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When choice is stochastic, revealed preference analysis often relies on
random utility models. However, it is impossible to infer preferences
without assumptions on the distribution of utility noise. We show that
this difficulty can be overcome by using response time data. A simple
condition on response time distributions ensures that choices reveal
preferences withoutdistributional assumptions. Standard models from
economics and psychology generate data fulfilling this condition.
Sharper results are obtained under symmetric or Fechnerian noise,
where response times allow uncovering preferences or predicting
choice probabilities out of sample. Application of our tools is simple
and generates remarkable prediction accuracy.
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I. Introduction

Revealed preference arguments lie at the foundation of economics (e.g.,
Samuelson 1938; Houthakker 1950; Arrow 1959). Preferences revealed
by choice are used in positive economics to predict behavior in novel situ-
ations and in normative economics to evaluate the desirability of economic
policies.

The traditional revealed preference approach assumes that typical
choices are deterministic. Instances of stochastic choice are interpreted
as a consequence of indifference, and information about choice frequen-
cies is ignored. These assumptions are challenged by real-world choice be-
havior, as argued already in the classical work of Fechner (1860) and Luce
(1959). Extensive evidence shows that individuals very often make different
choices when confronted with the same set of options repeatedly, and their
choice frequencies display systematic patterns (among many others, see
Tversky 1969; Camerer 1989; Hey and Orme 1994; Agranov and Ortoleva
2017). In view of this evidence, the traditional approach has been modified
to explicitly account for stochastic choice and frequency information. The
dominant paradigm in applied microeconomics today is to add a ran-
dom component to cardinal utility (e.g., Thurstone 1927; Marschak 1960;
McFadden 1974, 2001). Random utility has several different interpreta-
tions, including noise in an individual’s perception of the options, tem-
porary fluctuations of tastes, and unobserved heterogeneity in a popula-
tion of agents. With assumptions on the distribution of the random utility
component, it becomes possible to deduce an underlying deterministic
utility function from choice behavior.'

A problem with the random utility approach is that the distributional
assumptions may actually drive the results. It is a well-known (but rarely
stated) fact that within this approach, nothing can be learned about prefer-
ences without making distributional assumptions. The flip side of this result
is that anything can be learned by making the suitable assumptions on the
structure of noise. Unfortunately, these assumptions cannot be verified, be-
cause utility is a latent variable that is not directly observed. Hence, the

Economics (Munich 2018), and the 6th Annual Conference of the Society for Economic Mea-
surement (Frankfurt 2019). C.A.-F. gratefully acknowledges financial support from the Swiss
National Science Foundation under project 100014_179009. Data are provided as supplemen-
tary material online.

' There are alternative approaches to revealed preference when choice is stochastic,
which we do not consider here. One is to work with a distribution over ordinal preferences
(Block and Marschak 1960; Falmagne 1978; Barberd and Pattanaik 1986; Gul and
Pesendorfer 2006; Gul, Natenzon, and Pesendorfer 2014; Apesteguia, Ballester, and Lu
2017; Apesteguia and Ballester 2018). Another one is to model stochastic choice as the re-
sult of stochastic consideration sets (e.g., Manzini and Mariotti 2014). See sec. VI for a
more detailed literature review.
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dependence on possibly unwarranted assumptions is not just an abstract
theoretical problem but is known to plague empirical research (see Hey
and Orme 1994). For instance, Buschena and Zilberman (2000) showed
that for the same data set, assuming homoskedasticity supports non—
unexpected utility models, while expected utility models cannot be im-
proved upon when heteroskedasticity is allowed.

In this paper, we show that the problem can be overcome by using data
on response times. This is because the distribution of response times,
which is in principle observable, contains information about the unobserv-
able distribution of utility.* We derive, first, a simple and intuitive condition
on the distribution of response times that ensures that preferences can be
identified from choice data without any assumptions on the structure of
noise. Second, we show that under symmetric noise, response times enable
the identification of preferences between alternatives for which no previ-
ous choice data exist. This would not be possible without response time
data unless one is willing to impose stronger (untestable) assumptions
than symmetry on the utility noise. Third, we show that if one is willing
to assume that utility noise is Fechnerian—an underlying assumption of
probitand logit models—response time data enable the calculation of pre-
cise choice probabilities for alternatives for which no choice data exist.
Again, this would not be possible without response time data under only
the Fechnerian assumption.

Our approach is made possible by the fact that, despite being stochastic,
choice behavior obeys certain well-known regularities. One of those regu-
larities, often referred to as the psychometric function, is the fact that easier
choice problems are more likely to elicit correct responses than harder
problems. This can be traced back to perceptual discrimination experi-
ments in psychophysics, where an objectively correct response exists (e.g.,
choosing the brightest or loudest stimulus). It is perhaps one of the most
robust facts in all of psychology that the percentage of correct choices in-
creases with the difference in stimuli (Cattell 1893; Laming 1985; Klein
2001; Wichmann and Hill 2001). Conversely, choice becomes noisier
when stimuli are more similar, and hence the problem is harder. This
finding extends to cases where the correct response is subjective (e.g., fa-
vorite colors) and is uncovered by the researcher through ratings (Da-
shiell 1937). In economics, the classical work of Mosteller and Nogee
(1951) showed that the phenomenon also occurs in decisions under risk.
In their data, the alternative with the larger estimated utility was not always
chosen, but the percentage of choices in favor of the high-utility option

* The time it takes to make a decision (response time) can always be observed in labo-
ratory experiments, but even outside the laboratory response times are in principle an ob-
servable outcome of a choice process that can be collected by researchers, firms, or other
interested parties. In contrast, the distribution of utility noise is intrinsically unobservable.
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increased in the utility difference between the options. This corresponds
exactly to the psychometric function, with the difficulty of the (binary)
choice problem being measured by the subjective utility difference be-
tween the available options and easier choices being those with a larger
absolute utility difference. In fact, this psychometric relationship is an in-
tegral part of standard random utility models (RUMs), which assume that
choice probabilities are monotone in utility differences.

Our approach in this paper rests on integrating a second well-known reg-
ularity—often referred to as the chronometric function—into the standard
random utility framework. The chronometric function describes the fact
that easier choice problems take less time to respond than harder problems.
Asin the case of the psychometric function, there is overwhelming evidence
from psychophysics showing this regularity in an astonishing variety of do-
mains, going back to as early as Cattell (1902). For instance, Moyer and
Landauer (1967) demonstrated that chronometric effects exist even for
the simple question of which of two single-digit numbers is larger (see also
Moyer and Bayer 1976; Dehaene, Dupoux, and Mehler 1990). The finding
extends to choice based on subjective preferences, as in the work on favor-
ite colors by Dashiell (1937). A growing body of evidence shows that the
chronometric phenomenon also applies to economic decisions; thatis, re-
sponse times are decreasing in utility differences. For instance, Chabris
et al. (2009) measured response times in binary intertemporal choices
and found strong evidence that decisions are faster when utility differences
are larger. Krajbich et al. (2015) found the same relation for sharing deci-
sions in a dictator game. Moffatt (2005) and Alés-Ferrer and Garagnani
(2018) established the phenomenon for decisions under risk. Krajbich
et al. (2012) showed that consumer purchases display the same pattern,
and the phenomenon has been repeatedly illustrated in the domain of
food choice (Krajbich, Armel, and Rangel 2010; Krajbich and Rangel
2011; Fisher 2017; Clithero 2018). These different papers use very differ-
ent methods to elicit utility differences—such as stated liking ratings
(Krajbich and Rangel 2011), monetary differences (Alés-Ferrer and Ga-
ragnani 2018), and estimation based on a logit or probit specification
(Moffatt 2005; Chabris et al. 2009; Krajbich et al. 2015; Alés-Ferrer and
Garagnani 2018)—but they all arrive at the chronometric relationship be-
tween utility differences and response times.

To provide an intuition for our results, consider the choice between two
options xand y, where xis chosen with probability pand ywith probability
1 — p. For the sake of clarity, let us adopt the interpretation that these
probabilities describe the choices of a single individual across many rep-
etitions of the problem. We will first show that observing p > 1/2 is not
sufficient to conclude that the individual prefers x to y—that is, that the
underlying deterministic utility of xis larger than that of y—if no assump-
tions about the shape of the distribution of utility noise are made. It is
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possible to rationalize the data by a RUM that has a deterministic utility
function with u(x) < u(y) and asymmetric noise with zero mean. The
asymmetry is such that the realized utility difference between xand yis of-
ten positive, generating p > 1/2, but takes large absolute values whenever
itis negative. We will argue that asymmetric distributions in fact arise very
naturally, even in conventional additive noise models where the utility of
an option is given by #(x) = wu(x) + €(x). Wrongfully assuming symmetry
then leads to false inferences about preferences.’

Now assume that we have data on the joint distribution of choices and
response times. We will show in theorem 1 that p > 1/2 combined with, in-
formally speaking, a comparatively slow choice of yrelative to xis sufficient
to conclude that the individual prefers x to y, even without making any as-
sumptions about the shape of the utility distribution. A slow choice of yrel-
ative to xreveals that the utility difference cannot be distributed too asym-
metrically in the way described above, because negative utility differences
with large absolute values would generate quick choices of yon the basis of
the chronometric relationship. This argument does not presume knowl-
edge of the shape of the chronometric function beyond monotonicity
(and some technical properties). More formally, let F{x) (#) and F(y) (¢)
be the cumulative distribution functions (CDFs) of response times condi-
tional on the choice of x and y, respectively. Our criterion states that when
we observe

FO)0) < —L— F(x)(0) forall £ > 0,
1=p

then any RUM with a chronometric function (RUM-CF) that rational-
izes the data must satisfy u(x) > u(y). A similar statement holds for strict
preferences. In the limit as p— 1/2, that is, as choice data alone be-
comes uninformative, this becomes the condition that choice of y must
be slower than choice of xin the first-order stochastic dominance sense.
As p grows, hence choice data becomes more indicative of a preference,
the condition becomes weaker and requires only that choice of yis not
much faster than choice of x.

We then study the case where the analyst has reasons to believe that util-
ity differences are symmetrically distributed, as is often assumed in the

* Our arguments are based on Horan, Manzini, and Mariotti (2019), who describe con-
ditions under which differences of random utilities are symmetrically or asymmetrically
distributed. Our example of an asymmetric distribution discussed in sec. II.A rests on in-
dependent, mean zero Gumbel errors like in any standard logit specification but with het-
eroskedasticity across the options. Given our limited understanding of how utility is con-
structed and how noise affects evaluation in preferential choice problems (which often
involve trade-offs between multiple attributes), we see no good reasons for justifying the
distributional assumptions required for symmetry, except tractability.
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literature (e.g., in any application with logit or probit choice). It then fol-
lows immediately that p > 1/2 implies u(x) > u(y), so preferences are re-
vealed by choices without response times. But now we show that the use
of response time data enables the identification of preferences for choice
pairs outside the set of available choice data. For the case of deterministic
choices and deterministic response times, this has been noted before.
Krajbich, Oud, and Fehr (2014) argue that a slow choice of z over x com-
bined with a quick choice of the same zover yreveals a preference for x over
9, even though the choice between xand yis not directly observed and a tran-
sitivity argument is not applicable. The idea is that, based on the chronomet-
ric relationship, the positive utility difference u(z) — u(x) must be smaller
than the positive utility difference u(z) — u(y), which implies u(x) > u(y).
To date, however, it has remained an open question how to implement this
idea, since real-world choices and response times are stochastic, and hence
itis unclear what “choice of zover x” and “slow versus fast” exactly mean. For
instance, is “faster than” defined in terms of mean response times, median
response times, or some other characteristic of the response time distri-
bution? Our theorem 2 provides an answer to that question. Suppose that
z is chosen over x with a probability p(z, x) > 1/2, which indeed implies
u(z) — u(x) > 0in the symmetric noise case. Then we define 6(z, x) as a spe-
cific percentile of the response time distribution for z namely, the
0.5/p(z, x) percentile. Analogously, if z is chosen over y with a probability
p(z, y) > 1/2, which implies u(z) — u(y) > 0, the corresponding percentile
0(z y) can be defined. Our result shows that these observable percentiles are
the appropriate measure of preference intensity for the stochastic setting,
in the sense that 6(z, x) > 0(z, y) implies u(z) — u(x) < u(z) — u(y) and
hence arevealed (strict) preference for xover y. Thatis, inference cannot
be based on mean, median, maximum, or minimum response times. The
correct measurement is the 0.5/p percentile of the distribution of re-
sponse times, which requires using a different percentile for each choice
pair, adjusting for the respective choice frequencies. Since a revealed strict
preference for x over y translates into a choice probability p(x, y) > 1/2
when the utility distribution is symmetric, this quantification generates
out-of-sample predictions that are easy to test empirically.

In the traditional approach without response times, making out-of-
sample predictions requires even stronger distributional assumptions than
just symmetry. RUMs like probit or logit are instances of Fechnerian mod-
els (Debreu 1958; Moffatt 2015), in which the utility difference between
the two options follows the exact same distributional form in all binary
choice problems. With this Fechnerian assumption (but without assuming
aspecific functional form for the distribution), already the choice observa-
tion p(z, x) < p(z, y) reveals a preference for x over y. Put differently, the
Fechnerian assumption enables an exhaustive elicitation of ordinal prefer-
ences outside the data set. However, the use of response time data makes it
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now even possible to move beyond ordinal preferences and make predic-
tions of precise choice probabilities. Theorem 3 provides a closed-form for-
mula to predict p(x, y) on the basis of observables—that is, choice proba-
bilities and response times—from only the binary choices between z and
x and between z and y.

The general pattern that emerges from our results is that response time
data allow us to obtain results that would otherwise require an additional
distributional assumption, which might be empirically unjustified. Re-
sponse time data make it possible to get rid of assumptions because the dis-
tribution of response times contains information about the distribution of
utility noise. This enables the revelation of preferences without any distri-
butional assumptions, makes it possible to extrapolate preferences to cases
for which no choice data exist with a symmetry assumption, and even gen-
erates precise probability predictions with the Fechnerian assumption.

Our theorem 1 provides a robust sufficient condition for preference rev-
elation, which essentially goes from data to models. To investigate how
much bite our criterion has, we also look at the converse implication from
models to data; that is, we study stochastic choice functions with response
times (SCF-RTs) that are generated by standard models from the received
literature. We take a specific data-generating process as given and apply
our agnostic method that does not presume knowledge of the process to
the resulting data set. We do this first for the whole class of RUM-CFs that
have symmetric distributions, which contains the probit and logit models
as special cases but goes far beyond them. We show that our criterion recov-
ers all preferences correctly when any such model generated the data
(proposition 4). In other words, our sufficient condition is also necessary
and has maximal bite for the entire class of SCF-RTs generated by symmet-
ric RUM-CFs. Even the analyst who believes in the probit or logit distribu-
tion can work with our criterion, because it must always hold in his data.
Conversely, a data set where the condition in theorem 1 is violated cannot
be explained through a symmetric RUM-CF. We then show that the result
still holds with additional noise in response times, as long as the noise is
from an independent source, like a stochastic chronometric function or
imperfect observation, and does not systematically reverse the chronomet-
ric relationship (proposition 5).

Second, we study the class of drift-diffusion models (DDMs) with con-
stant or collapsing decision boundaries, which are prominent in psychol-
ogy and neuroscience (e.g., Ratcliff 1978; Shadlen and Kiani 2013).
These models have recently attracted attention in economics because
they can be derived from optimal evidence accumulation mechanisms
(Drugowitsch et al. 2012; Tajima, Drugowitsch, and Pouget 2016; Fuden-
berg, Strack, and Strzalecki 2018; Baldassi et al. 2020). We show that our
criterion again recovers all preferences correctly from data generated by
a DDM (proposition 6). Hence, our previous statement on believers in
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probit or logit models also applies to believers in DDMs. Again, as a con-
sequence of this result, a data set where the condition in theorem 1 is
violated cannot be explained through a DDM.

Finally, we apply our tools to an experimental data set from Clithero
(2018). In that experiment, subjects made repeated choices between var-
ious snack food items, and response times were recorded. Our results are
easy to apply by using nonparametric kernel density estimates of the re-
sponse time distributions. We show that our condition from theorem 1 is
fulfilled in 61% of all decision problems where choice was random.
Hence, a preference is revealed without distributional assumptions in
a majority of cases. In addition, the fact that in 39% of the cases the con-
dition from theorem 1 is violated suggests that, in these cases, models
with symmetric noise, including Fechnerian models as the standard logit
and probit approaches, are not consistent with the data. These numbers
illustrate the empirical relevance of our criterion but also warn against
the unquestioned use of the symmetry assumption.

We then apply theorem 2 to predict choices in a second phase of the
experiment. The accuracy of our out-of-sample predictions, which rest
on no distributional assumptions other than symmetry, is remarkable.
The prediction is correct in 80.7% of the cases, which is significantly bet-
ter than for the logit model and indistinguishable from a computation-
intensive DDM (Clithero 2018). We conduct an analogous analysis using
theorem 3 to predict precise choice probabilities, assuming a Fechnerian
structure of the utility noise. We again achieve a high prediction accuracy,
significantly better than for the logit model. While the DDM estimated by
Clithero (2018) performs even better in that case, our nonparametric
method yields its high accuracy in a straightforward way and does not re-
quire structural estimation.

Our paper is related to the vast empirical and theoretical literature on
RUMs, which have a long history going back to Thurstone (1927), Luce
(1959), and Marschak (1960). These models became more widely used in
economics after McFadden (1974; see also McFadden 2001). In the mean-
time, they have become a dominant workhorse in applied economics, as
indicated by the more than 19,000 Google Scholar citations to date of
McFadden (1974). We believe that our paper solves a fundamental issue
in this approach by showing how the rigorous and principled use of re-
sponse times greatly improves the ability to identify preferences. More gen-
erally, our paper illustrates how the use of nonchoice data—such as data
on physiological, neural, and attentional processes that carry information
about preferences—may help solving important problems in economics.

In addition, our paper contributes to a large literature in psychology,
neuroeconomics, and neuroscience on response times and process mod-
els (e.g., Ratcliff and Rouder 1998; Krajbich, Armel, and Rangel 2010;
Krajbich and Rangel 2011; Ratcliff et al. 2016). A standard view of human
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decision-making in neuroscience (e.g., Shadlen and Kiani 2013) is that
the chronometric function reflects neural processes of value comparison
between the options and that these processes take longer to differentiate
closer values. Our proposition 6 offers a test of whether DDMs can be the
data-generating process for a given data set. In addition, our theorem 1
radically simplifies preference identification relative to structural estima-
tions of DDMs.

Our paper is also related to the emerging literature on response times
and evidence accumulation models in economics (Woodford 2014; Cli-
thero 2018; Fudenberg, Strack, and Strzalecki 2018; Konovalov and Kraj-
bich 2019; Baldassi et al. 2020; Schotter and Trevino 2021). The chrono-
metric relationship between response times and utility differences, in
particular, has only recently become an object of interest in economics
(e.g., Krajbich et al. 2015; Alés-Ferrer et al. 2016; Echenique and Saito
2017). The chronometric relationship has been formalized by Fudenberg,
Strack, and Strzalecki (2018), who show that even in an optimal dynamic
process of evidence accumulation, it takes longer to discover that one
is close to indifference than to recognize a strong preference (see also
Woodford 2014; for an axiomatization of evidence accumulation models,
see Baldassi et al. 2020). Another possible interpretation of the chrono-
metric phenomenon is that it captures an inherent suboptimality of hu-
man decision-making. In line with this interpretation, Krajbich, Oud,
and Fehr (2014) show that choices can sometimes be improved by inter-
ventions that force people to spend less time on single decisions. Which
of these interpretations one favors is inconsequential for our analysis.

Our approach is suitable for the analysis of decisions where an internal
preference exists and has to be discovered by the decision maker. In our
view, these decisions make up a large part of our daily choices. It is less
suitable for life-changing decisions where a complex problem has to be
solved, such as whether to accept a job or the parents’ choice of the right
school for their children. Such decisions take a long time not primarily
because the options are similar but because they are enormously com-
plex and multidimensional. Of course, even our daily choices vary in
complexity. The choice between two snack food items is different from
the choice between two means of transportation, and therefore we
should expect to see different response times even when a similar utility
difference is involved. Our approach assumes that the same chronomet-
ric function applies across the different binary choice problems, and
therefore it can be used whenever the options are sufficiently similar in
complexity to warrant this assumption. For instance, we would be wary
to apply our methodology when some options are complex lotteries while
others are simple deterministic payoffs or to a framework where a known
heuristic or cognitive bias might affect some decisions but not others.
The same reservations apply to conventional RUMs without response
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times, which require that the same psychometric function is valid across
choice problems (see, e.g., He and Natenzon 2018). In fact, as we will ar-
gue below, our definition of a RUM is more general than conventional
ones, so that in principle it even allows us to capture certain pair-specific
complexity differences across the binary choice problems.

The paper is organized as follows. Section II presents the formal setting.
Section III develops the main results, devoting separate subsections to the
unrestricted, symmetric, and Fechnerian cases. Section IV shows that
choice data generated by standard models from economics and psychol-
ogy fulfill our main criterion for preference revelation. Section V contains
our empirical application. Section VI discusses the related literature in
more detail, and section VII concludes. All proofs omitted from the main
text can be found in the appendix (apps. A-C are available online).

II. Formal Setting and Definitions

Let Xbe a finite set of options. Denote by C = {(x, y)|x, y € X, x # y} the
set of all binary choice problems, so (x, y) and (y, x) both represent the
problem of choice between x and y. Let D& C be the set of choice
problems on which we have data, assumed to be nonempty and symmet-
ric; thatis, (x, y) € D implies (y, x) € D. To economize notation, we let the
set D be fixed throughout.

DerINITION 1. A stochastic choice function (SCF) is a function p assign-
ing to each (x,y) € D a probability p(x, y) > 0, with the property that
p(x ) + ply, x) = 1.

In an SCF, p(x, y) is interpreted as the probability of choosing xin the
binary choice between xand y, and p(y, x) is the probability of choosing y.
The assumption that p(x, y) > 0 for all (x,y) € D implies that choice is
stochastic in a nondegenerate sense, because each alternative is chosen
with strictly positive probability.

Since there is no universally agreed-upon definition of RUMs, we will
work with a fairly general definition that encompasses several previous
ones. In particular, it is convenient for our analysis to directly describe
for each (x,y) € C the distribution of the utility difference between the
two options.

DEFINITION 2. A random utility model (RUM) is a pair (u, v) where
u: X — R is a utility function and 7 = (9(x, y))(.ec is a collection of real-
valued random variables, with each v(x, y) having a density function g(x, )
on R, fulfilling the following properties:

RUM.1: E[0(x, y)] = u(x) — u(y);
RUM.2: 9(x,y) = —9(y, x); and
RUM.3: The support of 9(x, y) is connected.
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In a RUM, the utility function u represents the underlying preferences
that the analyst aims to uncover, while the random variables 7(x, y) also
incorporate the noise, modeled directly as random pairwise utility differ-
ences. That is, the density g(x, y) describes the distribution of the ran-
dom utility difference between xand y. The noise is assumed to have zero
mean, so the expected value of the random utility difference 9(x, y) must
be u(x) — u(y), as required by RUM.1. This condition can be spelled out
in terms of the density g(x, y) as

| vt )t = atx) = utr

We will also use the notation v(x, y) = u(x) — u(y) for E[o(x, y)]. Condi-
tion RUM.2 states that 9(x, y) and 9(y, x) describe the same random util-
ity difference but with opposite signs; thatis, g(x, y)(v) = g(y, x)(—v) for
all v € R. Finally, RUM.3 is a regularity condition stating that there are
no gaps in the distribution of a pair’s utility differences.

Our definition reflects the conventional idea that RUMs consist of a
deterministic utility function plus mean zero noise terms, as typically im-
plemented in discrete choice and microeconometrics (see Ben-Akiva
and Lerman 1985; for a historical account, see McFadden 2001). Those
approaches define a RUM by random utilities @(x) = u(x) + €(x) for
each option. Equivalently, a RUM of this kind can be given directly by
a vector & = (u(x)),.y of random variables, with the underlying deter-
ministic utility function u being defined through u(x) = E[#(x)]. Those
models are particular cases of ours, taking 9(x, y) = @(x) — @(y). Our ap-
proach is more general because the utility differences v(x, y) are unre-
stricted across choice pairs; that is, the realized utility difference is not
constrained to be a difference of realized utilities. This allows us to ac-
commodate pair-specific factors other than utility differences that may
affect choice probabilities (and response times), such as dominance
relations between some options (see He and Natenzon 2018 and our
discussion in sec. VI.C). An additional benefit of this generality is that
our positive results on preference revelation become stronger, because
they hold within a larger class of models. The added generality does
not matter for the impossibility result in proposition 1, which would also
hold for RUMs of the form #(x) = u(x) + &(x).

A RUM generates choices by assuming that the option chosen is the
one with the larger realized utility.

DEFINITION 3. A RUM (u,v) rationalizes an SCF p if p(x,y) =
Prob[v(x, y) > 0] holds for all (x, y) € D.

For the particular case where v(x,y) = %(x) — @(y), the definition
above just specifies p(x, y) = Probla(x) > %(y)]. Note that since v(x, y) is
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assumed to have a density g(x, ), whether one writes Prob[9(x, y) > 0]
or Prob[o(x, y) > 0] is inconsequential. Denote the CDF derived from
g(x, y) by G(x, y). Then, the probability that the utility of y exceeds that
of xis G(x, ) (0). As a consequence, definition 3 can be alternatively stated
as the condition that

G(x,9)(0) = p(y, x)

for all (x, y) € D.

We now extend the framework and include response times by adding
conditional response time distributions for each choice. This is the easiest
way of describing a joint distribution over choices and response times.

DEFINITION 4. A stochastic choice function with response times (SCF-RT) is
a pair (p, /) where pis an SCF and fassigns to each (x, y) € D a strictly
positive density function f(x, y) on R..

The density f(x, y) describes the distribution of response times condi-
tional on x being chosen in the binary choice between x and y. The cor-
responding CDF is denoted by F{(x, y). It would be straightforward to in-
troduce lower or upper bounds on response times, for instance, because
of a nondecision time or a maximal observed response time. We refrain
from doing so here for notational convenience and comparability with
the literature (e.g., Fudenberg, Strack, and Strzalecki 2018).

DEFINITION 5. A random wutility model with a chronometric function
(RUM-CF) is a triple (u, 9, r) where (u, ) is a RUM and r:R.. — R,
is a continuous function that is strictly decreasing in v whenever
r(v) > 0, with lim,_,,7(v) = +o and lim,_..r(v) = 0.

In a RUM-CF, r represents the chronometric function. It maps realized
utility differences v into response times r(|v|), such that larger absolute
utility differences generate shorter response times. The assumption that
lim, . r(v) = +o and lim,_,,r(v) = 0 ensures that the model can en-
compass all response times observed in an SCF-RT. Our definition allows
for functions like r(v) = 1/v that are strictly decreasing throughout and
also for functions that reach r(v) = 0 for large enough v. The latter case
will arise when we construct chronometric functions from sequential
sampling models in section IV. Figure 1 illustrates both cases, taking ad-
vantage of the fact that the inverse ' (¢) is well defined for the restric-
tion of r to the subset where r(v) > 0.

In addition to choices, a RUM-CF generates response times by assum-
ing that the realized response time is related to the realized utility differ-
ence through function r. Specifically, given a RUM-CF (u, 7, r) and a pair
(x,y) € C, the random variable describing the response times when x is
chosen over y is given by

i(x,y) = r([o(x, y)),

conditional on 9(x, y) > 0. This motivates the following definition.
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F1c. 1.—Two illustrations of chronometric functions 7, mapping realized utility differ-
ences (vertical axis) into response times (horizontal axis).

DEFINITION 6. A RUM-CF (u, 7, r) rationalizes an SCF-RT (p, f) if
(u, 0) rationalizes p and F(x, y)(¢ ) Probl[i(x,y) <t | 9(x,y) > 0] holds
forall ¢t > 0 and all (x, y) € D.

The probability of a response time of at most ¢, conditional on x being
chosen over y, is the probability that the realized utility difference is at
least v '(#), conditional on that difference being positive. Since this
probability can be calculated as [1 — G(x, y)(r"'(¢))]/[1 — G(x,y)(0)],
the condition in definition 6 is equivalent to

Py = e )

forall ¢ > 0 and all (x, y) € D.

An alternative approach would have been to assume that response time
is a decreasing function of the true absolute utility difference |v(x, y)| be-
tween the two options as opposed to the realized noisy ones. A first draw-
back of this approach is that response times would be predicted to be
deterministic, in contradiction to all available evidence. Hence, a second
source of noise would have to be introduced, for instance, by making
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the chronometric function stochastic. Without additional ad hoc assump-
tions, any such model would predict that the conditional distributions of
response times for each of the two choices are identical, a further predic-
tion not borne out by the data. Our approach is more parsimonious, as it
requires only one source of randomness (in utility) to generate both sto-
chastic choices and stochastic response times, and it does not make the im-
plausible prediction of independence between choices and response
times.* A second drawback of the alternative approach is that the response
time for two identical options would be predicted to be infinite, which is
unreasonable. In contrast, our model does not make such a prediction, be-
cause even with indifference v(x, y) = 0, the stochastic utility difference
9(x, y) has mean zero but is different from zero with probability 1, gener-
ating continuous distributions of response times.”

When studying stochastic choice data, the analyst might be interested
in or willing to make specific assumptions about the distribution of ran-
dom utility. In doing so, the analyst accepts a restriction to a specific sub-
class of RUMs. Those might range from symmetry of each density g(x, y)
to specific functional forms. We say that an SCF (SCF-RT) is rationaliz-
able within some class of models if there exists a RUM (RUM-CF) in that
class that rationalizes it.

DerINITION 7.  Within a class of models, a rationalizable SCF (SCF-RT)
reveals a preference for x over yif all RUMs (RUM-CFs) in the class that ra-
tionalize it satisfy u(x) > wu(y). It reveals a strict preference for x over yif all
RUMs (RUM-CFs) in the class that rationalize it satisfy u(x) > u(y).

III. Revealed Preference

In this section, we investigate the use of response times for preference
revelation. Specifically, we are interested in preference revelation within
difference classes of RUMs and how the addition of response times im-
proves the results.

A.  The Unvrestricted Case

The first observation is that, without further restrictions on the utility
distributions and without the use of response times, nothing can be

* That said, a second source of independent noise, like a stochastic chronometric func-
tion, can be introduced without changing our main insights, as we will show in sec. IV.

> A realized stochastic utility difference of zero would give rise to an infinite response
time, but this happens with probability zero. The generated distributions can have finite
means, as we would expect in data. Our model does not even predict that these mean re-
sponse times must be decreasing in the underlying deterministic utility difference. That
is an implication with additional assumptions fulfilled by standard models with logit or
probit errors but does not necessarily hold in the general case.
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learned from choice probabilities. This is well known among specialists
in stochastic choice theory, and hence we do not claim originality.®

ProrosiTioN 1.  Within the class of all RUMs, a rationalizable SCF re-
veals no preference between any x and y, with x # y.

The intuition for the result is simple. Data on the choice between xand y
allow us to learn the value G(x, y) (0), but without distributional assumptions,
this does not tell us whether the expected value v(x, y) = u(x) — u(y) is pos-
itive or negative, which is what we are interested in.

A'solution to the problem would be to impose the seemingly innocuous
assumption of symmetry of the distribution. In that case, G(x, y)(0) < 1/2
indeed implies v(x, y) > 0, and G(x, y)(0) > 1/2 implies v(x, y) < 0. We
will investigate the symmetry assumption and the scope for response times
to improve preference revelation under that assumption in section IILB.
First, however, we want to illustrate with a simple example that symmetry
sometimes may not be an innocuous assumption at all.

Example 1—Consider a simple RUM with additive noise, where
u(x) = u(x) + €(x) and u(y) = u(y) + €(y). The noise terms €(x) and
€(y) are independent and have zero mean. It is often assumed in applied
work that they follow an identical Gumbel distribution, with CDF

H(z)=e¢""",
where 8 > 0 is a parameter and y = 0.5772 is the Euler-Mascheroni con-
stant. The variance of this distribution is 8°7* /6. The difference 7(x, y) =
u(x) — u(y) then follows a logistic distribution, which is easy to describe
in closed form and generates the well-known logit choice probabilities
(see also our discussion in sec. IV). This distribution is indeed symmetric
around its mean v(x, y) = u(x) — u(y).

Horan, Manzini, and Mariotti (2019) investigate the case where €(x)
and €(y) are still independent, mean zero Gumbel random variables
but with different variances. If the noise terms capture mistakes in the
evaluation of the options, it is plausible that some options are more dif-
ficult to evaluate than others, resulting in option-specific variances. If
the noise terms reflect random variation in the tastes of a given individ-
ual or heterogeneity in a population of agents, there is no reason to as-
sume identical distributions for different options either. However, the
distribution of 9(x, y) is no longer symmetric for option-specific param-
eters 3, and (8, of the underlying Gumbel distributions. Unfortunately,
that distribution cannot be described in closed form when 3, # 8, (pre-
sumably one of the reasons why the literature has focused on the knife-
edge case where 3, = £,).

¢ See, e.g., the discussion in Haile, Hortacsu, and Kosenok (2008). A similar problem
arises in ordered response models that are commonly used to analyze ordinal survey data
(see Bond and Lang 2019).
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The following numerical example is inspired by example 3 in Horan,
Manzini, and Mariotti (2019). Suppose that u(x) = 1 and u(y) = 3/4, so
v(x,y) = 1/4 > 0 and the individual strictly prefers x over y. Suppose fur-
thermore that 8, = 1and 8, = 2, for instance, because yis more difficult
to evaluate than x, and thus its utility is more noisy. Then, it follows that
the probability of choosing xis p(x, y) = Prob[u(x) > &(y)] = 0.49 < 1/2.

Consider now an analyst who does not know the data-generating pro-
cess. Suppose that this analyst erroneously imposes the symmetry assump-
tion when analyzing the SCF with the intention of uncovering the under-
lying preference. This analyst will correctly deduce that G(x, y)(0) = 0.51
but then, applying symmetry, incorrectly conclude that v(x, y) is strictly
negative, that is, that the SCF reveals a strict preference for y over x.

This example is meant to illustrate (1) that symmetry is not necessarily
a plausible restriction and (2) that erroneously making the symmetry as-
sumption can lead to wrong inferences about preferences.”

The following result shows that if response times are available, it may
be possible to learn a preference even in the unrestricted class of mod-
els. We first introduce the following new concepts. Given two CDFs Gand
Hon R, and a constant ¢ > 1, we say that G ¢first-order stochastically
dominates H (also written G ¢FSD H) if

G(t) < ¢-H(¢t)forall t > 0.

If, additionally, the inequality is strict for some ¢, then G strictly ¢first-
order stochastically dominates H (written G ¢SFSD H). For ¢ = 1, these
concepts coincide with the standard notions of first-order stochastic
dominance. They are weaker requirements when ¢ > 1 and possibly sub-
stantially so, because the dominating function G can lie above H to an
extent constrained only by the ratio ¢. In particular, ¢FSD implies ¢'-
FSD whenever ¢ < ¢'. Furthermore, for any two distributions G and H
for which G(t)/H(?) is bounded, we can always find a large enough ¢
such that G ¢FSD H.

TaEOREM 1.  Within the class of all RUM-CFs, a rationalizable SCF-RT
reveals a preference for x over yif F{(y, x) ¢FSD I(x, y) and a strict pref-
erence if F(y, x) ¢SFSD F(x, y) for ¢ = p(x,y)/p(y, x).

Proof—Let (u, 9, r) be any RUM-CF that rationalizes an SCF-RT (p, f),
and consider any (x, y) € D. By (1), it holds that

1= G(x,9) (' (1) = plx. y)F(x, y)(1) (2)

for all ¢> 0. Since RUM.2 implies 1 — G(y, x)(v) = G(x,y)(—v), for
(y, x) € D we analogously obtain

7 Other natural examples with asymmetric utility difference distributions can also be
constructed in the class of random parameter models, where the decision maker’s prefer-
ence parameters are stochastic (Apesteguia and Ballester 2018).
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G(x, ) (=r(1) = p(y x)F(y, x)(1) (3)
for all ¢>0. With the definition of Q(x,y)(¢) = (p(x, y)F(x,y)(t))/
(p(y, x)F(y, x)(t)), we therefore have
1= Glxy(r (1)

Gy (—r (1)

Q(x,y)(1) = (4)
for all > 0.

Now suppose that F(y, x) ¢FSD F(x, y) for ¢ = p(x, y)/p(y, x). This can
equivalently be written as Q(x, y)(¢) > 1 for all ¢ > 0. Hence, it follows
from (4) that

G(x,y)(=r (1)) < 1= G(x,9)(7'(1))

for all ¢ > 0. We claim that this implies

G(xy)(—v) = 1= G(x,y)(v) (5)

forall v > 0. The inequality follows immediately for any v for which there
exists ¢ > 0 such that » ' (¢) = v. For v = 0, it follows from continuity of
G(x, y)(v). For any v with r(v) = 0, it follows because in that case
G(x,y)(v) = 1 and G(x,y)(—v) = 0, as otherwise the RUM-CF would
generate an atom at the response time of zero.

Define a function H : R —0, 1] by

Hw = G(x,y)(—v) if v > 0,
G(x,y)(v) ifv<0.

Observe that H is the CDF for a distribution that is symmetric around
zero and continuous except (possibly) for an atom at zero. Hence,

J vdH (v) = vdH (v) +J vdH (v)
- (~o0,0) (0,4)

0 +oo

~ [ vt oo + [ uete (- v)ao
0 0

= | we(xn)(0)dv— | wvglxy)(0)dw = 0.

J—o —o©

Observe furthermore that (5) implies G(x, y) 1-FSD H. Hence, we have

+oo +oo

vdG(x,y)(v) > | vdH(v) =0, (6)

—o0

o(x,y) = J

that is, a revealed preference for x over y.
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If F(y, x) ¢SFSD F(x, y) for ¢ = p(x,y)/p(y, x), then (5) is strict for
some v > 0. Hence, G(x, y) 1-SFSD H and the inequality in (6) is strict,
that is, a revealed strict preference for x over y. QED

The basic idea behind theorem 1 is that the observable distributions
of response times provide information about the unobservable distribu-
tions of utilities, based on the chronometric relationship.

To understand the precise condition, assume first that ¢ = p(x, y)/
p(y, x) = 1 for some (x,y) € D; that is, both options are equally likely
to be chosen. Any RUM-CF that rationalizes this choice must satisfy
G(x,y)(0) = 1/2. Furthermore, note that the distribution of 9(x, y) con-
ditional on 7(x, y) > 0 generates F(x, y), and the distribution of 7(x, y)
conditional on ?(x, y) < 0 generates F(y, x). Thus, if we additionally ob-
serve that F(x, y)(t) = F(y, x)(¢) forall ¢ > 0 (i.e., identical response time
distributions for the two options), then we can conclude that the shape
of the utility difference distribution must be identical on the positive and
on the negative domain. This requires no knowledge of the properties of
r beyond monotonicity. Hence, we have verified that the distribution is
symmetric around zero, so its mean v(x, y) is zero. Our theorem indeed
implies a revealed preference for x over y and for y over x in this case,
which we also call a revealed indifference between x and y. If, by contrast,
we observe that F(y, x) 1-SFSD F(x, y) (i.e., the choice of yis systematically
slower than the choice of x), we can conclude that the utility difference
distribution is asymmetric and takes systematically larger absolute values
on the positive than on the negative domain. Hence, its mean v(x, y) is
strictly larger than zero, which translates into a revealed strict preference
for x over y. Finally, if we observe ¢ = p(x, y)/p(y, x) > 1, then to obtain a
revealed preference for x over y, it is sufficient that the choice of yis not
too much faster than the choice of x, as captured by our concept of ¢
first-order stochastic dominance. If choice behavior is already indicative
of a particular preference, then the response time distributions just need
to confirm that the utility difference distribution is not strongly asym-
metric in the reverse direction.?

Remark—We have stated theorem 1 as providing a sufficient condition
for preference revelation. In sections IV and V, we will illustrate that this
sufficient condition holds often and is hence useful. However, we could
have chosen a different formal approach, casting the condition as an ax-
iom and formulating the analysis in terms of data sets compatible with
that axiom. Several results in section IV will show that entire subclasses

% Theorem 1 and our further results focus on uncovering the sign of the mean of 7(x, y),
because this mean equals u(x) — u(y) and therefore informs about the ordinal preferences
represented by u for either normative or positive reasons. Potentially, one could be inter-
ested in uncovering also other summary statistics of 9(x, y), and our tools may be helpful
for that purpose, but the relevance of other statistics is not obvious from the point of view
of revealed preference theory.
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of models (symmetric RUM-CFs and DDMs) would be covered with this
approach. We prefer to state theorem 1 as we do because we would not
see a violation of the ¢FSD condition as a fundamental problem for our
approach. For instance, in RUM-CFs with asymmetric noise, it is possible
that a given strict preference does not generate data fulfilling our suffi-
cient condition. Therefore, a violation of the sufficient condition contra-
dicts specific subclasses of models but not the general approach.

In the remainder of the section, we will discuss several implications of
theorem 1. First, the result can be extended by completing the revealed
preferences in a transitive way. A formal statement and proof of this
claim can be found in appendix B.

Second, a large literature in psychology has examined the question of
whether, in tasks where errors can be identified objectively, those are
faster or slower than correct responses. Although in many situations er-
rors tend to be slower on average than correct responses, this is not always
the case, and no general conclusion can be drawn.” Our result might help
to clarify this relation for preferential choice. While the definition of er-
ror and correct response is not obvious ex ante for preferential choice, ex
post we can call the choice of y a revealed error and the choice of x a re-
vealed correct response when x is revealed to be strictly preferred over jy.
Translated into this language, it follows immediately that slow choices
in the first-order stochastic dominance sense indeed reveal an error, pro-
vided that choice probabilities are at least minimally informative. How-
ever, our actual condition is weaker than first-order stochastic dominance,
and hence it might be fulfilled even in cases where errors are faster on av-
erage. Thus, our approach is in principle compatible with the seemingly
puzzling evidence from psychology.

Third, we have described SCF-RTs by unconditional choice probabilities
and conditional response time distributions for each choice. This is the
natural extension of SCFs and allowed us to work out the intuition for
our result. Alternatively, we could have described the joint distribution over
choices and response times by an unconditional response time distribution
and conditional choice probabilities for each response time. Let P(x, y) (7)
denote the probability of a choice of x over y conditional on choice taking
place before time ¢ The ratio of these probabilities can be calculated as

¢ For an overview of classical results, see Luce (1986, sec. 6.4.3). The picture is further
complicated if decisions are subject to extraneous impulsive tendencies, such as, e.g., alter-
native decision processes reflecting underlying biases. For instance, assumptions linking
response times to whether an answer is more intuitive or more deliberative are common
in the literature on dual-process thinking (e.g., Kahneman 2003), but as pointed out by
Krajbich etal. (2015), apparent results in this direction might sometimes hide chronomet-
ric effects. Additionally, Achtziger and Alos-Ferrer (2014) show that a simple dual-process
model predicts that errors might be either faster or slower than correct responses, depend-
ing on whether the underlying processes are in conflict or aligned.
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_ Pl y)(t) _ plx, y)F(x, y)(t)
QLI = B0~ e F o0
Hence, the condition that F(y, x) ¢FSD F(x, y) for ¢ = p(x,y)/p(y, x) in
theorem 1 is equivalent to

Q(x,y)(t) > 1forall ¢t > 0. (7)

An analogous formulation holds for the strict case. For a revealed prefer-
ence without distributional assumptions, we can thus also check if x is
more likely to be chosen than ybefore all times /. The simple requirement
p(x,9) > p(y, x) obtains as a special case of this in the limit as ¢ — .

The formulation based on Q(x, y) () suggests a natural but substan-
tially stronger condition. Let p(x, y) (/) denote the probability of a choice
of x over y conditional on choice taking place at time ¢ (rather than be-
fore {). We obtain the ratio

S ) (1) = LD _ Pl )] ()0

PO, x)(0)  py x)f (3, %)(1)

and can state the following corollary to theorem 1.

CoroLLARY 1. Within the class of all RUM-CFs, a rationalizable SCF-
RT reveals a preference for x over yif ¢(x, y)(t) > 1 for almost all ¢ > 0
and a strict preference if, additionally, the inequality is strict for a set
of ¢t with positive Lebesgue measure.

The condition that x is more likely to be chosen than y at almost all
times ¢ can be interpreted as a requirement of stochastic consistency
across response times. This is clearly stronger than (7). Appendix C con-
tains an example in which p(x, y)(¢) < p(y, x)(¢) holds for an interval of
response times, so corollary 1 is not applicable, but a strict preference
for x over y is still revealed by theorem 1. Hence, our main criterion ar-
rives at a conclusion even though behavior displays some stochastic in-
consistency across response times. "’

The results in this section are interesting for two main reasons. First,
for the analyst who is reluctant to make distributional assumptions in the
context of RUMs, theorem 1 provides a robust criterion for preference
revelation. On the basis of observed response times, it is often possible
to deduce preferences without such assumptions. The criterion may lead
to an incomplete revelation of preferences (we will return to this issue in
secs. IV and V), but it avoids making mistakes like those illustrated in

' Notice a similarity to Bernheim and Rangel (2009), who require agreement of choices
across choice sets or frames to obtain a revealed preference. A first difference is that we
study stochastic choice and contemplate probabilistic agreement of choices across re-
sponse times. A second difference is that our main criterion can reveal a preference even
if there is no such agreement.
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example 1. Second, our criterion may be able to arbitrate if choice behav-
ior violates stochastic transitivity (Tversky 1969; Rieskamp, Busemeyer, and
Mellers 2006; Tsetsos et al. 2016). For example, assume that we observe a
stochastic choice cycle with p(x,y) > 1/2, p(y,z) > 1/2, and p(z, x) > 1/2.
Such a cycle cannot be rationalized by any model with symmetric utility
distributions, but it may be rationalizable by a model with asymmetric util-
ity distributions. In that case, at most two of the three binary choices can
reveal a preference, showing which part of the cycle reflects true prefer-
ences. A similar argument applies if choices are affected by framing and
we observe p/(x, y) > p/(y, x) under frame fbut p/'(x, y) < p/(y, x) under
frame f'. Again, our response time criterion may be able to detect which
frame induces choices that are probabilistically more in line with the true
preferences. In other words, since a choice probability above 1/2is notyet
sufficient to reveal a preference, RUM-CFs can explain cyclic or frame-
dependent choices but are inconsistent with data sets for which our con-
dition reveals cyclic or frame-dependent preferences. If the latter were ob-
served, our model would be falsified.

B.  The Symmetric Case

The assumption of symmetry is often accepted in the literature. For-
mally, a RUM (u, v) or RUM-CF (u, v, r) is symmetric if each random
variable v(x, y) follows a distribution that is symmetric around its mean
v(x, y); that is, if for each (x,y) € C and all 6 > 0,

g(x,y)(v(x,y) +6) = g(x,y)(v(x,y) = 6) .

In contrast to proposition 1, this assumption allows us to learn prefer-
ences from observed choice probabilities.

ProrosiTiON 2. Within the class of symmetric RUMs, a rationalizable
SCF reveals a preference for x over yif p(x, y) > p(y, x) and a strict pref-
erence if p(x,y) > p(y, x).

This result is simple and well known, and we include a proofin appen-
dix A only for completeness.'" It allows us to deduce either a strict pref-
erence or an indifference for each observed choice pair, and it can be
extended by completing the revealed preferences in a transitive way
(see app. B).

Note that every preference that can be learned with the help of response
times without distributional assumptions can also be learned without

"' TIts first statement in the economics literature that we are aware of is Manski (1977),
but an earlier, closely related statement for general stochastic choice can be found already
in Edwards (1954).
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response times at the price of making the symmetry assumption.'? But even
if one is willing to make the symmetry assumption, the addition of re-
sponse times again improves what can be learned about preferences, as
the following result will show. It is based on triangulating a preference in-
directly through comparisons with a third option. For each (x, y) € D with
p(x,y) > p(y, x), define §(x,y) as the 0.5/p(x,y) percentile of the response
time distribution of x; that is,

0.5
plxy)

The percentile 6(x, y) > 0 combines information about choice probabil-
ities and response times. It is larger than the median but converges to
the median when p(x, y) — 1. More generally, 6(x,y) becomes smaller as
p(x, y) becomes larger or as the choice of x becomes faster in the usual
first-order stochastic dominance sense. Hence, a small value of 0(x,y) is
indicative of a strong preference for x over y. Comparison of these per-
centiles can make it possible to learn preferences for unobserved pairs
(x,y) € C\D even when transitivity is void.

Theorem 2.  Within the class of symmetric RUM-CFs, a rationalizable
SCF-RT reveals a preference for x over y, where (x, y) € C\D, if there ex-
ists z € X such that 0(x, z) < 6(y, z) or 0(z, x) > 0(z, y) and a strict prefer-
ence if (x, z) < 0(y, z) or 8(z, x) > 0(z, y).

Proof—Let (u, 9, r) be any symmetric RUM-CF that rationalizes an
SCF-RT (p, f). We first claim that for any (x, y) € D with p(x, y) > p(y, x),
and hence v(x, y) > 0 by symmetry, it holds that 8(x, y) = r(v(x, y)). To
see the claim, note that from (1) we obtain

Pl F(x9)(1) = 1= G(x,y) (7 (1)

for all ¢ > 0. Evaluated at ¢ = r(v(x, y)), which is well defined because
v(x,y) > 0 and strictly positive because otherwise the RUM-CF would
generate an atom at the response time of zero, this yields

Pp(x ) E(x, ) (r(v(x, 5))) = 1 = G(x, y)(v(x.y)) - (8)

The right-hand side of (8) equals 0.5 by symmetry. Hence, we obtain

F(x,y)(0(x, ) =

12 This is true because p(x, y) > p(y, x) is a necessary condition for a revealed preference
for x over y according to theorem 1. The statement holds for weak but not necessarily
for strict preferences. We can indeed have a revealed strict preference for x over yaccord-
ing to theorem 1 and a revealed indifference according to proposition 2, in case
p(x,9) = p(y,x) = 1/2 and F(y,x) 1-SFSD F(x, y). Any symmetric RUM that rationalizes
such an SCF must have v(x, y) = 0. However, there is no symmetric RUM-CF that rational-
izes the SCF-RT because of the asymmetric response times. All rationalizing RUM-CFs must
be asymmetric and have v(x, y) > 0.
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F(X, y)(r(v(% y))) = P(X’ y)

and by definition of §(x, y), it follows that 6(x, y) = r(v(x, y)), proving the
claim.

Consider now any (x,y) € C\D for which there exists z€ X with
0(x, z) < 6(y, z), and hence 0 < r(v(x, z)) < r(v(y, z)) by the above claim.
Since r is strictly decreasing in v whenever »(v) > 0, it follows that
u(x) — u(z) = v(x,z) > v(y, z) = u(y) — u(z) and hence v(x,y) = u(x)—
u(y) > 0, that is, a revealed preference for x over y. If 6(x, z) < 6(y, z),
all the inequalities must be strict, so the revealed preference is strict.
The case where 0(z, x) > 0(z, y) or 0(z, x) > 0(z, y) is analogous. QED

It has been observed before that response times can be used to infer
preferences for unobserved choices. Krajbich, Oud, and Fehr (2014) ar-
gue that a slow choice of z over x combined with a quick choice of the
same z over y reveals a preference for x over y, even though the choice
between x and y is not directly observed and a transitivity argument is
not applicable. On the basis of the chronometric relationship, the posi-
tive utility difference u(z) — u(x) must be smaller than the positive utility
difference u(z) — u(y), which implies u(x) > u(y). It remained unclear
how to generalize the idea to a stochastic framework. Our theorem 2 an-
swers this question. The condition 6(z, x) > 6(z, y) is the appropriate for-
mulation of a stochastic choice of z over x being slower than a stochastic
choice of z over y. Of course, an analogous argument applies to a quick
choice of x over z combined with a slow choice of y over z, as formalized
by our alternative condition 6(x, z) < 6(y, z). Also, not too surprisingly,
the preferences revealed by theorem 2 can further be completed in a
transitive way (see app. B).

Importantly, we need to compare specific percentiles of the response
time distributions that depend on choice probabilities and not just mean,
median, or maximum response times. Up-to-date, empirical applications
of response times have overwhelmingly been based on the use of a partic-
ular statistic, stating that, say, median response times are shorter or larger
for certain types of decisions. Our analysis shows that such an approach is
but a first approximation that we can strongly improve upon. Focusing on
a particular statistic like the median treats all observations equally and ne-
glects fundamental information, namely, choice frequencies. As already in
the case of theorem 1, our analysis combines information about frequen-
cies and response times. The condition in theorem 2 might well dictate to
compare the 0.85 percentile of the distribution of response times for one
choice to the 0.55 percentile of the distribution for a different choice.

The results in this section enable first out-of-sample predictions. Con-
sider an unobserved choice problem (x, y) € C\D. If, on the basis of the-
orem 2, the SCF-RT reveals a strict preference for x over yin the class of
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symmetric RUM-CFs, then we predict that p(x, y) > p(y, x), because each
symmetric model with v(x, y) > 0 generates such choice probabilities. If
the SCF-RT reveals an indifference between x and y, then we can even
predict the precise probabilities p(x,y) = p(y, x) = 1/2. We will test
these predictions in our empirical application in section V.

C. The Fechnerian Case

Microeconometric models of random utility assume even more structure.
For instance, the prominent probit or logit models are special cases of
Fechnerian models, which go back to the representation result by Debreu
(1958). A RUM (u, v) or RUM-CF (u, v, r) is Fechnerian if the distribution
of each random variable 7(x, y) has the same symmetric shape, which is just
shifted so that its expected value becomes v(x, y). Formally, there exists a
common density g that is symmetric around zero and has full support; that
is, g(8) = g(—6) > Oforall§ > 0,such thatforeach (x, y) € Candallv € R,

g(x,9)(v) = g(v — v(x,y)).

This additional structure makes it possible to deduce preferences through
comparison with a third option, relying only on choice probabilities.

ProrosiTioN 3. Within the class of Fechnerian RUMSs, a rationaliz-
able SCF reveals a preference for x over y, where (x, y) € C\D, if there ex-
ists z€ X such that p(x, z) > p(y,z) and a strict preference if p(x, z) >
P 2).

As in the case of proposition 2, this result is well known, and we pro-
vide a short proof in appendix A only for completeness."”” The transitive
closure extension can be found in appendix B.

By proposition 3, we obtain a revealed preference for an unobserved
pair (x, y) € C\D whenever (x, z), (y, z) € D for some third option z. Hence,
imposing the Fechnerian assumption enables an exhaustive elicitation
of ordinal preferences even outside the choice data set without the use
of response times (provided that the assumption is valid). We now show that
the use of response times makes it possible to move beyond ordinal prefer-
ences and make out-of-sample predictions of precise choice probabilities.

DEFINITION 8. Within a class of models, a rationalizable SCF-RT pre-
dicts choice probability p(x, y) for anonobserved choice (x, y) € C\Difall
RUM-CFs in the class that rationalize it satisfy Prob[9(x, y) > 0] = p(x, y).

TaEOREM 3. Within the class of Fechnerian RUM-CFs, a rationaliz-
able SCF-RT predicts a choice probability for each («x, y) € C\D for which
there exists z € X with (x, z), (y, z) € D. The prediction is

1% The argument can be traced back to Fechner (1860) and Thurstone (1927). Within
economics, it has been spelled out by Ballinger and Wilcox (1997).
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p(x,2)F(x,2)(0(y,2)) i p(y,2) > 1/2,
pxy) = p(x.2) if p(y,2) = 1/2,
L= p(z x)F(z x)(0(z y)) if p(y, 2) <1/2.

Proof—Let (u, 9, r) be any Fechnerian RUM-CF that rationalizes an
SCF-RT (p, f). For any fixed (x, y) € C, this particular RUM-CF predicts

p(x,y) = Probu(x, y) > 0] = G(y, x)(0) = G(v(x,y)) . (9)

Let (x,y) € C\Dand z € X such that (x, z), (y, z) € D. We distinguish three
cases.

Case 1: p(y,z) > 1/2. From the proof of theorem 2, we already know
that 6(y, z) = r(v(y, z)). From (1), we obtain

Pl 2)F(x,2)(1) = 1= Glx,2)(r (1))
for all £ > 0. Hence, by RUM.2 and the Fechnerian assumption,
p(x, 2)F(x, 2)(1) = G(z x)(=r7(8) = G(=r'(1) = v(z x))
= G(o(x,2) = r (1))

for all ¢ > 0, which for ¢t = r(v(y, z)) vields
p(x, 2)F(x,2)(r(v(y, 2))) = G(u(x, 2) = v(y,2)) = G(v(x,y)) -

Combined with (9) and the above expression for 6(y, z), this implies

p(x,y) = plx, 2)F(x, 2)(6(, 2)),

which is the model-iindependent prediction p(x,y) given in the
statement.

Case 2: p(y, z) = 1/2. It follows from proposition 2 that v(y, z) = 0. We
obtain

p(xy) = Glo(x,y)) = G(o(x, 2) — v(y,2)) = G(v(x,2)) = p(x,2),

which is the model-independent prediction p(x,y) given in the
statement.

Case 3: p(y, z) < 1/2. It follows from proposition 2 that v(z, y) > 0. Fol-
lowing the same steps as in case 1 but with reversed order for each pair of
alternatives yields the model-independent prediction

plxy) = 1= pyx) =1 = pz, x)F(z x)(0(z ),

as given in the statement.
To understand the probability formula in the theorem, just consider
the case where p(x,z) > p(y,z) >1/2. Then wu(x) > u(y) > u(z) must
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hold under the Fechnerian assumption, where the first inequality fol-
lows from proposition 3 and the second inequality follows from prop-
osition 2. Hence, we can conclude that the unknown p(x, y) must be strictly
smaller than p(x, z), because Fechnerian choice probabilities are strictly
monotone in the underlying utility differences v(-, ) across binary choice
problems. The theorem now shows that a prediction for p(x, y) can be
obtained by multiplying the observed p(x, z) with a discounting factor
F(x, z) (8(y, z)). This factor is an observable, response time-based indicator
of the relative position of u(y) within the interval [u(x), u(z)].

Combined with the Fechnerian assumption, the use of response times
allows us to predict exact choice probabilities out of sample. Without re-
sponse times, making such a prediction would require assuming a com-
plete and specific functional form for the utility distribution." Hence, in
analogy to our earlier results, response times again serve as a substitute
for stronger distributional assumptions.'” Further, as was the case for the-
orems 1 and 2, theorem 3 extracts information from the data by balancing
choice frequencies and response times.

IV. Behavioral Models from Economics
and Psychology

Theorem 1 provided a sufficient condition for preference revelation with-
out distributional assumptions. This analysis left open two questions. First,
which SCF-RTs are rationalizable by RUM-CFs? Second, how tight is the suf-
ficient condition? In this section, we try to answer these questions by studying
SCF-RTs that are generated by specific behavioral models from the litera-
ture. We will do this first for standard RUMs from economics and micro-
econometrics to which we add chronometric functions and second for
standard sequential sampling models from psychology and neuroscience.

A.  The View from Economics

Specific RUMs are commonly used for microeconometric estimation using
choice data. These models typically start from a utility function u: X — R

'"* Some weaker inequality predictions of choice probabilities are already possible under
an additive RUM structure without additional distributional assumptions (see, e.g., Cohen
and Falmagne 1990).

' For the analyst who is willing to make the strong distributional assumptions required
by probit or logit models, response times have no additional value when the available data
on choice are rich. However, the literature has shown that the use of response times can be
valuable even in the context of logit or probit models when choice data are scarce (e.g.,
Clithero 2018; Konovalov and Krajbich 2019). Our paper differs from these studies by
showing that response time data enable the recovery of preferences even when rich choice
data cannot recover them, i.e., in the absence of untestable assumptions on utility noise.
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and add an error term with zero mean to each option, such that the overall
utility of x € X is given by a random variable

u(x) = u(x) + €(x).

As a next step, even more specific distributional assumptions are im-
posed. Two popular examples are the probit and the logit model.

In the probit model, the errors are assumed to be normally distributed
and independently and identically distributed (i.i.d.) across the options.
The distribution of the random utility difference v(x, y) = @(x) — (y) is
then also normal and can be described by

G, 9)(v) = q><v‘v(x’y>>,

g

where o is a standard deviation parameter and ® is the CDF of the stan-
dard normal distribution. This simple specification gives rise to a Fech-
nerian model. Generalizations allow for heteroscedasticity or correlation
between the error terms of different options, in which case the parame-
ter o becomes choice set dependent, written o(x, y). Such a generalized
model is no longer Fechnerian but still symmetric.

In the logit model, the errors are assumed to follow a Gumbel distri-
bution, again i.i.d. across the options. In that case, the random utility dif-
ference follows a logistic distribution described by

G(x, y)(v) = {1 + 67[@71’("’)‘))/5]}_1’

where $ is a scale parameter. This model is again Fechnerian, whereas
one could think of generalizations where the scale parameter becomes
choice set dependent, in which case the model is no longer Fechnerian
but still symmetric.

We now treat an arbitrary symmetric RUM-CF as the real data-
generating process and apply our preference revelation method to the
resulting data of choices and response times. It is trivial that these data
are rationalizable within the class of symmetric models and hence within
the class of all models. More surprising is the fact that our sufficient con-
dition from theorem 1 always recovers the correct preferences.

ProrosiTioN 4. Consider an SCF-RT (p, f) thatis generated by a sym-
metric RUM-CF (u, v, r). Then, for any (x,y) € D, u(x) > u(y) implies
Ky, x) ¢FSD F(x, y) and u(x) > u(y) implies F(y, x) ¢SFSD F(x,y) for
4= p(x3)/ply. ).

If we are given a data set that is generated by one of the RUMs com-
monly employed in the literature, augmented by a chronometric func-
tion, then our cautious revealed preference criterion always recovers
the correct preferences, despite not using information about the specific
data-generating process. Even the analyst who believes in the probit or
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logit distribution can work with our criterion. It will yield the same re-
vealed preferences as an application of the full-fledged model if his be-
lief is correct but avoids a mistake if his belief is incorrect.

We add three remarks on this result. First, symmetry of the RUM-CF does
not guarantee that the stronger condition in corollary 1 is also satisfied by
the SCF-RT.'® Second, symmetry of the RUM-CF is not necessary for our
condition in theorem 1 to be applicable. As the proof of proposition 4 re-
veals, there are also asymmetric models that generate data from which our
criterion recovers preferences correctly. Third, and most importantly,
since proposition 4 shows that any data set generated by a symmetric
RUM-CF must fulfill the condition in theorem 1, the latter becomes an em-
pirical test of the former. Thatis, if the condition in theorem 1 is frequently
violated in a real data set, this suggests that symmetric RUM-CFs are not an
appropriate model for the process generating that data set.

We can go one step further and assume that there is a second source of
noise in response times on top of the noise already generated by random
utility. The noise could be part of the behavioral model, for example,
due to a stochastic chronometric function or randomness in the physio-
logical process implementing the response, or it could be due to imper-
fect observation by the analyst. We assume that this additional noise is
independent from the randomness in utility, so that it does not system-
atically reverse the chronometric relationship. A common approach in
the empirical literature (e.g., Chabris et al. 2009; Fischbacher, Hertwig,
and Bruhin 2013; Alés-Ferrer and Ritschel 2018) is to add i.i.d. noise to
log response times, where taking the log ensures that response times re-
main nonnegative. An equivalent way of modeling this is by means of
multiplicative noise, which is technically convenient for our purpose. For-
mally, a RUM with a noisy chronometric function (RUM-NCF) can be ob-
tained from a RUM-CF by letting the response time when x is chosen
over y become the random variable

i(x,y) = r([o(x))) - 0,

conditional on 9(x, y) > 0. Here, 7 is a nonnegative random variable with
mean 1 that is assumed to be i.i.d. according to a density 2 on R.. The
probability of a response time of at most ¢, conditional on xbeing chosen
over 9, is now the probability that the realized utility difference is at least
r~'(¢/7), conditional on that difference being positive. Hence, for an
SCF-RT (p, f) that is generated by a RUM-NCF (u, 7, r, 7), we have

' The example of an SCF-RT presented in app. C, which violates this stronger condi-
tion, is actually generated by a symmetric RUM-CF. This RUM-CF features a bimodal utility
difference distribution. It is possible to show that symmetry and unimodality together im-
ply that the stronger sufficient condition in corollary 1 is always satisfied. Both the probit
and the logit model are unimodal, so working with the stronger condition comes with no
loss if either of these models is the data-generating process.
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[, 11 = 6o wapiaenan
1= G(x,)(0)

for all ¢ > 0 and all (x, y) € D, which is analogous to equation (1).

Our preference revelation approach based on RUM-CFs is misspecified
when the real data-generating process is a RUM-NCF, because the addi-
tional noise is erroneously explained by additional randomness in utility.
However, as the next proposition will show, this misspecification is often in-
consequential. For the entire class of SCF-RTs that are generated by (and
hence are rationalizable in) the class of symmetric RUM-NCFs with full sup-
port utility distributions (like probit or logit) and arbitrary response time
noise distributions, our previous condition remains the correct criterion
for preference revelation."”

ProrosiTiON 5. Consider an SCF-RT (p, f) that is generated by a
symmetric RUM-NCF (u, 9, r,7), where each 7(x,y) has full support.
Then, for any (x,y) € D, u(x) > u(y) implies F(y, x) ¢FSD F(x, y) and
u(x) > u(y) implies F(y, x) ¢SFSD F(x, y) for ¢ = p(x,y)/p(y, x).

The proof rests on the insight that ¢FSD is invariant to independent
perturbations. Whenever an SCF-RT (p, f) satisfies F(y,x) ¢FSD F(x, y),
then the SCF-RT (p, ]‘ ) obtained after perturbing response times by
log-additive or multiplicative noise still satisfies F(y, x) ¢FSD F(x, y).
The case of RUM-NCFs obtained from symmetric RUM-CFs is a natural
application of this insight. However, the robustness of our preference
revelation criterion holds more generally for perturbations of any data-
generating process for which the criterion has bite. This could be a
RUM that is not symmetric, or it could be one of the sequential sampling
models studied in the next section.

F(x,y)(1) =

B.  The View from Psychology

A different way of generating stochastic choices and response times is by
means of a sequential sampling model, as used extensively in psychology
and neuroscience. The basic building block for binary choice problems
is the DDM of Ratcliff (1978). A DDM with constant boundaries is given by a
drift rate p € R, a diffusion coefficient ¢* > 0, and symmetric barriers B
and —B, with B > 0. A stochastic process starts at Z(0) = 0 and evolves
over time according to a Brownian motion

7 Without full support of the utility difference distributions, some response times may
arise only because of the additional noise but could never be generated by a realized utility
difference. The distribution of those response times does not obey the chronometric rela-
tionship and would be uninformative of utility.
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dzZ(t) = pdt + adW(2).

The process leads to a choice of x (y) if the upper (lower) barrier is hit
first, the response time being the time at which this event occurs.

Although the DDM, as amodel anchored in psychology, usually does not
make reference to underlying utilities, Z(¢) is often interpreted as the dif-
ference in spiking rates between neurons computing values for the com-
peting options. Hence, it is natural to introduce a link to utility by assum-
ing that the drift rate is determined such that g = p(x,y) = —pu(y, x) >0
if and only if v(x, y) > 0. This way, the DDM generates stochastic choices
and response times from an underlying deterministic utility function
u: X—->R.

The stochastic path of Z(t) can be interpreted as the accumulation of
evidence in favor of one or the other option as the brain samples past
(episodic) information. Recent research has shown that evidence accu-
mulation models, like the DDM, actually represent optimal decision-
making procedures under neurologically founded constraints, but opti-
mality requires that the barriers are not constant but rather collapse
towards zero as ¢ grows to infinity (Tajima, Drugowitsch, and Pouget
2016). Similarly, Fudenberg, Strack, and Strzalecki (2018) model opti-
mal sequential sampling when utilities are uncertain and gathering in-
formation is costly and find that the range for which the agent continues
to sample should decrease as ¢ grows. A partial intuition for this result is
that a value of Z(#) close to zero for small ¢ carries little information,
while a value of Z(¢) close to zero for large ¢ indicates that the true util-
ities are most likely close to each other, and hence sampling further ev-
idence has little value. To reflect this idea, a DDM with collapsing bound-
aries works in the exact same way as a DDM with constant boundaries,
with the only difference being that the barriers are given by a continuous
and strictly decreasing function : R, — R, such that lim,_,..0(¢) = 0.
That is, x is chosen if Z(¢) hits the upper barrier b(¢) before hitting the
lower barrier —b(¢), and yis chosen if the converse happens, with the re-
sponse time being the first crossing time (see fig. 2).

We now treat a DDM with an underlying utility function as the real data-
generating process and again apply our preference revelation method to
the resulting data of choices and response times." The following proposi-
tion, the proof of which relies on a result by Fudenberg, Strack, and

" For the case of constant boundaries, closed-form solutions for choice probabilities
and response time distributions generated by the DDM are known (see, e.g., Palmer,
Huk, and Shadlen 2005). Closed-form solutions are not available for the case of collapsing
boundaries. Webb (2019) explores the link between bounded accumulation models as the
DDM and RUMs and shows how to derive distributional assumptions for realized utilities of
the latter if the true data-generating process is of the DDM form.
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F16. 2.—Illustration of a DDM with collapsing decision boundaries.

Strzalecki (2018), shows that our sufficient condition from theorem 1 is
again tight and always recovers the correct preferences.

ProrosiTiON 6. Consider an SCF-RT (p, f) that is generated by a
DDM with constant or collapsing boundaries and underlying utility func-
tion w. Then, u(x) > u(y) implies F(y, x) ¢FSD F(x,y) and u(x) > u(y)
implies F(y, x) ¢SFSD F(x, y) for ¢ = p(x, y)/p(y, x).

To understand the intuition behind the proof, recall from our discus-
sion of theorem 1 that the condition ensuring a revealed preference can
be reformulated as P(x, y)(¢) > P(y, x)(t) for all ¢ that is, the probability
of choosing x over y before any prespecified response time ¢ should be
larger than the probability of choosing y over x before ¢ In a DDM,
u(x) > u(y) means that the drift rate p(x, y) > 0 favors x, since the upper
barrier reflects a choice of x. Hence, the probability of hitting the upper
barrier first before any prespecified response time ¢is indeed larger than
the probability of hitting the lower barrier first. The proof actually estab-
lishes that the stronger condition in corollary 1 is always satisfied by an
SCF-RT that is generated by a DDM. Furthermore, the result would con-
tinue to hold for DDMs with more general boundary functions that are
not necessarily constant or collapsing, but these models do not always
generate well-behaved choices and have received less attention in the
literature.

We remark that, as in the case of proposition 4, proposition 6 is of in-
dependent interest. Since it states that any data set generated by a DDM
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must fulfill the condition in theorem 1, the latter becomes an empirical
test of the former. That is, if the condition in theorem 1 is frequently vi-
olated in a real data set, this suggests that DDMs are not an appropriate
model for the process generating that data set.

We conclude the section with remarks about rationalizability. An SCF-
RT that is generated by a DDM is always rationalizable within the class of
all RUM-CFs when we consider just two options, D = {(x, ), (y, x)},
which is the setting in which DDMs are typically applied. This is a corol-
lary of the following more general result.

PROPOSITION 7. Suppose that D = {(x, y), (y, x)}. Then, any SCF-RT
(p, f) is rationalizable within the class of all RUM-CFs.

In the proof, we fix an arbitrary chronometric function r that satisfies
definition 5 (and has r(v) = 0 forlarge v) and constructan associated den-
sity g(x, y) such that the data are rationalized. The construction is particu-
larly illuminating for an SCF-RT thatis generated by a DDM with collapsing
boundaries. In that case, itis very natural to choose the chronometric func-
tion of the RUM-CF as the inverse of the boundary function of the DDM.
The associated density g(x, y) then describes the distribution of the value of
Z(1) at the endogenous decision point (see again fig. 2). This interpreta-
tion is in line with Fudenberg, Strack, and Strzalecki (2018), who argue
that Z(7) is a signal about the true utility difference. In other words, if we
think of the chronometric function as the inverse of the collapsing bound-
ary function, then realized utility differences can be interpreted as realized
signals about the underlying deterministic utility difference.

With more than two options, the question of rationalizability is less
straightforward. Itis not clear that the above construction yields utility dif-
ference distributions that are consistent with a single utility function . For
SCF-RTs generated by DDMs, this problem is further complicated by the
fact that there is no agreed upon discipline on how utility differences
v(x, y) map into drift rates u(x, y), beyond the basic ordinal requirement
that u(x, y) > 0 ifand onlyif v(x, y) > 0. Hence, rationalizability of an arbi-
trary DDM-generated data set in terms of a RUM-CF is not guaranteed.
Our approach, however, can be generalized naturally to solve this problem.
Define a generalized RUM with a chronometric function (GRUM-CF) by replac-
ing RUM.1 in definition 2 by the weaker requirement

E[o(x, )] 2 0 & u(x) = uly) 20,

keeping everything else unchanged. That is, realized utility differences
(or “decision values,” as in the recent neuroeconomics literature; see,
e.g., Glimcher and Fehr 2013, chap. 8-10) are interpreted as signals
about ordinal preferences rather than cardinal utility. Itis easy to see that
theorem 1 remains valid for preference revelation within the class of all
GRUM-CFs. Furthermore, any SCF-RT generated by a DDM with constant
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or collapsing boundaries and underlying utility function w is rationaliz-
able in the class of all GRUM-CFs."

V. Emmpirical Application

In this section, we apply our results to an experiment by Clithero (2018),
whom we thank for sharing the data. In the first phase of this experiment,
31 subjects made repeated binary choices between various snack food items
and one fixed reference item. Each subject made decisions for 17 such
items, and each decision was repeated 10 times. Response times were re-
corded. In a second phase of the experiment, each subject was confronted
once with each of the possible binary choices between the 17 nonreference
items from the first phase, resulting in 17 x 16/2 = 136 choice problems
per subject.

Our strategy of analysis is as follows. First, we use the choice and response
time data from the first phase of the experiment to illustrate theorem 1. We
show that the ¢FSD condition is fulfilled in substantially more than half of
the choice problems. That is, theorem 1 has significant empirical bite, al-
lowing for preference identification in the absence of any assumptions on
utility noise. At the same time, there remains a nonnegligible fraction of
choice problems in which ¢FSD is violated, indicating that these choices
are not typical realizations of RUM-CFs with symmetric noise distributions
or of DDMs. Second, we take full advantage of the experiment’s design,
where choices in the first phase are always made against the same reference
item, and use theorem 2 to derive a complete preference ordering for each
subject, relying only on the choice and response time data from the first
phase. We then use these preferences to predict choices in the second
phase of the experiment. That is, we check the accuracy of the outof-
sample predictions embodied in theorem 2, which rest on no distributional
assumptions other than symmetry. The prediction accuracy is remark-
able. It clearly outperforms the accuracy of conventional logit models,
and it is comparable to computation-intensive DDMs. Third, we conduct
an analogous analysis relying on theorem 3 to predict choice probabilities
for the second phase of the experiment, assuming a Fechnerian structure
of the utility noise. We again achieve a remarkable prediction accuracy.

1 This approach could be extended even further, building a connection to the economic
literature on consumer theory without transitive preferences. Shafer (1974) showed that
every complete, continuous, and strongly convex binary relation R (not necessarily transi-
tive) on a Euclidean space can be represented by a continuous, real-valued, two-variable
function vsuch that xRyif and only if v(x, y) > 0, with v(x, y) = —v(y, x). Hence, one could
replace u in the definition of RUM-CFs and DDMs by a complete but not necessarily tran-
sitive binary relation r on x. The appropriate reformulation of RUM.1 would be
E[v(x,y)] > 0 & xRy, and DDMs could be linked to Rby u(x,y) > 0 < xRy.
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The purpose of this section is twofold. On the one hand, we illustrate
how our methods can be applied in practice. On the other hand, we
demonstrate that our theoretical results are empirically relevant, reveal
the limits of assumptions made in conventional models, and outperform
conventional models that do not use response times in out-of-sample
prediction.

A, Applying Theorem 1

We start with an application of theorem 1 to the first phase of the exper-
iment. Our result says that a revealed preference for x over y can be de-
duced if F(y, x) ¢FSD F(x, y) for ¢ = p(x,y)/p(y, x), which can be rewrit-

ten as

Pp(x, ) E(x, 3)(1) = py, x)F(y, x)(¢) = 0 for all £ = 0.

This statement makes use of exact choice probabilities and the full distri-
butions of response times. Since our data set is finite, we need to translate
the statement into its empirical counterpart. To do so, we replace the
choice probabilities by empirical choice frequencies and replace the re-
sponse time distributions by nonparametric kernel density estimates.*

Fix a subject and a snack food item zand call the reference item . Sup-
pose that choice was actually stochastic, so the subject did not make the
same choice in all 10 repetitions of the decision problem. The data set
contains 77 such decision problems involving 770 choices. We then plot
the function

D(t) = plaz, 1)E(z 1) () = p(r, 2)F(r,2)(0),

where p(z, r) and p(r, z) are the empirical choice frequencies across the
10 repetitions and F(z, r) and F(r, z) are CDFs obtained from nonpara-
metric kernel density estimates of the associated response times.?' If
D(t) > Oforall ¢ > 0, we can deduce a revealed preference for item z over
the reference 7. Similarly, if D(¢) < 0 for all ¢ > 0, we deduce a revealed

* An alternative approach is to replace the response time distributions by the empirical
CDFs, i.e., step functions with steps at the observed response times. This alternative ap-
proach yields results similar to the ones based on kernel estimates, and we report them
in the footnotes.

* The kernel density estimates were performed in Stata using the akdensity module,
which delivers CDFs as output. We estimate the distribution of log response times to avoid
boundary problems arising from ¢ > 0. The estimates use an Epanechnikov kernel with op-
timally chosen nonadaptive bandwidth. For the case where some choice is made only one
out of 10 times—and hence only a single response time is available—an optimal bandwidth
cannot be determined endogenously, so we set it to 0.1, yielding a distribution function
close to a step function at the observed response time.
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preference for rover z. If D(t) intersects the X-axis at some #, a revealed
preference cannot be deduced without distributional assumptions.

Figure 3 shows the function D(1) for all stochastic choices of four se-
lected subjects in the data set, normalized so that D(t) > 0 for large ¢
and plotting response times on a logarithmic scale.

There is, of course, a large heterogeneity among subjects. For in-
stance, the subject in the top left panel exhibited stochastic choice for
only two of the 17 snack food items. Our ¢FSD condition is fulfilled
in one of these cases (blue line) but not in the other (red line). The sub-
jectin the top right panel exhibited stochastic choice for 13 items, with ¢
FSD being satisfied in 10 of the cases. Hence, we obtain a distribution-
free revealed preference for more than three-quarters of the stochastic
choices of this subject.

The subjectin the bottom left panels displays stochastic choice for three
snacks, of which two fulfill our revealed preference condition. The third
case is interesting and represents a case where ¢FSD is clearly violated.
The blue line initially falls below zero because the quickest choices favor
one of the options (the reference rin that case), but it eventually increases
above zero because slower choices favor the other option (the snack item
z). Overall, the snack zis chosen in six out of 10 cases, but the countervail-
ing pattern of response times makes it impossible to conclude that the dis-
tribution of the noise is symmetric enough to obtain a revealed preference.
It is worth remarking again that patterns like this one are precluded, ex-
ceptas noisy realizations in a finite data set, both by RUM-CFs with symmet-
ric distributions (as shown by our proposition 4) and by DDMs (as shown
by our proposition 6).

The subject in the bottom right panel is particularly interesting. Of the
four snacks for which choice was stochastic, three violate ¢FSD. The fourth
one, however, is such that both the item z and the reference r were chosen
exactly five times; hence, the blue line becomes zero for large . Yet it lies
weakly above zero for all ¢, with many inequalities being strict, meaning that
a strict preference (for the reference r in that case) is revealed according
to our criterion, while an approach based on the symmetry assumption
would conclude an indifference (see our discussion in n. 12).

Across all subjects and decision problems in which choice was stochastic,
our ¢FSD condition is fulfilled in 61.0% of the cases.” Put differently, in
substantially more than half of the stochastic choice problems, a prefer-
ence is revealed without distributional assumptions. We take this as evi-
dence of the empirical relevance of the ¢FSD criterion. We also note that

# With CDFs estimated by their empirical step function counterparts, this number is
64.9%. If we do not count as a violation the cases where D(¢) intersects the X-axis right after
the quickest choice—which can happen by chance whenever the quickest choice is in the
wrong direction—the number increases to 87.0%.
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classical first-order stochastic dominance obtains in only 35.1% of the
cases, and in more than half of these cases (15 out of 27) the less frequently
chosen option is actually the faster one, so that there is no systematic rela-
tionship between choice frequencies and classical first-order stochastic
dominance. Finally, the 39.0% of the cases where ¢FSD is violated suggests
that neither symmetric RUM-CFs nor DDMs are appropriate models for
the data-generating process.

B.  Applying Theorem 2

Theorem 2 allows us to make out-of-sample predictions. The experiment
of Clithero (2018) is particularly well suited for this purpose, since all
first-phase choices were made between different snack food items and
a fixed reference item, while in the second phase each possible pair of
nonreference items was presented once as a binary decision problem.
In a setting like this, we can use the first phase to derive complete pref-
erences and use them to predict choices in the second phase, making no
distributional assumptions other than symmetry.

The key to the application is realizing that theorem 2 (plus transitiv-
ity) reveals the entire preference relation if one has choice and response
time data for the choice between each item z and one fixed reference
item 7. By proposition 2, all items z with p(z, r) > 1/2 are revealed to
be strictly better than the reference ». Theorem 2, in turn, implies that
items better than r are ordered inversely by 6(z). That is, for any z
and 7 with p(z, r) > 1/2 and p(7, r) > 1/2, zis revealed to be strictly pre-
ferred over 7 if 0(z, r) < (2, r). Similarly, all items zwith p(z, r) < 1/2 are
strictly worse than r and are ordered by 0(7, z). Last, any item z with
p(z,r) = 1/2 is revealed to be indifferent to r.

To deduce the entire preference relation from first-phase choices,
we need to identify the empirical counterparts (z, r) of the percentiles
6(z r) and analogously for 9(7, z). Again, we rely on the nonparametric ker-
nel density estimates of the response time distributions and define 9(z, 7)
such that

0.5
) Pl 7)
and analogously for §(r, z).* This empirical percentile is also well defined
if choice was deterministic, in which case itbecomes the median response
time of the option that was chosen in all 10 repetitions. While our

F(z, 7) (9(z, r)) =

» More precisely, we estimate /7(z, r)(¢) at all response times ¢ that were ever observed in
the entire data set. Then we define 0(z, r) as the average between the largest of the ¢ for
which F(z,7)(¢) < 0.5/p(z r) and the smallest of the ¢ for which F(z, r)(t) > 0.5/p(z, r).
With the alternative approach based on empirical step function CDFs, the condition

F(z,1)(1) = 0.5/p(z r) is always satisfied for an entire interval of ¢, corresponding to one
step of the CDF. We then define 6(z, r) as the midpoint of this interval.
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theoretical analysis does not cover the case of truly deterministic choice,
it predicts that the percentile converges to the median as p(z, r) — 1. We
implement this prediction by ranking also the deterministically chosen
options based on 8(z, r) or 0(r, z).

We use the so-derived revealed preference relations to predict choices in
the second phase, that is, strictly out of sample. With symmetric utility
noise, z is chosen over 7 with a probability larger than 1/2 if and only if
z is preferred over 7. Hence, we code a choice of z over 7 in the second
phase as correctly predicted if z was revealed to be preferred over 7 in
the first phase.** Despite the fact that second-phase choices are noisy them-
selves and the data set contains only one decision for each pair of items, the
accuracy of our prediction is remarkable. Across all subjects and binary de-
cision problems, our predictions are correct in 80.7% of the cases.”

Clithero (2018) conducted the same prediction exercise on the basis
of additional structural assumptions. First, he fitted a conventional logit
model to the first-phase choices and used the individual parameters to pre-
dict second-phase choices.*® This method yielded a prediction accuracy of
only 73.8%. This accuracy of the logit model is significantly lower than for
our approach based on theorem 2 (paired #test based on subjectlevel pre-
diction accuracy that we obtained from Clithero, ¢ = 5.4046, p < .0001).
Second, Clithero (2018) fitted a fully parametric DDM, using first-phase
choices and response times. This method yielded a prediction accuracy
of 81.2%, which is statistically indistinguishable from our approach (paired
ttest, t = —0.7781, p = .4426). Hence, we achieve the same accuracy as a
DDM but without any parametric estimation and with no structural assump-
tions beyond symmetry of noise and the chronometric relationship.

Our prediction accuracy is even higher for a subset of decisions. The sec-
ond phase of the experiment collected only one decision for each pair of
snacks. Since choices are stochastic, prediction accuracy must be limited
simply because of the inherent noise. Previous research has documented
that noisier decisions, which are thus more difficult to predict accurately,
have longer response times on average (e.g., Chabris et al. 2009; Al6s-Ferrer
and Garagnani 2018). We do have the response times of the second-phase
decisions, which we did not use so far. As a simple exercise, we divided the
data in four response time quartiles for each subject and reexamined the
corresponding subsets of decisions. For the slowest decisions, prediction
accuracy drops to 68.5%. For the second-slowest quartile, it rises to

* The revealed preference relations that we obtain are always strict, except for one
subject and one pair of items. We ignore this single case of indifference in our prediction
evaluation.

# With empirical step function CDFs, the prediction is correct in 80.0% of the cases.

* The fitting approach relies on a Markov chain Monte Carlo method assuming compa-
rability of choices across individuals. Comparability across individuals is necessary because,
if not, p(z ) € {0, 1} would deliver no information. The Monte Carlo approach generates
information from the fact that j(z, ) & {0, 1} for some other individual.
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79.0%. For the second-fastest quartile, it is already at 86.7%. Finally, for the
quartile containing the fastest decisions, prediction accuracy is at a remark-
able 88.7%. This shows the actual potential of our method.

C. Applying Theorem 3

If one is willing to assume that utility noise has a Fechnerian structure
(but still not commit to a specific form, such as logit or probit), theo-
rem 3 allows an even more fine-tuned out-of-sample prediction in the
form of choice probabilities p(x, y) for unobserved choices. We apply this
result to the same data set as above.

The procedure is analogous to that illustrated in section V.B. For each
pair of snacks (z, Z), we obtain a probability prediction from the formula
in theorem 3 by replacing all expressions by their empirically estimated
counterparts, just like before. However, we can use theorem 3 to indepen-
dently predict either p(z, 7)) or p(7, z), and the two predictions are not
guaranteed to satisfy p(z,2) = 1 — p(7, z). Put differently, we may obtain
two different predictions for the same choice probability by swapping
the roles of x and y in theorem 3. The issue does not arise with a large
and rationalizable data set like in our theoretical analysis, but it will arise
in finite noisy data. It turns out that differences are small in our data set.
On average across all second-phase decisions, the difference between
Pp(z, ) and 1 — p(2, z) is 0.04 and thus less than b percentage points.”
For the following evaluation, we take the average of the two predictions.

To measure the accuracy of our prediction, we compute the mean abso-
lute error across all decisions in the second phase of the experiment. If z
was chosen over 7, the absolute error of the prediction in this decision is
defined as 1 — p(z, 7), which implies a smaller error if the observed choice
was predicted to be more likely. If Z was chosen over z, the absolute error is
p(z, 7). Proceeding in this way, we obtain a mean absolute error of 0.237.%

The logit model of Clithero (2018) yielded a mean absolute error of
0.263. Compared with our method, this error is significantly larger (paired
ttest, ¢ = —3.7208, p = .0008), so that our response-time based approach
again outperforms the conventional RUM. The DDM of Clithero (2018)
achieved a mean absolute error of 0.209, which is significantly lower than
for our method (paired ttest, t = 7.3948, p < .0001). We emphasize that
our nonparametric method yields its high accuracy in a computationally
straightforward way and does not require structural estimation like a DDM.

Our prediction is again more accurate for faster decisions. We predict
probabilities closer to 0 or 1 for second-phase decisions that turn out to

* With empirical step function CDFs, the average difference is 0.06. Since probability
predictions are on a much coarser grid in that case, there is actually no difference at all
in 57.2% of the cases.

* With empirical step function CDFs, the number is 0.235.
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happen faster, in line with the literature cited earlier.* For the slowest deci-
sions, the mean absolute prediction error is 0.354. For the second-slowest
quartile, it falls to 0.253. For the second-fastest quartile, it is already at
0.188. Finally, for the quartile containing the fastest decisions, the error is
at only 0.152.

VI. Relation to the Literature
A, Stochastic Choice and Response Times: History

The realization that choice is inherently stochastic has permeated econom-
ics for decades and psychology even longer.** Models of stochastic choice in
economics view SCFs—the most direct theoretical counterpart of observ-
able choice frequencies—as a primitive. Block and Marschak (1960) posed
the question of when an SCF can be represented as a distribution over pref-
erences, with the interpretation that either choices are generated by ran-
domly sampled preferences at the individual level or they reflect the
choices of a population of randomly sampled agents. Not every SCF can
be viewed as such a distribution, but Falmagne (1978), Barbera and Patta-
naik (1986), and McFadden and Richter (1990) derived necessary and suf-
ficient conditions under which this is possible. Those random preference
models are behaviorally equivalent to RUMs, which assume the existence
of a utility function that is perturbed by an error term. For finite sets of al-
ternatives, Block and Marschak (1960) showed that choice probabilities can
be rationalized by a random preference model if and only if they can be ra-
tionalized by a RUM. The applied literature overwhelmingly relies on the
second approach, because it allows for parametric estimation once one fixes
functional forms for the utility function and the noise term. RUMs have a
long history, with contributions including Marschak (1960) and going back
to Thurstone (1927), but they first became widespread in economics after
being used in transportation science (Ben-Akiva and Lerman 1985), as
McFadden (2001) explains in his Nobel Prize lecture. It was Thurstone
(1927) in psychology who first introduced what is known today as the probit
model, where utility errors are assumed to be normally distributed. This is
the first example of a Fechnerian model, as described in our section III.C.
In these models, choice probabilities can be derived from a fixed CDF of
utility differences (see also Debreu 1958). A different example is the logit

* For the slowest quartile of decisions, the average predicted probability of the more
likely choice is 0.74. It becomes 0.81 for the second-slowest quartile, 0.85 for the second-
fastest quartile, and 0.89 for the fastest quartile.

* The extent to which this is true seems to be often underestimated. For instance,
Samuelson (1938), which is widely considered to be one of the seminal contributions to
have started the modern revealed preference approach, was, as its title indicated, a note on
the earlier paper of Georgescu-Roegen (1936), which explicitly viewed consumer choice
as stochastic.
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model, where one assumes a logistic distribution for utility differences. The
logit model is particularly interesting because choice probabilities can be
written in a closed form that is equivalent to the celebrated choice model of
Luce (1959), where the choice probability of an option is proportional to
a normalized value that can be interpreted as the utility of the option (for
a detailed treatment, see Anderson, Thisse, and De Palma 1992, chap. 1).
Generating choice probabilities from decision values by assuming a logit
function (or softmax) is also a common approach in decision neuroscience.

Parallel to developments in economics and related sciences, cognitive
psychology—inspired by the same earlier observations and models—fol-
lowed a different path. The motivation was to explain both choice frequen-
cies and data associated with the choice process, such as response times. A
key development in this literature was the DDM of Ratcliff (1978) de-
scribed in section IV.B (see also Ratcliff and Rouder 1998). The DDM pre-
dicts logit probabilities in binary choice and, as argued by Woodford
(2014), could be seen as providing a foundation for the latter. The model
essentially evolved from a chain of contributions adapting the sequential
ratio probability test of Wald (1945) as a descriptive model of choice and
has grown to become a veritable standard in cognitive psychology and neu-
roscience. Although the reasons for its original success are probably linked
toits flexibility in fitting data, it has been argued to reflect neural processes
implementing choices (Shadlen and Kiani 2013; Shadlen and Shohamy
2016). Recent developments have integrated attentional processes in the
form of eye-tracking data into the DDM (Krajbich, Armel, and Rangel
2010; Krajbich and Rangel 2011). Empirical estimates of these attentional
DDMs indicate that nonattended options tend to be discounted in the pro-
cess of evidence accumulation. As discussed in the text, models such as the
one in Ratcliff (1978) can also be interpreted as models where latent utility
differences are discovered by the decision maker, and that discovery takes
time (Fudenberg, Strack, and Strzalecki 2018). It is precisely this reinter-
pretation that provides a powerful intuition for the chronometric func-
tion: it takes time to tell apart two close values, while differentiating two val-
ues that are far apart is quickly done.

Our work constitutes a bridge between the disparate branches of the
literature by providing a framework where response times can be under-
stood as an integral part of RUMs.

B.  Response Times: Recent Developments

Our work is related to a recent strand of the literature that makes the em-
pirical point that response time data can help with structural estimation
of preferences by using the chronometric function. Konovalov and Kraj-
bich (2019) and Schotter and Trevino (2021) propose to estimate indif-
ference points by using the longest response times in a data set and then



000 JOURNAL OF POLITICAL ECONOMY

deduce ordinal preference relations from the indifference points. Other
studies have shown how response times are indicative of effort allocation
(Moffatt 2005) or can be used to improve out-of-sample predictions of
choices (Clithero 2018). All those works, however, consider fully specified
structural models and add response times to improve the estimation, an
approach that can be useful when choice data are scarce or not reliable.
In contrast, our paper solves a different problem. As proposition 1 shows,
in the absence of unverifiable assumptions about the structure of utility
noise, it is impossible to uncover preferences from choices. We show that
this fundamental problem can be overcome with response time data. We
provide, in particular, a simple and intuitive condition that ensures that
preferences can be recovered nonparametrically in the absence of any as-
sumptions on the distribution of utility noise, that is, under conditions
where the recovery of preferences fails even with rich choice data.

Echenique and Saito (2017) provide an axiomatization of the chrono-
metric relationship, viewed as a mapping from utility differences to re-
sponse times, as in our model. They consider deterministic choices and
deterministic response times only. Their main interest is a characteriza-
tion of finite and incomplete data sets that can be rationalized by a deter-
ministic utility function together with a chronometric function. That is,
they do not consider stochastic choice or the problems that arise when
utility is noisy.

While response times are generally receiving increased attention as a
tool to improve economic analysis, detailed studies are still scarce (a re-
view and discussion can be found in Spiliopoulos and Ortmann 2018).
Examples include the studies of risky decision-making by Wilcox (1993,
1994), the web-based studies of Rubinstein (2007, 2013), and the study
of belief updating by Achtziger and Alés-Ferrer (2014). The study of Alés-
Ferrer et al. (2016) uses the chronometric relationship to understand
the preference reversal phenomenon (Grether and Plott 1979), where de-
cision makers typically make lottery choices that contradict their elicited
certainty equivalents when one of the lotteries has a salient, large out-
come. Alos-Ferrer et al. (2016) show that if reversals are due to a bias in
the elicitation process rather than in the choice process, choices associ-
ated with reversals should take longer than comparable nonreversals. The
reason is simply that reversals (where noisy valuations flip) are more likely
when the actual utilities are close, and hence, by the chronometric rela-
tionship, response times must be longer. The prediction is readily found
in the data, providing insights into the origin and nature of reversals.

C. Stochastic Choice: Recent Developments

Our work is related to the recent literature on stochastic choice theory us-
ing extended data sets. Caplin and Dean (2015) and Caplin and Martin
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(2015) consider data sets that specify choice frequencies as functions of
observable signals about an underlying state. Their results focus on ratio-
nalizability when the decision maker has a prior and updates it through
Bayes’ rule after receiving the signals, but state-dependent choice data
adds an additional dimension that could potentially help with preference
revelation too. Extended data also play a role in the model of Eliaz and
Rubinstein (2014), where decision makers observe and can imitate other
agents but can additionally observe correlates of their decisions and, in
particular, whether those decisions were hasty or not.

Our paper also contributes to the theory of behavioral welfare econom-
ics, which aims at eliciting preferences from inconsistent choice data
(among others, see Bernheim and Rangel 2009; Masatlioglu, Nakajima,
and Ozbay 2012; Rubinstein and Salant 2012; Benkert and Netzer 2018).
Most of this literature considers deterministic choices. Two exceptions
are Manzini and Mariotti (2014) and Apesteguia and Ballester (2015).
Manzini and Mariotti (2014) show that underlying preferences can be
identified when stochastic choice is due to stochastic consideration sets.
Apesteguia and Ballester (2015) propose as a welfare measure the prefer-
ence relation that is closest (in a certain, well-defined sense) to the ob-
served stochastic choices. Similar to our results in section IV, they show that
this procedure recovers the true underlying preference if the data are gen-
erated by RUMs fulfilling a monotonicity condition. To the best of our
knowledge, this literature has notyet discovered the value of response time
data for preference revelation.

The difficulty of a choice problem can be influenced by additional fac-
tors on top of the utility difference between the options. For instance, if
the options are multidimensional, then a choice problem involving a dom-
inant alternative may be very simple, generating accurate and quick re-
sponses even if the underlying utility difference is small (see, e.g., He and
Natenzon 2018). This is a well-known problem for conventional RUMs, be-
cause if the utility difference is small, error rates are predicted to be high.
However, our definition of RUM:s sidesteps this problem. The reason is that
the added generality in definition 2 allows for pair-specific random utility
differences 9(x, y) that are not necessarily simple differences @(x) — u(y)
between option-specific random variables. For instance, He and Naten-
zon (2018) consider moderate utility models relating choice probabili-
ties p(x, y) to utility differences u(x) — u(y) and an additional distance
d(x, y), which reflects factors beyond utility differences that may influ-
ence the pair-specific choice difficulty. The assumption is that p(w, x) >
p(y, z) if and only if (u(w) — u(x))/d(w, x) > (u(y) — w(z))/d(y, z), which
retains the basic regularities of conventional models while allowing for
violations of weak stochastic transitivity. Such considerations can be re-
flected in our setting by working with a formulation like 9(x, y) = u(x) —
u(y) + d(x, y)(é(x) — €(y)). A similar point applies if decisions are subject
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to frames (e.g., Salant and Rubinstein 2008; Benkert and Netzer 2018)
or to pair-specific impulsive tendencies or intuitive processes (Achtziger
and Alos-Ferrer 2014), which might influence response times indepen-
dently of the underlying utilities.

VII. Conclusion

Choice theory has traditionally focused on choice outcomes and has ig-
nored auxiliary data, such as response times. This neglect comes at a cost
even for traditional choice-theoretic questions. In the context of stochastic
choice, ignoring response time data means discarding information about
the distribution of random utility, which then has to be compensated by
making distributional assumptions. In this paper, we have developed a
suite of tools that utilize response time data for a recovery of preferences
without or with fewer distributional assumptions. Table 1 summarizes
our main results on what can be learned from a data set. The table illus-
trates that using response times is always a substitute for making the next
stronger distributional assumption. We have also shown that our tools are
easy to apply and generate remarkably accurate results.

Throughout most of the paper, we have interpreted SCF-RTs as describ-
ing the choices of a single individual who is confronted with the same set of
options repeatedly. Random utility then reflects fluctuating tastes or noisy
perception of the options. However, our tools also work when the data are
generated by a heterogeneous population of individuals, each of whom
makes a deterministic choice at a deterministic response time (as in
Echenique and Saito 2017). Random utility then reflects a distribution of
deterministic utility functions within the population, and response times
vary because the difficulty of the choice problem varies with the subjective
utility difference. At first glance, a one-to-one translation of our results
seems to require the assumption that the same chronometric function ap-
plies to all individuals.”® However, what we called a noisy chronometric
function in section IV can readily be interpreted as a distribution of chro-
nometric functions within the population. In this population interpreta-
tion, a revealed preference for x over y means that utilitarian welfare with
xis larger than with y. The use of response times is a novel way to approach
the long-standing problem of how to measure the cardinal properties of
utility that utilitarianism relies on.*

* Empirical results by Chabris et al. (2009) and Konovalov and Krajbich (2019) indicate
that response times (even as little as one observation per individual) can indeed be used to
track down parametric differences in utilities across individuals.

* See d’Aspremont and Gevers (2002) for a discussion. The requirement that each in-
dividual’s chronometric function is drawn independently from a restricted class (as de-
scribed in sec. IV) mirrors the interpersonal comparability of utility units that utilitarian-
ism requires.
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TABLE 1
SUMMARY OF MAIN RESULTS
Assumptions Choice Data Only Choice and Response Time Data
None Cannot learn anything about ~ Learn preferences within sample
preferences (proposition 1) (theorem 1)
Symmetric noise Learn preferences within Also learn preferences for option
sample (proposition 2) pairs outside data set (theorem 2)
Fechnerian Learn preferences for option  Also learn choice probabilities for
noise pairs outside data set option pairs outside data set
(proposition 3) (theorem 3)

There is a range of interesting questions that we leave for future re-
search. First, our results lend themselves to empirical application. A first
natural step was to work with experimental choice data from the lab, where
response times are easy to measure. Future work could study real-world
data, for example, from online marketplaces, where the time a consumer
spends contemplating the options could be (and presumably is already)
recorded. A challenge will be to differentiate response time in our sense
from other concepts, such as the time required to read information or
to deliberate on the consequences of an action, which may have other qual-
itative predictions (as in Rubinstein 2007, 2013).

Second, we have not attempted a full characterization of rationalizability
for arbitrary SCF-RTs beyond those studied in section IV. For the case with-
out response times, characterizations are relatively simple and have been
given in the literature.” The problem is substantially more involved when
response time distributions have to be rationalized too. However, some
useful necessary conditions are easy to obtain. For instance, an SCF-RT
can be rationalizable in the class of all RUM-CFs only if the preferences re-
vealed according to theorem 1 have no cycles, as otherwise there cannot
exist a utility function that is consistent with the revealed preferences.
Analogous conditions hold for rationalizability in the classes of symmetric
or Fechnerian RUM-CFs. These simple conditions provide a specific test of
our response time-based model and allow it to be falsified by the data.

Finally, response times are a particularly simple measure with a well-
established relation to underlying preferences, but they may not be
the only auxiliary data with that property. Physiological measures—such
as pupil dilation, blood pressure, or brain activation—may also carry sys-
tematic information about preferences. It is worth exploring to what ex-
tent these measures can improve the classical revealed preference ap-
proach and should therefore be added to the economics toolbox.

* For instance, it can be shown that an SCF is rationalizable in our class of symmetric
RUMs if and only if the binary relation R defined in app. B has no cycles, in the sense
of Suzumura (1976).
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