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Ensemble MCMC Sampling for Robust Bayesian Inference

Gregor Boehl

University of Bonn

November 23, 2022

Abstract

This paper proposes a Differential-Independence Mixture Ensemble (DIME) sampler for
the Bayesian estimation of macroeconomic models. It allows sampling from particu-
larly challenging, high-dimensional black-box posterior distributions which may also be
computationally expensive to evaluate. DIME is a “Swiss Army knife”, combining the
advantages of a broad class of gradient-free global multi-start optimizers with the prop-
erties of a Monte Carlo Markov chain. This includes (i) fast burn-in and convergence
absent any prior numerical optimization or initial guesses, (ii) good performance for mul-
timodal distributions, (iii) a large number of chains (the “ensemble”) running in parallel,
(iv) an endogenous proposal density generated from the state of the full ensemble, which
(v) respects the bounds of the prior distribution. I show that the number of parallel
chains scales well with the number of necessary ensemble iterations. DIME is used to
estimate the medium-scale heterogeneous agent New Keynesian (“HANK”) model with
liquid and illiquid assets, thereby for the first time allowing to also include the house-
holds’ preference parameters. The results mildly point towards a less accentuated role
of household heterogeneity for the empirical macroeconomic dynamics.

Keywords: Bayesian Estimation, Monte Carlo Methods, Heterogeneous Agents, Global
Optimization, Swiss Army Knife
JEL: C11, C13, C15, E10

1 Introduction

Since the pioneering work of Geweke (1999) and Schorfheide (2000), Bayesian methods
have found their way into the toolboxes of researchers at universities and central banks.
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They are used extensively to bring (semi-)structural models to the data, such as modern
New Keynesian-type DSGE models or various forms of Bayesian vector autoregression
models. Thereby, they allow to evaluate the empirical performance of these models,
to quantify the effects of macroeconomic policy, and to sensibly assess the uncertainty
surrounding the economic analysis. Yet, the application of Bayesian methods can be very
challenging in practice as they require the identification and sampling from the high-
probability density region of the associated posterior distribution of parameters. This
posterior distribution is a potentially highly complex topology with large dimensionality
and ex-ante unknown properties. Standard optimization and sampling tools often do not
perform well on such distributions. However, the quality of the estimation – and thereby
their usefulness for economic analysis – crucially depends on our ability to precisely
pin-down this posterior distribution.

This paper substantiates this ability by introducing a novel sampling algorithm: the
differential-independence mixture ensemble (DIME) Monte Carlo Markov chain method.
Motivated by recent advances in the field of computational astrophysics, the DIME sam-
pler seeks to satisfy five practical requirements:

i) Fast burn-in to the high probability density region of the posterior, absent any prior
posterior mode density optimization or initial guesses.

ii) Good performance for high-demensional, multimodel and complex distributions.

iii) Convergence speed scales well with the number of chains, allowing for efficient par-
allelization.

iv) An endogenous proposal distribution generated from the current state of all chains.

v) The proposal distribution that respect the bounds of the prior distribution.

Point i) is desirable because a common practice in economic applications is to treat
finding (or identifying) the high probability density region separately from the problem
of actual sampling from it. A significant amount of processing time is hence, instead of
posterior sampling, spend on numerical optimization routines for mode finding. However,
the posterior of DSGE models is often not only high-dimensional, but also non-monotonic
and discontinuous due to e.g. issues with indeterminacy, the various cross-equation re-
strictions, or a misalignment of prior and likelihood distributions.1 Numerical optimizers
tend to behave unstable for such functions, can show strong dependence on initial guesses,
and may, if at all, converge to local maxima only. Likewise, conventional samplers often
are not well suited to deal with such functions reliably. As it is usually very difficult to
ex-post determine whether the result is a reliable sample from the posterior or not, this
motivates requirement ii).

Point iii) is worthwhile because current DSGE models are becoming more and more
expensive to evaluate, either because of severe nonlinearities or because agents are het-

1A forward looking model, such as a DSGE model, is called indetermined if there exists no unique
rational expectations solution. For linearized models this is linked to the eigenvalues of the associated
system of difference equations, which are a function of the model parameters. An additional problem
with nonlinear models constitutes trough the process of nonlinear filtering, which is often also based on
sampling. This can lead to noisy likelihood estimates. Due to the particular complications that arise
with these models, I here focus on DSGE models rather than Bayesian vector autoregression models, for
which DIME MCMC is applicable nonetheless.
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erogeneous across multiple dimensions.2 As multi-core architectures have successively
become more affordable – contemporary laptop computers often already come with 8
processors, and build-in graphics processing units (GPUs) may feature many more – re-
searchers want to take advantage of this development by being able to run estimations
in parallel, thereby significantly reducing total runtimes. Requirement iv) is important
because ex-ante, the posterior distribution is a black box to the researcher: the spe-
cific features of the distribution are unknown, leaving researchers unable to make good
choices on the setup of the sampling algorithm on their own. Point v) helps to avoid
large rejection rates due to draws falling outside the support of the prior distribution.

To meet these requirements, instead of using a single or small number of recursive
chains (such as e.g. the random-walk Metropolis algorithm), DIME relies on an ensemble
of a large number of chains which jointly evolve over time. For each iteration, proposals
are generated based on the current state of the full ensemble and, as the ensemble evolves
over time, proposal steps naturally adapt direction and scale of the estimated posterior
distribution. After convergence, the invariant distribution of all chains corresponds to
target distribution. The sampler is mixing between a local and a global transition kernel:
the local kernel explores the direct proximity of a particular chain. The global kernel, in
contrast, reshuffles chains over the complete domain of the current approximation of the
posterior distribution. This means that DIME MCMC is equally efficient for posterior
sampling and for quick convergence to the high-density region of the posterior (called
burn-in), and makes no difference between the two. The sampler can hence be seen as a
“Swiss Army knife” for structural econometric analysis.

The local transition kernel builds on the differential evolution (DE) concept developed
in the literature on global optimization. DE optimizes a function by maintaining a
population of candidate solutions and creating new candidate solutions by combining
existing ones, and then keeping whichever candidate solution has the best fitness on
the optimization problem at hand. This can be turned into an MCMC method by
exchanging the last step by the Metropolis-Hastings algorithm.3 A major problem with
this MCMC version of DE is that, although proposals are state-dependent and adaptive,
chains evolve ex-ante independently. This frequently causes the dispersion among chains
to increases over time, which deteriorates the quality of proposals, thereby leading to
slow overall convergence of the full ensemble. The algorithm also does not perform well
with multimodal distributions because chains are unlikely to switch modes.

In contrast, at the core of the global transition kernel lies an ensemble version of a
modified adaptive Independence Metropolis-Hastings method, where candidates are cre-
ated based on a proposal distribution that is independent of the state of a single chain.4

This attribute makes the global transition kernel fully robust against odd-shaped and
multimodal distributions. However, independence Metropolis-Hastings performs only

2See, e.g. Boehl and Strobel (2020), for the estimation of medium scale DSGE models with the zero-
lower bound on nominal interest rates as an example for nonlinear estimation, or Bayer et al. (2020) for
the estimation of heterogeneous agent models.

3See Storn and Price (1997) for the global optimizer and Ter Braak (2006); Nelson et al. (2013) for
Differential Evolution MCMC.

4For independence Metropolis-Hastings see, e.g., Tierney (1994). For specifications of adaptive inde-
pendence Metropolis-Hastings see for example Haario et al. (2001) and Roberts and Rosenthal (2007). A
similar algorithm from the global optimization literature is the covariance matrix adaptation evolution
strategy (CMA-ES, Igel et al., 2007).
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well if the proposal distribution is stationary and close to the target distribution. Since
this requirement is very difficult to be met ex-ante, the algorithm had limited appeal
for many target distributions relevant in practice. To circumvent this problem, I de-
velop a time-varying proposal distribution that adjusts to new ensembles based on their
average posterior density. This puts decaying weights on early samples but guarantees
convergence to a stationary proposal distribution once the average density of candidates
is stationary. While this improves performance considerably, the global transition kernel
alone still converges slowly, and is not robust to multimodality.

DIME MCMC exploits the complementarity of the local and global transition kernel:
the combination of the two kernel dispels the individual weaknesses. In a mixture, the
global kernel occasionally reshuffles some of the chains, which counteracts dispersion of
the ensemble and ensures that individual chains do not “get stuck” in local maxima.
This, in turn, also increases the quality of DE proposals from the local transition kernel.
The independent proposals from the global transition kernel also make sure that chains
switch between modes for multimodal distributions. On the other side, the differential
evolution heritage of the local transition kernel enables to use the sampler on target
distributions (or objective functions) that are discontinuous or noisy. This local search
generates good proposal candidates during burn in, and provides updates for the proposal
distribution of the global transition kernel. The algorithm is also similar to multi-start
optimizers as it searches the complete relevant function domain. DIME hence combines
the advantages of a broad class of global optimizers with the properties of a Monte Carlo
Markov chain (MCMC) sampler, thereby satisfying requirements i) and ii).

To address point iii), the ensemble structure makes DIME MCMC “embarrassingly
parallelizable”. While there is some trade-off between the quality of proposals (which
increases with the number of chains) and the number of iterations (lesser chains increase
convergence rate per function evaluation), I show in Section 4 that the sampler scales
quite well. The method is essentially self-tuning and, solely requires setting the num-
ber of chains as the only metaprameter, thereby satisfying requirement iv).5 Finally,
to address point v) I distinct between parameter and proposal space by introducing a
bijective mapping between these two. This allows to let the sampling algorithm run in
a unbounded space, which boosts acceptance ratios, thereby again increasing robustness
and sampling efficiency.6

In this paper I asses the performance of DIMEMCMC on three very distinct use cases.
I first evaluate the algorithm’s capability to deal with high-dimensional and bimodal
distributions with ex-ante known properties. I document that the sampler performs well
on such distributions, even when the two modes are fully disconnected. I then test the
performance of the sampler on the estimation exercise from Smets and Wouters (2007).
DIME MCMC returns the original parameter estimates independently of the number of
chains used. For the given example, I find that convergence times roughly scale well
with the number of chains, which suggests that the losses through parallelization mainly
amount to the computational overhead of serialization.

Finally, I estimate a heterogeneous agents New Keynesian model, including the house-

5Sections 3 and 4 discuss the role of the number of chains and of the kernel mixing probability, and
provide sane defaults for these parameters.

6A similar concept, so-called bijectors, is applied in the literature on neural networks where they are
used to create proxy-posteriors which feature a more favorable geometry. See, e.g., Dillon et al. (2017).
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holds preference parameters. These parameters may be of particular relevance on their
own as they govern the steady state distribution of assets. This exercise was so far
deemed impossible due to the large computational costs associated with solving for the
steady state distribution for each single likelihood evaluation of the model, and is only
enabled by the fact that DIME MCMC is trivial to parallelize. The estimation results
point towards a rather attenuated role of portfolio choice for macroeconomic dynamics,
with the parameter that determines the magnitude of the liquidity friction being iden-
tified significantly below its prior mean. The degree of idiosyncratic income risk is also
estimated to be below its prior mean, but still in the range of values used in the literature.

This paper comes with reference implementations of DIME MCMC in Python and
Julia programming languages, and for matlab. The implementations for Python and
Julia can directly be installed through the official software repositories, and are actively
developed at Github. The Python package integrates into the well-established emcee-
package, which is a collection of (ensemble) MCMC samplers (Foreman-Mackey et al.,
2013).7

Literature

The workhorse of Bayesian estimations in many economic applications is the random
walk Metropolis Hastings (RWMH) algorithm, which dates back to the seminal work
of Metropolis et al. (1953) and Hastings (1970). The shortcomings of RWMH are well
documented (e.g. Chib and Ramamurthy, 2010; Herbst and Schorfheide, 2015). The main
issue is that convergence of RWMH to the posterior distribution can be extremely slow,
and sampling from ill-shaped or multimodal distributions is hardly possible in practice.
To circumvent the first problem, numerical optimization routines are frequently used to
find a good initialization values for RWMH. These routines are often slow as well, and
not very robust when applied to more complicated posterior distributions. In particular,
they tend to “getting stuck” at local maxima. Another problem with RWMH as well as
with most numerical optimizers is that they are not parallelizable due to their recursive
nature. They therefore can not benefit from multi-core architectures, which is important
if the posterior density is computationally expensive to evaluate.

Well-known alternatives to RWMH include Gibbs and slice sampling (Geman and Ge-
man, 1984; Damlen et al., 1999), which perform better on high-dimensional distributions.
They are, however, not robust to multimodal distributions and do not perform well dur-
ing burn-in and convergence to the high probability density region. Also, these methods
can not trivially be parallelized. A recent innovation from the econometrics community
is sequential Monte Carlo (SMC) method introduced in Herbst and Schorfheide (2014).
The core idea is to run many RWMH chains in parallel interrupted by occasional resam-
pling stages to ensure that all chains converge to the high probability density region. In
order to prevent convergence to local optima, the authors develop a tempering scheme for
SMC. By construction, this circumvents many of the shortcomings of standard RWMH
and, given the right choice of a tempering scheme, can also performs well on multimodal

7Documentation and downloads for the Python package can be found at
https://github.com/gboehl/emcwrap. The standalone version in Julia programming language is
located at https://github.com/gboehl/DIMESampler.jl. The matlab implementation can be found at
https://github.com/gboehl/dime-mcmc-matlab.
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distributions. SMC is also reported to work well on vector autoregression (VAR) mod-
els (Bognanni and Herbst, 2018). The combination of tempering with RWMH chains
may have the disadvantage of relatively slow convergence. Additionally, the method has
relatively many degrees of freedom in the choice of metaparameters, which may deter-
mine overall performance. In contrast, the proposal density of DIME is endogenous and,
through the adaptation extensions, chains converge more quickly. Like SMC, DIME can
straightforwardly be applied to VAR models.

Research in the field of astrophysics has recently made considerable progress on the
frontier of Monte Carlo sampling. Ensemble MCMC is conceptionally introduced by
Goodman and Weare (2010). The authors develop the idea of an ensemble of Markov
chains which, based on the current state of all chains, generates proposals inspired by the
numerical optimization method of Nelder and Mead (1965). They show that such sampler
is affine invariant and “uniformly effective over all the convex bodies of a given dimension
regardless of their shape”, thereby significantly outperforming RWMH. The success of
Ensemble MCMC methods is accelerated by its excellent implementation in the open
source packet emcee (Foreman-Mackey et al., 2013).8 As shown in Section 4, Goodman
and Weare (2010) indeed performs well in terms of sampling efficiency but, at least for
the models considered here, is rather slow to converge to the posterior distribution. As
acknowledged by the authors, the method by construction does not perform well for
multimodal distributions.

Building on the differential evolution MCMC sampler of Ter Braak (2006), Vrugt et al.
(2009) follow some similar ideas to the ones developed here. A common problem with
multi-chain methods such as DE-MCMC is that when considering interacting vectors, the
entire ensemble has to be considered as a whole, which increases n-fold the dimension of
the target and may thus significantly impact convergence. To address this problem, the
authors add a scheme to resample DE-MCMC chains that are stuck, which disburdens
the problem of overly dispersed chains. While the replacement of malperforming chains
is an important issue that is also pointed out in ter Braak and Vrugt (2008), the proposed
heuristic for outlier detection may not work well for all distributions in practice. To allow
better support for multimodal distributions the authors also add random proposals for
which the jump distance is unity. While this is a practical workaround, it is likely to also
slow down convergence, in particular for more challenging distributions. A nice addition
is a crossover step to decrease autocorrelation similar to the snooker move introduced in
ter Braak and Vrugt (2008). An extension of DIME along these lines indeed increases
convergence speed and decreases autocorrelation times, but comes at the expense of being
less robust to multimodal distributions.

The recent rise of frameworks allowing for automatic differentiation9 (AD) has re-
newed interest in the Hamiltonian Monte Carlo (HMC) method (Duane et al., 1987;
Childers et al., 2022). HMC proposals are based on the Jacobian of the posterior dis-
tribution, which normally is expensive to evaluate (e.g. via finite difference methods).
However, AD provides computationally efficient means to calculate Jacobians. HMC
clearly outperforms RWMH in terms of sampling efficiency and in its capability to sam-

8Emcee is implemented in the Python language and can be found at https://github.com/dfm/emcee.
The package also provides routines for efficient parallelization.

9AD is e.g. available through the Python packages JAX or TensorFlow, or in the new Julia pro-
gramming language.
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ple from more complex distributions. A descendant of HMC is e.g. implemented in the
well-known STAN framework. Drawbacks of HMC are that it does not necessary provide
fast burn-in, and does not perform well for multimodal distributions if the modes are
sufficiently disconnected. Further, HMC requires that the parameter space is continuous
(c.f. Neal et al., 2011), which is generally not the case for DSGE models due to parameter
combinations for which the model is indetermined or explosive. Lastly, HMC requires the
implementation of the likelihood function – and hence the complete model and filtering
routines – in a framework that allows for AD, which may require a major programming
effort. Section 6 briefly touches upon a mixture sampler of DIME with the HMC method.

The rest of the paper is structured as follows. Section 2 explains the basic DIME
algorithm. Section 3 studies the performance of the algorithm on a high dimensional
bimodal distribution. In section 4 the sampler is used on the Smets-Wouters model and
in section 5 it is applied to the estimation of a large-scale HANK model. Section 6
concludes.

2 Mixture Ensemble MCMC Sampling

Let π(x) be the probability density of a target distribution with x ∈ Rn. In practice,
π(x) is often the posterior density π(x) = p(x|Y ), which for given data Y and model x
equals

p(x|Y ) =
p(Y |x)p(x)

p(Y )
. (1)

p(Y |x) is the likelihood which, provided (x, Y ), can be calculated using various Bayesian
filtering techniques. I especially consider cases where the evaluation of p(Y |x) may be
very computationally expensive. Let me assume that the prior p(x) is specified such that
it is straightforward to evaluate and to sample from, and

p(Y ) =

∫
p(Y |x)p(x)dx (2)

is an unknown constant for given data Y . We then wish to draw a sufficiently large
number of samples from π in order to approximate some quantity

Eπ [h(x)] =

∫
h(x)π(x)dx ≈ 1

N

∑
i

h(xi) (3)

while minimizing the number of necessary likelihood evaluations.

2.1 Random Walk Metropolis-Hastings

As a reference point, let me briefly sketch the classic random walk Metropolis-Hastings
algorithm (Hastings, 1970, RWMH). Start with a single parameter vector Xt at iteration
t. A new replacement candidate is generated by X̂t = Xt+εt where εt ∼ N (0,Σ) is called
the RMWH proposal distribution, which is often assumed to follow a multivariate normal
distribution. The replacement candidate X̂t is accepted with the Metropolis acceptance
probability

P (Xt+1 = X̂h) = min

{
1,
π(X̂h)

π(Xh)

}
. (4)
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If it is accepted, set Xt+1 = X̂t. Otherwise, set Xt+1 = Xt. A large literature discusses
the properties of RWMH, see e.g. Sokal (1997) or Roberts and Rosenthal (2001).

The practical performance of the algorithm crucially depends on the choice of the pro-
posal distribution, i.e. here on the covariance matrix Σ. This may be problematic since

Σ has d(d+1)
2 degrees of freedom and it is challenging to determine ex-ante which choice

of Σ will maintain a high acceptance ratio while still exploring the target distribution to
a satisfactory degree. To maintain a sufficiently large acceptance ratio, Σ is often scaled
down to relatively small values. Consequently, RWMH is very slow to converge to the
high probability density region of the posterior (so-called burn-in or thermalization). To
speed up computation, RWMH is thus often used subsequent to a numerical optimization
routine, which is supposed to provide better starting values. As discussed above, such
numerical optimization routines may also have severe limitations.

DIME MCMC uses a different approach. It combines the characteristics of a broad
class of global optimizers with the properties of a MCMC sampler. The first feature is
that the sampler suggests local proposals – a replacement candidate that for each chain is
relative to its previous state – as well as global proposals that are independent of the state
of a single chain. Both proposal densities adapt to the state of the complete ensemble,
explicitly for the global transition kernel and implicitly for the local transition kernel.
The coexistence of local and global proposals prevents single chains from “getting stuck”
at local maxima, speeds up convergence, and eases sampling from distributions with two
or more modes, even if these are fully separated. The second feature is the separation
of proposal space from parameter space, which ensures that any proposed replacement
candidate has a positive prior probability. This increases acceptance rates notably.

2.2 Proposal space vs. parameter space

The prior distribution often has bounded support. Naturally, replacement candidates
beyond these bounds are always rejected. This is problematic in particular for medium-
and large-scale DSGE models as these frequently feature exogenous AR(1) processes with
roots close to a unity. Since the prior of these roots is bounded by (0, 1), estimates close
to unit roots will often cause poor sampling performance because any proposal with
values of the AR-coefficient larger one will be rejected. A model with several AR(1)
processes close to unit roots will hence feature a rather low acceptance fraction during
MCMC sampling.

To circumvent this problem define the parameter space X : x ∈ X ⇔ p(x) > 0 to be
the space of all parameter combinations for which the prior density is positive. Let the
proposal space Z = Rn be unbounded and fb be a bijective map

fb : Rn → X (5)

such that for any x ∈ X there exists a unique z ∈ Rn for which fb(z) = x. fb then is
always uniquely invertible, and by definition, fb maps within the bounds of the prior
distribution whereas its domain is unbounded. Below, fb will be used to ensures that
every sample has a positive prior density.

In the spirit of Goodman and Weare (2010) consider an ensemble

Xt = (Xt,1, . . . , Xt,nc
), (6)
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of nc individual chains Xt,i (or particles, in SMC terminology) indexed by i = 1, 2, . . . , nc

running in parallel at each iteration t. While Xt holds the ensemble in parameter space,
let

Zt = (Zt,1, . . . , Zt,nc
) = (f−1

b (Xt,1), . . . , f
−1
b (Xt,nc

)) (7)

be its complementary representation in proposal space. As in Herbst and Schorfheide
(2014), initialize the ensemble with nc draws from the prior distribution

X0
nc∼ p(x). (8)

Initializing the ensemble with the prior distribution ensures that the full set of prior
information on the relevant parameter space is considered, independently of potential
multimodality or possible discontinuities.10

A straightforward choice for the functional form of the bijective transform fb is to
chose xq = exp(zq) + b for priors that are bounded below by b (e.g. following a gamma

and inverse gamma distribution), and the standard logistic function xq = b̄−b
1+exp(−zq)

+ b

for priors with two-sided bounds (b, b̄) (e.g. the beta distribution).11

2.3 Strategy mixture

In each iteration and for each chain the transition kernel is a mixtures of a local and
a global proposals.12 Let the global proposal kernel be selected with probability χ and,
respectively, the local proposal kernel be chosen with probability 1− χ.

Each iteration t of a DIME MCMC run then comprises:

1. Update the proposal distribution for the global transition kernel based on Zt.

2. To each chain i randomly assign a transition kernel Kt,i ∈ {G,L} with probabilities
(χ, 1− χ).

3. For each chain i, propose a replacement candidate vector Ẑt,i based on the assigned
transition kernel.

4. For each chain i calculate the factor weight wt,i.

5. For each chain i, apply the bijective transform to obtain X̂t,i = f−1
b

(
Ẑt,i

)
.

6. For each chain i, evaluate the posterior density π(X̂t,i) of the candidate.

7. For each chain i, generate Zt+1,i by accepting Ẑt,i with a Metropolis acceptance
probability of

P (Zt+1,i = Ẑt,i) = min

{
1,
π(X̂t,i)

π(Xt,i)
wt,i

}
, i = 1, 2, . . . , nc, (9)

10Goodman and Weare (2010) suggest to initialize the ensemble as a small ball around some initial
value. However, if the posterior is oddly shaped – e.g., if it is bimodal –, this bears the risk that the
ensemble can not fully unfold. It may also be unclear which initial value to choose, in particular if we
seek to avoid nonlinear optimization routines.

11Another natural choice would be xq = Φ−1 (F q (zq)), where Φ−1 is the quantile function of the
standard normal distribution and F q is the CDF of prior q. This effectively transforms the prior to a
multivariate Gaussian, which may be beneficial for the approximation of the proposal distribution of the
global transition kernel.

12See Tierney (1994) for a theoretical discussion of mixture kernels. An alternative approach would
be to draw the transition kernel not per chain and iteration but for all chains per iteration.
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or reject Ẑt,i and set Zt+1,i = Zt,i with probability

P (Zt+1,i = Zt,i) = 1− P (Zt+1,i = Ẑt,i). (10)

Section 4 investigates the question of the optimal number of chains nc contra the
number of iterations T in detail. As documented there, a value of nc ∈ (4n, 6n) is often a
good choice, where larger ensembles help to tackle more irregular posterior distributions,
as e.g. bimodal distributions, but fewer chains may speed up burn-in.

2.4 Local proposal kernel

The local kernel is local in the sense that for each chain j to which the local transition
kernel is assigned, the candidate is proposed relative to the current state Xt,j of j. At
its core, the random-walk proposal distribution of RWMH is replaced with a proposal
that follows the differential evolution concept of Ter Braak (2006).

More formally, for each iteration t and each chain j : Kt,j = L draw two chains
{k, l} ∈ {1, 2, . . . , nc} with k ̸= j and l ̸= k ∧ l ̸= j. Take the difference of the state of
these two chains as a displacement vector which is added to the state Zt,j of chain j.

The replacement candidate for chain Xt,j is then X̂t,j = fb

(
Ẑt,j

)
with

Ẑt,j = Zt,j + γ(Zt,k − Zt,l) + ϵt,j , ∀j ∈ {j : Kt,j = L} (11)

where γ is a scaling factor and ϵt,i is some (very) small noise.
As the ensemble evolves over time, proposal steps naturally adapt direction and scale

of the current estimate of the posterior distribution. When the ensemble converges to
the posterior distribution, so does the proposal distribution. Note that probability to
draw the displacement vector Zt,k − Zt,l is exactly equal to drawing the displacement
vector Zt,l −Zt,k. Denoting the respective Metropolis-Hastings proposal distribution by
g it thus holds that

g
(
Ẑt,j |Zt,j

)
= g

(
Zt,j |Ẑt,j

)
(12)

and Equation (10) implies detailed balance for wt,j = 1.
Theorem 1 in Ter Braak (2006) shows that the unique stationary distribution of

DE-MCMC has the PDF π(x). Intuitively, in the stationary distribution, the proposal
distribution is the γ-scaled difference of two draws from the posterior distribution, which
by itself is a stationary and symmetric distribution. This result on Z applies one-to-one
to the stationary distribution of X. The interested reader is redirected to ter Braak and
Vrugt (2008) for a complete proof that the stationary distribution of differential evolution
MCMC equals the target distribution.13

From this intuition it also follows that, if π(x) follows a Gaussian distribution, after
convergence each individual proposal X̂t,j is of the same form as an RWMH proposal.14

Under the assumption that the target distribution is near-Gaussian, the optimal choice

13As pointed out in ter Braak and Vrugt (2008), the orginal proof in Ter Braak (2006) contained an
error.

14This can be seen by acknowledging that, if π(x) is Gaussian, each draw Xt,j is also Gaussian, and
the difference between two chains hence also follows a Gaussian distribution.

10



for the scale γ is γ = 2.38√
2n

from the RWMH literature (e.g. Roberts and Rosenthal,

2001), which is expected to give an acceptance probability of 23% for high-dimensional
posteriors, i.e. for large n. Throughout this paper I set γ to this default value.

2.5 Global proposal kernel

In contrast to the local proposal kernel, the global proposal is global in so far as
candidate proposal only depends on the global state of the ensemble (and its history),
but not directly on the current state of a single chain.

For each chain j in iteration t with Kt,j = G the displacement vector is drawn from
an independent but adaptive proposal distribution. The distribution adapts such that it
roughly corresponds to the current estimate of the posterior. A natural choice for such
proposal distribution is the multivariate t-distribution with fixed degrees of freedom
ν. This distribution is especially useful because for ν > 2 it can be parameterized
over its mean and covariance (µt,Σt), and exhibits fat tails.15 In each iteration t the
ensemble Zt is used to update the parameters (µt,Σt) with weights proportional to the
average posterior density of Zt. This choice of weights ensures flexibility of the proposal
distribution during burn-in but also stationarity after convergence.

More formally, define the absolute weight of the ensemble Xt in iteration t on the
proposal distribution as

wt = at

nc∑
i

π(Xt,i), (13)

where at = 1
nc

∑nc

i 1{Xt,i ̸=X̂t−1,i} (Xt,i) is the mean acceptance ratio in t. Let Wt be

the cumulative weights in t initialized with W0 = 0. Denote by (µZ
t , Σ

Z
t ) the sample

mean and sample covariance matrix of the current ensemble Zt. Then for each chain
j : Kt,j = G the proposal is given by

Ẑt,j ∼ tν

(
µt,

ν − 2

ν
Σt

)
, (14)

with

µt =

(
Wt−1

Wt

)
µt−1 +

(
wt

Wt

)
µZ
t , (15)

Σt =

(
Wt−1

Wt

)
Σt−1 +

(
wt

Wt

)
ΣZ

t , (16)

Wt =Wt−1 + wt. (17)

Note that the proposal density is independent of chain j. To again satisfy detailed

balance in (10) set wt,j =
ft(Zt,j)

ft(Ẑt,j)
, where f t is the density function of the multivariate

t-distribution as defined in (14).
The idea behind this proposal is similar to Haario et al. (2001) but with the weighted

updating of new ensembles. This has the strong advantage that during burn-in, newer

15The benefits of a fat tailed proposal distribution for adaptive independence MCMC is also pointed
out by Holden et al. (2009).
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updates have more weight than old ones and the proposal distribution adapts quickly to
the current shape of the estimated target distribution. However, once the chains converge
we have, for sufficiently large nc, that

∑nc

i π(Xt,i) ≈
∑nc

i π(Xt+s,i) for s = 1, 2, . . . and
new ensembles have decaying weights.16 This implies that the procedure converges to
the specification in Haario et al. (2001) and enjoys the same convergence properties
therein. See Roberts and Rosenthal (2007) for a detailed proof of adaptive independence
Metropolis Hastings.

A natural choice for the degrees of freedom ν of the multivariate t distribution is to
pick rather low values, which imply fatter tails of the proposal distribution. All results of
this paper are rather insensitive to the choice of ν, and throughout the following sections
I use ν = 10. While the above specification of the mean/covariance updating could
be tweaked with a number of additional parameters (e.g. a tempering scheme for the
probability weights), this is unnecessary in practice. If a researcher wishes to replace
less chains it is sufficient to decrease the probability χ for the global transition kernel
and vice versa. This leaves the specification of the global transition kernel essentially
parameter free, and in total requires the user only to specify nc and χ as the necessary
parameters for DIME MCMC. Throughout this paper I set χ = 0.1, which provides a
good compromise between fast burn-in and robustness for multimodal distributions.

3 A high-dimensional bimodal toy distribution

This section studies the performance of DIME MCMC on a distribution with known
properties. I focus on a class of high dimensional bimodal distributions where the two
modes may be disconnected and can have different density masses. Such distributions
are known to be challenging for MCMC samplers. The probability density of the random
variable M is given by the multivariate Gaussian mixture

π(x) = λP (X = x) + (1− λ)P (Y = x) (18)

where X ∼ Nn(µX , σIn) and Y ∼ Nn(µY , σIn) are both n-dimensional Gaussian dis-
tributions with the same covariance, which is the identity matrix scaled by the scalar
σ > 0. λ ∈ (0, 1) is a weighting parameter and µX = (m/2, 0, · · · , 0)′ and µY =
(−m/2, 0, · · · , 0)′ are both vectors of zeroes apart from the first entries, which are m/2
and −m/2 respectively. The distribution of M is then bimodal whenever m ̸= 0 and
the distance between the two modes is given by |m|. When keeping σ fix, increasing m
complicates Monte Carlo sampling because the modes are less connected. Correspond-
ing with the typical size of a target distribution when estimating medium-scale DSGE
models, let M be in n = 35 dimensions.17

Figure 1 illustrates this exercise graphically by marginalizing over the first dimension.
The shaded areas mark the 2.5%-percentile and the median of the first dimension. Each
ensemble is initialized with a sample from Nn(0n,

√
2In). The initial ensemble is hence

distributed across the domain of M , with relatively more chains closer to the origin

16Note that it is not an actual requirement that the cumulative density is approximately equal across
ensembles. Σt converges even if

∑nc
i π(Xt,i) varies a lot as long as it is stationary.

17The posterior of the model of Smets and Wouters (2007) has 36 dimensions while the posterior of
the HANK model estimated in Section 5 has 31 dimensions.
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Figure 1: A 35 dimensional multivariate Gaussian mixture, marginalized over the first dimension (orange
line). The dashed line depicts the initialization distribution of the ensemble. The frontier between the
dark orange and light orange shaded area is the 2.5%-percentile and the frontier between the light shaded
area and no shade is the median of the distribution.

(dashed blue line in Figure 1). Calculations are done for σ = 0.05 and distances of
m ∈ {1, 2, 3} (the columns of figure 1).18 The first row shows the target distribution
for λ = 0.5 where both modes peak at the same maximum density. For m = 1 both
modes are connected, meaning that for any point between the modes the density is still
reasonably large (that is, larger than 0.1 for the cases considered here). For m = 2 the
trough between the models is relatively short in distance, but the minimum density is
already close to zero. The gap for which the density is zero again increases considerably
when setting m = 3, for which the modes are fully disconnected. The challenge for
MCMC sampling lies in the fact that the chains must be able to bridge this gap, which
for conventional samplers is unlikely once the density is close to zero.

18These values are chosen to demonstrate the frontier of what is possible with DIME, without addi-
tional adjustments of the algorithm.
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m = 1 m = 2 m = 3
2.5% HDI median 2.5% HDI median 2.5% HDI median

λ = 0.5 0.00827 0.08253 0.00960 0.58256 0.01239 1.08592
λ = 0.33 0.00946 0.01337 0.01004 0.01709 0.01453 0.02222
λ = 0.25 0.01253 0.00944 0.01308 0.01148 0.01897 0.01592

Table 1: RMSEs of the estimated 2.5%-percentile and the median of the first dimension of the target
distributions. Results obtained from 100 batches.

For each of the nine exercises, I conduct 100 batches of 210 chains each (correspond-
ingly, nc = 6n), let each batch run for 2000 iterations with χ = 0.1, and then calculate
the 2.5%-percentile and the median over the first dimension. Table 1 presents the root
mean squared errors (RMSE) of these target measures over all batches. As the table
suggests, DIME MCMC performs very well over all nine exercises. Even when M is fully
disconnected (m = 3), the sampling error only increases marginally. The only exception
is the estimate of the median for the first row where λ = 0.5. This finding can, however,
safely be ignored: for m = 2 and m = 3 the posterior density in the gap between the two
modes is almost zero because both modes have the exact same density masses. Corre-
spondingly, this region contains no chains and a precise quantification of the median is
impossible unless we let the number of iterations go to infinity.

For the simulations in the second and third row of Figure 1 and Table 1, λ is set to
0.33 and 0.25, respectively. This example is more challenging because some chains must
“jump” between the modes in order to correctly reflect the different density masses of
the modes. In practice any single-particle sampler is likely to “get stuck” in either of
the mode, thereby ultimately misrepresents the posterior distribution. Yet, also for this
example RMSEs are very small and acceptance ratios are in the desired range between
20-25%. This success crucially depends on the global transition kernel, which allows to
reshuffle chains between the two modes. Consequently, DIME performs less good if the
probability of drawing the global transition kernel χ is set larger than 20%. In that
case, too many chains are reshuffled too early, thereby causing estimates of the proposal
distribution to ignore the second mode. This corroborates the previous recommendation
of setting χ = 0.1 for black-box distributions. For this setup, DIME MCMC seems to
be able to reliably sample from high-dimensional and bimodal distributions, even if the
modes are fully disconnected.

4 The Smets-Wouters model

A common benchmark case for the Bayesian estimation of DSGE models is the work
of Smets and Wouters (2007, henceforth SW), who pioneered the use of Bayesian meth-
ods for bringing medium-scale DSGE models to the data. I use this prominent reference
in three exercises. First, I asses whether DIME MCMC is able to exactly recover the
posterior distribution from the original paper. Secondly, I use the model of SW to bench-
mark DIME MCMC against two other ensemble MCMC samplers as well as against the
modified adaptive independence Metropolis-Hastings proposal from the global transition
kernel. Lastly, I use their model to evaluate the trade-off of more chains versus longer
chains.

14



For each of the exercises exactly the same model specification, priors, data and data
treatment as in the original paper are used. All estimations are done on a workstation
with 40 Intel Xeon CPUs with 3.1GHz each and a total of 32GB RAM. I use the package
pydsge for model parsing and solving, and to calculate the likelihood using the standard
Kalman filter.19

4.1 Comparison with the original estimates

To reproduce the estimation from SW I let an ensemble of 200 chains run for 3000
iterations, of which 500 are kept as the posterior. The original estimation relies on
250.000 samples (of which 50.000 are discarded) obtained using RWMH after running an
optimization procedure from pre-optimized starting values. Table A.4 in Appendix A
shows summary statistics over the posterior distribution of the estimation together with
posterior statistics from SW. Overall, the DIME MCMC estimates and the posterior
values from the original estimation of SW are very closely aligned. Notable differences
are the estimate of the standard deviation of the risk premium shock, σu, which is
substantially larger than the SW estimate, as well as in the estimate of the steady state
labor supply l. Judging from the standard deviation of the latter estimate, the parameter
seems not well identified. In summary, the estimates indicates that the DIME MCMC
can fully recover the original values of SW. The table also shows the marginals over the
proposal distribution of the global transition kernel which, in terms of mean and standard
deviation and as expected, is very closely aligned to the posterior distribution.

4.2 Comparison of different Ensemble MCMC samplers

Turn now to the comparison of the performance of DIME MCMC with a selection of
alternative (ensemble) MCMC samplers. I let each sampler run ten times over different
random seeds. For each sampler and seed I chose the same initialization and, again, let
200 chains run for 3000 periods. To allow for fair comparison, the bijective mapping
between proposal and parameter space is applied for all samplers. Figure 2 plots the
log-density of each single chain over time. The dashed lines mark the mode i.e., the
maximum posterior density value. The different colors in each panel correspond to dif-
ferent ensemble batch runs. The top-left panel plots the batches over the DIME sampler.
Chains converge quickly towards the high density region of the posterior, reaching the
68% set roughly in period 300 and the 97.5% set in about iteration 500. Although con-
vergence is difficult to asses, it seems as if all DIME chains across all ensembles have
converged to the posterior roughly at about iteration 700. Throughout the convergence
period the single chains remain relatively close to each other, both within and across
ensembles.

The panel at the top-right plots the performance of the “Stretch” move of Goodman
and Weare (2010). This proposal kernel is quite popular in the field of astrophysics.
Across batches, initial convergence of the ensembles is relatively rapid, but convergence
then slows down. The 68% and 97.5% sets are reached between iterations 1500 and
2000 and after 2250, respectively. Correspondingly, the chains do not converge to the

19Pydsge is a toolbox to solve, filter, and estimate DSGE models in Python language, which is pre-
sented in Boehl and Strobel (2022a). The package is available in the official Python repositories and
developed and maintained at GitHub: https://github.com/gboehl/pydsge.
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Figure 2: Using different ensemble MCMC methods to estimate the model of Smets and Wouters (2007).
Each panel shows the course of the log-likelihood of several ensembles over time, using different Ensemble
MCMC methods. Each colors represent a different ensemble with different random seed. For each
ensemble all individual chains are plotted. The scaling of all panels is the same.

posterior before iteration 2500. Convergence behavior differs slightly across batches.
The bottom-left panel in Figure 2 shows ensembles following the differential evolution
MCMC (DE-MCMC) method of Ter Braak (2006) in the implementation of Foreman-
Mackey et al. (2013). The graphic suggests that burn-in for DE-MCMC is slow and the
ensemble does not converge to the prior distribution within the given 3000 iterations.
An apparent problem seems to be that dispersion in log-density across chains in each
ensemble is very large. The likely reason is that each chain moves ex-ante independently,
i.e. state of the complete ensemble is only used for relative repositioning of each chain.
When ensemble dispersion is high, the quality of replacement proposals deteriorates and
convergence slows down even further, thereby causing single chains to converge extremely
slowly. The bottom-right panel plots the dynamics of an ensemble following the global
transition kernel taken alone, i.e. without mixing with the local transition kernel. As
apparent from the figure, the adaptive independence Metropolis-Hastings approach alone
performs quite badly and convergence is very slow. Performance during burn-in varies
much over random seeds.

DIME MCMC is a mixture kernel of DE-MCMC and the global transition kernel.
Figure 2 clearly illustrates their individual weaknesses. The DE-MCMC ensemble is
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overdispersed, which causes unfavorable individual proposals and, in turn slow converge.
In contrast, the ensemble of the global transition kernel is very narrow because chains
with a higher probability density have a larger weight in the proposal distribution. Thus,
candidate proposals will lie in the immediate proximity of the current ensemble, again
causing slow convergence. However, since these individual weaknesses chancel out both
kernels are strongly complementary: when mixing the two kernels, the “fairly good”
proposals from the global transition kernel are sufficient to reshuffle chains that would
otherwise (i.e. with DE-MCMC alone) be stuck in regions with lower probability den-
sity.20 This reshuffling is efficient to decrease the dispersion of the ensemble and, conse-
quently, the proposals of the local transition kernel improve, which helps to explore the
neighborhood of the current state of the ensemble well.

4.3 The number of chains nc

Next, let me benchmark the sensitivity of the estimation results with respect to the
number of chains nc. Figure 3 illustrates burn-in speed and convergence dynamics in
terms of the number of total function evaluations. For the chosen range of nc ∈ (4n, 6n)
it seems that no setup emerges which is to be strongly preferred. I start with nc = 2n,
which is the minimum number of chains suggested by Foreman-Mackey et al. (2013).
As depicted in top-left panel, convergence is slower than for a larger number of chains
and the course of the different ensembles shows larger variation. For more chains (nc =
4n, top-right panel) convergence is faster, with no significant difference to nc = 6n in
the bottom-left panel. For larger ensembles (nc = 8n, bottom-right) convergence per
function iteration is again marginally slower whereas individual ensembles are almost
indistinguishable.

This exercise reveals a mild trade-ff between the number of iterations and the quality
of the proposal candidates. For only few chains per ensemble, each iteration requires only
few function evaluations. However, the relatively small number of chains produces less
favorable replacement proposals. When, in contrast, ensembles are large, each iteration
is relatively costly and fewer iterations can be done for a given number of function
evaluations. However, for a large range of nc between 4n and 6n a larger number of
chains approximately compensates one-to-one for fewer iterations. For this range, not the
number of iterations is central, but the total number of function evaluations across chains.
Importantly, this suggests that estimations can be scaled very well when parallelizing
chains using computers with a larger number of processing units. An increase in the
number of chains does always require less chain iterations. Even if this relationship
would not be one-to-one, this implies that it is advisable to use at least as many chains
as numbers of processing units.

Appendix B provides Gelman and Rubin (1992) statistics over the number of chains.
The Gelman-Rubin statistic is a measure of convergence. The results substantiate the
finding that the optimal number of chains lie between 6n and 8n, with a lower number
of iterations (i.e., a larger number of chains) causing higher Gelman-Rubin coefficients.
This indicates that it is more important to run many iterations than to run a large
number of chains. However, average integrated autocorrelation times (e.g. Sokal, 1997)

20Following a similar intuition, Vrugt et al. (2009) use the inter-quartile range to discover potential
outlier chains, which are then replaced with the current best chain.
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Figure 3: Using DIME MCMC to estimate the model of Smets and Wouters (2007). Each panel shows
the course of the log-likelihood of several ensembles over time, using different numbers nc of chains.
Each colors represent a different ensemble with different random seed. For each ensemble all individual
chains are plotted. The scaling of all panels is the same.

across chains, parameters and different ensemble sizes are relatively constant around 40.
This in turn suggests again that the ensemble size does not have a major influence on
sampling quality.

Overall I suggest to chose nc to be a multiple of the number of available processors
which lies in in the range 5n and 6n, and to set χ = 10%. It is advisable to monitor
the trace plot of the likelihood function (e.g. as in Figure 3) and the histogram of the
posterior. For very rugged or mulimodal distributions the number of chains should be
increased. In such cases it is additionally expedient to decrease χ to prevent chains from
getting reshuffled too early. In contrast, if for some reason the posterior is expected to
be rather near-Gaussian, a larger value of χ can be chosen, which will decrease autocor-
relation times and hence requires fewer ensemble iterations during the sampling stage,
i.e. after burn-in.

5 Full estimation of HANK

To explore the full potential of DIME MCMC I use the sampler to estimate a
Heterogeneous-Agent New Keynesian (HANK) model with portfolio choice and all the
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features of a standard medium-scale DSGE model. The central novelty relative to the
literature is that I include the households’ preference parameters in the set of estimated
parameters, which increases the complexity of the calculations significantly.

HANK models are a relatively new class of models (see, e.g., Gornemann et al. (2012)
and Kaplan et al. (2018a)) that combine the New Keynesian paradigm with household
heterogeneity and incomplete financial markets. This allows, for example, to study the
impact of economic inequality on macroeconomic aggregates and vice versa. While the
estimation of HANK models is pioneered by Winberry (2018), Bayer et al. (2020, hence-
forth BBL) and Auclert et al. (2021), these papers do not estimate the parameters of
households’ preferences that govern the households’ optimization problem. The reason
for excluding these parameters is that they alter the model’s steady state, which would
then have to be re-evaluated for every posterior draw. As the re-evaluation of the steady
state involves finding a stationary distribution such that all equilibrium conditions are
satisfied, this comes at large computational costs. Consequently, BBL and Auclert et al.
(2021) both opt to calibrate all parameters which affect the model’s steady state and
focus on estimating the remaining parameters.

However, the households’ preference parameters have the potential to form central
attributes of the ergodic distribution of assets and income, and may thus qualitatively
and quantitatively determine the magnitude of the novel channels exposed by this class of
models. Hence, these parameters could potentially affect the macroeconomic dynamics
of this class of models fundamentally. Since at the same time, their inclusion in the
estimation is computationally expensive – finding the steady state and the stationary
distribution takes about 10 seconds for the implementation considered here – it is a
perfect use case for the DIME sampler.

5.1 Model and Data

The model is the fusion of a two-asset HANK model with a medium-scale DSGE
model. The HANK core shares many features with the model of Auclert et al. (2021) and
Kaplan et al. (2018b). This core is extended by several frictions in the spirit of Smets and
Wouters (2007), which, among other features, allow for additional endogenous persistence
in response to aggregate shocks.21 To ease comparison with the DSGE literature I use
the priors of Smets and Wouters (2007). Accordingly, some of the functional forms (e.g.
capital adjustment costs and Calvo pricing) are adapted from there. In the following
I discuss only those equations that deviate from Auclert et al. (2021) and refer the
interested reader to Appendix C for further details on the model.

Households supply labor and have access to a liquid and an illiquid asset. Importantly,
they face borrowing constraints on both assets, and adjustment costs on the illiquid asset.
Firms accumulate capital, and staggered price setting results in a conventional Phillips
curve. Adding ad-hoc price indexation with parameter ιp, inflation πt is determined by

πt − π̄ =
β

1 + βιp
(Etπt+1 − π̄) +

ιp
1 + βιp

(πt−1 − π̄) + κp

(
M̂Ct −

1

µ

)
+ ϵp,t, (19)

21It is well known that endogenous persistence is a crucial feature to replicate the hump-shaped
empirical responses that are reported in the VAR literature.

19



where π̄ is the steady state inflation. ϵp,t is assumed to follow an AR(1) process around

its zero mean and the slope of the Phillips curve is given by κp =
1−ζpβ
1+ιpβ

1−ζp
ζp

. Labor

unions set nominal wages which are also subject to staggered pricing, which gives rise to
a Phillips curve for wages. Adding wage indexation with parameter ιw, this yields

πw
t − π̄ =

β

1 + βιw

(
Etπ

w
t+1 − π̄

)
+

ιw
1 + βιw

(πw
t−1 − π̄)

+ κw

(
φN1+ν

t − (1− τt)wtNt

µw
t

∫
eitcit

−σdi

)
+ ϵw,t,

(20)

where ϵw,t as well follows an AR(1) process and κw = 1−ζwβ
1+ιwβ

1−ζw
ζw

. Monetary policy sets
the nominal interest rate rt following a conventional monetary policy rule,

rnt − rn = ρ
(
rnt−1 − rn

)
+ (1− ρ) [ϕπ (πt − π̄) + ϕy∆ lnYt] + ϵr,t, (21)

with ϵr,t as an exogenous AR(1) process representing monetary policy surprises. Note
that in order to remain agnostic about the central bank’s welfare objective, a traditional
measure of output gap is absent in this equation. The setup of capital adjustment costs
is as in Smets and Wouters (2007) and yields the following expressions for Tobin’s Q and
the firm’s investment decisions

Rt+1qt = (1− δ)Etqt+1 + αEt

{
Zt+1

Nt+1

Kt

1−α

M̂Ct+1

}
(22)

1 = exp(ϵi,t)qt

[
1− S

(
It
It−1

)
− S′

(
It
It−1

)
It
It−1

]
+ Et

{
exp(ϵi,t+1)

qt+1

Rt+1
S′

(
It+1

It

)(
It+1

It

)2
}
,

(23)

where Rt is the gross real interest rate on liquid assets, S(x) = 1
2S′′ (x−1)2 is a quadratic

adjustment cost function, and ϵi,t is an exogenous AR(1) process on the marginal pro-
ductivity of investment. Finally, labor income taxation is progressive with parameter Ξ
such that after-tax labor income yjt is given by

yjt = ypjt
1−Ξ

+

∫
p(ejt)

(
ypjt − ypjt

1−Ξ
)
, (24)

with pretax income ypjt = (1− τt)wtNteit.
For the estimation I use a subset of the data used in Boehl et al. (forthcoming) which

amounts to a relatively conventional setup for medium scale models: growth rates of
consumption, investment, output and wages, together with inflation, labor hours and the
federal funds rate. The data is at quarterly frequency and ranges from 1983:I to 2008:IV.
As in Justiniano et al. (2010), investment and consumption time series are adjusted
such that investment also includes durables consumption. In the model, those seven
observables are matched by seven economic shocks, which are all defined in percentage
deviations from the steady state: the two markup shocks, the monetary policy shock, a
government spending shock on Gt, a discount factor shock on βt and the shock on the
marginal efficiency of investment, ϵi,t. Further details can be found in Appendix D.
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5.2 Estimation methodology

Model solution and likelihood inference is done following the methodology introduced
in Auclert et al. (2021).22 In brief, let yt be the time t vector of model variables (including
disaggregated variables) and let the sequence of first-order conditions and market clearing
conditions, up to some distant point T periods in the future, be

F = {f(yt−1, yt, Etyt+1;x)}Tt=0 = 0, (25)

which depends on the parameter vector x. Denote by Yt ⊂ yt only the aggregated
variables and by Zt ⊂ yt those variables that are purely exogenous. The authors propose
a novel and computationally efficient procedure of finding the steady state Jacobian
matrix of F with respect to {Yt}Tt=0 and {Zt}Tt=0. These sequence-space Jacobians (SSJ)
can then be used to calculate impulse responses to aggregate shocks up to a first order
approximation. Notably, this works for the broad class of models for which it is not
required to explicitly keep track of any of the disaggregated distribution variables on a
global domain. Simulations are based on the sequence space rather than, as in BBL, the
state space. The authors show that the first-order sequence space representation can be
used directly for likelihood inference, without the need for using the Kalman filter (which
would require a state space representation). In their application, the authors are able to
re-use (parts of) the Jacobians depending on the types of parameters to be estimated.
In contrast, in my application each Jacobian has to be calculated from scratch due to
the re-calculation of the steady state.

In a deterministic setup, the steady state ȳ must satisfy

f(ȳ, ȳ, ȳ;x) = 0. (26)

Given a guess for the steady state values of aggregated variables Ȳ , the stationary dis-
tribution of idiosyncratic variables can be found by solving for the stationary decision
rules via backward iteration, and solving for the stationary distribution via forward it-
eration. Hence, there exists a known mapping Ȳ → ȳ, and finding Ȳ can be done using
conventional root finding methods. Often, the size of this root finding problem can fur-
ther be reduced to only searching a subset K̄ ⊂ Ȳ since Ȳ can be expressed in terms of
this subset. Still, finding ȳ is relatively time consuming and must be repeated for any
parameter draw x if the households’ micro parameters change.23

5.3 Estimation results

As usual, some parameters are fixed prior to the estimation. Most of these parameters
configure the technical setup of the estimation (e.g. the number of grid points), and can
be found in Table C.6 in Appendix C. All other parameters are estimated using the priors

22The authors provide their set of methods as a Python toolbox maintained at GitHub:
https://github.com/shade-econ/sequence-jacobian.

23For any numerical root finding method a good initial guess is crucial. This also holds for finding the
steady state. For bad initial guesses, the root search may either diverge, crash due to numerical errors
when solving for the stationary distribution, or simply take up a very long time. This is problematic
because it also prohibits the calculation of the likelihood for cases in which a likelihood actually exists.
In practice, for every draw I use the steady state values for the prior mean as the initial guess, which
causes about 2/3 of all parameter vectors sampled from the prior distribution to be accepted.
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Figure 4: Posterior histogram and prior distribution (left side, blue and orange) of selected households’
parameters with trace plots of the ensemble over iterations (right side). The part colored in red is
discarded as burn-in.

presented in the first three columns in Tables 2 and 3, which follow the specification of
Smets and Wouters (2007). Exceptions are the portfolio adjustment cost parameter
χ0, tax progressively parameter Ξ, and the standard deviation of the AR(1) process for
idiosyncratic labor productivity σe, which are specific to the HANK model. For these
parameters I opt for generally flat priors. I let the prior mean of σe = 0.92, which is the
values used in Auclert et al. (2021). For the same reason, the prior mean of χ0 is set to
0.25.

For the estimation I run a DIME MCMC ensemble with a total of nc = 192 chains
for 2000 iterations. The last 1000 iterations are kept as a sample from the posterior.
The number of chains is the number of available CPUs (48) times 4 and corresponds
with nc/n ≈ 5.33, which lies in the range recommended in the previous section. The
ensemble converges to the high-density region of the posterior after about 800 iterations
and the full estimation takes 84 hours on the machine with 48 cores. Note that doubling
the number of cores would result in half the estimation time. Respectively, on a machine
with 192 cores each chain would have a dedicated processor and the estimation would
take a bit less than a day. Using a machine with more cores requires a larger number of
chains, which would still scale close-to one-to-one (see Section 4). The figures F.6 and
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Prior Posterior
distribution mean std. mean std. mode

σ intertemporal elasticity of substitution normal 1.500 0.375 2.043 0.202 1.850
φ Frisch elasticity normal 2.000 0.750 1.738 0.562 1.805
ζp Calvo parameter for price setting beta 0.500 0.100 0.590 0.050 0.592
ζw Calvo parameter of wage setting beta 0.500 0.100 0.416 0.069 0.413
ιp price inertia beta 0.500 0.150 0.331 0.129 0.335
ιw wage inertia beta 0.500 0.150 0.322 0.147 0.303
S′′ derivative capital adjustment costs gamma 4.000 2.000 2.279 0.702 1.725
ϕπ monetary policy coefficient inflation gamma 1.500 0.250 2.322 0.219 2.198
ϕy monetary policy coefficient output gamma 0.125 0.050 0.222 0.063 0.205
ρ monetary policy persistence beta 0.750 0.100 0.652 0.052 0.680
ȳ trend output normal 0.400 0.100 0.438 0.026 0.434
n̄ steady state labor hours normal 0.000 2.000 -0.047 1.961 1.469
π∗ inflation target gamma 0.625 0.100 0.596 0.051 0.624
i∗ steady state nominal interest rate gamma 1.250 0.100 1.239 0.089 1.259

χ0 portfolio adjustment costs (scale) gamma 0.250 0.150 0.153 0.118 0.094
Ξ tax progressivity beta 0.200 0.100 0.089 0.059 0.071
σe standard deviation of labor productivity normal 0.920 0.400 0.860 0.185 1.064

Table 2: Estimation results for HANK: model parameters

F.7 to F.11 in Appendix F graphically illustrate convergence of the ensemble. Tables 2
and 3 show summary statistics of the posterior distribution. Figure 5 shows impulse
response functions to a monetary policy and a TFP shock of the estimated model.

This paper focusses on the performance of the DIME sampler instead of the economic
dynamics of the estimated HANK model. For this reason I deem an in-debt analysis of
the economic implications of the estimated model out of the scope of this paper and leave
it as a promising endeavour for future research. Nevertheless, a cursory comparison of
the parameter estimates from the HANK model with those of Smets and Wouters (2007)
– for a somewhat smaller sample – reveals some surprising differences.24 In HANK, the
inverse elasticity of substitution, σ, is relatively large. This differs to the estimate of SW
and the findings documented in Boehl and Strobel (2022b,a) for US data until 2019, who
report values close-to unity. This estimate is likely to be related to the fact that HANK
model features the additional the precautionary savings channel due to the assumption
of incomplete financial markets.

An interesting finding is that in the HANK model both the price and the wage
Phillips curve are identified to be relatively steep, which is reflected by Calvo adjustment
probabilities ζp and ζw to be estimated relatively low. This stands in contrast to many
more recent estimates which find rather large values for these parameters, which suggests
a very flat Phillips curve. While this effect may come from different data samples and
slightly different specifications of the Phillips curves, it calls for further investigation.
The relatively lower estimate of S′′ is also documented in BBL and may indicate that
capital adjustment costs play a smaller role in the HANK model, which may be due to
the fact that in the HANK model, portfolio adjustment represent a additional friction
that actively influences the capital investment decision. The other parameters in Table 2,

24The estimation of Smets and Wouters (2007) is replicated in Appendix A.
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Prior Posterior
distribution mean std. mean std. mode

ρz AR coefficient technology shock beta 0.500 0.200 0.957 0.018 0.960
ρr AR coefficient MP shock beta 0.500 0.200 0.619 0.070 0.640
ρg AR coefficient gov. spending shock beta 0.500 0.200 0.993 0.006 0.993
ρw AR coefficient wage MU shock beta 0.500 0.200 0.985 0.006 0.980
ρp AR coefficient price MU shock beta 0.500 0.200 0.911 0.028 0.917
ρi AR coefficient investment shock beta 0.500 0.200 0.837 0.042 0.836
ρβ AR coefficient interest wedge shock beta 0.500 0.200 0.962 0.030 0.991
σz standard dev. technology shock inv.gamma 0.100 0.250 0.415 0.036 0.430
σr standard dev. MP shock inv.gamma 0.100 0.250 0.130 0.020 0.113
σg standard dev. gov. spending shock inv.gamma 0.100 0.250 1.148 0.088 1.105
σw standard dev. wage MU shock inv.gamma 0.100 0.250 2.662 0.732 2.448
σp standard dev. price MU shock inv.gamma 0.100 0.250 0.201 0.047 0.188
σi standard dev. investment shock inv.gamma 0.100 0.250 1.289 0.215 1.350
σβ standard dev. interest wedge shock inv.gamma 0.100 0.250 0.047 0.017 0.029

Table 3: Estimation results for HANK: parameters of exogenous processes

which govern the monetary policy rule and the steady state values of the observables,
are well-aligned with the original estimates in SW. These parameters are likely identified
independently of the model’s setup of the household sector.

The estimate of the portfolio adjustment cost parameter χ0 is well below its respective
prior mean, pointing towards a less accentuated role of the households’ portfolio choice
problem. Complementary, the standard deviation of the idiosyncratic labor productivity,
σz, is also slightly below to its prior value. Both of these values correspond to the
parameters chosen by Kaplan et al. (2018a) rather than those of Auclert et al. (2021).
While by no means this evidence can be used to evaluate the role of idiosyncratic income
risk or portfolio choice, it also calls for further investigation. Lastly, the estimates of
the parameters that govern the exogenous autoregressive processes are much in line with
conventional estimates, where technology, government spending and investment specific
shocks are usually highly autocorrelated.

In Appendix E I repeat the estimation but letting the households’ state space being
represented on a smaller grid (480 nodes instead to 2625 nodes). This reduction cuts the
estimation time about one-third to 50 hours in total. As the reported estimates suggest,
the reduction in the number of approximation nodes does not have a significant impact
on the estimation results. Consequently, it may be possible to obtain reliable results
from using a smaller representation of the households’ state space.
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Figure 5: Impulse response functions to a monetary policy shock (blue) and a shock to TFP (orange).
Responses and credible sets correspond to 1000 simulations drawn from the posterior distribution. The
measures are annualized where applicable.

6 Conclusion

This paper develops a differential-independence mixture ensemble (DIME) MCMC
sampler. The sampler is a Swiss Army knife that can be used for posterior sampling
and global optimization problems alike. I show that the method perform well for high-
dimensional and multimodal distributions. The proposal density of DIME is generated
endogenously from the state of an ensemble of many chains, thereby automatically adapt-
ing to the shape of the current estimate of the posterior distribution. A separation of
parameter space and proposal space guarantees that proposals respect the bounds of prior
distribution, which results in significantly higher acceptance rates and, consequently, in
higher sampling efficiency.

Mixing between local and global proposal leads to very fast burn-in and convergence to
the high density region of the posterior. I show that DIME MCMC is easy to parallelize,
where the number of iterations required until convergence decreases almost one-to-one
with the number of chains. This makes the method feasible for large-scale problems with
models that are computationally expensive to simulate.

The DIME sampler allows, for the first time, to include the households’ micro param-
eters when estimating a HANK model with portfolio choice. These parameters strongly
affect the households’ decision problem and, thereby, determine the endogenous distribu-
tion of assets. The detailed analysis of the estimated model, e.g. by putting the resulting
parameter estimates in relation to estimates from micro data, is a promising endeavour
for future research.

A natural extension to DIME, also for future research, is to replace the differential-
evolution proposal in the local transition kernel by a HMC proposal for applications in
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which automatic differentiation is feasible. In such setting, HMC supersedes differential
evolution MCMC: if the Jacobian can be evaluated at low computational costs, proposals
can readily be well-adopted to the actual shape of the posterior. Yet, the mixture with
the global transition kernel would remain powerful as it can speed up burn-in and enables
sampling from very challenging multimodal distributions.
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Appendix A Posterior distribution of the estimation of the Smets-Wouters
model

Prior Proposal Posterior
SW DIME MCMC

distribution mean std./df mean sd. mean mean sd. mode

σc normal 1.500 0.375 1.357 0.132 1.38 1.354 0.134 1.434
σl normal 2.000 0.750 1.965 0.579 1.81 1.947 0.570 1.871
βtpr gamma 0.250 0.100 0.140 0.063 0.16 0.140 0.054 0.132
h beta 0.700 0.100 0.699 0.051 0.71 0.700 0.053 0.702
S′′ normal 4.000 1.500 5.443 1.098 5.74 5.462 1.112 6.835
ιp beta 0.500 0.150 0.252 0.103 0.25 0.246 0.103 0.187
ιw beta 0.500 0.150 0.571 0.135 0.58 0.574 0.136 0.528
α normal 0.300 0.050 0.183 0.018 0.19 0.182 0.018 0.195
ζp beta 0.500 0.100 0.664 0.063 0.66 0.658 0.066 0.609
ζw beta 0.500 0.100 0.728 0.071 0.70 0.726 0.068 0.705
Φp normal 1.250 0.125 1.579 0.078 1.60 1.578 0.079 1.544
ψ beta 0.500 0.150 0.542 0.121 0.54 0.547 0.122 0.487
ϕπ normal 1.500 0.250 2.053 0.178 2.04 2.052 0.175 2.068
ϕy normal 0.125 0.050 0.095 0.023 0.08 0.094 0.023 0.106
ϕdy normal 0.125 0.050 0.231 0.028 0.22 0.230 0.028 0.201
ρ beta 0.750 0.100 0.817 0.026 0.81 0.817 0.026 0.810

ρr beta 0.500 0.200 0.113 0.079 0.15 0.112 0.061 0.104
ρg beta 0.500 0.200 0.982 0.011 0.97 0.983 0.008 0.980
ρz beta 0.500 0.200 0.963 0.013 0.95 0.964 0.011 0.968
ρu beta 0.500 0.200 0.264 0.140 0.95 0.259 0.146 0.231
ρp beta 0.500 0.200 0.900 0.070 0.89 0.903 0.072 0.946
ρw beta 0.500 0.200 0.976 0.017 0.96 0.975 0.033 0.989
ρi beta 0.500 0.200 0.728 0.063 0.71 0.727 0.059 0.670
µp beta 0.500 0.200 0.767 0.171 0.69 0.742 0.134 0.664
µw beta 0.500 0.200 0.881 0.061 0.84 0.880 0.066 0.923
ρgz normal 0.500 0.250 0.503 0.092 0.52 0.502 0.090 0.515
σg inv.gamma 0.100 2.000 0.532 0.030 0.53 0.532 0.030 0.531
σu inv.gamma 0.100 2.000 1.833 0.615 0.23 1.828 0.486 1.871
σz inv.gamma 0.100 2.000 0.460 0.028 0.45 0.460 0.029 0.459
σr inv.gamma 0.100 2.000 0.243 0.015 0.24 0.243 0.015 0.233
σp inv.gamma 0.100 2.000 0.151 0.027 0.14 0.149 0.032 0.120
σw inv.gamma 0.100 2.000 0.249 0.023 0.24 0.249 0.023 0.276
σi inv.gamma 0.100 2.000 0.448 0.048 0.45 0.448 0.048 0.493

γ normal 0.400 0.100 0.419 0.020 0.43 0.419 0.020 0.428

l normal 0.000 2.000 0.938 1.168 0.53 0.971 1.196 0.906
π gamma 0.625 0.100 0.673 0.104 0.78 0.670 0.102 0.730

Table A.4: Replication and comparison of the estimation of (Smets and Wouters, 2007, SW) using DIME
MCMC. The inverse gamma distribution is parameterized in terms of degrees of freedom as in dynare.
The marginals from the proposal distribution is obtained by sampling from the respective multivariate
t-distribution in proposal space and then applying the bijective transformation. The mean values of the
original estimation (column SW) are obtained from the original paper.
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Appendix B Benchmarking against the number of chains

Table B.5 shows Gelman-Rubin coefficients for different ensemble sizes and numbers
of cumulative function evaluations. Each measure is the average over the mean across
parameters and over ten batches. For each given number of function evaluations nf
(the columns), the sample length is split in half and only the second half is used to
calculate the coefficient. E.g., for a given number of function evaluations nf the sample

from iteration
nf/nc

2 to iteration nf/nc is used for calculation. The reason is that the
Gelman-Rubin coefficient is sensitive to sample length, i.e. the calculation of th Gelman-
Rubin coefficient requires much longer chains than a typical sample from the posterior.
Note that some more recent work has cast doubt on the reliability of the coefficient to
study convergence of MC Markov chains (Flegal et al., 2008).

1e+05 2e+05 3e+05 4e+05 5e+05 6e+05 7e+05 8e+05 9e+05 1e+06

nc = 2n 1.111 1.094 1.069 1.052 1.044 1.041 1.041 1.036 1.030 1.026
(0.045) (0.016) (0.006) (0.011) (0.010) (0.015) (0.020) (0.016) (0.012) (0.008)

nc = 4n 1.283 1.247 1.223 1.170 1.146 1.127 1.098 1.088 1.084 1.078
(0.105) (0.083) (0.185) (0.155) (0.168) (0.156) (0.103) (0.098) (0.103) (0.104)

nc = 6n 1.515 1.488 1.355 1.373 1.319 1.288 1.302 1.265 1.227 1.206
(0.191) (0.146) (0.141) (0.289) (0.251) (0.231) (0.291) (0.242) (0.216) (0.216)

nc = 8n 1.676 1.633 1.570 1.486 1.436 1.361 1.294 1.264 1.244 1.227
(0.144) (0.214) (0.307) (0.322) (0.360) (0.299) (0.225) (0.202) (0.194) (0.189)

Table B.5: Gelman-Rubin coefficients over different numbers of function evaluations (per column) and
numbers of chains nc per ensemble. Values are means over the means across parameters over 10 batches.
Standard deviations across batches are given in brackets.

Appendix C Details on the HANK model

This part of the model is by large adopted from Auclert et al. (2021).

Appendix C.1 Households

The Bellman equation of households is given by

Vt(eit, lit−1, ait−1) = max
cit,bit,ait

{
c1−σ
it

1− σ
− φ

N1+ν
t

1 + ν
+ βEtVt+1(eit+1, bit+1, ait)

}
(C.1)

such that

cit + ait + bit =
(1− τt)wtNt∫
P (ejt)e

1−Ξ
jt dj

e1−Ξ
it + (1 + rat )ait−1 + (1 + rbt )bit−1 − Φt(ait, ait−1),

(C.2)

ait ≥ 0, (C.3)

bit ≥ b̄, (C.4)
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where Φt(·) is the portfolio adjustment cost function

Φt(ait, ait−1) =
χ1

χ2

∣∣∣∣ait − (1 + rat )ait−1

(1 + rat )ait−1 + χ0

∣∣∣∣χ2

[(1 + rat )ait−1 + χ0], (C.5)

with χ0, chi1 > 0 and χ2 > 1. Individual labor productivity eit is assumed to follow a
random walk process with coefficient ρe and a standard deviation of the innovations of
σe
t , which is by itself assumed to follow an exogenous AR(1) process on an aggregate

level.

Appendix C.2 Financial market

No arbitrage at the financial market requires that

1 + Etrt+1 =
1 + it

1 + Etπt+1
=
Et[dt+1 + pt+1]

pt
= 1 + EtR

a
t+1 = 1 + Etr

b
t+1 + ω, (C.6)

with ω the parameter governing the cost for liquidity transformation charged by the
financial intermediary. Ex-post returns are subject to surprise inflation and capital gains

1 + rt =
1 + it−1

1 + πt
= 1 + rbt + ω (C.7)

and

1 + rat = Θp

(
dt + pt
pt−1

)
+ (1−Θp)(1 + rt), (C.8)

where Θp denotes the share of equity in the illiquid portfolio.

Appendix C.3 Firms

Firms have a production function

yjt = F (kjt−1, njt) = Ztk
α
jt−1n

1−α
jt , (C.9)

and aggregat marginal costs are given by

M̂Ct = wt/FN (·), (C.10)

which enter the Phillips curve (19). Zt is the aggregate level of TFP which follows an
AR(1) process around its steady state value. Aggregate investment is given by

It = Kt − (1− δ)Kt−1 + S

(
It
It−1

)
, (C.11)

with the quadradic capital adjustment cost function S(x) = 1
2S′′ (x− 1)2 as in the main

body, and δ > 0 the parameter for capital depreciation. Dividents are defined as

dt = Yt − wt − It − ψt. (C.12)

Tobin’s Q and the capital investiment decisions follow equations (22) and (23) from the
main body.
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Appendix C.4 Market clearning

The optimality condition for labor unions is (20) and the monetary policy rule is
given by (21). Balanced budget requires

τtwtNt = rtB
g +Gt, (C.13)

and market clearing requires

Yt =

∫
citdi+Gt + It + ψt + ωbitdi, (C.14)

pt +Bg =

∫
ait + bitdi. (C.15)

Appendix C.5 Fixed parameters

The parameters that are not estimated are set as in table C.6.

Parameter Value Target

β time preference parameter – r∗

χ1 portfolio adj. cost scale – B = 1.04Y
b̄ borrowing constraint 0
ρe autocorrelation of earnings 0.966
ν disutility of labor – N = 1
µp steady state markup – p+Bg = 14Y
µw steady state wage markup 1.1
Z TFP 0.468 Y = 1
α captial share 0.33 K = 10Y
ω steady state liquidity premium 0.1
G steady state government spending 0.2
Bg bond supply 2.8
ne points for Markov chain of e 3
nb points for liquid asset grid 25
na points for illiquid asset grid 35

Table C.6: Parameters fixed for the estimation of HANK.
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Appendix D Data

The following measurement equations are used for the HANK estimation:

Real GDP growth = γ + (yt − yt−1),

Real consumption growth = γ + (ct − ct−1),

Real investment growth = γ + (it − it−1),

Real wage growth = γ + (wt − wt−1),

Labor hours = n+ nt,

Inflation = π + πt,

Federal funds rate = 100

(
π

βγ−σc
− 1

)
+ rt,

The observables are constructed as follows:

• GDP: ln(GDP/GDPDEF/CNP16OV ma)*100

• CONS: ln((PCEC-PCEDG) / GDPDEF / CNP16OV ma)*100

• INV: ln((GPDI+PCEDG) / GDPDEF / CNP16OV ma)*100

• LAB: ln(13*AWHNONAG * CE16OV / CNP16OV ma)*100

• INFL: ln(GDPDEF)*100

• WAGE: ln(COMPNFB / GDPDEF)*100

• FFR: FEDFUNDS/4

Due to artificial dynamics in the civilian noninstitutional population series that arise
from irregular updating (Edge et al., 2013), I use a 4-quarter trailing moving average from
Boehl et al. (forthcoming), denoted CNP16OV ma, to calculate per capita variables.

• GDP: GDP - Gross Domestic Product, Billions of Dollars, Quarterly, Seasonally
Adjusted Annual Rate, FRED

• GDPDEF: Gross Domestic Product: Implicit Price Deflator , Index 2012=100,
Quarterly, Seasonally Adjusted , FRED

• CNP16OV: Civilian noninstitutional population, Thousands of Persons, Quarterly,
Seasonally Adjusted, FRED

• CNP16OV ma: a four-quarter trailing average of CNP16OV

• PCEC: Personal Consumption Expenditures, Billions of Dollars, Quarterly, Sea-
sonally Adjusted Annual Rate, FRED

• PCEDG: Personal Consumption Expenditures: Durable Goods, Billions of Dollars,
Quarterly, Seasonally Adjusted Annual Rate, FRED
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• GPDI: Gross Private Domestic Investment, Billions of Dollars, Quarterly, Season-
ally Adjusted Annual Rate, FRED

• AWHNONAG: Average Weekly Hours of Production and Nonsupervisory Employ-
ees: Total private, Hours, Quarterly, Seasonally Adjusted, FRED

• CE16OV: Employment Level, Thousands of Persons, Quarterly, Seasonally Ad-
justed, FRED

• COMPNFB, Nonfarm Business Sector: Compensation Per Hour, Index 2012=100,
Quarterly, Seasonally Adjusted, FRED

• FEDFUNDS: Effective Federal Funds Rate, Percent, FRED

Appendix E Estimation of HANK on a smaller grid

Tables E.7 and E.8 present the estimation results of HANK using a smaller grid than
in Section 5. In particular, the number of grid points for the liquid asset is set to nb = 10
(relative to nb = 25 before) and the number of grid points for the illiquid asset is na = 16
(compared to 35 before). Finally, the state space of capital is represented by 4 nodes
instead of 25 nodes. This implies a smaller grid of 480 nodes instead of the 2625 nodes
before, which reduces the estimation time about 34 hours to 70 hours.

Prior Large grid Small grid
distribution mean std. mean std. mode mean std. mode

σ normal 1.500 0.375 2.043 0.202 1.850 2.153 0.201 2.035
φ normal 2.000 0.750 1.738 0.562 1.805 1.712 0.518 1.790
ζp beta 0.500 0.100 0.590 0.050 0.592 0.584 0.052 0.608
ζw beta 0.500 0.100 0.416 0.069 0.413 0.422 0.065 0.371
ιp beta 0.500 0.150 0.331 0.129 0.335 0.307 0.127 0.254
ιw beta 0.500 0.150 0.322 0.147 0.303 0.330 0.145 0.252
S′′ gamma 4.000 2.000 2.279 0.702 1.725 2.079 0.632 2.050
ϕπ gamma 1.500 0.250 2.322 0.219 2.198 2.204 0.213 2.253
ϕy gamma 0.125 0.050 0.222 0.063 0.205 0.228 0.064 0.272
ρ beta 0.750 0.100 0.652 0.052 0.680 0.627 0.055 0.613
ȳ normal 0.400 0.100 0.438 0.026 0.434 0.434 0.025 0.435
n̄ normal 0.000 2.000 -0.047 1.961 1.469 -0.005 1.947 -1.629
π∗ gamma 0.625 0.100 0.596 0.051 0.624 0.594 0.051 0.610
i∗ gamma 1.250 0.100 1.239 0.089 1.259 1.243 0.086 1.218

χ0 gamma 0.250 0.150 0.153 0.118 0.094 0.118 0.121 0.032
Ξ beta 0.200 0.100 0.089 0.059 0.071 0.107 0.069 0.126
σe normal 0.920 0.400 0.860 0.185 1.064 0.664 0.107 0.651

Table E.7: Estimation results for HANK with small grid: model parameters
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Prior Large grid Small grid
distribution mean std. mean std. mode mean std. mode

ρz beta 0.500 0.200 0.957 0.018 0.960 0.957 0.016 0.958
ρr beta 0.500 0.200 0.619 0.070 0.640 0.603 0.065 0.629
ρg beta 0.500 0.200 0.993 0.006 0.993 0.991 0.006 0.983
ρw beta 0.500 0.200 0.985 0.006 0.980 0.989 0.004 0.992
ρp beta 0.500 0.200 0.911 0.028 0.917 0.947 0.026 0.959
ρi beta 0.500 0.200 0.837 0.042 0.836 0.788 0.047 0.832
ρβ beta 0.500 0.200 0.962 0.030 0.991 0.941 0.044 0.951
σz inv.gamma 0.100 0.250 0.415 0.036 0.430 0.412 0.036 0.396
σr inv.gamma 0.100 0.250 0.130 0.020 0.113 0.138 0.020 0.141
σg inv.gamma 0.100 0.250 1.148 0.088 1.105 1.139 0.089 1.195
σw inv.gamma 0.100 0.250 2.662 0.732 2.448 2.740 0.751 3.270
σp inv.gamma 0.100 0.250 0.201 0.047 0.188 0.205 0.052 0.173
σi inv.gamma 0.100 0.250 1.289 0.215 1.350 1.183 0.204 1.209
σβ inv.gamma 0.100 0.250 0.047 0.017 0.029 0.060 0.026 0.051

Table E.8: Estimation results for HANK with small grid: parameters of exogenous processes

Appendix F Details on the estimation of HANK

Figure F.6: Traceplot of the log-likelihood of all chains
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Figure F.7: Traceplots of the 192 DIME chains for the HANK estimation from Section 5. The left panels
shows histograms of the marginal distribution over single parameter values. The dashed line plots the
respective prior densty. The right panels displays the trace of all chains over time, as corresponding to
the parameters.
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Figure F.8: Traceplots of the 192 DIME chains for the HANK estimation from Section 5. The left panels
shows histograms of the marginal distribution over single parameter values. The dashed line plots the
respective prior densty. The right panels displays the trace of all chains over time, as corresponding to
the parameters.
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Figure F.9: Traceplots of the 192 DIME chains for the HANK estimation from Section 5. The left panels
shows histograms of the marginal distribution over single parameter values. The dashed line plots the
respective prior densty. The right panels displays the trace of all chains over time, as corresponding to
the parameters.
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Figure F.10: Traceplots of the 192 DIME chains for the HANK estimation from Section 5. The left panels
shows histograms of the marginal distribution over single parameter values. The dashed line plots the
respective prior densty. The right panels displays the trace of all chains over time, as corresponding to
the parameters.
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Figure F.11: Traceplots of the 192 DIME chains for the HANK estimation from Section 5. The left panels
shows histograms of the marginal distribution over single parameter values. The dashed line plots the
respective prior densty. The right panels displays the trace of all chains over time, as corresponding to
the parameters.
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