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Abstract
Understanding the determinants of home-efficiency improvements is
significant to a range of energy policy issues, including the reduction of fossil
fuel use and environmental protection. This paper analyzes retrofit choices by
assembling a unique data set merging a nationwide household survey from
Germany with regional data on wages and construction costs. To explore the
influence of both heterogeneous preferences and correlation among the util-
ity of alternatives, conditional-, random parameters-, and error components
logit models are estimated that parameterize the influence of costs, energy
savings, and household-level socioeconomic attributes on the likelihood of un-
dertaking one of 16 renovation options. We use the model coefficients to de-
rive household-specific marginal willingness-to-pay estimates, and with these
assess the extent to which free-ridership may undermine the effectiveness of
recently implemented programs that subsidize the costs of retrofits.
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1 Introduction

Home renovation is generally asserted to be a highly effective means for house-

holds to lower expenditures on energy through increased efficiency. From a public

policy perspective, energy efficiency in the residential sector confers the additional

benefit of reducing reliance on fossil fuels, thereby contributing to both energy

security and environmental stewardship. In Germany, as in other industrialized

countries, the residential sector accounts for upwards of 30% of energy end use,

the overwhelming share of which is consumed for space heating and hot water

preparation. Consequently, the improvement of home insulation and heating

equipment in the existing building stock, which directly impacts the energy re-

quired for heating services, is seen to afford considerable scope for reducing the

country’s energy consumption.

Over the past decade, the German government has implemented several finan-

cial support programs to encourage such retrofitting activities. Homeowners have

received access to low-interest loans and – in a recently launched program initiated

in 2007 – can alternatively apply for grants. An important question in gauging

the policy merits of such measures concerns the homeowner’s willingness-to-pay

(WTP) for the energy savings that accrue through renovations. Given this infor-

mation, one can analyze whether and to what extent the subsidization program

suffers from free rider effects. Free ridership occurs if the subsidized household

would have undertaken the energy-conserving activity even in the absence of the

subsidy, that is, if the household’s WTP exceeds cost (Train 1994). Despite its

relevance to the assessment of publicly-financed programs, WTP estimates for

energy-savings and the associated implications for free-ridership have received

scant scrutiny to date.

The purpose of the present study is twofold. First, we estimate the determi-

nants of home retrofits and derive therefrom estimates of the marginal WTP for

energy savings. Second, we assess the extent to which free rider effects threaten
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to undermine the social benefits of the subsidization program. These objectives

are pursued using a unique data set of some 2530 owners of German single-family

homes, which combines real investment cost for 16 retrofit measures, engineering

estimates of the respective energy savings, and information on wage and material

costs along with the sociodemographic characteristics of the sampled households.

Our work builds on a handful of earlier studies of household energy consump-

tion behavior, most of which draw on data obtained from surveys in the U.S.

With respect to home retrofits, Cameron (1985) was among the first to analyze

household choice behavior using a nested logit model. She finds that income,

relative energy prices, and retrofit prices are the key determinants of demand

for conservation retrofits. Subsequent studies using U.S. household survey data

have extended this line of inquiry in a number of directions, including analyses

that address the effectiveness of energy conservation programs (Hartman 1988),

the effects of changes in energy prices on the consumption of housing, residen-

tial energy, and other goods (Quigley and Rubinfeld 1989), and the extent to

which homeowners apply high discount rates to home-improvement opportuni-

ties (Metcalf and Hassett 1999). Among the few studies of this issue from the

European context, Banfi et al. (2008) estimate household’s marginal willingness-

to-pay using an innovative stated choice experiment conducted among a sample

of Swiss apartment tenants and homeowners. Their estimates, obtained from a

multinominal logit model, suggest the importance of both energy savings as well

as comfort benefits as determinants of retrofit choices.

Although publicly financed programs to encourage energy conservation are

increasingly common in industrialized countries, only a few studies have inves-

tigated the magnitude of free rider effects. Joskow and Marron (1992) and Eto

et al. (1995) conduct a meta-analysis of free ridership by surveying evaluations

of demand-side management (DSM) programs conducted by U.S. utilities. With

respect to residential programs, the authors uncover a wide range of estimates,

varying from zero to up to 50% of free riders. However, most of the reviewed eval-
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uations are based on simple survey questions that ask the respondents whether

they would have hypothetically reached the same decision in absence of the DSM

program. Due to the nature of these questions, the calculated free rider share

may therefore be susceptible to a hypothetical- or response bias.1 Malm (1996)

circumvents these difficulties by analyzing the revealed choice of high efficiency

heating system purchases among different clusters of consumers. He derives an

impressive share of 89% of households that would have bought the efficient equip-

ment even in the absence of a subsidy.

The present paper illustrates an alternative approach for quantifying free-

riding by combining revealed preference data with cost estimates derived from

engineering calculations. Our method is similar to Cameron’s (1985) in that nests

are imposed to capture correlation of the utility across alternatives, but, rather

than using the nested logit model, we employ an analog thereof that involves

the specification of an error-components structure (Brownstone and Train 1999).

We additionally allow for heterogeneous preferences by specifying household spe-

cific random parameters, closely following Revelt and Train’s (1998) analysis of

the willingness-to-pay for lower operating costs of household appliances. Our

investigation uncovers a potential free-rider share of up to 50% of the sampled

households, substantially lower than Malm’s (1996) estimates but still sufficiently

high to warrant scrutiny of financial support for renovations.

The paper is outlined as follows. After a brief description of the data, Section

2 discusses the challenges of accommodating unobserved heterogenity in a discrete

choice framework and describes alternative models derived from random utility

theory for addressing them. Section 3 catalogues the empirical results and uses

these to derive household-specific estimates of marginal willingness-to-pay. These

results are used to draw policy implications with respect to free-rider problems

in the context of Germany’s current grants scheme. Section 4 concludes.

1To the extent that program participants feel committed to justify the existence of the DSM

program the bias would yield an underestimation of the true free-rider share.
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2 Methodology

Our data are drawn from a sample of 2530 single-family home owners, surveyed

in 2005 as part of the German Residential Energy Consumption Survey. Four

different retrofit measures (and their combinations) are surveyed: roof insula-

tion, façade insulation, windows replacement, and heating-equipment replace-

ment. These measures, along with the option not to undertake a retrofit, yield

a total of 16 different combinations from which the household chooses. In total,

64% of the households retrofitted their homes between 1995 and 2004.

While the decision concerning renovation is essentially driven by two deter-

minants, investment cost and the savings from reduced energy usage, the house-

hold’s choice is difficult to anticipate because of several uncertainties. First,

varying expectations of future energy prices will result in varying expectations

of the profitability of renovation options. Further, a household may face infor-

mation deficits as well as high costs of information acquisition about existing

retrofitting alternatives. Even when the alternatives are known, the calculation

of energy savings is likely to be beyond the capabilities of the layperson. Finally,

there might exist other hidden costs and benefits that determine the household’s

decision process. Examples of costs include the noise and dirt that accompany

some retrofit measures, while benefits may include higher social standing from

spill-over effects within a neighborhood (Ioannides 2002). As a consequence of

these considerations, there might exist preference heterogeneity concerning the

attributes of a retrofit, leading in turn to heteroegeneity with respect to the

household’s expected net benefits and hence WTP for energy-saving measures.

We accommodate such heterogeneity by employing econometric models that af-

ford broad coverage of the determinants – both observable and unobservable – of

the individual household’s utility from alternative retrofitting options.
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2.1 Discrete Choice Models

Random utility theory provides a suitable framework for our analysis, as it pre-

dicts choices by comparing the utility associated with distinct retrofitting alter-

natives. Each household faces a choice set C with K elements. The utility Uij

of household i for alternative j ∈ C comprises a deterministic and a stochastic

component:

(1) Uij = Vij + εij,

with Vij = αj + Xijβ as representative utility, determined by the alternative

specific constant αj and the matrix Xij, which captures alternative-specific at-

tributes (e.g. costs) as well as characteristics of the household (e.g. income). The

portion of utility that is unobservable to the researcher is represented by εij.

Household i chooses alternative j if and only if Uij > Uik for all k �= j, with

j, k ∈ C. The probability Pi(j) of selecting j from the set of alternatives is thus

dependent on εij and is equal to:

Pi(j) = Pr (Vij + εij > Vik + εik)

= Pr (εik − εij < Vij − Vik) , ∀k �= j.
(2)

Assuming the error terms to be identically and independently (iid) distributed

as Gumbel (or Type I extreme value), the resulting probability model is logistic,

giving rise to the well-known conditional logit model (see e.g. Ben-Akiva and

Lerman 1985), with choice probabilities equal to:

(3) Pi(j) =
eVij∑

k

eVik

.

One drawback of this model is its imposition of the independence of irrelevant

alternatives (IIA) assumption, requiring that when one alternative is removed

from the choice set C, the choice probabilities of the remaining alternatives rise

by the same proportion. This assumption is, in particular, violated when the error
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terms are not independent, as is the case when there are subsets of alternatives for

which unobserved shocks have concomitant effects. For example, those renovation

alternatives involving roof and façade insulation may be associated with high

levels of noise and dirt, thereby having a common adverse effect on utility. On

the other hand, these same alternatives and possibly others may positively affect

utility by contributing to social standing. Hence, each retrofit option may belong

to several sets of alternatives that have a common effect on utility. Following

Brownstone and Train (1998), one can account for such groupings of similar sets

of alternatives – and thereby relax the IIA assumption – by imposing a particular

correlation structure on the utility of the alternatives via the addition of an error

component:

(4) Uij = Vij + ψµj + εij = Vij + ηij,

where ψ is a normally distributed random parameter with zero mean, and µj

is a dummy variable which equals one if a certain latent effect is present in the

utility of alternative j. Hence, the random quantity ψ only enters the utility of

alternatives that share this effect.2 Although the iid assumption for the ε’s still

holds, the utility of the respective alternatives are correlated via the unobserved

portion of utility η :

(5) E(ηij, ηik) = E(ψµj + εij, ψµk + εik) = E(ψ, ψ) = σ2
ψ, j �= k.

Incorporating this latent effect into Equation (3) yields the error-component logit

model:

(6) Pi(j) =
eVij+ψµj∑

k

eVik+ψµk

,

2For the sake of simplicity, we restrict our attention here only to the case where one such

effect is present, although much more complex correlation structures can be imposed with

additional error components.
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exhibiting a covariance matrix Σ = µµµσ2
ψµµµ′ + σ2

εIII, with µµµ as K × 1 vector of zeros

and ones that create the correlation structure.

Another drawback of the conditional logit model (3) is that it does not allow

for taste variation, meaning that any household specific deviation from the mean-

sample taste would enter into the unobserved part of utility εij. In the present

application, this would preclude the possibility that households exhibit different

responses to the determinants of retrofitting alternatives. An appropriate method

to deal with such heterogeneity in adoption behavior is to allow for household

specific coefficients βi = (β̄ + ui), with ui as a household specific deviation from

the sample mean β̄, such that β exhibits a distribution across the sample of

households. This gives rise to the random-parameter logit model:

(7) Pi(j) =

∫ ⎛
⎜⎜⎝ eVij(βi)∑

k

eVik(βi)

⎞
⎟⎟⎠ f(β)dβ.

Equation (7) is a generalization of Equation (3) as it estimates not only the mean

coefficient but the parameters of the underlying distribution for those coefficients

that are specified as random (Train 2003). For example, if a random parameter

β is assumed be normally distributed in the population, the random-parameter

logit model estimates the mean and standard deviation of β. The coefficients can

thus vary across observations, thereby accounting for taste variations with respect

to the attributes of the available retrofitting alternatives. In this way, some parts

of the unobserved heterogeneity inherent in the conditional logit model can be

removed (Hensher and Greene 2003).

The random-parameter logit fully relaxes the IIA property and additionally

allows for any correlation structure between the utility of different alternatives.

If the representation of a particular correlation pattern is deemed important,

the random-parameter logit can also be specified using the error components de-

scribed above. As discussed by Koppelman and Bhat (2006), this more flexible

approach captures both heterogeneous preferences and complex correlation pat-
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terns by layering the error components on top of the random-parameter logit

model.

2.2 Specification of Utility

Recognizing the preceding discussion about heterogeneous adoption behavior, we

assume that the household’s utility Vij is negatively effected by the investment

cost Cij, and positively effected by the decline of the building’s annual primary

energy demand ∆Qij, measured in megawatt hours (MWh), both of which are

associated with a specific retrofitting alternative j. We control for the economic

background of the households by including annual disposable income into the

analysis.3 Further, we expect that the level of the household’s energy consump-

tion influences the decision of whether to renovate, either positively because a

household with a high energy consumption level is more inclined to lower its

energy cost, or negatively because a high level reflects low energy awareness.

Moreover, because there is a quality differential between the building stocks in

western and eastern Germany, a binary variable indicates whether the household

lives in the eastern part of Germany. Finally, we include a measure of the ac-

cessibility of information on home retrofits within the immediate vicinity of the

household. This variable is intended to proxy for the transaction costs of infor-

mation acquisition, and is defined as the relative availability of certified home

auditors within a 20 kilometer radius of the household’s location.4

3As is typical for survey data, information on income is missing for a large share of the

households - roughly 20%. To impute these missing values, we employ the expectation-

maximization algorithm recommended by King et al. (2001). The employed algorithm can

be implemented using a program compatible with the statistical software R, and is download-

able from http://gking.harvard.edu.
4To derive this measure we drew upon a list of certified home auditors and their addresses

published by the German government. We read the data as a map-layer into a Geographical

Information System and overlaid this with a layer of household locations. We then created a

circular buffer around each household having a radius of 20 kilometers and generated a count
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We choose the conditional logit model as empirical point of departure, and ex-

plore the implications of re-estimating the model using three alternative discrete

choice models: the conditional logit model with error components, the random

parameters logit model, and error components layered over the random parame-

ters logit model, our most flexible model. The specification of utility in the most

general form is:

Uij = αj + (β̄1 + ui1)Cij + (β̄2 + ui2)∆Qij

+
∑
l∈zzz

βlCijzil +
∑
m∈zzz

βm∆Qijzim

+
∑

h∈{1,2}
ψhµjh + εij,

(8)

where α is a constant that is specific to alternative j, Cij is the investment

cost of household i for alternative j, and ∆Qij is the respective energy-savings

variable, computed as the difference in the building’s annual primary energy

demand in response to retrofit j.5 The vector zzzi· = {income, energy consumption,

information access, east} contains the household-specific characteristics that enter

utility via interaction effects with investment cost and energy savings. Details

on data assembly for cost and energy savings are given in the appendix. Table

1 presents an overview of the data, including a listing of the 16 options and

the corresponding average costs and energy savings. The random parameters

βi1 = (β̄1 + ui1) for investment cost and βi2 = (β̄2 + ui2) for energy savings,

as well as the error components ψh ∼ N(0, σ2
ψh

), h ∈ {1, 2}, are only present

in the random-parameters and error components logit models, respectively. For

of auditors within this buffer. As a final step, we divided this count by the number of homes

(excluding apartment complexes) within the buffer. The variable thus created serves to capture

the relative availability of expert guidance on retrofits within the vicinity of the household.
5It is important to emphasize that because such savings accumulate over the lifetime of

the retrofit, the value of ∆Qij is not equivalent to the energy spot price of a MWh, but rather

will depend on several household-specific attributes, including time preference and expectations

about future energy prices.
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Table 1: Mean Investment Cost and Mean Energy Savings

Number of Cost ∆Q Error Comp.
households chosen in 1000 e in MWh 1 2

No renovation 904 �
Roof 82 11.9 6.7 �

Window 116 6.3 2.8
Façade 26 10.5 7.2 �

Heating 313 2.3 3.3
Roof, Window 102 18.1 9.5 �
Roof, Façade 17 20.1 13.9 �

Roof, Heating 90 14.2 9.3 �
Window, Façade 31 16.7 10.1 �

Window, Heating 244 8.5 5.8
Façade, Heating 23 12.7 9.8 �

Roof, Window, Façade 56 26.3 16.8 �
Roof, Window, Heating 226 20.4 11.8 �
Roof, Façade, Heating 22 22.3 15.7 �

Window, Façade, Heating 70 19.0 12.3 �
Roof, Window, Façade, Heating 208 28.6 18.3 �

example, if ui1 = ui2 = 0 for all households i, and σ2
ψ1

= σ2
ψ2

= 0, then Equation

(8) collapses to the conditional logit specification.

In specifying the error components ψh, the aim was to capture latent effects

specific to an outcome or a set of outcomes. We explored several alternatives,

guided by the considerations noted above concerning both the hidden costs and

benefits of, respectively, grime and prestige associated with particular retrofit

options. The presented specification follows closely Cameron’s (1985) nested logit

analysis by incorporating two error components, the first of which distinguishes

the binary decision concerning whether to retrofit, and the second of which groups

13 of the remaining retrofit combinations that tend to produce annoying levels

of dirt and disarray (indicated in the final column of Table 1). We also explored

models with additional error components for alternatives conferring prestige, but
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found these to yield no significant improvements to the model fit.6

In the random parameters logit model, we allow for taste heterogeneity – even

after controlling for the effects of the interaction variables contained in zzz – by

treating the coefficients of cost and ∆Q as random. Alternative distributions

can be availed for capturing heterogeneity, the most common of which are the

normal and log-normal. The latter, being bounded on the left by zero, is par-

ticularly useful when theory suggests that the coefficient has the same sign for

every decision-maker, as is the case here for the expected negative and positive

coefficients of cost and ∆Q. The drawback of the lognormal – shared with the

normal – is that its long tail can produce unreasonably large coefficients for some

share of the observations. We consequently follow Revelt and Train (2000) and

Hensher and Greene (2003) in specifying β1 and β2 as triangular distributed.

The triangular distribution has the form of a tent, peaking in the center at the

mean and dropping off linearly on both sides of the center to form a density. It

is possible to restrict the triangular distribution to yield coefficients of the same

sign for all observations, but this restriction was found to be unnecessary with

the present data.

As conditional and error component logit both have closed form solutions,

they can be estimated using maximum likelihood. The random parameters logit,

by contrast, requires that the integral in equation (7) be approximated by means

of simulation using random draws from the mixing distribution (Train 2003). To

this end, we employ a Halton sequence to draw realizations from the population

triangular distribution. We tested the sensitivity of the parameter estimates with

different numbers of Halton draws per observation and found the results to be

stable with as few as 100 draws.

6As noted by Hensher, Jones, and Greene (2007), specific alternatives can appear with

different subsets of alternatives, making it possible to build overlapping error components that,

in the present case, include both grimy and prestigious alternatives.
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Table 2: Estimation Results of Logit Models

CLogit RP. Logit
×10−2 CLogit RP. Logit with EC. with EC.

Cost (Cij) −12.667∗∗ −12.873∗∗ −18.469∗∗ −18.410∗∗

Energy Savings (∆Qij) 22.700∗∗ 23.296∗∗ 32.806∗∗ 32.843∗∗

Interaction of Cost with
Energy Consumption 0.101∗∗ 0.102∗∗ 0.157∗∗ 0.157∗∗

Income −0.124∗ −0.129∗ −0.177∗∗ −0.182∗∗

Information Access 0.116 0.121 0.157∗ 0.157∗

East 4.783∗∗ 4.946∗∗ 7.723∗∗ 7.724∗∗

Interaction of Energy Savings with
Energy Consumption −0.162∗∗ −0.167∗∗ −0.239∗∗ −0.241∗∗

Income 0.100 0.105 0.152∗ 0.158∗

Information Access −0.020 −0.022 −0.020 −0.020
East −0.980 −1.073 −2.817 −2.770
Standard deviation for random parameters distribution
Cost 4.732 0.110
Energy Savings 1.289 0.318
Standard deviation for error components
No renovation 0.365 0.501
Annoying renovation 210.741∗∗ 211.819∗∗

Log-Likelihood -5054 -5054 -5035 -5034
∗∗significant at the 1% level, ∗significant at the 5% level. Alternative specific constants not presented.

3 Results

In this section we present the results of the discrete choice models. The section

begins with a cataloging of the coefficient estimates followed by a comparison of

model fit. Thereafter we derive the marginal WTP and present its distribution

over households. The section closes with a discussion of free-ridership and policy

implications.

3.1 Coefficient Estimates and Model Fit

Table 2 presents the results of a conditional-, random parameters-, error com-

ponents, and error components with random parameters logit model. All four

models tell a consistent story. The signs of the significant coefficients are the
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same across models and are of similar magnitude, depending on whether error

components are present. The key effects pertaining to investment cost and energy

savings have the expected positive and negative effect on utility, respectively, and

are highly significant. Because the standard deviations for the parameter distribu-

tions of these two coefficients are statistically insignificant (i.e. ui1 = ui2 = 0 ∀i),

there is no empirical evidence for taste heterogeneity beyond the variation that

is captured by the interaction effects.

The results of these interaction terms must be interpreted with respect to

the coefficients of Cij and ∆Qij. For example, increasing energy consumption

is seen to attenuate both the negative effect of cost and the positive effect of

energy savings, which is consistent with the intuition that high energy-consuming

households are less responsive to changes in energy expenditures. Likewise, the

error components variants of the model indicate that access to information, as

measured by the relative availability of certified auditors within a 20 kilometer

radius of the household, has a dampening effect on the negative influence of

cost that is of roughly the same magnitude as energy consumption. Income,

on the other hand, exacerbates the negative influence of costs. An explanation

for this finding is not immediately forthcoming, other than to speculate that

wealthier households may be more aware of other, more profitable investment

opportunities than housing. Finally, households living in the eastern part of

Germany experience less disutility from the investment cost than their western

counterparts. This result is expected, since the East-German building sector

was in dire need of rehabilitation before reunification. This led in the 1990s

to an extensive wave of refurbishment on the territory of the former German

Democratic Republic.

Regarding the question of model fit, a comparison of the log-likelihoods sug-

gests that little is gained from the incorporation of heterogeneous preferences

using the random parameters logit, an unsurprising finding given the insignifi-
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cance of the parameter distributions.7 By contrast, the partitioning of the choice

set using the error components appears to be an essential model specification.

Not only is the standard deviation on “annoying” alternatives highly significant,

indicating that the utilities of the respective retrofit alternatives are correlated,

but there is also clear-cut evidence of a significant improvement in the fit of the

model compared to the models that omit the error components.8 We thus con-

clude that the error components logit model is the superior choice for these data,

and we proceed by calculating the respondent’s marginal willingness-to-pay for

energy savings using the coefficient estimates from this model.

3.2 Marginal willingness-to-pay and its Distribution

The household’s WTP for decreasing the building’s primary energy demand by

one kWh can be derived as the marginal rate of substitution between investment

cost and energy savings. For the calculation of the respondent’s marginal WTP

(MWTP ), we thus fix the representative utility Vij and take the total derivative

of Equation (8):

dVij = dCij(β1 +
∑

l

βlzil) + d∆Qij(β2 +
∑
m

βmzim) = 0,

MWTPi =
dCij

d∆Qij

= − (β1 +
∑

l βlzim)

(β2 +
∑

m βmzil)
.

(9)

Hence, individual MWTP can be expressed as the ratio of the cost and energy-

saving coefficients, including their interaction effects.

7A likelihood ratio (LR) test of the conditional logit model without error components against

the random parameter logit without error components and two degrees of freedom yields a LR

statistic of 0 (p=0.5). The corresponding LR statistic from the models with error components

is 2 (p=0.184).
8A likelihood ratio (LR) test of the conditional logit model without random parameters

against the error components logit without random parameters and two degrees of freedom

yields a LR statistic of 38 (p less than 0.0001). The corresponding LR statistic from the models

with random parameters is 40 (p less than 0.001).
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Figure 1: Marginal WTP Estimates
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Figure 1 shows the distribution of households’ MWTP per kWh change in

the building’s primary energy demand. An interesting insight into the valuation

of energy savings in Germany can be gleaned from the lower panel of Figure 1,

which shows the distributions of MWTP estimates according to whether house-

holds live in the eastern or western part of the country. Eastern households are

seen to reveal a much higher MWTP and a larger variability in their estimates,

determining almost the entire right tail of the distribution in the upper panel.

Table 3 reports summary statistics of MWTP estimates obtained from the error

components logit model. Eastern households exhibit a mean MWTP of e3.28 per

kWh, while the mean western MWTP is considerably less at e1.72.9 The much

lower standard deviation indicates that the evaluation of energy savings among

western households is fairly homogenous. Given that the immense discrepancy in

9Using a Mann-Whitney test we checked whether the east and the west MWTP stems from

the same population. We reject this hypotheses at a significance level of p < 0.0001.
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Table 3: Marginal WTP in East- and West-Germany

Observations Mean Std.Dev. Median

East 402 3.28 1.76 2.99

West 2128 1.72 0.65 1.69

Total 2530 1.97 1.08 1.73

MWTP is depicted in e/kWh, measured in prices of 2000.

MWTP within Germany is essentially a result of the special situation of Eastern

Germany’s building stock, we consider the estimates obtained for western house-

holds to better reflect the prevailing MWTP in the post-unification period.

3.3 Policy Implications

The most recent financial support program of the German government to en-

courage retrofits allows households to not only apply for loans, but also provides

grants for covering renovation expenses. Up to 10% of the investment cost are

awarded, reaching a maximum of e5000 per dwelling. With individual MWTP

estimates for energy savings and the associated investment cost in hand, we can

approximate the share of households that would undertake the retrofit irrespec-

tively of the financial support. Given that these households cannot be identified

by the program authority in advance, they have an incentive to free ride on the

grant.

An immediate challenge in gauging the extent of free-ridership returns us to

the issue of how to account for hidden costs. We define a free-rider as a household

whose individual WTP, calculated as the product of MWTPi × ∆Qij, is greater

than the sum of the observed plus hidden costs incurred from a particular retrofit:

WTPij > observed costsij + hidden costsij︸ ︷︷ ︸
total costij

.

Although our WTP estimates account for hidden costs via the inclusion of both

latent effects and information cost, drawing definitive conclusions from the above
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equation is obviously complicated by the fact that we still cannot be sure what

share of the total costs is accounted for by hidden costs. If this share is large but

ignored in the calculation of total costs, our estimate of free-ridership would be

inflated. Although we are unable to assign a monetary value to the hidden costs,

we can rearrange the equation as (subscripts omitted):

(10) WTP − observed costs > hidden costs.

Starting with the special case of zero hidden cost, we designate the household

as a free-rider if the inequality in Equation (10) holds. If we subsequently allow

for increasingly higher hidden costs, a point will eventually be reached at which

the inequality in Equation (10) becomes an equality. From this point on, the

household would no longer be a free-rider, as its hidden costs are large enough

such that the total cost exceed its WTP.

With these mechanics in hand, we can explore the sensitivity of the estimated

free-rider share to different hypothetical levels of hidden costs for all alternatives.

Note that because the WTP estimates of households from eastern Germany are

likely to be inflated due to the urgency of renovation following reunification, we

consider in the following only the 2128 households located in western Germany.

We further restrict our attention to the western households that have a WTP

that exceed the observed cost, since this this is a necessary condition for potential

free-ridership.10 Depending on the respective retrofit option, roughly 50% of the

western households have a WTP ≥ observed cost, validating a similar result that

was observed by Banfi et al. (2008).

The abscissas of Figure 2 shows the hidden cost as a percent of the observed

cost for two commonly chosen retrofit combinations. To facilitate interpretation,

the hidden cost is expressed as a share of the observed cost, which for simplifica-

tion of the exposition is assumed to be equal across households. For each level of

10The remaining western households exhibit a WTP < observed cost, and hence can be

excluded as free-riders at the outset.
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Figure 2: Share of Free-Rider for Selected Retrofit Options

0
.1

.2
.3

.4
.5

F
ra

ct
io

n 
F

re
e−

R
id

er

0
25

50
75

10
0

12
5

15
0

N
um

be
r 

of
 H

ou
se

ho
ld

s

0 25 50 75 100 125 150
Hidden cost in % of observed cost

(a) Roof, Window, Heating

0
.1

.2
.3

.4
.5

F
ra

ct
io

n 
F

re
e−

R
id

er

0
25

50
75

10
0

12
5

15
0

N
um

be
r 

of
 H

ou
se

ho
ld

s

0 25 50 75 100 125 150
Hidden cost in % of observed cost

(b) Roof, Window, Façade, Heating

this share, the histogram depicts the count of households for which the inequal-

ity sign in Equation (10) inflects, and the dashed line traces the corresponding

fraction of households that are designated as free-riders over different shares of

hidden cost.

Figure 3(a) displays the roof-window-heating option, for which 1054 of the

2128 western households have a WTP ≥ observed cost. Starting again with

the special case of zero hidden cost, the histogram indicates zero observations,

implying that in the absence of hidden cost all 1054 households can be treated as

free-riders. Correspondingly, the dashed line, which references the right ordinate,

indicates a fraction of just under 50% free-riders for this level of hidden cost.

Moving to the right along the abscissa and increasing the hypothetical share

of hidden cost increases the number of households for which the inequality in

Equation (10) inflects, meaning that these households can no longer be classified

as free-riders. For example, the most left bar of the histogram suggests that

there are some 20 households for which their total cost exceed their WTP for

a share of hidden cost between 0% and 5% of observed cost. Excluding these

20 households from the set of free-riders, the dashed line drops only slightly
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to 49% free-rider fraction. Moving further along the abscissa yields a further

exclusion of households that are marked by the histogram. At its peak, which

corresponds to a share of 50% hidden cost, the estimated fraction of free-riders

is still non-negligible, reaching roughly 20% of the sample of western households.

This fraction approaches zero only when the hidden cost comprises up to 100%

of observed cost.

A similar pattern for a different retrofit alternative is seen in Figure 3(b),

which shows the roof-window-facade-heating option. Even when hidden costs

comprise the sizeable share of 50% of observed costs, the corresponding share of

free-riders is substantial at roughly 38%.

We thus conclude that our results call into question the logic of providing

renovation grants to households. Nearly half of the households show a WTP

larger than the required observed investment cost, a result that is reduced only

marginally when hidden costs are taken into account. As such households cannot

be identified in advance, the awarded grants are likely to be exposed to extensive

free riding.

4 Conclusions

This paper has estimated willingness-to-pay for energy savings that accompany

a building’s retrofit. Using revealed choice data from a survey among German

homeowners, we rely on the random-utility framework to capture individual and

choice alternative attributes that determine the decision process. Starting with

the standard conditional logit model, we augment the model’s flexibility by first

allowing for preference heterogeneity using the random parameters logit model,

and second imposing a structure to capture correlation among the utility of the

alternatives with the error components logit model. We find that the conditional

and the random parameters logit model yield almost identical results, while the

error components logit model gives the best fit to the data at hand. Thus, we
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conclude that the augmented flexibility of the random parameters logit model

does not justify its higher computational costs with these data.

We completed the analysis by using the obtained marginal willingness-to-pay

estimates and investment cost to generate insights into the extent to which free-

rider effects may undermine the social benefits of a financial support program.

We found that for some 50% of the households, the willingness-to-pay exceeds the

observed cost, a share that drops only slightly when allowing for the possibility

that households incur additional hidden costs.

Our findings are of special interest in Europe, given that a recent directive of

the European Union requires that member states introduce political measures to

decrease energy end-use by 9%. To the extent that measures such as Germany’s

grants program suffer from extensive free-riding – and our results suggest that

they do – an immediate issue arises as to whether these political targets should

recognize free-rider effects, and make corresponding adjustments. The analysis

presented in this paper provides the first step in articulating such an adjustment

by quantifying the magnitude of the problem. Having done so, two useful endeav-

ors for future research emerge. The first would involve devising methodological

approaches for quantifying the level of hidden costs associated with renovation

activities, perhaps by drawing on experimental techniques. The second extension

would estimate the determinants of free-riding, with the ultimate aim of identi-

fying options for excluding free-riders from program participation by means such

as market discrimination.
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Appendix: Data assembly

Our data is drawn from a sample of 2530 single-family home owners, surveyed

in 2005 as part of the German Residential Energy Consumption Survey. The

data contain a location identifier for each household, which is measured at the

municipal level. The data additionally contain socioeconomic and dwelling char-

acteristics, including whether the household received an energy audit and which

retrofit measure was implemented within the last 10 years, if any. Four different

retrofit measures (and their combinations) are surveyed: roof insulation, façade

insulation, windows replacement, and heating-equipment replacement.

4.1 Energy Savings

The computation of energy savings are based on engineering relationships and are

measured as the decline of the building’s annual primary energy demand following

a retrofit. We first reconstruct the size of the building shell using computer

aided design. This reconstruction, which combines information on the area of

living space, the number of stories, and simplifying assumptions concerning the

building form, allows us to derive the extent of the heat-transmitting surface

and the required heating power. Following the relationships provided by the

respective technical standards set by the German Institute for Standardization,

the demand for primary energy can be expressed as:

(11) Q = (QH (HT ) + QW ) ∗ ep,

where Q is the building’s primary energy demand, QH is the demand for space

heating, and QW is the energy demand for hot water, all under standardized
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conditions. The term ep ≥ 1 is the efficiency factor of the heating equipment and

converts final energy demand (such as energy for space heating) into primary

energy demand. QH is determined by dwelling size and the insulation quality

of the building’s envelope. The better the insulation, the less heat is lossed due

to transmission through the building’s envelope. The total heat loss HT of a

building, measured in Watts per year, is computed as:

(12) HT =
∑

r

(Ur + 0.05) ∗ Ar,

with Ar describing the surface in m2 of a certain component r of the building’s

envelope. The so-called ”U-Value” expresses the heat loss of the component in

watts per m2, given a difference of 1 Kelvin between indoor and outdoor temper-

ature.11 The smaller the U-Value, the better the insulation, and the smaller the

heat loss and the energy demand for space heating.

Roof and façade insulation as well as window replacement alter HT by lowering

the U-Value of a specific component, and hence reduce QH and Q. An efficiency

improvement of the heating equipment lowers ep. Thus, energy savings ∆Q are

computed as the difference in the building’s annual primary energy demand in

response to changes in HT and ep:

(13) ∆Q =
∂Q

∂QH

∂QH

∂HT

dHT +
∂Q

∂ep

dep.

Because we lack data on exact U-values and efficiency factors ep of the buildings

in our sample, we use typically applicable figures by construction year, reported

in Table 4.

4.2 Cost

Turning to the measurement of costs for each retrofit measure, we use a Geo-

graphic Information System (GIS) to calculate a cost-variable that draws on two

11Thermal bridges in the component are incorporated by adding 0.05 W per m2.
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Table 4: U-values and efficiency factors

Home Constructed Between
1975 1991 2002 Required

< 1975 -1990 -2001 -2005 Standard
U(Roof) 1.5 0.5 0.4 0.3 0.3

U(Façade) 1.5 1 0.5 0.35 0.35
U(Window) 3.5 3.5 2 1.7 1.3

Efficiency Factor
for Heaters

1987 2002 Required
<1987 -2001 -2005 Standard

ep (Non-Electric) 1.19 1.11 1.05 1.05
ep (Electricity) 1.05 1.05 1.05 1.05

Note: U-values are measured in W/(m2*K). Source: Ecofys (2004), IWU (1997).

principle information sources. The first of these is the BKI, or Construction-Cost

Information Center of German Architects, which publishes unit-cost figures for

various types of retrofit measures based on samples of retrofitted buildings (BKI

2006). Because these figures are national averages that aggregate material and

labor costs, we supplement this information with regional wage data for various

classes of craftsman obtained from a labor-survey conducted by the FDZ (2006).12

We normalize both average-unit cost and wage data so that they are measured

in prices of the year 2000. The final step in calculating investment cost involves

constructing the ratio of local wages to the national average, which serves as a

regional weighting scheme to be multiplied by the average construction cost from

the BKI. This figure is in turn multiplied by an additional weight capturing the

12This survey contains average wages for various classes of craftsman, and, as with the house-

hold data, is measured at the scale of a municipality, of which there are approximately 13,490

in Germany. For a given craftsman class, there is an average of 200 municipalities from across

Germany for which wage data is available. To ensure overlapping coverage with the house-

hold data, we use GIS to spatially interpolate wages between the centroids of the represented

municipality using an inverse-distance weighted algorithm (Childs 2004). In this way, location-

specific wage information from the different craftsman classes can be assigned to each household

location in the dataset.
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share of each craftsman’s labor required for a certain retrofit measure. The total

cost for one of the 16 retrofit combinations j is given as the sum among the

surface Ar of retrofitted components r from household i as follows:

(14) Cij =
∑

r

(∑
c

ζc
local wageic

national aver. wagec

)
∗ average-unit costr ∗ Air,

with subscript c denoting the category of craftsman and ζc representing the share

of craftsman c’s labor in the retrofit.13 While households are denoted by the

subscript i, the term “local wageic” captures the wage of craftsman c in i’s mu-

nicipality.

13We checked our estimates of the average-unit cost against other published estimates (e.g.

Jakob (2006) or Finanztest (2007)) and found the figures to be commensurate.
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