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Abstract

We examine economic mobility in India while accounting for misclassi�cation to better understand

the welfare e¤ects of the rise in inequality. To proceed, we extend recently developed methods

on the partial identi�cation of transition matrices. Allowing for modest misclassi�cation, we �nd

overall mobility has been remarkably low: at least 65 percent of poor households remained poor

or at-risk of being poor between 2005 and 2012. We also �nd Muslims, lower caste groups, and

rural households are in a more disadvantageous position compared to Hindus, upper caste groups,

and urban households. These �ndings cast doubt on the conventional wisdom that marginalized

households in India are catching up.
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1 Introduction

There has been a phenomenal rise in economic inequality in India over the past few decades. A

2018 Oxfam study reports a signi�cant increase in the consumption Gini index in both rural and

urban areas in India from 1993-94 to 2011-12.1 According to Global Wealth Report (GWR) 2017,

the share of wealth owned by the bottom 50% of the population declined from 8.1% to only 4.2%

between 2002 and 2012, while that of top 1% increased from 15.7% to 25.7%.2 Among the countries

for which GWR gives the share of wealth held by the top 1%, only Indonesia and the US have higher

values. In a recent study Chancel and Piketty (2019) �nd that current inequality in India is at its

highest level in 96 years. The authors (p. S60) state: �India in fact comes out as a country with

one of the highest increase in top 1% income share concentration over the past thirty years.�

Given this dramatic rise in inequality, it is imperative to accurately measure the extent of eco-

nomic mobility in India. Mobility is salient because the welfare e¤ects of rising inequality depend

crucially on the level of economic mobility. Economic mobility (or a lack thereof) can attenuate (or

accentuate) the adverse e¤ects of inequality. Ceteris paribus, economic mobility �whereby house-

holds move more freely throughout the income/consumption distribution �results in a more equal

distribution of lifetime income/consumption relative to the distribution of income/consumption

in a given period. Conversely, intragenerational mobility, leading to less variation in lifetime in-

come/consumption, may be undesirable if it implies a decoupling between ability and/or e¤ort

and income/consumption (Jäntti and Jenkins 2015). Moreover, as discussed in Glewwe (2012)

and Dang et al. (2014), the nexus of inequality and mobility has crucial implications for policy

design. If inequality is high and mobility is low, then low socioeconomic status (SES) households

will often �nd themselves in a poverty trap and policies should perhaps target the acquisition of

assets by such households. However, if inequality and mobility are both high, but households are

unable to smooth consumption during periods of low income, then policies that target the sources

of consumption volatility or expand access to credit and insurance markets may be warranted.

Here, we seek to analyze the degree of economic mobility in India while overcoming a major

data challenge: measurement error in income or consumption data. It is widely aceepted that

income and consumption data from surveys su¤er from measurement error. Vanneman and Dubey

(2013, p. 441) argue that measurement error is particularly problematic in the Indian context as

�most Indian households receive income from more than one source�and this �variety of income

1https://www.oxfamindia.org/sites/default/files/WideningGaps_IndiaInequalityReport2018.pdf.
2https://www.credit-suisse.com/about-us/en/reports-research/global-wealth-report.html.
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sources and household economic strategies presents a much greater challenge for income measure-

ment in India than is typical in rich-country data.� Focusing on household consumption instead

of income does not ameliorate these issues (Glewwe 1991). Vanneman and Dubey (2013, p. 443)

state that �survey measures of [consumption] expenditures have their own measurement problems

(for example, respondent fatigue) and volatility (marriages, debts, and health crises can create

unrepresentative spikes for some households).�Meyer and Sullivan (2003, p. 1182) conclude: �In

practice, survey income, expenditure and consumption are all measured with signi�cant error.�

Overcoming measurement error in income or consumption data is not trivial as previous research

demonstrates that such errors are nonclassical (i.e., the errors are mean-reverting and serially

correlated) (Duncan and Hill 1985; Bound and Krueger 1991; Bound et al. 1994; Pischke 1995;

Bound et al. 2001; Kapteyn and Ypma 2007; Gottschalk and Huynh 2010; Jäntti and Jenkins,

2015). This introduces added complications in measuring economic mobility. Pavlopoulos et al.

(2012, p. 750) conclude that �ignoring [measurement error] can cause �enormous bias� in the

estimation of income/consumption dynamics.�Moreover, discretizing income/consumption into bins

and analyzing transition probabilities, as we do here, does not ameliorate the problem; measurement

error in the continuous data leads to misclassi�cation in the categorical data.

In this paper, we address the problem of misclassi�cation while examining intragenerational

economic mobility in India. To do so, we extend recent work in Millimet et al. (2020) on the

partial identi�cation of transition matrices and apply our methodology to panel data on household

consumption from the India Human Development Survey (IHDS). Compared with Millimet et al.

(2020), our approach bounds consumption transition probabilities under di¤erent (but overlapping)

assumptions concerning misclassi�cation errors and the underlying consumption dynamics. First,

under minimal assumptions concerning the misclassi�cation process, we derive sharp bounds on

transition probabilities. Second, we narrow the bounds by imposing more structure via shape re-

strictions, monotone instrumental variable (MIV) restrictions that assume monotonic relationships

between the true consumption expenditure and certain observed covariates (Manski and Pepper

2000), and assumptions concerning the temporal properties of misclassi�cation. Speci�cally, given

the time structure of the data, we consider two assumptions absent in the prior work on the time

series properties of misclassi�cation; we refer to these as temporal independence and temporal in-

variance. Our approach leads to meaningful bounds on the rates of mobility even when we have no

information about the misclassi�cation probabilities in the form of validation data (gold standard

measurements) or repeated measurements (which is the case in the present context).
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Our analysis is focused on consumption mobility for two reasons. First, India determines a

household�s o¢ cial poverty status using monthly per capita consumption expenditure (Govern-

ment of India Planning Commission 2014). As such, we are able to examine economic mobility as

it relates to poverty (i.e., poverty mobility). Thus, our focus is on absolute mobility (consumption

relative to the poverty line) rather than relative mobility within the overall distribution, allowing us

to distinguish between transitions into and out of poverty. Second, consumption is conventionally

viewed as the preferred welfare indicator in developing countries because it is thought to better

capture long-run welfare levels than current income. For example, Meyer and Sullivan (2003, p.

1210) note, �conceptual arguments as to whether income or consumption is a better measure of

material well-being of the poor almost always favor consumption...[since it] captures permanent

income, re�ects the insurance value of government programs and credit markets, better accom-

modates illegal activity and price changes, and is more likely to re�ect private and government

transfers.�

Our analysis yields several striking �ndings. First, we show that a modest amount of misclas-

si�cation leads to bounds on mobility rates that can be quite wide and almost uninformative in

the absence of other information or restrictions. This is an incredibly valuable result in its own

right as it indicates that mobility estimates that do not account for misclassi�cation produce a false

sense of certitude; self-observed mobility rates in survey data can be highly misleading. Second,

the restrictions considered here contain signi�cant identifying power as the bounds can be severely

narrowed.

Third, under our most restrictive set of assumptions, but still allowing for misclassi�cation of

up to 20% of the sample, we �nd that the probability of being in poverty in 2012 conditional on

being in poverty in 2005 is at least 22%, the probability of being in a insecure nonpoor state (i.e.,

monthly per capita household consumption expenditure is between the poverty line and twice the

poverty line) in 2012 conditional on being in poverty in 2005 is at least 42%, and the probability

of being in a secure nonpoor state (i.e., monthly per capita household consumption expenditure

is at least twice the poverty line) in 2012 conditional on being in poverty in 2005 is at most 30%.

Under the same set of assumptions, we also �nd that the probability of being in poverty in 2012

conditional on being in a insecure nonpoor state in 2005 is at least 6% and at most 21%, while the

probability of being in poverty in 2012 conditional on being in a secure nonpoor state in 2005 is at

most 19%. These �gures indicate that mobility has been remarkably low in India.

Finally, even upon imposition of the strongest, yet arguably plausible, set of assumptions, we
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cannot rule out that one could be underestimating the probability of remaining impoverished over

the sample period and overestimating the probability of escaping poverty by ignoring misclassi�ca-

tion error. Thus, not only do misclassi�cation errors mask the true level immobility in India, but

the conventional wisdom that misclassi�cation causes one to overstate mobility is not justi�ed in

the absence of stronger assumptions than considered here.

We also compare the mobility rates of various subpopulations, �nding evidence of substantial

heterogeneity. First, Muslims do better than Hindus or other religious groups in terms of escaping

poverty; however, they at a disadvantage compared to Hindus and other religious groups in terms

of transitioning to secure nonpoor or remaining secure nonpoor. Second, compared to Brahmin and

Non-Brahmin Upper Caste groups as well as Other Backward Classes (OBCs), Scheduled Castes

(SCs) and Scheduled Tribes (STs) are less likely to escape poverty and more likely to move into

poverty. Finally, rural households, compared to urban households, are more likely to remain in

poverty. They are also less likely to escape poverty and more likely to enter into poverty than the

urban households.

Overall, our analysis suggests inequality in India is paired with relatively low economic mobility.

Our �ndings also challenge the conventional wisdom that marginalized households �those belonging

to minority religious groups, lower castes, or living in rural regions �are catching up on average.

We are not the �rst to examine economic mobility in India. However, early studies primarily

rely on unrepresentative panel data collected for relatively small samples from rural India and do

not address measurement error in income or consumption (see Fields (2007) for a brief review

of this literature). Subsequent studies utilize more representative data but continue to ignore

measurement error (Krishna and Shari¤ 2011; Gautam et al. 2012; Thorat et al. 2017). Recently,

a few studies analyze economic mobility in India while accounting for measurement error (Pradhan

and Mukherjee 2015; Barrientos Q. et al. 2018; Azam 2016; Arunachalam and Shenoy 2017; Dang

and Lanjouw 2018). While admirable, these studies di¤er from ours in that they often rely on

instrumental variables (IV) estimation, strong functional form or distributional assumptions, or

assume that measurement error is only of a certain type (e.g., rank-preserving measurement error).

We contribute to this growing literature by discerning what can be learned about mobility in

India in the presence of noisy survey data by employing an approach that o¤ers several distinct

advantages relative to the existing literature. First, our approach is suitable to address a wide

class of misclassi�cation errors such as non-classical or non-rank preserving errors. Second, our

approach does not rely on functional form or distributional assumptions. Rather it is based on

4



assumptions that are fairly weak, transparent, easily understood by policymakers, and easy to

impose or not impose depending on one�s beliefs. Third, our approach focuses on estimation of

transition matrices, thus examining mobility throughout the distribution. At the very least, our

approach provides complementary information to the existing literature.

Our work, methodologically, is related to at least three strands of literature, First, it is related

to the econometric literature on economic mobility (see, e.g., McGarry 1995; Pavlopoulos et al.

2012; Dang et al. 2014; Lee et al. 2017). Second, it is related to the general statistical literature

on misclassi�cation (see, e.g., Kuha 1997; Kuha and Skinner 1997; Bassi et al. 2000; Rosychuk

and Thompson 2001, 2003; Breen and Moisio 2004; Kuha et al. 2005; Shlomo and Skinner 2010).

Finally, it is related to the literature on partial identi�cation (see, e.g., Horowitz and Manski 1995;

Manski and Pepper 2000; Kreider and Pepper 2007; Kreider et al. 2012).

The rest of the paper unfolds as follows. Section 2 describes the data. Section 3 presents our

empirical approach. Section 4 presents the results. The �nal section concludes. Detailed derivation

of the non-parametric bounds is relegated to Supplemental Appendix A, a more complete review

of the literature is provided in Supplemental Appendix B, and information pertaining to state-level

poverty lines for India can be found in Supplemental Appendix C.

2 Data

2.1 India Human Development Survey (IHDS)

The data come from the IHDS. IHDS is a nationally representative multi-topic panel household

survey conducted by NCAER in New Delhi and University of Maryland (Desai et al. 2010; Desai et

al. 2015). It was designed to complement existing Indian household surveys by bringing together

a wide range of socioeconomic topics in a single survey. The sample was drawn using strati�ed

random sampling with survey weights provided.

The �rst wave was conducted in 2004-05 and covered 41,554 households in 1,503 villages and 971

urban neighborhoods across India. The second wave was conducted in 2011-12 and covered 42,152

households. Not all households in the �rst wave could be surveyed in the second wave; in fact, 6,911

households interviewed in the �rst wave are not available in the second wave. However, our sample

size only declines to 38,737 as some households in the �rst wave split into multiple households in the

second wave. Rather than exclude these households, we map each �split�household in the second

wave back to their corresponding (combined) household in the �rst wave. Since our measure of

5



household well-being is per capita consumption, the change in household size is incorporated into

the analysis.

As shown in Table C3 in the Appendix, households that dropped out of the sample tend to be

relatively well-o¤ in terms of consumption and education in the �rst wave. They are also more

likely to reside in urban areas. Since the attrition rate for impoverished households in the �rst

wave is extremely low, it is likely that our estimates of transitions out of poverty do not su¤er from

sample selection bias. However, some caution should be exercised when interpreting the dynamics

of households with the highest level of initial consumption.

Both waves are based on interviews with a knowledgeable informant from the household. The

interviews covered health, education, employment, economic status, marriage, fertility, gender re-

lations, and social capital. The survey instruments were translated into 13 Indian languages and

were administered by local interviewers. Both waves are now publicly available through the Inter-

university Consortium for Political and Social Research (ICPSR).

The IHDS is well-suited to our purpose for several reasons. First, the IHDS is the most recent

household panel survey conducted in India. Second, it is a nationwide panel �following rural and

urban households �with a larger sample size than other panel surveys conducted in India. The

closest alternative is the ARIS/REDS panel study of Indian households. However, the sample size

is much smaller and only includes rural households. Third, Bartik et al. (2018) note that the IHDS

produces comparable data, including the poverty rate, to other national data sources in India.

2.2 Analytic Sample

We examine economic mobility using per capita monthly consumption expenditure. It is derived

from total annual household consumption expenditure. In the 2004-05 wave, this is aggregated

from information on forty-seven di¤erent consumption categories. In the 2011-12 wave, this is

aggregated from information on �fty-two di¤erent consumption categories.

Our outcome variable is based on the poverty ratio (POV RATIO) of the household, de�ned

as the ratio of a household�s per capita monthly consumption expenditure to the corresponding

poverty line. The poverty line is based on the o¢ cial Indian poverty line for per capita monthly

consumption as recommended by the Suresh Tendulkar committee in 2012 (Government of India

Planning Commission, 2009). The poverty line is state-, year-, and urban-/rural-speci�c (see Table

B1 in Appendix B). As noted by the former Deputy Chairman of the Planning Commission of India,

Montek Singh Ahluwalia, the Tendulkar poverty line is to be used as a relevant reference point �to

6



see how development is helping to take more and more individuals above a �xed line over time and

across states.�3 According to a report in The Hindu (18 March 2016), the NITI Ayog, the policy

think tank of the Government of India that replaced the Planning Commission in 2015, also favors

the use of the Tendulkar poverty line for tracking progress in combating extreme poverty.4 Because

we assess the dynamics of consumption relative to the poverty line in each period and location, we

need not convert nominal consumption into real terms.

Using POV RATIO, we classify households in each wave into three partitions. The �rst partition

consists of households with POV RATIO less than one; these are the households o¢ cially classi�ed

as poor. The second partition consists of households with POV RATIO at least one but less than

two (households between 100% and 200% of the o¢ cial poverty line); we refer to these households

as insecure nonpoor �a term used by the World Bank, USAID, and others �since these households

are at-risk of becoming impoverished. Dang and Lanjouw (2018) create a category of non-poor

households that are �vulnerable�to poverty, de�ned as having a 15% probability of falling below

the poverty line in the next period. The authors�vulnerability line for India over the same time

period as our sample is �close to the twice the national poverty line� and �o¤ers qualitatively

similar results�(p. 157). The third partition consists of the households with POV RATIO at least

two (households with consumption exceeding 200% of the o¢ cial poverty line); we refer to these as

secure nonpoor. Using these three partitions, we estimate 3 � 3 consumption transition matrices

for the full sample as well as for di¤erent subsamples.

Our sample consists of 38,737 households from across India: these are the households who

were interviewed in both the waves of the survey, who have no missing (or invalid) information

on consumption, income, household size, and other demographic characteristics of the household

head (e.g., education, gender, caste, religion), annual total household income and annual total

consumption expenditure are non-negative, and age of the household head in the �rst round is

at least 18. Summary statistics are presented in Table 1. Table C2 in the Appendix provides

unweighted summary statistics for comparison.

As can be observed in Table 1, between 2005 and 2012, average household size declined from

5.83 to 4.76. We feel this decline deserves some explanation as it might appear somewhat counter-

intuitive. According to the IHDS, a household is de�ned as all those who live under the same roof

3https://www.thehindu.com/news/national/tendulkar-poverty-line-will-remain-reference-point/
article2509910.ece.

4https://www.thehindu.com/business/Industry/niti-aayog-task-force-backs-tendulkar-poverty-
line/article8371390.ece.
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and share the same kitchen for 6+ months during the prior year. Therefore, a potential explanation

for this decline is the splitting of households between the two waves as noted above (speci�cally,

of the 40,018 households in wave 1, the number of households who continue living as a single unit

in the second survey round is 30,462; the remainder of our �nal sample are split households). If

households split from a single unit to multiple units over time, a decline in average household size

is possible. Additionally, there are three reasons for a decline in household size: out-migration of

household members, women moving out of the household after marriage, and deaths. It is worth

emphasizing here the decline in household size could potentially a¤ect our estimate of poverty mo-

bility (since some of the factors a¤ecting migration may be related to poverty). However, we do

not think that is a cause of concern. Our objective is to examine mobility using a speci�c measure

of household well-being: per capita consumption. If households move up or down in the per capita

consumption distribution over time due to changes in household composition, then that is a part of

what we seek to understand. We are agnostic about why they move up or down. Finally, since our

well-being measure is per capita consumption expenditure, it is not clear in what direction changes

in household composition will impact mobility.

3 Empirical Framework

3.1 Setup

The setup is similar to previous work in Millimet et al. (2020). However, given the Indian context

as well as the time structure of the data, we consider di¤erent (but overlapping) assumptions than

in the prior paper. In what follows, we present the setup and discuss the main assumptions. We

relegate the formal derivations to Appendix A.

To begin, let y�it, denote the true consumption for household i, i = 1; :::; N , in period t, t = 0; 1.

De�ne the true K �K transition matrix as P �0;1, given by

P �0;1 =

26666664
p�11 � � � � � � p�1K
...

. . .
...

...
. . .

...

p�K1 � � � � � � p�KK

37777775 : (1)
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Elements of this matrix have the following form

p�kl =
Pr(�0k�1 � y�0 < �0k; �1l�1 � y�1 < �1l )

Pr(�0k�1 � y�0 < �0k)
(2)

=
Pr(y�0 2 k; y�1 2 l)

Pr(y�0 2 k)
k; l = 1; :::;K;

where the �s are cuto¤ points between the K partitions such that 0 = �t0 < �
t
1 < �

t
2 < � � � < �tK�1 <

�tK < 1, t = 0; 1. Thus, p�kl is a conditional probability. A complete lack of mobility implies p�kl
equals unity if k = l and zero otherwise.

We can de�ne conditional transition matrices, conditioned upon X = x, where X denotes a

vector of observed attributes. Denote the conditional transition matrix as P �0;1(x), with elements

given by

p�kl(x) =
Pr(�0k�1 � y�0 < �0k; �1l�1 � y�1 < �1l jX = x)

Pr(�0k�1 � y�0 < �0kjX = x)
(3)

=
Pr(y�0 2 k; y�1 2 ljX = x)

Pr(y�0 2 kjX = x)
k; l = 1; :::;K:

Implicit in this de�nition is the assumption that X includes only time invariant attributes. More-

over, while the probabilities are conditional on X, the cuto¤ points � are not. Thus, we are

capturing movements within the overall distribution among those with X = x.

It should be noted that the cuto¤ points in (2) and (3) discretize the underlying continuous

variables, y�t . Despite the popularity of this approach, Bulli (2001) cautions against it as the

discretized data may not represent a proper Markov chain even if the underlying data originate

from a continuous state space Markov process. With this caveat in mind, our analysis is useful

nonetheless as it conveys the loss of information about (1), which is used by researchers and

policymakers alike (e.g., Lee et al. 2017), due to misclassi�cation. Moreover, the solution used in

Bulli (2001) is not feasible here as it requires data on many time periods even in the absence of

measurement error. That said, extending the analysis in Bulli (2001) to allow for measurement

error in the underlying continuous variable should be the subject of future research.

As discussed in more detail in Section 3, in this study we set K = 3. The outcome, y�, denotes

POV RATIO. In each period t, the partitions are set as �t0 = 0, �t1 = 1, �t2 = 2, and �t3 ! 1,

t = 0; 1. Thus, partition one includes households with POV RATIO 2 (�1; 1) in period t (poor

households). Partition 2 includes households with POV RATIO 2 [1; 2) in period t (insecure

non-poor households). Partition 3 includes all households with POV RATIO 2 [2;1) in period t
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(secure non-poor households). In the terminology of Millimet et al. (2020), P �0;1 and P
�
0;1(x) utilize

unequal-sized partitions since the sample is not equally split among the partitions. This means

that mobility is not zero-sum; for example, a household may move up to a new partition without

another household necessarily moving down. Note, we focus on estimation of transition matrices

with relatively few partitions (as opposed to many partitions) since this is what policymakers are

likely to care about. This is because policymakers primarily base resource allocation decisions on

only a few cuto¤s such as the poverty line and the near-poverty (vulnerability) line. Moreover,

increasing the number of partitions will exacerbate misclassi�cation (Millimet et al. 2020).

Our objective is to learn about the elements of P �0;1 or P
�
0;1(x). With a random sample fy�it; xig,

the transition probabilities are nonparametrically identi�ed; consistent estimates are given by the

empirical transition probabilities. However, as stated previously, ample evidence indicates that

consumption is measured with error. Let yit denote the observed consumption for household i in

period t. With data fyit; xig, the empirical transition probabilities are inconsistent for p�kl and

p�kl(x). Rather than invoking overly strong, and likely implausible assumptions, to point identify

the transition probabilities, our goal is to bound the probabilities given in (2) and (3).

To proceed, we characterize the relationships between the true partitions of fy�itg1t=0 and the

observed partitions of fyitg1t=0 using the following joint probabilities:

�
(k0;l0)
(k;l) = Pr(y0 2 k0; y1 2 l0; y�0 2 k; y�1 2 l): (4)

While conditional misclassi�cation probabilities are more intuitive, these joint probabilities are

easier to work with (e.g., Kreider et al. 2012).

In (4) the subscript (k; l) indexes the true partitions in periods 0 and 1 and the superscript

(k0; l0) indicates the observed partitions. With this notation, we can now rewrite the elements of

P �0;1 as

p�kl =
Pr(y�0 2 k; y�1 2 l)
Pr(y�0 2 k)

=

Pr(y0 2 k; y1 2 l) +
X

k0;l0=1;2;:::;K
(k0;l0) 6=(k;l)

�
(k0;l0)
(k;l) �

X
k0;l0=1;2;:::;K
(k0;l0) 6=(k;l)

�
(k;l)
(k0;l0)

Pr(y0 2 k) +
X

k0;l0;el=1;2;:::;K
k0 6=k

�
(k0;l0)

(k;el) �
X

k0;l0;el=1;2;:::;K
k0 6=k

�
(k;l0)

(k0;el)

� rkl +Q1;kl �Q2;kl
pk +Q3;k �Q4;k

: (5)
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Q1;kl measures the proportion of false negatives associated with partition kl (i.e., the probability

of being misclassi�ed conditional on kl being the true partition). Q2;kl measures the proportion of

false positives associated with partition kl (i.e., the probability of being misclassi�ed conditional on

kl being the observed partition). Similarly, Q3;k and Q4;k measure the proportion of false negatives

and positives associated with partition k, respectively.

The data identify rkl and pk (and, hence, pkl � rkl=pk), but not the misclassi�cation parameters,

�. One can compute sharp bounds by searching across the unknown misclassi�cation parameters.

However, absent further restrictions, obtaining informative bounds on the transition probabilities is

not possible. In the Section 3.2, we introduce assumptions on the �s to potentially yield informative

bounds. Some of these assumptions are considered in Millimet et al. (2020), while some are new.

Section 3.3 considers restrictions on the underlying mobility process and are identical to those

considered in Millimet et al. (2020).

3.2 Misclassi�cation

3.2.1 Assumptions

Allowing for misclassi�cation, we obtain bounds on the elements of P �0;1, given in (5). In the

interest of brevity, we focus attention from here primarily on the unconditional transition matrix.

We return to the conditional transition matrix in Section 3.3. We begin by considering the following

two misclassi�cation assumptions from Millimet et al. (2020).

Assumption 1 (No Missclassi�cation). Misreporting does not alter an observation�s partition in

the consumption distribution in either period. Formally,
P
k;l �

(k;l)
(k;l) = 1 or, equivalently,

X
k;k0;l;l0=1;2;:::;K
(k0;l0) 6=(k;l)

�
(k0;l0)
(k;l) = 0:

Assumption 2 (Maximum Arbitrary Misclassi�cation Rate). The total misclassi�cation rate in

the data is bounded from above by Q 2 (0; 1). Formally, 1�
P
k;l �

(k;l)
(k;l) � Q or, equivalently,

X
k;k0;l;l0=1;2;:::;K
(k0;l0) 6=(k;l)

�
(k0;l0)
(k;l) � Q:

Assumption 1 is quite strong, but is simply used as a benchmark. Under this assumption,

measurement error in the underlying continuous data is allowed as long as it does not lead to
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misclassi�cation in the discretized data. Under Assumption 2, the number of �s de�ned by (4)

is K2(K2 � 1); which, in our case, equals 72. Assumption 2 limits the sum of these parameters,

but not the number of non-zero parameters. As discussed in Millimet et al. (2020), the amount

of misclassi�cation is unknown and dependent on the choice of K. We consider sensitivity to the

choice of Q, setting Q to 0.10, 0.20, and 0.30. Thus, we allow for fairly rampant misclassi�cation

as we allow for up to 30% of the sample to be misclassi�ed.

Finally, we consider the following two additional assumptions not considered in Millimet et

al. (2020) in light of the structure of the Indian data. They are imposed in combination with

Assumption 2 .

Assumption 3 (Temporal Independence). Misclassi�cation probabilities are independent across

time periods. Formally,

�
(k0;l0)
(k;l) = �k

0
k � �l

0
l ;

where �k
0
k (�

l0
l ) is the probability of being observed in partition k

0 (l0) in the initial (terminal) period

when the true partition is k (l). That is,

�k
0
k = P (y0 2 k0j y�0 2 k)

�l
0
l = P (y1 2 l0j y�1 2 l):

Assumption 4 (Temporal Invariance). Misclassi�cation probabilities are independent across time

periods as well as temporally invariant. Formally,

�
(k0;l0)
(k;l) = �k

0
k � �l

0
l :

In other words, �k
0
k = �

k0
k 8k; k0.

Assumption 3 restricts misreporting behavior such that the decision to misreport is independent

across periods. This rules out a household�s consumption history a¤ecting its propensity to misre-

port its current consumption. However, it does allow misclassi�cation to be mean-reverting (or not)

within each period as the misclassi�cation probabilities are allowed to di¤er depending on the true

partition. While there is some prior evidence that measurement error is serially correlated, which

would invalidate this assumption, this evidence is typically derived from annual data. As our data

are collected seven years apart, we believe the assumption is worth exploring in our application.
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That said, long-term persistence in misclassi�cation may arise if households believe their survey

responses will be used to determine eligibility for means-tested social welfare programs. However,

the assumption likely has signi�cant identifying power as it reduces the number of misclassi�cation

parameters to 2K(K � 1); or, in our case, to 12.

Assumption 4 further restricts the probability of misreporting in particular directions to be

constant over the sample period. This assumes that data accuracy and other sources of misclassi�-

cation such as stigma do not change across time periods. Again, we believe this worth exploring in

our application given the seven-year gap between periods in our data; we do not expect signi�cant

changes in reporting norms over this span. As with Assumption 3, this restriction is likely to have

signi�cant identifying power as it further reduces the number of parameters to K(K � 1); or, in

our case, to six.

3.2.2 Bounds

Under Assumption 1 consistent estimates are given by the empirical transition probabilities (Propo-

sition 1 in Millimet et al. (2020)):

bpkl = P
i !i I(y0i 2 k; y1i 2 l)P

i !i I(y0i 2 k)
;

where !i is the survey weight attached to observation i. Absent this assumption, the transition

probabilities are no longer nonparametrically identi�ed. Bounds under combinations of Assump-

tions 2 �4 are detailed in Appendix A and entail searching over values of � to determine the set of

values of the transition probabilities that are consistent with the data and the assumptions.

3.3 Mobility

3.3.1 Assumptions

The preceding section provides bounds on the transition probabilities considering only restrictions

on the misclassi�cation process. Here, we introduce restrictions on the mobility process that may

further serve to tighten the bounds. The restrictions may be imposed alone or in combination.

First, we consider shape restrictions which place inequality constraints on the population tran-

sition probabilities. Speci�cally, we assume that large transitions are less likely than smaller ones.

Assumption 5 (Shape Restrictions). The transition probabilities are weakly decreasing in the size
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of the transition. Formally, p�kl is weakly decreasing in jk� lj, the absolute di¤erence between k and

l.

This assumption implies that within each row or each column of the transition matrix, the diagonal

element (i.e., the conditional staying probability) is the largest. The remaining elements decline

weakly monotonically moving away from the diagonal element. Note, this assumption relates to the

size of real mobility in absolute value; it makes no claims about the direction of misclassi�cation.

This assumption seems plausible in light of prior studies. For example, Lee et al. (2017)

use a structural model to simulate the consumption expenditure distribution uncontaminated by

measurement error in South Korea for the period 2002-2007. The authors then examine transition

probabilities over this period, which is similar in length to the period we examine here. They

�nd that the conditional staying probability is the largest and the remaining elements decline

weakly monotonically as one moves away from the diagonal element. A similar pattern is found in

Glewwe (2012). Using data from Vietnam to compute expenditure mobility for the period 1992-

1997, the author �nds the conditional staying probabilities to be the highest and the other transition

probabilities to decline with the size of the transition when measurement error is ignored. Correcting

for measurement error, the author �nds that expenditure mobility is lower, thereby reinforcing the

shape restrictions considered here. Chetty et al. (2014) also �nd a similar pattern when examining

intergenerational mobility in the US using administrative data. Aside from the second quintile,

the conditional staying probabilities are the largest and the remaining elements decline weakly

monotonically moving away from the diagonal.

Second, we consider a monotonicity restriction which places inequality constraints on population

transition probabilities across observations with di¤erent observed attributes (Manski and Pepper

2000; Chetverikov et al. 2018).

Assumption 6 (Monotonicity). The conditional probability of upward mobility is weakly increasing

in a vector of attributes, u, and the conditional probability of downward mobility is weakly decreasing

in the same vector of attributes. Formally, if u2 � u1, then

p�11(u1) � p�11(u2)

p�KK(u1) � p�KK(u2)

p�kl(u1) � p�kl(u2) 8l > k

p�kl(u1) � p�kl(u2) 8l < k:
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The variable U is referred as a monotone instrumental variable (MIV). Note, the monotonic-

ity assumption provides no information on the conditional staying probabilities, p�kk(u), for k =

2; :::;K � 1.

In our application, we use the education level of the household head in the initial period as the

MIV. Here, households are grouped into four bins based on years of completed schooling: zero, 1-5,

6-10, and 11-15.

Given our MIV, Assumption 6 restricts the probability of upward (downward) mobility to be

no lower (higher) for households where the head belongs to a higher educational group. This

assumption is consistent with the widely held belief that �for most people, gaining an education

and thus improving one�s chances in the job market is the key to becoming upwardly mobile�

(Johnson et al., 2018, p. 4). Using US data, Schirmen (1990) �nds that, among workers starting in

the same occupation, better educated workers are more likely to move to a higher-level occupation.

Using Swiss data, Li et al. (2000) show that education and training increases chances for upward

occupational mobility. Using Indonesian data, Akresh et al. (2018) �nd that those who bene�ted

from Indonesia�s large school building programme in the 1970s engage in more migration, more

likely to be formal workers, and more likely to work in non- agricultural employment. This is

consistent with enhanced upward mobility as prior research �nds that migration and formal sector

employment are both positively associated with upward mobility (Beegle 2011; Ferraira et al.

2013; McCaig and Pavnick 2015). That said, it is possible that education a¤ects only the level of

income/consumption, not its dynamics. As Assumption 6 is stated in terms of weak inequalities, it

does not rule out this possibility. Instead, it only rules out the possibility that education leads to a

strictly lower (higher) probability of upward (downward) mobility. There is no empirical evidence,

to our knowledge, suggesting that is the case.

Implementing the monotonicity restriction requires us to �rst bound the transition probabilities

conditional on u. From (3) and (5), we have

p�kl(u) =

Pr(y0 2 k; y1 2 ljU = u) +
X

k0;l0=1;2;:::;K
(k0;l0) 6=(k;l)

�
(k0;l0)
(k;l) (u)�

X
k0;l0=1;2;:::;K
(k0;l0) 6=(k;l)

�
(k;l)
(k0;l0)(u)

Pr(y0 2 kjX = u) +
X

k0;l0;el=1;2;:::;K
k0 6=k

�
(k0;l0)

(k;el) (u)�
X

k0;l0;el=1;2;:::;K
k0 6=k

�
(k;l0)

(k0;el)(u)

� rkl(u) +Q1;kl(u)�Q2;kl(u)
pk(u) +Q3;k(u)�Q4;k(u)

(6)
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where now Qj;�(u), j = 1; :::; 4, represent the proportions of false positives and negatives conditional

on u.

3.3.2 Bounds

The bounds under various combinations of Assumptions 5 �6 are relegated to Appendix A, where

survey weights, !, continue to be used. However, two salient issues must be discussed. First,

estimates of the bounds under these assumptions su¤er from �nite sample bias as they rely on

in�ma and suprema. To circumvent this issue, a bootstrap bias correction procedure is used. As

presented in Kreider and Pepper (2007), the bias correction adjusts the sample estimates of the

bounds by the di¤erence between the mean of the nonparamteric bootstrap estimates of the end

points and the corresponding sample estimate. Formally, letting LBkl and UBkl represent the

population values of the end points and dLBkl and dUBkl the corresponding sample estimates, the
bias-corrected estimates are given by

LBbckl = 2dLBkl � E� hdLBkli
UBbckl = 2dUBkl � E� hdUBkli ;

where E� [�] denotes the expected value with respect to the bootstrap distribution. We follow the

same procedure here except the resampling procedure must account for the survey weights. To do

so, we use the approach in Kolenikov (2010), which is based on the rescaling bootstrap procedure

developed in Rao et al. (1992).

Second, inference is conducted by using the same bootstrap approach to account for survey

weights along with the Imbens-Manski (2004) correction to obtain 90% con�dence intervals (CIs).

As discussed in Millimet et al. (2020), while the literature on inference in partially identi�ed models

is expanding rapidly, the Imbens-Manski (2004) approach is preferable in the current context. We

do not combine bias correction with inference as this requires a double bootstrap procedure with

complex survey data which is beyond the scope of the current paper. Instead, we report three

intervals: the point estimates of the bounds with no bias correction, the point estimates of the

bounds using the bootstrap bias correction, and the Imbens-Manski (2004) CIs for the partially

identi�ed parameter with no bias correction. This turns out to have little impact qualitatively.
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4 Results

4.1 Full Sample Analysis

Results for the 3� 3 transition matrix based on the full sample are presented in Tables 2-4. In all

tables, partitions for poor, insecure nonpoor, and secure nonpoor are represented by the numbers

1, 2, and 3, respectively. For each cell of the transition matrix, three intervals are reported: point

estimates of the bounds using the survey weights with no bias correction (shown in square brackets),

the point estimates of the bounds using the survey weights and the bootstrap bias correction

accounting for the weights (shown in curly brackets), and the Imbens-Manski CI for the partially

identi�ed parameter using the survey weights with no bias correction (shown in parentheses). Note,

throughout the discussion of the results, unless otherwise noted, we focus on the point estimates

for simplicity. Finite sample bias and sampling uncertainty do not qualitatively a¤ect our �ndings.

Overall, between 2005 and 2012, the observed poverty rate declined from 35% to 17%, the

proportion of insecure nonpoor households remained unchanged at 44%, and the proportion of

secure nonpoor households increased from 21% to 41% (see Table 1). Turning to mobility, Table 2

presents our baseline results under the strong assumption of No Missclassi�cation (Assumption 1).

Recall, households are assumed to self-report consumption accurately enough so as to be classi�ed

into the correct partitions. In this case, the probability of a household remaining in poverty across

the initial and terminal periods is 0.292, the probability of remaining insecure nonpoor is 0.480, and

the probability of remaining secure nonpoor is 0.652. Furthermore, we �nd that the probabilities of

observing larger transitions in the self-reported consumption distribution are less likely than smaller

movements. For example, the probability of moving from impoverished to insecure nonpoor is 0.507;

the probability of moving from impoverished to secure nonpoor is 0.201.

Table 3 presents the worst case bounds obtained only under Assumption 2 for di¤erent values

of the maximum amount of misclassi�cation, Q. Speci�cally, we vary Q from 0.10 to 0.20 to 0.30

across Panels I�III, respectively. This choice is guided by the �ndings of Millimet et al. (2020).

Speci�cally, Millimet et al. (2020) use US data and employ a simulation-based approach that relies

on parameter values obtained from the previous literature on measurement error in US income and

consumption data to quantify Q. The authors �nd that the misclassi�cation rate is roughly 20%

when the data is discretized into three partitions. Thus, considering a range from 0.10 to 0.30

seems reasonable.

In Panels II and III the bounds are nearly uninformative. This means a relatively moderate
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amount of arbitrary misclassi�cation (Q = 0:20), in the absence of other information, results in

an inability to say much more about mobility over this time period. The importance of this

�nding cannot be overstated as it indicates that mistakenly believing mobility estimates that do

not account for misclassi�cation gives a false sense of certitude. For example, while based on

the assumption of no misclassi�cation error, one may be tempted to believe that probability of a

household remaining in poverty across the initial and terminal period is 29%, in reality the true

estimate of the probability of a household remaining in poverty across the initial and terminal period

could be anything between zero and 86% in Panel II; the bounds are completely uninformative in

Panel III with Q = 0:30.

Even in Panel I where we assume that at most only 10% of the sample is misclassi�ed we are

limited in what we can learn. The conditional staying probability in poverty can be anywhere from

0 to 58%, in the insecure poor state from 25% to 71%, and in the secure nonpoor state from 18%

to 100%. Similarly, with even 10% misclassi�cation, the probability of moving from impoverished

to secure nonpoor over the sample period can be anywhere from 0% to 49% and the probability of

moving from secure nonpoor to impoverished from 0% to 52%. On the other hand, assuming the

misclassi�cation rate is at most 10%, we do learn that probability of moving from insecure nonpoor

to secure nonpoor is no lower than 16% over the sample period.

To see what can be learned if one is willing to invoke stronger assumptions, we turn to Table

4. Again, we impose Assumption 2 and vary Q from 0.10 to 0.20 to 0.30 across Panels I-III,

respectively. In addition, we add Assumptions 5 and 6. Column A adds no further assumptions,

whereas Column B adds Assumption 3 and Column C adds Assumption 4. Importantly, under this

richer set of assumptions, the bounds do not necessarily widen with Q. This arises because of the

shape restrictions. With small Q, the data may reject the shape restrictions (due to the bounds

for the o¤-diagonal probabilities being strictly larger than the bounds for the conditional statying

probabilities). In this case, the shape restrictions are not imposed. However, as Q increases, this is

less likely to occur, leading to vastly di¤erent and narrower bounds due to now imposing the shape

restrictions.

Turning to Column A, we �nd that Assumptions 5 and 6 along have little identifying power. The

only substantive change relative to the worst case bounds in Table 3 occurs in Panel I. Now we �nd

that the conditional staying probability for poverty is at least 22% assuming the misclassi�cation

rate is no more than 10%. As the sample spans a seven-year interval, this suggests a considerable

amount of persistence among the poor.
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When we add the assumption of temporal independence in Column B, we see that the bounds

tighten considerably. Now, even when the misclassi�cation rate is allowed to be as high as 30%,

we are able learn much about mobility. For example, the probability of remaining impoverished

is at least 22%, of transitioning from impoverished to insecure nonpoor is at least 29%, and of

transitioning from impoverished to secure nonpoor is no more than 49%. For households initially

insecure nonpoor, their chances of remaining insecure nonpoor is at least 27%, and of transitioning

from insecure nonpoor to secure nonpoor (impoverished) is at least (at most) 16% (36%).

Adding the stronger assumption of temporal invariance in Column C, the bounds are further

tightened. For example, for the poor, the bounds on probability remaining in poverty over the

sample period narrows from [0:221; 0:541] in Column B of Panel III to [0:359; 0:395]. Thus, even

with a 30% misclassi�cation rate, we are able to state that more than one-third of all impoverished

households in 2005 continue to be impoverished seven years later. The bounds on the remaining

conditional staying probabilities are also quite narrow: [0:394; 0:523] for the insecure poor and

[0:575; 0:643] for the secure poor. We also �nd that the probability of moving from poverty to

insecure (secure) nonpoor is [0:387; 0:390] ([0:216; 0:255]). We also �nd that the probability of

moving from secure nonpoor to insecure nonpoor (poor) is no greater than 43% (24%).

In sum, under our strongest set of assumptions but allowing for 30% of the sample to be misclas-

si�ed, 36�40% of impoverished households remain so, 39% escape poverty but remain at-risk, and

22�26% completely escape poverty over the seven-year sample period. If we relax the assumption of

temporal independence and invariance, but continue to maintain the other assumptions, the data

are essentially uninformative about consumption mobility unless we assume that misclassi�cation

is no more than 10%.

These results have two implications. First, mobility out of poverty over the sample period is

remarkably low. This is consistent with Dang and Lanjouw�s (2018, p. 133-134) �ndings that

in India �aggregate trends in poverty reduction mask a considerable degree of entry into� and

to a larger extent, exit out of� poverty and vulnerability but that a substantial core of the poor

have remained poor over the duration of the study period [early 2000s].� Second, if we naïvely

ignore misclassi�cation error, we underestimate the probability of remaining impoverished and

overestimate the probability of escaping poverty. Thus, misclassi�cation errors appear to mask

the true level immobility in India. Ignoring misclassi�cation, the observed probability of staying

impoverished is 29%. Allowing for a maximum misclassi�cation rate of 30%, the probability of

staying impoverished is at least 36%. This result con�rms the suspicion in Arunachalam and
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Shenoy (2017) that measurement error is likely to mask a poverty trap in India.

4.2 Heterogeneity Analysis

In this section, we analyze heterogeneity in economic mobility across di¤erent population subgroups.

In Table 5, we report the results for the 3 � 3 transition matrix by religion. Table 6 contains the

results by caste. Table 7 presents the results by geographic area (urban or rural). For brevity, for

all the cases, we only present results under our strongest set of assumptions, Assumption 2, 4, 5,

and 6. In addition, we continue to vary Q from 0.10 to 0.20 to 0.30 across Panels I-III in each table.

Religion India contains multiple religious groups; namely, Hindus and various minority groups

including Muslims, Christian, Sikh, Buddhist, Jain, Tribal, and others. We divide the minority

groups into two groups, Muslims and others. Results are shown in Table 5. Comparing these

groups, we are unable to unambiguously rank them in terms of mobility even under our strongest

set of assumptions and assuming a maximum misclassi�cation rate of 10%. This arises because of

overlap in the bounds across the groups in most cases.

In terms of the conditional staying probability in poverty, the bounds are [0:232; 0:331] for

Hindus, [0:204; 0:306] for Muslims, and [0:240; 0:323] for others when Q = 0:10. Thus, while it is

possible that Muslims have signi�cantly lower persistence in poverty than the other religions, we

cannot rule out the reverse as well. With Q = 0:30 we �nd that the conditional staying probability

is at least 35% for Hindus, while it could be as low as 34% (31%) for Muslims (others).

In terms of the conditional staying probability for secure nonpoor, we �nd that Muslims are at

a distinct disadvantage even when Q = 0:30. In this case, the bounds are [0:577; 0:643] for Hindus,

[0:285; 0:604] for Muslims, and [0:709; 0:813] for others. Thus, Muslims are at the greatest risk of

losing their status as secure nonpoor, while others enjoy the highest persistence as secure nonpoor.

In terms of mobility, some strong conclusions can be drawn when Q = 0:10. For example,

the probability of transitioning from insecure nonpoor to secure nonpoor is de�nitely higher for

others than Muslims as the bounds are [0:400; 0:439] and [0:298; 0:374], respectively. Similarly,

the probability of transitioning from secure nonpoor to insecure poor is de�nitely lower for others

than Muslims as the bounds are [0:210; 0:254] and [0:294; 0:446], respectively. For Hindus, the

bounds overlap both of the other groups preventing conclusions from being drawn. That said,

the probability of moving up from insecure nonpoor to secure nonpoor is at least 35% for Hindus,

whereas it could be as low as 30% for Muslims. Similarly, the probability of moving down from
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secure nonpoor to insecure nonpoor is no more than 36% for Hindus, whereas it could as high as

45% for Muslims.

In sum, the results make it clear that de�nitive comparisons across religious groups are di¢ cult

even under our strongest set of assumptions and a relatively modest amount of misclassi�cation.

However, there is some evidence that Muslims may be doing better than Hindus or other religious

groups in terms of escaping poverty, but are at a disadvantage compared to Hindus and other

religious groups in terms of transitioning to secure nonpoor or remaining secure nonpoor.

Caste Next, we explore heterogeneity in economic mobility across castes; namely, Brahmins and

non-Brahmin Upper Castes (UCs), Scheduled Castes and Scheduled Tribes (SCs/STs), and Other

Backward Classes (OBCs). Results are shown in Table 6.

In terms of the conditional staying probability in poverty, the bounds are [0:089; 0:268] for

UCs, [0:328; 0:387] for SCs/STs, and [0:173; 0:296] for OBCs when Q = 0:10. Thus, SCs/STs

have unambiguously higher persistence in poverty than the other castes; the bounds for UCs and

OBCs overlap and therefore cannot persistence cannot be ranked among these castes. SCs/STs also

have higher persistence as insecure poor than UCs, but not necessarily OBCs. Similarly, SCs/STs

have unambiguously lower persistence as secure nonpoor; the bounds are [0:723; 0:744] for UCs,

[0:427; 0:551] for SCs/STs, and [0:606; 0:606] for OBCs. With Q = 0:30 we continue to �nd strong

evidence of worse outcomes for SCs/STs.

In terms of mobility, strong conclusions continue to emerge when Q = 0:10. For example, the

probability of transitioning from impoverished to secure nonpoor is de�nitely lower for SCs/STs

than for the Hindus and also possibly OBCs; the bounds are [0:232; 0:282] for UCs, [0:121; 0:188]

for SCs/STs, and [0:183; 0:257] for OBCs. The probability of transitioning from insecure nonpoor

to secure nonpoor is also lowest for SCs/STs as the bounds are [0:422; 0:465] for UCs, [0:268; 0:346]

for the SCs/ST and [0:353; 0:440] for the OBCs, respectively. Finally, the probability of transi-

tioning from insecure nonpoor to impoverished is higher for SCs/STs than UCs as the bounds are

[0:157; 0:225] and [0:077; 0:132], respectively. The corresponding bounds for OBCs are predomi-

nantly lower than that for SCs/STs as well, although there is some overlap. With Q = 0:30 the

results continue to paint a picture of lower upward mobility and higher downward mobility for

SCs/STs, although the bounds always partially overlap.

In sum, under the assumption of modest misclassi�cation (Q = 0:10), SCs/STs have the lowest

probability of escaping poverty and highest probability of downward mobility over the sample
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period. Absent stronger assumptions, conclusions cannot be drawn on how mobility compares

across UCs and OBCs.

Geographic Location Lastly, we explore heterogeneity in economic mobility across households

living in rural and urban areas. Table 7 displays the results. In general, most bounds overlap

across the two groups making unambiguous statements not possible. The two exceptions is the

conditional staying probability as insecure nonpoor and secure nonpoor when Q = 0:10. For the

insecure (secure) nonpoor, the bounds are [0:450; 0:464] ([0:749; 0:781]) for urban households and

[0:471; 0:509] ([0:561; 0:586]) for rural households. This result is complemented by a higher proba-

bility of transitioning from secure nonpoor to insecure poor for the urban households than the rural

households; the bounds are [0:200; 0:251] for urban households and [0:261; 0:439] for rural house-

holds.With Q = 0:30, the conditional staying probability as secure nonpoor continues to be strictly

lower for rural households although we cannot make any unambious claim regarding the conditional

staying probability as insecure nonpoor. Thus, under our most stringent set of assumptions, but

even allowing for a 30% misclassi�cation rate, the probability of downward mobility from the secure

nonpoor state is de�nitely higher in rural areas.

In all other cases, the bounds overlap. That said, the results suggest that rural households are

worse o¤. For example, with Q = 0:30 the conditional staying probability in poverty is at least

36% for rural households, while it could be as low as 34% for urban households. Similarly, the

probability of transitioning from secure nonpoor to poor (insecure nonpoor) could be as high as

27% (51%) in rural areas, whereas it is no more than 17% (27%) in urban areas.

In sum, our �ndings indicate that, compared to urban households, rural households have a dis-

tinctly higher probability of downward mobility. In particular, rural households have a signi�cantly

more di¢ cult time remaining secure nonpoor.

5 Conclusion

In this paper, we provide bounds on the extent of economic mobility in India over the period

2005 to 2012 using IHDS panel data on household consumption while rigorously accounting for

misclassi�cation in a transparent manner. Methodologically, we extend recent work in Millimet et

al. (2020) on the partial identi�cation of transition matrices by considering the identifying power

of additional assumptions on the misclassi�cation process: temporal independence and temporal

invariance. In the application, we reveal how little can be learned about poverty dynamics under
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relatively small amounts of misclassi�cation absent additional information. We then show the

identifying power that accompanies additional information via assumptions on the nature of the

misclassi�cation as well as restrictions on consumption dynamics.

We �nd that, under reasonable assumptions, for the population as a whole, mobility in India

is remarkably low: allowing for misclassi�cation errors in up to 30% of the sample, at least 3

in 10 poor households remain poor between 2005 and 2012, nearly 4 in 10 households manage

to escape poverty but remain at-risk, and fewer than 3 in 10 poor households manage to attain

the status of secure nonpoor. Further, we show that if we mistakenly believe that there is no

misclassi�cation error, we might be underestimating the probability of the poor remaining poor,

and over estimating the probability of the poor escaping poverty and becoming insecure nonpoor.

Under stronger assumptions, we also �nd clear rankings among di¤erent population subgroups

in terms of economic status. Among religious groups, Muslims are at a disadvantage compared

to Hindus or other religious groups. Among castes, SCs/STs are the worst o¤. Finally, rural

households are at a distinct disadvantage relative to urban households.

Our results for the population as a whole suggest that inequality in India can be characterized

as chronic as households belonging to the lower rungs of the economic ladder are likely to �nd

themselves caught in a poverty trap. As a result, our �ndings suggest that poverty reduction e¤orts

should focus on ways to improve the permanent economic status of households, possibly through

acquisition of assets and capabilities, rather than on ways to deal with temporary volatility. Our

�ndings also cast doubt on the conventional wisdom that marginalized groups in India �households

belonging to minority communities, lower castes, or living in rural regions �are catching up on

average. This calls for a re-evaluation of existing social policies that are designed to improve the

economic status of the marginalized groups in India.
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Table 1. Summary Statistics (Weighted)

Mean SD Mean SD

Household Consumption

   Annual Total Consumption (in Rs.) 50,109.17 45,922.68 106,700.10 107,396.90

   Monthly Per Capita Consumption (in Rs.) 792.67 772.54 2,081.59 2,422.13

Poverty Status

   Poor (POVRATIO < 1) 0.35 0.48 0.17 0.37

   Insecure Nonpoor (POVRATIO >= 1, < 2) 0.44 0.50 0.44 0.50

   Secure Nonpoor (POVRATIO >= 2) 0.21 0.41 0.41 0.49

Household Size 5.83 2.99 4.76 2.29

Education (Household Head): Years of Schooling

   0 (Illiterate) 0.39 0.49

   1-5 years 0.21 0.41

   6-10 years 0.29 0.46

   11-15 years 0.11 0.31

Caste (Household Head)

   Brahmin and Others 0.27 0.44

   OBC 0.42 0.49

   SC/ST 0.31 0.46

Religion

   Hindu 0.83 0.38

   Muslims 0.12 0.32

   Other Religions 0.06 0.23

Percentage of Males (Household Head) 0.91 0.29

Percentage of Urban Residents (Household Head) 0.24 0.43

Number of Observations

2005 (Wave 1) 2012 (Wave 2)

38,737 38,737
Notes: POVRATIO is defined as  the ratio of household per capita monthly household consumption expenditure to the poverty line per capita 

monthly consumption expenditure. In our analysis we use information pertaining to education level, caste, religion and the living region of household 

heads only from the first wave; hence we report summary statistics of these variables only for the first wave. Appropriate survey weights from the 

IHDS dataset are used. 



Table 2. Full Sample Transition Matrices: No Misclassification

1 2 3

1 [0.292,0.292] [0.507,0.507] [0.201,0.201]

{0.292,0.292} {0.507,0.507} {0.201,0.201}

(0.286,0.299) (0.499,0.514) (0.195,0.207)   Per Capita Consumption (in Rs.)

2 [0.133,0.133] [0.480,0.480] [0.386,0.386]

{0.133,0.133} {0.480,0.480} {0.386,0.386}

(0.128,0.139) (0.473,0.488) (0.379,0.394)

3 [0.054,0.054] [0.294,0.294] [0.652,0.652]

{0.054,0.054} {0.294,0.294} {0.652,0.652}

(0.050,0.058) (0.285,0.303) (0.643,0.661)

Notes: Outcome = POVRATIO.  1 = poverty ratio < 1. 2 = poverty ratio is between 1 and 2. 3 = poverty ratio >= 2. Point estimates for bounds 

provided in brackets. Bias-corrected point estimates for bounds provided in braces  obtained using 100 bootstrap repetitions.  90% Imbens-

Manski confidence intervals for the non-bias-corrected bounds provided in parentheses obtained using 250 bootstrap repetitions. See text for 

further details.



I.  Q = 0.10

1 2 3

1 [0.006,0.578] [0.221,0.793] [0.000,0.487]

{0.006,0.578} {0.221,0.793} {0.000,0.487}

(0.001,0.585) (0.214,0.799) (0.000,0.492)

2 [0.000,0.362] [0.251,0.709] [0.157,0.616]

{0.000,0.362} {0.251,0.709} {0.157,0.616}

(0.000,0.367) (0.245,0.716) (0.151,0.622)

3 [0.000,0.522] [0.000,0.762] [0.184,1.000]

{0.000,0.522} {0.000,0.762} {0.184,1.000}

(0.000,0.529) (0.000,0.771) (0.175,1.000)

II.  Q = 0.20

1 2 3

1 [0.000,0.864] [0.000,1.000] [0.000,0.773]

{0.000,0.864} {0.000,1.000} {0.000,0.773}

(0.000,0.873) (0.000,1.000) (0.000,0.780)

2 [0.000,0.591] [0.022,0.939] [0.000,0.845]

{0.000,0.591} {0.022,0.939} {0.000,0.845}

(0.000,0.597) (0.015,0.945) (0.000,0.852)

3 [0.000,0.989] [0.000,1.000] [0.000,1.000]

{0.000,0.989} {0.000,1.000} {0.000,1.000}

(0.000,1.000) (0.000,1.000) (0.000,1.000)

III.  Q = 0.30

1 2 3

1 [0.000,1.000] [0.000,1.000] [0.000,1.000]

{0.000,1.000} {0.000,1.000} {0.000,1.000}

(0.000,1.000) (0.000,1.000) (0.000,1.000)

2 [0.000,0.820] [0.000,1.000] [0.000,1.000]

{0.000,0.820} {0.000,1.000} {0.000,1.000}

(0.000,0.827) (0.000,1.000) (0.000,1.000)

3 [0.000,1.000] [0.000,1.000] [0.000,1.000]

{0.000,1.000} {0.000,1.000} {0.000,1.000}

(0.000,1.000) (0.000,1.000) (0.000,1.000)

Notes: Outcome = POVRATIO.  1 = poverty ratio < 1. 2 = poverty ratio is between 1 and 2. 3 = poverty ratio >= 

2. Q = maximum misclassification rate. Point estimates for bounds provided in brackets. Bias-corrected point 

estimates for bounds provided in braces  obtained using 100 bootstrap repetitions.  90% Imbens-Manski 

confidence intervals for the non-bias-corrected bounds provided in parentheses obtained using 250 bootstrap 

repetitions. See text for further details.

Table 3. Full Sample Transition Matrices: Arbitrary Misclassification (Worst Case Bounds)



Table 4. Full Sample Transition Matrices: Misclassification Assumptions (Arbitrary + Shape + Monotonicity)

I.  Q = 0.10

1 2 3 1 2 3 1 2 3

1 [0.221,0.541] [0.292,0.578] [0.000,0.487] 1 [0.243,0.378] [0.435,0.461] [0.161,0.296] 1 [0.229,0.330] [0.458,0.593] [0.164,0.249]

{0.220,0.541} {0.292,0.579} {0.000,0.487} {0.229,0.378} {0.435,0.475} {0.147,0.296} {0.229,0.330} {0.458,0.592} {0.163,0.249}

(0.213,0.549) (0.283,0.585) (0.000,0.492) (0.192,0.384) (0.427,0.500) (0.109,0.301) (0.223,0.334) (0.452,0.599) (0.158,0.253)

2 [0.000,0.360] [0.269,0.709] [0.157,0.598] 2 [0.061,0.209] [0.411,0.556] [0.311,0.463] 2 [0.095,0.171] [0.456,0.498] [0.347,0.437]

{0.000,0.360} {0.269,0.709} {0.159,0.600} {0.061,0.209} {0.404,0.556} {0.312,0.463} {0.095,0.171} {0.456,0.498} {0.347,0.437}

(0.000,0.365) (0.263,0.716) (0.151,0.604) (0.057,0.213) (0.406,0.561) (0.305,0.469) (0.091,0.175) (0.449,0.503) (0.342,0.444)

3 [0.000,0.350] [0.000,0.670] [0.184,1.000] 3 [0.000,0.203] [0.161,0.450] [0.496,0.839] 3 [0.000,0.113] [0.242,0.355] [0.645,0.654]

{0.000,0.351} {0.000,0.670} {0.185,1.000} {0.000,0.203} {0.158,0.450} {0.496,0.842} {0.000,0.115} {0.239,0.354} {0.645,0.654}

(0.000,0.355) (0.000,0.676) (0.175,1.000) (0.000,0.207) (0.151,0.457) (0.489,0.849) (0.000,0.132) (0.231,0.363) (0.637,0.659)

II.  Q = 0.20

1 2 3 1 2 3 1 2 3

1 [0.029,0.756] [0.076,0.831] [0.000,0.745] 1 [0.316,0.469] [0.364,0.483] [0.062,0.320] 1 [0.221,0.367] [0.419,0.657] [0.122,0.297]

{0.029,0.755} {0.077,0.830} {0.000,0.745} {0.283,0.471} {0.364,0.484} {0.057,0.353} {0.207,0.367} {0.419,0.676} {0.117,0.297}

(0.025,0.766) (0.066,0.837) (0.000,0.751) (0.309,0.476) (0.355,0.489) (0.048,0.336) (0.178,0.371) (0.412,0.713) (0.109,0.301)

2 [0.000,0.583] [0.038,0.939] [0.009,0.829] 2 [0.012,0.285] [0.346,0.633] [0.234,0.516] 2 [0.060,0.210] [0.421,0.512] [0.310,0.488]

{0.000,0.584} {0.038,0.938} {0.008,0.830} {0.012,0.285} {0.346,0.633} {0.235,0.517} {0.060,0.209} {0.421,0.512} {0.310,0.505}

(0.000,0.589) (0.031,0.945) (0.004,0.836) (0.008,0.290) (0.340,0.639) (0.228,0.524) (0.056,0.214) (0.413,0.517) (0.304,0.511)

3 [0.000,0.572] [0.000,0.896] [0.050,1.000] 3 [0.000,0.276] [0.042,0.581] [0.340,0.958] 3 [0.000,0.194] [0.177,0.371] [0.629,0.633]

{0.000,0.573} {0.000,0.897} {0.050,1.000} {0.000,0.277} {0.041,0.579} {0.340,0.959} {0.000,0.198} {0.173,0.371} {0.629,0.634}

(0.000,0.578) (0.000,0.903) (0.048,1.000) (0.000,0.281) (0.033,0.589) (0.332,0.967) (0.000,0.207) (0.168,0.384) (0.616,0.639)

III.  Q = 0.30

1 2 3 1 2 3 1 2 3

1 [0.000,0.971] [0.000,0.989] [0.000,0.923] 1 [0.221,0.541] [0.292,0.578] [0.000,0.487] 1 [0.359,0.395] [0.387,0.390] [0.216,0.255]

{0.000,0.970} {0.000,0.988} {0.000,0.922} {0.199,0.541} {0.292,0.579} {0.000,0.487} {0.331,0.395} {0.387,0.390} {0.215,0.283}

(0.000,0.983) (0.000,0.994) (0.000,0.928) (0.213,0.549) (0.283,0.585) (0.000,0.492) (0.354,0.399) (0.380,0.397) (0.200,0.266)

2 [0.000,0.807] [0.000,1.000] [0.000,1.000] 2 [0.000,0.360] [0.269,0.803] [0.157,0.598] 2 [0.080,0.249] [0.394,0.523] [0.271,0.460]

{0.000,0.808} {0.000,1.000} {0.000,1.000} {0.000,0.360} {0.269,0.803} {0.158,0.600} {0.078,0.248} {0.394,0.523} {0.271,0.460}

(0.000,0.814) (0.000,1.000) (0.000,1.000) (0.000,0.365) (0.263,0.817) (0.151,0.605) (0.060,0.252) (0.385,0.527) (0.265,0.471)

3 [0.000,0.793] [0.000,0.970] [0.028,1.000] 3 [0.000,0.350] [0.000,0.752] [0.184,1.000] 3 [0.000,0.240] [0.142,0.425] [0.575,0.643]

{0.000,0.794} {0.000,0.970} {0.028,1.000} {0.000,0.351} {0.000,0.752} {0.184,1.000} {0.000,0.241} {0.140,0.424} {0.575,0.643}

(0.000,0.801) (0.000,0.972) (0.027,1.000) (0.000,0.355) (0.000,0.764) (0.175,1.000) (0.000,0.245) (0.133,0.448) (0.552,0.648)

Notes: Outcome = POVRATIO.  1 = poverty ratio < 1. 2 = poverty ratio is between 1 and 2. 3 = poverty ratio >= 2. Q = maximum misclassification rate. Education of the household head used as Monotone 

Instrumental Variable (MIV). Point estimates for bounds provided in brackets. Bias-corrected point estimates for bounds provided in braces  obtained using 100 bootstrap repetitions.  90% Imbens-Manski 

confidence intervals for the non-bias-corrected bounds provided in parentheses obtained using 250 bootstrap repetitions. See text for further details.

A. Without Temporal Independence/Invariance B. With Temporal Independence C. With Temporal Invariance



Table 5. Subsample Transition Matrices by Religion: Arbitrary + Shape + Monotonicity + TIV

I.  Q = 0.10

1 2 3 1 2 3 1 2 3

1 [0.232,0.331] [0.448,0.587] [0.166,0.251] 1 [0.204,0.306] [0.511,0.640] [0.151,0.223] 1 [0.240,0.323] [0.487,0.561] [0.189,0.269]

{0.232,0.331} {0.445,0.586} {0.167,0.251} {0.204,0.309} {0.509,0.640} {0.151,0.223} {0.239,0.333} {0.486,0.568} {0.181,0.266}

(0.225,0.337) (0.440,0.595) (0.161,0.256) (0.189,0.320) (0.494,0.656) (0.138,0.233) (0.214,0.369) (0.456,0.596) (0.165,0.290)

2 [0.093,0.169] [0.454,0.496] [0.350,0.441] 2 [0.109,0.181] [0.503,0.535] [0.298,0.374] 2 [0.122,0.175] [0.411,0.439] [0.400,0.439]

{0.093,0.169} {0.454,0.496} {0.350,0.441} {0.108,0.180} {0.503,0.535} {0.298,0.375} {0.131,0.177} {0.392,0.438} {0.400,0.431}

(0.089,0.174) (0.446,0.503) (0.344,0.449) (0.098,0.190) (0.489,0.548) (0.284,0.390) (0.096,0.191) (0.382,0.457) (0.383,0.474)

3 [0.000,0.110] [0.245,0.355] [0.645,0.653] 3 [0.004,0.152] [0.294,0.446] [0.538,0.569] 3 [0.017,0.061] [0.210,0.254] [0.729,0.757]

{0.000,0.110} {0.245,0.355} {0.645,0.653} {0.000,0.152} {0.290,0.446} {0.538,0.571} {0.016,0.063} {0.208,0.255} {0.729,0.757}

(0.000,0.132) (0.233,0.364) (0.635,0.659) (0.000,0.162) (0.271,0.469) (0.509,0.588) (0.000,0.106) (0.181,0.286) (0.713,0.780)

II.  Q = 0.20

1 2 3 1 2 3 1 2 3

1 [0.243,0.368] [0.409,0.631] [0.125,0.299] 1 [0.177,0.338] [0.466,0.719] [0.103,0.266] 1 [0.363,0.385] [0.446,0.705] [0.214,0.275]

{0.227,0.368} {0.408,0.654} {0.118,0.300} {0.149,0.340} {0.466,0.752} {0.099,0.266} {0.368,0.375} {0.445,0.708} {0.238,0.264}

(0.195,0.373) (0.401,0.694) (0.110,0.305) (0.100,0.351) (0.451,0.777) (0.089,0.277) (0.241,0.404) (0.417,0.743) (0.160,0.312)

2 [0.058,0.208] [0.419,0.511] [0.313,0.496] 2 [0.086,0.218] [0.483,0.546] [0.261,0.405] 2 [0.080,0.216] [0.363,0.460] [0.362,0.460]

{0.058,0.208} {0.419,0.511} {0.313,0.509} {0.092,0.217} {0.483,0.546} {0.261,0.399} {0.082,0.217} {0.327,0.459} {0.362,0.459}

(0.054,0.212) (0.410,0.517) (0.306,0.515) (0.072,0.228) (0.464,0.557) (0.247,0.426) (0.053,0.232) (0.349,0.476) (0.347,0.476)

3 [0.000,0.191] [0.181,0.372] [0.628,0.633] 3 [0.000,0.218] [0.199,0.477] [0.423,0.591] 3 [0.000,0.136] [0.145,0.282] [0.718,0.778]

{0.000,0.193} {0.178,0.372} {0.628,0.633} {0.000,0.217} {0.190,0.478} {0.423,0.593} {0.000,0.143} {0.139,0.252} {0.718,0.778}

(0.000,0.205) (0.171,0.385) (0.615,0.640) (0.000,0.228) (0.177,0.497) (0.369,0.607) (0.000,0.172) (0.118,0.295) (0.705,0.807)

III.  Q = 0.30

1 2 3 1 2 3 1 2 3

1 [0.354,0.396] [0.378,0.387] [0.216,0.268] 1 [0.337,0.364] [0.430,0.554] [0.109,0.232] 1 [0.314,0.409] [0.412,0.420] [0.179,0.274]

{0.326,0.397} {0.377,0.387} {0.216,0.292} {0.039,0.365} {0.430,0.840} {0.121,0.275} {0.286,0.401} {0.411,0.420} {0.188,0.303}

(0.349,0.401) (0.370,0.395) (0.198,0.281) (0.189,0.376) (0.416,0.734) (0.077,0.307) (0.288,0.428) (0.386,0.436) (0.136,0.326)

2 [0.081,0.247] [0.392,0.522] [0.274,0.459] 2 [0.051,0.255] [0.448,0.554] [0.223,0.458] 2 [0.153,0.243] [0.385,0.476] [0.326,0.424]

{0.084,0.247} {0.392,0.522} {0.274,0.458} {0.044,0.255} {0.448,0.554} {0.223,0.462} {0.188,0.235} {0.398,0.475} {0.326,0.366}

(0.059,0.251) (0.382,0.528) (0.268,0.472) (0.035,0.265) (0.426,0.564) (0.209,0.483) (0.109,0.265) (0.320,0.491) (0.307,0.491)

3 [0.000,0.238] [0.146,0.423] [0.577,0.643] 3 [0.000,0.255] [0.165,0.504] [0.285,0.604] 3 [0.000,0.209] [0.082,0.291] [0.709,0.813]

{0.000,0.238} {0.145,0.423} {0.577,0.643} {0.000,0.254} {0.156,0.507} {0.286,0.606} {0.000,0.169} {0.071,0.204} {0.709,0.813}

(0.000,0.243) (0.136,0.449) (0.551,0.649) (0.000,0.265) (0.142,0.528) (0.258,0.619) (0.000,0.236) (0.056,0.303) (0.697,0.854)

A. Hindu B. Muslim C. Others

Notes: Outcome = POVRATIO.  1 = poverty ratio < 1. 2 = poverty ratio is between 1 and 2. 3 = poverty ratio >= 2. Q = maximum misclassification rate. Education of the household head used as Monotone 

Instrumental Variable (MIV). TIV = Temporal Invariance. Point estimates for bounds provided in brackets. Bias-corrected point estimates for bounds provided in braces  obtained using 100 bootstrap 

repetitions.  90% Imbens-Manski confidence intervals for the non-bias-corrected bounds provided in parentheses obtained using 250 bootstrap repetitions. See text for further details. 



Table 6. Subsample Transition Matrices by Caste: Arbitrary + Shape + Monotonicity + TIV

I.  Q = 0.10

1 2 3 1 2 3 1 2 3

1 [0.089,0.268] [0.501,0.671] [0.232,0.282] 1 [0.328,0.387] [0.443,0.540] [0.121,0.188] 1 [0.173,0.296] [0.472,0.621] [0.183,0.257]

{0.089,0.267} {0.501,0.671} {0.231,0.284} {0.328,0.388} {0.442,0.540} {0.119,0.187} {0.173,0.297} {0.467,0.620} {0.182,0.255}

(0.074,0.302) (0.483,0.688) (0.205,0.308) (0.318,0.395) (0.433,0.551) (0.113,0.195) (0.163,0.303) (0.462,0.632) (0.174,0.271)

2 [0.077,0.132] [0.426,0.458] [0.422,0.465] 2 [0.157,0.225] [0.489,0.525] [0.268,0.346] 2 [0.086,0.159] [0.464,0.503] [0.353,0.440]

{0.082,0.132} {0.414,0.458} {0.422,0.465} {0.160,0.224} {0.489,0.525} {0.268,0.345} {0.086,0.158} {0.464,0.503} {0.353,0.440}

(0.066,0.138) (0.417,0.466) (0.415,0.473) (0.142,0.233) (0.475,0.535) (0.255,0.360) (0.080,0.164) (0.454,0.512) (0.346,0.449)

3 [0.000,0.063] [0.214,0.277] [0.723,0.744] 3 [0.000,0.224] [0.289,0.490] [0.427,0.551] 3 [0.000,0.121] [0.274,0.394] [0.606,0.606]

{0.000,0.064} {0.213,0.277} {0.723,0.744} {0.000,0.224} {0.289,0.491} {0.427,0.554} {0.000,0.123} {0.271,0.394} {0.606,0.609}

(0.000,0.083) (0.202,0.285) (0.715,0.755) (0.000,0.232) (0.260,0.506) (0.399,0.566) (0.000,0.141) (0.257,0.410) (0.590,0.618)

II.  Q = 0.20

1 2 3 1 2 3 1 2 3

1 [0.272,0.337] [0.447,0.513] [0.216,0.281] 1 [0.401,0.410] [0.406,0.410] [0.180,0.193] 1 [0.277,0.338] [0.428,0.579] [0.144,0.295]

{0.271,0.337} {0.448,0.514} {0.215,0.282} {0.396,0.412} {0.405,0.411} {0.178,0.193} {0.273,0.339} {0.425,0.583} {0.144,0.302}

(0.249,0.350) (0.431,0.554) (0.197,0.319) (0.350,0.418) (0.397,0.462) (0.133,0.214) (0.191,0.344) (0.418,0.675) (0.133,0.313)

2 [0.049,0.171] [0.376,0.477] [0.381,0.482] 2 [0.117,0.267] [0.456,0.537] [0.226,0.397] 2 [0.077,0.195] [0.440,0.517] [0.318,0.453]

{0.048,0.171} {0.374,0.477} {0.380,0.482} {0.114,0.266} {0.456,0.537} {0.226,0.400} {0.082,0.195} {0.440,0.517} {0.318,0.448}

(0.038,0.177) (0.369,0.484) (0.373,0.489) (0.099,0.275) (0.440,0.547) (0.213,0.412) (0.057,0.201) (0.426,0.525) (0.310,0.473)

3 [0.000,0.129] [0.156,0.285] [0.715,0.757] 3 [0.000,0.267] [0.224,0.515] [0.233,0.578] 3 [0.000,0.192] [0.205,0.431] [0.569,0.621]

{0.000,0.132} {0.153,0.285} {0.715,0.757} {0.000,0.266} {0.225,0.517} {0.231,0.582} {0.000,0.192} {0.202,0.430} {0.569,0.623}

(0.000,0.139) (0.146,0.293) (0.707,0.771) (0.000,0.275) (0.202,0.530) (0.214,0.591) (0.000,0.198) (0.191,0.454) (0.546,0.631)

III.  Q = 0.30

1 2 3 1 2 3 1 2 3

1 [0.295,0.368] [0.405,0.929] [0.215,0.300] 1 [0.371,0.429] [0.377,0.400] [0.171,0.250] 1 [0.368,0.369] [0.393,0.890] [0.255,0.264]

{0.243,0.368} {0.406,0.932} {0.216,0.352} {0.374,0.430} {0.375,0.393} {0.177,0.247} {0.364,0.372} {0.403,0.430} {0.206,0.225}

(0.281,0.380) (0.391,0.944) (0.201,0.329) (0.364,0.436) (0.367,0.422) (0.124,0.263) (0.096,0.376) (0.383,0.904) (0.126,0.336)

2 [0.025,0.208] [0.345,0.491] [0.345,0.495] 2 [0.079,0.309] [0.409,0.547] [0.183,0.454] 2 [0.043,0.232] [0.399,0.527] [0.281,0.484]

{0.017,0.207} {0.319,0.491} {0.345,0.495} {0.076,0.308} {0.409,0.547} {0.183,0.457} {0.044,0.232} {0.399,0.527} {0.281,0.481}

(0.013,0.215) (0.338,0.498) (0.337,0.502) (0.060,0.318) (0.390,0.555) (0.170,0.469) (0.023,0.238) (0.384,0.534) (0.273,0.503)

3 [0.000,0.179] [0.114,0.293] [0.707,0.714] 3 [0.000,0.309] [0.178,0.527] [0.183,0.593] 3 [0.000,0.229] [0.163,0.458] [0.455,0.630]

{0.000,0.181} {0.112,0.293} {0.707,0.714} {0.000,0.308} {0.180,0.528} {0.164,0.595} {0.000,0.229} {0.159,0.459} {0.455,0.632}

(0.000,0.191) (0.105,0.300) (0.700,0.726) (0.000,0.319) (0.158,0.540) (0.170,0.603) (0.000,0.235) (0.150,0.473) (0.410,0.639)

A. Brahmin/Upper Caste B. SC/ST C. OBC

Notes: Outcome = POVRATIO.  1 = poverty ratio < 1. 2 = poverty ratio is between 1 and 2. 3 = poverty ratio >= 2. Q = maximum misclassification rate. Education of the household head used as Monotone 

Instrumental Variable (MIV). TIV = Temporal Invariance. Point estimates for bounds provided in brackets. Bias-corrected point estimates for bounds provided in braces  obtained using 100 bootstrap 

repetitions.  90% Imbens-Manski confidence intervals for the non-bias-corrected bounds provided in parentheses obtained using 250 bootstrap repetitions. See text for further details. 



Table 7. Subsample Transition Matrices by Region: Arbitrary + Shape + Monotonicity + TIV

I.  Q = 0.10

1 2 3 1 2 3

1 [0.234,0.286] [0.500,0.573] [0.194,0.266] 1 [0.250,0.341] [0.452,0.577] [0.158,0.238]

{0.229,0.287} {0.501,0.578} {0.193,0.270} {0.250,0.342} {0.451,0.577} {0.157,0.238}

(0.209,0.293) (0.487,0.606) (0.185,0.295) (0.243,0.348) (0.444,0.585) (0.152,0.243)

2 [0.068,0.111] [0.450,0.464] [0.436,0.468] 2 [0.128,0.190] [0.471,0.509] [0.318,0.393]

{0.068,0.110} {0.432,0.464} {0.436,0.468} {0.136,0.190} {0.471,0.508} {0.318,0.389}

(0.052,0.115) (0.442,0.471) (0.429,0.474) (0.119,0.196) (0.462,0.516) (0.311,0.404)

3 [0.000,0.051] [0.200,0.251] [0.749,0.781] 3 [0.000,0.161] [0.261,0.439] [0.561,0.586]

{0.000,0.054} {0.197,0.251} {0.749,0.780} {0.000,0.161} {0.256,0.439} {0.561,0.586}

(0.000,0.069) (0.189,0.258) (0.742,0.791) (0.000,0.167) (0.249,0.452) (0.548,0.593)

II.  Q = 0.20

1 2 3 1 2 3

1 [0.123,0.332] [0.455,0.752] [0.125,0.347] 1 [0.324,0.375] [0.414,0.554] [0.122,0.262]

{0.117,0.334} {0.456,0.761} {0.122,0.348} {0.359,0.376} {0.413,0.529} {0.112,0.228}

(0.067,0.340) (0.443,0.819) (0.114,0.354) (0.218,0.381) (0.406,0.677) (0.105,0.287)

2 [0.064,0.147] [0.402,0.482] [0.393,0.485] 2 [0.088,0.229] [0.439,0.522] [0.280,0.442]

{0.071,0.148} {0.402,0.482} {0.393,0.485} {0.086,0.229} {0.439,0.522} {0.280,0.443}

(0.044,0.153) (0.388,0.488) (0.387,0.491) (0.075,0.234) (0.429,0.528) (0.272,0.452)

3 [0.000,0.111] [0.152,0.263] [0.737,0.804] 3 [0.000,0.226] [0.206,0.479] [0.487,0.603]

{0.000,0.111} {0.152,0.263} {0.737,0.803} {0.000,0.226} {0.205,0.479} {0.487,0.603}

(0.000,0.127) (0.142,0.269) (0.731,0.816) (0.000,0.232) (0.194,0.488) (0.464,0.609)

III.  Q = 0.30

1 2 3 1 2 3

1 [0.337,0.355] [0.418,0.909] [0.226,0.245] 1 [0.363,0.401] [0.382,0.386] [0.213,0.255]

{0.287,0.362} {0.419,0.908} {0.226,0.294} {0.351,0.402} {0.382,0.387} {0.211,0.267}

(0.327,0.370) (0.407,0.926) (0.216,0.266) (0.358,0.406) (0.375,0.395) (0.187,0.268)

2 [0.041,0.184] [0.362,0.496] [0.362,0.498] 2 [0.051,0.268] [0.395,0.532] [0.241,0.488]

{0.035,0.184} {0.348,0.496} {0.362,0.498} {0.049,0.267} {0.395,0.532} {0.241,0.490}

(0.009,0.189) (0.357,0.501) (0.356,0.503) (0.041,0.273) (0.384,0.538) (0.233,0.500)

3 [0.000,0.166] [0.108,0.274] [0.726,0.752] 3 [0.000,0.265] [0.169,0.505] [0.291,0.613]

{0.000,0.165} {0.109,0.274} {0.726,0.752} {0.000,0.265} {0.168,0.508} {0.292,0.613}

(0.000,0.174) (0.099,0.279) (0.721,0.764) (0.000,0.271) (0.158,0.514) (0.278,0.618)

A. Urban B. Rural

Notes: Outcome = POVRATIO.  1 = poverty ratio < 1. 2 = poverty ratio is between 1 and 2. 3 = poverty ratio >= 2. Q = maximum 

misclassification rate. Education of the household head used as Monotone Instrumental Variable (MIV). TIV = Temporal Invariance. 

Point estimates for bounds provided in brackets. Bias-corrected point estimates for bounds provided in braces  obtained using 100 

bootstrap repetitions.  90% Imbens-Manski confidence intervals for the non-bias-corrected bounds provided in parentheses obtained 

using 250 bootstrap repetitions. See text for further details. 
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A Derivation of Bounds

This appendix is organized as follows. Section A.1 begins by presenting the set of misclassification paramters, θ, under
Assumptions 2-4. Then, using this information, each element of the transition matrix is considered and the corresponding
bounds are derived. Note, the proofs under Assumption 2 alone are provided in Supplemental Appendix C in Millimet et
al. (2020). Section A.2 then considers how the bounds may be tightened under any combination of Assumptions 2-4 plus
Assumptions 5 and/or 6. The proofs in these cases are also identical to Millimet et al. (2020).

A.1 Misclassification Assumptions

• Maximum Arbitrary Misclassification Rate (Assumption 2)

θk
′l′

kl = Pr(yo ∈ k′, y1 ∈ l′, y∗o ∈ k, y∗1 ∈ l)

— 72 elements

∗ General: # elements = K2(K2 − 1)
—Assumption 2 implies ∑

θk
′l′

kl ≤ Q

1



• Add Temporal Independence (Assumption 3)

θk
′l′

kl = αk
′

k β
l′

l

αk
′

k = Pr(yo ∈ k′, y∗o ∈ k)
αkk = Pr(yo ∈ k, y∗o ∈ k) = 1−

∑
k′ 6=k

αk
′

k

βl
′

l = Pr(y1 ∈ l′, y∗1 ∈ l)
βll = Pr(y1 ∈ l, y∗1 ∈ l) = 1−

∑
l′ 6=l

βl
′

l

—Now only 12 elements

∗ General: # elements = 2K(K − 1)
— Implies

θ1211 =
(
1− α21 − α31

)
β21 θ1112 =

(
1− α21 − α31

)
β12 θ1113 =

(
1− α21 − α31

)
β13 θ1121 = α12

(
1− β21 − β31

)
θ1122 = α12β

1
2

θ1311 =
(
1− α21 − α31

)
β31 θ1312 =

(
1− α21 − α31

)
β32 θ1213 =

(
1− α21 − α31

)
β23 θ1221 = α12β

2
1 θ1222 = α12

(
1− β12 − β13

)
θ2111 = α21

(
1− β21 − β31

)
θ2112 = α21β

1
2 θ2113 = α21β

1
3 θ1321 = α12β

3
1 θ1322 = α12β

3
2

θ2211 = α21β
2
1 θ2212 = α21

(
1− β12 − β32

)
θ2213 = α21β

2
3 θ2221 =

(
1− α12 − α32

)
β21 θ2122 =

(
1− α12 − α32

)
β12

θ2311 = α21β
3
1 θ2312 = α21β

3
2 θ2313 = α21

(
1− β13 − β33

)
θ2321 =

(
1− α12 − α32

)
β31 θ2322 =

(
1− α12 − α32

)
β32

θ3111 = α31
(
1− β21 − β31

)
θ3112 = α31β

1
2 θ3113 = α31β

1
3 θ3121 = α32

(
1− β21 − β31

)
θ3122 = α32β

1
2

θ3211 = α31β
2
1 θ3212 = α31

(
1− β12 − β32

)
θ3213 = α31β

2
3 θ3221 = α32β

2
1 θ3222 = α32

(
1− β12 − β32

)
θ3311 = α31β

3
1 θ3312 = α31β

3
2 θ3313 = α31

(
1− β13 − β23

)
θ3321 = α12β

3
1 θ3322 = α32β

3
2

θ1123 = α12β
1
3 θ1131 = α13

(
1− β21 − β31

)
θ1132 = α13β

1
2 θ1133 = α13β

1
3

θ1223 = α12β
2
3 θ1231 = α13β

2
1 θ1232 = α13

(
1− β12 − β32

)
θ1233 = α13β

2
3

θ1323 = α12
(
1− β13 − β23

)
θ1331 = α13β

3
1 θ1332 = α13β

3
2 θ1333 = α13

(
1− β13 − β33

)
θ2123 =

(
1− α12 − α32

)
β13 θ2131 = α23

(
1− β21 − β31

)
θ2132 = α23β

1
2 θ2133 = α23β

1
3

θ2223 =
(
1− α12 − α32

)
β23 θ2231 = α23β

2
1 θ2232 = α23

(
1− β12 − β32

)
θ2233 = α23β

2
3

θ3123 = α32β
1
3 θ2331 = α23β

3
1 θ2332 = α23β

3
2 θ2333 = α23

(
1− β13 − β33

)
θ3223 = α32β

2
3 θ3231 =

(
1− α13 − α23

)
β21 θ3132 =

(
1− α13 − α23

)
β12 θ3133 =

(
1− α13 − α23

)
β13

θ3323 = α32
(
1− β13 − β23

)
θ3311 =

(
1− α13 − α23

)
β31 θ3332 =

(
1− α13 − α23

)
β32 θ3233 =

(
1− α13 − α23

)
β23

∗ Under Assumption 2∑
θk
′l′

kl =
(
1− α21 − α31

) (
β21 + β

3
1

)
+
(
α21 + α

3
1

)
+
(
1− α21 − α31

) (
β12 + β

3
2

)
+
(
α21 + α

3
1

)
+
(
1− α21 − α31

) (
β13 + β

2
3

)
+
(
α21 + α

3
1

)
+
(
1− α12 − α32

) (
β21 + β

3
1

)
+
(
α12 + α

3
2

)
+
(
1− α12 − α32

) (
β12 + β

3
2

)
+
(
α12 + α

3
2

)
+
(
1− α12 − α32

) (
β13 + β

2
3

)
+
(
α12 + α

3
2

)
+
(
1− α13 − α23

) (
β21 + β

3
1

)
+
(
α13 + α

2
3

)
+
(
1− α13 − α23

) (
β12 + β

3
2

)
+
(
α13 + α

2
3

)
+
(
1− α13 − α23

) (
β13 + β

2
3

)
+
(
α13 + α

2
3

)
=

(
3− α21 − α31 − α12 − α32 − α13 − α23

) (
β21 + β

3
1 + β

1
2 + β

3
2 + β

1
3 + β

2
3

)
+3
(
α21 + α

3
1 + α

1
2 + α

3
2 + α

1
3 + α

2
3

)
≤ Q

⇒ α21, α
3
1, α

1
2, α

3
2, α

1
3, α

2
3, β

2
1, β

3
1, β

1
2, β

3
2, β

1
3, β

2
3 ≤ Q/3

⇒ α, β ≤ Q/K (for generic K)

2



• Add Temporal Invariance (Assumption 4)

θk
′l′

kl = θk
′

k θ
l′

l

θk
′

k = Pr(yo ∈ k′, y∗o ∈ k) = Pr(y1 ∈ k′, y∗1 ∈ k)
θkk = Pr(yo ∈ k, y∗o ∈ k) = Pr(y1 ∈ k, y∗1 ∈ k) = 1− θk

′

k

—Now only 6 elements

∗ General: # elements = K(K − 1)
— Implies

θ1211 = θ21
(
1− θ21

)
θ1112 = θ12

(
1− θ21

)
θ1121 = θ12

(
1− θ21

)
θ1122 =

(
θ12
)2

θ2111 = θ21
(
1− θ21

)
θ2112 = θ21θ

1
2 θ1221 = θ12θ

2
1 θ1222 = θ12

(
1− θ12

)
θ2211 =

(
θ21
)2

θ2212 = θ21
(
1− θ12

)
θ2221 = θ21

(
1− θ12

)
θ2122 = θ12

(
1− θ12

)
∗ Under Assumption 2 (solution: set all θs but one to zero, solve using quadratic formula)∑

θk
′l′

kl =
(
6− θ21 − θ31 − θ12 − θ32 − θ13 − θ23

) (
θ21 + θ

3
1 + θ

1
2 + θ

3
2 + θ

1
3 + θ

2
3

)
≤ Q

⇒ θ21, θ
3
1, θ

1
2, θ

3
2, θ

1
3, θ

2
3 ≤ 3−

√
9−Q

⇒ θ ≤ K −
√
K2 −Q (for generic K)

3



A.1.1 p∗11

p∗11 =

r11 +

Q1,11︷ ︸︸ ︷[
θ1211
•
+ θ1311
•
+ θ2111 + θ

22
11 + θ

23
11 + θ

31
11 + θ

32
11 + θ

33
11

]
−

Q2,11︷ ︸︸ ︷[
θ1112
•
+ θ1113
•
+ θ1121 + θ

11
22 + θ

11
23 + θ

11
31 + θ

11
32 + θ

11
33

]
p1 +

[
θ2111 + θ

22
11 + θ

23
11 + θ

31
11 + θ

32
11 + θ

33
11 + θ

21
12
•
+ θ2212
•
+ θ2312
•
+ θ3112
•
+ θ3212
•
+ θ3312
•
+ θ2113
•
+ θ2213
•
+ θ2313
•
+ θ3113
•
+ θ3213
•
+ θ3313
•

]
︸ ︷︷ ︸

Q3,1

−
[
θ1121 + θ

11
22 + θ

11
23 + θ

12
21
•
+ θ1222
•
+ θ1223
•
+ θ1321
•
+ θ1322
•
+ θ1323
•
+ θ1131 + θ

11
32 + θ

11
33 + θ

12
31
•
+ θ1232
•
+ θ1233
•
+ θ1331
•
+ θ1332
•
+ θ1333
•

]
︸ ︷︷ ︸

Q4,1

• θk
′l′

kl
•
= unique element

Maximum Arbitrary Errors: Assumption 2

LB11 =
r11 −Q
p1

≥ 0

UB11 =
r11 +Q

p1
≤ 1

Temporal Independence, Temporal Invariance: Assumptions 3 & 4

• Implies

p∗11 =
r11 +

Q1,11︷ ︸︸ ︷[
α
1
1β

2
1 + α

1
1β

3
1 + α

2
1β

1
1 + α

2
1β

2
1 + α

2
1β

3
1 + α

3
1β

1
1 + α

3
1β

2
1 + α

3
1β

3
1

]−
Q2,11︷ ︸︸ ︷[

α
1
1β

1
2 + α

1
1β

1
3 + α

1
2β

1
1 + α

1
2β

1
2 + α

1
2β

1
3 + α

1
3β

1
1 + α

1
3β

1
2 + α

1
3β

1
3

]
p1 +

[
α
2
1β

1
1 + α

2
1β

2
1 + α

2
1β

3
1 + α

3
1β

1
1 + α

3
1β

2
1 + α

3
1β

3
1 + α

2
1β

1
2 + α

2
1β

2
2 + α

2
1β

3
2 + α

3
1β

1
2 + α

3
1β

2
2 + α

3
1β

3
2 + α

2
1β

1
3 + α

2
1β

2
3 + α

2
1β

3
3 + α

3
1β

1
3 + α

3
1β

2
3 + α

3
1β

3
3

]
︸ ︷︷ ︸

Q3,1

−

[
α
1
2β

1
1 + α

1
2β

1
2 + α

1
2β

1
3 + α

1
2β

2
1 + α

1
2β

2
2 + α

1
2β

2
3 + α

1
2β

3
1 + α

1
2β

3
2 + α

1
2β

3
3 + α

1
3β

1
1 + α

1
3β

1
2 + α

1
3β

1
3 + α

1
3β

2
1 + α

1
3β

2
2 + α

1
3β

2
3 + α

1
3β

3
1 + α

1
3β

3
2 + α

1
3β

3
3

]
︸ ︷︷ ︸

Q4,1

• Simplifying

Q1,11 =
(
α21 + α

3
1

)
+
(
β21 + β

3
1

) (
1− α21 − α31

)
(TI)

= 2
(
θ21 + θ

3
1

)
−
(
θ21 + θ

3
1

)2
(TIV)

Q2,11 =
(
α12 + α

1
3

) (
1 + β12 + β

1
3 − β21 − β31

)
+
(
β12 + β

1
3

) (
1− α21 − α31

)
(TI)

= 2
(
θ12 + θ

1
3

) (
1− θ21 − θ31

)
+
(
θ12 + θ

1
3

)2
(TIV)

Q3,1 = 3
(
α21 + α

3
1

)
(TI)

= 3
(
θ21 + θ

3
1

)
(TIV)

Q4,1 = 3
(
α12 + α

1
3

)
(TI)

= 3
(
θ12 + θ

1
3

)
(TIV)

4



• Under Temporal Independence (Assumption 3)

p∗11 =
r11 +

(
α21 + α

3
1 − α12 − α13

)
+
(
β21 + β

3
1 − β12 − β13

) (
1 + α12 + α

1
3 − α21 − α31

)
p1 + 3 (α21 + α

3
1 − α12 − α13)

—Yields

LBTI11 = min

r11 −Q/3p1
,
r11 +

˜̃
Q

p1 + 3
˜̃
Q
,
r11 − Q̂
p1 − 3Q̂

 ≥ 0
˜̃
Q = min {1− r11, (1− p1)/3, Q/3} , Q̂ = min {r11, p1/3, Q/3}

UBTI11 = max

r11 +Q/3p1
,
r11 +

˜̃
Q

p1 + 3
˜̃
Q
,
r11 − Q̂
p1 − 3Q̂

 ≤ 1
˜̃
Q = min {1− r11, (1− p1)/3, Q/3} , Q̂ = min {r11, p1/3, Q/3}

—Proof:

1. Evaluate ∂
(
r11+

˜̃
Q

p1+3
˜̃
Q

)
/∂
˜̃
Q and see when the sign is positive/negative. Both are possible.

sgn

∂
(
r11+

˜̃
Q

p1+3
˜̃
Q

)
∂
˜̃
Q

 = sgn

((
p1 + 3

˜̃
Q

)
− 3

(
r11 +

˜̃
Q

))

= sgn (p1 − 3r11)

2. Evaluate ∂
(
r11−Q̂
p1−3Q̂

)
/∂Q̂ and see when the sign is positive/negative. Both are possible.

sgn

∂
(
r11−Q̂
p1−3Q̂

)
∂Q̂

 = sgn
(
−
(
p1 − 3Q̂

)
+ 3

(
r11 − Q̂

))
= sgn (3r11 − p1)

5



• Under Temporal Invariance (Assumption 4)

p∗11 =
r11 + 2

(
θ21 + θ

3
1 − θ12 − θ13

)
−
(
θ21 + θ

3
1 − θ12 − θ13

)2
p1 + 3

(
θ21 + θ

3
1 − θ12 − θ13

)
—Yields

LBTIV11 = min

r11 + 2Q̂− Q̂2p1 + 3Q̂
,
r11 − 2 ˜̃Q− ˜̃Q2

p1 − 3 ˜̃Q
 ≥ 0

Q̂ = min
{
(1− p1)/3, 3−

√
9−Q

}
,

˜̃
Q =

 0 r11 ≥ 2p1/3

min

{
(2/3)p1+

√
(4/9)p21+4[(2/3)p1−r11]

2 , (−1 +
√
1 + r11), p1/3, 3−

√
9−Q

}
otherwise

UBTIV11 = max

r11 + 2Q̂− Q̂2p1 + 3Q̂
,
r11 − 2 ˜̃Q− ˜̃Q2

p1 − 3 ˜̃Q
 ≥ 0

Q̂ =

 0 r11 ≥ 2p1/3

min

{
−(2/3)p1+

√
(4/9)p21+4[(2/3)p1−r11]

2 , (1− p1)/3, 3−
√
9−Q

}
otherwise

,

˜̃
Q =

 0 r11 < 2p1/3

min

{
(2/3)p1−

√
(4/9)p21+4[(2/3)p1−r11]

2 , (−1 +
√
1 + r11), p1/3, 3−

√
9−Q

}
otherwise

6



—Proof:

1. Evaluate ∂
(
r11−2 ˜̃Q− ˜̃Q2

p1−3 ˜̃Q
)
/∂
˜̃
Q and see when the sign is positive/negative. Both are possible.

sgn

∂
(
r11−2 ˜̃Q− ˜̃Q2

p1−3 ˜̃Q
)

∂
˜̃
Q

 = sgn

((
−2− 2 ˜̃Q)(p1 − 3 ˜̃Q)+ 3(r11 − 2 ˜̃Q− ˜̃Q2))

= sgn

(
−(2/3)p1

(
1 +

˜̃
Q

)
+
˜̃
Q
2

+ r11

)

⇒ sgn

∂
(
r11−2 ˜̃Q− ˜̃Q2

p1−3 ˜̃Q
)

∂
˜̃
Q


∣∣∣∣∣∣∣∣ ˜̃
Q=0

= sgn (−(2/3)p1 + r11) ≷ 0

⇒ sgn

∂
(
r11−2 ˜̃Q− ˜̃Q2

p1−3 ˜̃Q
)

∂
˜̃
Q


∣∣∣∣∣∣∣∣ ˜̃
Q=1

= sgn (−(4/3)p1 + 1 + r11) ≷ 0

2. Ensure r11 − 2 ˜̃Q− ˜̃Q2 ≥ 0
r11 − 2 ˜̃Q− ˜̃Q2 ≥ 0

⇒ ˜̃
Q
2

+ 2
˜̃
Q− r11 ≤ 0

⇒ ˜̃
Q ≤ −2 +

√
4 + 4r11
2

⇒ ˜̃
Q ≤ −1 +

√
1 + r11

3. Minimize r11−2 ˜̃Q− ˜̃Q2

p1−3 ˜̃Q s.t. ˜̃Q being feasible and r11 < 2p1/3

∂

(
r11−2 ˜̃Q− ˜̃Q2

p1−3 ˜̃Q
)

∂
˜̃
Q

∝ −(2/3)p1
(
1 +

˜̃
Q

)
+
˜̃
Q
2

+ r11 = 0

⇒ ˜̃
Q
∗
=
(2/3)p1 +

√
(4/9)p21 + 4[(2/3)p1 − r11]

2

4. Maximize r11−2 ˜̃Q− ˜̃Q2

p1−3 ˜̃Q s.t. ˜̃Q being feasible and r11 > 2p1/3

∂

(
r11−2 ˜̃Q− ˜̃Q2

p1−3 ˜̃Q
)

∂
˜̃
Q

∝ −(2/3)p1
(
1 +

˜̃
Q

)
+
˜̃
Q
2

+ r11 = 0

⇒ ˜̃
Q
∗
=
(2/3)p1 −

√
(4/9)p21 + 4[(2/3)p1 − r11]

2

Note: If
√
(4/9)p21 + 4[(2/3)p1 − r11] = ., then maximize ˜̃Q.
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5. Evaluate ∂
(
r11+2Q̂−Q̂2

p1+3Q̂

)
/∂Q̂ and see when the sign is positive/negative. Both are possible.

sgn

∂
(
r11+2Q̂−Q̂2

p1+3Q̂

)
∂Q̂

 = sgn
((
2− 2Q̂

)(
p1 + 3Q̂

)
− 3

(
r11 + 2Q̂− Q̂2

))
= sgn

(
(2/3)p1

(
1− Q̂

)
− Q̂2 − r11

)
⇒ sgn

∂
(
r11+2Q̂−Q̂2

p1+3Q̂

)
∂Q̂

∣∣∣∣∣∣
Q̂=0

= sgn ((2/3)p1 − r11) ≷ 0

⇒ sgn

∂
(
r11+2Q̂−Q̂2

p1+3Q̂

)
∂Q̂

∣∣∣∣∣∣
Q̂=1

= sgn (−1− r11) < 0

6. Maximize r11+2Q̂−Q̂2

p1+3Q̂
s.t. Q̂ being feasible and r11 < 2p1/3

∂
(
r11+2Q̂−Q̂2

p1+3Q̂

)
∂
˜̃
Q

∝ (2/3)p1

(
1− Q̂

)
− Q̂2 − r11 = 0

⇒ ˜̃
Q
∗
=
−(2/3)p1 +

√
(4/9)p21 + 4[(2/3)p1 − r11]

2

7. Minimize r11+2Q̂−Q̂
2

p1+3Q̂
⇒ Q̂ = 0 or maximize Q̂. However, if the minimum occurs when Q̂ = 0, then r11−2 ˜̃Q− ˜̃Q2

p1−3 ˜̃Q <
r11
p1
and this will be the binding LB.
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A.1.2 p∗12

p∗12 =

r12 +

Q1,12︷ ︸︸ ︷[
θ1112
•
+ θ1312
•
+ θ2112 + θ

22
12 + θ

23
12 + θ

31
12 + θ

32
12 + θ

33
12

]
−

Q2,12︷ ︸︸ ︷[
θ1211
•
+ θ1213
•
+ θ1221 + θ

12
22 + θ

12
23 + θ

12
31 + θ

12
32 + θ

12
33

]
p1 +

[
θ2111 + θ

22
11 + θ

23
11 + θ

31
11 + θ

32
11 + θ

33
11 + θ

21
12
•
+ θ2212
•
+ θ2312
•
+ θ3112
•
+ θ3212
•
+ θ3312
•
+ θ2113
•
+ θ2213
•
+ θ2313
•
+ θ3113
•
+ θ3213
•
+ θ3313
•

]
︸ ︷︷ ︸

Q3,1

−
[
θ1121 + θ

11
22 + θ

11
23 + θ

12
21
•
+ θ1222
•
+ θ1223
•
+ θ1321
•
+ θ1322
•
+ θ1323
•
+ θ1131 + θ

11
32 + θ

11
33 + θ

12
31
•
+ θ1232
•
+ θ1233
•
+ θ1331
•
+ θ1332
•
+ θ1333
•

]
︸ ︷︷ ︸

Q4,1

• θk
′l′

kl
•
= unique element

Maximum Arbitrary Errors: Assumption 2

LB12 =
r12 −Q
p1

≥ 0

UB12 =
r12 +Q

p1
≤ 1

Temporal Independence, Temporal Invariance: Assumptions 3 & 4

• Implies

p∗12 =
r12 +

Q1,12︷ ︸︸ ︷[
α
1
1β

1
2 + α

1
1β

3
2 + α

2
1β

1
2 + α

2
1β

2
2 + α

2
1β

3
2 + α

3
1β

1
2 + α

3
1β

2
2 + α

3
1β

3
2

]−
Q2,12︷ ︸︸ ︷[

α
1
1β

2
1 + α

1
1β

2
3 + α

1
2β

2
1 + α

1
2β

2
2 + α

1
2β

2
3 + α

1
3β

2
1 + α

1
3β

2
2 + α

1
3β

2
3

]
p1 +

[
α
2
1β

1
1 + α

2
1β

2
1 + α

2
1β

3
1 + α

3
1β

1
1 + α

3
1β

2
1 + α

3
1β

3
1 + α

2
1β

1
2 + α

2
1β

2
2 + α

2
1β

3
2 + α

3
1β

1
2 + α

3
1β

2
2 + α

3
1β

3
2 + α

2
1β

1
3 + α

2
1β

2
3 + α

2
1β

3
3 + α

3
1β

1
3 + α

3
1β

2
3 + α

3
1β

3
3

]
︸ ︷︷ ︸

Q3,1

−

[
α
1
2β

1
1 + α

1
2β

1
2 + α

1
2β

1
3 + α

1
2β

2
1 + α

1
2β

2
2 + α

1
2β

2
3 + α

1
2β

3
1 + α

1
2β

3
2 + α

1
2β

3
3 + α

1
3β

1
1 + α

1
3β

1
2 + α

1
3β

1
3 + α

1
3β

2
1 + α

1
3β

2
2 + α

1
3β

2
3 + α

1
3β

3
1 + α

1
3β

3
2 + α

1
3β

3
3

]
︸ ︷︷ ︸

Q4,1

• Simplifying

Q1,12 =
(
α21 + α

3
1

)
+
(
β12 + β

3
2

) (
1− α21 − α31

)
(TI)

=
(
θ21 + θ

3
1

)
+
(
θ12 + θ

3
2

) (
1− θ21 − θ31

)
(TIV)

Q2,12 =
(
α12 + α

1
3

) (
1 + β21 + β

2
3 − β12 − β32

)
+
(
β21 + β

2
3

) (
1− α21 − α31

)
(TI)

=
(
θ12 + θ

1
3

) (
1 + θ21 + θ

2
3 − θ12 − θ32

)
+
(
θ21 + θ

2
3

) (
1− θ21 − θ31

)
(TIV)

Q3,1 = 3
(
α21 + α

3
1

)
(TI)

= 3
(
θ21 + θ

3
1

)
(TIV)

Q4,1 = 3
(
α12 + α

1
3

)
(TI)

= 3
(
θ12 + θ

1
3

)
(TIV)

9



• Under Temporal Independence (Assumption 3)

p∗12 =
r12 +

(
β12 + β

3
2 − β21 − β23

)
+
(
α21 + α

3
1 − α12 − α13

) (
1 + β21 + β

2
3 − β12 − β32

)
p1 + 3 (α21 + α

3
1 − α12 − α13)

—Yields

LBTI12 = min

r12 −Q/3p1
,
r12 +

˜̃
Q

p1 + 3
˜̃
Q
,
r12 − Q̂
p1 − 3Q̂

 ≥ 0
˜̃
Q < min {1− r12, (1− p1)/3, Q/3} , Q̂ < min {r12, p1/3, Q/3}

UBTI12 = max

r12 +Q/3p1
,
r12 +

˜̃
Q

p1 + 3
˜̃
Q
,
r12 − Q̂
p1 − 3Q̂

 ≤ 1
˜̃
Q < min {1− r12, (1− p1)/3, Q/3} , Q̂ < min {r12, p1/3, Q/3}

—Proof:

1. Evaluate ∂
(
r12+

˜̃
Q

p1+3
˜̃
Q

)
/∂
˜̃
Q and see when the sign is positive/negative. Both are possible.

sgn

∂
(
r12+

˜̃
Q

p1+3
˜̃
Q

)
∂
˜̃
Q

 = sgn

((
p1 + 3

˜̃
Q

)
− 3

(
r12 +

˜̃
Q

))

= sgn (p1 − 3r12)

2. Evaluate ∂
(
r12−Q̂
p1−3Q̂

)
/∂Q̂ and see when the sign is positive/negative. Both are possible.

sgn

∂
(
r12−Q̂
p1−3Q̂

)
∂Q̂

 = sgn
(
−
(
p1 − 3Q̂

)
+ 3

(
r12 − Q̂

))
= sgn (3r12 − p1)

Since both derivatives can take either sign, it is possible either could be the LB, UB..
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• Under Temporal Invariance (Assumption 4)

p∗12 =
r12 +

(
θ31 + θ

3
2 − θ13 − θ23

)
+
(
θ21 + θ

3
1 − θ12 − θ13

) (
θ21 + θ

2
3 − θ12 − θ32

)
p1 + 3

(
θ21 + θ

3
1 − θ12 − θ13

)
—Yields

LBTIV12 = min

r12 −
(
3−
√
9−Q

)
p1

,
r12 +

˜̃
Q
2

p1 + 3
˜̃
Q

 ≥ 0
˜̃
Q = min

{
−(2/3)p1 +

√
(4/9)p21 + 4r12
2

,
√
1− r12, (1− p1)/3, 3−

√
9−Q

}

UBTIV12 = max

r12 +
(
3−
√
9−Q

)
p1

,
r12 +

˜̃
Q
2

p1 − 3 ˜̃Q
 ≤ 1 ˜̃

Q = min
{√

1− r12, p1/3, 3−
√
9−Q

}
—Proof:

1. Evaluate ∂LBTIV12 /∂
˜̃
Q and see when the sign is positive/negative.

sgn

(
∂LBTIV12

∂
˜̃
Q

)
= sgn

(
2
˜̃
Q

(
p1 + 3

˜̃
Q

)
− 3

(
r12 +

˜̃
Q
2
))

= sgn

(˜̃
Q

(
(2/3)p1 +

˜̃
Q

)
− r12

)
⇒ sgn

(
∂LBTIV12

∂
˜̃
Q

)∣∣∣∣∣ ˜̃
Q=0

= sgn (−r12) < 0

⇒ ˜̃
Q > 0

2. Minimize LBTIV12 s.t. ˜̃Q being feasible

∂LBTIV12

∂
˜̃
Q

∝ ˜̃
Q

(
(2/3)p1 +

˜̃
Q

)
− r12 = 0

⇒ ˜̃
Q
∗
=
−(2/3)p1 +

√
(4/9)p21 + 4r12
2

So, derivative starts off negative and then reaches zero at ˜̃Q∗. Thus, r12+ ˜̃Q2

p1+3
˜̃
Q
is minimized at ˜̃Q∗.
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A.1.3 p∗13

p∗13 =

r13 +

Q1,13︷ ︸︸ ︷[
θ1113
•
+ θ1213
•
+ θ2113 + θ

22
13 + θ

23
13 + θ

31
13 + θ

32
13 + θ

33
13

]
−

Q2,13︷ ︸︸ ︷[
θ1311
•
+ θ1312
•
+ θ1321 + θ

13
22 + θ

13
23 + θ

13
31 + θ

13
32 + θ

13
33

]
p1 +

[
θ2111 + θ

22
11 + θ

23
11 + θ

31
11 + θ

32
11 + θ

33
11 + θ

21
12
•
+ θ2212
•
+ θ2312
•
+ θ3112
•
+ θ3212
•
+ θ3312
•
+ θ2113
•
+ θ2213
•
+ θ2313
•
+ θ3113
•
+ θ3213
•
+ θ3313
•

]
︸ ︷︷ ︸

Q3,1

−
[
θ1121 + θ

11
22 + θ

11
23 + θ

12
21
•
+ θ1222
•
+ θ1223
•
+ θ1321
•
+ θ1322
•
+ θ1323
•
+ θ1131 + θ

11
32 + θ

11
33 + θ

12
31
•
+ θ1232
•
+ θ1233
•
+ θ1331
•
+ θ1332
•
+ θ1333
•

]
︸ ︷︷ ︸

Q4,1

• θk
′l′

kl
•
= unique element

Maximum Arbitrary Errors: Assumption 2

LB13 =
r13 −Q
p1

≥ 0

UB13 =
r13 +Q

p1
≤ 1

Temporal Independence, Temporal Invariance: Assumptions 3 & 4

• Implies

p∗13 =
r13 +

Q1,13︷ ︸︸ ︷[
α
1
1β

1
3 + α

1
1β

2
3 + α

2
1β

1
3 + α

2
1β

2
3 + α

2
1β

3
3 + α

3
1β

1
3 + α

3
1β

2
3 + α

3
1β

3
3

]−
Q2,13︷ ︸︸ ︷[

α
1
1β

3
1 + α

1
1β

3
2 + α

1
2β

3
1 + α

1
2β

3
2 + α

1
2β

3
3 + α

1
3β

3
1 + α

1
3β

3
2 + α

1
3β

3
3

]
p1 +

[
α
2
1β

1
1 + α

2
1β

2
1 + α

2
1β

3
1 + α

3
1β

1
1 + α

3
1β

2
1 + α

3
1β

3
1 + α

2
1β

1
2 + α

2
1β

2
2 + α

2
1β

3
2 + α

3
1β

1
2 + α

3
1β

2
2 + α

3
1β

3
2 + α

2
1β

1
3 + α

2
1β

2
3 + α

2
1β

3
3 + α

3
1β

1
3 + α

3
1β

2
3 + α

3
1β

3
3

]
︸ ︷︷ ︸

Q3,1

−

[
α
1
2β

1
1 + α

1
2β

1
2 + α

1
2β

1
3 + α

1
2β

2
1 + α

1
2β

2
2 + α

1
2β

2
3 + α

1
2β

3
1 + α

1
2β

3
2 + α

1
2β

3
3 + α

1
3β

1
1 + α

1
3β

1
2 + α

1
3β

1
3 + α

1
3β

2
1 + α

1
3β

2
2 + α

1
3β

2
3 + α

1
3β

3
1 + α

1
3β

3
2 + α

1
3β

3
3

]
︸ ︷︷ ︸

Q4,1

• Simplifying

Q1,13 =
(
α21 + α

3
1

)
+
(
β13 + β

2
3

) (
1− α21 − α31

)
(TI)

=
(
θ21 + θ

3
1

)
+
(
θ13 + θ

2
3

) (
1− θ21 − θ31

)
(TIV)

Q2,13 =
(
α12 + α

1
3

) (
1 + β31 + β

3
2 − β13 − β23

)
+
(
β31 + β

3
2

) (
1− α21 − α31

)
(TI)

=
(
θ12 + θ

1
3

) (
1 + θ31 + θ

3
2 − θ13 − θ23

)
+
(
θ31 + θ

3
2

) (
1− θ21 − θ31

)
(TIV)

Q3,1 = 3
(
α21 + α

3
1

)
(TI)

= 3
(
θ21 + θ

3
1

)
(TIV)

Q4,1 = 3
(
α12 + α

1
3

)
(TI)

= 3
(
θ12 + θ

1
3

)
(TIV)
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• Under Temporal Independence (Assumption 3)

p∗13 =
r13 +

(
β13 + β

2
3 − β31 − β32

)
+
(
α21 + α

3
1 − α12 − α13

) (
1 + β31 + β

3
2 − β13 − β23

)
p1 + 3 (α21 + α

3
1 − α12 − α13)

—Yields

LBTI13 = min

r13 −Q/3p1
,
r13 +

˜̃
Q

p1 + 3
˜̃
Q
,
r13 − Q̂
p1 − 3Q̂

 ≥ 0
˜̃
Q = min {1− r13, (1− p1)/3, Q/3} , Q̂ = min {r13, p1/3, Q/3}

UBTI13 = max

r13 +Q/3p1
,
r13 +

˜̃
Q

p1 + 3
˜̃
Q
,
r13 − Q̂
p1 − 3Q̂

 ≤ 1
˜̃
Q = min {1− r13, (1− p1)/3, Q/3} , Q̂ = min {r13, p1/3, Q/3}

—Proof:

1. Evaluate ∂
(
r13+

˜̃
Q

p1+3
˜̃
Q

)
/∂
˜̃
Q and see when the sign is positive/negative. Both are possible.

sgn

∂
(
r13+

˜̃
Q

p1+3
˜̃
Q

)
∂
˜̃
Q

 = sgn

((
p1 + 3

˜̃
Q

)
− 3

(
r13 +

˜̃
Q

))

= sgn (p1 − 3r13)

2. Evaluate ∂
(
r13−Q̂
p1−3Q̂

)
/∂Q̂ and see when the sign is positive/negative. Both are possible.

sgn

∂
(
r13−Q̂
p1−3Q̂

)
∂Q̂

 = sgn
(
−
(
p1 − 3Q̂

)
+ 3

(
r13 − Q̂

))
= sgn (3r13 − p1)
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• Under Temporal Invariance (Assumption 4)

p∗13 =
r13 +

(
θ23 + θ

2
1 − θ12 − θ32

)
+
(
θ21 + θ

3
1 − θ12 − θ13

) (
θ31 + θ

3
2 − θ13 − θ23

)
p1 + 3

(
θ21 + θ

3
1 − θ12 − θ13

)
—Yields

LBTIV13 = min

r13 −
(
3−
√
9−Q

)
p1

,
r13 +

˜̃
Q
2

p1 + 3
˜̃
Q

 ≥ 0
˜̃
Q = min

{
−(2/3)p1 +

√
(4/9)p21 + 4r13
2

,
√
1− r13, (1− p1)/3, 3−

√
9−Q

}

UBTIV13 = max

r13 +
(
3−
√
9−Q

)
p1

,
r13 +

˜̃
Q
2

p1 − 3 ˜̃Q
 ≤ 1 ˜̃

Q = min
{√

1− r13, p1/3, 3−
√
9−Q

}
—Proof:

1. Evaluate ∂LBTIV13 /∂
˜̃
Q and see when the sign is positive/negative.

sgn

(
∂LBTIV13

∂
˜̃
Q

)
= sgn

(
2
˜̃
Q

(
p1 + 3

˜̃
Q

)
− 3

(
r13 +

˜̃
Q
2
))

= sgn

(˜̃
Q

(
(2/3)p1 +

˜̃
Q

)
− r13

)
⇒ sgn

(
∂LBTIV13

∂
˜̃
Q

)∣∣∣∣∣ ˜̃
Q=0

= sgn (−r13) < 0

⇒ ˜̃
Q > 0

2. Minimize LBTIV13 s.t. ˜̃Q being feasible

∂LBTIV13

∂
˜̃
Q

∝ ˜̃
Q

(
(2/3)p1 +

˜̃
Q

)
− r13 = 0

⇒ ˜̃
Q
∗
=
−(2/3)p1 +

√
(4/9)p21 + 4r13
2

So, derivative starts off negative and then reaches zero at ˜̃Q∗. Thus, r13+ ˜̃Q2

p1+3
˜̃
Q
is minimized at ˜̃Q∗.
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A.1.4 p∗21

p∗21 =

r21 +

Q1,21︷ ︸︸ ︷[
θ1121 + θ

12
21 + θ

13
21 + θ

22
21
•
+ θ2321
•
+ θ3121 + θ

32
21 + θ

33
21

]
−

Q2,21︷ ︸︸ ︷[
θ2111 + θ

21
12 + θ

21
13 + θ

21
22
•
+ θ2123
•
+ θ2131 + θ

21
32 + θ

21
33

]
p2 +

[
θ1121 + θ

12
21 + θ

13
21 + θ

31
21 + θ

32
21 + θ

33
21 + θ

11
22
•
+ θ1222
•
+ θ1322
•
+ θ3122
•
+ θ3222
•
+ θ3322
•
+ θ1123
•
+ θ1223
•
+ θ1323
•
+ θ3123
•
+ θ3223
•
+ θ3323
•

]
︸ ︷︷ ︸

Q3,2

−
[
θ2111 + θ

21
12 + θ

21
13 + θ

22
11
•
+ θ2212
•
+ θ2213
•
+ θ2311
•
+ θ2312
•
+ θ2313
•
+ θ2131 + θ

21
32 + θ

21
33 + θ

22
31
•
+ θ2232
•
+ θ2233
•
+ θ2331
•
+ θ2332
•
+ θ2333
•

]
︸ ︷︷ ︸

Q4,2

• θk
′l′

kl
•
= unique element

Maximum Arbitrary Errors: Assumption 2

LB21 =
r21 −Q
p2

≥ 0

UB21 =
r21 +Q

p2
≤ 1

Temporal Independence, Temporal Invariance: Assumptions 3 & 4

• Implies

p∗21 =
r21 +

Q1,21︷ ︸︸ ︷[
α
1
2β

1
1 + α

1
2β

2
1 + α

1
2β

3
1 + α

2
2β

2
1 + α

2
2β

3
1 + α

3
2β

1
1 + α

3
2β

2
1 + α

3
2β

3
1

]−
Q2,21︷ ︸︸ ︷[

α
2
1β

1
1 + α

2
1β

1
2 + α

2
1β

1
3 + α

2
2β

1
2 + α

2
2β

1
3 + α

2
3β

1
1 + α

2
3β

1
2 + α

2
3β

1
3

]
p2 +

[
α
1
2β

1
1 + α

1
2β

2
1 + α

1
2β

3
1 + α

3
2β

1
1 + α

3
2β

2
1 + α

3
2β

3
1 + α

1
2β

1
2 + α

1
2β

2
2 + α

1
2β

3
2 + α

3
2β

1
2 + α

3
2β

2
2 + α

3
2β

3
2 + α

1
2β

1
3 + α

1
2β

2
3 + α

1
2β

3
3 + α

3
2β

1
3 + α

3
2β

2
3 + α

3
2β

3
3

]
︸ ︷︷ ︸

Q3,2

−
[
α
2
1β

1
1 + α

2
1β

1
2 + α

2
1β

1
3 + α

2
1β

2
1 + α

2
1β

2
2 + α

2
1β

2
3 + α

2
1β

3
1 + α

2
1β

3
2 + α

2
1β

3
3 + α

2
3β

1
1 + α

2
3β

1
2 + α

2
3β

1
3 + α

2
3β

2
1 + α

2
3β

2
2 + α

2
3β

2
3 + α

2
3β

3
1 + α

2
3β

3
2 + α

2
3β

3
3

]
︸ ︷︷ ︸

Q4,2

• Simplifying

Q1,21 =
(
α12 + α

3
2

)
+
(
β21 + β

3
1

) (
1− α12 − α32

)
(TI)

=
(
θ12 + θ

3
2

)
+
(
θ21 + θ

3
1

) (
1− θ12 − θ32

)
(TIV)

Q2,21 =
(
α21 + α

2
3

) (
1 + β12 + β

1
3 − β21 − β31

)
+
(
β12 + β

1
3

) (
1− α12 − α32

)
(TI)

=
(
θ21 + θ

2
3

) (
1 + θ12 + θ

1
3 − θ21 − θ31

)
+
(
θ12 + θ

1
3

) (
1− θ12 − θ32

)
(TIV)

Q3,2 = 3
(
α12 + α

3
2

)
(TI)

= 3
(
θ12 + θ

3
2

)
(TIV)

Q4,2 = 3
(
α21 + α

2
3

)
(TI)

= 3
(
θ21 + θ

2
3

)
(TIV)
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• Under Temporal Independence (Assumption 3)

p∗21 =
r21 +

(
β21 + β

3
1 − β12 − β13

)
+
(
α12 + α

3
2 − α21 − α23

) (
1 + β12 + β

1
3 − β21 − β31

)
p2 + 3 (α12 + α

3
2 − α21 − α23)

—Yields

LBTI21 = min

r21 −Q/3p2
,
r21 +

˜̃
Q

p2 + 3
˜̃
Q
,
r21 − Q̂
p2 − 3Q̂

 ≥ 0
˜̃
Q = min {1− r21, (1− p2)/3, Q/3} , Q̂ = min {r21, p2/3, Q/3}

UBTI21 = max

r21 +Q/3p2
,
r21 +

˜̃
Q

p2 + 3
˜̃
Q
,
r21 − Q̂
p2 − 3Q̂

 ≤ 1
˜̃
Q = min {1− r21, (1− p2)/3, Q/3} , Q̂ = min {r21, p2/3, Q/3}

—Proof:

1. Evaluate ∂
(
r21+

˜̃
Q

p2+3
˜̃
Q

)
/∂
˜̃
Q and see when the sign is positive/negative. Both are possible.

sgn

∂
(
r21+

˜̃
Q

p2+3
˜̃
Q

)
∂
˜̃
Q

 = sgn

((
p2 + 3

˜̃
Q

)
− 3

(
r21 +

˜̃
Q

))

= sgn (p2 − 3r21)

2. Evaluate ∂
(
r21−Q̂
p2−3Q̂

)
/∂Q̂ and see when the sign is positive/negative. Both are possible.

sgn

∂
(
r21−Q̂
p2−3Q̂

)
∂Q̂

 = sgn
(
−
(
p2 − 3Q̂

)
+ 3

(
r21 − Q̂

))
= sgn (3r21 − p2)
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• Under Temporal Invariance (Assumption 3)

p∗21 =
r21 +

(
θ31 + θ

3
2 − θ13 − θ23

)
+
(
θ12 + θ

3
2 − θ21 − θ23

) (
θ12 + θ

1
3 − θ21 − θ31

)
p2 + 3

(
θ12 + θ

3
2 − θ21 − θ23

)
—Yields

LBTIV21 = min

r21 −
(
3−
√
9−Q

)
p2

,
r21 +

˜̃
Q
2

p1 + 3
˜̃
Q

 ≥ 0
˜̃
Q = min

{
−(2/3)p2 +

√
(4/9)p22 + 4r21
2

,
√
1− r21, (1− p2)/3, 3−

√
9−Q

}

UBTIV21 = max

r21 +
(
3−
√
9−Q

)
p2

,
r21 +

˜̃
Q
2

p2 − 3 ˜̃Q
 ≤ 1 ˜̃

Q = min
{√

1− r21, p2/3, 3−
√
9−Q

}
—Proof:

1. Evaluate ∂LBTIV21 /∂
˜̃
Q and see when the sign is positive/negative.

sgn

(
∂LBTIV21

∂
˜̃
Q

)
= sgn

(
2
˜̃
Q

(
p2 + 3

˜̃
Q

)
− 3

(
r21 +

˜̃
Q
2
))

= sgn

(˜̃
Q

(
(2/3)p2 +

˜̃
Q

)
− r21

)
⇒ sgn

(
∂LBTIV21

∂
˜̃
Q

)∣∣∣∣∣ ˜̃
Q=0

= sgn (−r21) < 0

⇒ ˜̃
Q > 0

2. Minimize LBTIV21 s.t. ˜̃Q being feasible

∂LBTIV21

∂
˜̃
Q

∝ ˜̃
Q

(
(2/3)p2 +

˜̃
Q

)
− r21 = 0

⇒ ˜̃
Q
∗
=
−(2/3)p2 +

√
(4/9)p22 + 4r21
2

So, derivative starts off negative and then reaches zero at ˜̃Q∗. Thus, r21+ ˜̃Q2

p2+3
˜̃
Q
is minimized at ˜̃Q∗.
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A.1.5 p∗22

p∗22 =

r22 +

Q1,22︷ ︸︸ ︷[
θ1122 + θ

12
22 + θ

13
22 + θ

21
22
•
+ θ2322
•
+ θ3122 + θ

32
22 + θ

33
22

]
−

Q2,22︷ ︸︸ ︷[
θ2211 + θ

22
12 + θ

22
13 + θ

22
21
•
+ θ2223
•
+ θ2231 + θ

22
32 + θ

22
33

]
p2 +

[
θ1121
•
+ θ1221
•
+ θ1321
•
+ θ3121
•
+ θ3221
•
+ θ3321
•
+ θ1122 + θ

12
22 + θ

13
22 + θ

31
22 + θ

32
22 + θ

33
22 + θ

11
23
•
+ θ1223
•
+ θ1323
•
+ θ3123
•
+ θ3223
•
+ θ3323
•

]
︸ ︷︷ ︸

Q3,2

−
[
θ2111
•
+ θ2112
•
+ θ2113
•
+ θ2211 + θ

22
12 + θ

22
13 + θ

23
11
•
+ θ2312
•
+ θ2313
•
+ θ2131
•
+ θ2132
•
+ θ2133
•
+ θ2231 + θ

22
32 + θ

22
33 + θ

23
31
•
+ θ2332
•
+ θ2333
•

]
︸ ︷︷ ︸

Q4,2

• θk
′l′

kl
•
= unique element

Maximum Arbitrary Errors: Assumption 2

LB22 =
r22 −Q
p2

≥ 0

UB22 =
r22 +Q

p2
≤ 1

Temporal Independence, Temporal Invariance: Assumptions 3 & 4

• Implies

p∗22 =
r22 +

Q1,22︷ ︸︸ ︷[
α
1
2β

1
2 + α

1
2β

2
2 + α

1
2β

3
2 + α

2
2β

1
2 + α

2
2β

3
2 + α

3
2β

1
2 + α

3
2β

2
2 + α

3
2β

3
2

]−
Q2,22︷ ︸︸ ︷[

α
2
1β

2
1 + α

2
1β

2
2 + α

2
1β

2
3 + α

2
2β

2
1 + α

2
2β

2
3 + α

2
3β

2
1 + α

2
3β

2
2 + α

2
3β

2
3

]
p2 +

[
α
1
2β

1
1 + α

1
2β

2
1 + α

1
2β

3
1 + α

3
2β

1
1 + α

3
2β

2
1 + α

3
2β

3
1 + α

1
2β

1
2 + α

1
2β

2
2 + α

1
2β

3
2 + α

3
2β

1
2 + α

3
2β

2
2 + α

3
2β

3
2 + α

1
2β

1
3 + α

1
2β

2
3 + α

1
2β

3
3 + α

3
2β

1
3 + α

3
2β

2
3 + α

3
2β

3
3

]
︸ ︷︷ ︸

Q3,2

−
[
α
2
1β

1
1 + α

2
1β

1
2 + α

2
1β

1
3 + α

2
1β

2
1 + α

2
1β

2
2 + α

2
1β

2
3 + α

2
1β

3
1 + α

2
1β

3
2 + α

2
1β

3
3 + α

2
3β

1
1 + α

2
3β

1
2 + α

2
3β

1
3 + α

2
3β

2
1 + α

2
3β

2
2 + α

2
3β

2
3 + α

2
3β

3
1 + α

2
3β

3
2 + α

2
3β

3
3

]
︸ ︷︷ ︸

Q4,2

• Simplifying

Q1,22 =
(
α12 + α

3
2

)
+
(
β12 + β

3
2

) (
1− α12 − α32

)
(TI)

= 2
(
θ12 + θ

3
2

)
−
(
θ12 + θ

3
2

)2
(TIV)

Q2,22 =
(
α21 + α

2
3

) (
1 + β21 + β

2
3 − β12 − β32

)
+
(
β21 + β

2
3

) (
1− α12 − α32

)
(TI)

= 2
(
θ21 + θ

2
3

) (
1− θ12 − θ32

)
+
(
θ21 + θ

2
3

)2
(TIV)

Q3,2 = 3
(
α12 + α

3
2

)
(TI)

= 3
(
θ12 + θ

3
2

)
(TIV)

Q4,2 = 3
(
α21 + α

2
3

)
(TI)

= 3
(
θ21 + θ

2
3

)
(TIV)

18



• Under Temporal Independence (Assumption 3)

p∗22 =
r22 +

(
α12 + α

3
2 − α21 − α23

)
+
(
β12 + β

3
2 − β21 − β23

) (
1 + α21 + α

2
3 − α12 − α32

)
p2 + 3 (α12 + α

3
2 − α21 − α23)

—Yields

LBTI22 = min

r22 −Q/3p2
,
r22 +

˜̃
Q

p2 + 3
˜̃
Q
,
r22 − Q̂
p2 − 3Q̂

 ≥ 0
˜̃
Q = min {1− r22, (1− p2)/3, Q/3} , Q̂ = min {r22, p2/3, Q/3}

UBTI22 = max

r22 +Q/3p2
,
r22 +

˜̃
Q

p2 + 3
˜̃
Q
,
r22 − Q̂
p2 − 3Q̂

 ≤ 1
˜̃
Q = min {1− r22, (1− p2)/3, Q/3} , Q̂ = min {r22, p2/3, Q/3}

—Proof:

1. Evaluate ∂
(
r22+

˜̃
Q

p2+3
˜̃
Q

)
/∂
˜̃
Q and see when the sign is positive/negative. Both are possible.

sgn

∂
(
r22+

˜̃
Q

p2+3
˜̃
Q

)
∂
˜̃
Q

 = sgn

((
p2 + 3

˜̃
Q

)
− 3

(
r22 +

˜̃
Q

))

= sgn (p2 − 3r22)

2. Evaluate ∂
(
r22−Q̂
p2−3Q̂

)
/∂Q̂ and see when the sign is positive/negative. Both are possible.

sgn

∂
(
r22−Q̂
p2−3Q̂

)
∂Q̂

 = sgn
(
−
(
p2 − 3Q̂

)
+ 3

(
r22 − Q̂

))
= sgn (3r22 − p2)
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• Under Temporal Invariance (Assumption 4)

p∗22 =
r22 + 2

(
θ12 + θ

3
2 − θ21 − θ23

)
−
(
θ12 + θ

3
2 − θ21 − θ23

)2
p2 + 3

(
θ12 + θ

3
2 − θ21 − θ23

)
—Yields

LBTIV22 = min

r22 + 2Q̂− Q̂2p2 + 3Q̂
,
r22 − 2 ˜̃Q− ˜̃Q2

p2 − 3 ˜̃Q
 ≥ 0

Q̂ = min
{
(1− p2)/3, 3−

√
9−Q

}
,

˜̃
Q =

 0 r22 ≥ 2p2/3

min

{
(2/3)p2+

√
(4/9)p22+4[(2/3)p2−r22]

2 , (−1 +
√
1 + r22), p2/3, 3−

√
9−Q

}
otherwise

UBTIV22 = min

r22 + 2Q̂− Q̂2p2 + 3Q̂
,
r22 − 2 ˜̃Q− ˜̃Q2

p2 − 3 ˜̃Q
 ≥ 0

Q̂ =

 0 r22 ≥ 2p2/3

min

{
−(2/3)p2+

√
(4/9)p22+4[(2/3)p2−r22]

2 , (1− p2)/3, 3−
√
9−Q

}
otherwise

,

˜̃
Q =

 0 r22 < 2p2/3

min

{
(2/3)p2−

√
(4/9)p22+4[(2/3)p2−r22]

2 , (−1 +
√
1 + r22), p2/3, 3−

√
9−Q

}
otherwise
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—Proof:

1. Evaluate ∂
(
r22−2 ˜̃Q− ˜̃Q2

p2−3 ˜̃Q
)
/∂
˜̃
Q and see when the sign is positive/negative. Both are possible.

sgn

∂
(
r22−2 ˜̃Q− ˜̃Q2

p2−3 ˜̃Q
)

∂
˜̃
Q

 = sgn

((
−2− 2 ˜̃Q)(p2 − 3 ˜̃Q)+ 3(r22 − 2 ˜̃Q− ˜̃Q2))

= sgn

(
−(2/3)p2

(
1 +

˜̃
Q

)
+
˜̃
Q
2

+ r22

)

⇒ sgn

∂
(
r22−2 ˜̃Q− ˜̃Q2

p2−3 ˜̃Q
)

∂
˜̃
Q


∣∣∣∣∣∣∣∣ ˜̃
Q=0

= sgn (−(2/3)p2 + r22) ≷ 0

⇒ sgn

∂
(
r22−2 ˜̃Q− ˜̃Q2

p2−3 ˜̃Q
)

∂
˜̃
Q


∣∣∣∣∣∣∣∣ ˜̃
Q=1

= sgn (−(4/3)p2 + 1 + r22) ≷ 0

2. Ensure r22 − 2 ˜̃Q− ˜̃Q2 ≥ 0
r22 − 2 ˜̃Q− ˜̃Q2 ≥ 0

⇒ ˜̃
Q
2

+ 2
˜̃
Q− r22 ≤ 0

⇒ ˜̃
Q ≤ −2 +

√
4 + 4r22
2

⇒ ˜̃
Q ≤ −1 +

√
1 + r22

3. Minimize r22−2 ˜̃Q− ˜̃Q2

p2−3 ˜̃Q s.t. ˜̃Q being feasible and r22 < 2p2/3

∂

(
r22−2 ˜̃Q− ˜̃Q2

p2−3 ˜̃Q
)

∂
˜̃
Q

∝ −(2/3)p2
(
1 +

˜̃
Q

)
+
˜̃
Q
2

+ r22 = 0

⇒ ˜̃
Q
∗
=
(2/3)p2 +

√
(4/9)p22 + 4[(2/3)p2 − r22]

2

4. Maximize r22−2 ˜̃Q− ˜̃Q2

p2−3 ˜̃Q s.t. ˜̃Q being feasible and r22 ≥ 2p2/3

∂

(
r22−2 ˜̃Q− ˜̃Q2

p2−3 ˜̃Q
)

∂
˜̃
Q

∝ −(2/3)p2
(
1 +

˜̃
Q

)
+
˜̃
Q
2

+ r22 = 0

⇒ ˜̃
Q
∗
=
(2/3)p2 −

√
(4/9)p22 + 4[(2/3)p2 − r22]

2

Note: If
√
(4/9)p22 + 4[(2/3)p2 − r22] = ., then maximize ˜̃Q.
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5. Evaluate ∂
(
r22+2Q̂−Q̂2

p2+3Q̂

)
/∂Q̂ and see when the sign is positive/negative. Both are possible.

sgn

∂
(
r22+2Q̂−Q̂2

p2+3Q̂

)
∂Q̂

 = sgn
((
2− 2Q̂

)(
p2 + 3Q̂

)
− 3

(
r22 + 2Q̂− Q̂2

))
= sgn

(
(2/3)p2

(
1− Q̂

)
− Q̂2 − r22

)
⇒ sgn

∂
(
r22+2Q̂−Q̂2

p2+3Q̂

)
∂Q̂

∣∣∣∣∣∣
Q̂=0

= sgn ((2/3)p2 − r22) ≷ 0

⇒ sgn

∂
(
r22+2Q̂−Q̂2

p2+3Q̂

)
∂Q̂

∣∣∣∣∣∣
Q̂=1

= sgn (−1− r22) < 0

6. Maximize r22+2Q̂−Q̂2

p2+3Q̂
s.t. Q̂ being feasible and r22 < 2p2/3

sgn

∂
(
r22+2Q̂−Q̂2

p2+3Q̂

)
∂
˜̃
Q

 ∝ (2/3)p2

(
1− Q̂

)
− Q̂2 − r22 = 0

⇒ ˜̃
Q
∗
=
−(2/3)p2 +

√
(4/9)p22 + 4[(2/3)p2 − r22]

2

7. Minimize r22+2Q̂−Q̂2

p2+3Q̂
⇒ Q̂ = 0 or maximize Q̂. However, if the minimum occurs when Q̂ = 0, then

r221−2 ˜̃Q− ˜̃Q2

p2−3 ˜̃Q < r22
p2
and this will be the binding LB.
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A.1.6 p∗23

p∗23 =

r23 +

Q1,23︷ ︸︸ ︷[
θ1123 + θ

12
23 + θ

13
23 + θ

21
23
•
+ θ2223
•
+ θ3123 + θ

32
23 + θ

33
23

]
−

Q2,23︷ ︸︸ ︷[
θ2311 + θ

23
12 + θ

23
13 + θ

23
21
•
+ θ2322
•
+ θ2331 + θ

23
32 + θ

23
33

]
p2 +

[
θ1121
•
+ θ1221
•
+ θ1321
•
+ θ3121
•
+ θ3221
•
+ θ3321
•
+ θ1122
•
+ θ1222
•
+ θ1322
•
+ θ3122
•
+ θ3222
•
+ θ3322
•
+ θ1123 + θ

12
23 + θ

13
23 + θ

31
23 + θ

32
23 + θ

33
23

]
︸ ︷︷ ︸

Q3,2

−
[
θ2111
•
+ θ2112
•
+ θ2113
•
+ θ2211
•
+ θ2212
•
+ θ2213
•
+ θ2311 + θ

23
12 + θ

23
13 + θ

21
31
•
+ θ2132
•
+ θ2133
•
+ θ2231
•
+ θ2232
•
+ θ2233
•
+ θ2331 + θ

23
32 + θ

23
33

]
︸ ︷︷ ︸

Q4,2

• θk
′l′

kl
•
= unique element

Maximum Arbitrary Errors: Assumption 2

LB23 =
r23 − Q̃
p2

≥ 0 Q̃ =

{
Q AE
Q/3 UE

UB23 =
r23 + Q̃

p2 − ˜̃Q ≤ 1 ˜̃
Q =

{
0 AE
min{p2, Q/3} UE

Temporal Independence, Temporal Invariance: Assumptions 3 & 4

• Implies

p∗23 =
r23 +

Q1,23︷ ︸︸ ︷[
α
1
2β

1
3 + α

1
2β

2
3 + α

1
2β

3
3 + α

2
2β

1
3 + α

2
2β

2
3 + α

3
2β

1
3 + α

3
2β

2
3 + α

3
2β

3
3

]−
Q2,23︷ ︸︸ ︷[

α
2
1β

3
1 + α

2
1β

3
2 + α

2
1β

3
3 + α

2
2β

3
1 + α

2
2β

3
2 + α

2
3β

3
1 + α

2
3β

3
2 + α

2
3β

3
3

]
p2 +

[
α
1
2β

1
1 + α

1
2β

2
1 + α

1
2β

3
1 + α

3
2β

1
1 + α

3
2β

2
1 + α

3
2β

3
1 + α

1
2β

1
2 + α

1
2β

2
2 + α

1
2β

3
2 + α

3
2β

1
2 + α

3
2β

2
2 + α

3
2β

3
2 + α

1
2β

1
3 + α

1
2β

2
3 + α

1
2β

3
3 + α

3
2β

1
3 + α

3
2β

2
3 + α

3
2β

3
3

]
︸ ︷︷ ︸

Q3,2

−
[
α
2
1β

1
1 + α

2
1β

1
2 + α

2
1β

1
3 + α

2
1β

2
1 + α

2
1β

2
2 + α

2
1β

2
3 + α

2
1β

3
1 + α

2
1β

3
2 + α

2
1β

3
3 + α

2
3β

1
1 + α

2
3β

1
2 + α

2
3β

1
3 + α

2
3β

2
1 + α

2
3β

2
2 + α

2
3β

2
3 + α

2
3β

3
1 + α

2
3β

3
2 + α

2
3β

3
3

]
︸ ︷︷ ︸

Q4,2

• Simplifying

Q1,23 =
(
α12 + α

3
2

)
+
(
β13 + β

2
3

) (
1− α12 − α32

)
(TI)

=
(
θ12 + θ

3
2

)
+
(
θ13 + θ

2
3

) (
1− θ12 − θ32

)
(TIV)

Q2,23 =
(
α21 + α

2
3

) (
1 + β31 + β

3
2 − β13 − β23

)
+
(
β31 + β

3
2

) (
1− α12 − α32

)
(TI)

=
(
θ21 + θ

2
3

) (
1 + θ31 + θ

3
2 − θ13 − θ23

)
+
(
θ31 + θ

3
2

) (
1− θ12 − θ32

)
(TIV)

Q3,2 = 3
(
α12 + α

3
2

)
(TI)

= 3
(
θ12 + θ

3
2

)
(TIV)

Q4,2 = 3
(
α21 + α

2
3

)
(TI)

= 3
(
θ21 + θ

2
3

)
(TIV)
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• Under Temporal Independence (Assumption 3)

p∗23 =
r23 +

(
β13 + β

2
3 − β31 − β32

)
+
(
α12 + α

3
2 − α21 − α23

) (
1 + β31 + β

3
2 − β13 − β23

)
p2 + 3 (α12 + α

3
2 − α21 − α23)

—Yields

LBTI23 = min

r23 −Q/3p1
,
r23 +

˜̃
Q

p2 + 3
˜̃
Q
,
r23 − Q̂
p2 − 3Q̂

 ≥ 0
˜̃
Q = min {1− r23, (1− p2)/3, Q/3} , Q̂ = min {r23, p2/3, Q/3}

UBTI23 = max

r23 +Q/3p2
,
r23 +

˜̃
Q

p2 + 3
˜̃
Q
,
r23 − Q̂
p2 − 3Q̂

 ≤ 1
˜̃
Q = min {1− r23, (1− p2)/3, Q/3} , Q̂ = min {r23, p2/3, Q/3}

—Proof:

1. Evaluate ∂
(
r23+

˜̃
Q

p2+3
˜̃
Q

)
/∂
˜̃
Q and see when the sign is positive/negative. Both are possible.

sgn

∂
(
r23+

˜̃
Q

p2+3
˜̃
Q

)
∂
˜̃
Q

 = sgn

((
p2 + 3

˜̃
Q

)
− 3

(
r23 +

˜̃
Q

))

= sgn (p2 − 3r23)

2. Evaluate ∂
(
r23−Q̂
p2−3Q̂

)
/∂Q̂ and see when the sign is positive/negative. Both are possible.

sgn

∂
(
r23−Q̂
p2−3Q̂

)
∂Q̂

 = sgn
(
−
(
p2 − 3Q̂

)
+ 3

(
r23 − Q̂

))
= sgn (3r23 − p2)
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• Under Temporal Invariance (Assumption 4)

p∗23 =
r23 +

(
θ12 + θ

1
3 − θ21 − θ31

)
+
(
θ12 + θ

3
2 − θ21 − θ23

) (
θ31 + θ

3
2 − θ13 − θ23

)
p2 + 3

(
θ12 + θ

3
2 − θ21 − θ23

)
—Yields

LBTIV23 = min

r23 −
(
3−
√
9−Q

)
p2

,
r23 +

˜̃
Q
2

p2 + 3
˜̃
Q

 ≥ 0
˜̃
Q = min

{
−(2/3)p2 +

√
(4/9)p22 + 4r23
2

,
√
1− r23, (1− p2)/3, 3−

√
9−Q

}

UBTIV23 = max

r23 +
(
3−
√
9−Q

)
p2

,
r23 +

˜̃
Q
2

p2 − 3 ˜̃Q
 ≤ 1 ˜̃

Q = min
{√

1− r23, p2/3, 3−
√
9−Q

}
—Proof:

1. Evaluate ∂LBTIV23 /∂
˜̃
Q and see when the sign is positive/negative.

sgn

(
∂LBTIV23

∂
˜̃
Q

)
= sgn

(
2
˜̃
Q

(
p2 + 3

˜̃
Q

)
− 3

(
r23 +

˜̃
Q
2
))

= sgn

(˜̃
Q

(
(2/3)p2 +

˜̃
Q

)
− r23

)
⇒ sgn

(
∂LBTIV23

∂
˜̃
Q

)∣∣∣∣∣ ˜̃
Q=0

= sgn (−r23) < 0

⇒ ˜̃
Q > 0

2. Minimize LBTIV23 s.t. ˜̃Q being feasible

∂LBTIV23

∂
˜̃
Q

∝ ˜̃
Q

(
(2/3)p2 +

˜̃
Q

)
− r23 = 0

⇒ ˜̃
Q
∗
=
−(2/3)p2 +

√
(4/9)p22 + 4r23
2

So, derivative starts off negative and then reaches zero at ˜̃Q∗. Thus, r23+ ˜̃Q2

p2+3
˜̃
Q
is minimized at ˜̃Q∗.
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A.1.7 p∗31

p∗31 =

r31 +

Q1,31︷ ︸︸ ︷[
θ1131 + θ

12
31 + θ

13
31 + θ

21
31 + θ

22
31 + θ

23
31 + θ

32
31
•
+ θ3331
•

]
−

Q2,31︷ ︸︸ ︷[
θ3111 + θ

31
12 + θ

31
13 + θ

31
21 + θ

31
22 + θ

31
23 + θ

31
32
•
+ θ3133
•

]
p3 +

[
θ1131 + θ

12
31 + θ

13
31 + θ

21
31 + θ

22
31 + θ

23
31 + θ

11
32
•
+ θ1232
•
+ θ1332
•
+ θ2132
•
+ θ2232
•
+ θ2332
•
+ θ1133
•
+ θ1233
•
+ θ1333
•
+ θ2133
•
+ θ2233
•
+ θ2333
•

]
︸ ︷︷ ︸

Q3,3

−
[
θ3111 + θ

31
12 + θ

31
13 + θ

32
11
•
+ θ3212
•
+ θ3213
•
+ θ3311
•
+ θ3312
•
+ θ3313
•
+ θ3121 + θ

31
22 + θ

31
23 + θ

32
21
•
+ θ3222
•
+ θ3223
•
+ θ3321
•
+ θ3322
•
+ θ3323
•

]
︸ ︷︷ ︸

Q4,3

• θk
′l′

kl
•
= unique element

Maximum Arbitrary Errors: Assumption 2

LB31 =
r31 − Q̃
p3

≥ 0 Q̃ =

{
Q AE
Q/3 UE

UB31 =
r31 + Q̃

p3 − ˜̃Q ≤ 1 ˜̃
Q =

{
0 AE
min{p3, Q/3} UE

Temporal Independence, Temporal Invariance: Assumptions 3 & 4

• Implies

p∗31 =
r31 +

Q1,31︷ ︸︸ ︷[
α
1
3β

1
1 + α

1
3β

2
1 + α

1
3β

3
1 + α

2
3β

1
1 + α

2
3β

2
1 + α

2
3β

3
1 + α

3
3β

2
1 + α

3
3β

3
1

]−
Q2,31︷ ︸︸ ︷[

α
3
1β

1
1 + α

3
1β

1
2 + α

3
1β

1
3 + α

3
2β

1
1 + α

3
2β

1
2 + α

3
2β

1
3 + α

3
3β

1
2 + α

3
3β

1
3

]
p3 +

[
α
1
3β

1
1 + α

1
3β

2
1 + α

1
3β

3
1 + α

2
3β

1
1 + α

2
3β

2
1 + α

2
3β

3
1 + α

1
3β

1
2 + α

1
3β

2
2 + α

1
3β

3
2 + α

2
3β

1
2 + α

2
3β

2
2 + α

2
3β

3
2 + α

1
3β

1
3 + α

1
3β

2
3 + α

1
3β

3
3 + α

2
3β

1
3 + α

2
3β

2
3 + α

2
3β

3
3

]
︸ ︷︷ ︸

Q3,3

−
[
α
3
1β

1
1 + α

3
1β

1
2 + α

3
1β

1
3 + α

3
1β

2
1 + α

3
1β

2
2 + α

3
1β

2
3 + α

3
1β

3
1 + α

3
1β

3
2 + α

3
1β

3
3 + α

3
2β

1
1 + α

3
2β

1
2 + α

3
2β

1
3 + α

3
2β

2
1 + α

3
2β

2
2 + α

3
2β

2
3 + α

3
2β

3
1 + α

3
2β

3
2 + α

3
2β

3
3

]
︸ ︷︷ ︸

Q4,3

• Simplifying

Q1,31 =
(
α13 + α

2
3

)
+
(
β21 + β

3
1

) (
1− α13 − α23

)
(TI)

=
(
θ13 + θ

2
3

)
+
(
θ21 + θ

3
1

) (
1− θ13 − θ23

)
(TIV)

Q2,31 =
(
α31 + α

3
2

) (
1 + β12 + β

1
3 − β21 − β31

)
+
(
β12 + β

1
3

) (
1− α13 − α23

)
(TI)

=
(
θ31 + θ

3
2

) (
1 + θ12 + θ

1
3 − θ21 − θ31

)
+
(
θ12 + θ

1
3

) (
1− θ13 − θ23

)
(TIV)

Q3,3 = 3
(
α13 + α

2
3

)
(TI)

= 3
(
θ13 + θ

2
3

)
(TIV)

Q4,3 = 3
(
α31 + α

3
2

)
(TI)

= 3
(
θ31 + θ

3
2

)
(TIV)
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• Under Temporal Independence (Assumption 3)

p∗31 =
r31 +

(
β21 + β

3
1 − β12 − β13

)
+
(
α13 + α

2
3 − α31 − α32

) (
1 + β12 + β

1
3 − β21 − β31

)
p3 + 3 (α13 + α

2
3 − α31 − α32)

—Yields

LBTI31 = min

r31 −Q/3p3
,
r31 +

˜̃
Q

p3 + 3
˜̃
Q
,
r31 − Q̂
p3 − 3Q̂

 ≥ 0
˜̃
Q = min {1− r31, (1− p3)/3, Q/3} , Q̂ = min {r31, p3/3, Q/3}

UBTI31 = max

r31 +Q/3p3
,
r31 +

˜̃
Q

p3 + 3
˜̃
Q
,
r31 − Q̂
p3 − 3Q̂

 ≤ 1
˜̃
Q = min {1− r31, (1− p3)/3, Q/3} , Q̂ = min {r31, p3/3, Q/3}

—Proof:

1. Evaluate ∂
(
r31+

˜̃
Q

p3+3
˜̃
Q

)
/∂
˜̃
Q and see when the sign is positive/negative. Both are possible.

sgn

∂
(
r31+

˜̃
Q

p3+3
˜̃
Q

)
∂
˜̃
Q

 = sgn

((
p3 + 3

˜̃
Q

)
− 3

(
r31 +

˜̃
Q

))

= sgn (p3 − 3r31)

2. Evaluate ∂
(
r31−Q̂
p3−3Q̂

)
/∂Q̂ and see when the sign is positive/negative. Both are possible.

sgn

∂
(
r31−Q̂
p3−3Q̂

)
∂Q̂

 = sgn
(
−
(
p3 − 3Q̂

)
+ 3

(
r31 − Q̂

))
= sgn (3r31 − p3)
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• Under Temporal Invariance (Assumption 4)

p∗31 =
r31 +

(
θ21 + θ

2
3 − θ12 − θ32

)
+
(
θ13 + θ

2
3 − θ31 − θ32

) (
θ12 + θ

1
3 − θ21 − θ31

)
p3 + 3

(
θ13 + θ

2
3 − θ31 − θ32

)
—Yields

LBTIV31 = min

r31 −
(
3−
√
9−Q

)
p3

,
r31 +

˜̃
Q
2

p3 + 3
˜̃
Q

 ≥ 0
˜̃
Q = min

{
−(2/3)p3 +

√
(4/9)p23 + 4r31
2

,
√
1− r31, (1− p3)/3, 3−

√
9−Q

}

UBTIV31 = max

r31 +
(
3−
√
9−Q

)
p3

,
r31 +

˜̃
Q
2

p3 − 3 ˜̃Q
 ≤ 1 ˜̃

Q = min
{√

1− r31, p3/3, 3−
√
9−Q

}
—Proof:

1. Evaluate ∂LBTIV31 /∂
˜̃
Q and see when the sign is positive/negative.

sgn

(
∂LBTIV31

∂
˜̃
Q

)
= sgn

(
2
˜̃
Q

(
p3 + 3

˜̃
Q

)
− 3

(
r31 +

˜̃
Q
2
))

= sgn

(˜̃
Q

(
(2/3) p3 +

˜̃
Q

)
− r31

)
⇒ sgn

(
∂LBTIV31

∂
˜̃
Q

)∣∣∣∣∣ ˜̃
Q=0

= sgn (−r31) < 0

⇒ ˜̃
Q > 0

2. Minimize LBTIV31 s.t. ˜̃Q being feasible

∂LBTIV31

∂
˜̃
Q

∝ ˜̃
Q

(
(2/3) p3 +

˜̃
Q

)
− r31 = 0

⇒ ˜̃
Q
∗
=
−(2/3)p3 +

√
(4/9)p23 + 4r31
2

So, derivative starts off negative and then reaches zero at ˜̃Q∗. Thus, r31+ ˜̃Q2

p3+3
˜̃
Q
is minimized at ˜̃Q∗.
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A.1.8 p∗32

p∗32 =

r32 +

Q1,32︷ ︸︸ ︷[
θ1132 + θ

12
32 + θ

13
32 + θ

21
32 + θ

22
32 + θ

23
32 + θ

31
32
•
+ θ3332
•

]
−

Q2,32︷ ︸︸ ︷[
θ3211 + θ

32
12 + θ

32
13 + θ

32
21 + θ

32
22 + θ

32
23 + θ

32
31
•
+ θ3233
•

]
p3 +

[
θ1131
•
+ θ1231
•
+ θ1331
•
+ θ2131
•
+ θ2231
•
+ θ2331
•
+ θ1132
•
+ θ1232
•
+ θ1332
•
+ θ2132
•
+ θ2232
•
+ θ2332
•
+ θ1133 + θ

12
33 + θ

13
33 + θ

21
33 + θ

22
33 + θ

23
33

]
︸ ︷︷ ︸

Q3,3

−
[
θ3111
•
+ θ3112
•
+ θ3113
•
+ θ3211
•
+ θ3212
•
+ θ3213
•
+ θ3311 + θ

33
12 + θ

33
13 + θ

31
21
•
+ θ3122
•
+ θ3123
•
+ θ3221
•
+ θ3222
•
+ θ3223
•
+ θ3321 + θ

33
22 + θ

33
23

]
︸ ︷︷ ︸

Q4,3

• θk
′l′

kl
•
= unique element

Maximum Arbitrary Errors: Assumption 2

LB32 =
r32 −Q
p3

≥ 0

UB32 =
r32 +Q

p3
≤ 1

Temporal Independence, Temporal Invariance: Assumptions 3 & 4

• Implies

p∗32 =
r32 +

Q1,32︷ ︸︸ ︷[
α
1
3β

1
2 + α

1
3β

2
2 + α

1
3β

3
2 + α

2
3β

1
2 + α

2
3β

2
2 + α

2
3β

3
2 + α

3
3β

1
2 + α

3
3β

3
2

]−
Q2,32︷ ︸︸ ︷[

α
3
1β

2
1 + α

3
1β

2
2 + α

3
1β

2
3 + α

3
2β

2
1 + α

3
2β

2
2 + α

3
2β

2
3 + α

3
3β

2
1 + α

3
3β

2
3

]
p3 +

[
α
1
3β

1
1 + α

1
3β

2
1 + α

1
3β

3
1 + α

2
3β

1
1 + α

2
3β

2
1 + α

2
3β

3
1 + α

1
3β

1
2 + α

1
3β

2
2 + α

1
3β

3
2 + α

2
3β

1
2 + α

2
3β

2
2 + α

2
3β

3
2 + α

1
3β

1
3 + α

1
3β

2
3 + α

1
3β

3
3 + α

2
3β

1
3 + α

2
3β

2
3 + α

2
3β

3
3

]
︸ ︷︷ ︸

Q3,3

−
[
α
3
1β

1
1 + α

3
1β

1
2 + α

3
1β

1
3 + α

3
1β

2
1 + α

3
1β

2
2 + α

3
1β

2
3 + α

3
1β

3
1 + α

3
1β

3
2 + α

3
1β

3
3 + α

3
2β

1
1 + α

3
2β

1
2 + α

3
2β

1
3 + α

3
2β

2
1 + α

3
2β

2
2 + α

3
2β

2
3 + α

3
2β

3
1 + α

3
2β

3
2 + α

3
2β

3
3

]
︸ ︷︷ ︸

Q4,3

• Simplifying

Q1,32 =
(
α13 + α

2
3

)
+
(
β12 + β

3
2

) (
1− α13 − α23

)
(TI)

=
(
θ13 + θ

2
3

)
+
(
θ22 + θ

3
2

) (
1− θ13 − θ23

)
(TIV)

Q2,32 =
(
α31 + α

3
2

) (
1 + β21 + β

2
3 − β12 − β32

)
+
(
β21 + β

2
3

) (
1− α13 − α23

)
(TI)

=
(
θ31 + θ

3
2

) (
1 + θ21 + θ

2
3 − θ12 − θ32

)
+
(
θ21 + θ

2
3

) (
1− θ13 − θ23

)
(TIV)

Q3,3 = 3
(
α13 + α

2
3

)
(TI)

= 3
(
θ13 + θ

2
3

)
(TIV)

Q4,3 = 3
(
α31 + α

3
2

)
(TI)

= 3
(
θ31 + θ

3
2

)
(TIV)
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• Under Temporal Independence (Assumption 3)

p∗32 =
r32 +

(
β12 + β

3
2 − β21 − β23

)
+
(
α13 + α

2
3 − α31 − α32

) (
1 + β21 + β

2
3 − β12 − β32

)
p3 + 3 (α13 + α

2
3 − α31 − α32)

—Yields

LBTI32 = min

r32 −Q/3p3
,
r32 +

˜̃
Q

p3 + 3
˜̃
Q
,
r32 − Q̂
p3 − 3Q̂

 ≥ 0
˜̃
Q = min {1− r32, (1− p3)/3, Q/3} , Q̂ = min {r32, p3/3, Q/3}

UBTI32 = max

r32 +Q/3p3
,
r32 +

˜̃
Q

p3 + 3
˜̃
Q
,
r32 − Q̂
p3 − 3Q̂

 ≤ 1
˜̃
Q = min {1− r32, (1− p3)/3, Q/3} , Q̂ = min {r32, p3/3, Q/3}

—Proof:

1. Evaluate ∂
(
r32+

˜̃
Q

p3+3
˜̃
Q

)
/∂
˜̃
Q and see when the sign is positive/negative. Both are possible.

sgn

∂
(
r32+

˜̃
Q

p3+3
˜̃
Q

)
∂
˜̃
Q

 = sgn

((
p3 + 3

˜̃
Q

)
− 3

(
r32 +

˜̃
Q

))

= sgn (p3 − 3r2)

2. Evaluate ∂
(
r32−Q̂
p3−3Q̂

)
/∂Q̂ and see when the sign is positive/negative. Both are possible.

sgn

∂
(
r32−Q̂
p3−3Q̂

)
∂Q̂

 = sgn
(
−
(
p3 − 3Q̂

)
+ 3

(
r32 − Q̂

))
= sgn (3r32 − p3)
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• Under Temporal Invariance (Assumption 4)

p∗32 =
r32 +

(
θ12 + θ

1
3 − θ21 − θ31

)
+
(
θ13 + θ

2
3 − θ31 − θ32

) (
θ21 + θ

2
3 − θ12 − θ32

)
p3 + 3

(
θ13 + θ

2
3 − θ31 − θ32

)
—Yields

LBTIV32 = min

r32 −
(
3−
√
9−Q

)
p3

,
r32 +

˜̃
Q
2

p3 + 3
˜̃
Q

 ≥ 0
˜̃
Q = min

{
−(2/3)p3 +

√
(4/9)p23 + 4r32
2

,
√
1− r32, (1− p3)/3, 3−

√
9−Q

}

UBTIV32 = max

r32 +
(
3−
√
9−Q

)
p3

,
r32 +

˜̃
Q
2

p3 − 3 ˜̃Q
 ≤ 1 ˜̃

Q = min
{√

1− r32, p3/3, 3−
√
9−Q

}
—Proof:

1. Evaluate ∂LBTIV32 /∂
˜̃
Q and see when the sign is positive/negative.

sgn

(
∂LBTIV32

∂
˜̃
Q

)
= sgn

(
2
˜̃
Q

(
p3 + 3

˜̃
Q

)
− 3

(
r32 +

˜̃
Q
2
))

= sgn

(˜̃
Q

(
(2/3) p3 +

˜̃
Q

)
− r32

)
⇒ sgn

(
∂LBTIV32

∂
˜̃
Q

)∣∣∣∣∣ ˜̃
Q=0

= sgn (−r32) < 0

⇒ ˜̃
Q > 0

2. Minimize LBTIV32 s.t. ˜̃Q being feasible

∂LBTIV32

∂
˜̃
Q

∝ ˜̃
Q

(
(2/3) p3 +

˜̃
Q

)
− r32 = 0

⇒ ˜̃
Q
∗
=
−(2/3)p3 +

√
(4/9)p23 + 4r32
2

So, derivative starts off negative and then reaches zero at ˜̃Q∗. Thus, r32+ ˜̃Q2

p3+3
˜̃
Q
is minimized at ˜̃Q∗.
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A.1.9 p∗33

p∗33 =

r33 +

Q1,33︷ ︸︸ ︷[
θ1133 + θ

12
33 + θ

13
33 + θ

21
33 + θ

22
33 + θ

23
33 + θ

31
33
•
+ θ3233
•

]
−

Q2,33︷ ︸︸ ︷[
θ3311 + θ

33
12 + θ

33
13 + θ

33
21 + θ

33
22 + θ

33
23 + θ

33
31
•
+ θ3332
•

]
p3 +

[
θ1131
•
+ θ1231
•
+ θ1331
•
+ θ2131
•
+ θ2231
•
+ θ2331
•
+ θ1132
•
+ θ1232
•
+ θ1332
•
+ θ2132
•
+ θ2232
•
+ θ2332
•
+ θ1133 + θ

12
33 + θ

13
33 + θ

21
33 + θ

22
33 + θ

23
33

]
︸ ︷︷ ︸

Q3,3

−
[
θ3111
•
+ θ3112
•
+ θ3113
•
+ θ3211
•
+ θ3212
•
+ θ3213
•
+ θ3311 + θ

33
12 + θ

33
13 + θ

31
21
•
+ θ3122
•
+ θ3123
•
+ θ3221
•
+ θ3222
•
+ θ3223
•
+ θ3321 + θ

33
22 + θ

33
23

]
︸ ︷︷ ︸

Q4,3

• θk
′l′

kl
•
= unique element

Maximum Arbitrary Errors: Assumption 2

LB33 =
r33 −Q
p3

≥ 0

UB33 =
r33 +Q

p3
≤ 1

Temporal Independence, Temporal Invariance: Assumptions 3 & 4

• Implies

p∗33 =
r33 +

Q1,33︷ ︸︸ ︷[
α
1
3β

1
3 + α

1
3β

2
3 + α

1
3β

3
3 + α

2
3β

1
3 + α

2
3β

2
3 + α

2
3β

3
3 + α

3
3β

1
3 + α

3
3β

2
3

]−
Q2,33︷ ︸︸ ︷[

α
3
1β

3
1 + α

3
1β

3
2 + α

3
1β

3
3 + α

3
2β

3
1 + α

3
2β

3
2 + α

3
2β

3
3 + α

3
3β

3
1 + α

3
3β

3
2

]
p3 +

[
α
1
3β

1
1 + α

1
3β

2
1 + α

1
3β

3
1 + α

2
3β

1
1 + α

2
3β

2
1 + α

2
3β

3
1 + α

1
3β

1
2 + α

1
3β

2
2 + α

1
3β

3
2 + α

2
3β

1
2 + α

2
3β

2
2 + α

2
3β

3
2 + α

1
3β

1
3 + α

1
3β

2
3 + α

1
3β

3
3 + α

2
3β

1
3 + α

2
3β

2
3 + α

2
3β

3
3

]
︸ ︷︷ ︸

Q3,3

−
[
α
3
1β

1
1 + α

3
1β

1
2 + α

3
1β

1
3 + α

3
1β

2
1 + α

3
1β

2
2 + α

3
1β

2
3 + α

3
1β

3
1 + α

3
1β

3
2 + α

3
1β

3
3 + α

3
2β

1
1 + α

3
2β

1
2 + α

3
2β

1
3 + α

3
2β

2
1 + α

3
2β

2
2 + α

3
2β

2
3 + α

3
2β

3
1 + α

3
2β

3
2 + α

3
2β

3
3

]
︸ ︷︷ ︸

Q4,3

• Simplifying

Q1,33 =
(
α13 + α

2
3

)
+
(
β13 + β

2
3

) (
1− α13 − α23

)
(TI)

= 2
(
θ13 + θ

2
3

)
−
(
θ13 + θ

2
3

)2
(TIV)

Q2,33 =
(
α31 + α

3
2

) (
1 + β31 + β

3
2 − β13 − β23

)
+
(
β31 + β

3
2

) (
1− α13 − α23

)
(TI)

= 2
(
θ31 + θ

3
2

) (
1− θ13 − θ23

)
+
(
θ31 + θ

3
2

)2
(TIV)

Q3,3 = 3
(
α13 + α

2
3

)
(TI)

= 3
(
θ13 + θ

2
3

)
(TIV)

Q4,3 = 3
(
α31 + α

3
2

)
(TI)

= 3
(
θ31 + θ

3
2

)
(TIV)
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• Under Temporal Independence (Assumption 3)

p∗33 =
r33 +

(
α13 + α

2
3 − α31 − α32

)
+
(
β13 + β

2
3 − β31 − β32

) (
1 + α31 + α

3
2 − α13 − α23

)
p2 + 3 (α13 + α

2
3 − α31 − α32)

—Yields

LBTI33 = min

r33 −Q/3p3
,
r33 +

˜̃
Q

p3 + 3
˜̃
Q
,
r33 − Q̂
p3 − 3Q̂

 ≥ 0
˜̃
Q = min {1− r33, (1− p3)/3, Q/3} , Q̂ = min {r33, p3/3, Q/3}

UBTI33 = max

r33 +Q/3p3
,
r33 +

˜̃
Q

p3 + 3
˜̃
Q
,
r33 − Q̂
p3 − 3Q̂

 ≤ 1
˜̃
Q = min {1− r33, (1− p3)/3, Q/3} , Q̂ = min {r33, p3/3, Q/3}

—Proof:

1. Evaluate ∂
(
r33+

˜̃
Q

p3+3
˜̃
Q

)
/∂
˜̃
Q and see when the sign is positive/negative. Both are possible.

sgn

∂
(
r33+

˜̃
Q

p3+3
˜̃
Q

)
∂
˜̃
Q

 = sgn

((
p3 + 3

˜̃
Q

)
− 3

(
r33 +

˜̃
Q

))

= sgn (p3 − 3r33)

2. Evaluate ∂
(
r33−Q̂
p3−3Q̂

)
/∂Q̂ and see when the sign is positive/negative. Both are possible.

sgn

∂
(
r33−Q̂
p3−3Q̂

)
∂Q̂

 = sgn
(
−
(
p3 − 3Q̂

)
+ 3

(
r33 − Q̂

))
= sgn (3r33 − p3)

33



• Under Temporal Invariance (Assumption 4)

p∗33 =
r33 + 2

(
θ13 + θ

2
3 − θ31 − θ32

)
−
(
θ13 + θ

2
3 − θ31 − θ32

)2
p2 + 3

(
θ13 + θ

2
3 − θ31 − θ32

)
—Yields

LBTIV33 = min

r33 + 2Q̂− Q̂2p3 + 3Q̂
,
r33 − 2 ˜̃Q− ˜̃Q2

p3 − 3 ˜̃Q
 ≥ 0

Q̂ = min
{
(1− p3)/3, 3−

√
9−Q

}
,

˜̃
Q =

 0 r33 ≥ 2p3/3

min

{
(2/3)p3+

√
(4/9)p23+4[(2/3)p3−r33]

2 , (−1 +
√
1 + r33), p3/3, 3−

√
9−Q

}
otherwise

UBTIV33 = min

r33 + 2Q̂− Q̂2p3 + 3Q̂
,
r33 − 2 ˜̃Q− ˜̃Q2

p3 − 3 ˜̃Q
 ≥ 0

Q̂ =

 0 r33 ≥ 2p3/3

min

{
−(2/3)p3+

√
(4/9)p23+4[(2/3)p3−r33]

2 , (1− p3)/3, 3−
√
9−Q

}
otherwise

,

˜̃
Q =

 0 r33 < 2p3/3

min

{
(2/3)p3−

√
(4/9)p23+4[(2/3)p3−r33]

2 , (−1 +
√
1 + r33), p3/3, 3−

√
9−Q

}
otherwise
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—Proof:

1. Evaluate ∂
(
r33−2 ˜̃Q− ˜̃Q2

p3−3 ˜̃Q
)
/∂
˜̃
Q and see when the sign is positive/negative. Both are possible.

sgn

∂
(
r33−2 ˜̃Q− ˜̃Q2

p3−3 ˜̃Q
)

∂
˜̃
Q

 = sgn

((
−2− 2 ˜̃Q)(p3 − 3 ˜̃Q)+ 3(r33 − 2 ˜̃Q− ˜̃Q2))

= sgn

(
−(2/3)p3

(
1 +

˜̃
Q

)
+
˜̃
Q
2

+ r33

)

⇒ sgn

∂
(
r33−2 ˜̃Q− ˜̃Q2

p3−3 ˜̃Q
)

∂
˜̃
Q


∣∣∣∣∣∣∣∣ ˜̃
Q=0

= sgn (−(2/3)p3 + r33) ≷ 0

⇒ sgn

∂
(
r33−2 ˜̃Q− ˜̃Q2

p3−3 ˜̃Q
)

∂
˜̃
Q


∣∣∣∣∣∣∣∣ ˜̃
Q=1

= sgn (−(4/3)p3 + 1 + r33) ≷ 0

2. Ensure r33 − 2 ˜̃Q− ˜̃Q2 ≥ 0
r33 − 2 ˜̃Q− ˜̃Q2 ≥ 0

⇒ ˜̃
Q
2

+ 2
˜̃
Q− r33 ≤ 0

⇒ ˜̃
Q ≤ −2 +

√
4 + 4r33
2

⇒ ˜̃
Q ≤ −1 +

√
1 + r33

3. Minimize r33−2 ˜̃Q− ˜̃Q2

p3−3 ˜̃Q s.t. ˜̃Q being feasible and r33 < 2p3/3

∂

(
r33−2 ˜̃Q− ˜̃Q2

p3−3 ˜̃Q
)

∂
˜̃
Q

∝ −(2/3)p3
(
1 +

˜̃
Q

)
+
˜̃
Q
2

+ r33 = 0

⇒ ˜̃
Q
∗
=
(2/3)p3 +

√
(4/9)p23 + 4[(2/3)p3 − r33]

2

4. Maximize r33−2 ˜̃Q− ˜̃Q2

p3−3 ˜̃Q s.t. ˜̃Q being feasible and r33 > 2p3/3

∂

(
r33−2 ˜̃Q− ˜̃Q2

p3−3 ˜̃Q
)

∂
˜̃
Q

∝ −(2/3)p3
(
1 +

˜̃
Q

)
+
˜̃
Q
2

+ r33 = 0

⇒ ˜̃
Q
∗
=
(2/3)p3 −

√
(4/9)p23 + 4[(2/3)p3 − r33]

2

Note: If
√
(4/9)p23 + 4[(2/3)p3 − r33] = ., then maximize ˜̃Q.
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5. Evaluate ∂
(
r33+2Q̂−Q̂2

p3+3Q̂

)
/∂Q̂ and see when the sign is positive/negative. Both are possible.

sgn

∂
(
r33+2Q̂−Q̂2

p3+3Q̂

)
∂Q̂

 = sgn
((
2− 2Q̂

)(
p3 + 3Q̂

)
− 3

(
r33 + 2Q̂− Q̂2

))
= sgn

(
(2/3)p3

(
1− Q̂

)
− Q̂2 − r33

)
⇒ sgn

∂
(
r33+2Q̂−Q̂2

p3+3Q̂

)
∂Q̂

∣∣∣∣∣∣
Q̂=0

= sgn ((2/3)p3 − r33) ≷ 0

⇒ sgn

∂
(
r33+2Q̂−Q̂2

p3+3Q̂

)
∂Q̂

∣∣∣∣∣∣
Q̂=1

= sgn (−1− r33) < 0

6. Maximize r33+2Q̂−Q̂2

p3+3Q̂
s.t. Q̂ being feasible and r33 < 2p3/3

∂
(
r33+2Q̂−Q̂2

p3+3Q̂

)
∂Q̂

∝ (2/3)p3

(
1− Q̂

)
− Q̂2 − r33 = 0

⇒ Q̂∗ =
−(2/3)p3 +

√
(4/9)p23 + 4[(2/3)p3 − r33]

2

7. Minimize r33+2Q̂−Q̂
2

p3+3Q̂
⇒ Q̂ = 0 or maximize Q̂. However, if the minimum occurs when Q̂ = 0, then r33−2 ˜̃Q− ˜̃Q2

p3−3 ˜̃Q <
r33
p3
and this will be the binding LB.
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A.2 Tightening the Bounds

A.2.1 Shape Restrictions: Assumption 5

p∗11, p
∗
22, p

∗
33

LBSkk = max

{
sup
k′ 6=k

LBkk′ , sup
k′ 6=k

LBk′k

}
UBSkk = UBkk

p∗12, p
∗
13, p

∗
23

LBSkk = LBkk

UBSkk = min {UB11, UB12, UB22}

p∗21, p
∗
31, p

∗
32

LBSkk = LBkk

UBSkk = min {UB11, UB21, UB22}

A.2.2 Monotonicity Restrictions: Assumption 6

p∗kl(u) =
rkl(u) +Q1,kl(u)−Q2,kl(u)
pk(u) +Q3,k(u)−Q4,k(u)

• Let Q(u) be probability of misclassification conditional on U = u. Then∑
u
puQ(u) ≤ Q

• Implies
Q(u) =

{
Q/pu No Independence
Q Independence

• Bounds

—Bounds on p∗kl(u) are identical to baseline with Q replaced by Q(u)

—After bounding P ∗01(u), impose shape if desired

—Derive bounds on P ∗01
— Impose shape if desired
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B Literature Review

Measurement error in income and consumption is widely acknowledged. Despite this, the

literature on income and consumption mobility that focuses on India has only recently begun

to take this issue seriously. Barrientos Q. et al. (2018) use panel data on rural households

collected by the National Council of Applied Economic Research (NCAER) in 1994 and

2005. The authors estimate a bivariate probit model with poverty status in 1994 and 2005

as outcomes. Poverty status in 1994 is an included covariate in the equation for poverty sta-

tus in 2005 and is instrumented for using land ownership in 1994. However, misclassification

in poverty status in 2005 is not addressed, nor is the fact that IV is not generally a valid

solution to misclassification of binary outcomes (Black et al. 2000). Pradhan and Mukher-

jee (2015) use the ARIS/REDS data spanning three decades (1982-2006) to assess income

mobility. The authors employ an IV strategy proposed in Glewwe (2012) to estimate the

correlation between ‘true’initial and final incomes. Initial income is instrumented for using

the dependency ratio (i.e., the ratio of family size to the number of income earners), land

ownership, land reform (a dummy that captures the effect of implementation of land reforms

in the village), and rainfall shocks. In contrast to Barrientos Q. et al. (2018), Pradhan and

Mukherjee (2015) find evidence of low income mobility.

Generally speaking, IV is a useful tool to overcome measurement error in the absence

of validation data or repeated measurements; it is an alternative mechanism by which ad-

ditional information can be brought to bear on the analysis. However, the consistency of

these IV studies rests on the validity of the chosen instruments. As noted by Lee et al.

(2017, p. 39), “the plausibility of these instruments, as is often the case, can be debated.”

Specifically, one can argue that the chosen instruments may be correlated with the error

term due to the nonclassical nature of the measurement error or other omitted sources of

heterogeneity. Moreover, IV techniques — as implemented in this literature —estimate a

single parameter to characterize mobility. Heterogeneity in mobility patterns across the full

income or consumption distribution is ignored.

In contrast, Azam (2016) examines economic mobility by calculating directional rank mo-

bility (in addition to the traditional transition probabilities) following a novel approach de-
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veloped in Bhattacharya and Mazumder (2011), Mazumder (2014), and Corak et al. (2014).

This approach defines upward (downward) directional rank mobility as the probability that

a household’s position in the income distribution in the final period surpasses (falls below)

by a given amount the household’s position in the income distribution in the initial period,

conditional on the household’s initial position in the income distribution. The author uses

longitudinal household survey data collected by the NCAER to examine rural households

from 1994 to 2012, as well as data from the IHDS to examine urban households from 2005

to 2012. By focusing on ranks, rather than actual incomes, rank-preserving measurement

errors —but not other types of errors —are allowed, as acknowledged in Bhattacharya and

Mazumder (2011). This seems like an untenable assumption.

Arunachalam and Shenoy (2017) develop a new method to detect household poverty traps

and apply it to Indian data. Their method exploits the fact that a household just inside

the threshold of a poverty trap is likely to suffer negative income growth as the trap pulls

the household towards the impoverished steady state. In contrast, a household just above

the threshold of a poverty trap is propelled to a higher steady state. Thus, the existence of

poverty trap implies that the probability of negative income growth is a decreasing function

of current household income. By contrast, if there are no poverty traps and households are

converging to a single steady state, the probability of negative income growth is always rising.

Using the ARIS-REDS data (1969-1999), the authors find no evidence of poverty traps.

However, as noted in Arunachalam and Shenoy (2017, p. 221), “measurement error ... may

mask a poverty trap.”To address this, the authors propose a consistent measure of household

income across survey waves instead of using self-reported income. Nonetheless, Arunachalam

and Shenoy (2017, p. 223) state that “given the complexity of a poor household’s balance

sheet, it is not clear what the ideal measure of income is, let alone whether our definition

matches it”and that “[even] these precautions may not remove all measurement error.”

Finally, Dang and Lanjouw (2018) use three cross-sectional rounds of data from the

National Sample Survey (NSS) to compute rates of economic mobility using a synthetic

panel approach developed in Dang et al. (2014). While the authors do not explicitly address

measurement error, their synthetic panel approach treats subsequent consumption as missing

data which is an extreme form of measurement error. Specifically, the authors posit a static
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model of consumption using only covariates that are collected in one survey round but whose

values can be inferred for other rounds (e.g., time invariant variables). The model estimates,

along with various assumptions concerning how unobserved determinants of consumption are

correlated over time, are used to impute future consumption and then estimate a poverty

transition matrix. However, measurement error in observed consumption used to estimate

the static model upon which future consumption is imputed is not addressed.

In addition to the studies discussed above, a separate literature assesses intergenerational

educational mobility (e.g., Azam and Bhatt 2015; Asher et al. 2018; Mohammed 2019) and

intergenerational occupational mobility (Hnatkovska et al. 2013) in India. However, given

our focus on intragenerational consumption mobility, we refrain from discussing these studies

further.
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ID State/Union Territories
Rural Urban Rural Urban

1 Jammu & Kashmir 522 603 891 988
2 Himachal Pradesh 520 606 913 1,064
3 Punjab 544 643 1,054 1,155
4 Chandigarh 643 643 1,155 1,155
5 Uttarkhand/Uttaranchal 486 602 880 1,082
6 Haryana 529 626 1,015 1,169
7 Delhi 541 642 1,145 1,134
8 Rajasthan 478 568 905 1,002
9 Uttar Pradesh 435 532 768 941
10 Bihar 433 526 778 923
11 Sikkim 532 742 930 1,226
12 Arunachal Pradesh 547 618 930 1,060
13 Nagaland 687 783 1,270 1,302
14 Manipur 578 641 1,118 1,170
15 Mizoram 639 700 1,066 1,155
16 Tripura 450 556 798 920
17 Meghalaya 503 746 888 1,154
18 Assam 478 600 828 1,008
19 West Bengal 445 573 783 981
20 Jharkhand 405 531 748 974
21 Orissa 408 497 695 861
22 Chhattisgarh 399 514 738 849
23 Madhya Pradesh 408 532 771 897
24 Gujarat 502 659 932 1,152
25 Daman & Diu 609 671 1,090 1,134
26 Dadra & Nagar Haveli 485 632 967 1,126
27 Maharashtra 485 632 967 1,126
28 Andhra Pradesh 433 563 860 1,009
29 Karnataka 418 588 902 1,089
30 Goa 609 671 1,090 1,134
32 Kerala 537 585 1,018 987
33 Tamil Nadu 442 560 880 937
34 Puducherry 385 506 1,301 1,309

2005 2012

Source: Planning Commission (Available at http://niti.gov.in/state-statistics)

Table C1. State specific Poverty Lines (Tendulkar Committee estimates): Monthly 
Per Capita Expenditure (Rs.)



Table C2. Summary Statistics (Unweighted)

Mean SD Mean SD
Household Consumption
   Total Consumption (in Rs.) 54,493.00 52,225.89 115,364.00 119,271.50
   Per Capita Consumption (in Rs.) 863.08 896.88 2,200.60 2,584.49
Poverty Status
   Poor (POVRATIO < 1) 0.33 0.47 0.15 0.36
   Insecure Nonpoor (POVRATIO >= 1, < 2) 0.43 0.49 0.44 0.50
   Secure Nonpoor (POVRATIO >= 2) 0.24 0.43 0.41 0.49
Household Size 5.85 3.02 4.87 2.33
Education (Household Head): Years of Schooling
   0 (Illiterate) 0.36 0.48
   1-5 years 0.21 0.41
   6-10 years 0.31 0.46
   11-15 years 0.12 0.32
Caste (Household Head)
   Brahmin and Others 0.30 0.46
   OBC 0.40 0.49
   SC/ST 0.30 0.46
Religion
   Hindu 0.81 0.39
   Muslims 0.12 0.32
   Other Religions 0.07 0.26
Percentage of Males (Household Head) 0.91 0.29
Percentage of Urban Residents (Household Head) 0.30 0.46
Number of Observations

2005 (Wave 1) 2012 (Wave 2)

38,737 38,737
Notes: POVRATIO is defined as the ratio of household per capita monthly household consumption expenditure to the poverty line per capita monthly 
consumption expenditure. In our analysis we use information pertaining to education level, caste, religion and the living region of household heads 
only from the first wave; hence we report summary statistics of these variables only for the first wave.



Table C3. Summary Statistics: Households Present in 2005 but not 2012

Mean SD Mean SD
Household Consumption
   Total Consumption (in Rs.) 95,441.80 93,876.55 106,603.80 101,802.80
   Per Capita Consumption (in Rs.) 2,099.87 2,285.81 2,323.71 2,542.57
Poverty Status
   Poor (POVRATIO < 1) 0.03 0.16 0.02 0.15
   Insecure Nonpoor (POVRATIO >= 1, < 2) 0.25 0.44 0.22 0.41
   Secure Nonpoor (POVRATIO >= 2) 0.72 0.45 0.76 0.43
Household Size 4.20 1.98 4.24 1.96
Education (Household Head): Years of Schooling
   0 (Illiterate) 0.28 0.45 0.25 0.43
   1-5 years 0.17 0.37 0.15 0.36
   6-10 years 0.32 0.47 0.34 0.47
   11-15 years 0.22 0.42 0.26 0.44
Caste (Household Head)
   Brahmin and Others 0.45 0.50 0.46 0.50
   OBC 0.18 0.38 0.16 0.37
   SC/ST 0.38 0.48 0.38 0.49
Religion
   Hindu 0.79 0.41 0.79 0.40
   Muslims 0.14 0.35 0.14 0.34
   Other Religions 0.07 0.25 0.07 0.25
Percentage of Males (Household Head) 0.89 0.32 0.89 0.31
Percentage of Urban Residents (Household Head) 0.52 0.50 0.61 0.49
Number of Observations 6,534 6,534
Notes: The sample size of households who were present in the 2005 wave but not in 2012 is 6911. However, we have valid information on 
demographics for only 6534  households out of the 6911 households. POVRATIO is defined as the ratio of household per capita monthly household 
consumption expenditure to the poverty line per capita monthly consumption expenditure. In our analysis we use information pertaining to education 
level, caste, religion and the living region of household heads only from the first wave; hence we report summary statistics of these variables only for 
the first wave. 

Weighted Unweighted



Table C4. Subsample Transition Matrices by Religion: Arbitrary + Shape + Monotonicity

I.  Q = 0.10
1 2 3 1 2 3 1 2 3

1 [0.214,0.546] [0.280,0.583] [0.000,0.491] 1 [0.295,0.493] [0.349,0.525] [0.015,0.356] 1 [0.155,0.558] [0.327,0.585] [0.000,0.517]
{0.213,0.546} {0.280,0.583} {0.000,0.490} {0.295,0.495} {0.349,0.526} {0.001,0.356} {0.160,0.562} {0.326,0.593} {0.000,0.514}
(0.205,0.556) (0.269,0.591) (0.000,0.497) (0.279,0.510) (0.329,0.540) (0.000,0.392) (0.127,0.587) (0.291,0.610) (0.000,0.560)

2 [0.000,0.357] [0.268,0.708] [0.160,0.601] 2 [0.000,0.365] [0.308,0.742] [0.114,0.546] 2 [0.000,0.375] [0.275,0.654] [0.206,0.586]
{0.000,0.358} {0.268,0.708} {0.160,0.601} {0.000,0.364} {0.308,0.742} {0.114,0.551} {0.000,0.376} {0.275,0.653} {0.207,0.593}
(0.000,0.363) (0.260,0.716) (0.153,0.608) (0.000,0.375) (0.294,0.758) (0.099,0.563) (0.000,0.393) (0.253,0.675) (0.186,0.610)

3 [0.000,0.348] [0.000,0.666] [0.190,1.000] 3 [0.000,0.365] [0.013,0.721] [0.114,0.981] 3 [0.000,0.358] [0.000,0.583] [0.376,1.000]
{0.000,0.348} {0.000,0.667} {0.190,1.000} {0.000,0.364} {0.000,0.723} {0.114,0.993} {0.000,0.359} {0.000,0.580} {0.379,1.000}
(0.000,0.353) (0.000,0.674) (0.180,1.000) (0.000,0.375) (0.000,0.738) (0.099,1.000) (0.000,0.374) (0.000,0.605) (0.353,1.000)

II.  Q = 0.20
1 2 3 1 2 3 1 2 3

1 [0.025,0.762] [0.065,0.839] [0.000,0.747] 1 [0.079,0.717] [0.132,0.770] [0.000,0.689] 1 [0.035,0.769] [0.116,0.816] [0.000,0.825]
{0.024,0.760} {0.065,0.838} {0.000,0.748} {0.081,0.721} {0.134,0.777} {0.000,0.688} {0.035,0.768} {0.116,0.817} {0.000,0.833}
(0.020,0.773) (0.053,0.846) (0.000,0.755) (0.065,0.737) (0.109,0.791) (0.000,0.703) (0.022,0.807) (0.074,0.840) (0.000,0.840)

2 [0.000,0.581] [0.036,0.938] [0.007,0.833] 2 [0.000,0.585] [0.087,0.963] [0.007,0.763] 2 [0.000,0.610] [0.038,0.893] [0.051,0.825]
{0.000,0.581} {0.036,0.938} {0.006,0.832} {0.000,0.585} {0.087,0.963} {0.004,0.767} {0.000,0.608} {0.038,0.893} {0.051,0.833}
(0.000,0.587) (0.028,0.946) (0.003,0.841) (0.000,0.598) (0.071,0.978) (0.001,0.783) (0.000,0.631) (0.021,0.913) (0.033,0.850)

3 [0.000,0.569] [0.000,0.894] [0.052,1.000] 3 [0.000,0.585] [0.000,0.945] [0.023,1.000] 3 [0.000,0.584] [0.000,0.827] [0.094,1.000]
{0.000,0.570} {0.000,0.896} {0.052,1.000} {0.000,0.585} {0.000,0.948} {0.024,1.000} {0.000,0.584} {0.000,0.833} {0.094,1.000}
(0.000,0.576) (0.000,0.903) (0.050,1.000) (0.000,0.598) (0.000,0.961) (0.020,1.000) (0.000,0.604) (0.000,0.848) (0.078,1.000)

III.  Q = 0.30
1 2 3 1 2 3 1 2 3

1 [0.000,0.977] [0.000,0.991] [0.000,0.926] 1 [0.000,0.934] [0.000,0.961] [0.000,0.888] 1 [0.000,0.980] [0.000,0.994] [0.000,0.925]
{0.000,0.975} {0.000,0.991} {0.000,0.927} {0.000,0.935} {0.000,0.962} {0.000,0.885} {0.000,0.988} {0.000,0.998} {0.000,0.925}
(0.000,0.990) (0.000,0.996) (0.000,0.932) (0.000,0.959) (0.000,0.977) (0.000,0.902) (0.000,1.000) (0.000,1.000) (0.000,0.937)

2 [0.000,0.804] [0.000,1.000] [0.000,1.000] 2 [0.000,0.806] [0.000,1.000] [0.000,0.967] 2 [0.000,0.845] [0.000,1.000] [0.000,1.000]
{0.000,0.805} {0.000,1.000} {0.000,1.000} {0.000,0.806} {0.000,1.000} {0.000,0.972} {0.000,0.844} {0.000,1.000} {0.000,1.000}
(0.000,0.812) (0.000,1.000) (0.000,1.000) (0.000,0.822) (0.000,1.000) (0.000,0.989) (0.000,0.868) (0.000,1.000) (0.000,1.000)

3 [0.000,0.791] [0.000,0.969] [0.029,1.000] 3 [0.000,0.806] [0.000,0.993] [0.006,1.000] 3 [0.000,0.811] [0.000,0.946] [0.052,1.000]
{0.000,0.791} {0.000,0.969} {0.029,1.000} {0.000,0.806} {0.000,0.993} {0.006,1.000} {0.000,0.816} {0.000,0.947} {0.052,1.000}
(0.000,0.798) (0.000,0.971) (0.027,1.000) (0.000,0.822) (0.000,0.997) (0.002,1.000) (0.000,0.832) (0.000,0.951) (0.048,1.000)

A. Hindu B. Muslim C. Others

Notes: Outcome = POVRATIO.  1 = poverty ratio < 1. 2 = poverty ratio is between 1 and 2. 3 = poverty ratio >= 2. Q = maximum misclassification rate. Education of the household head used as Monotone 
Instrumental Variable (MIV). Point estimates for bounds provided in brackets. Bias-corrected point estimates for bounds provided in braces  obtained using 100 bootstrap repetitions.  90% Imbens-Manski 
confidence intervals for the non-bias-corrected bounds provided in parentheses obtained using 250 bootstrap repetitions. See text for further details. 



Table C5. Subsample Transition Matrices by Religion: Arbitrary + Shape + Monotonicity + TID

I.  Q = 0.10
1 2 3 1 2 3 1 2 3

1 [0.255,0.380] [0.424,0.446] [0.174,0.299] 1 [0.178,0.341] [0.494,0.643] [0.099,0.266] 1 [0.369,0.396] [0.468,0.583] [0.169,0.262]
{0.247,0.380} {0.422,0.454} {0.166,0.299} {0.214,0.343} {0.492,0.520} {0.137,0.266} {0.348,0.387} {0.466,0.583} {0.182,0.211}
(0.197,0.387) (0.414,0.481) (0.111,0.304) (0.165,0.357) (0.474,0.657) (0.087,0.277) (0.296,0.428) (0.434,0.606) (0.123,0.308)

2 [0.059,0.208] [0.405,0.554] [0.315,0.466] 2 [0.075,0.217] [0.469,0.595] [0.261,0.399] 2 [0.074,0.215] [0.369,0.493] [0.367,0.493]
{0.059,0.208} {0.403,0.554} {0.315,0.466} {0.074,0.215} {0.456,0.595} {0.261,0.397} {0.070,0.217} {0.332,0.492} {0.367,0.494}
(0.054,0.212) (0.400,0.562) (0.308,0.473) (0.064,0.227) (0.455,0.610) (0.247,0.415) (0.054,0.232) (0.350,0.513) (0.348,0.510)

3 [0.000,0.200] [0.162,0.447] [0.497,0.838] 3 [0.000,0.217] [0.189,0.547] [0.376,0.811] 3 [0.000,0.162] [0.146,0.340] [0.620,0.820]
{0.000,0.201} {0.159,0.447} {0.497,0.841} {0.000,0.217} {0.175,0.548} {0.376,0.825} {0.000,0.162} {0.140,0.337} {0.620,0.820}
(0.000,0.205) (0.151,0.454) (0.490,0.849) (0.000,0.227) (0.161,0.565) (0.355,0.839) (0.000,0.172) (0.118,0.357) (0.601,0.870)

II.  Q = 0.20
1 2 3 1 2 3 1 2 3

1 [0.309,0.475] [0.352,0.487] [0.051,0.339] 1 [0.382,0.412] [0.421,0.437] [0.166,0.197] 1 [0.262,0.487] [0.398,0.504] [0.054,0.340]
{0.274,0.476} {0.351,0.488} {0.048,0.374} {0.325,0.419} {0.421,0.439} {0.123,0.236} {0.230,0.499} {0.396,0.520} {0.035,0.374}
(0.302,0.483) (0.342,0.494) (0.035,0.357) (0.352,0.433) (0.402,0.470) (0.111,0.246) (0.236,0.514) (0.362,0.532) (0.020,0.402)

2 [0.010,0.283] [0.345,0.632] [0.238,0.521] 2 [0.020,0.291] [0.382,0.670] [0.187,0.473] 2 [0.034,0.279] [0.356,0.573] [0.286,0.504]
{0.010,0.283} {0.345,0.632} {0.237,0.521} {0.017,0.291} {0.382,0.668} {0.187,0.477} {0.034,0.286} {0.356,0.573} {0.286,0.511}
(0.006,0.288) (0.338,0.639) (0.230,0.529) (0.010,0.301) (0.370,0.693) (0.173,0.489) (0.014,0.308) (0.327,0.594) (0.267,0.535)

3 [0.000,0.274] [0.044,0.576] [0.344,0.956] 3 [0.000,0.291] [0.088,0.645] [0.187,0.912] 3 [0.000,0.282] [0.033,0.461] [0.498,0.967]
{0.000,0.274} {0.043,0.575} {0.344,0.957} {0.000,0.291} {0.080,0.645} {0.172,0.920} {0.000,0.284} {0.026,0.458} {0.498,0.974}
(0.000,0.279) (0.033,0.584) (0.335,0.967) (0.000,0.301) (0.044,0.671) (0.174,0.956) (0.000,0.295) (0.007,0.480) (0.478,0.993)

III.  Q = 0.30
1 2 3 1 2 3 1 2 3

1 [0.214,0.546] [0.280,0.583] [0.000,0.491] 1 [0.295,0.493] [0.349,0.525] [0.015,0.356] 1 [0.155,0.558] [0.327,0.585] [0.000,0.517]
{0.191,0.546} {0.280,0.581} {0.000,0.490} {0.278,0.495} {0.349,0.526} {0.001,0.373} {0.135,0.562} {0.326,0.592} {0.000,0.531}
(0.205,0.556) (0.269,0.591) (0.000,0.497) (0.279,0.510) (0.329,0.540) (0.000,0.392) (0.127,0.587) (0.291,0.610) (0.000,0.560)

2 [0.000,0.357] [0.268,0.799] [0.160,0.601] 2 [0.000,0.365] [0.308,0.882] [0.114,0.546] 2 [0.000,0.375] [0.275,0.654] [0.206,0.586]
{0.000,0.358} {0.268,0.799} {0.160,0.600} {0.000,0.364} {0.308,0.882} {0.114,0.550} {0.000,0.376} {0.275,0.648} {0.206,0.592}
(0.000,0.363) (0.260,0.816) (0.153,0.610) (0.000,0.375) (0.294,0.901) (0.099,0.563) (0.000,0.393) (0.253,0.688) (0.186,0.611)

3 [0.000,0.348] [0.000,0.742] [0.190,1.000] 3 [0.000,0.365] [0.013,0.862] [0.114,0.987] 3 [0.000,0.358] [0.000,0.583] [0.376,1.000]
{0.000,0.348} {0.000,0.744} {0.190,1.000} {0.000,0.364} {0.000,0.881} {0.091,1.000} {0.000,0.359} {0.000,0.580} {0.376,1.000}
(0.000,0.353) (0.000,0.757) (0.180,1.000) (0.000,0.375) (0.000,0.898) (0.099,1.000) (0.000,0.374) (0.000,0.605) (0.353,1.000)

A. Hindu B. Muslim C. Others

Notes: Outcome = POVRATIO.  1 = poverty ratio < 1. 2 = poverty ratio is between 1 and 2. 3 = poverty ratio >= 2. Q = maximum misclassification rate. Education of the household head used as Monotone 
Instrumental Variable (MIV). Point estimates for bounds provided in brackets. Bias-corrected point estimates for bounds provided in braces  obtained using 100 bootstrap repetitions.  90% Imbens-Manski 
confidence intervals for the non-bias-corrected bounds provided in parentheses obtained using 250 bootstrap repetitions. See text for further details. 



Table C6. Subsample Transition Matrices by Caste: Arbitrary + Shape + Monotonicity

I.  Q = 0.10
1 2 3 1 2 3 1 2 3

1 [0.102,0.530] [0.288,0.605] [0.000,0.610] 1 [0.274,0.564] [0.294,0.568] [0.000,0.362] 1 [0.228,0.513] [0.290,0.546] [0.000,0.482]
{0.102,0.529} {0.289,0.608} {0.000,0.609} {0.275,0.567} {0.294,0.572} {0.000,0.361} {0.228,0.515} {0.289,0.547} {0.000,0.483}
(0.094,0.550) (0.267,0.618) (0.000,0.639) (0.264,0.575) (0.280,0.583) (0.000,0.369) (0.217,0.524) (0.276,0.556) (0.000,0.507)

2 [0.000,0.312] [0.286,0.665] [0.242,0.617] 2 [0.000,0.433] [0.274,0.758] [0.067,0.553] 2 [0.000,0.339] [0.277,0.705] [0.173,0.600]
{0.000,0.312} {0.286,0.665} {0.241,0.620} {0.000,0.432} {0.274,0.758} {0.067,0.556} {0.000,0.339} {0.277,0.705} {0.173,0.599}
(0.000,0.320) (0.277,0.674) (0.233,0.629) (0.000,0.443) (0.265,0.772) (0.055,0.566) (0.000,0.346) (0.266,0.714) (0.164,0.610)

3 [0.000,0.289] [0.000,0.538] [0.429,0.994] 3 [0.000,0.433] [0.000,0.743] [0.059,1.000] 3 [0.000,0.336] [0.000,0.680] [0.173,1.000]
{0.000,0.289} {0.000,0.538} {0.429,0.995} {0.000,0.432} {0.000,0.744} {0.060,1.000} {0.000,0.336} {0.000,0.683} {0.173,1.000}
(0.000,0.296) (0.000,0.548) (0.419,1.000) (0.000,0.443) (0.000,0.764) (0.045,1.000) (0.000,0.342) (0.000,0.690) (0.164,1.000)

II.  Q = 0.20
1 2 3 1 2 3 1 2 3

1 [0.001,0.813] [0.006,0.872] [0.000,0.872] 1 [0.069,0.745] [0.113,0.782] [0.000,0.570] 1 [0.020,0.750] [0.053,0.818] [0.000,0.770]
{0.000,0.811} {0.000,0.874} {0.000,0.872} {0.068,0.746} {0.113,0.782} {0.000,0.570} {0.018,0.749} {0.054,0.818} {0.000,0.769}
(0.000,0.838) (0.000,0.884) (0.000,0.881) (0.059,0.760) (0.098,0.793) (0.000,0.580) (0.013,0.766) (0.035,0.828) (0.000,0.781)

2 [0.000,0.523] [0.055,0.891] [0.036,0.851] 2 [0.000,0.681] [0.065,0.970] [0.000,0.806] 2 [0.000,0.554] [0.057,0.923] [0.015,0.820]
{0.000,0.523} {0.055,0.890} {0.035,0.852} {0.000,0.682} {0.066,0.970} {0.000,0.810} {0.000,0.554} {0.057,0.923} {0.014,0.819}
(0.000,0.532) (0.045,0.901) (0.027,0.862) (0.000,0.692) (0.054,0.983) (0.000,0.823) (0.000,0.562) (0.046,0.934) (0.008,0.831)

3 [0.000,0.490] [0.000,0.782] [0.157,1.000] 3 [0.000,0.681] [0.000,0.957] [0.010,1.000] 3 [0.000,0.552] [0.000,0.896] [0.034,1.000]
{0.000,0.489} {0.000,0.783} {0.158,1.000} {0.000,0.682} {0.000,0.960} {0.010,1.000} {0.000,0.553} {0.000,0.897} {0.035,1.000}
(0.000,0.497) (0.000,0.792) (0.150,1.000) (0.000,0.692) (0.000,0.977) (0.008,1.000) (0.000,0.560) (0.000,0.908) (0.032,1.000)

III.  Q = 0.30
1 2 3 1 2 3 1 2 3

1 [0.000,1.000] [0.000,1.000] [0.000,0.997] 1 [0.000,0.926] [0.000,0.962] [0.000,0.779] 1 [0.000,0.987] [0.000,0.995] [0.000,0.966]
{0.000,1.000} {0.000,1.000} {0.000,1.000} {0.000,0.926} {0.000,0.963} {0.000,0.779} {0.000,0.988} {0.000,0.995} {0.000,0.966}
(0.000,1.000) (0.000,1.000) (0.000,1.000) (0.000,0.942) (0.000,0.971) (0.000,0.791) (0.000,1.000) (0.000,1.000) (0.000,0.974)

2 [0.000,0.733] [0.000,1.000] [0.000,0.997] 2 [0.000,0.885] [0.000,1.000] [0.000,1.000] 2 [0.000,0.768] [0.000,1.000] [0.000,1.000]
{0.000,0.734} {0.000,1.000} {0.000,1.000} {0.000,0.887} {0.000,1.000} {0.000,1.000} {0.000,0.768} {0.000,1.000} {0.000,1.000}
(0.000,0.745) (0.000,1.000) (0.000,1.000) (0.000,0.898) (0.000,1.000) (0.000,1.000) (0.000,0.779) (0.000,1.000) (0.000,1.000)

3 [0.000,0.690] [0.000,0.922] [0.076,1.000] 3 [0.000,0.885] [0.000,1.000] [0.000,1.000] 3 [0.000,0.768] [0.000,0.985] [0.013,1.000]
{0.000,0.690} {0.000,0.921} {0.077,1.000} {0.000,0.888} {0.000,1.000} {0.000,1.000} {0.000,0.769} {0.000,0.985} {0.013,1.000}
(0.000,0.699) (0.000,0.925) (0.073,1.000) (0.000,0.898) (0.000,1.000) (0.000,1.000) (0.000,0.779) (0.000,0.988) (0.010,1.000)

A. Brahmin/Upper Caste B. SC/ST C. OBC

Notes: Outcome = POVRATIO.  1 = poverty ratio < 1. 2 = poverty ratio is between 1 and 2. 3 = poverty ratio >= 2. Q = maximum misclassification rate. Education of the household head used as Monotone 
Instrumental Variable (MIV). Point estimates for bounds provided in brackets. Bias-corrected point estimates for bounds provided in braces  obtained using 100 bootstrap repetitions.  90% Imbens-Manski 
confidence intervals for the non-bias-corrected bounds provided in parentheses obtained using 250 bootstrap repetitions. See text for further details. 



Table C7. Subsample Transition Matrices by Caste: Arbitrary + Shape + Monotonicity + TID

I.  Q = 0.10
1 2 3 1 2 3 1 2 3

1 [0.225,0.324] [0.477,0.576] [0.199,0.299] 1 [0.413,0.427] [0.420,0.434] [0.139,0.167] 1 [0.278,0.341] [0.448,0.583] [0.139,0.274]
{0.210,0.322} {0.478,0.590} {0.200,0.313} {0.404,0.429} {0.418,0.428} {0.143,0.168} {0.277,0.343} {0.444,0.584} {0.138,0.279}
(0.195,0.358) (0.457,0.631) (0.175,0.348) (0.370,0.437) (0.409,0.477) (0.110,0.195) (0.207,0.349) (0.436,0.636) (0.128,0.318)

2 [0.032,0.171] [0.383,0.511] [0.396,0.517] 2 [0.107,0.266] [0.429,0.591] [0.226,0.385] 2 [0.053,0.194] [0.427,0.559] [0.318,0.454]
{0.031,0.171} {0.377,0.511} {0.395,0.519} {0.104,0.266} {0.429,0.591} {0.226,0.387} {0.053,0.194} {0.423,0.559} {0.318,0.455}
(0.027,0.177) (0.376,0.520) (0.387,0.525) (0.093,0.274) (0.417,0.603) (0.213,0.397) (0.047,0.200) (0.418,0.569) (0.310,0.465)

3 [0.000,0.134] [0.155,0.336] [0.632,0.845] 3 [0.000,0.266] [0.196,0.571] [0.254,0.804] 3 [0.000,0.192] [0.187,0.484] [0.461,0.813]
{0.000,0.134} {0.154,0.335} {0.632,0.846} {0.000,0.266} {0.197,0.571} {0.254,0.803} {0.000,0.192} {0.185,0.484} {0.461,0.815}
(0.000,0.138) (0.144,0.345) (0.622,0.856) (0.000,0.275) (0.162,0.589) (0.237,0.838) (0.000,0.198) (0.169,0.496) (0.449,0.831)

II.  Q = 0.20
1 2 3 1 2 3 1 2 3

1 [0.222,0.436] [0.383,0.501] [0.128,0.395] 1 [0.344,0.496] [0.354,0.479] [0.030,0.292] 1 [0.328,0.433] [0.369,0.447] [0.134,0.303]
{0.184,0.435} {0.383,0.504} {0.133,0.432} {0.337,0.497} {0.352,0.479} {0.028,0.292} {0.300,0.438} {0.367,0.447} {0.123,0.333}
(0.207,0.454) (0.362,0.514) (0.090,0.431) (0.334,0.506) (0.342,0.498) (0.018,0.300) (0.318,0.444) (0.356,0.455) (0.113,0.326)

2 [0.003,0.227] [0.363,0.588] [0.319,0.527] 2 [0.040,0.350] [0.345,0.682] [0.143,0.469] 2 [0.009,0.268] [0.350,0.632] [0.246,0.527]
{0.002,0.227} {0.363,0.588} {0.318,0.530} {0.039,0.349} {0.345,0.681} {0.143,0.472} {0.009,0.267} {0.350,0.632} {0.246,0.527}
(0.000,0.237) (0.355,0.597) (0.310,0.542) (0.026,0.359) (0.335,0.706) (0.129,0.481) (0.004,0.273) (0.340,0.642) (0.237,0.537)

3 [0.000,0.223] [0.061,0.437] [0.531,0.939] 3 [0.000,0.350] [0.039,0.682] [0.143,0.961] 3 [0.000,0.264] [0.042,0.589] [0.300,0.958]
{0.000,0.223} {0.061,0.437} {0.531,0.939} {0.000,0.349} {0.028,0.681} {0.068,0.972} {0.000,0.264} {0.036,0.590} {0.300,0.964}
(0.000,0.228) (0.049,0.446) (0.521,0.951) (0.000,0.359) (0.006,0.706) (0.129,0.994) (0.000,0.270) (0.023,0.599) (0.286,0.977)

III.  Q = 0.30
1 2 3 1 2 3 1 2 3

1 [0.102,0.530] [0.288,0.605] [0.000,0.610] 1 [0.274,0.564] [0.294,0.568] [0.000,0.362] 1 [0.228,0.513] [0.290,0.546] [0.000,0.482]
{0.102,0.529} {0.289,0.608} {0.000,0.609} {0.262,0.567} {0.294,0.571} {0.000,0.361} {0.207,0.515} {0.289,0.547} {0.000,0.504}
(0.094,0.550) (0.267,0.619) (0.000,0.639) (0.264,0.575) (0.280,0.583) (0.000,0.369) (0.217,0.524) (0.276,0.556) (0.000,0.507)

2 [0.000,0.312] [0.286,0.667] [0.242,0.617] 2 [0.000,0.433] [0.274,0.896] [0.067,0.553] 2 [0.000,0.339] [0.277,0.778] [0.173,0.602]
{0.000,0.312} {0.286,0.660} {0.241,0.619} {0.000,0.432} {0.261,0.896} {0.067,0.555} {0.000,0.339} {0.277,0.778} {0.173,0.599}
(0.000,0.320) (0.277,0.686) (0.233,0.630) (0.000,0.443) (0.265,0.928) (0.055,0.567) (0.000,0.346) (0.266,0.806) (0.164,0.613)

3 [0.000,0.289] [0.000,0.538] [0.429,1.000] 3 [0.000,0.433] [0.000,0.864] [0.059,1.000] 3 [0.000,0.336] [0.000,0.744] [0.173,1.000]
{0.000,0.289} {0.000,0.538} {0.429,1.000} {0.000,0.432} {0.000,0.864} {0.025,1.000} {0.000,0.336} {0.000,0.749} {0.139,1.000}
(0.000,0.296) (0.000,0.548) (0.419,1.000) (0.000,0.443) (0.000,0.918) (0.045,1.000) (0.000,0.342) (0.000,0.771) (0.164,1.000)

A. Brahmin/Upper Caste B. SC/ST C. OBC

Notes: Outcome = POVRATIO.  1 = poverty ratio < 1. 2 = poverty ratio is between 1 and 2. 3 = poverty ratio >= 2. Q = maximum misclassification rate. Education of the household head used as Monotone 
Instrumental Variable (MIV). TID = Temporal Independence. Point estimates for bounds provided in brackets. Bias-corrected point estimates for bounds provided in braces  obtained using 100 bootstrap 
repetitions.  90% Imbens-Manski confidence intervals for the non-bias-corrected bounds provided in parentheses obtained using 250 bootstrap repetitions. See text for further details. 



Table C8. Subsample Transition Matrices by Region: Arbitrary + Shape + Monotonicity

I.  Q = 0.10
1 2 3 1 2 3

1 [0.138,0.498] [0.329,0.571] [0.003,0.534] 1 [0.238,0.547] [0.287,0.568] [0.000,0.456]
{0.137,0.501} {0.330,0.574} {0.000,0.533} {0.238,0.547} {0.286,0.568} {0.000,0.456}
(0.126,0.512) (0.312,0.583) (0.000,0.562) (0.230,0.556) (0.276,0.576) (0.000,0.462)

2 [0.000,0.291] [0.322,0.671] [0.257,0.600] 2 [0.000,0.382] [0.266,0.721] [0.127,0.581]
{0.000,0.291} {0.322,0.671} {0.257,0.602} {0.000,0.381} {0.266,0.720} {0.128,0.581}
(0.000,0.296) (0.314,0.680) (0.248,0.611) (0.000,0.388) (0.258,0.729) (0.119,0.589)

3 [0.000,0.271] [0.000,0.533] [0.442,1.000] 3 [0.000,0.378] [0.000,0.694] [0.127,1.000]
{0.000,0.271} {0.000,0.533} {0.442,1.000} {0.000,0.378} {0.000,0.694} {0.128,1.000}
(0.000,0.276) (0.000,0.542) (0.433,1.000) (0.000,0.383) (0.000,0.705) (0.119,1.000)

II.  Q = 0.20
1 2 3 1 2 3

1 [0.021,0.727] [0.100,0.818] [0.000,0.863] 1 [0.032,0.760] [0.073,0.830] [0.000,0.706]
{0.020,0.726} {0.102,0.818} {0.000,0.864} {0.032,0.761} {0.073,0.831} {0.000,0.706}
(0.016,0.745) (0.081,0.827) (0.000,0.870) (0.027,0.771) (0.062,0.840) (0.000,0.714)

2 [0.000,0.506] [0.091,0.901] [0.067,0.836] 2 [0.000,0.608] [0.037,0.950] [0.000,0.812]
{0.000,0.505} {0.091,0.901} {0.067,0.838} {0.000,0.608} {0.037,0.949} {0.000,0.813}
(0.000,0.513) (0.082,0.910) (0.059,0.846) (0.000,0.615) (0.029,0.960) (0.000,0.821)

3 [0.000,0.476] [0.000,0.803] [0.162,1.000] 3 [0.000,0.606] [0.000,0.925] [0.023,1.000]
{0.000,0.476} {0.000,0.804} {0.162,1.000} {0.000,0.605} {0.000,0.925} {0.024,1.000}
(0.000,0.482) (0.000,0.811) (0.154,1.000) (0.000,0.612) (0.000,0.937) (0.021,1.000)

III.  Q = 0.30
1 2 3 1 2 3

1 [0.000,0.955] [0.000,0.991] [0.000,0.971] 1 [0.000,0.974] [0.000,0.988] [0.000,0.905]
{0.000,0.954} {0.000,0.990} {0.000,0.970} {0.000,0.974} {0.000,0.989} {0.000,0.905}
(0.000,0.977) (0.000,0.995) (0.000,0.975) (0.000,0.986) (0.000,0.994) (0.000,0.912)

2 [0.000,0.720] [0.000,1.000] [0.000,1.000] 2 [0.000,0.835] [0.000,1.000] [0.000,1.000]
{0.000,0.720} {0.000,1.000} {0.000,1.000} {0.000,0.834} {0.000,1.000} {0.000,1.000}
(0.000,0.730) (0.000,1.000) (0.000,1.000) (0.000,0.844) (0.000,1.000) (0.000,1.000)

3 [0.000,0.681] [0.000,0.915] [0.083,1.000] 3 [0.000,0.833] [0.000,0.991] [0.007,1.000]
{0.000,0.681} {0.000,0.915} {0.083,1.000} {0.000,0.833} {0.000,0.991} {0.008,1.000}
(0.000,0.689) (0.000,0.918) (0.080,1.000) (0.000,0.842) (0.000,0.994) (0.005,1.000)

A. Urban B. Rural

Notes: Outcome = POVRATIO.  1 = poverty ratio < 1. 2 = poverty ratio is between 1 and 2. 3 = poverty ratio >= 2. Q = maximum 
misclassification rate. Education of the household head used as Monotone Instrumental Variable (MIV). Point estimates for bounds 
provided in brackets. Bias-corrected point estimates for bounds provided in braces  obtained using 100 bootstrap repetitions.  90% 
Imbens-Manski confidence intervals for the non-bias-corrected bounds provided in parentheses obtained using 250 bootstrap repetitions. 
See text for further details. 



Table C9. Subsample Transition Matrices by Region: Arbitrary + Shape + Monotonicity + TID

I.  Q = 0.10
1 2 3 1 2 3

1 [0.093,0.333] [0.481,0.677] [0.125,0.361] 1 [0.325,0.388] [0.429,0.555] [0.120,0.246]
{0.093,0.336} {0.481,0.675} {0.122,0.364} {0.333,0.390} {0.428,0.556} {0.111,0.238}
(0.085,0.345) (0.466,0.692) (0.115,0.368) (0.246,0.396) (0.419,0.594) (0.106,0.287)

2 [0.025,0.122] [0.408,0.518] [0.410,0.522] 2 [0.078,0.229] [0.420,0.568] [0.280,0.427]
{0.025,0.118} {0.408,0.518} {0.411,0.522} {0.078,0.228} {0.420,0.567} {0.280,0.427}
(0.015,0.136) (0.398,0.525) (0.403,0.529) (0.073,0.234) (0.412,0.576) (0.273,0.435)

3 [0.000,0.131] [0.126,0.320] [0.656,0.874] 3 [0.000,0.226] [0.190,0.520] [0.410,0.810]
{0.000,0.131} {0.122,0.320} {0.656,0.878} {0.000,0.226} {0.190,0.520} {0.410,0.810}
(0.000,0.134) (0.113,0.328) (0.648,0.887) (0.000,0.231) (0.177,0.530) (0.399,0.823)

II.  Q = 0.20
1 2 3 1 2 3

1 [0.271,0.421] [0.405,0.474] [0.158,0.324] 1 [0.325,0.475] [0.358,0.481] [0.049,0.317]
{0.233,0.426} {0.406,0.475} {0.161,0.361} {0.311,0.478} {0.358,0.480} {0.045,0.331}
(0.261,0.433) (0.389,0.483) (0.129,0.350) (0.318,0.483) (0.348,0.488) (0.033,0.334)

2 [0.000,0.200] [0.399,0.597] [0.333,0.512] 2 [0.020,0.305] [0.343,0.644] [0.203,0.504]
{0.000,0.200} {0.399,0.597} {0.334,0.515} {0.020,0.305} {0.343,0.644} {0.203,0.504}
(0.000,0.209) (0.391,0.605) (0.325,0.526) (0.015,0.311) (0.335,0.652) (0.196,0.512)

3 [0.000,0.203] [0.019,0.427] [0.549,0.981] 3 [0.000,0.302] [0.058,0.616] [0.227,0.942]
{0.000,0.202} {0.019,0.427} {0.549,0.981} {0.000,0.302} {0.052,0.616} {0.227,0.948}
(0.000,0.207) (0.010,0.435) (0.541,0.990) (0.000,0.307) (0.043,0.626) (0.216,0.957)

III.  Q = 0.30
1 2 3 1 2 3

1 [0.138,0.498] [0.329,0.571] [0.003,0.534] 1 [0.238,0.547] [0.287,0.568] [0.000,0.456]
{0.136,0.501} {0.330,0.574} {0.000,0.534} {0.218,0.547} {0.286,0.568} {0.000,0.456}
(0.126,0.512) (0.312,0.583) (0.000,0.562) (0.230,0.556) (0.276,0.576) (0.000,0.462)

2 [0.000,0.291] [0.322,0.688] [0.257,0.600] 2 [0.000,0.382] [0.266,0.841] [0.127,0.586]
{0.000,0.291} {0.322,0.688} {0.257,0.602} {0.000,0.381} {0.266,0.838} {0.127,0.586}
(0.000,0.296) (0.314,0.711) (0.248,0.611) (0.000,0.388) (0.258,0.863) (0.119,0.593)

3 [0.000,0.271] [0.000,0.533] [0.442,1.000] 3 [0.000,0.378] [0.000,0.799] [0.127,1.000]
{0.000,0.271} {0.000,0.533} {0.442,1.000} {0.000,0.378} {0.000,0.803} {0.093,1.000}
(0.000,0.276) (0.000,0.542) (0.433,1.000) (0.000,0.383) (0.000,0.825) (0.119,1.000)

A. Urban B. Rural

Notes: Outcome = POVRATIO.  1 = poverty ratio < 1. 2 = poverty ratio is between 1 and 2. 3 = poverty ratio >= 2. Q = maximum 
misclassification rate. Education of the household head used as Monotone Instrumental Variable (MIV). TID = Temporal Independence. 
Point estimates for bounds provided in brackets. Bias-corrected point estimates for bounds provided in braces  obtained using 100 
bootstrap repetitions.  90% Imbens-Manski confidence intervals for the non-bias-corrected bounds provided in parentheses obtained 
using 250 bootstrap repetitions. See text for further details. 
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