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Abstract

Transitivity is perhaps the most fundamental choice axiom and, there-

fore, almost all economic models assume that preferences are transitive. The

empirical literature has regularly documented violations of transitivity, but

these violations pose little problem as long as they are simply a result of

somewhat-noisy decision making and not a reflection of the deterministic

part of individuals’ preferences. However, what if transitivity violations re-

flect individuals’ genuinely nontransitive preferences? And how can we sepa-

rate nontransitive preferences from noise-generated transitivity violations–a

problem that so far appears unresolved? Here we tackle these fundamental

questions on the basis of a newly developed, non-parametric method which

uses response times and choice frequencies to distinguish genuine preferences

from noise. We extend the method to allow for nontransitive choices, en-

abling us to identify the share of weak stochastic transitivity violations that

is due to nontransitive preferences. By applying the method to two different

datasets, we document that a sizeable proportion of transitivity violations

reflect nontransitive preferences. Specifically, in the two datasets, 19% and

14% of all cycles of alternatives for which preferences are revealed involve

genuinely nontransitive preferences. These violations cannot be accounted

for by any noise or utility specification within the universe of random utility

models.
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1 Introduction

The economic approach to decisions builds upon the assumption that choices can

be represented by (complete) transitive binary relations, that is, preferences. Tran-

sitivity is hence, arguably, the most fundamental assumption behind economic

models of choice. Yet, the empirical literature has regularly documented system-

atic violations of transitivity in the form of cyclical choices where, for example,

a is chosen over b, b is chosen over c, and c is chosen over a (e.g., Tversky, 1969;

Loomes, Starmer, and Sugden, 1989, 1991; Starmer, 1999, 2000; Humphrey, 2001).

The interpretation of this empirical evidence is strongly contested. The main

argument is that choice is stochastic, and hence it is possible to observe nontran-

sitive choices even though preferences are transitive, because actual choices are

noisy (Iverson and Falmagne, 1985; Sopher and Gigliotti, 1993; Birnbaum, 2020).

As Birnbaum and Schmidt (2010) observed, “[a] problem that has frustrated previ-

ous research has been the issue of deciding whether an observed pattern represents

‘true violations’ of transitivity or might be due instead to ‘random errors.’” In

other words, while it is tempting to interpret non-transitive choices as evidence of

genuinely nontransitive preferences, those can in principle also be explained by, for

example, random utility models which postulate a transitive binary relation plus

a noise term (McFadden, 1974, 2001; Anderson, Thisse, and De Palma, 1992).

The current literature has long been at an impasse due to the impossibility of

disentangling preferences from noise.

In this contribution, we show how to disentangle preferences and noise to exam-

ine whether cyclical choices are due to noise or true evidence of genuinely nontran-

sitive preferences. We do this by relying on recent results by Alós-Ferrer, Fehr, and

Netzer (2021), which use response times to reveal preferences even when choices

alone cannot do so. We extend their results to allow for “preference revelation”

even when the underlying binary relation is nontransitive. We then apply the re-

sults to two existing datasets (which include both repeated choices and response

times) and examine the evidence for violations of transitivity in the light of the

new results. In a nutshell, we find that both datasets exhibit transitivity viola-

tions in the underlying preferences, independently of any model of noise. That is,

we find a percentage of nontransitive patterns which cannot be explained by any

model built upon transitive preferences and noisy choices.

The key to understand our empirical results is the fact that our theoretical ap-

proach allows us to examine Revealed Transitivity Violations (RTVs) in datasets in-

cluding repeated choices and response times. RTVs are cyclical patterns of choices

such that, for each choice pair along the cycle, any model of preference-based
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choice (transitive or not) including noise (no matter which assumptions on the

latter are imposed, e.g. symmetric or not), the data reveals that the underlying

preference is as specified in the cycle. Hence, the observed preference cycle can

only be explained by a genuinely nontransitive preference, and not by choice noise.

In contrast, the previous literature has concentrated on violations of Weak

Stochastic Transitivity (WST; Tversky, 1969) in datasets with repeated choices.

Denoting by p(x, y) the proportion of x choices from the pair {x, y}, a WST

violation is a pattern in the data where p(a, b) ≥ 1/2 and p(b, c) ≥ 1/2, but

p(a, c) < 1/2.1 The focus on WST is natural because it is straightforward to show

that random utility models, where choices maximize an underlying utility plus a

pair-specific noise term, can never violate WST, provided the noise is symmetri-

cally distributed. The latter additional assumption is automatically fulfilled by all

standard models used in microeconometric analysis (e.g., probit or logit choice).

Hence, we will compare RTVs to violations of WST in both datasets. We show

that every RTV implies a violation of WST, but the converse is not true. This is

because violations of WST are compatible with asymmetric noise and transitive

preferences, but RTVs are not.

In order to study transitivity violations, we extend a generalized version of

random utility models (RUMs) and their response-times extensions in Alós-Ferrer,

Fehr, and Netzer (2021) to allow for nontransitive preferences. This allows to fal-

sify the transitivity hypothesis in models with noisy choices by documenting the

existence of genuinely nontransitive preferences. To do so, we apply the framework

developed in the seminal paper of Shafer (1974), which encompasses models al-

lowing for non-transitive choices such as (generalized) regret theory (Loomes and

Sugden, 1982, 1987; Bleichrodt and Wakker, 2015), salience theory (Bordalo, Gen-

naioli, and Shleifer, 2012), and Skew-Symmetric-Bilinear utility (SSB; Fishburn,

1984a,b,c). The relationship between our approach and previous approaches is

as follows. In a standard utility model, x is (weakly) preferred to y if and only

if U(x) − U(y) ≥ 0, where U is a utility function. In a RUM, x is chosen over

y if and only if U(x) − U(y) + εxy > 0, where εxy is a pair-specific noise term.

In the deterministic model of Shafer (1974), utilities are replaced by general two-

variable functions V (x, y), which can be thought of as “strength of preference,”

such that x is (weakly) preferred to y if and only if V (x, y) ≥ 0. The generality

of the V (x, y) function obviously allows for nontransitive choices, as V (x, y) > 0

and V (y, z) > 0 do not necessarily imply that V (x, z) > 0. In our Random Choice

1Note that violations of WST should be tested in experiments or datasets at the individ-
ual level, i.e. in settings where the same individual has made a decision multiple times, hence
generating choice frequencies.
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Models (RCMs), x is chosen over y if and only if V (x, y) + εxy > 0, where εxy

is again a pair-specific noise term. Hence, RCMs encompass RUMs while allow-

ing for genuinely nontransitive preferences. We work in the universe of RCMs

and first derive a (possibly-nontransitive) preference revelation result extending

the main result of Alós-Ferrer, Fehr, and Netzer (2021), which we then apply to

the data. Models as regret theory or salience theory essentially postulate specific

functions V (x, y) capturing certain phenomena (e.g., regret or salience), and thus

encompass nontransitive choices. Those models, however, are deterministic, and

hence, by definition, cannot tackle noise. Our RCMs encompass all such mod-

els while providing a framework where noise can be disentangled from underlying

(potentially nontransitive) preferences.

The previous literature is characterized by a back-and-forth between contri-

butions showing empirical violations of WST and related criteria, and responses

arguing that those might be explained by models taking noise into account. Tver-

sky (1969) reported WST violations, but Iverson and Falmagne (1985) reanalyzed

the data and argued that evidence was compatible with transitive preferences plus

noise. Loomes, Starmer, and Sugden (1989, 1991) invoked transitivity violations

as a potential explanation of anomalies in risky choice, but Sopher and Gigliotti

(1993) replicated their experiments and found choices to be captured by a struc-

tural model with transitive preferences and random errors.

Regenwetter, Dana, and Davis-Stober (2010, 2011) argued that violations of

WST might be caused by stochastic preferences (Block and Marschak, 1960), that

is, probability distributions over transitive preferences. They suggested to ana-

lyze possible violations of transitivity through violations of the triangle inequality

instead: p(x, y) + p(y, z) − p(x, z) ≤ 1. This property must be satisfied by any

stochastic preference. Using both WST and the triangle inequality, Butler and

Pogrebna (2018) found evidence for cyclic (hence nontransitive) preferences, but

Birnbaum (2020, 2022) argued that those choice patterns could be explained by

models allowing both stochastic preferences and additional choice errors.

Many other contributions in the literature have exhibited choice patterns pos-

sibly reflecting nontransitive preferences in multiple domains, e.g. Starmer and

Sugden (1998), Starmer (1999), Birnbaum and Schmidt (2008), Lee, Amir, and

Ariely (2009), Schmidt and Stolpe (2011), Davis-Stober et al. (2019), Park et al.

(2019), and Li and Loomes (2022), among others. We refer the reader to Starmer

(2000) and to the recent review by Ranyard et al. (2020) for further details. We

also provide a more extensive literature review in Section 4.
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Our contribution, however, is a major conceptual departure from the previous

literature. Contrary to most of that literature, our approach does not rest on any

specific model, or on conducting a “horse race” to see which of a given set of models

explains data better (a common approach used, e.g., by Ranyard et al., 2020).

Quite on the contrary, we identify transitivity violations which cannot be explained

by any model which assumes transitive preferences, or distributions over them, and

noise, even if noise is pair-specific and cannot be modeled as a standard, additive

random utility model. The class of models discarded by our analysis is far more

general than any class previously considered in the literature. In particular, it does

not assume that preferences are stable, since it encompasses random utility models

which are equivalent to stochastic preferences, i.e. probability distributions over

different preferences. This is important because it has been argued that violations

of transitivity might just be due to decisions being best described by a distribution

over transitive preferences (Regenwetter, Dana, and Davis-Stober, 2011). Further,

RCMs do not assume that noise is an additional term added to utilities, as in

standard random utility models. In particular, it includes models which cannot

be represented in that fashion, because noise terms are pair-specific and violate

the Axiom of Revealed Stochastic Preference McFadden (1974); McFadden and

Richter (1990) and the related Triangle Inequality (which has been proposed as

al alternative to WST). That is, if our method reveals a transitivity violation,

the interpretation is not that a certain nontransitive model “fits the data better.”

Rather, the interpretation is that there exists no model derived from transitive

preferences (stable or not, deterministic or stochastic) and noise (additive or not,

alternative-specific or pair-specific) which can explain the data in any way.

The revelation result we use, as the result of Alós-Ferrer, Fehr, and Netzer

(2021), is based on two robust empirical regularities of choices and response times

arising from psychology and neuroscience. The first regularity is that easier choice

problems are more likely to elicit correct responses than harder problems. This

psychometric effect is perhaps one of the most robust facts in all of psychology

(Cattell, 1893; Laming, 1985; Klein, 2001; Wichmann and Hill, 2001), and extends

to cases where the correct response is subjective, e.g. favorite colors, and is uncov-

ered by the researcher through ratings (Dashiell, 1937). The phenomenon has also

been established for economic decisions, with evidence dating back to Mosteller

and Nogee (1951) and including the recent studies of Alós-Ferrer and Garagnani

(2022a,b). The second regularity is that easier choice problems take less time to

respond to than harder problems. This extremely-robust chronometric effect is

considered a zero-order fact in the cognitive sciences, and there is overwhelming
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evidence for it in a wide variety of domains, starting with classical contributions

as Cattell (1902), Moyer and Landauer (1967), Moyer and Bayer (1976), and De-

haene, Dupoux, and Mehler (1990). The finding extends to preferential choices,

as in Dashiell (1937), and a growing number of contributions have demonstrated

it in economic decisions, including intertemporal decisions (Chabris et al., 2009),

social preferences (Krajbich et al., 2015), and decisions under risk (Moffatt, 2005;

Alós-Ferrer and Garagnani, 2022a,b).

Originally, the psychometric and chronometric effects where documented in dis-

crimination tasks, where a decision is hard when the difference between two stimuli

is small. The fact that error rates and response times are large in this case simply

reflects the difficulty in separating the values of the options (see, e.g., Fudenberg,

Strack, and Strzalecki, 2018). In RUMs, harder choices are those where the utilities

U(x) and U(y) are closer, and hence more difficult to tell apart. The psychometric

effect is an integral part of standard RUMs, which assume that choice probabili-

ties are monotonic in utility differences. The contribution of Alós-Ferrer, Fehr, and

Netzer (2021) was to integrate chronometric effects in RUMs and show how to use

them for preference revelation. Analogously, in RCMs, harder choices are those

where the strength of preference V (x, y) is smaller, and we rely on psychometric

and chronometric effects for our results. Importantly, our approach provides con-

ditions (in terms of choice frequencies and distributions of response times) which,

if fulfilled, reveal the underlying preference within a pair independently of any

assumptions on the behavioral noise. Within the class of RCMs, those revealed

preferences can in turn reveal nontransitive cycles. That is, contrary to WST and

other approaches, we do not look for violations of certain implied conditions (on

choice frequencies only), but rather examine when genuinely nontransitive prefer-

ences are revealed by the choice and response time data. In this sense, an RTV does

not just imply that the data violates transitivity: it actually reveals nontransitive

preferences behind the data.

Our theoretical approach requires datasets where subjects make the same choice

multiple times (as in any experiment focusing on WST violations) and where

response times were explicitly and reliably measured. We obtained two datasets

with these characteristics from Davis-Stober, Brown, and Cavagnaro (2015) and

Kalenscher et al. (2010). It is important to note that none of these datasets was

collected with our approach in mind, and hence they also serve as a demonstration

of the applicability of our techniques. As anticipated above, we find that there

are revealed transitivity violations in the data, hence rejecting the hypothesis

that choices can be represented by transitive preferences plus behavioral noise.
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Naturally, however, not all violations of WST are true violations of transitivity,

and hence our approach provides a better estimate of the extent of nontransitive

preferences, which is necessarily smaller than that derived from WST alone.

We also examine which choice patterns give rise to nontransitivities more often

in both datasets, and hence what might be the mechanisms underlying genuinely

nontransitive preferences. The most frequent nontransitivities appear to involve

chains of small changes in the characteristics of the options, resulting in a series of

binary choices where the evaluations are relatively close in each pair. People seem

to accept series of small tradeoffs in a way that does not scale up. For example,

they repeatedly accept small decreases in monetary payoffs in exchange for small

increases in the probability of a payoff, until a point is reached where they accept

a large decrease in probability in exchange for a large increase in the monetary

payoff, bringing them back to the starting point.

The paper is structured as follows. Section 2 presents the theoretical frame-

work, starting with a brief review of the received deterministic models which allow

for transitivity violations (Section 2.1), continuing with an exposition of why the

models we consider are more general than standard (additive) random utility mod-

els (Section 2.2), and concluding with our generalization of random utility models

to the nontransitive case and the preference revelation result through response

times (Section 2.3). Section 3 presents our empirical analysis of two existing

lottery-choice datasets and applies the techniques to uncover the extent of re-

vealed transitivity violations. Section 4 presents a more detailed discussion of the

previous empirical literature on transitivity violations, and Section 5 concludes.

2 Distinguishing Noise from Nontransitive Pref-

erences

To test whether choices are transitive, one needs to allow for the possibility that

they are not. Following Shafer (1974) and others, we refer to a complete but not

necessarily transitive binary relation on a set X as a nontransitive preference. In

this section we build up the framework in three steps. First (Subsection 2.1), we

briefly review deterministic models of nontransitive choice, encompassing skew-

symmetric bilinear (SSB) utility theory, generalized regret theory, and salience

theory. Second (Subsection 2.2), we review how to incorporate noise into models of

choice. In this context, we provide a generalization of standard, additive, random

utility models, and show that the standard conditions used in the literature to

test for violations of transitivity are insufficient. Our generalization involves, in
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particular, the possibility of noise that is specific to the pair of choice options.

Third (Subsection 2.3), we bring both (potentially nontransitive) preferences and

general models of noise together and proceed to extend the (already generalized)

random utility models to allow both for nontransitivities which are simply due to

noise and those which are due to underlying nontransitive preferences.

2.1 Deterministic Models of Nontransitive Preferences

If transitivity does not hold, choices can not be represented by utility functions. It

is, however, possible to represent nontransitive binary relations on a set X through

real-valued, two-argument functions as follows. Consider a skew-symmetric func-

tion v : X2 7→ R, i.e. v(x, y) = −v(y, x) for all x, y ∈ X. We say that a non-

transitive preference � on X is represented by a function v : X2 7→ R if, for all

x, y, ∈ X, v(x, y) ≥ 0 holds if and only if x � y. For Euclidean spaces, Shafer

(1974) proved that every strictly convex and continuous nontransitive preference

can be represented by a continuous, skew-symmetric function as above. This is a

natural generalization of representation results for transitive preferences, in which

case one can set v(x, y) = u(x) − u(y) for a utility function u. Interestingly, the

function v has been interpreted as a “strength of preference” (see, e.g. Fishburn,

1988, Chapter 3.9 and ff.), with values of v(x, y) close to zero indicating a difficult

decision (the decision maker is close to indifference).

The reason why this representation allows for nontransitivities is that v(x, y) ≥

0 and v(y, z) ≥ 0 together deliver no implication for the sign of v(x, z). For

example, in a set {x, y, z} one might have that v(x, y) = v(y, z) = 1, and hence

x is chosen over y and y over z, while v(x, z) = −1 and hence z is chosen over

x. In contrast, if choices are represented by a utility function u, the inequalities

u(x) − u(y) ≥ 0 and u(y) − u(z) ≥ 0 immediately imply that u(x) − u(z) =

[u(x) − u(y)] + [u(y) − u(z)] ≥ 0.

For multidimensional alternatives, x = (x1, . . . , xn), Tversky (1969) introduced

the additive difference model with the explicit purpose of studying nontransitivities.

This model postulates that x � y if and only if

n
∑

i=1

φi(ui(xi) − ui(yi)) ≥ 0

where ui are real-valued factor utilities, φi are skew-symmetric (φi(−r) = −φi(r)),

increasing and continuous real-valued functions. This expression becomes an ex-

ample of a function v as in Shafer (1974) for the multidimensional case.
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When the alternatives are lotteries, adding the requirement that v is linear in

both arguments results in skew-symmetric bilinear (SSB) representations, which

have been studied by Kreweras (1961) and Fishburn (1982, 1984b, 1986), among

others. Specifically, let L1, L2 be simple lotteries on the set of outcomes X, i.e.

L1(x), L2(x) denote the respective probabilities of outcome x and those are only

positive for finitely many outcomes. A function v defined on outcomes can be

extended bilinearly to simple lotteries by

V SSB(L1, L2) =
∑

x∈X

∑

y∈X

L1(x)L2(y) · v(x, y).

so that L1 is weakly preferred to L2 if and only V SSB(L1, L2) ≥ 0. This generalizes

expected utility, since if v(x, y) = u(x) − u(y) for a utility function u on X, then

V SSB(L1, L2) =
∑

x∈X L1(x)u(x) −
∑

y∈X L2(y)u(y). However, the SSB form does

not require transitivity and indeed allows for preference cycles and violations of

the independence axiom (see Fishburn, 1988 for an axiomatization of SSB non-

transitive preferences). That is, the function V SSB is a particular example of the

approach of Shafer (1974) for a space of lotteries.

Some other prominent theories have incorporated regret and salience in decision

making under risk by capturing these phenomena in a skew-symmetric function

over outcomes and then extending that function to lotteries in a manner similar

to SSB models. These models, however, are formulated in terms of acts (Savage,

1954), that is, mappings from a set of states to outcomes, and hence it is better

to change notation at this point. Let the (finite) set of states be denoted by S,

and let p(s) denote the probability of a state s ∈ S. A lottery Lx is then a vector

of outcomes (xs)s∈S, with the interpretation that outcome xs obtains if state s

occurs.

Loomes and Sugden (1982) introduced regret theory as a particular model al-

lowing for transitivity violations in the risk domain (see Starmer, 2000, for a sum-

mary). Diecidue and Somasundaram (2017) showed that regret theory deviates

from expected utility only by relaxing transitivity. Loomes and Sugden (1987)

later extended this framework to generalized regret theory. This theory considers

monetary consequences, X ⊆ R, and starts out by postulating a real-valued, two-

argument function M , so that if x, y ∈ X, M(x, y) is interpreted as the utility

of choosing x net of the regret associated with missing out on y. Then M(x, y)

becomes the basis for defining the function vR by vR(x, y) = M(x, y) − M(y, x)

which is immediately skew-symmetric and hence a particular case of the approach

of Shafer (1974) for the space of outcomes. Analogously to SSB models, but within
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the formalization of lotteries as acts, a lottery Lx is weakly preferred to a lottery

Ly if and only if V R(Lx, Ly) ≥ 0, where

V R(Lx, Ly) =
∑

s∈S

p(s)vR(xs, ys).

Loomes and Sugden (1987) further impose several assumptions on vR, namely

that vR(x, y) ≥ 0 if and only if x ≥ y (so that, for outcomes, more is better),

that vR(x, z) > vR(y, z) (resp. <, =) if and only if x > y (resp. <, =), and a

“regret aversion” assumption stating that vR(x, z) > vR(x, y) + vR(y, z) whenever

x > y > z, meaning that large post-decision regrets are worse than the sum

of step-wise, smaller regrets. In particular, skew symmetry and these conditions

imply that v(x, y) > 0 if x > y, v(x, y) < 0 if x < y, and v(x, x) = 0, for any

outcomes x, y.

The comparison of regret theory and SSB theory is obscured by the fact that

the former is formulated in terms of lotteries as acts, while the latter is formulated

in terms of lotteries as probability distributions. Loomes and Sugden (1987) show

that, for stochastically independent lotteries (where the set of states can be seen as

a product of lottery-specific sets of states), generalized regret theory is equivalent

to SSB theory. Again, the function V R becomes a particular example of the

approach of Shafer (1974) for a space of lotteries.

Bordalo, Gennaioli, and Shleifer (2012, 2013) introduced salience theory by

postulating a symmetric function σ, i.e. σ(x, y) = σ(y, x) for all x, y ∈ X ⊆ R,

with the interpretation that for a lottery pair (Lx, Ly), σ(xs, ys) is the salience of

the state s. This function is assumed to fulfill a number of properties capturing

the idea of salience. In a “smooth” version of the theory, salience values are

transformed through an increasing, real-valued function f which preserves salience

rankings as derived from σ, yielding2

qs(L
x, Ly) =

f(σ(xs, ys))
∑

r∈S f(σ(xr, yr))
.

The decision maker then attaches a value to lottery Lx which depends on the

alternative lottery Ly,

UST (Lx|Ly) =
∑

s∈S

qs (Lx, Ly) u(xs)

2Bordalo, Gennaioli, and Shleifer (2012) also provide a rank-based version of salience theory
with similar insights. This version is analytically more tractable for specific applications, but
creates discontinuities in valuations (Kontek, 2016).
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where u is strictly increasing with u(0) = 0.

Although (smooth) salience theory appears functionally different from gener-

alized regret theory and SSB models, it is worth observing that there is a relation.

Under salience theory, a lottery Lx is weakly preferred to a lottery Ly if and only

if V ST (Lx, Ly) ≥ 0, where

V ST (Lx, Ly) =
∑

s∈S

p(s)f(σ(xs, ys)) [u(xs) − u(ys)] .

This already shows that regret theory is a further particular case of the approach

of Shafer (1974) for a space of lotteries. Herweg and Müller (2021) further ob-

serve that the two-argument function on outcomes wST defined by wST (x, y) =

f(σ(x, y)) [u(x) − u(y)] is skew symmetric, and hence salience theory can be writ-

ten in the same terms as generalized regret theory. Herweg and Müller (2021) also

show that, assuming continuity of u and f , the assumptions of (smooth) salience

theory imply those of generalized regret theory, that is, one can view salience the-

ory as a particular case of the latter, and hence (for stochastically independent

lotteries) as a particular case of SSB theory. Interestingly, the original regret the-

ory of Loomes and Sugden (1982), which was a more specific model, turns out to

be a particular case of salience theory if an additional, mild condition is imposed

(Herweg and Müller, 2021, Theorem 2).3

All theories discussed above obviously allow for nontransitivities in lottery

choice, since they can be described as special cases of the fundamental representa-

tion of Shafer (1974).4 That is, ultimately they provide a (structural, parametric)

functional form for a function V (·, ·) defined on a specific space, while the general

approach of Shafer (1974) allows for any skew-symmetric function.

2.2 Adding Noise: (Generalized) Random Utility Models

In an additive random utility model (McFadden, 1974, 2001, 2005), an agent is

assumed to have an underlying utility function u over a feasible set, but to be

3It can be shown that generalized regret theory (and hence smooth salience theory) fulfill
a weaker version of transitivity, called dominance transitivity by Diecidue and Somasundaram
(2017): if Lx strictly dominates Ly (yields better outcomes for all states, and strictly better for
at least some states) and the latter is preferred to Lz, then Lx must be strictly preferred to Lz

(and analogously if Lx is preferred to Ly and the latter strictly dominates Lz). This rather weak
condition seems to be the only systematic constraint on the kind of transitivity violations that
these models can generate.

4Other models that allow for transitivity violations include lexicographic semiorders (Haus-
ner, 1954; Fishburn, 1971), similarity theory (Fishburn, 1991; Leland, 1994, 1998), the context-
dependent model of the gambling effect (Bleichrodt and Schmidt, 2002), and the stochastic
difference model of González-Vallejo (2002).
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affected by random utility shocks. Thus, given a choice between two alternatives

x and y, realized utilities are u(x) + εx and u(y) + εy, respectively, where εx,

εy are mean-zero random variables (not necessarily independent). Thus, a RUM

generates choice probabilities, with the probability of x being chosen when y is

also available given by

p(x, y) = Prob(u(x) + εx > u(y) + εy) = Prob(u(x) − u(y) + εx − εy > 0).

where tie-breaking conventions are irrelevant for continuously-distributed errors.

Under specific assumptions on the distributions of the error terms, one obtains

particular models, as the celebrated logit choice (Luce, 1959) or the classical pro-

bit choice (Thurstone, 1927). This general setting has become one of the dominant

approaches in economics to model the fact that choice is empirically (and over-

whelmingly) observed to be stochastic.

If the error term εxy = εx − εy is assumed to be symmetrically distributed

around zero, a preference for x over y is revealed if and only if p(x, y) ≥ 1/2. Since

noise is not directly observable, the assumption of symmetric noise is of course

untestable and might be unwarranted. If one is willing to accept it, however, a

violation of transitivity in this framework then consists of three (or more) alter-

natives x, y, z such that p(x, y) ≥ 1/2, p(y, z) ≥ 1/2, and p(z, x) > 1/2. Hence,

a large part of the literature tests for violations of Weak Stochastic Transitivity,

which is defined as the condition that if p(x, y) ≥ 1/2 and p(y, z) ≥ 1/2, then

p(x, z) ≥ 1/2.

It is important to note, however, that WST fails to properly capture violations

of transitivity even in the restricted domain of additive random utility models. It

is well-known (Block and Marschak, 1960) that additive random utility models as

just described are equivalent to stochastic preferences, i.e. probability distributions

over transitive preferences. Regenwetter, Dana, and Davis-Stober (2010, 2011) and

others have argued that violations of transitivity might be due to preferences being

unstable in the sense that choices are best described by a probability distribution

over transitive preferences, i.e. a stochastic preference. By Block and Marschak

(1960) stochastic preferences can also be represented by additive random utility

models, as long as error terms are not required to be independent. In particular,

such a model (which is included in the class of models we consider) might pro-

duce violations of WST even though all involved preferences are transitive, as the

following (standard) example shows.
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Example 1. There are three alternatives, x, y, and z. A decision maker is de-

scribed by a distribution over three alternative, transitive preferences: x ≻ y ≻ z,

y ≻ z ≻ x, and z ≻ x ≻ y, each with probability 1/3. That is, every time

the decision maker makes a choice, one of the three preferences is realized (with

equal probabilities) and the decision maker chooses following that preference. In

this sense, the decision maker always has a transitive preference, which however

changes from decision to decision.

It is immediate to see that p(x, y) = p(y, z) = p(z, x) = 2/3, and hence WST is

violated. Thus WST might be violated even though preferences are described by

a standard additive random utility model with transitive preferences. Obviously,

however, the corresponding noise terms cannot be symmetric.

The problem of whether a system of choice probabilities can be represented by

a stochastic preference (hence an additive random utility model) or not has a well-

known solution, with characterizations due to Block and Marschak (1960), Fal-

magne (1978), McFadden and Richter (1990), and Barberá and Pattanaik (1986).

One particularly useful characterization is the Axiom of Revealed Stochastic Pref-

erence (ARSP; McFadden and Richter, 1990; McFadden, 2005), which states that,

for any finite collection of choices (x1, y1), . . . (xn, yn), one must have that

n
∑

i=1

p(xi, yi) ≤ max
≻∈P

n
∑

i=1

p≻(xi, yi)

where P is the set of all possible strict preferences on the (finite) choice set, and,

for any ≻∈ P, p≻(x, y) = 1 if x ≻ y and p≻(x, y) = 0 if y ≻ x. That is, the

sum of choice probabilities along any sequence of binary choices must be weakly

smaller than the largest sum or (degenerate) probabilities one could obtain for a

deterministic (transitive) preference. A collection of choice probabilities can be

generated by a stochastic preference (or an additive RUM) if and only if it fulfills

the ARSP.

Regenwetter, Dana, and Davis-Stober (2010, 2011) and others have argued in

favor of criteria other than WST to test for stochastic transitivity. In particular,

they have proposed to rely on the Triangle Inequality (TI), which (although this

fact seems to be largely unmentioned in the literature) is a direct implication of

the ARSP (but does not imply it). TI is the condition that, for any three distinct

alternatives x, y, z,

1 ≤ p(x, y) + p(y, z) + p(z, x) ≤ 2.

The right-hand inequality is immediately implied by the ARSP applied to the

collection of choices (x, y), (y, z), (z, x). The left-hand inequality is equivalent to

13



the statement that p(x, z) ≤ p(x, y) + p(y, z) (hence the name “triangle inequal-

ity”), which in turn is equivalent to p(x, z) + p(z, y) + p(y, x) ≤ 2, which is again

just the ARSP applied to the collection of choices (x, z), (z, y), (y, x). Hence,

the proposal to use TI is essentially equivalent to testing whether choices can be

explained by an additive RUM (although not completely, since the ARSP has im-

plications beyond the TI). The following example (inspired by Birnbaum, 2022)

shows that this is also insufficient.

Example 2. There are three alternatives, x, y, and z. A decision maker has a

unique, transitive preference: x ≻ y ≻ z. However, the decision maker makes

mistakes. Specifically, the decision maker makes a mistake with a 5% probability

if confronted with choices (x, y) or (y, z), and with a 25% probability if confronted

with the choice (x, z). It follows that p(x, y) = p(y, z) = 0.95 and p(z, x) = 0.25.

this implies that p(x, y) + p(y, z) + p(z, x) = 2.15 > 2, and thus the TI (and hence

the ARSP) is violated.

This example serves two purposes. First, it exhibits a decision maker who

has transitive preferences affected by behavioral noise, but whose choices violate

TI. Hence violations of TI are not sufficient to identify genuinely nontransitive

preferences in models with noise. Second, since the ARSP is violated, behavior

in the above example cannot be represented as an additive RUM. However, the

behavior can be represented as arising from a RUM in the sense of Alós-Ferrer,

Fehr, and Netzer (2021), which assumes transitive preferences but allows for pair-

specific noise (see below).

Alós-Ferrer, Fehr, and Netzer (2021) introduced a more general class of RUM

models where error terms directly apply to the utility differences, i.e. the realized

utility difference given a choice {x, y} is u(x) −u(y) + εx,y for a mean-zero random

variable εx,y and hence

p(x, y) = Prob(u(x) − u(y) + εx,y > 0).

For instance, Example 2 above can be represented by u(x) = 3, u(y) = 2,

u(z) = 1 and random variables εxy, εyz, εxz as follows. Both εxy and εyz take the

value 2/19 with probability 0.95, and the value −2 with probability 0.05 (hence

E(εxy) = E(εyz) = 0). The variable εxz takes the value 1 with probability 0.75, and

the value −3 with probability 0.25 (so that E(εxz) = 0). Example 1 can be easily

represented by an additive RUM with correlated error terms, but it is also easily

represented by a RUM in the sense of Alós-Ferrer, Fehr, and Netzer (2021) with

u(x) = 3, u(y) = 2, u(z) = 1 and zero-mean, independent error terms as follows.
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Both εxy and εyz take the value 1 with probability 2/3, and the value −2 with

probability 1/3. The variable εxz takes the value 6 with probability 1/3, and the

value −3 with probability 2/3. This illustrates that the class of transitive models

that we allow for encompasses arbitrary distributions over transitive preferences

plus arbitrary error terms, and is not limited to the classical additive RUMS.

Our results will allow us to identify empirical patterns that cannot be generated

by any transitive model in this class. Those empirical patterns will hence, in

particular, exclude that the data is generated by arbitrary RUMs, which also

excludes stochastic (unstable) preferences (Regenwetter, Dana, and Davis-Stober,

2010).

Remark 1. A “trembling-hand model” (e.g. Loomes, Moffatt, and Sugden, 2002)

assumes that a decision maker is endowed with a fixed (transitive) strict preference

but that a pair-specific error might always occur. In particular, if x ≻ y, there is

a trembling probability exy ∈ (0, 1) that y is chosen. Example 2 is an example of

a trembling-hand model.

We claim that any trembling-hand model can be represented as a RUM in the

sense of Alós-Ferrer, Fehr, and Netzer (2021). To see this, consider a trembling-

hand model where the preference is represented by a utility function u and and the

error probabilities exy ∈ (0, 1) are as above. For each pair x, y with x ≻ y (hence

(u(x) > u(y)), define the zero-mean random variable εxy which takes the value

u(y) − u(x) − 1 with probability exy, and the value (exy/(1 − exy))(u(x) − u(y) + 1)

with probability 1 − exy. The utility function u together with the noise terms εxy

define a RUM in the sense of Alós-Ferrer, Fehr, and Netzer (2021).

In “true and error” models (see, e.g., Birnbaum and Schmidt, 2008; Birnbaum,

2022), a decision maker is described by a distribution over preferences (transitive

or not) plus pair-specific (but preference-independent) error terms. However, the

selected preference is assumed to stay fixed along a given experimental session,

and change only across sessions. Hence, for a given session, a true and error model

is a trembling-hand model as above, and in particular is encompassed in the class

of models we consider.

Remark 2. Random utility models as in Alós-Ferrer, Fehr, and Netzer (2021) also

encompass the class of random parameter models (e.g., Loomes and Sugden, 1998;

Apestegúıa and Ballester, 2018) as a special case. In those models, a one-parameter

functional form for the utility u is fixed. For each choice pair (x, y), a value of the

parameter is randomly drawn from a distribution and used to evaluate the choice.

This cannot be captured as a standard, additive random utility model, but defines

a model in the class considered by Alós-Ferrer, Fehr, and Netzer (2021). This is
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because noise in the parameter can be equivalently written as a pair-specific noise

term εxy, which will generally be non-symmetric.

2.3 Random Nontransitive Models and Response Times

We now show how the techniques developed in Alós-Ferrer, Fehr, and Netzer (2021)

can be used to identify genuinely nontransitive preferences. That work provided

sufficient conditions on the distributions of response times conditional on each

possible choice (x or y for a given pair {x, y}) which ensure the revelation of a

preference for, say, x over y without making any assumptions about the utility

function and the distribution of error terms. More precisely, if the conditions are

satisfied, the formal results ensure that u(x) > u(y) for any underlying u and any

distribution of noise which fits the data (in terms of choices and response times)

The importance of these results relies on the fact that they guarantee that an

option is preferred to another for any utility function and any distribution of the

error term that the analyst might consider, and hence the results are completely

non-parametric and independent of functional forms. The message is that the

properties of the empirical distribution of response times allow to recover the

underlying preferences in random utility models without imposing any substantive

assumptions on the distribution of random terms.

In this subsection, we extend the main result of Alós-Ferrer, Fehr, and Netzer

(2021) to allow for nontransitivities. We consider abstract options, which could

e.g. be themselves lotteries (this will be the case in our empirical analyses).

To allow for nontransitive preferences, we go one step forward and consider

any skew-symmetric function v : X2 7→ R (not necessarily arising from a utility

function). That is, we consider models where noise is captured by mean-zero

random variables εx,y and choice probabilities are given by

p(x, y) = Prob(v(x, y) + εx,y > 0).

We remark at this point that our approach is agnostic with respect to whether

decisions among lotteries are best represented by expected utility theory, cumula-

tive prospect theory, or any other model generating preferences among lotteries.

We merely test the class of models generating transitive choices, where the function

above can be written as v(x, y) = u(x) −u(y), against the class of models allowing

for nontransitivity lottery choices, where the function v(x, y) cannot be written as

a difference of utilities independently of the considered alternatives. The former

class includes expected utility theory, rank-dependent utility theory, cumulative

16



prospect theory, and others, while the latter includes generalized regret theory,

salience theory, and SSB utility theory.5

To derive and describe our result, we need to define what we understand by a

dataset. Given the set of alternatives X, denote by C = {(x, y) | x, y ∈ X, x 6= y}

the set of all binary choice problems, so (x, y) and (y, x) both represent the problem

of choice between x and y. Let D ⊆ C be the set of choice problems on which we

have data in the form of direct choices, assumed to be non-empty and symmetric,

that is, (x, y) ∈ D implies (y, x) ∈ D. A dataset (including response times) is

modeled as follows (Alós-Ferrer, Fehr, and Netzer, 2021).

Definition 1. A stochastic choice function with response times (SCF-RT) is a pair

of functions (p, f) where

(i) p assigns to each (x, y) ∈ D a frequency p(x, y) > 0, with the property that

p(x, y) + p(y, x) = 1, and

(ii) f assigns to each (x, y) ∈ D a strictly positive density function f(x, y) on

R+.

In an SCF-RT, p(x, y) is interpreted as the frequency with which a decision

maker chose x when offered the binary choice between x and y. The assumption

that p(x, y) > 0 for all (x, y) ∈ D implies that choice is noisy, that is, every

alternative is chosen at least a small fraction of the time. The density f(x, y)

describes the distribution of response times conditional on the instances where x

was chosen in the binary choice between x and y. The corresponding cumulative

distribution function is denoted by F (x, y). The following definition extends the

concepts in Alós-Ferrer, Fehr, and Netzer (2021).

Definition 2. A random choice model with a chronometric function (RCM-CF)

is a triple (v, ṽ, r) where v : X2 → R is a skew-symmetric function and ṽ =

(ṽ(x, y))(x,y)∈C is a collection of real-valued random variables, with each ṽ(x, y)

having a density function g(x, y) on R, fulfilling the following properties:

(RCM.1) E[ṽ(x, y)] = v(x, y),

(RCM.2) ṽ(x, y) = −ṽ(y, x), and

(RCM.3) the support of ṽ(x, y) is connected.

5We remind the reader that our functions u and v are defined here on an abstract space. For
a space of lotteries, u might be expected utility and v might be any of the functions V SSB, V R,
V S described in Section 2.1.
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Further, r : R++ → R+ is a continuous function that is strictly decreasing in v

whenever r(v) > 0, with limv→0 r(v) = ∞ and limv→∞ r(v) = 0.

A RUM-CF is a particular case of RCM-CF where the function v is derived from

a utility function, v(x, y) = u(x) − u(y), and hence transitivity is guaranteed. The

random variables ṽ(x, y) and their densities g(x, y) capture noisy choice. Condition

(RCM.1) requires that noise is unbiased (equivalent to assuming mean zero for an

additive term εxy = ṽ(x, y) − v(x, y)). Condition (RCM.2) reflects that the choice

between x and y is the same as the choice between y and x, and condition (RCM.3)

is a regularity condition requiring connected support, i.e. without gaps. Last, r

represents the chronometric function, which maps realized values of v into response

times r(|v|). Specifically, easier choices (where the value ṽ(x, y) is larger) are faster.

This is in keeping with the interpretation that the function v captures a strength

of preference.

Given an RCM-CF (v, ṽ, r) and a pair (x, y) ∈ C, the random variable describ-

ing the response times predicted by the model conditional on x being chosen over

y is given by

t̃(x, y) = r(|ṽ(x, y)|),

conditional on ṽ(x, y) > 0.

The result we seek will be in terms of preference revelation for all RCM-CFs

which rationalize (explain) the data. The following definition pins down the formal

meaning of the latter.

Definition 3. An RCM-CF (v, ṽ, r) rationalizes an SCF-RT (p, f) if

(i) p(x, y) = Prob[ṽ(x, y) > 0] holds for all (x, y) ∈ D, and

(ii) F (x, y)(t) = Prob[t̃(x, y) ≤ t | ṽ(x, y) > 0] holds for all t > 0 and all

(x, y) ∈ D.

In other words, an RCM-CF (the model) rationalizes an SCF-RT (the data)

if it reproduces both the choice frequencies and the conditional response time

distributions in the latter. Obviously, fixing the set D, every RCM-CF predicts

an SCF-RT through the equations given in (i) and (ii) above. Thus an alternative

definition is that an RCM-CF rationalizes an SCF-RT if the predicted SCF-RT

coincides with the actual SCF-RT. We say that an SCF-RT is rationalizable if

there exists an RCM-CF that rationalizes it. Note that an SCF-RT might be

rationalizable by an RCM-CF even though it is not rationalizable by a RUM-CF.
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The last definition captures preference revelation in a potentially nontransitive

framework.

Definition 4. A rationalizable SCF-RT reveals that x is preferred to y if all RCM-

CFs that rationalize it satisfy v(x, y) ≥ 0. It reveals that x is strictly preferred to

y if all RCM-CFs that rationalize it satisfy v(x, y) > 0.

The results in Alós-Ferrer, Fehr, and Netzer (2021) make use of the following

technical concept. Given two cumulative distribution functions H1 and H2 on R+

and a constant q ≥ 1, we say that H1 q-first-order stochastically dominates H2

(also written H1 q-FSD H2) if

H1(t) ≤ q · H2(t) for all t ≥ 0.

If the inequality is strict for some t, then H1 strictly q-first-order stochastically

dominates H2 (written H1 q-SFSD H2). For q = 1, these concepts coincide with

the standard notions of first-order stochastic dominance, but they are weaker when

q > 1. Clearly, q-FSD implies q′-FSD whenever q ≤ q′.

The following Theorem generalizes the main result of Alós-Ferrer, Fehr, and

Netzer (2021) for the case of nontransitive preferences.

Theorem 1. Consider random choice models. A rationalizable SCF-RT (p, f)

reveals that x is preferred to y if F (y, x) q-FSD F (x, y), and that x is strictly

preferred to y if F (y, x) q-SFSD F (x, y), for q = p(x, y)/p(y, x).

A direct, self-contained proof is in Appendix A. An alternative proof can be

adapted from the proof of Theorem 1 in Alós-Ferrer, Fehr, and Netzer (2021)

replacing u(x) − u(y) with v(x, y).

Remark 3. Note that the condition that F (y, x) q-FSD F (x, y) implies that q ≥ 1

(e.g., by taking limits as t → ∞) even if this were not stated as part of the

definition. That is, if Theorem 1 reveals a (nontransitive) preference for x over y,

if follows that p(x, y) ≥ 1/2, i.e. preferences cannot be revealed “against” choice

frequencies, but choice frequencies do not imply preference revelation. This is

important because most evidence for nontransitivities has been evaluated on the

basis of Weak Stochastic Transitivity, which is stated in terms of choice frequencies.

Suppose that a dataset seems to point at nontransitive behavior, e.g. due to a

violation of Weak Stochastic Transitivity. That is, the data identify a cycle of, say,

three alternatives x, y, z such that p(x, y) ≥ 1/2, p(y, z) ≥ 1/2, and p(z, x) > 1/2.

While a researcher might take this as evidence of a transitivity violation, another
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researcher might argue that those population frequencies have arisen due to noise

(as in a random utility model) even though underlying preferences are transitive.

Until now, there was no way out of this debate, as there was no tool capable of

determining whether a violation of Weak Stochastic Transitivity was due to noise

or not.

Theorem 1 provides the missing tool. Suppose three alternatives x, y, z build a

violation of Weak Stochastic Transitivity for a given decision maker, as described

above. If the dataset includes response times, one can apply the “Time Will Tell”

(TWT) method derived from Theorem 1 to each of the pairs (x, y), (y, z), and

(x, z). In view of Remark 3, only two outcomes are possible. In the first case,

preferences are revealed for all three pairs, which necessarily reveals a nontran-

sitive preference cycle (except in the knife-edge case of full indifference). In this

case, Theorem 1 shows that any model of choice explaining the observed data needs

to entail a true nontransitive cycle, independently of the model of noise assumed

(and, in particular, whether noise is symmetric or not). That is, in this case, a

truly nontransitive cycle is revealed, which cannot be due to noise. In the second

case preferences fail to be revealed for at least one of the pairs. In this case, the

researcher is not entitled to conclude that the observed violation of Weak Stochas-

tic Transitivity is actually due to a nontransitivity in underlying preferences; in

other words, the observed violation might well be due to noise.

3 Empirical Evidence for Nontransitivity

3.1 Description of the Datasets

In this section we apply Theorem 1 to two existing datasets, both of which were

specifically collected to study transitivity violations. The selected datasets, from

Davis-Stober, Brown, and Cavagnaro (2015) (DSBC) and Kalenscher et al. (2010)

(KTHDP), are ideal for our purposes because they include response times and

every participant repeated every choice a reasonable number of times.

In the dataset of DSBC, N = 60 subjects made binary choices among different

lotteries in a 2 × 2 within-subject design. Specifically, the experiment varied the

display format of the lotteries (pies vs. bars) and whether participants faced a

time constraint when making their choices or not (4 seconds vs. no time limit).

The choice pairs were drawn from two sets of five lotteries each, with one lottery

common to the two sets. All possible combinations of the lotteries within each set

were implemented, giving rise to 20 distinct choice pairs (see Figure 1, left). Each

of these pairs was repeated 12 times in each of the 4 possible conditions, for a total
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Figure 1: List of lotteries and implemented pairwise comparisons in Davis-Stober,
Brown, and Cavagnaro (2015) (left) and Kalenscher et al. (2010) (right).

of 12 × 4 × 20 = 960 choices per participant. Each participant took part in two

sessions, with two (randomly allocated) combinations of time pressure and display

format manipulations in each of them. Choices were incentivized (one decision

from each condition was randomly selected and paid, in addition to a show-up

fee).

In the dataset of KTHDP, N = 30 subjects made binary choices among five

different lotteries.6 All combinations of the lotteries where implemented (see Fig-

ure 1, right). Each of the 10 resulting choice pairs was repeated 20 times, for a

total of 200 trials per participant. Participants needed to decide within 4 seconds,

with missed time limits resulting in a missed trial. Each participant took part in a

single, individual-level session while being scanned in an fMRI machine. Choices

were incentivized (with dummy dollars translated into Euro with a conversion rate

of 100:1), with one randomly-selected decision paid in addition to a show-up fee.

In addition to the presence of repetitions, the measurement of response times,

and the fact that they were collected to study transitivity violations, the two

datasets are also interesting for other reasons. First, all lotteries involve only

one non-zero outcome and hence can be presented with only two variables (a

single outcome and its probability). This makes alternatives easy to compare for

participants. Second, all magnitudes in each of the experiments are comparable

(without extreme differences), hence mitigating possible concerns regarding range

or outlier effects. Third, none of the lotteries involves probabilities close to zero

or one, which are known to generate their own regularities.

3.2 Revealed Transitivity Violations

We now investigate transitivity violations in the two datasets. A Revealed Tran-

sitivity Violation (RTV) exists in the data whenever application of Theorem 1

6Further 240 filler lotteries were used, but they all were paired in a way which involved
dominated choices, and hence are not interesting for our purposes.
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reveals a preference cycle with x1 � x2 � . . . � xn and xn ≻ x1. An RTV reveals

a nontransitivity which cannot be explained by noise, and thus disentangles noise

from genuine transitivity violations. Since, within the universe of RCMs, prefer-

ences revealed by our method are independent of any assumptions (i) about noise

and (ii) about functional forms regarding v(x, y), we conclude that transitivity vi-

olations identified by our method cannot be due to any form of noise or functional

form assumption regarding v.

If subjects had transitive preferences, empirically-observed violations of the

conditions previously used in the literature, e.g. Weak Stochastic Transitivity

would be due to noise. Then, once we identify the set of cycles of alternatives

for which choices reveal preferences, the subset of RTVs should be empty. On the

other hand, if transitivity violations arise from a genuinely nontransitive prefer-

ence, then the subset of cycles of alternatives where all preferences are revealed

should still contain violations of transitivity, i.e. RTVs.

We start by applying our method to reveal preferences. That is, for every cycle

of alternatives

(x1, x2, . . . , xn, xn+1 = x1)

and every pair (xi, xi+1) of subsequent alternatives along the cycle, we compute

the choice proportions and the response time densities and check whether the

condition in Theorem 1 holds.7 For DSBC, the average percentage of choices

at the subject level for which the method reveals preferences is 56.67% (median

57.22%, SD= 6.15, min 44.66%, max 68.31%), while for KTHDP is 77.00% (median

75.00%, SD=15.57, min 40.00%, max 100.00%). Thus, in our datasets, the method

reveals preferences often enough for an analysis of revealed nontransitivities to be

conducted.8

7To reveal preferences using the TWT method, we need to estimate the density of the dis-
tribution of response times. As in Alós-Ferrer, Fehr, and Netzer (2021), the kernel density
estimates were performed in Stata using the akdensity function, which delivers CDFs as output.
We estimate the distribution of log-transformed response times to avoid boundary problems.
The estimates use an Epanechnikov kernel with optimally chosen non-adaptive bandwidth. If an
option is chosen only once (and hence only one response time is available) an optimal bandwidth
cannot be determined endogenously, so we set it to 0.1, yielding a distribution function close to
a step function at the observed response time.

8For DSBC participants, we find no differences in the proportion of revealed preferences
depending on whether subjects were under time pressure or not (56.13% vs. 57.16%; WRS,
N = 60, z = −0.942, p = 0.3505). This is important, as it suggests that even though the
method relies on response times, its capacity to reveal preferences is not affected by (reasonable)
time limits, and hence it is robust with respect to such manipulations. In Appendix B we
take advantage of the manipulations in DSBC (time pressure and graphical formats) to further
investigate the robustness of the results.
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Say that a cycle of alternatives (x1, x2, . . . , xn, xn+1 = x1) is a revealed cycle if

all preferences along the cycle are revealed, i.e. for every pair (xi, xi+1) of subse-

quent alternatives along the cycle, i = 1, . . . , n, the method reveals either xi � xi+1

or xi+1 � xi (or the corresponding strict preferences). For example, a cycle of al-

ternatives (x1, x2, x3, x1) could be a revealed cycle if the method revealed x1 � x2,

x2 � x3 and x1 � x3 (which is compatible with transitivity), but it would also

be a revealed cycle if the method revealed x1 � x2, x2 � x3 and x3 ≻ x1 (which

violates transitivity and hence is an RTV).

The proportion of revealed cycles is obviously smaller than the proportion of

choices for which preferences are revealed, since all preferences along a cycle of

alternatives must be revealed for the cycle to be revealed. For DSBC, 20.82%

of cycles of alternatives are revealed (median 22.08%, SD=7.61, min 0.00%, max

32.08%), and the number is 54.25% (median 60.00%, SD=25.00, min 0.00%, max

100.00%) for KTHDP.

For each individual in each of the two datasets, we identified the set of revealed

cycles of alternatives and then checked for which of those the revealed preferences

were nontransitive. We found sizeable sets of Revealed Transitivity Violations.

The average individual proportion of RTVs, that is, the proportion of all revealed

cycles of alternatives which are RTVs, is 19.24% (SD=8.48) in DSBC and 13.83%

(SD=15.41) in KTHDP. Figure 2 plots the distribution of subject-level proportions

of RTV over all revealed cycles of alternatives for both datasets, revealing consid-

erable heterogeneity. For DSBC, the individual proportion of RTVs ranges from

2.25% to 40.00%, with a median of 19.69%. For KTHDP, the individual proportion

of RTVs ranges from 0.00% to 50.00%, with a median of 9.09%. This also implies

that Revealed Transitivity Violations are pervasive in the two datasets, since fifty

percent of individuals exhibit 19.69% (9.09%) or more RTVs in the DSBC data

(KTHDP data).

Our results show that, when cycles of alternatives are revealed, genuinely non-

transitive preferences exist in a substantial number of cases. For those cycles of

alternatives for which not all preferences along the cycle are revealed, we cannot

unambiguously determine whether preferences are nontransitive. However, there

appears to be little reason to believe that the share of genuine nontransitivities

should be different for those cycles of alternatives for which not all preferences

are revealed. As an indication of this, in the next subsection we will show that

the percentage of RTVs over all revealed cycles of alternatives is not significantly

different from the percentage of WST violations among all cycles of alternatives.

In any case, the size of the set of RTVs we identify is a lower bound on genuine

23



0
.2

.4
.6

R
e

v
e

a
le

d
 T

ra
n

s
it
iv

it
y
 V

io
la

ti
o

n
s

DSBC KTHDP
 

 

Figure 2: Distribution of the individual proportions of RTVs over all cycles of
alternatives where all preferences are revealed. Violin plots show the median,
the interquartile range and the 95% confidence intervals as well as rotated kernel
density plots on each side. Fifty percent of individuals exhibit 19.69% (9.09%) or
more Revealed Transitivity Violations in the DSBC data (KTHDP data).

transitivity violations. The important realization is that this lower bound is not

zero, that is, genuinely nontransitive preferences are present in both datasets.

In summary, our approach identifies transitivity violations which cannot be

explained by noise (at least within the framework of RCMs), and hence the set of

violations we identify stand on conceptually solid ground as a demonstration that

nontransitivities in the data do occur.

3.3 Comparison Between RTVs and WST Violations

Up to now, the empirical literature has predominantly looked at violations of

Weak Stochastic Transitivity (WST) to study transitivity violations. This prop-

erty states that for all x1, x2, x3 such that p(x1, x2) ≥ 1/2 and p(x2, x3) ≥ 1/2, it

must follow that p(x1, x3) ≥ 1/2. Other concepts of transitivity in a stochastic

setting exist, as e.g. strong stochastic transitivity (where the implication is that

p(x1, x3) ≥ max{p(x1, x2), p(x2, x3)}), moderate stochastic transitivity (which re-

places the maximum with the minimum in the previous implication), or the triangle

inequality (recall Section 2). See Fishburn (1998) for an overview. However, WST

remains a natural choice as a benchmark given our theoretical framework, and we

will use it for ease of comparison to the literature.
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Figure 3: Distributions of the individual proportions of Weak Stochastic Transitiv-
ity violations, computed over all cycles of alternatives in the datasets. Violin plots
show the median, the interquartile range and the 95% confidence intervals as well
as rotated kernel density plots on each side. Fifty percent of individuals exhibit
20.61% (15.69%) or more WST violations in the DSBC data (KTHDP data).

Figure 3 displays violin plots for the subject-level proportion of WST violations

computed over all cycles of alternatives, in both datasets. For DSBC, we observe

that, on average across individuals, 20.77% of all cycles of alternatives in the

dataset result in WST violations (median 20.61%, SD=5.28, min 9.04%, max

34.57%), while in KTHDP the average is 15.42% (median 15.69%, SD=13.93, min

0.00%, max 49.02%). These proportions are roughly representative of results in

the literature, and indicate a sizeable percentage of transitivity violations if WST

is used as a criterion.

The concept of RTV is more stringent than violations of WST. If a nontransitive

preference cycle x1 � x2 � x3 . . . ≻ x1 is revealed by an application of Theorem 1,

it follows from Remark 3 that this cycle also entails a WST violation. Hence, the

concepts are naturally nested, that is, every RTV is necessarily a WST violation.

In principle, however, some WST violations might not be RTVs. We are hence

interested in the proportion of empirical WST violations which are RTVs, and for

which the researcher is thus actually justified to infer the existence of genuinely

nontransitive preferences, i.e., for which the nontransitivity cannot be explained

by any model of noise.

It turns out that, in practice, every WST violation for which all preferences

along the cycle of alternatives are revealed is actually an RTV. The argument is as

follows. Fix a cycle of alternatives, (x1, x2, . . . , xn, xn+1 = x1), that violates WST.
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Apply Theorem 1 to the data for every binary choice along the cycle, {xi, xi+1},

i = 1, . . . , n. If all preferences along the cycle of alternatives are (strictly) revealed,

again by Remark 3 the cycle must in practice be an RTV. For, if a preference

between x and y is revealed and p(x, y) > 1/2, only a preference of x over y can

be revealed.9

In contrast, if any of the preferences along a cycle of alternatives is not revealed

(neither xi � xi+1 nor xi+1 � xi), then no conclusion can be drawn as to whether

the cycle of alternatives entails a transitivity violation or not. Even if the cycle

shows a WST violation, the researcher is not entitled to conclude that a true

transitivity violation exists, as the choice proportions might be due to noise.

To compare revealed nontransitivities according to Theorem 1 with violations

of WST, we first compute the proportion of all WST violations that are actually

RTVs. By the comment above, those coincide with the WST violations where the

cycle of alternatives is revealed. We obtain that, on average across subjects, 19.24%

of all WST violations are actually RTVs for DSBC (median 17.71%, SD=9.56,

min 4.35%, max 43.42%). The average is 39.58% for KTHDP (median 29.41%,

SD=32.60, min 0.00%, max 100.00%). This means that for 19.24% of all WST

violations for DSBC, and 39.58% for KTHDP, application of Theorem 1 reveals

transitivity violations that uncover genuinely nontransitive preferences and that

cannot be due to noise. For the remaining (non-RTV) observed WST violations,

it cannot be discarded that they may be due to some sort of underlying noise,

but it also cannot be discarded that they may be due to genuinely nontransitive

preferences.

We would also like to quantify the size of the set of transitivity violations at

the individual level, and compare it to previous measurements using WST. Since

the number of RTVs for a given subject is necessarily smaller than the individual

number of WST violations (Remark 3), a direct comparison would just mechani-

cally show that there are less RTVs than WST violations. Thus, we compare the

proportions relative to the relevant sets in each case. That is, we compare the

proportion of RTVs in relation to cycles of alternatives with revealed preferences

only (as discussed in Section 3.2 and illustrated in Figure 2) with the proportion

of WST violations in relation to all cycles of alternatives, revealed or not (as illus-

9In principle, it is possible that p(x, y) > 1/2 but the TWT method only reveals a weak
preference, which would make it possible to have a WST violation which cannot be concluded
to be an RTV (instead of an indifference cycle). It is also possible that a WST violation involves
p(x, y) = 1/2 and the TWT method reveals a strict preference either way, hence allowing for
WST violations where all preferences are (even strictly) revealed but a nontransitive cycle does
not arise. In practice, such knife-edge cases are empirically rare and they never occurred in our
data.
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Figure 4: Distribution of the proportion of subjects displaying RTVs (on the left;
relative to the set of subjects for which preferences are revealed in the correspond-
ing cycle of alternatives) and WST violations (on the right; relative to all subjects)
per each cycle of alternatives.

trated in Figure 3). These proportions are not mechanically related to each other,

and hence this procedure allows a fair comparison of the magnitudes of transitivity

violations as suggested by RTV and WST.

If violations of WST would mainly arise from choices which are not revealed, we

should see a sharp decrease in the proportion of transitivity violations according

to RTV when computed in this way (since non-revealed cycles of alternatives are

excluded), when compared to WST violations. On the contrary, if violations of

WST are orthogonal to whether preferences are revealed by Theorem 1 or not,

the overall proportion of transitivity violations according to WST and to RTV

computed in this way should be unaffected.

Recall that the individual proportion of RTVs in DSBC was 19.24%, compared

to a proportion of 20.77% of WST violations for the overall sample. The difference

is small, and a Wilcoxon Rank-Sum test reveals no significant differences at the 5%

level (N = 60, z = −1.811, p = 0.0705). In KTHDP the proportion of RTVs was

13.83%, compared to a 15.42% of WST violations for the overall sample. Again

there are no significant differences at the 5% level (WRS, N = 29, z = −1.847,

p = 0.0657). Hence, the evidence is aligned with the interpretation that transitivity

violations might be orthogonal to whether preferences are revealed by Theorem 1

or not. However, of course, this is just suggestive evidence and one cannot conclude

that WST violations where preferences are not revealed are actually transitivity

violations.
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3.4 Characteristics of Nontransitive Cycles

Our analysis above shows the existence of transitivity violations which are not due

to noise. A natural question is whether specific collections of lottery choices give

rise to such violations often. To answer this question, we reanalyze the data taking

individual cycles of alternatives as the unit of observation. That is, in each dataset

and for each cycle of alternatives, we compute the percentage of participants who

display either an RTV or a WST violation.

The left-hand panel of Figure 4 represents the distribution of the propor-

tion of participants displaying RTVs across cycles of alternatives, computed over

all participants for which the cycle was revealed (DSBC: mean 18.93%, median

17.65%, SD=11.69, min 0.00%, max 60.00%; KTHDP: mean 11.22%, median

0.00%, SD=20.55, min 0.00%, max 100.00%). The right-hand panel shows the

distribution of the proportion of participants displaying WST violations across

cycles of alternatives, computed over all participants (DSBC: mean 20.56%, me-

dian 21.67%, SD=6.51, min 0.00%, max 36.67%; KTHDP: mean 15.42%, median

0.00%, SD=20.03, min 0.00%, max 80.00%).10 As can be seen in the figure, the

support of the distributions range from zero to relatively large numbers. That

is, some cycles of alternatives involve next to no violations while others involve

nontransitive choices for a sizeable part of the experiment’s participants.

To single out which constellations of choices produce a particularly large pro-

portion of violations, we then look at the cycles of alternatives which entail the

most transitivity violations. Table 1 lists the ten cycles (for both datasets) with

the largest proportion of RTVs, computed as the percentage of people for which

the cycle of alternatives was revealed who displayed an RTV. For DSBC, those

range from 48% to 58%, and all of them correspond to WST violations for at least

a quarter of the sample. Notably, all ten cycles involve just the five following

lotteries (out of the nine in the experiment), which correspond to the left-hand

subset in Figure 1(left).

x1 =
(

$25.43,
7

24

)

, x2 =
(

$24.16,
8

24

)

, x∗ =
(

$22.89,
9

24

)

,

x3 =
(

$21.62,
10

24

)

, x4 =
(

$20.35,
11

24

)

The fact that the most common transitivity violations in DSBC all involve

the left-hand subset in Figure 1(left), and none of them involves the lotteries in

the right-hand set, is particularly revealing. The differences in outcomes across

10Note that for DSBC the average is computed over N = 60×4 observations, as each participant
made the same choices in four different conditions.
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Table 1: The ten cycles in DSBC and KTHDP with the most transitivity viola-
tions. The second column indicates the proportion of experimental participants
displaying the RTV given in the first column, computed over all participants for
which the corresponding cycle of altenratives was revealed (numbers in brackets
indicate how the proportion is computed). The third column indicates the pro-
portion of participants (out of 4 × 60 for DSBC, out of 30 for KTHDP) displaying
a WST violation for the cycle of alternatives.

Cycle People with RTV People with WST
DSBC

x∗ ≻ x4 ≻ x3 ≻ x∗ 58.33% (28/48) 30.00% (72)
x∗ ≻ x4 ≻ x3 ≻ x2 ≻ x∗ 54.55% (24/44) 35.00% (84)
x∗ ≻ x1 ≻ x4 ≻ x3 ≻ x∗ 50.00% (12/24) 25.00% (60)
x∗ ≻ x4 ≻ x2 ≻ x3 ≻ x∗ 53.85% (28/52) 31.67% (76)
x∗ ≻ x2 ≻ x3 ≻ x4 ≻ x∗ 57.14% (32/56) 33.33% (80)

x∗ ≻ x2 ≻ x3 ≻ x1 ≻ x4 ≻ x∗ 47.62% (40/84) 36.67% (88)
x∗ ≻ x4 ≻ x1 ≻ x3 ≻ x2 ≻ x∗ 50.00% (24/48) 35.00% (84)
x∗ ≻ x1 ≻ x4 ≻ x2 ≻ x3 ≻ x∗ 50.00% (12/24) 26.67% (64)
x∗ ≻ x4 ≻ x1 ≻ x2 ≻ x3 ≻ x∗ 53.85% (28/52) 35.00% (84)
x∗ ≻ x4 ≻ x2 ≻ x1 ≻ x3 ≻ x∗ 57.14% (32/56) 33.33% (80)

KTHDP
y2 ≻ y4 ≻ y5 ≻ y2 66.67% (12/18) 40.00% (12)

y2 ≻ y3 ≻ y5 ≻ y4 ≻ y2 100.00% (6/6) 60.00% (18)
y3 ≻ y1 ≻ y2 ≻ y4 ≻ y3 66.67% (12/18) 60.00% (18)
y3 ≻ y4 ≻ y5 ≻ y1 ≻ y3 66.67% (12/18) 40.00% (12)
y4 ≻ y1 ≻ y2 ≻ y3 ≻ y4 66.67% (12/18) 60.00% (18)

y1 ≻ y4 ≻ y3 ≻ y2 ≻ y5 ≻ y1 75.00% (9/12) 30.00% (9)
y3 ≻ y1 ≻ y2 ≻ y4 ≻ y5 ≻ y3 66.67% (12/18) 60.00% (18)
y3 ≻ y4 ≻ y5 ≻ y1 ≻ y2 ≻ y3 66.67% (12/18) 40.00% (12)
y4 ≻ y1 ≻ y2 ≻ y3 ≻ y5 ≻ y4 66.67% (12/18) 60.00% (18)
y4 ≻ y5 ≻ y2 ≻ y1 ≻ y3 ≻ y4 66.67% (12/18) 40.00% (12)

similar lotteries in the right-hand set are noticeably larger (between $3.13 and

$4.96) than those for the other set (all $1.27), while differences in probabilities

are always 1/24 in both sets. That is, the most frequent nontransitivities involve

choices whose evaluations are presumably closer, i.e. such that the strength of

preference is smaller. If one used WST or a similar measure as a criterion for

detecting nontransitivites, standard psychometric effects (error rates are larger for

closer valuations) would suggest that the increase in nontransitivities is merely

due to increased noise. However, our approach through RTVs has disentangled

preferences from noise. Thus, the data suggests that the increase in nontransitiv-

ities is due to the fact that evaluations are close, but not because this results in

noisier choices. Rather, it appears that empirical transitivity violations are more
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Figure 5: Graphical representation of some of the most common preference cycles
in the datasets. All lotteries have a single non-zero outcome, depicted in the
(outcome, probability) space. Arrows indicate preference, i.e. x → y means y ≻ x.
The two upper pictures are from the DSBC data, the two lower ones from KTHDP.

frequent when they result from a gradual chain of small changes in the options.

Specifically, many of the examples in Table 1 suggest that small tradeoffs, which

are possible when lottery attributes are close enough, do not scale up monoton-

ically. For example, consider the shortest cycle for DSBC in Table 1, which is

also the one with the largest proportion of RTV violations, x∗ ≻ x4 ≻ x3 ≻ x∗.

Twice along this cycle (x4 ≻ x3 ≻ x∗), the decision maker accepts a one-step de-

crease in monetary payoff ($1.27) in exchange for a one-step increase in probability

(1/24). Then, however, the same decision maker accepts a two-steps decrease in

probability (2/24) in exchange for a two-step increase in monetary payoff ($2.54).

The exact same phenomenon appears in the cycles x∗ ≻ x4 ≻ x3 ≻ x2 ≻ x∗,

x∗ ≻ x2 ≻ x3 ≻ x4 ≻ x∗, and (rewritten) x1 ≻ x4 ≻ x3 ≻ x∗ ≻ x1, with three

one-step tradeoffs being reversed by a three-step tradeoff in the opposite direction,

and similar but more complex patterns can be seen in the longer cycles. The two

top panels of Figure 5 give a graphical representation of two of these examples.
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For KTHDP, the proportion of RTVs among revealed cycles of alternatives for

the ten topmost ones is always above two thirds. corresponding to between 40%

and 60% WST violations in the overall sample. The cycles involve all five lotteries

in KTHDP,

y1 = ($500, 0.29) , y2 = ($475, 0.32) , y3 = ($450, 0.35) ,

y4 = ($425, 0.38) , y5 = ($400, 0.41)

The same phenomenon is observed in several of the KTHDP cycles. For exam-

ple, in the cycle y4 ≻ y1 ≻ y2 ≻ y3 ≻ y4, three times in a row the decision maker

accepts a one-step reduction in probability (0.03) in exchange for a one-step in-

crease in monetary payoff ($25), but then undoes it by accepting a three-step

reduction in monetary payoff ($75) in exchange for a three-step increase in prob-

ability (0.09). A similar pattern can be seen in the cycle y3 ≻ y4 ≻ y5 ≻ y1 ≻ y3,

and similar phenomena appear in several of the longer cycles. The two bottom

panels of Figure 5 give a graphical representation of two of these examples.

4 Previous Evidence on Nontransitivities

Systematic empirical evidence on transitivity violations goes back to May (1954),

who collected choice data for pairs of hypothetical marriage partners described ac-

cording to intelligence, looks, and wealth. However, the evidence was in the form

of nontransitive cycles when the choices of all participants were aggregated, and

hence reduces to the well-known observation that Condorcet cycles might appear

when transitive preferences are aggregated. Actual evidence on nontransitive pref-

erences at the individual level was first presented by Tversky (1969), using binary

choices among simple monetary lotteries and also among hypothetical job appli-

cants. Almost all participants displayed at least one weak stochastic transitivity

violation. These descriptive findings were subsequently replicated (Montgomery,

1977; Lindman and Lyons, 1978; Budescu and Weiss, 1987), but the later literature

cast doubts on the strength of the evidence. Iverson and Falmagne (1985) rean-

alyzed the data of Tversky (1969) and argued that the evidence was compatible

with transitive preferences and noisy choices. They further criticized the original

work’s statistical analysis and found that only one of Tversky’s participants signif-

icantly violated transitivity using likelihood ratio tests, which of course implicitly

assume (a particular shape of) noise in actual choices. It has also been criticized

that participants in Tversky (1969) were pre-selected.
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Later empirical demonstrations of nontransitive choice have been similarly crit-

icized, the core argument frequently being that data might be compatible with

transitive but noisy behavior. For example, Loomes, Starmer, and Sugden (1989,

1991) argued that the classical preference reversal phenomenon (Lichtenstein and

Slovic, 1971; Grether and Plott, 1979; Tversky and Thaler, 1990), where choices

systematically contradict elicited (monetary) valuations, might be due to transi-

tivity violations. That is, actual nontransitive choices might build a preference

cycle where a lottery A is preferred to a lottery B and this second lottery is (of

course) revealed indifferent to its own certainty equivalent, but the latter is strictly

preferred to the certainty equivalent of A. However, Sopher and Gigliotti (1993),

in a replication of Loomes, Starmer, and Sugden (1991), estimated an econometric

model of choice with a specific structure of random errors, and could not reject

the null hypothesis of transitive preferences and noisy choices. On the other hand,

Starmer and Sugden (1998) further replicated the work in Loomes, Starmer, and

Sugden (1991) and observed the same cycling asymmetries, suggesting that those

are unlikely to be due to noise.

Regenwetter, Dana, and Davis-Stober (2010, 2011) argued that violations of

transitivity are better analyzed through violations of the triangle inequality, p(x, y)+

p(y, z) − p(x, z) ≤ 1 (Marschak, 1960; Block and Marschak, 1960), instead of vi-

olations of Weak Stochastic Transitivity. Those works found that the triangle

inequality is often satisfied in (many) existing publications, even when WST is

violated. Cavagnaro and Davis-Stober (2014) argued that the the behavior of

the tested populations can be best described by a mixture of different models of

choice, with the resulting estimates suggesting that the majority (but not all) of

the people might satisfy transitivity.

Recent studies, however, keep bringing up empirical evidence which might indi-

cate violations of transitivity. Butler and Pogrebna (2018) provided new empirical

evidence using both WST and the triangle inequality. Their evidence showed that

cycles can be the modal preference patterns over simple lotteries even after consid-

ering transitive, stochastic models. Their choices were designed to reproduce the

“paradox of nontransitive dice,” where a heuristic which favors the option (within

a pair) with the largest probability to beat the alternative produce cyclical choices

(Savage Jr., 1994). As in previous cases, however, critical work was close on the

heels of Butler and Pogrebna (2018). Specifically, Birnbaum (2022) argued that

tests of Weak Stochastic Transitivity and the triangle inequality do not provide

a method to compare transitive and nontransitive models that allow mixtures of

preference patterns and random errors. Birnbaum (2020) re-analyzed the data
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of Butler and Pogrebna (2018) using a “true and error” model (recall Remark 1)

and still found evidence for significant transitivity violations, but the latter are

incompatible with the explanation proposed by Butler and Pogrebna (2018) (see,

however, Butler, 2020).

Observed violations of transitivity, whatever their origin, seem to be relatively

stable. For example, Davis-Stober et al. (2019) and Park et al. (2019) report that

neither age nor, surprisingly, alcohol intoxication seem to play a major role in

transitivity violations for decisions under risk. Non-transitive choices have also

been observed in other domains. Li and Loomes (2022) report a substantial level

of nontransitive choices in respondents’ intertemporal decisions, i.e. decisions be-

tween pairs of monetary amounts to be received at different points in time (see

also Tversky, Slovic, and Kahneman, 1990). Birnbaum and Schmidt (2008) find

some evidence for transitivity violations for choices under uncertainty, albeit for

a limited number of participants. Moreover, people frequently violate transitiv-

ity when choosing between multi-attribute consumers’ products (sound systems,

flight plans, and software packages; e.g. Lee, Amir, and Ariely, 2009; Müller-Trede,

Sher, and McKenzie, 2015; Lee et al., 2015). Naturally, there are also some do-

mains where evidence is less robust, e.g. for hypothetical alternative treatments

in the health domain (Schmidt and Stolpe, 2011), or when choosing between po-

tential sexual partners (Hatz et al., 2020). Finally, violations of transitivity are

no exception to the rule that few behaviors, if at all, are uniquely human: honey

bees and gray jays have been shown to violate transitivity when foraging for food

(Shafir, 1994; Waite, 2001), and Túngara frogs behave nontransitively when mak-

ing mating choices (Natenzon, 2019).

A few contributions have also tested for particular forms of transitivity viola-

tions. For instance, Starmer and Sugden (1998) documented transitivity violations

which might contradict a number of explanations, including regret theory. Starmer

(1999) tested for transitivity violations which might be compatible with the “edit-

ing phase” of original prospect theory (Kahneman and Tversky, 1979). We refer

the reader to Starmer (2000) for a discussion.

We remark that, in this work, we follow the literature which favors testing

transitivity violations using binary choice probabilities instead of choice patterns

(e.g., Birnbaum, 2020). For a discussion of these two alternative approaches, we

refer the reader to Cavagnaro and Davis-Stober (2014) and Butler (2020). This is

a natural choice given our theoretical framework, which reveals preferences using

binary choices. Moreover, the two approaches have been shown to provide largely

consistent evidence (e.g., Butler and Pogrebna, 2018; Birnbaum, 2020).
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Part of the previous literature has concentrated on fitting data to particular

models and comparing the fit of transitive and nontransitive models in “horse race”

exercises. This approach is incomparable to ours, since we identify choice patterns

that cannot be explained by any model of transitive preferences with behavioral

noise, in the sense of Section 2. However, the overall message of our findings,

namely that there are persistent transitivity violations but a majority of choice

combinations respect transitivity, is compatible with the recent literature, which

finds consistent support for non-transitive models of choice.

For example, using true and error models (recall Remark 1), Birnbaum (2022)

reports most participants in the experiment of Butler and Pogrebna (2018) made

decisions consistent with transitivity, but 7 out of 22 (about 30%) showed evidence

of intransitive preference patterns at least part of the time. Brown, Davis-Stober,

and Regenwetter (2015), reanalyzing the data from KTHDP, find that 7 out of 30

participants were best described by models which allow for intransitivities, while 8

participants were best explained by a trembling hand model (again, recall Remark

1) and 6 other participants were best explained by a stochastic preference model

(hence equivalent to a classical, additive RUM). Ranyard et al. (2020), reanalyzing

the same dataset, found that a model accounting for violations of WST (based on

the additive difference model of Tversky, 1969) was a good fit for 14 of the 30

participants.

Needless to say, this section is not and cannot be a complete review of the

literature on transitivity violations. We refer the reader to the recent review of

Ranyard et al. (2020), who also estimated a simplified additive-difference model

based on the processing of alternative dimensions (following Tversky, 1969). Simi-

larly to Regenwetter, Dana, and Davis-Stober (2010, 2011), Ranyard et al. (2020)

argue that people seem to behave according to different models of choice, and

many individuals are best explained by models which do violate transitivity.

5 Discussion

Are economic choices transitive? A long-standing discussion in economics has ad-

dressed this fundamental issue. A negative answer would have the power to shake

the very foundations of applied microeconomic analysis, and empirical evidence to

this effect has been, understandably, subjected to detailed scrutiny. In particular,

evidence in favor of transitivity violations has been systematically criticized as

deriving from behavioral noise.
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In this paper we provide a new method which allows to reveal “preferences”

even when they are not transitive, disentangling them from behavioral noise. the

method is based on a generalization of recent preference revelation results which

use both choice frequencies and response times. We apply this method to two dis-

tinct datasets and find conclusive evidence that, even when one fully disentangles

behavioral noise from underlying preferences, transitivity violations are reduced

but do not disappear. In this sense, transitivity violations are not a mere artifact

of the analysis or a consequence of behavioral noise, but rather an actual feature

of human behavior.

We view our results as a call for attention. The fundamental assumption that

economic choices can be explained by transitive preferences is useful but wrong,

even if one allows for behavioral noise. Any model that assumes that people

evaluate alternatives independently of other alternatives and tend to choose the

option with the higher overall evaluation satisfies transitivity, and hence stands

on somewhat-shaky grounds. This includes of course normative models as ex-

pected utility theory, but also descriptive models built to accommodate behav-

ioral anomalies as cumulative prospect theory (Tversky and Kahneman, 1992) and

many others. Ultimately, applied economics needs to embrace models allowing for

violations of transitivity. Those are still sparse (e.g. Shafer, 1974; Loomes and

Sugden, 1982; Fishburn, 1982, 1986; Bordalo, Gennaioli, and Shleifer, 2012), but

include some prominent examples as salience theory and regret theory.
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Kreweras, G. 1961. “Sur une possibilité de rationaliser les intransitivités.” In La
Décision, Colloques Internationaux du Centre National de la Recherche Scien-
tifique. Paris: Editions du Centre National de la Recherche Scientifique, 27–32.

Laming, Donald. 1985. “Some Principles of Sensory Analysis.” Psychological Re-
view 92 (4):462–485.

Lee, Leonard, On Amir, and Dan Ariely. 2009. “In Search of Homo Economicus:
Cognitive Noise and the Role of Emotion in Preference Consistency.” Journal
of Consumer Research 36 (2):173–187.

Lee, Leonard, Michelle P. Lee, Marco Bertini, Gal Zauberman, and Dan Ariely.
2015. “Money, Time, and the Stability of Consumer Preferences.” Journal of
Marketing Research 52 (2):184–199.

Leland, Jonathan W. 1994. “Generalized Similarity Judgments: An Alternative
Explanation for Choice Anomalies.” Journal of Risk and Uncertainty 9 (2):151–
172.

———. 1998. “Similarity Judgments in Choice Under Uncertainty: A Reinterpre-
tation of the Predictions of Regret Theory.” Management Science 44 (5):659–672.

Li, Zhihua and Graham Loomes. 2022. “Revisiting the Diagnosis of Intertemporal
Preference Reversals.” Journal of Risk and Uncertainty :1–23.

Lichtenstein, Sarah and Paul Slovic. 1971. “Reversals of Preference Between
Bids and Choices in Gambling Decisions.” Journal of Experimental Psychol-
ogy 89 (1):46–55.

Lindman, Harold R. and James Lyons. 1978. “Stimulus Complexity and Choice
Inconsistency Among Gambles.” Organizational Behavior and Human Perfor-
mance 21 (2):146–159.

Lo, Ambrose. 2019. “Demystifying the Integrated Tail Probability Expectation
Formula.” The American Statistician 73 (4):367–374.

Loomes, Graham, Peter G. Moffatt, and Robert Sugden. 2002. “A Microecono-
metric Test of Alternative Stochastic Theories of Risky Choice.” Journal of Risk
and Uncertainty 24 (2):103–130.

Loomes, Graham, Chris Starmer, and Robert Sugden. 1989. “Preference Reversal:
Information-Processing Effect or Rational Non-Transitive Choice?” Economic
Journal 99 (395):140–151.

———. 1991. “Observing Violations of Transitivity by Experimental Methods.”
Econometrica 59 (2):425–439.

39



Loomes, Graham and Robert Sugden. 1982. “Regret Theory: An Alternative
Theory of Rational Choice Under Uncertainty.” Economic Journal 92 (368):805–
824.

———. 1987. “Some Implications of a More General Form of Regret Theory.”
Journal of Economic Theory 41 (2):270–287.

———. 1998. “Testing Different Stochastic Specifications of Risky Choice.” Eco-
nomica 65 (260):581–598.

Luce, R. Duncan. 1959. Individual Choice Behavior: A Theoretical Analysis. New
York: Wiley.

Marschak, Jacob. 1960. “Binary Choice Constraints on Random Utility Indicators.”
In Stanford Symposium on Mathematical Methods in the Social Sciences, edited
by Kenneth J. Arrow. Stanford, CA: Stanford University Press, 312–329.

May, Kenneth O. 1954. “Intransitivity, Utility, and the Aggregation of Preference
Patterns.” Econometrica 22 (1):1–13.

McFadden, Daniel L. 1974. “Conditional Logit Analysis of Qualitative Choice
Behavior.” In Frontiers in Econometrics, edited by P. Zarembka. New York:
Academic Press, 105–142.

———. 2001. “Economic Choices.” American Economic Review 91 (3):351–378.

———. 2005. “Revealed Stochastic Preference: A Synthesis.” Economic Theory
26 (2):245–264.

McFadden, Daniel L. and Marcel K. Richter. 1990. “Stochastic Rationality and
Revealed Preference.” In Preferences, Uncertainty, and Optimality: Essays in
Honor of Leonid Hurwicz, edited by J. S. Chipman, D. L. McFadden, and M. K.
Richter. Boulder, Colorado: Westview Press, 163–186.

Moffatt, Peter G. 2005. “Stochastic Choice and the Allocation of Cognitive Effort.”
Experimental Economics 8 (4):369–388.

Montgomery, Henry. 1977. “A Study of Intransitive Preferences Using a Think
Aloud Procedure.” In Decision Making and Change in Human Affairs. 347–362.

Mosteller, Frederick and Philip Nogee. 1951. “An Experimental Measurement of
Utility.” Journal of Political Economy 59:371–404.

Moyer, Robert S. and Richard H. Bayer. 1976. “Mental Comparison and the
Symbolic Distance Effect.” Cognitive Psychology 8 (2):228–246.

Moyer, Robert S. and Thomas K. Landauer. 1967. “Time Required for Judgements
of Numerical Inequality.” Nature 215 (5109):1519–1520.

Müller-Trede, Johannes, Shlomi Sher, and Craig R. M. McKenzie. 2015. “Tran-
sitivity in Context: A Rational Analysis of Intransitive Choice and Context-
Sensitive Preference.” Decision 2 (4):280–305.

40



Natenzon, Paulo. 2019. “Random Choice and Learning.” Journal of Political
Economy 127 (1):419–457.

Park, Sanghyuk, Clintin P. Davis-Stober, Hope K Snyder, William Messner, and
Michel Regenwetter. 2019. “Cognitive Aging and Tests of Rationality.” The
Spanish Journal of Psychology 22 (E57):1–26.

Ranyard, Rob, Henry Montgomery, Emmanouil Konstantinidis, and Andrea Louise
Taylor. 2020. “Intransitivity and Transitivity of Preferences: Dimensional Pro-
cessing in Decision Making.” Decision 7 (4):287–313.

Regenwetter, Michel, Jason Dana, and Clintin P. Davis-Stober. 2010. “Testing
Transitivity of Preferences on Two-Alternative Forced Choice Data.” Frontiers
in Psychology 1 (148):1–15.

———. 2011. “Transitivity of Preferences.” Psychological Review 118 (1):42–56.

Savage, Leonard J. 1954. The Foundations of Statistics. New York: John Wiley
& Sons.

Savage Jr., Richard P. 1994. “The Paradox of Nontransitive Dice.” American
Mathematical Monthly 101 (5):429–436.

Schmidt, Ulrich and Michael Stolpe. 2011. “Transitivity in Health Utility Mea-
surement: An Experimental Analysis.” Health Economics Review 1 (1):1–12.

Shafer, Wayne J. 1974. “The Nontransitive Consumer.” Econometrica 42:913–919.

Shafir, Sharoni. 1994. “Intransitivity of Preferences in Honey Bees: Support for
Comparative Evaluation of Foraging Options.” Animal Behaviour 48 (1):55–67.

Sopher, Barry and Gary Gigliotti. 1993. “Intransitive Cycles: Rational Choice or
Random Error? An Answer Based on Estimation of Error Rates with Experi-
mental Data.” Theory and Decision 35 (3):311–336.

Starmer, Chris. 1999. “Cycling with Rules of Thumb: An Experimental Test for
a New Form of Non- Transitive Behaviour.” Theory and Decision 46:141–158.

———. 2000. “Developments in Non-Expected Utility Theory: The Hunt for
a Descriptive Theory of Choice Under Risk.” Journal of Economic Literature
38 (2):332–382.

Starmer, Chris and Robert Sugden. 1998. “Testing Alternative Explanations of
Cyclical Choices.” Economica 65 (259):347–361.

Thurstone, Louis L. 1927. “A Law of Comparative Judgement.” Psychological
Review 34:273–286.

Tversky, Amos. 1969. “Intransitivity of Preferences.” Psychological Review 76:31–
48.

41



Tversky, Amos and Daniel Kahneman. 1992. “Advances in Prospect Theory:
Cumulative Representation of Uncertainty.” Journal of Risk and Uncertainty
5 (4):297–323.

Tversky, Amos, Paul Slovic, and Daniel Kahneman. 1990. “The Causes of Prefer-
ence Reversal.” American Economic Review 80 (1):204–217.

Tversky, Amos and Richard H. Thaler. 1990. “Anomalies: Preference Reversals.”
Journal of Economic Perspectives 4 (2):201–211.

Waite, Thomas A. 2001. “Intransitive Preferences in Hoarding Gray Jays
(Perisoreus Canadensis).” Behavioral Ecology and Sociobiology 50 (2):116–121.

Wichmann, A. Felix and N. Jeremy Hill. 2001. “The Psychometric Function: I. Fit-
ting, Sampling, and Goodness of Fit.” Attention, Perception, & Psychophysics
63 (8):1293–1313.

42



APPENDIX

A Proof of Theorem 1

Proof. Let an SCF-RT (p, f) including data on a choice (x, y) be rationalized by
an RCM-CF (v, ṽ, r). Let G(x, y) denote the cumulative distribution function of
g(x, y), the density function of ṽ(x, y).

First we remark that

p(y, x)F (y, x)(t) − p(x, y)F (x, y)(t) = G(x, y)(r−1(t)) + G(x, y)(−r−1(t)) − 1.

To see this, note that, by Definitions 1, 2, and 3, p(y, x) = G(x, y)(0), p(x, y) =
1 − G(x, y)(0), F (x, y) = (1 − G(x, y)(r−1(t))/(1 − G(x, y)(0)), and F (y, x)(t) =
G(x, y)(−r−1(t))/G(x, y)(0). Thus,

p(y, x)F (y, x)(t) − p(x, y)F (x, y)(t) = G(x, y)(−r−1(t)) − (1 − G(x, y)(r−1(t)) =

G(x, y)(r−1(t) + G(y, x)(−r−1(t)) − 1.

Second, by the integrated tail formula for expectations (Lo, 2019), and since
G(x, y) is the cumulative distribution function of the real-valued random variable
ṽ(x, y),

v(x, y) = E[ṽ(x, y)] = −
∫ 0

−∞

G(x, y)(v)dv +
∫ +∞

0
(1 − G(x, y)(v))dv =

−
∫ +∞

0
G(x, y)(−v)dv +

∫ +∞

0
(1 − G(x, y)(v))dv =

∫ +∞

0
(1 − G(x, y)(v) − G(x, y)(−v))dv

For any v > 0, let t = r(v). By the remark above, the condition that
F (y, x)(t) ≤ (p(y, x)/p(x, y)) F (x, y)(t) can be rewritten as

G(x, y)(v) + G(x, y)(−v) ≤ 1

for any v with t = r(v) > 0. This inequality then also holds for v = 0 by continuity.
For any v with r(v) = 0, G(x, y)(v) = 1 and G(x, y)(−v) = 0, as otherwise the
corresponding RCM-CF would generate an atom at response time zero. Hence
G(x, y)(v) + G(x, y)(−v) = 1 in this case. It follows that the term in the final
integral above is always positive, thus v(x, y) ≥ 0 and the conclusion follows.

If, additionally, the inequality F (y, x)(t) ≤ (p(y, x)/p(x, y)) F (x, y)(t) is strict
for some t, it must be strict for a nonempty interval by continuity, implying
v(x, y) > 0.
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B Robustness Analysis: Time Pressure and Lot-

tery Formats

In DSBC two within-subject treatments were implemented, time pressure vs. no
time pressure and pie vs. bar lottery format. We can hence investigate the possible
influence of these manipulations on our results.

Comparing revealed preferences over binary choices, there are no statistical dif-
ferences between time pressure and its absence (56.13% vs. 57.16%; WRS N = 60,
z = −0.942, p = 0.3505). However, we observe that using the bar representation
is associated with a higher proportion of revealed preferences (59.87%) compared
to the pie representation (53.84%; WRS N = 60, z = 3.872, p < 0.001).

Comparing overall proportions of RTVs, again there are no statistically signif-
icant differences between time pressure and its absence (19.03% vs. 19.15%; WRS
N = 60, z = −0.129, p = 0.9011). A similar result is obtained when we consider
WST violations (20.32% vs. 21.21%; WRS N = 60, z = −0.578, p = 0.5671).
there are also no no significant differences in RTVs when comparing pie and bar
representations (18.52% vs. 20.04%; WRS N = 60, z = −0.648, p = 0.5222).
However, pie representations lead to a larger proportion of WST violations com-
pared the bar representations, although the comparison misses significance at the
5% level (21.35% vs. 20.19%; WRS N = 60, z = 1.716, p = 0.0866).
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