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Non-technical summary

Research Question

The COVID-19 pandemic poses major challenges for many macroeconomic time series

models for inference and forecasting purposes due to the extreme variation in some eco-

nomic variables. Models based on Bayesian vector autoregression (BVAR) are also af-

fected. A BVAR derives the relationships between economic variables from their historical

properties and from a-priori distributions of the model parameters (priors). However, the

extreme variation of some variables can severely distort these relationships and make the

results of conventional BVARs appear implausible. This paper examines to which extent

modified BVARs can deal with the extreme events caused by the pandemic.

Contribution

This paper shows that changing the error distribution makes the BVAR more robust to

the extreme events caused by the pandemic: Instead of the usual normal distribution, a

multivariate distribution with heavy tails or common time-varying volatility or a combi-

nation of both features can be used for this purpose. Since the common Minnesota prior

is also very sensitive to extreme events, a modified calibration for the Minnesota prior is

proposed as an alternative.

Results

When estimating BVARs using quarterly U.S. data, it turns out that the data favors the

model with a combined error structure (heavy tails and common volatility). This model

interprets the huge swings during the pandemic as a rare event rather than a persistent

increase in macroeconomic volatility. Further, it becomes evident that the Minnesota prior

is very sensitive to the extreme variation of some real variables. For instance, using this

prior causes a structural break in the BVAR relation between employment and inflation.

If the proposed modifications of the BVAR are taken into account, the accuracy of point

forecasts for recent years tends to increase significantly.



Nichttechnische Zusammenfassung

Fragestellung

Die COVID-19 Pandemie stellt viele makroökonomische Zeitreihen-Modelle für Analyse-

und Prognosezwecke aufgrund extremer Ausschläge einiger ökonomischer Variablen vor

große Herausforderungen. Auch Modelle, die auf einer bayesianischen Vektorautoregres-

sion (BVAR) beruhen, sind davon betroffen. Ein BVAR leitet die Beziehungen zwischen

ökonomischen Variablen aus deren historischen Verläufen sowie aus A-Priori-Verteilungen

der Modellparameter (Priors) ab. Die extremen Ausschläge einiger Variablen können die-

se Beziehungen allerdings stark verzerren und lassen die Ergebnisse üblicher BVARs oft

wenig plausibel erscheinen. Dieses Papier untersucht, inwiefern modifizierte BVARs mit

den pandemiebedingten Extremereignissen umgehen können.

Beitrag

Es wird gezeigt, dass eine Änderung der Fehlerverteilung den BVAR robuster gegenüber

den pandemiebedingten Extremereignissen werden lässt: Statt der üblichen Normalver-

teilung kann zu diesem Zweck eine multivariate Verteilung mit schweren Rändern oder

gemeinsamer zeit-variierender Volatilität oder deren Kombination verwendet werden. Da

zudem der gängige Minnesota-Prior sehr empfindlich gegenüber Extremereignissen ist,

wird eine modifizierte Kalibrierung für den Minnesota-Prior als Alternative vorgeschlagen.

Ergebnisse

Bei der Schätzung von BVARs mit vierteljährlichen US-Daten stellt sich heraus, dass das

Modell mit einer kombinierten Fehlerstruktur (schwere Ränder und gemeinsame Volati-

lität) von den Daten bevorzugt wird. Dieses Modell interpretiert die enormen Ausschläge

während der Pandemie eher als ein seltenes Ereignis anstatt eines nachhaltigen Anstiegs

der makroökonomischen Volatilität. Darüber hinaus zeigt sich, dass der Minnesota-Prior

sehr empfindlich gegenüber den extremen Ausschlägen einiger realer Variablen ist. Die

Verwendung dieses Priors ruft im BVAR beispielsweise einen Strukturbruch zwischen

Beschäftigung und Inflation hervor. Wenn die vorgeschlagenen Modifikationen des BVARs

berücksichtigt werden, erhöht sich die Treffgenauigkeit von Punktprognosen für die letzten

Jahre oft stark.
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1 Introduction

The COVID-19 pandemic wreaked havoc in the global economy and triggered unprece-
dented movements in many key macroeconomic indicators. This unusual shock poses sev-
eral challenges for the estimation and analysis of macroeconometric models. Specifically,
Bayesian vector autoregressions (BVARs) may become unstable and generate implausible
forecasts when recent observations are included in the estimation sample.1

The pandemic, thus, calls for a careful treatment of the data in an econometric model
and requires a view as to how it affects fundamental workings of the economy (Schorfheide
and Song, 2021). Though the pandemic may have triggered forces that might alter macroe-
conomic interactions going forward, it is questionable whether a few extreme observations
should dominate the inference procedure. For this reason, the literature proposes several
solutions to make the BVARmore resilient to pandemic-related extreme observations. One
prominent strategy is to relax the error structure in a BVAR.2 This approach ranges from
modelling COVID-19 observations explicitly with a common volatility model (Lenza and
Primiceri, 2022), or implicitly by using a multivariate t distribution (Bobeica and Hartwig,
2023), or to variable-specific outliers in the volatility process (Carriero et al., 2022).

This paper addresses two important gaps in the literature. First, there is no clear
guidance whether a multivariate heavy-tailed or common time-varying volatility error
structure is better suited to account for the extreme variation in a BVAR and what works
better in forecasting. Modelling the pandemic as a rare event or persistent increase in
volatility is an important choice as it may have different implications for density forecasts.
Second, the calibration of standard prior distributions such as the Minnesota prior has
not received particular attention yet (except for fixing the calibration at pre-pandemic
times). This is somewhat surprising as the COVID-19 observations may lead to a substan-
tial re-calibration of the prior and, thus, may potentially alter inference and forecasting
properties of a Bayesian VAR during the pandemic.

To fill these gaps, this paper assesses both error extensions individually and jointly
by considering multivariate t errors and common stochastic volatility in the generalized
BVAR framework of Chan (2020). The forecasts of these models are compared to the
Lenza and Primiceri (2022) approach who also employ a common shock treatment. Mod-
elling the COVID-19 observations as a common shock has some merits. First, the influence
of extreme observations is downweighed homogeneously instead of heterogeneously across
equations, implying that the COVID-19 observations have a more limited effect on all
parameters in the VAR model. Second, inference with a common shock treatment is more
simple and requires considerably less computation time than estimating the more flexi-
ble and realistic model of Carriero et al. (2022).3 Regarding the second gap, this paper
investigates the sensitivity of the Minnesota prior during the pandemic. It argues that

1See Lenza and Primiceri (2022), Carriero, Clark, Marcellino, and Mertens (2022), Schorfheide and
Song (2021) on the U.S. and Bobeica and Hartwig (2023) on the euro area.

2Alternative approaches range from introducing dummy variables for the pandemic period (Carriero
et al., 2022), including other exogenous variables related to the pandemic (Ng, 2021) to relaxing the whole
structure by a non-parametric and non-linear mixed-frequency VAR approach (Huber, Koop, Onorante,
Pfarrhofer, and Schreiner, 2023).

3The flexibility of their model comes at the cost of a peculiar variable ordering sensitivity which is
especially relevant when volatility clusters idiosyncratically (Hartwig, 2020) and has the potential to alter
conditional projections in an economically significant way (Arias, Rubio-Ramı́rez, and Shin, 2022).
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variable-specific scale estimates used for calibrating the prior are not robust to extreme
observations and therefore become a source of changing estimated transmission channels.
To alleviate this sensitivity, this paper proposes and discusses several outlier-robust cal-
ibration strategies for the Minnesota prior. The importance of these considerations is
illustrated in an empirical application with U.S. quarterly data featuring both a medium
VAR with six key macroeconomic indicators similar to Lenza and Primiceri (2022) and a
large VAR with 20 variables.

This paper makes three contributions to the literature. First, model diagnostics indi-
cate that the data prefers to interpret the COVID-19 shock as a rare event rather than
a persistent increase in macroeconomic volatility. Moreover, the persistence of macroeco-
nomic volatility in BVARs featuring only time-varying volatility is inversely related to the
amount of cross-sectional information as variation in many variables quickly normalized.
Consequently, predictive intervals in medium BVARs may become very imprecise dur-
ing the pandemic, whereas those of large BVARs are not particularly inflated for a long
time. This complements the evidence in Carriero et al. (2022) by the fact that a common
volatility structure is not necessarily plagued by excessively wide predictive intervals as
compared to a variable-specific volatility structure without outlier correction. Further,
the forecast exercises suggest that the robust BVARs coupled with a large cross-sectional
information set is the group of superior forecasting models. Among the robust BVARs,
however, there is no clear superior forecasting approach for all variables, horizons and prior
combinations as the predictive accuracy is broadly similar. Thus, the off-the-shelf robust
BVARs of Chan (2020) can be readily used during the pandemic period. Nevertheless, the
large BVAR of Lenza and Primiceri (2022) produced the most accurate forecasts overall.

The second contribution of this paper is to document that a mechanical update of the
Minnesota prior is another important source of parameter instability during the pandemic.
The updated prior distribution differs considerably from the pre-pandemic one as it sets
a very tight prior for VAR coefficients of real variables. Relative to the pre-pandemic
prior, this updated prior is associated with a decisive loss of the in-sample fit, change
in transmission channels and trade-off between the predictability of real variables and
inflation. Further, the muted internal propagation improves predictive accuracy of real
variables in the beginning of the pandemic, however, this goes at the expense of getting
inaccurate predictions for inflation. In fact, this strongly revised prior prevents the large
VAR model from capturing the mounting inflationary pressure in 2021.

Third, adopting an extreme observation-robust prior calibration strategy improves the
model fit substantially and delivers a comparable pre-pandemic prior distribution. More-
over, the robust calibration strategies offer three key advantages over fixing the prior dis-
tribution or a manual fine-tuning of the calibration sample: they are easy to implement, do
not sacrifice in-sample fit for robustness and allow for an orderly revision of the prior dis-
tribution by robustly processing all available information. Based on theoretical considera-
tions and simplicity, the MAD(qReg) prior calibration based on the scaled median absolute
deviation and median AR(p) residual is proposed as the COVID-19 robust alternative.

The rest of this paper proceeds as follows. Section 2 presents Bayesian VAR models
to cope with COVID-19 and discusses prior calibration. Section 3 conducts an empirical
analysis with these models and priors using U.S. data. Section 4 concludes this paper.
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2 Methodology

2.1 Bayesian VARs to cope with the COVID-19 pandemic

This section presents the Bayesian VAR model with a generalized error structure of Chan
(2020) and uses it as a framework to assess whether a heavy-tailed or heteroskedastic
error structure should be preferred for modelling the COVID-19 observations.

Let yt be a n × 1 vector of variables that is observed over the periods t = 1, ..., T .
Consider the following generic VAR(p) model:

yt = a0 + A1yt−1 + ...+ Apyt−p + ϵt,

where a0 is an n× 1 vector of intercepts and A1, ..., Ap are n× n coefficient matrices. Let
x′
t = (1, y′t−1, ..., y

′
t−p) be a 1 × k vector of an intercept and lags with k = 1 + np and

A = (a0, A1, ..., Ap)
′ is a k× n. Rewrite the VAR in more compact form as y′t = x′

tA+ ϵt,
and stack the observations over t = 1, ..., T , which yields

Y = XA+ E, (1)

where Y , X, and E are of dimensions T × n, T × k, and T × n, respectively. In a
standard VAR, the innovations ϵ1, ..., ϵT are assumed to be independent and identically
distributed (i.i.d.) as N(0,Σ). More compactly, rewrite E ∼ MN(0,Σ⊗ IT ), where Σ is
an n × n covariance matrix, IT is the identity matrix of dimension T , MN denotes the
matric-variate normal distribution, ⊗ is the Kronecker product.

The Kronecker structure allows for a more general covariance structure:

E ∼ MN(0,Σ⊗ Ω), (2)

where Ω is a T×T covariance matrix. Intuitively, the cross-sectional and serial covariance
structures of Y are separately modelled by specifying Σ and Ω, respectively. By choosing
a suitable serial covariance structure Ω, the model in (1)–(2) includes a variety of flexible
error structures such as heavy-tailed and heteroskedastic innovations.

The main difference between these error structures lies in their treatment of large
shocks. Under a heavy-tailed distribution, large shocks receive more probability mass in
general, while with heteroskedastic errors large shocks are captured by allowing volatility
to change over time. Intuitively, these error structures may limit the effect of extremely
large innovations on the parameter estimates because they downscale their contribution
through the (implied) serial covariance Ω, see Section 2.3 for details. This idea of down-
weighing observations to stabilize VAR parameter estimates in the context of the COVID-
19 pandemic was first proposed by Lenza and Primiceri (2022).

From the class of heavy-tailed distributions, this paper considers the multivariate t
distribution as it can accommodate substantially thicker tails than the normal distri-
bution. Specifically, ϵt is assumed to be independently multivariate t-distributed with
mean vector 0, scale matrix Σ and degree of freedom parameter ν, or more compactly,
ϵt ∼ t(0,Σ, ν). As explained in Chan (2020), many non-Gaussian distributions can be used
in this framework as they can be written as a scale mixture of Gaussian distributions.4

4The outlier-adjusted error distribution of Stock and Watson (2016) or, as discussed in Chan (2020),
the multivariate Laplace distribution of Eltoft, Kim, and Lee (2006) may also be used in this context.
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The t distribution can be modelled by letting Ω = diag(λ1, ..., λT ), where each λt follows
independently an inverse-gamma distribution (λt|ν) ∼ IG(ν/2, ν/2), see Geweke (1993).
In other words, the scale mixture Gaussian representation of the t distribution reveals that
the innovations ϵt conditional on λt exhibit common but independently distributed shifts
of the cross-sectional covariance matrix over time. Note Bobeica and Hartwig (2023) also
consider multivariate t errors to model the pandemic observations.

As heteroskedastic error structure, the common drift in stochastic volatility model in
the spirit of Carriero, Clark, and Marcellino (2016) is considered with ϵt ∼ N(0,Σ·exp(ht))
following Chan (2020). The log variance follows a stationary autoregressive process of
order one:

ht = ρht−1 + ϵht , (3)

with ϵht ∼ N(0, σ2
h), |ρ| < 1 and Ω = diag(exp(h1), exp(h2), ..., exp(hT )).

Note this covariance structure shares some similarities with the Lenza and Primiceri
(2022) approach. Specifically, they assume that the COVID-19 observations scale the
cross-sectional covariance matrix persistently by a common factor that decays over time.
For the pre-pandemic sample, they assume a constant covariance matrix. In contrast,
the model with common stochastic volatility allows volatility to change over the whole
sample, not just in response to the pandemic.

The third error structure considered here is a combination of common drift in volatility
and multivariate t innovations as in Chan (2020). Specifically, ϵt ∼ N(0,Σ · λt · exp(ht)),
where λt ∼ IG(ν/2, ν/2) and ht follows an AR(1) process. This model allows for richer
(implied) volatility dynamics as opposed to their single ingredients. It can capture both
persistent but also abnormally large changes in volatility, thereby allowing the data to
decide whether the COVID-19 observations have transient or persistent effects on volatil-
ity.5 Table 1 summarizes the list of competing Bayesian VARs with a generalized error
structure.

Table 1: List of competing models

Model Description

BVAR-N BVAR with i.i.d. Gaussian innovations
BVAR-t BVAR with i.i.d. t innovations
BVAR-N -CSV BVAR with Gaussian innovations and common stochastic volatility
BVAR-t-CSV BVAR with t innovations and common stochastic volatility

Apart from the COVID-19 related macroeconomic disruptions, there is a vast literature
documenting a departure from classical Gaussian errors in a wide range of macroeconomet-
ric models. In the context of VARs, Christiano (2007) presents evidence that even before
the Global Financial Crisis VAR residuals are not normally distributed. Moreover, Chiu,
Mumtaz, and Pinter (2017), Clark and Ravazzolo (2015) and Chan (2020) document that
the data favors stochastic volatility and t-distributed errors over Gaussian errors in a VAR
model and that these features improve forecast accuracy. In addition, Cúrdia, Del Negro,

5The idea to combine these error structures to discriminate between high-frequency and low-frequency
volatility was first put forward by Jacquier, Polson, and Rossi (2004).
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and Greenwald (2014) and Chib and Ramamurthy (2014) provide evidence that struc-
tural shocks in DSGE models exhibit heavy tails.6 Antoĺın-Dı́az, Drechsel, and Petrella
(2020) show that accounting for both shifts in variances and large shocks improves nowcast
accuracy of a dynamic factor model relative to a model with classical Gaussian errors.

Though stochastic volatility is often found to be a more important feature than t-
distributed errors for macroeconomic time series, several studies document that inference
and forecast accuracy may hinge on allowing for heavy-tailed errors.7 For instance, ignor-
ing fat tails may lead to misleading inference about the historical evolution of volatility,
especially during the Global Financial Crisis, which is interpreted as a rare event rather
than a persistent increase in macroeconomic volatility when allowing for both features.

The Bayesian VAR models that combine stochastic volatility with t-distributed errors
of Clark and Ravazzolo (2015) and Chiu et al. (2017) or with outlier-adjusted errors
of Carriero et al. (2022) differ from the models discussed above by their assumption
that time-varying volatility and heavy-tailedness is variable-specific rather than common
across all variables. Though an individual error distribution may be more realistic and less
restrictive, the modelling approach pursued by these papers is prone to be sensitive to the
variable ordering due to the triangular factorization of the time-varying covariance matrix
in the spirit of Cogley and Sargent (2005). Specifically, this variable ordering sensitivity
may give rise to ambiguous conclusions and is especially relevant when volatility clusters
idiosyncratically, see Hartwig (2020). It can also affect conditional projections in an
economically significant way, see Arias et al. (2022).

2.2 Prior calibration

Besides the error structure in a Bayesian VAR, another source of parameter instability may
be due to an unusually strong and potentially unintended re-calibration of the prior distri-
bution during the pandemic. Specifically, many prior distributions rely on simple variable-
specific volatility estimates based on the full sample and as such are sensitive to extreme
observations as well. The Minnesota prior is just one example of such a commonly used
prior distribution in the context of Bayesian VARs. This section discusses the calibration
sensitivity in detail and proposes outlier-robust calibration strategies for the Minnesota
prior, which can also be used for calibrating other scale-dependent prior distributions.8

For all considered Bayesian VAR models, this paper assumes a normal-inverse-Wishart
prior for the VAR coefficients A and cross-sectional covariance matrix Σ, i.e. Σ ∼
IW (S0, ν0), and (A|Σ) ∼ MN(A0,Σ⊗ Va). As a näıve benchmark prior, a weakly infor-
mative but sample-independent calibration is used to specify the normal-inverse-Wishart
prior. The hyperparameters of the inverse-Wishart prior are set to ν0 = 3+n and S0 = In.
The prior mean A0 is centered at zero and the covariance matrix, V W

a , is assumed to be

6Cúrdia et al. (2014) consider a model with both stochastic volatility and t-distributed errors, while
Chib and Ramamurthy (2014) focus on t-distributed errors only.

7See Cúrdia et al. (2014), Chiu et al. (2017), Chan (2020) and Antoĺın-Dı́az et al. (2020).
8Further examples of scale-dependent priors are the sum of coefficient (co-integration) and sum of

initial conditions prior (Sims and Zha, 1998), steady-state prior (Villani, 2009) and long-run relations
prior (Giannone, Lenza, and Primiceri, 2019).
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diagonal with i-th diagonal element va,ii set as:

vWA,ii =

{
1 for a coefficient associated to a lag of variable r

κ2
2 for an intercept

, (4)

where κ2 = 10 controls the overall strength of shrinkage for the intercepts.
To maintain the Kronecker structure of the prior, this paper adopts a Minnesota prior

without cross-variable shrinkage, see Carriero et al. (2016) and Chan (2020).9 The Min-
nesota prior is implemented as a normal-inverse-Wishart prior using the same notation as
above. For the inverse-Wishart prior, the same sample-independent calibration is used to
isolate the effects of a sample-dependent calibration to the prior covariance matrix V MN

a

of the VAR coefficients only.10 V MN
a is assumed to be diagonal with i-th diagonal element

va,ii set as:

vMN
A,ii =

{
κ2
1,m

l2ŝ2r,m
for a coefficient associated to lag l of variable r

κ2
2 for an intercept

, (5)

where ŝr,m is the scale estimate of variable r and calibration strategy m, specified below,
and κ1,m controls the degree of shrinkage of the VAR coefficients. For comparability,
κ1,m is calibrated for each method m to yield the maximum marginal likelihood of the
BVAR-N model at pre-pandemic times, see Section 3.2.

In practice, ŝr,m is calibrated to be the variable-specific sample volatility of the residual
from an AR(p) model with Gaussian and homoskedastic errors, see Litterman (1986).
Particularly, the root mean squared deviation (RMSD) is used as the sample-specific
volatility estimate of variable r:

RMSD(xr) =
1

T

√√√√ T∑
t=1

(xr,t −mean(xr))
2, (6)

where xr is the AR(p) residual of variable r in the standard specification.11

There are two main reasons why the Minnesota prior is based on variable-specific
volatility estimates. First, the prior is not scale-invariant, i.e. it matters whether the
data is entered in decimals or percentage points. Second, a variable-specific volatility
estimate is necessary to express the degree of shrinkage relative to the variability of the
underlying stochastic process which is similar in spirit to a ridge regression.

By construction, however, this classical prior calibration strategy is sensitive to ex-
treme observations. Because of this, volatility estimates of some variables may be strongly
inflated once the pandemic observations are included in the calibration sample, leading
to a tighter prior for the affected variables as compared to the pre-pandemic calibration.
This mechanical revision of the prior distribution of the VAR coefficients may be unattrac-
tive for several reasons. First, an extremely tight prior for some variables may alter the

9For more details on this specific Minnesota prior, see Section 3.2.1 in Karlsson (2013).
10Alternatively, the scale S0 may be calibrated using sample-dependent information as

S0 = (ν0 − n− 1) · diag(ŝ21,m, ..., ŝ2n,m), see Section 3.2.1. Karlsson (2013).
11For ease of exposition, the degree of freedom correction is omitted here.
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dynamic propagation of shocks by muting their transmission and breaking links between
variables. Second, it is questionable whether a few extreme observations should receive so
much weight in revising the prior distribution of the VAR dynamics. Third, it is not clear
if and how quickly macroeconomic transmission channels change in response to the pan-
demic. Therefore, it might be more attractive to adopt a less sensitive prior calibration
to not a-priori mute the information in the data through an excessively tight prior.

The unique character of the COVID-19 crisis allows the researcher to easily pin down
such a prior by cutting the calibration sample at pre-pandemic times, see, for instance,
Schorfheide and Song (2021) and Lenza and Primiceri (2022). However, a drawback of
this approach is that it discards all future and potentially useful information from the new
normal once macroeconomic variation stabilizes. It also raises the question as to how new
observations should be treated when specifying a prior distribution for empirical applica-
tions going forward. Moreover, an ad-hoc fine-tuning of the prior calibration sample might
also limit the comparability across empirical studies as the appropriate timing to include
new observations may vary across applications, countries and the judgement of researchers.

For this reason, this paper searches for outlier-robust calibration strategies that can
process all information and yield a prior distribution that is comparable to the standard
method in absence of extreme observations. To meet these requirement, the search is
guided by looking for robust estimators that yield asymptotically the same point estimate
as a mean regression when the data is normally distributed. There are two key elements
that may lead to a revision of the variable-specific volatility estimate: 1) the volatility
estimator itself and 2) the input series xr used for the volatility estimator. To investigate
the importance of these sources, this paper considers three robust volatility estimators
and combines them with two alternative input series to calibrate the Minnesota prior.

The scaled median absolute deviation (MAD) is considered as a first alternative to
the RMSD because it is robust to extreme observations, simple to implement and yields
asymptotically the same point estimate of volatility when the data is normally distributed,
see Rousseeuw and Croux (1993):

MAD(xr) = b ·median(|(xr − median(xr)|), (7)

where b = 1.4826 is a scaling parameter.
However, a drawback of the MAD is that it takes a symmetric view point on disper-

sion and has a rather low Gaussian efficiency, see Rousseeuw and Croux (1993). As an
alternative, the authors propose the Sn and Qn statistic as a more efficient and general
alternative to the MAD. Specifically, these volatility estimators remain valid even when
the input series xr follows an asymmetric or a heavy-tailed distribution. Therefore, these
statistics are considered as further alternatives to the RMSD.

The Sn statistic measures dispersion as the typical distance between observations as
opposed to the typical distance from the central value like the MAD:12

Sn(xr) = c ·median{median|xr,t − xr,s|}, s = 1, ..., T, (8)

where c = 1.1926 is a scaling parameter.

12The lack of location dependence makes the Sn statistic valid for asymmetric distributions.
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The Qn statistic is defined as the k-th order statistic of the
(
T
2

)
interpoint distances:

Qn(xr) = d · {|xr,t − xr,s|; t < s}(k), (9)

where d = 2.219 is a scaling parameter and k =
(
(T/2)+1

2

)
.13

The second ingredient to make the prior calibration robust to extreme observations
is to use a less sensitive input series than the residual of a standard Gaussian AR(p)
model (oReg). Here, the first difference of the time series (FD) and the residual of a
median AR(p) model (qReg) are considered as an alternative. The median AR(p) model
is estimated using the quantile regression framework of Koenker and Bassett (1978).

The advantage of using a first-differenced time series over an AR(p) residual is that
the former remains unchanged, while the latter may be revised due to updated model
parameters. This invariance property makes the first-differenced time series an ideal in-
put series to assess the resilience of alternative volatility estimators during the pandemic.
However, a drawback is that the associated volatility estimate is generally larger but not
proportionally larger across the n equations because of different lag properties of the indi-
vidual variables. Consequently, the prior distribution based on this input series might be
somewhat different and the amount of shrinkage may be suboptimal for a VAR model.14

Relative to the first-differenced time series, the residual of a median AR(p) and mean
AR(p) regression tend to be more similar as they take the lag structure into account.
For Gaussian data, both estimation methods produce asymptotically the same coefficient
estimate as the (conditional) median and mean of a normally distributed variable is identi-
cal. However, the median regression has the advantage of being more robust and efficient
than the mean regression when the error distribution is heavy-tailed, see Koenker and
Bassett (1978). Thus, the median AR(p) residual is expected to be less sensitive during
the pandemic. Table 2 summarizes all considered prior specifications.

Table 2: List of prior specifications

Prior Description

Weak Weakly informative prior (näıve benchmark)
RMSD (oReg) Minnesota prior (standard AR(p) and scale, RMSD)
MAD (oReg) Minnesota prior (standard AR(p) but robust scale, MAD)
Sn (oReg) Minnesota prior (standard AR(p) but robust scale, Sn)
Qn (oReg) Minnesota prior (standard AR(p) but robust scale, Qn)
RMSD (FD) Minnesota prior (first difference and scale, RMSD)
MAD (FD) Minnesota prior (first difference and robust scale, MAD)
Sn (FD) Minnesota prior (first difference and robust scale, Sn)
Qn (FD) Minnesota prior (first difference and robust scale, Qn)
RMSD (qReg) Minnesota prior (robust-q AR(p) and scale, RMSD)
MAD (qReg) Minnesota prior (robust-q AR(p) and scale, MAD)
Sn (qReg) Minnesota prior (robust-q AR(p) and scale, Sn)
Qn (qReg) Minnesota prior (robust-q AR(p) and scale, Qn)

13The Qn statistic has the highest Gaussian efficiency among the MAD and Sn statistic.
14Note κ1,m is common across the n equations and cannot act as a degree of freedom.

8



To complete the prior specification, this paper follows Chan (2020) and assumes a
uniform prior on (2, 100) for the degree of freedom parameter, i.e. ν ∼ U(2, 100). This
prior implies that degrees of freedom may become sufficiently large to approximate Gaus-
sian errors. For stochastic volatility, independent priors for σ2

h and ρ: σ2
h ∼ IG(νh0, Sh0)

and ρ ∼ N(ρ0, Vρ)1(|ρ| < 1) are assumed, where νh0 = 5, Sh0 = 0.04, ρ0 = 0.9, and
Vρ = 0.22. These values imply that the prior mean of σ2

h is 0.1 and ρ is centered at 0.9.
Further, an independent prior for the parameter blocks (A,Σ) and Ω is assumed, i.e.,
p(A,Σ,Ω) = p(A,Σ)p(Ω).

2.3 Bayesian estimation

The Bayesian VAR with covariance structure (2) can be easily estimated under a normal-
inverse-Wishart prior for (A,Σ) and an independent prior for the parameter blocks (A,Σ)
and Ω, see Chan (2020).

Posterior draws can be obtained by sequentially sampling from 1) p(A,Σ|Y,Ω) and 2)
p(Ω|Y,A,Σ). Depending on the covariance structure Ω, additional blocks might be needed
to sample some extra hierarchical parameters. In particular, the BVAR with t-distributed
errors requires additional sampling of the degree of freedom parameter ν, while (ρ, σ2

h)
need to be sampled for the BVAR with common stochastic volatility. Following Chan
(2020), these parameters are fitted using univariate time series models.

To understand how (extreme) observations are treated in this model, it is useful to in-
vestigate the conditional posterior p(A,Σ|Y,Ω). As the prior p(A,Σ) is natural conjugate,
the conditional posterior p(A,Σ|Y,Ω) is still normal-inverse-Wishart distributed:

p(A,Σ|Y,Ω) ∼ MNIW (Â,Σ⊗K−1
A , Ŝ, v0 + T ),

where

KA = V −1
A +X ′Ω−1X, Â = K−1

A (V −1
A A0 +X ′Ω−1Y ),

Ŝ = S0 + A′
0V

−1
A A0 + Y ′Ω−1Y − Â′K−1

A Â.

Hence, (A,Σ|Y,Ω) can be sampled in two steps. First, sample Σ marginally from
(Σ|Y,Ω) ∼ IW (Ŝ, v0 + T ). Then, given the Σ drawn, sample A from

(A|Y,Σ,Ω) ∼ MN(Â,Σ⊗K−1
A ).

Note under a noninformative prior for the VAR coefficients, i.e. when the inverse of VA

goes to zero, the conditional posterior mean of A converges to the generalized least squared
estimator for some conditionally known Ω (weighting matrix).15 Thus, the data (Y,X) is
not equally informative for the parameters (A,Σ), but their contribution is weighted by
Ω. Under t-distributed errors and common stochastic volatility, Ω is a diagonal matrix
with generic elements ω2

t , t = 1, ..., T . In period t, the observations (yt, xt) are weighted by
the (implicit) volatility ω−1

t . Specifically, when ωt is large, then (yt, xt) is less informative
for (A,Σ). Intuitively, the common volatility estimate ωt becomes large if some of the
forecast errors ϵt are unusually large, either driven by some variable r or a set of variables.

15When Ω = IT , then the posterior mean of A converges to the least squares estimator.
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3 Empirical Application

3.1 Data

This section assesses the impact of the COVID-19 observations on these more flexible
Bayesian VARs and various prior calibration strategies by considering a medium and
large VAR model for inference and forecasting at quarterly frequency, see Table 3.16 The
medium VAR consists of six core U.S. macroeconomic variables similar to Lenza and Prim-
iceri (2022).17 The large VAR adds 14 additional variables typically used in forecasting
exercises such as Bańbura, Giannone, and Reichlin (2010), Carriero, Clark, and Mar-
cellino (2015) and Chan (2020). Both models are estimated over an expanding window
from 1988:Q4 to 2019:Q4 until 2022:Q1. As in Lenza and Primiceri (2022), the sample is
not extended before 1988:Q4 as inflation has been reacting less to real activity since the
1990s (Del Negro, Lenza, Primiceri, and Tambalotti, 2020).

Table 3: Quarterly dataset from FRED-QD (McCracken and Ng, 2020)

Variable Abbreviation Mnemonic Transformation Medium Large

Employment (nonfarm) EMP PAYEMS log x x
Unemployment rate UR UNRATE raw x x
Hours worked (nonfarm) HW HOANBS log x
Hourly earnings (goods) HE CES0600000008 log x
Consumption (PCE, real) CON PCECC96 log x x
Gross domestic product (real) GDP GDPC1 log x x
Industrial production IP INDPRO log x
Capacity util. (manuf.) CU CUMFNS log x
Housing starts (total) HOUS HOUST log x
Consumer price index (all items) CPI CPIAUCSL log x x
PCE, price index PCE PCECTPI log x
PCE, core price index PCEc PCEPILFE log x x
Real crude oil price OIL OILPRICEx log x
PPI (finished goods) PPI WPSFD49207 log x
1-year government bond yield T1y GS1 raw x
10-year government bond yield T10y GS10 raw x
BAA-10-year govt. spread BAA BAA10YM raw x
S&P500 stock price index SP500 S&P 500 log x
Real M2 money stock M2 M2REAL log x
Exchange rate (trade weighted) EER TWEXMMTH log x

Figure 1 shows an excerpt of the data for the variables in the medium VAR from
2006:Q1 until 2022:Q1. From March 2020 onwards, COVID-19 started to spread through
the U.S. and led to a widespread shutdown of the U.S. economy. This triggered an un-
paralleled decline in labor market indicators like employment but also in consumption
and output in the second quarter of 2020. With lockdown measures easing over the sum-
mer, the U.S. economy rebounded strongly during the third quarter but lost momentum
due to a second wave of infections in the fourth quarter. Surprisingly, CPI and PCE
core inflation did not particularly react to the economic turmoil at first. In 2021, the

16The quarterly frequency is adopted to provide additional evidence on model (in)stability.
17See June 2020 WP. Industrial production is replaced by GDP as it is a broader measure of activity.
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economy recovered steadily but inflation started to accelerate substantially which took
many economists by surprise. In fact, inflation turned out to be more persistent than
initially expected as supply could not catch up with demand due to the strong re-opening
of the economy and sustained supply bottlenecks in the global economy. This raises the
question whether standard econometric models are still useful in tracking and forecasting
these developments and what specifications work best.

Figure 1: Time-series plots for key U.S. macroeconomic variables

2010 2014 2018 2022
11.75

11.8

11.85

11.9

11.95

2010 2014 2018 2022

5

10

15

2010 2014 2018 2022
9.2

9.3

9.4

9.5

9.6

2010 2014 2018 2022
9.6

9.7

9.8

9.9

2010 2014 2018 2022

0

5

10

2010 2014 2018 2022
0

2

4

6

3.2 (Re)-calibration of the Minnesota prior

A careful calibration of the Minnesota prior – especially in turbulent times – is one im-
portant aspect for modelling and forecasting macroeconomic time series with a Bayesian
VAR. To study what the proposed calibration strategies entail for the Minnesota prior,
the variable-specific volatility estimates of various estimation strategies is compared first.
Then, the implications for the optimal degree of parameter shrinkage as well as the sen-
sitivity during the COVID-19 pandemic is assessed.

Table 4 (a) reports variable-specific volatility estimates for various calibration strate-
gies of the Minnesota prior at pre-pandemic times (2019:Q4) in absolute and relative
terms to RMSD(oReg). Three facts stand out. First, Panel (a) shows that the volatil-
ity estimates are generally larger but not proportionally larger when the first difference is
used as an input series due to different serial correlation patterns, see column RMSD(FD).
For instance, the volatility estimate of the unemployment rate is about 1.4 times higher
than the RMSD(oReg), while this factor is about 4.1 for the PCE core price index.

Second, volatility estimates are similar when the AR(p) residual of the mean or me-
dian regression is considered, see column RMSD(qReg). This is because both regression
techniques produce comparable coefficient estimates in the pre-pandemic sample.
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Table 4: Calibration of Minnesota priors before the pandemic

RMSD MAD Sn Qn RMSD MAD Sn Qn RMSD MAD Sn Qn

(oReg) (oReg) (oReg) (oReg) (FD) (FD) (FD) (FD) (qReg) (qReg) (qReg) (qReg)

EMP 0.19 0.92 0.83 0.90 2.65 1.40 1.48 1.51 1.03 0.73 0.73 0.85
UR 0.19 0.94 0.95 0.97 1.47 0.80 1.07 1.19 1.04 0.87 0.86 0.93
HW 0.45 0.92 0.97 0.98 1.59 0.88 1.04 1.15 1.01 0.94 0.91 0.97
HE 0.23 1.01 1.01 0.99 3.20 1.14 1.07 1.15 1.04 0.96 0.93 1.00
CON 0.39 0.83 0.88 0.91 2.09 1.05 1.10 1.14 1.01 0.85 0.85 0.91
GDP 0.51 0.81 0.88 0.94 1.64 0.87 0.91 0.96 1.02 0.85 0.84 0.90
IP 0.85 0.82 0.92 0.96 1.51 1.05 1.00 1.06 1.04 0.80 0.80 0.90
CU 0.91 0.90 0.98 0.96 1.44 1.01 1.05 1.10 1.05 0.81 0.84 0.89
HOUS 6.68 0.91 0.93 0.98 1.06 0.86 0.90 0.97 1.04 0.80 0.82 0.92
CPI 0.44 0.74 0.76 0.81 1.79 0.68 0.75 0.82 1.02 0.75 0.71 0.78
PCE 0.33 0.81 0.80 0.85 1.93 0.76 0.82 0.91 1.02 0.76 0.78 0.81
PCEc 0.13 0.96 1.01 1.01 4.08 1.27 1.33 1.35 1.03 0.97 0.95 0.99
OIL 14.06 0.86 0.85 0.92 1.05 0.79 0.88 0.91 1.02 0.78 0.81 0.86
PPI 0.98 0.81 0.82 0.86 1.19 0.69 0.79 0.84 1.01 0.83 0.80 0.85
T1y 0.35 0.57 0.64 0.72 1.23 0.88 0.84 0.96 1.01 0.57 0.63 0.72
T10y 0.34 1.05 1.03 1.05 1.08 1.11 1.13 1.11 1.01 1.02 0.99 1.06
BAA 0.31 0.68 0.65 0.71 1.09 0.69 0.70 0.74 1.03 0.64 0.62 0.69
SP500 5.36 0.83 0.83 0.87 1.15 0.80 0.83 0.88 1.02 0.74 0.83 0.85
M2 0.80 0.79 0.84 0.84 1.48 1.10 1.08 1.10 1.02 0.72 0.78 0.82
EER 2.81 1.00 1.02 1.04 1.07 0.93 1.00 1.02 1.01 1.05 1.00 1.02

(a) Variable-specific volatility estimates in absolute and relative terms to RMSD(oReg)

(I) Medium BVAR-N

κ∗
1,m 0.35 0.30 0.31 0.32 0.79 0.37 0.39 0.40 0.36 0.29 0.29 0.31

κ̂∗
1,m 0.35 0.30 0.31 0.32 0.80 0.35 0.39 0.41 0.36 0.29 0.29 0.31

SHIFT 1.00 0.87 0.89 0.92 2.29 1.01 1.11 1.16 1.03 0.84 0.82 0.89
STD 0.00 0.08 0.08 0.06 0.88 0.26 0.24 0.23 0.01 0.08 0.08 0.06

(II) Large BVAR-N

κ∗
1,m 0.29 0.24 0.25 0.26 0.45 0.27 0.28 0.30 0.30 0.24 0.24 0.25

κ̂∗
1,m 0.29 0.25 0.25 0.26 0.49 0.27 0.29 0.30 0.30 0.24 0.24 0.26

SHIFT 1.00 0.86 0.88 0.91 1.69 0.94 0.99 1.04 1.02 0.82 0.82 0.89
STD 0.00 0.11 0.11 0.09 0.77 0.19 0.19 0.18 0.01 0.12 0.10 0.09

(b) Optimal shrinkage and relation to different volatility estimation strategies

Notes: Panel (a) shows for each calibration strategy the variable-specific volatility esti-
mates in absolute and relative terms to RMSD(oReg) based on the pre-pandemic sample.
Panel (b) reports the optimal (κ∗

1,m) and volatility-adjusted (κ̂∗
1,m) shrinkage parameter

for both BVAR-N models. SHIFT and STD are the mean and standard deviation of
variable-specific volatility estimates relative to those of RMSD(oReg).

Third, the RMSD generally yields higher volatility estimates than the robust volatility
estimators. Overall, the robust estimators produce fairly similar estimates. Moreover, a
larger difference between RMSD and robust estimators suggests that the input series for
variable r exhibits some non-normal behavior. This difference is generally larger when
the first difference is used as the input series. Therefore, the Sn and Qn statistic should
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be preferred over the MAD in these cases as they are more efficient and may be more
informative due to their ability to account for skewness in the distribution.

What are the implications of these characteristics on κ∗
1,m, the optimal degree of shrink-

age for the VAR coefficients? Table 4 (b) shows that κ∗
1,m is generally larger for the RMSD

estimator and first-differenced input series as compared to analogous robust metrics in
both BVARs.18,19 This difference can be rationalized by noting from (5) that if the ratio
of variable-specific volatility estimates of method j and i is constant for all r variables
then the optimal κ1,j and κ1,i are proportional:

κ1,j = κ1,i

(
1

n

n∑
r=1

(
σ̂r,j

σ̂r,i

))
, (10)

where σ̂r,· is the variable r specific volatility estimate of method j and i respectively.
The second row in each subtable of Panel (b) shows that the volatility-adjusted hyper-

parameter κ̂∗
1,m is fairly close to its optimal value κ∗

1,m. This indicates that the bulk of the
variation can be explained by adjusting κ∗

1,m for an average level shift between volatility
estimates (SHIFT). This approximation becomes more accurate the more proportional the
variable-specific volatility estimates are across calibration methods. The degree of pro-
portionality may be measured by the standard deviation of relative volatility estimates
(STD). The STD statistic shows that residual based strategies yield more proportional
volatility estimates than the first-differenced one, and, hence a more comparable prior
calibration. Taken together, this is an encouraging empirical fact as established values for
κ∗
1,m in various empirical applications may be easily mapped by (10) into an alternative

calibration strategy without necessarily re-optimizing this tuning parameter.
Next, the influence of the pandemic observations on the Minnesota prior is discussed.

Table 5 (a) reports the ratio of volatility estimates from 2022:Q1 to 2019:Q4 and (b)
presents statistics summarizing the average change of the ratio of volatility (MEAN) and
dispersion of the ratio of volatility measured against an unchanged ratio (DEV).

The table shows that the prior based on the standard Minnesota calibration strategy
is substantially altered as some variable-specific volatility estimates are strongly inflated,
see column RMSD(oReg). Overall, the prior distribution becomes disproportionately
tighter for the VAR coefficients associated with indicators of real activity and labor market
conditions (except hourly earnings), while it is hardly affected for price and financial
variables (except real M2 stock). More specifically, the volatility estimate of employment
is over 6 times larger than its pre-pandemic value, for instance. This means that the
updated parameters set an extremely tight prior for the own and cross-equation dynamic
lags of employment, roughly 42(≈ 6.462) times tighter than its pre-pandemic value.

To further illustrate the impact of a prior re-calibration on the VAR dynamics, Figure 2
shows impulse response functions to a one standard deviation shock in employment of
the Gaussian BVAR estimated until pre-pandemic times but calibrating the standard
Minnesota prior with data until 2019:Q4, 2020:Q4 and 2022:Q1, respectively.20 The figure
shows that the revised prior distribution has a decisive impact on the posterior dynamic

18κ∗
1,m is identified as the marginal likelihood maximizing hyperparameter on the grid (0.01 : 0.01 : 10).

19κ∗
1,m is smaller for the larger BVAR model as higher dimensional VAR models require a more parsimo-

nious prior to reduce estimation uncertainty and overfitting, see Giannone, Lenza, and Primiceri (2015).
20The shock has no structural interpretation and is just used to study dynamic propagation.
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Table 5: Re-calibration of Minnesota priors during the pandemic

RMSD MAD Sn Qn RMSD MAD Sn Qn RMSD MAD Sn Qn

(oReg) (oReg) (oReg) (oReg) (FD) (FD) (FD) (FD) (qReg) (qReg) (qReg) (qReg)

EMP 6.46 1.38 1.80 1.74 2.54 1.05 1.10 1.16 7.71 0.96 1.05 1.02
UR 4.79 1.43 1.70 1.60 3.40 1.17 1.00 1.00 5.39 0.99 1.10 1.08
HW 3.46 1.23 1.22 1.29 2.21 1.08 1.11 1.12 3.90 0.98 1.08 1.05
HE 1.06 1.04 1.07 1.08 1.04 1.04 1.07 1.06 1.04 1.04 1.10 1.05
CON 3.22 1.32 1.35 1.38 1.77 1.00 1.04 1.05 3.50 0.97 1.05 1.11
GDP 2.31 1.08 1.09 1.12 1.59 1.07 1.10 1.10 2.41 1.00 1.09 1.08
IP 2.17 1.13 1.07 1.13 1.50 0.98 1.01 1.04 2.20 1.06 1.08 1.03
CU 2.19 1.06 0.99 1.11 1.57 1.09 1.08 1.07 2.21 1.06 1.00 1.06
HOUS 1.13 0.93 0.96 0.99 1.10 0.99 0.98 1.00 1.12 0.96 1.00 1.01
CPI 1.13 0.96 1.05 1.07 1.07 1.09 1.12 1.09 1.12 1.01 1.14 1.12
PCE 1.10 1.06 1.03 1.06 1.07 1.08 1.13 1.10 1.09 1.12 1.11 1.10
PCEc 1.33 1.20 1.09 1.13 1.07 1.05 1.08 1.09 1.30 1.19 1.14 1.14
OIL 1.08 1.01 1.09 1.05 1.07 1.07 1.01 1.04 1.09 1.07 1.04 1.04
PPI 1.12 1.02 1.10 1.09 1.15 1.19 1.16 1.14 1.11 1.10 1.07 1.11
T1y 1.00 1.02 1.03 1.00 1.00 0.94 0.98 0.98 1.00 1.06 1.07 0.99
T10y 1.00 0.99 1.02 1.00 1.00 1.01 1.04 1.00 1.00 1.00 1.04 0.99
BAA 1.01 0.97 1.00 1.01 1.01 1.03 1.03 1.03 1.01 1.00 1.05 1.01
SP500 1.01 0.97 0.98 1.01 1.01 1.03 1.03 1.03 1.01 1.05 0.99 1.01
M2 1.62 1.12 1.11 1.11 1.42 1.07 1.06 1.06 1.63 1.06 1.03 1.08
EER 0.98 0.95 0.96 0.96 0.98 0.98 0.98 0.96 0.98 0.92 0.97 0.97

(a) Ratio of volatility: 2022:Q1 to 2019:Q4

(I) Medium BVAR-N

MEAN 3.20 1.23 1.35 1.34 1.91 1.07 1.07 1.08 3.57 1.02 1.10 1.09
DEV 2.91 0.28 0.46 0.43 1.23 0.09 0.08 0.09 3.48 0.08 0.10 0.10

(II) Large BVAR-N

MEAN 1.96 1.09 1.14 1.15 1.43 1.05 1.06 1.06 2.09 1.03 1.06 1.05
DEV 1.73 0.17 0.26 0.25 0.75 0.08 0.08 0.08 2.05 0.07 0.08 0.07

(b) Descriptive statistics

Notes: Panel (a) presents the ratio of variable-specific volatility estimates of 2022:Q1 relative
to 2019:Q4. Panel (b) reports descriptive statistics of the ratio of volatilities: MEAN is the
average and DEV is the root of mean squared deviation from one.

propagation of the employment shock in both the medium and large VAR.21 It a-priori
mutes the internal propagation of the shock by shrinking cross-dynamic relations to zero
and thereby breaks historical links between variables such as employment and prices.
Thus, the COVID-19 shock not only has a decisive impact on the estimation stage of a
standard Bayesian VAR but also on the prior calibration stage, which is an important
ingredient for modelling macroeconomic transmission channels during the pandemic.

In contrast, volatility estimates based on robust scale estimators (MAD, Sn, Qn)

21Re-optimizing κ∗
1,m or accounting for an average level shift in volatility estimates is insufficient to

recover a comparable pre-pandemic prior distribution as the change in variable-specific volatility estimates
is too heterogeneous.
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Figure 2: Impact of prior re-calibration on VAR dynamics
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Notes: Impulse response functions to a one standard deviation shock in employment of
the BVAR-N estimated until 2019:Q4 with RMSD(oReg) Minnesota prior calibrated on
samples until 2019:Q4, 2020:Q4 and 2022:Q1, respectively. The thick lines are posterior
median estimates and the colored area depicts the 16% to 84% credible interval.

coupled with robust input series (first difference or median AR(p) residual) are hardly
affected by the pandemic observations, see Table 5 (a) and (b). Thus, the Minnesota
prior based on a two-dimensional robustified calibration strategy remains comparable
before and throughout the pandemic and also does not a-priori mute internal propagation
of shocks in a VAR when the prior is revised during the pandemic.

3.3 Model and prior comparison

To discriminate between these Bayesian VARmodels and prior specifications, the marginal
likelihood is used as a formal Bayesian model selection criterion following Chan (2020).22

The marginal likelihood under model Mk,m is defined as

p(y|Mk,m) =

∫
p(y|θk,Mk,m)p(θk|Mk,m)dθk,

22The marginal likelihood does not always favor the most general model as it trades off model fit
against complexity. Intuitively, the higher the dimension of the parameter space, the more spread the
prior is with respect to the likelihood. This is known as Occam’s razor.
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where p(y|θk,Mk,m) is the likelihood function, p(θk|Mk,m) is the prior distribution, θk is
a model-specific parameter vector and m is a prior calibration. For the BVAR-N , the
analytical formula is used to compute the marginal likelihood, while for the other BVAR
models no closed form exists and Chib’s method (Chib, 1995) is used instead.

Specifically, if the marginal likelihood under model Mi,s is larger than under Mj,q,
then the data is more likely under model Mi,s as compared to Mj,q. Given all models are
a-priori equally likely, the weight of evidence between two models can be measured by the
Bayes factor defined as the ratio of marginal likelihoods, see Chan (2017). Table 6 presents
log Bayes factors against the BVAR-N with weakly informative prior before and during
the pandemic for the medium VAR, for the large VAR see Table A.1 in Appendix A.23

Table 6: Bayes factor in medium BVAR

Prior BVAR-N BVAR-t BVAR-N -CSV BVAR-t-CSV

Weak • 12.69 (0.06) 41.17 (0.10) 43.38 (0.10)
RMSD (oReg) 75.08 − 85.71 (0.04) 117.68 (0.08) 119.50 (0.10)
MAD (oReg) 72.95 − 84.36 (0.05) 116.39 (0.04) 118.45 (0.07)
Sn (oReg) 74.44 − 85.73 (0.04) 117.46 (0.06) 119.48 (0.08)
Qn (oReg) 74.51 − 85.69 (0.03) 117.94 (0.05) 119.76 (0.10)
RMSD (FD) 64.36 − 76.04 (0.05) 106.49 (0.06) 108.48 (0.11)
MAD (FD) 66.61 − 78.70 (0.04) 106.99 (0.05) 108.98 (0.12)
Sn (FD) 67.42 − 79.55 (0.04) 109.78 (0.07) 111.79 (0.10)
Qn (FD) 68.21 − 80.23 (0.05) 111.52 (0.09) 113.77 (0.10)
RMSD (qReg) 74.91 − 85.61 (0.04) 117.48 (0.06) 119.51 (0.14)
MAD (qReg) 75.30 − 86.37 (0.05) 118.61 (0.07) 120.48 (0.10)
Sn (qReg) 74.96 − 86.17 (0.05) 117.60 (0.06) 119.62 (0.08)
Qn (qReg) 74.75 − 85.92 (0.05) 117.99 (0.07) 119.81 (0.13)

(a) Estimation sample until 2019:Q4

Weak • 216.54 (0.21) 237.84 (0.24) 244.32 (0.24)
RMSD (oReg) −20.29 − 160.71 (0.05) 275.63 (0.10) 285.00 (0.10)
MAD (oReg) 65.68 − 287.09 (0.13) 316.52 (0.16) 325.02 (0.16)
Sn (oReg) 64.53 − 283.20 (0.11) 316.23 (0.17) 325.14 (0.17)
Qn (oReg) 65.58 − 283.89 (0.11) 317.88 (0.10) 326.22 (0.10)
RMSD (FD) 45.17 − 252.61 (0.09) 306.40 (0.20) 315.04 (0.20)
MAD (FD) 64.57 − 289.24 (0.13) 308.96 (0.16) 317.57 (0.16)
Sn (FD) 65.59 − 289.18 (0.10) 310.97 (0.21) 318.93 (0.21)
Qn (FD) 66.13 − 288.92 (0.17) 311.44 (0.20) 320.45 (0.20)
RMSD (qReg) −40.31 − 135.77 (0.08) 263.50 (0.10) 272.42 (0.10)
MAD (qReg) 66.07 − 294.17 (0.13) 314.50 (0.19) 322.72 (0.19)
Sn (qReg) 67.85 − 294.78 (0.12) 317.20 (0.16) 325.52 (0.16)
Qn (qReg) 68.42 − 294.78 (0.16) 317.43 (0.16) 326.27 (0.16)

(b) Estimation sample until 2022:Q1

Notes: Log Bayes factors of various BVARs and prior combinations against BVAR-N
with weakly informative prior. Bold figures indicate maximum Bayes factor for each prior
specification. Brackets report the numerical standard error.

23Complementary to these tables, Figure A.1 in Appendix A shows the log marginal likelihood when
the models are estimated over an expanding window. Notice the marginal likelihood cannot be directly
compared across different points in time as information sets differ due to alternative sample sizes.
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Before the pandemic, all Minnesota priors are decisively favored over the näıve bench-
mark prior, see Panel (a). For instance, the average log Bayes factor is 72 in the medium
BVAR which means the BVARs with Minnesota prior are 1.85 × 1031 more likely than
those with a näıve benchmark prior. This overwhelming support for shrinking more dis-
tant VAR coefficients to zero is not surprising as more distant lags are relatively less
informative for current dynamics. Moreover, the sample fit of the standard RMSD(oReg)
and robustified calibration strategies is broadly similar. The figures based on AR(p)
residuals are almost identical across volatility estimators, while those based on the first
difference are somewhat smaller. Thus, two-dimensional robustified calibration strategies
do not sacrifice in-sample fit for robustness.

Across all prior specifications, the BVAR-t-CSV is the best performing model albeit
the Bayes factor is just immaterially larger than that of the BVAR-N -CSV model. Both
models have, however, a substantial margin over the BVAR-t model, while the latter
clearly outperforms the standard Gaussian BVAR-N model. Thus, both error extensions
are favored over standard Gaussian errors by the data. But on a single ingredient basis,
stochastic volatility is a more important feature than a heavy-tailed error distribution.
This is line with the findings of Cúrdia et al. (2014), Chiu et al. (2017) and Chan (2020)
who also look at the U.S. but consider a different data set and an earlier period.

How does the pandemic affect the model fit across these BVARs? Panel (b) shows
that while the overall ranking across BVARs remains unchanged, the relative distance
between Bayes factor with respect to the best performing model changes markedly before
and during the pandemic. For the näıve benchmark prior, the Bayes factor falls by
about 200 and 290 log points in the medium and large BVAR-N , respectively.24 This
indicates that the classical Bayesian VAR is poorly equipped to deal with these extreme
observations. Moreover, the Bayes factor increases by 2.91 log points for BVAR-t, while
it falls by 4.28 for the BVAR-N -CSV in the medium VAR. This relative change is even
more pronounced in the large VAR – with an increase of 9.9 and a decrease of 13.82
log points, respectively. This suggests that the heavy-tailed error extension might be
better equipped to capture the extreme variation during the pandemic than the common
stochastic volatility specification.

Turning to prior sensitivity, the Minnesota calibrations based on the AR(p) residual
and RMSD volatility estimator yield a substantially lower in-sample fit as compared to
the robust calibration strategies. For instance, the Bayes factor between MAD(qReg) and
RMSD(oReg) of the BVAR-t-CSV is 37.72 in the medium and 115.43 in the large model,
suggesting that the robust prior calibration is decisively preferred. In addition, the näıve
benchmark prior in the medium BVAR with Gaussian and t-distributed errors is now
decisively favored over these non-robust Minnesota calibrations. Furthermore, Bayes fac-
tors of robust calibration strategies are very similar across specifications. Thus, the more
general Sn or Qn statistic of Rousseeuw and Croux (1993) do not provide a substantial
improvement over the scaled MAD in terms of model fit.

To complement this analysis and evaluate the impact of prior revisions on model fit in
and over time, Figure 3 shows Bayes factors of the BVARs estimated with re-calibrated
prior against a 2019:Q4 fixed prior obtained over an expanding estimation window from
2019:Q4 to 2022:Q1. The figure shows that re-calibrating the Minnesota prior with the

24The Bayes factor is computed as ∆BFt,t+h,t-CSV−k,m = BFt,t-CSV−k,m − BFt+h,t-CSV−k,m where
BF·,t-CSV−k = BF·,t-CSV −BF·,k, k = {N , t,N -CSV}, t =2019:Q4 and t+ h =2022:Q1 and prior m.
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standard calibration strategy (red thick colored line) has a decisive negative effect on the
overall in-sample fit starting in 2020:Q2. In contrast, a fully robust calibration hardly
affects the Bayes factor and thus yields about the same model fit as fixing the prior.25

Figure 3: The costs of re-calibrating the prior distribution
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(a) Medium BVAR
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(b) Large BVAR

Notes: Log Bayes factor between BVARs with re-calibrated and 2019:Q4 fixed prior distri-
bution estimated over an expanding sample from 2019:Q4 to 2022:Q1.

In the remainder of the paper, empirical results are presented for the MAD(qReg)
Minnesota prior. This calibration is chosen as the preferred fully robust alternative to the
RMSD(oReg) for three reasons. First, it is resilient to extreme observations – not only
those related to the pandemic. Second, it yields asymptotically the same point estimates
as the RMSD(oReg) when the data is normally distributed and not contaminated by out-
liers. Third, it is simpler to implement than similar strategies with the Sn and Qn statistic.

3.4 Macroeconomic tail risk and volatility

Model diagnostics strongly reject Gaussianity, but how do the pandemic observations af-
fect macroeconomic tail risk and volatility? This section discusses the implications and
adds the recently proposed explicit common volatility BVAR model of Lenza and Prim-

25In the large VAR, the Bayes factor of two-dimensional robustified calibration strategies exhibits some
fluctuations due to a higher estimation error for the marginal likelihood. The estimation error in the
medium VAR is negligible.
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iceri (2022) as another benchmark (denoted as BVAR-LP).26

Figure 4: Macroeconomic tail risk and volatility during the pandemic
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(a) Posterior distribution of the degree of freedom parameter
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(b) Posterior estimates of common stochastic volatility (2022:Q1)

19Q1 20Q1 21Q1 22Q1
0

10

20

30

40

(c) Posterior estimates of common explicit COVID-19 volatility (2022:Q1)
0 10 20 30 40 50 60 70 80 90 100

-2

0

2

Notes: BVARs with MAD(qReg) Minnesota prior estimated until 2019:Q4 and 2022:Q1,
respectively. The thick line is the posterior median and the dashed lines are the 16% to
84% credible interval.

Figure 4 shows how macroeconomic tail risk and volatility are affected by the pan-
demic observations.27 Recall, the lower the degree of freedom parameter ν, the stronger
the t distribution departs from Gaussianity and the heavier the tails. Panel (a) shows that
the posterior of ν peaks around 10 before the pandemic in all t error models, indicating
already considerable tail risk.28 Once the pandemic observations are included, the pos-
terior distribution becomes much tighter and peaks around 3.5 in the medium (red area)

26The BVAR-LP is estimated with the MAD(qReg) Minnesota prior and κ1,m is not re-optimized using
the Giannone et al. (2015) method for comparability. For estimation details and results, see Appendix B.

27Volatility estimates prior to the pandemic are shown in Figure A.2 in Appendix A.
28In the BVAR-t-CSV, the posterior distribution of ν is more spread as it can explain large shocks

either by changes in stochastic volatility or by allowing for heavier tails.
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and 5 in the large model (blue area), respectively. For the BVAR-t, this is not surprising
as this is the model’s main channel to accommodate more extreme innovations. However,
the much sharper identification in the BVAR-t-CSV means that the tail risk increased
strongly besides changes in macroeconomic volatility.

The nature of volatility during the pandemic hinges on the error structure and dimen-
sion of the VAR models, see Panel (b) and (c). Both the BVAR-N -CSV and BVAR-LP
interpret the pandemic shock as an enormous increase in macroeconomic volatility in
2020:Q2, about 35 standard deviations in the BVAR-LP and half this size in the BVAR-
N -CSV. After the initial burst, the volatility profiles start to diverge. Volatility remains
high for an extended period in the stochastic volatility specification, while in the BVAR-
LP the profiles differ across VAR dimensions. In the medium model, volatility decays
slowly while in the large model volatility jumps back immediately to a more moderate
level.29 Thus, the error structure and cross-sectional information plays an important role
for identifying the nature of volatility with these VARs featuring no tail risk.

In contrast, the BVAR-t-CSV – which allows for both tail risk and stochastic volatility
– assigns a completely different interpretation to the COVID-19 shock. The common
stochastic volatility series is almost entirely flat during the pandemic period. This means
that the model interprets the pandemic as a rare event and not as a (persistent) increase
in macroeconomic volatility.30 Since fat tails are an important feature of the data before
and during the pandemic, ignoring it may lead to misleading inference about the nature
of volatility and other objects of interest. This property was also previously pointed out
by Jacquier et al. (2004), Cúrdia et al. (2014), Chiu et al. (2017) and Chan (2020) for
different data sets and sample periods.

3.5 Model (in)stability and forecasting

Having discussed the implications of the COVID-19 shock for tail risk and volatility, this
section focuses on model (in)stability and forecast properties. Figure 5 shows scatter
plots of the posterior mean VAR coefficients and residual correlation matrix obtained in
2019:Q4 against 2022:Q1. Panel (a) shows that the VAR coefficients in the BVAR-N
are substantially revised with intercepts and coefficients measuring (cross)-dynamics of
employment, the unemployment rate, consumption and output being particularly affected.
For instance, the first-order autoregressive coefficient of employment changes from 1.28
in 2019:Q4 to −0.12 in 2022:Q1. In contrast, the VAR parameters in the more flexible
medium BVARs are hardly influenced by the extreme observations. This robustness also
extends to the large BVARs which however exhibit some revision in the VAR parameters,
but nothing extraordinary as compared to the BVAR-N .

The pandemic observations induce a drastic and long-lasting change in the residual
correlation structure in both BVAR-N models, see Panel (b). For instance, the average
correlation between the residual of the unemployment rate and those of employment, con-
sumption and output changes from −0.37 in 2019:Q4 to −0.91 in 2022:Q1 in the medium
BVAR. This abrupt revision is solely driven by the very synchronized co-movement of

29The data informs the large BVAR-LP quickly about the nature of volatility while the estimate of the
medium model is sensitive to incoming observations, see Figure B.2 Appendix B.

30Figure A.3 in Appendix A shows the latent volatility of the t error models, which characterize the
pandemic as a 28 (BVAR-t) and 21 (BVAR-t-CSV) standard deviation shock, respectively.
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Figure 5: Change in common VAR parameters
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(a) Posterior mean estimates of VAR coefficients
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Notes: Common VAR parameters in 2019:Q4 (x-axis) against 2022:Q1 (y-axis) for various
BVARs with MAD(qReg) Minnesota prior.

these variables in response to the COVID-19 shock. The residual correlations in the
BVARs with a more flexible error structure, however, are only mildly influenced by the
pandemic observations as they downweigh the information from these extreme realiza-
tions. Therefore, inference based on the traditional Gaussian BVAR may be overshad-
owed by the extreme size of the COVID-19 shock for an extended period of time as its
impact on the residual covariance matrix cannot wash out easily at quarterly frequency.

Turning to forecast properties, parameter revisions and prior re-calibrations also have
a decisive impact on unconditional projections. Focusing first on the impact of parameter
revisions, Figure 6 shows unconditional projections starting in 2021:Q1 for employment,
GDP and CPI inflation based on BVARs with MAD(qReg) Minnesota prior and estimated
over different samples, stopping in 2019:Q4, 2020:Q4 and 2022:Q1.31 This exercise reveals
several important insights into how well these models are able to digest the COVID-19
shock and whether they can put this information to good use in hindsight.

First, parameter instability may cause serious problems for forecasting with Gaussian
VARs. Looking at the predictions for employment, for instance, the updated parameters
in 2020:Q4 trigger oscillations in the projections of the medium-sized model (blue dotted
line).32 Though these oscillating dynamics eventually wash out as more information be-
come available (see predictions with 2022:Q1 parameters, green dashed line), the extreme

31For the unemployment rate, consumption and PCE core inflation, see Figure ?? in Appendix A.
32The short-run dynamics in the large model are less affected. This might be explained by the fact

that it features a larger cross-sectional information set and a tighter optimal shrinkage parameter.

21



Figure 6: Impact of re-estimated parameters on unconditional forecasts starting 2021:Q1
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the 16% to 84% credible interval.

observations also alter long-run forecasts of the variables. For instance, gross domestic
product is projected to stagnate in the long run, while all of the more flexible BVARs
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suggest a continuation of the pre-pandemic growth pace. This complements the findings
in Lenza and Primiceri (2022), Carriero et al. (2022), Schorfheide and Song (2021) and
Bobeica and Hartwig (2023) by the fact that the COVID-19 observations may not only
distort the short-run dynamics but also have a persistent impact on long-term predictions.

Second, the more flexible BVARs are robust to the COVID-19 shock. They produce
stable forecasts in the pandemic period and are able to track the transmission of the shock
through the U.S. economy by orderly revising the VAR structure. At first, the projections
in both medium and large VARs are hardly affected by the incorporation of four addi-
tional quarters, see projections with 2019:Q4 parameters (red line) vs 2020:Q4 parameters
(blue dotted line). However, as time passes, the VAR better understands the nature of
the COVID-19 shock and unconditional projections are more visibly revised (green dashed
line). In fact, the large VAR is able to closely track the actual developments of all six core
U.S. macroeconomic variables whereas the medium model misses some key patterns (e.g.
underestimation of inflationary pressure). Thus, this analysis suggests that the COVID-19
shock might have altered macroeconomics dynamics and that extreme observation-robust
BVARs are well equipped to track these changes if they feature a sufficiently large cross-
sectional information set. Furthermore, traditional Gaussian VARs cannot easily cope
with such extreme observations and induce non-sensible parameter revisions instead.

Third, the COVID-19 shock may substantially inflate density forecasts intervals when
the VAR only allows for common time-varying volatility and lacks a sufficiently large
cross-sectional dimension. Specifically, forecasts based on the medium BVAR-N -CSV
and BVAR-LP may exhibit extremely wide forecast intervals whereas the predictive in-
tervals of the large models are comparable to those featuring t errors. This complements
the evidence in Carriero et al. (2022) by the fact that though predictive intervals based
on variable-specific volatility structure may become excessively wide after the pandemic
shock, the same is not necessarily true for a common volatility structure.

The re-calibration of the standard Minnesota prior also affects forecast properties and
reveals a trade-off for the prediction of real and nominal variables.33 To illustrate this, Fig-
ure 7 shows unconditional projections stating in 2021:Q1 for employment, GDP and CPI
inflation based on BVARs with the fully robust MAD(qReg) and standard RMSD(oReg)
Minnesota prior calibration estimated until 2020:Q4.34 As discussed in Section 3.2, the
RMSD(oReg) calibration sets a very tight prior on the VAR coefficients for most real
variables. For forecasting purposes, this re-calibration may be beneficial when predicting
real variables at the beginning of the pandemic as the dampened internal propagation
of shocks results in less overshooting predictions. However, the same channel prevents
the large VAR from tracking the mounting inflationary pressure in 2021, making it a less
attractive choice for understanding and predicting current inflation dynamics.

The previously discussed forecast properties are supported by a very short forecast
evaluation from 2020:Q1 until 2022:Q1, which should be viewed as suggestive evidence.
Table 7 shows root mean squared forecast errors (RMSFE) of a pseudo-out-of-sample fore-
cast evaluation of unconditional forecasts for the one-quarter-ahead and one-year-ahead
horizon.35 This exercise underlines the importance of using robust BVARs and carefully

33The VAR higher-order and cross-dynamic lags are strongly shrunk to zero for many coefficients due
to the tighter prior for most real variables, see Figure A.5 in Appendix A.

34For unemployment rate, consumption and PCE core inflation, see Figure A.6 in Appendix A.
35This exercise abstracts from real-time revisions and evaluates the FRED-QD vintage in June 2022.
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Figure 7: Impact of re-calibrated priors on unconditional forecasts starting 2021:Q1
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Notes: BVARs with MAD(qReg) and RMSD(oReg) prior, respectively, estimated until
2020:Q4. The thick line is the posterior median and the colored area depicts the 16% to
84% credible interval.

calibrating the prior distribution during the pandemic. It shows that the robust BVARs
coupled with a large cross-sectional information set is the group of superior forecast-
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Table 7: Pseudo-out-of-sample forecast evaluation

BVAR-N BVAR-t BVAR-N -CSV BVAR-t-CSV BVAR-LP RW
M L M L M L M L M L

(I) BVARs with MAD(qReg) Minnesota prior

Employment 8.78 6.36 5.18 4.25 5.21 4.24 5.28 4.27 5.32 4.16 4.34
Unemployment rate 7.30 4.65 3.96 3.12 3.88 3.10 4.01 3.14 4.14 3.09 3.45
Consumption 8.52 6.00 4.74 4.14 4.51 4.12 4.71 4.17 5.16 3.75 4.41
GDP 9.36 6.15 5.67 4.34 5.68 4.44 5.97 4.51 6.43 4.07 3.87
CPI inflation 1.18 1.21 1.17 0.94 1.24 1.05 1.20 0.95 1.19 1.25 1.30
PCE core inflation 0.76 0.90 0.83 0.74 0.84 0.79 0.95 0.79 0.76 0.70 0.74

(II) BVARs with RMSD(oReg) Minnesota prior

Employment 6.05 5.95 4.41 4.00 4.82 3.99 4.88 4.00 4.39 4.00 4.34
Unemployment rate 4.96 4.04 3.43 3.12 3.64 3.10 3.76 3.08 3.42 3.17 3.45
Consumption 6.18 5.98 4.35 4.01 4.37 3.99 4.57 4.02 4.31 3.79 4.41
GDP 6.37 5.67 4.46 3.76 4.77 3.74 4.98 3.85 4.57 3.45 3.87
CPI inflation 1.01 1.18 0.94 0.95 1.07 0.96 1.06 0.92 0.90 1.11 1.30
PCE core inflation 0.55 0.60 0.53 0.51 0.65 0.53 0.68 0.54 0.52 0.49 0.74

(a) One-quarter-ahead horizon

(I) BVARs with MAD(qReg) Minnesota prior

Employment 30.23 6.06 9.86 4.96 9.77 4.83 10.31 5.03 11.12 5.73 5.40
Unemployment rate 35.28 2.64 6.58 2.76 6.17 2.58 6.86 2.77 7.80 3.73 3.91
Consumption 28.80 2.96 8.45 3.34 7.74 3.50 8.60 3.58 9.63 3.61 7.46
GDP 30.45 4.68 8.97 4.68 8.69 4.59 9.37 4.88 10.87 6.78 5.64
CPI inflation 6.12 1.96 3.74 2.12 3.91 1.75 3.81 1.77 2.98 1.56 4.00
PCE core inflation 2.77 1.06 2.06 1.48 2.26 1.44 2.08 1.39 1.91 0.94 2.28

(II) BVARs with RMSD(oReg) Minnesota prior

Employment 18.77 15.43 5.78 4.27 7.72 4.15 8.37 4.29 5.84 4.08 5.40
Unemployment rate 17.27 7.19 3.72 2.53 4.90 2.47 5.56 2.58 3.75 2.95 3.91
Consumption 18.58 12.59 6.58 3.15 6.92 3.02 7.54 3.16 6.70 2.67 7.46
GDP 19.26 11.92 6.09 3.48 6.96 3.46 7.67 3.81 6.13 3.44 5.64
CPI inflation 3.92 3.25 3.41 2.88 3.45 2.54 3.47 2.50 2.92 2.35 4.00
PCE core inflation 2.09 1.68 2.01 1.58 2.00 1.55 1.90 1.48 1.89 1.41 2.28

(b) One-year-ahead horizon

Notes: RMSFE for unconditional forecasts based on medium (M) and large (L) BVARs with
MAD(qReg) and RMSD(oReg) Minnesota prior estimated recursively from 2019:Q4 until
2021:Q4. RW denotes prediction from a random walk. Bold figures indicate the minimum
RMSFE for each variable.

ing models. However, there is no clear superior forecasting approach among the robust
BVARs as the predictive accuracy is broadly similar. Rather, the optimal BVAR depends
on the variable and forecast horizon of interest as well as the chosen prior calibration.
Nevertheless, the large BVAR-LP yields the most accurate forecast overall.

Though, this forecast evaluation is somewhat inconclusive about the best error exten-
sion and prior calibration for a BVAR during the pandemic period, it can still provide
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some valuable lessons for forecasters. Going forward, the robust BVARs with robust prior
calibration may have an edge over the standard method in forecasting both real and nom-
inal variables at the current juncture. This is because the VAR forecasting information
set does no longer include the very large shocks since the start of the pandemic, which
led to an overshooting forecast with the robust prior. Therefore, it may become more
important to exploit cross-sectional information rather than a-priori muting transmission
of real variables in order to obtain accurate forecasts in the future.

4 Conclusion

Estimation of many standard macroeconomic models has become a challenge with the
outbreak of the COVID-19 pandemic and calls for an appropriate treatment of these ex-
treme observations. For a Bayesian VAR, this paper documents that not only is choosing
an appropriate generalized error structure important, but also a careful calibration of
the Minnesota prior matters for inference and forecasting purposes during the pandemic.
Though model diagnostics prefer a combined error structure (heavy tails and time-varying
volatility) and interpret the COVID-19 shock as a rare event, the choice among outlier-
robust error structures becomes less important in forecasting when a large cross-section of
information is used. Overall, the robust BVARs have a similar predictive accuracy during
the pandemic, with the BVAR of Lenza and Primiceri (2022) being particularly promising.

Besides the error structure, this paper shows that the standard calibration method for
the Minnesota prior is another important source of changing macroeconomic transmission
channels during the pandemic as it mutes the propagation of real variables. This prior re-
calibration may be beneficial for predicting real variables at the beginning of the pandemic,
yet it is less attractive when inflation forecasts are of interest. In fact, this strongly revised
prior prevents the large VAR from capturing the mounting inflationary pressure in 2021.
To provide a flexible and outlier-robust calibration, this paper proposes the MAD(qReg)
Minnesota prior as an alternative.

The off-the-shelf robust BVARs of Chan (2020) can be readily used during the pan-
demic and remain largely competitive with the newly developed BVAR of Lenza and
Primiceri (2022). However, the short forecast evaluation suggests that a more explicit
treatment of the pandemic observations has some merits. Thus, extending the general-
ized BVAR with a more flexible tail and volatility distribution might be a fruitful area
of research. Going forward, the abruptly revised prior may become less attractive for
forecasting both real and nominal variables at the current juncture as exploiting cross-
sectional information may become more important than muting the internal propagation
mechanism in a VAR. Furthermore, the proposed outlier-robust calibration method is not
limited to the Minnesota prior, but may also be used for calibrating other scale-dependent
prior distributions such as the sum of coefficient (co-integration) and sum of initial con-
ditions prior (Sims and Zha, 1998), steady-state VAR prior (Villani, 2009) and long-run
relations prior (Giannone et al., 2019).
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A Supplementary Figures and Tables

A.1 Model and prior comparison

Table A.1 presents log Bayes factors against the BVAR-N with weakly informative prior
before and during the pandemic for the large BVAR. Qualitatively, the results between
the medium and large BVAR are similar except that the large BVAR with weakly infor-
mative prior always remains the worst performing model and that the prior revision has
a more adverse impact on the model fit in the large BVAR model.

Table A.1: Bayes factor in large BVAR

Prior BVAR-N BVAR-t BVAR-N -CSV BVAR-t-CSV

Weak • 198.29 (2.25) 205.36 (3.07) 216.67 (3.54)
RMSD (oReg) 1178.44 − 1217.21 (1.30) 1267.03 (2.29) 1269.17 (2.19)
MAD (oReg) 1175.93 − 1216.40 (1.02) 1264.39 (2.24) 1270.89 (2.02)
Sn (oReg) 1172.42 − 1214.99 (1.66) 1263.23 (2.50) 1270.24 (2.08)
Qn (oReg) 1176.11 − 1214.31 (1.68) 1265.80 (1.67) 1272.38 (2.36)
RMSD (FD) 1146.84 − 1189.97 (1.48) 1236.19 (1.89) 1241.08 (2.32)
MAD (FD) 1161.47 − 1203.05 (1.25) 1249.15 (2.97) 1261.98 (1.71)
Sn (FD) 1167.26 − 1205.36 (1.32) 1261.16 (1.12) 1264.26 (1.73)
Qn (FD) 1169.25 − 1212.99 (1.36) 1261.56 (2.20) 1265.09 (2.93)
RMSD (qReg) 1177.79 − 1217.34 (1.10) 1265.58 (2.02) 1274.09 (2.36)
MAD (qReg) 1177.47 − 1220.36 (1.29) 1265.08 (2.12) 1272.01 (2.25)
Sn (qReg) 1177.14 − 1218.57 (1.16) 1267.98 (1.99) 1271.38 (2.28)
Qn (qReg) 1177.71 − 1217.59 (1.52) 1265.42 (3.02) 1272.45 (2.62)

(a) Estimation sample until 2019:Q4

Weak • 497.97 (3.91) 481.32 (4.34) 506.45 (4.34)
RMSD (oReg) 1109.22 − 1367.84 (1.66) 1435.18 (1.99) 1460.28 (1.99)
MAD (oReg) 1245.97 − 1545.50 (2.30) 1569.85 (2.56) 1589.37 (2.56)
Sn (oReg) 1246.63 − 1542.55 (1.92) 1569.78 (2.46) 1594.58 (2.46)
Qn (oReg) 1246.08 − 1545.79 (1.35) 1568.20 (2.13) 1594.31 (2.13)
RMSD (FD) 1154.33 − 1437.05 (1.54) 1476.21 (1.61) 1502.49 (1.61)
MAD (FD) 1234.44 − 1537.83 (1.65) 1556.48 (1.78) 1578.09 (1.78)
Sn (FD) 1240.72 − 1542.11 (1.42) 1557.76 (3.02) 1583.86 (3.02)
Qn (FD) 1242.10 − 1542.45 (1.86) 1562.00 (2.43) 1589.79 (2.43)
RMSD (qReg) 1090.49 − 1343.07 (2.05) 1413.99 (2.11) 1436.77 (2.11)
MAD (qReg) 1233.41 − 1539.69 (1.17) 1551.06 (3.05) 1575.71 (3.05)
Sn (qReg) 1240.31 − 1541.77 (1.64) 1560.06 (2.72) 1583.07 (2.72)
Qn (qReg) 1240.56 − 1542.71 (1.47) 1564.44 (1.98) 1585.98 (1.98)

(b) Estimation sample until 2022:Q1

Notes: Log Bayes factors of various BVARs and prior combinations against BVAR-N
with weakly informative prior. Bold figures indicate maximum Bayes factor for each prior
specification. Brackets report the numerical standard error.

Complementary to the tables reporting Bayes factors, Figure A.1 shows the log marginal
likelihood when the models are estimated over an expanding window. The figure docu-
ments that the prior revision induced by extreme observation may worsen overall model
performance, especially so in the large BVAR model.
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Figure A.1: Marginal likelihood with re-calibrated prior distribution
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Notes: Log marginal likelihood of BVARs with re-calibrated prior distribution estimated
over an expanding sample from 2019:Q4 to 2022:Q1.
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A.2 Macroeconomic tail risk and volatility

Figure A.2: Macroeconomic volatility before the pandemic
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(a) Posterior estimates of common stochastic volatility
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Notes: BVARs with MAD(qReg) Minnesota prior estimated until 2019:Q4. The thick line
is the posterior median and the dashed lines are the 16% to 84% credible interval.

Figure A.3: Latent volatility during the pandemic
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Notes: Posterior estimates of the Gaussian mixture component λt/2 of the t error model.
BVARs with MAD(qReg) Minnesota prior estimated until 2022:Q1. The thick line is the
posterior median and the dashed lines are the 16% to 84% credible interval.
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A.3 Model (in)stability and forecasting

Figure A.4: Impact of re-estimated parameters on unconditional forecasts starting 2021:Q1

2018 2020 2022

0

5

10

15

2018 2020 2022

0

5

10

15

2018 2020 2022

0

5

10

15

2018 2020 2022

0

5

10

15

2018 2020 2022

0

5

10

15

2018 2020 2022

90

100

110

120

2018 2020 2022

90

100

110

120

2018 2020 2022

90

100

110

120

2018 2020 2022

90

100

110

120

2018 2020 2022

90

100

110

120

2018 2020 2022

-2

0

2

4

6

2018 2020 2022

-2

0

2

4

6

2018 2020 2022

-2

0

2

4

6

2018 2020 2022

-2

0

2

4

6

2018 2020 2022

-2

0

2

4

6

(a) Medium BVAR

2018 2020 2022
-5

0

5

10

15

2018 2020 2022
-5

0

5

10

15

2018 2020 2022
-5

0

5

10

15

2018 2020 2022
-5

0

5

10

15

2018 2020 2022
-5

0

5

10

15

2018 2020 2022

90

100

110

120

2018 2020 2022

90

100

110

120

2018 2020 2022

90

100

110

120

2018 2020 2022

90

100

110

120

2018 2020 2022

90

100

110

120

2018 2020 2022
0

2

4

6

2018 2020 2022
0

2

4

6

2018 2020 2022
0

2

4

6

2018 2020 2022
0

2

4

6

2018 2020 2022
0

2

4

6

(b) Large BVAR2018 2019 2020 2021 2022 2023
0

2

4

6

Notes: BVARs with MAD(qReg) Minnesota prior estimated until 2019:Q4, 2020:Q4 and
2022:Q1, respectively. The thick line is the posterior median and the colored area depicts
the 16% to 84% credible interval.
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Figure A.5 shows scatter plots of the posterior mean VAR coefficients and residual
correlation matrix obtained in 2019:Q4 against 2022:Q1 with the RMSD(oReg) Min-
nesota prior calibration. The figure shows that the VAR coefficients are heavily revised
in all BVAR models, whereas the residual correlation structure of the robust BVARs re-
mains largely unchanged. Recall, the VAR coefficients in the robust BVARs with the
MAD(qReg) Minnesota prior calibration are largely resilient against the COVID-19 ob-
servations. Therefore, the COVID-19 observations coupled with RMSD(oReg) Minnesota
prior induce a marked revision of the VAR structure through an altered prior by shrinking
the VAR higher-order and cross-dynamic lags of most real variables more strongly to zero.

Figure A.5: Change in common VAR parameters
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BVARs with RMSD(oReg) Minnesota prior.
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Figure A.6: Impact of re-calibrated priors on unconditional forecasts starting 2021:Q1
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Notes: BVARs with MAD(qReg) and RMSD(oReg) Minnesota prior, respectively, estimated
until 2020:Q4. The thick line is the posterior median and the colored area depicts the 16%
to 84% credible interval.
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B Estimation details of the BVAR-LP

The BVAR of Lenza and Primiceri (2022) is estimated on the sample from 1988:Q4
to 2022:Q1 and 2020:Q1 (t∗) is chosen as the start of the pandemic episode in which
volatility is scaled by a common factor st∗ , otherwise st is equal to one. Specifically,
st∗ = s̄0, st∗+1 = s̄1, st∗+2 = s̄2, and st∗+j = 1 + (s̄2 − 1)ρ̄j−2. For the VAR coefficients,
the MAD(qReg) Minnesota calibration is used and the hyperparameter κ1,m is fixed at
its optimal pre-pandemic value and not re-optimized using the method of Giannone et al.
(2015) to ensure comparability with the other BVAR models.

Figure B.1 shows the posterior distribution of the explicit volatility hyperparameters
in both BVAR models. Overall, the estimated volatility burst in 2020:Q2 is about 35
standard deviations in both BVARs, but the subsequent evolution of the volatility process
differs across VAR dimensions. The medium BVAR indicates a persistent increase in
volatility for about two years while the large model views the COVID-19 shock as a sudden
burst in 2020:Q2 and moderation afterwards in 2020:Q3. Furthermore, the posterior
of ρ̄ implies that the volatility process in the medium BVAR is less persistent than in
the large model. The impact of persistence on the explicit volatility process is however
overshadowed by the different starting points in 2020:Q3, see posterior of s̄2.

Figure B.1: Posterior of volatility hyperparameters in the BVAR-LP
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2020:Q3 (s̄2) and decay factor ρ̄ of BVAR-LP with MAD(qReg) Minnesota prior estimated
until 2022:Q1.

The data informs the large BVAR-LP very quickly about the nature of the COVID-19
shock while the estimate of the medium BVAR is revised several times before becoming
more stable in the second half of 2021, see Figure B.2 (a) and (b). Therefore, explicit
volatility hinges on the data set, being more persistent when relatively more time se-
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ries that exhibit abnormal variation during the COVID-19 period are included. It also
demonstrates that a larger information set helps to sharpen the identification.

Figure B.2: Revision in explicit volatility estimates in BVAR-LP
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sample from 2020:Q2 to 2022:Q1. The thick line is the posterior median and the dashed
lines are the 16% to 84% credible interval.
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