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Abstract

High nonresponse rates have become a rule in survey sampling. In panel surveys there

occur additional sample losses due to panel attrition, which are thought to worsen the bias

resulting from initial nonresponse. However, under certain conditions an initial wave non-

response bias may vanish in later panel waves. We study such a ”Fade away” of an initial

nonresponse bias in the context of regression analysis. By using a time series approach for

the covariate and the error terms we derive the bias of cross-sectional OLS-estimates of the

slope coefficient. In the case of no subsequent attrition and only serial correlation an initial

bias converges to zero. If the nonresponse affects permanent components the initial bias will

decrease to a limit which is determined by the size of the permanent components.

Attrition is discussed here in a worst case scenario, where there is a steady selective

drift into the same direction as in the initial panel wave. It is shown that the fade away

effect dampens the attrition effect to a large extent depending on the temporal stability of

the covariate and the dependent variable. The attrition effect may by further reduced by a
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weighted regression analysis, where the weights are estimated attrition probabilities on the

basis of the lagged dependent variable.

The results are discussed with respect to surveys with unsure selection procedures which

are used in a longitudinal fashion, like access panels.

Key words: Regression Analysis, Nonresponse Bias, Panel Attrition, Inverse Probability

Weighting.

1 Introduction

High nonresponse rates have become the rule in survey sampling. They not only reduce case

numbers but they have the potential to bias standard statistical analysis. In panel surveys there

may occur additional sample losses due to drop-out of respondents, called panel attrition.

Often panel attrition is thought to worsen the bias resulting from initial nonresponse. However,

this may not hold. On the contrary, under certain conditions an initial wave nonresponse bias may

vanish in later panel waves. Rendtel (2013) coined the term ”Fade away” for the vanishing of

initial nonresponse bias in later panel waves. Rendtel and Alho (2022) explain a fade away effect

in a Markov chain setting for a distribution on a finite state space. Here we establish a similar

statement for regression analysis. The nonresponse is defined here by an explicit impact of the

dependent variable of the regression model on the probability of participation. This nonresponse

is non-ignorable in the sense of Rubin (1976).

Empirically, panel attrition often depends on field work related causes, like change of address,

move from the parental home or divorce, see Behr et al. (2005), Iacovou and Lynn (2017) and

the overview of Watson and Wooden (2008). These causes are frequently unrelated to the analysis

variable. For our analysis we assume a worst case scenario, where attrition continues to depend

on the value of the actual dependent variable, thus creating a steady selective drift into the same

direction as the initial nonresponse.

We will use here a time series approach for the covariate and the error term. In this setting we

analyse the bias of cross-sectional OLS estimates of the regression slope coefficient. For a linear

response model we are able to derive an analytic expression for the resulting bias and its decline
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in later panel waves. This formula treats the case with no attrition. The more realistic case of a

logit response model and the presence of attrition is treated by means of a simulation study. The

factors of this environment are: 6 temporal scenarios, 3 scenarios for initial nonresponse and 3

scenarios for attrition. We will investigate the development of the bias over the first 10 waves of

a panel. Our results state that it is worthwhile to check the temporal stability of the covariate

values and the regression error terms. This is a new aspect in survey nonresponse analysis.

Weighting approaches are widely used to compensate for nonresponse, see, for example, Särndal

and Lundström (2005). This is mostly done for cross-sectional surveys. Cornesse et al. (2020)

conclude, that ”weighting does not sufficiently reduce bias in nonprobability sample surveys”.

However, this statement refers to cross-sectional surveys and the estimation of population totals

and means. Here we discuss a special solution for panel surveys where we can use the lagged

dependent variable as a proxy for the dependent variable in the actual wave. This offers the

opportunity to estimate a proxy for the attrition probability which can be used in a weighted

regression analysis.

Our results offer a new view on samples with a high nonresponse or with uncontrolled sampling

or self-sampling which result from web-surveys, see, for example, Couper (2000) or Bethlehem

(2010). If such samples are used over longer time periods, for example via access panels, their

results may become more reliable after some time. In the presence of a substantial fade away

effect the results from such longitudinal surveys become more and more reliable at later points in

time. Usually the bias studies of nonprobability surveys are done in a mere cross-sectional fashion,

see, for example, Cornesse et al. (2020). Hence our results will open a new floor for the use of

non-probability samples in a longitudinal fashion, which are discussed in the conclusions.

In the next section we describe the regression time series model and derive our bias result for

the linear response model. Then we formulate the simulation setting in Section 3. We study the

bias of cross-sectional estimates of the slope coefficient until wave 10 in Section 4. Here we use

the logit response model and assume no attrition. Section 5 introduces attrition. In Section 6

we investigate the use of the lagged dependent variable for a weighted regression analysis. We

summarize our findings and give recommendations in Section 7.
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2 The nonresponse bias in regression analysis

In this section we derive a bias result for cross-sectional estimates of the slope coefficient in a simple

regression setting. For this purpose we use a time-series approach for the dependent variable Y

and the covariate X. For nonresponse at the start of the panel we use a linear response model

with Y as the explanatory variable. Here we assume no attrition in later panel waves.

2.1 The cross-sectional estimator

For an individual i at time t with covariate value Xit, the response is of the form

Yit = δt + βXit + εit, (1)

where the error terms are independent over units with E[εit] = 0 and V ar(εit) = σ2. The objective

of the analysis is either to estimate the finite population effect β of the covariate on the response,

the intercept δt, or both. We will concentrate on the first one.

In order to estimate the slope coefficient β by the cross-sectional sample of wave t with sample

size n(t) we compute the OLS-estimator, at time t, from the observations Yit = yit, as

β̂t =

n(t)∑
i=1

(xit − x̄t)(yit − ȳt)
/ n(t)∑
i=1

(xit − x̄t)2, (2)

where the averages x̄t and ȳt have been computed from the observed sample in wave t.

The corresponding estimates for the interceps means are

δ̂t = ȳt − β̂tx̄t. (3)
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2.2 Effect of initial nonresponse under a dynamic time series model

We will assume that the covariate values are realizations of random variables Xit. They, and the

error terms εit have a time-independent component,

Xit = µi + ξit, εit = νi + ηit, (4)

where all µ, ξ, ν and η-terms are independent of each other, with E[µi] = E[ξit] = E[νi] = E[ηit] =

0, and V ar(µi) = κ, V ar(ξit) = 1− κ, V ar(νi) = γσ2, V ar(ηit) = (1− γ)σ2, where 0 ≤ κ ≤ 1 and

0 ≤ γ ≤ 1.

The intended conclusions regarding the explanatory variables are that E[Xit] = 0 and V ar(Xit) =

1. The error term has correspondingly E[εit] = 0 and V ar(εit) = σ2.

In addition, the explanatory variables and the error terms have dynamic, autoregressive com-

ponents,

ξit = ρξi,t−1 + ζit, ηit = φηi,t−1 + υit, t = 1, 2, ..., (5)

where | ρ |< 1, | φ |< 1, E[ζit] = E[υit] = 0, V ar(ζit) = (1− κ)(1− ρ2), and V ar(υit) = (1− γ)(1−

φ2)σ2. The independent sequences ζit and υit, are independent of all other random variables, and

of each other. An implication of the autoregressive structure is that values at t > 0 can be written,

e.g., as ξit = ρtξi0 + ζ̃it, where the second term is independent of the first; for t = 0 we have ζ̃i0 ≡ 0.

If, at time t = 0, an individual decides to respond, we define Ri = 1, otherwise Ri = 0. We first

restrict our attention to the case in which no further attrition occurs, but allow response probability

to depend on Yi0 (i.e., missingness is not at random),

P (Ri = 1 | Yi0) = a+ bYi0, (6)

where 0 < a < 1 and | b | is small enough so that the probability remains in interval [0, 1]. The

marginal probability of responding is then P (Ri = 1) = a+ bδ0.

Define β̃t as the large sample limit of β̂t, but based on the respondents. In Appendix A we
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show in detail that under mild conditions we have the limit

β̃t = β × (1− b2σ2(κ+ ρt(1− κ))(γ + φt(1− γ))

(a+ bδ0)2 − b2β2(κ+ ρt(1− κ))2
) (7)

for t = 0, 1, . . ., or the estimate is attenuated towards zero.

Since (κ+ ρt(1− κ))(γ + φt(1− γ)) ≤ 1 for all t > 0, the bias is always smaller for t > 0 than

at t = 0. If κ = 0 or γ = 0, then the bias goes to zero, as t→ +∞. In other words, the initial bias

will fade away.

Interestingly, for the fade away it is sufficient that κ = 0, although it is related to the ex-

planatory variable, not to the residual, and nonresponse determined by x-values only, would be

ignorable. This would be the same as randomizing individual effects across the values of explana-

tory variables.

Finally, equation 7 shows that the bias in the average of y-values in (3) will fade away, provided

that both κ = 0 and γ = 0 hold.

The bias approximation in equation 7 reveals different scenarios:

� No bias

– If σ2 = 0, the probability of participating depends only on X, then there is no bias in

the OLS estimates. This is the Missing at Random (MAR) case.

– if b = 0, the probability of response is constant over units. This is the Missing Com-

pletely at Random (MCAR) case.

– If β = 0 there is no bias present in OLS estimates of β.

– In case of independent covariate values (κ = ρ = 0) the bias will vanish within one time

period.

– In case of independent values of the residual term (γ = φ = 0) the bias will vanish

within one time period.

� Complete Fade-away of bias
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– There are either no permanent components of Xi,t (κ = 0) or εi,t (γ = 0). The speed

will depend upon the AR-factors ρ for the covariate and φ for the error terms.

� Partial Fade-away of bias

– A fraction of the initial bias will remain permanent, if there are both permanent com-

ponents for the covariate and the error term. The fraction will be κγ of the initial

bias.

– The speed of the convergence will depend upon the autoregressive factors ρ for the

covariate and φ for the error terms.

This result leads to some questions:

1. The above bias formula is an asymptotic result which is based on a linear response model.

However, this approach does not cover the standard logit model which is nonlinear in the

y-values. Therefore we will investigate by a simulation study whether the implications of the

above bias formula still hold under a logit response setting.

2. The practical relevance of the above result depends on the speed of the fade-away effect,

which depends on many parameters in the model setting. This suggests the investigation of

realistic parameter settings in the simulation runs. We assume here also a set of alternative

response scenarios.

3. The proof of the analytic bias formula did not use the normal distribution of the x-covariate.

We needed only zero expectation and symmetry with respect zero. Thus we also check

the simulation results against deviations from the standard normality assumption for the

x-covariate which will be inappropriate in many realistic instances.

4. We have not developed analytical formulas for the case of attrition. The impact of attrition

on the regression results shall be demonstrated in the framework of a simulation study. Here

we should also investigate a few alternative scenarios.
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3 Design of the simulation study

.

To generate the data from the model, we set the starting values of the regression model param-

eters to δt = 0 for the intercept and βt = 1 for the slope. We then generate a synthetic data set of

size N = 20, 000 units from the model, which is replicated over 100 Monte Carlo repetitions. This

sample size is higher than in empirical applications. However, our focus is here on a high precision

of the bias estimates. Further, we assume that the distribution of the covariate Xi,t = µi + ξi,t

and the error term εi,t = νi + ηi,t are normally distributed. The covariate Xi,t consists of two

components: the permanent component µi and the transient component ξi,t, both the components

are uncorrelated with each other having expectations 0 and variances σ2
µ = κ and σ2

ξt
= (1 − κ),

respectively:

µ ∼ N(0, σ2
µ) and ξt ∼ N(0, σ2

ξt
),

Likewise, the error term εi,t is decomposed into two uncorrelated components: the permanent

component νi and the transient component ηi,t having expectations 0, and variances σ2
ν = γσ2 and

σ2
ηt = (1− γ)σ2, respectively, where σ2 is the total variance of the error term:

ν ∼ N(0, σ2
ν) and ηt ∼ N(0, σ2

ηt),

Further, it is assumed that the error terms ζi,t and υit of the auto-regressive models are independent

and identically normally distributed with expectations zero, and variances σ2
ζ = (1 − κ)(1 − ρ2)

and σ2
υ = (1− γ)(1− φ2)σ2, respectively.

ζt ∼ N(0, σ2
ζ ) and υt ∼ N(0, σ2

υ),

To check the size of the non-response bias of the regression estimators and its fade-away effect

in later panel waves, we consider different model stabilities of the covariate and error term. A total

of six Scenarios A− F is considered. In the first three scenarios we assume equal stabilities of the

covariate and residual components, while there are some mixed cases (unequal stabilities) in the

last three scenarios.

� Scenario A: Low stability κ = γ = ρ = φ = 0.30,
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� Scenario B: Medium stability κ = γ = ρ = φ = 0.50,

� Scenario C: High stability κ = γ = ρ = φ = 0.70,

� Scenario D: No permanent components κ = γ = 0, Equal serial correlation for the error

terms φ = 0.5 and the x-values ρ = 0.5

� Scenario E: No serial correlation for the x-values and the error terms ρ = φ = 0. Equal

permanent components for the error terms γ = 0.5 and the x-values κ = 0.5.

� Scenario F: This scenario is motivated by the result for the linear response, where the bias

becomes zero if the x-values are independent over time. Thus κ = ρ = 0 while we set

γ = φ = 0.5 for the residual terms.

We then simulate the initial nonresponse variable Ri,t=1 at wave 11. In our simulations we use

logit response model:

P (Ri,t = 1|Yi,t) =
exp(a+ bYi,t)

1 + exp(a+ bYi,t)
(8)

We choose a = 1.0 to scale the initial response rate to a value in the interval (0.6, 0.7) which is

thought to be a realistic range for the response rate. The value of b determines the size of the bias.

The resulting response probability depends on the value of Y . The variance σ2 of y is equal to the

sum of the variances of variance of X and ε. In our simulation setting we have σ =
√

1 + 1. Here

we scaled the b-value by multiples of σ.Thus we have b = b̃/σ. For b̃ = 1.0, 1.5 and 2.0 we obtain

b = 0.707, 1.06 and 1.41. These values define the Nonresponse Scenarios N 1, N 2 and N 3.

Table 1 displays the resulting response probabilities for the Nonresponse Scenarios N 1, N 2

and N 3. The selective power of the nonresponse scenarios is quite pronounced, For example,

changing from y = −σ to y = σ increases in Scenario N 2 the response probabilities from 0.465

to 0.887. The coefficients of the logit model can be used to interpret the effect of the explaining

covariate, here Y , on the odds ratio P(Response)/P(non-Response). For Y = 0 the odds ratio

for response is given by 2.73. For y = −σ = −
√

2 the odds ratio is decreased by the factor

1In the subsequent sections we index time by waves. Thus we start at time zero with the first panel wave.
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Effect on Response Probability
Scenario b odds ratio y = −2× σ y = −σ y = σ y = 2× σ
N 1 0.71 0.37 0.398 0.572 0.845 0.912
N 2 1.06 0.22 0.246 0.465 0.887 0.957
N 3 1.41 0.13 0.138 0.398 0.918 0.978

Table 1: Response probabilities for different y-values and different values of b. Y-values at different
multiples of the marginal standard deviation σ of Y .
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Figure 1: Comparison of the distribution of response probabilities for the Nonresponse Scenarios
N 1 (Left) with mean response probability 0.698, N 2 (Middle) with mean response probability
0.671 and N 3 (Right) with mean response probability 0.648 .

exp(−b ×
√

2). The resulting effects of nonresponse on the odds ratios are displayed in column 3

of Table 1. These effects on the odds ratio are substantial.

For these three nonresponse scenarios we obtain different pattern of response probabilities in

the initial sample after response, see Figure 1. With increasing values of b the average response

rate drops from 0.698 to 0.648. But also the shape of the distribution of response probabilities

varies. Figure 1 demonstrates that the distribution becomes more and more left-skewed, which

reflects the fact that persons with low response probabilities are discarded form the sample. The

distribution for Scenario N 1 corresponds good to the empirical example given in in Figure 1 of

Alho et al. (1993) for participation in an US Post Enumeration Survey.

We estimate the slope coefficient β in each Monte Carlo replication r, (r = 1, . . . , R), where R

stands for the number of Monte Carlo replications. Let β̂tr be the regression estimator of β in wave

t in the rth simulation run, then the average based on all replications is β̂t = 1
R

R∑
r=1

β̂tr. Finally,

we compute the relative bias in percent: RBt = 100× (β̂t − β)/β. We also display the estimation

results on the basis of the so-called full-sample, which is the sample before initial nonresponse.

This serves as a control that the initial sample size is large enough to display stable results.

Each replicate of the 100 simulation runs delivers an estimate of the bias. From the replications
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we compute the 5-percent and the 95-percent points of the 100 replications divided by
√

100 = 10,

which may be taken as a confidence interval for the true bias. The original confidence intervals

of the single simulation runs are quite broad in the range of 5 percentage points. They become

larger in later panel waves due to the decreasing case numbers of the observations which enter the

estimate of b.

4 Initial nonresponse without attrition

In this section we display the fade-away effect under the logit response model. In Appendix B we

compare simulation results with the analytical formula results if we approximate the logit function

by a linear approximation. It turns out, however, that the linear approximation of the logit function

is poor in realistic situations and therefore the results obtained under the assumption of a linear

response model are not exact. In general the bias under the logit model is smaller than the bias

under the linear approximation.

Figure 2 displays a fade-away effect under the Scenarios A to F for the logit response model

and the nonresponse Scenario N 2. Note that the response model for Scenarios A to F is identical.

Therefore the initial bias for a fixed response scenario is the same for Scenarios A to F. Yet the

consequences of initial nonresponse depend intrinsically on the temporal changes of the distribution

of the Yi,t , resulting in different temporal developments of the initial bias. Figure 2 displays

clearly the basic features of the fade-away effect: the level where the bias stabilizes is fixed by the

proportion of the permanent components while the speed of the fade away effect is determined

by the size of the serial correlation. The smaller the correlation is the faster is the fade away of

the initial bias. For Scenario A the permanent bias level is already reached at wave 3, while it

takes until wave 6 in Scenario B. In Scenario C we have to wait until wave 9 until the permanent

bias is reached. The levels of the permanent bias are quite different depending on the fraction

of permanent y-values. If this fraction is as low as 0.3 as in Scenario A, the initial bias of 13.2

percent is reduced 1.1 percent, while it is 3.0 percent in Scenario B with a fraction of 0.5 permanent

components. Finally, in Scenario C with a fraction of 0.7 of permanent components the bias

stabilizes at 6.3 percent.
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The last three Scenarios D and E disentangle the serial and the permanent effects, while

Scenario F creates independent x-values and the residual values have permanent components and

serial correlation. In the case of Scenario F the bias formula of the linear response model predicts

an immediate vanishing of the initial bias in Wave 2. This holds also under the logit response

model. Under Scenario D with no permanent components the bias converges rapidly to zero. In

Scenario E with no serial correlation the bias level of Scenario B is already reached in Wave 2.

The level of the bias is approached under Scenario B four waves later, after the bias due to the

serial components has faded-away.

Now we will study the impact of the response mechanisms N 1, N 2 and N 3 on the fade-away

effect. We do this only for the Scenarios A, B and C as these Scenarios exhibit longer declines of

the initial bias. Here we are interested in the decline of the bias relative to the bias at the initial

wave. Therefore we compute a normed bias which is the ratio of the bias in the current wave

divided by the bias at the initial wave. This facilitates the comparison of different nonresponse

scenarios and gives a measure of the speed of the fade-away effect. To be precise we obtain the

following biases (in percent points): 7.44 for Scenario N 1, 13.20 for Scenario N 2 and 18.71 for

Scenario N 3.

Figure 3 displays the speed and the level of the fade-away effect. For low temporal stability the

final bias reduction is already reached in wave 4. Here the original size of the bias is reduced by a

factor 0.09. However, with higher temporal stability the reduction factor is still considerable: 0.22

under Scenario B und 0.5 under Scenario C. Figure 3 clearly demonstrates that the reduction of

the initial bias is mainly a matter of the temporal stability of the x and y-variables but not of the

response parameter b in the Logit model. There seems to be a slight advantage for models with a

highly selective nonresponse pattern as they show a faster decline of the initial bias.

Next we will check the stability of the fade-away effect under departures of the x-variable

Xi,t=0 from the normal distribution at the start of the panel. Remember that Xi,t=0 is the sum

of two independent variables Xi,t=0 = µi + ξi,t=0 having expectations 0 and variances σ2
µ = κ and

σ2
ξt

= (1 − κ), respectively. Instead of a normal distribution we assume for each component a

symmetric, discrete distribution on the points −σµ,+σµ resp. −σξ,+σξ. For these x-values we use

12
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the medium stability Scenario B with the medium nonresponse Scenario N 2. The resulting bias for

β is 14.03 percent points which is similar to the bias under the normal distribution, which is 13.38

percent points. The decline of this bias is displayed in Figure 3 by the line with the filled triangles.

There is virtually no difference to the fade-away behaviour under the normal distribution.

5 Attrition after initial nonresponse

In this section we extent our simulation design to cover also panel attrition. Panel attrition in

wave t is defined here as nonresponse, indicated by Ri,t = 0, with response in the preceding panel

wave t − 1. We assume that the drop-out by attrition is permanent, i.e. units do not return to

the sample in later panel waves. Similar to initial nonresponse we assume a direct dependence of

attrition on the dependent variable Yi,t.

P (Ri,t = 1|Yi,t, Ri,t−1 = 1) =
exp(a∗ + b∗Yi,t)

1 + exp(a∗ + b∗Yi,t)
(9)

Note, that attrition acts here during the entire panel into the same direction as the initial

nonresponse. This is a worst case scenario. As mentioned in the introductions attrition is often

linked to field work, for example residential mobility which may be uncorrelated to the dependent

variable Y . Also, in empirical attrition analysis which is based on automatic selection procedures

of all variables from the previous panel wave, there appear no stable attrition variables, see, for

example the attrition analysis of the German Socio-Economic panel (SOEP) in Kroh et al. (2017

Table 4.3)). Thus a steady selective shift into the same direction, which we assume here, is not

supported by empirical findings.

The parameters a∗ and b∗ have to be chosen to give realistic attrition rates in the range of 10

percent. With higher attrition rates the panel will come to an end simply by running out of sample

size. For a∗ = 2 we are in the vicinity of a response probability of 0.90. Like in the case of initial

nonresponse we scale the value of b∗ with respect to y-values at ±σ, where σ =
√

2 is the marginal

variance of Y . The odds ratio for response at y = 0 is given by exp(2)/(1 + exp(2)) = 0.881.

Column 3 of Table 2 displays the effect on the odds ratio for y = −b∗×σ = −b∗×
√

2 for different
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Effect on Response Probability
Scenario b∗ odds ratio y = −2× σ y = −σ y = σ y = 2× σ
ATT 1 0.353 0.60 0.786 0.838 0.913 0.937
ATT 2 0.530 0.47 0.718 0.813 0.926 0.955
ATT 3 0.707 0.37 0.642 0.784 0.937 0.968

Table 2: Response probabilities for different y-values and different values of b. Y-values at different
multiples of the marginal standard deviation σ of Y .

values of b∗, which define the attrition scenarios ATT 1, ATT 2 and ATT 3. The effect of attrition

on the odds ratio scale is substantial, however somewhat smaller compared to the initial response

scenarios of Table 1.

Despite the low attrition rate of about 10 percent the cumulative effect on the sample size of

the persisting sample can be substantial. Figure 4 compares the decline of sample sizes due to

sample attrition for the Scenarios A, B, C and F. Under initial response scheme N 2 has lowered

the sample size from 20000 to 13410. Under Scenario ATT 2 the cumulative effect of attrition

from wave 2 to wave 10 is substantial: from sample size 13410 down to sample sizes of about

4000 to 5000, which means a loss of 2/3 of the sample size at the start of the panel. Surprisingly,

the strongest losses of case numbers appear in Scenarios A and F where the bias will be shown

to be smallest among all scenarios, while in Scenario C with the largest bias the loss of cases is

the smallest. This indicates that the pure decline of case numbers is not a valid indicator of an

attrition bias.

Figure 5 compares the bias of the Scenarios A, B, C and F under attrition scheme ATT 2.

Here Scenario F no longer results in a zero bias as in the case of no attrition. Instead, the attrition

results in each wave of a bias of about 2.5 percent. As the bias would immediately disappear in

the subsequent wave we conclude that attrition results in each wave in a new bias of about 2.5

percent. This demonstrates that the attrition parameters are well scaled to a steady trend with

respect to the resulting bias. Under attrition schema ATT 1 the drift is about 1.1 percent, while

it is about 4.0 percent under attrition scheme ATT 3.

For each Scenario A,B and C and Nonresponse Scheme N 2 Figure 5 displays three biases:

the bias without attrition (solid line) and the bias under attrition (dotted line). The third line

(dashed line) results from a weighting correction which will be discussed below. From Figure 5 we

16



C
a

se
 N

um
be

rs

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

11000

11500

12000

12500

13000

13500

14000

Panel Wave

1 2 3 4 5 6 7 8 9 10

PLOT Scenario A Scenario B Scenario C Scenario F

Figure 4: Comparison of case numbers in response samples under attrition after initial nonresponse
for Scenarios A to F.

17



conclude that the impact of attrition increases with increasing temporal stability of the x- and the

y-variable. At wave 10 the effect of attrition on the bias results in an increase of about 4 percentage

points (Scenario A), 6 percentage points (Scenario B) and 8 percentage points (Scenario C). These

differences are considerably smaller than the cumulative effect of 9×2.5 = 22.5 separate increases.

Therefore the fade-away effect is also present during attrition. However, after a decrease in waves

2 and 3 the bias increases again due to attrition. With increasing temporal stability the attrition

effect becomes more pronounced. In Scenario C the original initial bias is exceeded in Wave 7. We

report here, that for the attrition Scenario ATT 3 and stability Scenario C the discrepancy between

the cumulated drift (9 × 4 = 36 percentage points) and the increase of the bias (11.4 percentage

points) becomes even much stronger. On the contrary, for the low attrition Scenario ATT 1 the

difference between the cumulated drift (9 × 1.1 = 9.9 percentage points) and the increase of the

bias ( 3.5 percentage points) results in the lowest fade away effect.

6 Bias correction by inverse probability weighting

A standard strategy to reduce a bias due to nonresponse is to use a weighted analysis, where the

units with Ri,t = 1 are weighted by their inverse response probability wi,t = Ri,t/P (Ri,t = 1). The

formal argument behind this strategy is ERi,t
(wi,t) =

E(Ri,t)

P (Ri,t=1)
= 1 Here the expectation is with

respect to the distribution of Ri,t with all other variables being fixed.

This reasoning is in the framework of design-based inference where the analysis is done with

respect to the randomisation of the selection procedure, see, for example, Särndal et al. (1992,

Chapter 2). In our analysis the selection procedure is described by response and attrition events.

The design-based approach is used to estimate shares, ratios and totals in a fixed population.

However, this approach is also used in a regression setting, see Kott (1991). One motivation to

incur design-weights in regression analysis is the intention to estimate a regression relationship

at population level, see Bethlehem (2010) and Särndal and Lundström (2005) for a discussion.

In our simulation framework the population2 is given by the sample before initial nonresponse

2If the data come from a real survey one would like to make inferences about the population where the survey is
taken from. In this case one has to use the selection probabilities of the survey design multiplied with the response
probabilities.
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and attrition. Here the weighted X ′X-matrix and X ′Y vector estimate their population values.

Another motivation for a weighted regression is the protection of the analysis against uncontrolled

stratification which is not incorporated in the regression model by control variables (Dumouchel

and Duncan 1983).

In our case, the attrition process is with respect to the dependent variable Yi,t. So, there is

no exact way to control this selection by this covariate. However, we can use the known values

of Yi,t−1 as a proxy for Yi,t-values. The approximation becomes better with increasing temporal

stability of the y-values. In the setting of the simulation Scenarios A,B and C we expect a good

performance of the weighted regression in Scenario C.

The weights are computed in a sequential fashion. The initial weights wi,t=1 for the first wave

are set to 1. For each subsequent wave t we estimate a logit response model for participation in

wave t given participation in wave t−1 conditional on the value of Yi,t−1. This gives the estimated

values P̂ (Ri,t = 1|Ri,t−1, Yi,t−1). These values are used to compute

wi,t = wi,t−1 ×
Ri,t

P̂ (Ri,t = 1|Ri,t−1, Yi,t−1)
(10)

The values of wi,t are used for the weighted regression analysis of the sample of wave t.

The results of this weighting strategy are displayed in Figure 5 for attrition Scenario ATT 2

by the dashed lines. As expected the best reduction of the attrition bias appears in Scenario C

with the highest temporal stability. Here the increase of the bias from wave 4 onwards is almost

stopped by the use of the weights. The reduction of the bias component which is due to attrition

is substantial: from 8 percentage points to 4.5 percentage points. For Scenario B the reduction of

the attrition bias is visible, but much smaller. For Scenario A there is no such reduction effect.

However, in this scenario the attrition is not strong enough to result in an increasing bias.

To sum up: despite a loss of 2/3 of the sample size and a steady drift towards an additional bias

of about two percentage points the initial bias does not increase if we apply a weighting strategy

by the lagged dependent variable.
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7 Summary and Conclusions

We demonstrated a fade away effect in regression analysis: For non-ignorable nonresponse cross-

sectional OLS-estimates of the slope coefficient tend to produce less biased estimates in later panel

waves. The size of this effect depends on the temporal stability of the covariate and the regression

errors.

We presented an analytical result for the case of a linear response model and a time series setting

for the x- and the y-variable. In this setting we prove that initial bias of the OLS-estimate for the

slope coefficient is reduced over time. Our result proposes a monotonically decreasing attenuation

bias. We could also prove an interesting finding: despite nonignorable initial nonresponse it is

sufficient to control the distribution of the covariate to remove the bias in later panel waves: if the

covariate values are serially independent the bias will be completely removed in one wave. These

findings hold not only under a linear response model but also under the logit response models in

our simulation setting.

In our simulation runs the reduction of the initial bias was substantial: without attrition it

ranges to 91 percent (low stability) to 50 percent (high stability). The rate of reduction is almost

independent from the initial nonresponse nor does it depend on the distribution of the x-covariate.

It is simply a matter of percentage of the fixed components in the time series model. The serial

components govern the speed of the fade-away effect. For moderate serial effects the final bias is

reached within 4 to 6 panel waves.

In our simulations we studied a worst case scenario of a permanent selective drift by attrition

into the same direction as the initial nonresponse. The losses due to attrition amount 2/3 of the

sample size at the start of the panel. Despite these losses in sample size and the selective drift

the resulting bias which is due to attrition is much less than the expected cumulative drift of

9× 2.5 = 22.5 percentage points: it ranges from 4 (low stability) to 8 (high stability) percentage

points. Contrary to initial nonresponse, the size of the selective drift plays an important rule of

the temporal stability of the bias. Thus it can happen that under a substantive drift by attrition

and stable x- and y-variables the nonresponse bias is increased beyond the level of the initial bias.

However, such a situation can be prevented by a weighting strategy where the lagged dependent
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variable is used to predict attrition in the actual wave. The predicted attrition probabilities can

be used in a weighted regression analysis. The approach is efficient for stable y-variates, where

the attrition effect is largest. There the increase of the bias due to the attrition effect is reduced

from 7.8 (without weighting) to 4.5 (with weighting) percentage points. In all cases the bias stayed

below the level at the start of the panel. Despite a substantial loss in case numbers and a steady

selective drift due to attrition the bias can be controlled by the fade away effect combined by a

simple weighting strategy in the regression analysis.

These results can be extended to more complex situations. For example, the sample may be

subdivided into groups. All groups are supposed to have the same slope coefficient β but group-

specific intercepts. The well-known Analysis of Covariance (ANCOVA) estimator of β is a mixture

of group-specific OLS-estimates of β. Hence, if these group-specific estimators show a fade-away

behaviour, then the ANCOVA estimator will do so too. There is an important difference between

the group-specific and the unspecific OLS-estimator with respect to the fade-away effect. Here the

unspecific OLS-estimator incurs residual terms with a much higher permanent component than

the group-specific estimator. The permanent components are due to the group-specific impact of

the group on the dependent variable. Therefore we can expect a higher fade-away effect for the

ANCOVA estimator than for the unspecific OLS-estimator.

The above result may be used to cover two cases. The first case refers to stratified probability

samples at the start of a panel survey. If the user can identify the strata then he can use the

ANCOVA estimator for strata and use the survey design weights to combine the separate strata

estimations. The second case refers to non-probability samples, especially if they are sampled

from access panels. Often these samples are controlled by some quota variables. For example,

the quotas refer to totals from a large population surveys like gender, age-group and education

level. As the selection into the access panel did happen some periods before its use we may regard

it as a longitudinal sample where a fade away effect is present. Here we may assume that the

residual fluctuations after control of the quota variables have a low serial correlation if the quota

variables have a high impact on the dependent variable. The stated fade away effect together

with the possibility to control attrition via the lagged dependent variable support the use of non-

22



probability samples in a longitudinal context, as proposed in the introduction.

Our results may be used for practical recommendations. In order to judge the potential size

of the fadev away effect one should estimate the temporal stability of the covariates and the error

term. In case of small and moderate fixed components one may be willing to accept a fast decline

of an initial non-response bias. In case of attrition one should check the stability of the dependent

variable. If it is high then we recommend to use weights which compensate for attrition via a logit

model with the lagged dependent variable as explaining covariate. If the sample is controlled by

some stratification or quota variables the stability should be checked within the strata or quota

cells and the ANCOVA estimator should be used.

An alternative to unweighted or weighted regression analyses – as discussed above – is the use

of nonignorable nonresponse models, see, for example Little and Rubin (2002, Chapter 11). These

models and their results rely heavily on untestable distributional assumptions. The message of

the fade away effect in regression analysis is: under appropriate conditions it is not necessary to

switch to the use of risky nonignorable nonresponse models. If there is a fast temporal change

of the covariates or the error terms unweighted regression results become more reliable in later

points of time, while the results of nonignorable nonresponse models may even increase a potential

nonresponse bias, if the model is wrong.

We have treated here the use of cross-sectional estimators for the estimation of a regression

model. With longitudinal data one might look for the use of panel estimators which analyse data

from several panel waves simultaneously. Here especially the Within-estimator (Greene 2011),

which bases on departures from the individual mean, seems to be a promising candidate which is

robust against selective effects related to individual permanent components, see Khan (2020) for

details.
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A The derivation of the bias formula

To simplify, assume that the third moments vanish, or E[X3
it] = E[µ3

i ] = E[ξ3it] = E[ε3it] = E[ν3i ] =

E[η3it] = E[ζ3it] = E[υ3it] = 0. This is true if the distributions are symmetric around zero.

The true regression coefficient is β = Cov(Xit, Yit)/V ar(Xit). for all i. The large sample limit

of the estimator obtained from respondents at time t is

β̃t = Cov(Xit, Ykit | Ri = 1)/V ar(Xit | Ri = 1). (11)

To compute this, we need the four conditional moments E[Xit | Ri = 1], E[Yit | Ri = 1], E[X2
it |

Ri = 1], and E[XitYit | Ri = 1].

Take first t = 0. By conditioning and then taking repeated expectations, we have E[Xi0 | Ri =

1] = E[RiXi0]/P (Ri = 1) = E[E[RiXi0 | Xi0]]/P (Ri = 1) = E[(a + b(δo + βXi0))Xi0]/P (Ri = 1),

so that

E[Xi0 | Ri = 1] = βb/(a+ bδ0), (12)

because E[Xi0] = 0, V ar(Xi0) = 1, and P (Ri = 1) = E[P (Ri = 1 | Xi0)] = E[a+ b(δio + βXi0)] =

a+ bδ0. Under the assumption that the third moment of Xit is zero, we have

E[X2
i0 | Ri = 1] = E[(a+ b(δ0 + βXi0))X

2
i0]/(a+ bδ0) = 1. (13)

Thus, we have the variance

V ar(Xi0 | Ri = 1) = 1− β2b2/(a+ bδ0)
2. (14)

Conditioning on Yi0, and noting that E[Yi0] = δ0 and V ar(Yi0) = β2 + σ2, we have that

E[Yi0 | Ri = 1] = E[(a+ bYi0)Yi0)]/(a+ bδ0) = (aδ0 + b(δ20 + β2 + σ2))/(a+ bδ0). (15)

Then, starting from E[Xi0Yi0 | Ri = 1] = E[RiXi0Yi0]/P (Ri = 1), one can condition on both

Xi0 and Yi0, to get that E[RiXi0Yi0] = E[(a + bYi0)Xi0Yi0]). Noting that E[Xi0Yi0] = β and that
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E[Xi0Y
2
i0] = E[Xi0(δ0 + βXi0 + εi0)

2] = 2δ0β, we obtain the result

E[Xi0Yki0 | Ri = 1] = E[(a+ bYi0)Xi0Yi0]/(a+ bδ0) = β(a+ 2bδ0)/(a+ bδ0). (16)

Hence, the large sample limit of the regression coefficient becomes, after some algebra,

β̃0 = β × (1− b2σ2

(a+ bδ0)2 − b2β2
). (17)

Since (14) is positive, the denominator in (17) must be positive. Thus, there is attenuation towards

0.

Consider the case t > 0. Assume that there is no attrition. Conditioning on both Xi0 and Xit,

we have E[Xit | Ri = 1] = E[RiXit]/P (Ri = 1) = E[(a+ b(δ0 + βXi0))Xrt]/(a+ bδ0). Taking into

account that Xi0 = µi + ξi0, and Xit = µi + ρtξi0 + ζ̃it (as noted below (5)), we get that

E[Xit | Ri = 1] = βb(κ+ ρt(1− κ))/(a+ bδ0). (18)

Similarly, by conditioning we get that E[X2
it | Ri = 1] = E[(a+ b(δi0 + βXki0))X

2
kit]/(a+ bδi0).

Since the first and third moments are assumed to vanish, we have that E[Xi0X
2
it] = 0. Using

E[X2
it] = 1 we get that

E[X2
it | Ri = 1] = (a+ bδ0)/(a+ bδ0) = 1. (19)

Therefore, the variance is

V ar(Xit | Ri) = 1− β2b2(κ+ ρt(1− κ))2/(a+ bδ0)
2. (20)

As a check, note that if t = 0, this expression agrees with (14).

Now consider terms involving Yit. First, condition on both Yi0 and Yit to get that E[Yit | Ri =

1] = E[(a+ bYi0)Yit]/(a+ bδ0). Since, Yi0 = δ0 + β(µi + ξi0) + νi + ηi0, and Yit = δt + β(µi + ρtξi0 +
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ζ̃it) + νi + φtηi0 + υ̃it, it follows that

E[Yit | Ri = 1] = ((a+ bδ0)δt + bβ2(κ+ ρt(1− κ)) + b(γ + φt(1− γ))σ2)/(a+ bδ0). (21)

Similarly, by conditioning onXit, Yit and Yi0, we get that E[XitYit | Ri = 1] = E[(a+bYi0)XitYit]/(a+

bδ0). Note first that E[XitYit] = β. Here, we note that Yi0 = δ0+βXi0+εi0, and Yit = δt+βXit+εit.

Recalling that E[Xi0X
2
it] = 0, we can show that E[Yi0XitYit] = δ0β + δtβE[Xi0Xit], whence

E[XitYit | Ri = 1] = (β(a+ bδ0) + βbδt(κ+ ρt(1− κ)))/(a+ bδ0). (22)

These lengthy expressions reduce to the relative tidy result in (7). As a check, take t = 0 to get

formula (17).

B A comparison of simulation results and the bias formula

Equation (7) is an asymptotic result which uses the linearity of the response equation and the

restriction of the support of P (Ri = 1|Yi,1) = a + bYi,1 to the interval (0, 1). In this appendix we

investigate the validity of the formula if these restrictions are not met exactly.

The range restriction can be only fulfilled if the support of the random components of Xi,1 and

εi,1 is restricted. We did use here a Beta(1,1) distribution, which is a rectangular distribution on

(0, 1), which is transformed to a distribution with zero mean and variance 1. These transformed

rectangular distributions are then multiplied by
√
κ for the realization of the time independent

component µi of Xi,t. Similarly, we multiply by
√
γ for the realisation of νi, the time independent

realisation of εi,t, see equation (4). The time dependent components ζi,t of Xi,t are realized by

multiplying the transformed distributions by
√

(1− κ)(1− ρ2). And finally, for the time dependent

components υi,t of εi,t we use the multiplication factor σ
√

(1− γ)(1− φ2), see equation(5). For

δ0 = 0 and β = 1 we obtain then ranges for valid values of a and b in the response equation (6).

For a = 0.5, which defines the average response rate, the maximum value of b resulting in valid

probabilities is given by b = 0.095.
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Figure 7: Comparison of the simulated and the bias by formula of cross-sectional estimates of the
slope coefficient β with minor departures from the linear response model. Left: Comparison of
linear (Stars) and Logit (Squares) response probabilities. Right: Simulation values (Solid line)
and formula values (Dotted line).

Figure 6 shows a good coincidence of the formula results with the simulation results if the

support of the x- and the ε-variable is controlled, such that the resulting response probabilities

are within the interval (0, 1). The departure is not larger than 0.1 percentage points. Here the

response probabilities range from 5 percent for y = −4.6 to 95 percent for y = 4.6.

Now we switch to deviations from the finite support assumption. Thus we assume a normal

distribution of the above variance components and the logit response model of equation (8). In

order to use the linear response model we use a linear approximation of the logit function. We use

an evaluation at a point where the logit function is 0.5. If the logit parameters are â and b̂ then

the linear approximation is given by P (R = 1|y) = 0.5 + 1
4
b̂(y− â/b̂) for the linear response model.

This gives the corresponding values a = 0.5 − â/4 and b = b̂/4. Therefore the values â = 0 and

b̂ = 0.095× 4 = 0.38 for the logit response model result in a = 0.5 and b = 0.095 like in Figure 6 .
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Figure 8: Comparison of the simulated and the bias by formula of cross-sectional estimates of the
slope coefficient β with large departures from the linear response model. Left: Comparison of
linear (Stars) and Logit (Squares) response probabilities. Right: Simulation values (Solid line)
and formula values (Dotted line).

For these values we get of share of values out of the range of the interval (0, 1) of only 0.02

percent. Figure 7 (Left panel) compares the response probabilities for the linear approximation

and the logit case. The right panel compares the bias values from the bias formula for the linear

model with the simulated values under the logit model. Despite the small deviations with respect

to the percentage of observations with non-conforming probabilities and departures from linearity

there is a noticeable overestimation of the bias by Equation 7.

If we increase the size of b̂ to b̂ = 1 we will get a more pronounced initial bias. Now the

percentage of observations where the linear response approximation is outside the interval (0, 1) is

15.7 percent. Figure 8 (Left panel) compares the response probabilities for the linear case and the

logit case. Here we observe major departures of the logit probabilities from the linear case. The

right panel of Figure 8 displays a substantial overestimation by the bias under the linear model.
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Because of this overestimation we did not use the bias formula for the logit cases of our simulations.
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