al. (2012)). A domain D containing the two completely re-
versed orders u and u is called semi-connected if it contains an entire shortest path in the
permutohedron connecting u and u.

The following result can be derived from the analysis in Danilov et al. (2012), which,
in turn, is based on combinatorial results of Leclerc and Zelevinsky (1998).

Theorem 3.5 (Danilov et al. (2012)). Let D be a maximal Condorcet domain with max-
imal width. The following statements are equivalent.

a) D is semi-connected.
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b) D is connected.

c) D is a peak-pit domain.

d) D is a tiling domain.

By Theorem 3.5, the connected maximal Condorcet domains with maximal width are
exactly the peak-pit domains with maximal width. Observe, that these domains are all
copious and thus satisfy a unique complete set of never conditions. It has been observed
in Puppe (2016) that these domains are not only connected but even directly connected,
i.e., any two orders of a domain are connected by a shortest path in the permutohedron
that stays within the domain.

3.3.4 Arrangements of Pseudolines

We now describe an equivalent geometric representation of connected maximal Condorcet
domains with maximal width in terms of pseudoline arrangements on the plane. This
representation has by now become folklore in low dimensional topology, the study of the
Yang-Baxter equation and geometric combinatorics (Humphreys, 1994). Galambos and
Reiner (2008) were the first to relate these concepts to Condorcet domains.

The most intuitive way to think about an arrangements of pseudolines is geometrically.
On two vertical parallel lines L and R in R2, we mark a set of m equidistant points. The
points on the left line are labeled 1, . . . ,m in downward order and on the right line the
points are marked also 1 . . . ,m but in upward order. The two points with the same label
i — one on the left and one on the right — are joined by a continuous curve which is
called pseudoline i so that any two pseudolines intersect exactly at one point, called a
vertex. The arrangement is simple if there is no vertex where three or more pseudolines
meet.

Figure 9: The wiring diagram corresponding to F4

An arrangement of pseudolines consisting of piecewise linear ‘wires’ is also called a
wiring diagram. The wires (pseudolines) are horizontal except for small neighborhoods of
their crossings with other wires; see Fig. 9 for an example. There is no loss of generality in
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assuming that our pseudolines are wires. The arrangements we consider are all simple, and
often called simple numbered arrangements of pseudolines (Björner et al., 1999, Sect. 6.4).

The parallel lines L and R bound an infinite LR-strip between them. The complement
of the pseudolines in the LR-strip is split into chambers which are the connected parts of
this complement (two of them the top and the bottom ones are unbounded). They are
labeled as follows. For a chamber C and any pseudoline k we can say if this chamber is
above or below the line k. The label of the chamber is the set of numbers of the pseudolines
that go above this chamber (see Fig. 9 for an illustration). By convention, the label ∅ is
attached to the chamber that is above all pseudolines. Every path that connects the upper
chamber labeled ∅ with the bottom chamber labeled {1, . . . ,m} and consequently crosses
each pseudoline exactly once, naturally defines an order on {1, . . . ,m}. If it crosses the
pseudolines in order i1, i2, . . . , im, then we attach order i1i2 . . . im to it. The set of all such
paths thus defines a domain corresponding to the given simple numbered arrangement
of pseudolines. We say that this domain is represented by just described arrangement
of pseudolines. For instance, as is easily verified, the domain represented by the wiring
diagram in Figure 9 is Fishburn’s alternating scheme domain F4.

The representations of connected maximal Condorcet domains of maximal width in
terms of rhombus tilings and simple numbered arrangements of pseudolines are ‘dual’ to
each other. This can be inferred from the canonical bijection between the chambers of
an arrangement of pseudolines and the vertices of the corresponding rhombus tiling, as
indicated in Figure 10 for the case of F4 (see Elnitsky (1997); Felsner (2012) for more
details).

Figure 10: The arrangement of pseudolines and its dual tiling for F4

Hence we obtain from Theorem 3.5 the following corollary:

Corollary 3.1. A domain D is a semi-connected maximal Condorcet domain with max-
imal width if and only if it can be represented by a simple numbered arrangement of
pseudolines.
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3.3.5 Separated Ideals

Finally, we present yet another equivalent way to characterize the connected maximal
Condorcet domains with maximal width. The key to this is the observation that the
chambers of a simple numbered arrangement of pseudolines correspond to the initial
segments of the orders in the represented Condorcet domain. Formally, we introduce the
notion of an ideal of a domain, as follows. For any order u = a1a2 . . . am ∈ L(A), denote
by uk = a1a2 . . . ak the initial segment of length k ≤ m, and set Idk(u) = {a1, . . . , ak}
with Id0(u) = ∅ by convention.

Definition 14. The ideal Id(D) of a domain D is defined as the collection of all subsets
of A that are obtained from initial segments of the orders in D,

Id(D) =
n⋃

k=0

Idk(D),

where Idk(D) = {Idk(u) | u ∈ D}.

Proposition 3.3. For any connected maximal Condorcet domain D with maximal width,
the ideal Id(D) is given by the family of chambers of the corresponding simple numbered
arrangement of pseudolines.

For instance, for the Fishburn alternating scheme domain F4 we obtain the ideal

Id(F4) = {∅, {1}, {3}, {4}, {1, 2}, {1, 3}, {3, 4}, {1, 2, 3}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}} ,

which consists of the labels of chambers of the arrangement of pseudolines shown in Fig. 9.

The ideals of connected maximal Condorcet domains with maximal width have a
particular structure; indeed, they form a family of ‘separated sets’ (Leclerc and Zelevinsky,
1998). Specifically, it is said that two sets X, Y ⊆ A = {1, 2, . . . ,m} are separated if there
does not exist a triple {a, b, c} ⊆ A such that a < b < c and either

(X ∩ {a, b, c} = {b} and Y ∩ {a, b, c} = {a, c}), or
(X ∩ {a, b, c} = {a, c} and Y ∩ {a, b, c} = {b}).

A family of subsets is called separated if any two sets in the family are separated. The
following characterization follows from combining results of Leclerc and Zelevinsky (1998);
Danilov et al. (2012); Li et al. (2021).

Theorem 3.6. Let D be a maximal Condorcet domain with maximal width. The following
statements are equivalent:

a) D is connected;

b) D is a peak-pit domain;

c) Id(D) is separated.
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A remarkable corollary of Theorem 3.6 and the correspondence between the ideal of
a connected maximal Condorcet domain with maximal width and the chambers of its
pseudoline arrangement is the following.

Corollary 3.2 (Li et al. (2021)). Let D be a maximal Condorcet domain with maximal
width on the set of m alternatives. Then,

|Id(D)| =
m(m+ 1)

2
+ 1.

Thus, while the cardinalities of maximal connected Condorcet domains with maximal
width on a given number of alternatives can be quite different, the cardinality of the
associated ideal is constant. In Li et al. (2021) this fact is explored in order to provide a
complete classification of all connected maximal Condorcet domains with maximal width
on five alternatives. It turns out that, up to an isomorphism and flip-isomorphism, there
are exactly 18 of them with cardinalities ranging from 11 (for the single-crossing) to 20
(for the Fishburn alternating scheme domain F5); by Corollary 3.2, their ideals all have
the same cardinality of (5 · 6)/2 + 1 = 16.

3.4 Connected Domains without Maximal Width: A Conjecture

The characterization results provided in the previous section for the connected maximal
Condorcet domains all rely crucially on the maximal width assumption. As noted above,
this assumption implies, in particular, that the domains have the structure of a distribu-
tive lattice; more importantly, it implies that the domains are copious and hence satisfy
a unique complete set of never conditions. As shown, these must consist of peak-pit
conditions. Even without the maximal width condition, we still have:

Proposition 3.4. Every connected maximal Condorcet domain satisfies a complete set of
peak-pit conditions.

Proof. As is easily verified, the restriction D{x,y,z} of a connected domain D to every triple
{x, y, z} is also connected. Moreover, to avoid cycles, this restriction can contain at most
four orders. Then we can check that every connected subdomain on three alternatives
with no more than four elements satisfies at least one never-bottom or one never-top
condition.

By Theorem 3.2 the converse statement holds for all maximal Condorcet domains
that satisfy either a complete set of never-bottom conditions (the Arrow single-peaked
domains) or, by symmetric arguments, a complete set of never-top conditions (the Arrow
single-dipped domains): these domains are connected no matter if we have maximal width
or not. Together with Proposition 3.4, this observation naturally leads to the following
conjecture (which can indeed be verified to hold for all domains on up to 5 alternatives).

Conjecture 1. A maximal Condorcet domain is connected if and only if it is a peak-pit
domain.
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For four alternatives, a classification of all peak-pit domains has been carried out in
Dittrich (2018) by computerized search. There, we encounter the following two previously
unseen creatures, which (in accordance with our conjecture) are connected.

1. The ladder domain is defined by the following complete set of never-conditions:

3N{1,2,3}1, 4N{1,2,4}1, 1N{1,3,4}3, 2N{2,3,4}3.

It is copious but does not have maximal width (cf. domain D5 in the appendix).

•
2314 2134 2143 2413

•

•

•

• •

•

•
1324 1234 12431423

Figure 11: Graph of the ladder domain.

2. The broken ladder domain is defined by the following complete set of never-
conditions:

3N{1,2,3}1, 1N{1,2,4}3, 1N{1,3,4}3, 2N{2,3,4}3.

It is copious but does not have maximal width (cf. domain D6 in the appendix).

•
2314 2134 2143

•

•• •

•

• •
1324 1234 1243 1423 4123

Figure 12: Graph of the Broken Ladder domain.

Proposition 3.5 (Dittrich (2018)). If m = 4, then any maximal connected Condorcet
domain is either isomorphic or flip-isomorphic to one of the following: the Black single-
peaked domain; the single-crossing domain; the Fishburn’s domain; the Arrow single-
peaked domain without maximal width; the ladder domain; the broken ladder domain.
Only the first three of these have maximal width.

One difficulty in trying to prove Conjecture in general is that maximal Condorcet
domains on more than four alternatives need not be copious. Indeed, the phenomenon
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that maximal Condorcet domains may satisfy different never conditions on the same triple
of alternatives (and thus induce less than four different restricted orders on that triple)
is not limited to ‘small’ domains such as the one in (1) above. Here is a non-copious
maximal Condorcet domain on five alternatives with cardinality 15 (in the list of all 688
equivalence classes of non isomorphic or flip-isomorphic maximal Condorcet domains on
five alternatives obtained by Dittrich (2018) it appears as no. 273).

D#273 = {abcde, acbde, acdbe, aebcd, aecbd, aecdb, eabcd, eacbd,
eacdb, ecabd, ecadb, ecdab, ecdba, edcab, edcba}.

This domain satisfies the multiple never conditions dN{c,d,e}1 and eN{c,d,e}2 on the triple
{c, d, e}. Note that although the domain D#273 thus satisfies a never-top condition on
the triple {c, d, e}, its restriction to this triple is not connected because it also satisfies a
particular never-middle condition on that triple. In particular, the domain D#273 is itself
not connected. But it does not represent a counterexample to the conjecture because it
also satisfies the unique never-middle conditions eN{b,c,e}2 and eN{b,d,e}2, hence it is not
a peak-pit domain.

The domain D#273 has maximal width; here is a non-copious maximal Condorcet
domain on five alternatives without maximal width. It has cardinality 16, and it is the
uniquely largest domain on five alternatives that is not copious (No. 332 in the above
mentioned list).

D#332 = {abcde, abced, abecd, abedc, acebd, acedb, aecbd, aecdb,
bacde, baced, baecd, baedc, caebd, caedb, eacbd, eacdb}.

This domain satisfies multiple never conditions aN{a,b,d}3 and dN{a,b,d}1 on triple {a, b, d},
multiple never conditions aN{a,c,d}3 and dN{a,c,d}1 on triple {a, c, d} and multiple never
conditions aN{a,d,e}3 and dN{a,d,e}1 on triple {a, c, d}; it is not connected because it satisfies
a unique never middle condition bN{b,c,e}2 on triple {b, c, e}.

4 Symmetric Maximal Condorcet Domains

We now turn to the remaining class of ‘pure’ Condorcet domains, the maximal Condorcet
domains that satisfy a complete set of never-middle conditions. These domains turn out
to be intimately related to the symmetric domains systematically studied by Danilov and
Koshevoy (2013).

Definition 15. A domain D is symmetric if u ∈ D implies u ∈ D.

Proposition 4.1. Every symmetric Condorcet domain D satisfies a complete set of never-
middle conditions. Conversely, every never-middle maximal Condorcet domain is sym-
metric.

Proof. Suppose that D is symmetric and satisfies aN{a,b,c}3 for some triple a, b, c ∈ A.

Then D{a,b,c} ⊆ {abc, bac, acb, cab}. Since abc and acb are not in D{a,b,c}, we must in fact
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have D{a,b,c} ⊆ {bac, cab} by symmetry. In that case, D also satisfies bN{a,b,c}2. A similar
argument holds if D satisfies aN{a,b,c}1.

Conversely, suppose D satisfies a complete set of never-middle conditions. Since any
never-middle condition is itself symmetric, if u satisfies a given never-middle condition so
does u. Due to the maximality of D, if u ∈ D then also u ∈ D.

4.1 Decomposable Domains

Symmetric maximal Condorcet domains are frequently ‘decomposable’ in the following
sense (Karpov and Slinko, 2022b).

Definition 16. Let E be a Condorcet domain on the m-element set of alternatives B =
{b1, . . . , bm}. Let also D1, . . . ,Dm be Condorcet domains on disjoint sets C1, . . . , Cm of
alternatives. Then we define the domain on C1 ∪ . . . ∪ Cm as

E(b1 → D1, . . . , bm → Dm) := {u1 . . . um | uj ∈ Dij and bi1 . . . bim ∈ E}.

When it can cause no confusion, we will denote this domain as E(D1, . . . ,Dm). We call
E the top-level domain and D1, . . . ,Dm ground level domains.

This definition is similar, in spirit, to the definition of the wreath product of permu-
tations introduced in Atkinson and Stitt (2002).

Definition 17. A domain D ⊆ L(A) is called decomposable if it is isomorphic to
E(D1, . . . ,Dm), where |Ci| > 1 for at least one Di where i ∈ {1, . . . ,m}.

Proposition 4.2 (Karpov and Slinko (2022b)). Let |A| = m and E ,D1, . . . ,Dm be
Condorcet domains on disjoint sets of alternatives A,C1, . . . , Cm, respectively. Then
D = E(D1, . . . ,Dm) is again a Condorcet domain with

|E(D1, . . . ,Dm)| = |E|
m∏
i=1

|Di|. (5)

Moreover, D is a symmetric domain if and only if all domains E ,D1, . . . ,Dm are sym-
metric.

A partial case of the above construction has already appeared in the literature (Ray-
naud, 1981; Fishburn, 2002; Danilov and Koshevoy, 2013). For the case |A| = 2, E =
{a1a2, a2a1} and any two Condorcet domains D1,D2, the operation

D1 ?D2 := E(D1,D2) = {u1u2 | u1 ∈ D1, u2 ∈ D2} ∪ {u2u1 | u1 ∈ D1, u2 ∈ D2}

was used in Danilov and Koshevoy (2013) in order to construct a series of never-middle
maximal Condorcet domains, namely,

a1 ? a2 ? a3 ? . . . ? an (6)
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with some parenthesization,15 where ai is identified with the trivial domain on a single
alternative ai. Let us call a domain completely decomposable if it is of the form (6) for
some parenthesization. Evidently, every maximal completely decomposable domain is
symmetric. For instance, we have

(a ? b) ? (c ? d) = {abcd, abdc, bacd, badc, cdab, cdba, dcab, dcba},
a ? (b ? (c ? d)) = {abcd, abdc, acdb, adcb, bcda, bdca, cdba, dcba}.

These two domains turn out to be the two group separable maximal Condorcet do-
mains on four alternatives (see the domains D8 and D9 and their embeddings in the
4-permutohedron in the appendix). In general, we have:

Theorem 4.1. A maximal Condorcet domain is group separable if and only if it is com-
pletely decomposable.

4.2 Indecomposable Domains

Danilov and Koshevoy (2013) discovered a series of symmetric maximal Condorcet do-
mains that for any number of alternatives m have cardinality of just 4. Karpov and Slinko
(2022b) call them Raynaud domains as Raynaud (1981) was the first who discovered such
a domain in case of four alternatives calling it ‘configuration K.’ The (unique) Raynaud
domain on four alternatives is given by the symmetric domain {abcd, bdac, cadb, dcba} (see
the domain D7 in the appendix).

Let A = {1, 2, . . . ,m} and define a permutation dkm by

dkm := 24 · · · (2k)1(2k ± 1) · · · 53,

where 2k ± 1 is equal to 2k + 1 = m, if m is odd, and 2k − 1 = m − 1 if m is even. For
example, dk6 = 246153 and dk7 = 2461753. Denoting e = 12 . . .m, Danilov and Koshevoy
(2013) showed that the domains

{e, e, dkm, dkm}

are symmetric maximal Condorcet domains for every m ≥ 4; moreover, these domains
are evidently indecomposable.

The permutation dkm is a special case of what is known as simple permutation (Albert
and Atkinson, 2005).

Definition 18. Let i1i2 . . . im be a sequence of distinct elements of {1, 2, . . . ,m}. We say
that a subsequence ikik+1 . . . i` is an interval of length ` in the sequence i1i2 . . . im if the set
{ik, ik+1, . . . , ik+`−1} = {a, a+ 1, . . . , a+ `− 1} for some a ∈ {1, 2, . . . ,m}. This interval
is trivial if this subsequence has length 1 or m. A sequence without non-trivial intervals
is called a simple permutation.

15Note that the operation ? is commutative but not associative.
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For example, 21 is the only non-trivial interval in 521463, and 52463 is the only interval
in 152463; the permutations 2413, 41352, 24153, 2475316, 24683157, and all permutations
of the form dkm are simple.

Definition 19. For any permutation u 6= e, denote the domain Ku := {e, u, u, e}, and
say that Ku is a Raynaud domain if it is a maximal Condorcet domain.

The following result highlights the role of simple permutations in our context.

Theorem 4.2 (Karpov and Slinko (2022b)). A domain of the form Ku is a Raynaud
domain if and only if u is a simple permutation.

All Raynaud domains are indecomposable, and the following conjecture states that
these are in fact the only indecomposable symmetric maximal Condorcet domains.

Conjecture 2. Every indecomposable symmetric maximal Condorcet domain on m ≥ 4
alternatives is a Raynaud domain.

5 Large Condorcet Domains

As noted above, the main motivation for the work reported in Fishburn (1997, 2002)
was the quest for large Condorcet domains. The title of Raynaud’s paper from (1982)
describes this motivation in more detail: ‘The individual freedom allowed by the value
restriction condition.’ Thus, Raynaud (1982) derives the interest in large Condorcet
domains from the goal to maximize individual preference freedom under the collective
rationality constraint of a transitive majority relation.

For m ≤ 6, Fishburn himself proved that Fm is indeed the Condorcet domain with
maximal cardinality. Galambos and Reiner (2008) report that the same is true for m = 7.
But Fishburn also showed that for sufficiently large m, the alternating scheme does not
deliver the largest Condorcet domain; more concretely, he showed that for all m ≥ 16 there
are Condorcet domains that have a larger cardinality than Fm (Monjardet, 2009). Denot-
ing by f(m) the largest cardinality of any maximal Condorcet domain on m alternatives,
Fishburn’s result can be written as f(m) > |Fm| for all m ≥ 16.

However, the example produced by Fishburn used an operation on Condorcet domains
similar to the one in Definition 16, in particular it was not a peak-pit domain that had
cardinality larger than that of Fn. He thus posed the following modified question:

Is it true that the alternating scheme domain is the largest in the class of
connected domains with maximal width?

Galambos and Reiner (2008) gave an exact formula for the cardinality of Fishburn’s
domains; the following table list the first 13 values of |Fm|:

m 2 3 4 5 6 7 8 9 10 11 12 13
|Fm| 1 4 9 20 45 100 222 488 1069 2324 5034 10840
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They also showed that f(7) = |F7| = 100 and emphasized the importance of Fishburn’s
conjecture. Monjardet (2009) denoted by g(m) the size of the largest peak-pit Condorcet
domain of maximal width so that Fishburn’s conjecture could be written as: Is it true
that g(m) = |Fm|?

The conjecture was finally refuted by Danilov et al. (2012) who showed that g(42) >
|F42|. The tool for the construction of an appropriate example was an operation that
given two peak-pit domains of maximal width produces a larger Condorcet domain of
the same class. Karpov and Slinko (2022a) improve their analysis by introducing a new
construction called ‘concatenation + shuffle scheme.’ The advantage of this composition
operation is that given two maximal peak-pit Condorcet domains with maximal width it
produces another peak-pit Condorcet domain with maximal width that is again a maximal
Condorcet domain (in contrast to the construction used in Danilov et al. (2012)). With
the help of this construction Karpov and Slinko (2022a) show that already g(34) > |F34|.

To date, the best known lower bounds for f and g are (Karpov and Slinko, 2022a):

g(m) ≥ 2.0767m,

f(m) ≥ 2.2031m.

6 Conclusion

Let us conclude with some notes on what we have not covered here. First, in our treatment
of the peak-pit domains we have left out some (non-elementary) facts and results on
inversion triples, reduced decompositions and, more generally, the study of the so-called
Bruhat lattice on the symmetric group of permutations; for a mathematically rigorous
treatment, we refer the reader to Galambos and Reiner (2008); Danilov et al. (2012).

Second, we have confined ourselves to maximal Condorcet domains. While this class
is arguably the most relevant and interesting class of Condorcet domains, some results
hold more generally for the class of closed Condorcet domains. Most importantly, as
shown in Puppe and Slinko (2019) every closed Condorcet domain (whether or not it is
connected) naturally induces a median graph, and conversely every median graph defines
(non-uniquely) a closed Condorcet domain. If a Condorcet domain is connected, the
corresponding median graph is a subgraph of the permutohedron. Remarkably, some
graphs induced by some closed Condorcet domains can never occur in the class of maximal
Condorcet domains (for instance, trees that are not chains can be the induced median
graphs of closed but not of maximal Condorcet domains, see (Puppe and Slinko, 2019,
Th. 7)).

Third, the notion of Condorcet domain can be generalized to the case of weak orders,
and even to partial orders. Indeed, a result analogous to Theorem 3.1 holds for weak
orders (Puppe, 2018), and first steps towards an analysis of Condorcet domains of partial
orders have been undertaken in Dittrich (2018).
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Tohmé, F. and A. Saporiti (2006): “Single-Crossing, Strategic Voting and the Median Choice Rule,”
Social Choice and Welfare, 26, 363–383.

Zhan, P. (2022): “Sign representation of single-peaked preferences and Bruhat orders,”
arXiv:2202.11352v1.

31



Appendix

A All Maximal Condorcet Domains on Four Alter-

natives

In this section, we present the complete classification of all maximal CDs on four alter-
natives obtained by Dittrich (2018). Up to isomorphism or flip isomorphism there are
exactly 18 different maximal CDs on the set {a, b, c, d}.

A.1 Connected Domains

There are in total six connected maximal CDs on four alternatives, all of them are peak-pit
domains.

Connected Domains with Maximal Width

There are exactly three connected maximal CDs with maximal width:

D1 = {abcd, abdc, acbd, bacd, badc, bdac, cabd, dbac},
D2 = {abcd, abdc, acbd, adbc, dabc, dbac, dbca},
D3 = {abcd, abdc, bacd, badc, bdac, bdca, dbac, dbca, dcba}.

The first of these (D1) is the single-peaked domain with respect to the spectrum d > b >
a > c, see Fig. 13 left; the second (D2) is a single-crossing domain with the pair acbd and
dbca of completely reversed orders, see Fig. 13 middle; the third (D3) corresponds to Fish-
burn’s alternating scheme and is the (uniquely) largest maximal CD on four alternatives
with 9 members, see Fig. 13 right.

Figure 13: The three connected maximal CDs with maximal width D1 −D3
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The characterizing never-conditions are,

for D1 : {aNabc3, bNabd3, aNacd3, bNbcd3},
for D2 : {cNabc1, bNabd1, cNacd1, bNbcd3},
for D3 : {bNabc3, bNabd3, cNacd1, cNbcd1}.

Connected domains without maximal width

There are exactly three connected maximal CDs without maximal width; they all have 8
members:

D4 = {abcd, abdc, acbd, acdb, bacd, badc, bcad, bcda},
D5 = {abcd, abdc, acbd, adbc, bacd, badc, bcad, bdac},
D6 = {abcd, abdc, acbd, adbc, bacd, badc, bcad, dabc}.

The first of these (D4) is flip isomorphic to an Arrow single-peaked domain, see Fig. 14
left; the second (D5) and third (D6) differ only by one order from each other, see Fig. 14
middle and right, respectively.

Figure 14: The three connected maximal CDs without maximal width D4 −D6

The characterizing never-conditions are,

for D4 : {cNabc1, dNabd1, dNacd1, dNbcd1},
for D5 : {cNabc1, dNabd1, aNacd3, bNbcd3},
for D6 : {cNabc1, aNabd3, aNacd3, bNbcd3}.

A.2 Symmetric Domains

The Indecomposable Raynaud Domain

The smallest maximal CD has four elements and is given by

D7 = {abcd, bdac, cadb, dcba}.
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Figure 15: The smallest maximal CD with four elements

D7 is one of the type of maximal CDs with four members identified by Danilov and
Koshevoy (2013) which exist for any number of alternatives; it is characterized by the
following set of never-conditions:

{cNabc2, aNabd2, dNacd2, bNbcd2}. (1)

Two Group Separable Domains

There are two group separable maximal CDs on a set of four alternatives, see Fig. 16:

D8 = {abcd, abdc, bacd, badc, cdab, cdba, dcab, dcba},
D9 = {abcd, abdc, acdb, adcb, bcda, bdca, cdba, dcba}.

The characterizing never-conditions are,

Figure 16: The two group separable maximal CDs D8 and D9

for D8 : {cNabc2, dNabd2, aNacd2, bNbcd2},
for D9 : {aNabc2, aNabd2, aNacd2, bNbcd2}.
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A.3 Mixed domains

Furthermore, there are nine ‘mixed’ domains, i.e., domains that are characterized by at
least one never-middle condition and at least one never condition of another type. One
of these domains (D10) has only seven members; all others (D11 − D18 listed here in
lexicographic order) have eight members, see Fig. 17.

Figure 17: Mixed maximal CDs D10 −D18 (top to bottom from left to right)

We have:
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D10 = {abcd, abdc, acbd, adbc, bcad, cbad, dabc},
D11 = {abcd, abdc, adbc, adcb, bcda, bdca, dbca, dcba},
D12 = {abcd, abdc, acbd, bacd, badc, bcad, dabc, dbac},
D13 = {abcd, abdc, bacd, badc, bdac, cabd, cadb, cbad},
D14 = {abcd, abdc, bacd, badc, bdac, cabd, cbad, dbac},
D15 = {abcd, abdc, bacd, badc, cabd, cadb, cbad, cbda},
D16 = {abcd, abdc, bacd, badc, cabd, cadb, cbad, cdab},
D17 = {abcd, abdc, bacd, badc, cabd, cbad, cdab, cdba},
D18 = {abcd, abdc, bacd, badc, cabd, cbad, dabc, dbac}.

The characterizing never-conditions are,

for D10 : {aNabc2, aNabd3, aNacd3, bNbcd3},
for D11 : {aNabc2, aNabd2, aNacd2, cNbcd1},
for D12 : {cNabc1, dNabd2, aNacd3, bNbcd3},
for D13 : {cNabc2, dNabd1, aNacd3, dNbcd1},
for D14 : {cNabc2, bNabd3, aNacd3, bNbcd3},
for D15 : {cNabc2, dNabd1, dNacd1, dNbcd1},
for D16 : {cNabc2, aNabd3, dNacd1, dNbcd1},
for D17 : {cNabc2, dNabd2, dNacd1, dNbcd1},
for D18 : {cNabc2, dNabd2, aNacd3, bNbcd3}.
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