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Abstract
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in the presence of a structural break of unknown timing in the trend function.
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1 Introduction

The procedure proposed by Vogelsang and Perron (Perron 1990, Perron and
Vogelsang 1992, Vogelsang and Perron 1998) is the most common procedure to
test for unit roots in the presence of an unknown structural break in the trend
function. However, as shown by Harvey et al. (2001) and Lee and Strazicich
(2001), the innovational outlier unit root test exhibits considerable spurious
rejections in finite samples when a break is present under the null hypothesis.
Popp (2008) solves this problem by using a Perron-type test regression derived
from an unobserved component model (UCM); for another approach starting
from a UCM see Lanne et al. (2003). But, as already stated by Gluschenko
(2004) for the case of a known level break, the so derived Perron-type test
regression is in fact a linear approximation of a nonlinear (in coefficient) one.
Exploiting the nonlinearity in the estimation procedure leads to asymptotically
more efficient estimates of the autoregressive parameter and consequently to
more powerful tests. The importance of restrictions on coefficients was already
mentioned by Lee and Amsler (1997).

In the present paper the nonlinear test for a unit root is considered for the
cases of a break in level for non-trending (model 0, M0) and trending data (model
1, M1) as well as for the case of a break in level and slope for trending data
(model 2, M2). Various favorable properties can be identified. In contrast to
the test proposed by Vogelsang and Perron, the linear version derived by Popp
(2007) and the nonlinear unit root test do have stable sizes in the presence
of a break in finite samples. Furthermore, the power of the nonlinear test is
considerably higher compared to the linear versions. Finally, the asymptotic
distribution in case of an unknown break date not only equals that for a known
break date, but also corresponds to that for the case of no break, i.e. the
Dickey-Fuller (DF) distribution. This implies that the nonlinear unit root test
is asymptotically independent of the break fraction parameter A. Commonly,

this property is exclusively attributed to LM-type unit root tests (Schmidt and



Phillips 1992, Amsler and Lee 1995, Lee and Strazicich 2003a, 2003b).

The paper is organized as follows. In the next section the models and cor-
respondent linear and nonlinear test regressions are presented. In section 3 the
size and power properties are shown by Monte Carlo techniques. The one break
minimum LM test by Lee and Strazicich (2003b) is described and analysed in
section 4. In section 5 the nonlinear test is applied to the inflation rates of six

G7 countries. Section 6 concludes.

2 The models

Consider the first order autoregressive process y; allowing for a break in level
and slope for trending data (M2). Due to Vogelsang and Perron (1998), the null

and the alternative hypothesis are formulated as follows:

Hy @ yi=y—1+b+0D(Tg), +~vDU] + e, (2.1)

Hi : y=a+b+0DU, +~DI] + e (2.2)

with e; ~ #id(0,02). The parameters 6 and ~ represent the amount of the level
and slope break, respectively. Models MO and M1 are special cases for M2 and
can be derived by assuming b = v = 0 and v = 0, respectively. The dummy
variables DU;, DT; and D(Tg); are defined as follows, 1(.) being the indicator

function and Tj; symbolizing the true break date:

DT, = 1(t>Tp)(t—Tp), (2.3)
DU = ADT)=1(t>Tp), (2.4)
D(Tg): = ADU/=1(t=Tg+1). (2.5)

Both hypotheses are nested in the well-known Dickey-Fuller-type test regression

with three dummy variables:

Yt = pyi—1 +a+ bt +dD(Tg): + 0DU + yDT; + e;. (2.6)



In order to test the null hypothesis p = 1 of a unit root against the alternative
hypothesis |p| < 1 the t-statistic of p, denoted ¢, p, is used. Before computing
the test statistic, the break date Ts has to be specified in the test regression
(2.6). Conventionally, two selection methods are used to estimate the unknown

break date:

Tp1 = argminty(Ts), (2.7)
Ts

argmax [ty(Tg)| , for MO and M1
Tps = Is (2.8)
arg max t5(Tg)| , for M2

B

with Ts € [7T,(1 — 7)T], 7: trimming factor. To indicate the used selection

method, the test statistic is denoted t;,,p(TByl) and tﬁvp(TB,z), respectively.!
The test regression (2.6) can also be derived in a less ad hoc manner by

representing the DGP of the time series y; as a UCM consisting of a deterministic

2

component d; and a stochastic component u;.” Using the same notation as

above, the UCM is:

ye = di+ou, (2.9)
di = a+Bt+0DU, +~ DT}, (2.10)
Ut =  pPUL—1 + ey (211)

The reduced form of the structural model serves then as test regression and has

the following form similar to (2.6):

Yo =py—1+a + Bt +D(T): + " DU + (DT + ¢4 (2.12)

with o = (1 —p) + Bp, B*=B(1 —p), & =0p, k" =p(y—0) +0, (= —¢y

and ¢ = (p — 1). It has to be noted that the test regression is actually nonlinear

I Because both test statistics exhibit similar properties, exclusively ti,J:’(TB,Q) is considered
further.
2See Schmidt and Phillips (1992) for advantages of using the UCM representation.



with respect to the coeflicients.

For a given break date T, the Perron-type test regression (2.6) and the
linearized test equation (2.12) yield identical t-values. Also in the context of an
unknown break date, using selection method 1 leads for both test regressions
to identical results. Things are different when using selection method 2, which
focuses on the break coefficients 6 and 7. By using test equation (2.6) Perron
implicitly assumes that the level break parameter 6 is the coefficient of the
dummy variable DU, and the slope break parameter v is the coefficient of
the dummy variable DT;. In contrast, according to the test regression (2.12)
derived from the UCM, the coefficient of DUy is £* = p (v — 0) + 6 and of DT
s ¢ = —¢7.

In order to use selection method 2 analogously it is necessary to reshape
equation (2.12) to isolate the break coefficients 6 and ~y. After reshaping, the

test regression is as follows:
Y = pyr—1 + " + Bt + ED(TR)¢ + DUy + (DT_1 + ¢4 (2.13)

with £ = (y+6) and k = (y—@0). For MO and M1 the parameter £ corresponds
to the level break parameter . The selection method can now be formulated
as:

Tps= arg max |tz (Tg)|- (2.14)
Tp

The respective test statistic is denoted as t@L(TB’g). The restrictions § = (y+0)
and k = (7 — ¢0) are ignored in the linear version of the test regression leading
to asymptotically consistent but inefficient estimates of the autoregressive para-
meter p. It is expected that taking the restrictions into account augment the
power of the unit root test even in finite samples. The nonlinear test regression

has the following form:

Yr = pyi—1+a” + 5t +(y+0)D(T) + (v — ¢0) DU — pyDTy_1 +eq, (2.15)



which is been used in conjunction with T B,2. Because the break date is identified
more accurately using the linear test regression (2.13) with 7' B,3 than with the
nonlinear version and 7’ B,2, & two step procedure is recommended. In the first
step the break date Tz is estimated with (2.13) and (2.14). In the second step
the nonlinear test regression is conducted for the estimated break date. The
resulting test statistic is denoted t/},NL(TByg).

Due to the nonlinearity of the test regression a closed form of the estimator is
not available. Hence, the test distribution is derived by Monte Carlo simulations

and displayed for the models M0, M1 and M2 in the next section.

3 Finite sample size, power and break date es-
timation accuracy

All simulations are based on 10 000 replications and were carried out in GAUSS
using the OPTMUM Module. The time series are generated according to equa-
tions (2.9), (2.10) and (2.11) with e; ~ N(0,1). The parameters o and (3 are set
to zero. For MO and M1 it is further assumed that v = 0. For each replication
T + 50 observations with T € {100,200} are generated. Afterwards the first 50
observations are discarded to reduce the impact of the initial condition. The
trimming factor is 7 = 0.1.

One primary goal is to assess the effect of a variation of the break date and
the break magnitude on the properties of the test discussed in the previous
section. The true break date Ty is defined as: T = [N'T], []: integer. The
parameter )\ is called the break fraction, which varies among the following
values: ' € {0.1,0.2,...,0.9}. For MO and M1 the level break is taken to be
equal to the following magnitudes: 6 € {0,5,10,20}. For M2 all combinations
of various level and slope break magnitudes, 6 € {0,5,10} and ~ € {0, 2, 6,10},
are considered. Under Hy p is equal to 1. The power of the test is assessed for
pe{0.9,08}.

In the case of a known break, the Perron-type unit root test is invariant



to a break under the null hypothesis. The same is true for the nonlinear test
as shown by Gluschenko (2004) for MO and for the case without a constant.
However, by exploiting the nonlinearity constraint the power of this test is
higher. Furthermore, the distribution of the nonlinear test is asymptotically
identical to the DF-distribution, a property which implies the independence of
the asymptotic distribution to the break fraction X'. In finite sample indeed
the distribution varies with X', but only slightly. So, the standard deviation of
the 5 per cent critical values of t; nr (T, M0, T = 100) calculated for the nine
different values of A € {0.1,0.2,...,0.9} is 0.035, which is 3,6-times smaller than
the standard deviation of the corresponding Perron-type tests (std = 0.125).

The invariance to the break size holds also for M1 and M2, but is not proved
explicitly for the case of a known break date. The critical values of 5 y1.(Tg)
for MO, M1 and M2 are displayed in Table 1 for various values of \'. Because
of the mentioned invariance to the break size, the critical values are calculated
assuming no break, i.e. § =0 for M0 and M1 as well as § = v = 0 for M2.

Now it is assessed if the DF-distribution is a good approximation for the
distribution of ¢; 1 (Tf) as well in finite sample. For that matter the critical
values of t; n(Tf) are compared with the respective ones of the DF-test. For
MO the distribution of the DF-test with constant is relevant, for M1 that one
with constant and trend. That means that the level break and consequently the
timing of its occurrence has no impact on the asymptotic distribution. Though,
a break in slope does affect the test distribution, otherwise the distribution with
constant and trend would be the relevant one. But, the critical values of M2 are
absolutely greater and correspond to that of the DF-test with constant, trend
and squared trend. More precisely, the critical values for M2 match that with the
same number of asymptotically relevant regressors. So, they are identical to that
of the DF-test with constant, trend and cubic trend as well. The comparison
of t, np(Tg) and ¢, pp (displayed in Table 2) shows that the critical values of
t;.nL(Tg) and of the respective DF-test differ slightly for T = 100 and hardly
for T' = 200.



Commonly, the break date is unknown and has to be estimated during the
test procedure. Just for the case of an unknown break date, the Perron-type
unit root test exhibits considerable problems with spurious rejections in finite
samples, when a break is present under the null hypothesis, cf. Lee and Stra-
zicich (2001) and Harvey et al. (2001). As shown by Popp (2007), test stat-
istic tj, L(TByg) does not have this problem. In addition, the distributions in
the case of an unknown and known break date coincide. Intuitively, this can
be explained as follows. If the unit root test accounting for a break of un-
known timing is invariant to the break magnitude and additionally identifies
the true break date with increasing break size more accurately (e.g. for MO:
limg_.oo P(T5 = T}) = 1), the test distribution in the case of a known (i.e. in
100 percent of the cases accurately identified) break date and unknown break
date must coincide inevitably.

This result also holds for the nonlinear test. Firstly, the application of selec-
tion method 3 ensures the accurate estimation of the break date with increasing
break magnitude. This can be verified in Tables 4 to 7. There it is shown that
the probability of detecting the true break date, P(TB’g =T}), tends to 1 with
increasing break size under the null and under the alternative hypothesis. And
secondly, the stable empirical size of ¢; nr, (Tgyg,Cvcndo) shown in Tables 4 to
7 documents the invariance to a break.

This result is in accordance with the critical values of t; y1.(T) and t; N1, (TBQ,)
tabulated in Tables 1 and 2. Thus, the distribution of the DF-test ¢; pr, the
nonlinear test in the case of an unknown break date ¢; vz (T%) and of a known
break date ¢, n L(TB’g) are approximately equal in finite samples. In the follow-
ing, these critical values are denoted by CVpr, CVexo and CVepnqo, respectively.
The correspondence of CVpr, CVeyo and CVeyq, can also be seen in Table 3
where the critical values are shown for fixed break fraction A’ = 0.5 and vari-
ous samples sizes T of 50, 100, 200, 300, 500, and 1000. This implies that
tpN (Tp.3) is invariant to the break magnitude and the break fraction. So far,

this invariance property size is denied for DF-type unit root tests and is ex-
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clusively assigned to the LM-type unit root test, see Chou (2007) and Im et al.
(2005).

Tables 4 to 7 display the 5 percent rejection frequency of tﬁ,p(TBﬂg), ti;_’L(TB’g)
and t;J’NL(TByg), for the case of t;J’NL(TByg) using all three sets of critical values.
Because the critical values hardly vary with A" and in order to keep the analysis
concise, it is assumed in the following that A" = 0.5. It has to be mentioned
that the difference to the DF-distribution is largest for X’ = 0.5. So, it can be
expected that the results improve for other values of \’. But even for this case,
the DF-distribution is a good approximation as can be inferred from Tables 1
and 2.

The results are similar for all models. The empirical size of ¢, p(TB,g) tends
to 1 with increasing break size. This is also true for the power. Thus, inter-
preting the rejection frequency as power in the case of an extremely oversized
test is not recommended. In contrast, the linearized test as well as the non-
linear test exhibit quite stable size equal to its nominal size of 5 percent. For
large break tf]’L(TB’g) and tp,NL(TB_Vg) using CV,pnq, are slightly conservative,
whereas tpyNL(TB’g) using CVyy, and CVpyp are a little bit oversized. These
tendencies vanish with increasing sample size.

Independent of the chosen set of critical values, the power of the nonlinear
test is higher than that of tﬁ,p(TAB,g) and t@L(TB’g). The power is highest using
CVpp. Furthermore, the power increases with the sample size suggesting the

consistency of the tests.

4 One break minimum LM test

Lee and Strazicich (2003b) use an LM approach to test for a unit root in the
presence of an unknown break. The DGP is assumed as stated in equations

(2.9) to (2.11).
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The test regression has the following form:
Ay, =B+ 0D(Ts)r +vDU; + ¢Si1 + e (4.1)

where S, = Yp — Oy —Bt - éDUt —ADT, t = 2,...,T; 87 6 and 4 are the
coefficients in the regression of Ay; on a constant, D(Tg); and DUy; and dy,
is the restricted Maximum Likelihood estimator of a,(= « + ug). The null of
¢ = 0 is tested using the t-value of ¢, ¢ s.rar- The estimate of the break date is

that point in time which minimizes the value of t?/b, LM
Tpa= arg%Lnt$7LM(TB). (4.2)

Lee and Strazicich state that the test is invariant to the break size and identifies
the true break date accurately. Furthermore, the test is independent of the
location of the break for M1 and approximately so for M2. They show that
the test has the same asymptotic distribution of the Schmidt-Phillips test (test
without break).

The finite sample size, power and break date estimation performance of the
LM test is evaluated for M1 and M2. The results are displayed in Tables 5, 6
and 7. For M1, it can be seen that the test gets conservative with increasing
level break magnitude. The break date is identified, but not as accurate as in
the course of the new test. In the case of M2 the empirical size of the LM test
differs considerably from its nominal level. Furthermore, the test encounters

difficulties in detecting the true break date.

5 Application

The nonlinear test will be applied to the inflation rates of six G7 countries
including Canada, Japan, France, Italy, the UK, and the USA. Data on inflation
is taken from the International Financial Statistics database published by the

International Monetary Fund. We use annual data for the period 1971 to 2006.
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The time series of the inflation rates are plotted in Figure 1. A common feature
can be noticed for all analyzed countries. The sample period can be divided
into a period of high inflation in the seventies and early eighties followed by a
low inflation period.

There is an extensive literature on the integrational properties of inflation,
see, inter alia, Culver and Papell (1997), Bos et al. (1999), Lee and Wu (2001),
Charemza et al. (2005). They find mixed results on the long-run properties of
the inflation rate.

As a benchmark case the ADF-test in the specification without trend are
applied to the inflation rates. The results are displayed in Table 8. It shows
that the null hypothesis of a unit root can only be rejected for the US at a
significance level of 10 percent.

The nonlinear test takes account of a single break of unknown timing. Ap-
plying the test to the inflation rates one is able to reject the unit root hypothesis
for France and Italy at the 1% level and for Canada and the US at the 5% level.
The majority of the break dates obtained from the nonlinear test are dated in

the mid-eighties and correspond to our visual inspection of Figure 1.

6 Conclusion

The unit root test in the presence of an unknown break proposed by Perron
exhibits considerable spurious rejections in finite samples, when a break occurs
under the null hypothesis. In contrast, the test put forward by Popp (2007)
based on the representation of the DGP using a UCM is invariant to a break in
the trend function. It is shown that the corresponding test regression is in fact
nonlinear in coefficients. Exploiting the nonlinearity leads to tests with more
favorable properties. In the present paper the test properties of the nonlinear
test are compared to that of the approaches by Perron and Popp. It is shown
that the nonlinear test possesses various favorable properties. The test is able to

identify the true break date very accurately. The test distribution corresponds

13



to that one when the break date is known a priori as well as that one of the DF-
test. This implies directly the invariance to the break size and break fraction.
In contrast to the LM-type unit root test the invariance to the break fraction

also holds for M2. Finally, the test is consistent and exhibits high power.
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Figure 1: Annual Inflation rates of six G7 countries
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Table 2: Critical Values for ¢; nr, (TBQ,) and DF-Test

tf;ANL(TB,S) DF-Test
T 1% 5% 10% 1% 5% 10%
MO 100 -3.822  -3.122  -2.774 -3.496  -2.890 -2.582
200 -3.610 -2.989 -2.671 -3.464  -2.876 -2.574
M1 100 -4.356  -3.690 -3.358 -4.052  -3.455 -3.153
200 -4.170  -3.567  -3.258 -4.007  -3.433 -3.140
M2 100 -4.969 -4.154 -3.789 -4.500  -3.888 -3.587
200 -4.695 -3.996 -3.655 -4.410  -3.858 -3.571

MacKinnon’s (1991) Dickey-Fuller critical values with constant for M0, with
constant and trend for M1 and with constant, trend and squared trend for
M2 (own simulations with 100 000 replications).

Table 3: 5% Critical Values for ¢, x7.(T5.3) (CVendo), t, nr(T%) (CVexo) and
DF-test (CVDF), X = 0.5

MO M1 M2
T CVendo  CVexo CVpr CVendo  CVexo  CVpr CVendo  CVexo  CVpr
50 -3.334 -3.109 -2.920 -3.935 -3.610 -3.501 -4.379 -4.168 -3.948
100 -3.122 -3.033 -2.890 -3.690 -3.498 -3.455 -4.154 -3.953 -3.851
200 -2.989 -2.888 -2.876 -3.567 -3.448 -3.433 -3.996 -3.900 -3.843
300 -2.933 -2.865 -2.871 -3.557 -3.483 -3.426 -3.904 -3.893 -3.822
500 -2.950 -2.870 -2.868 -3.495 -3.438 -3.421 -3.846 -3.878 -3.859
1000 -2.924 -2.901 -2.865 -3.421 -3.387 -3.417 -3.807 -3.813 -3.809
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Table 4: 5% rejection frequency for MO and probability of detecting the true
break date, A’ = 0.5

T =100
p=1
. . tp Nnp(TB,3) .
t,P(TB2) tp.0(TB3) CVendo CVexo CVpr P(Tp3z=Tg)
0.050 0.050 0.050 0.070 0.081 0.013
0.110 0.041 0.036 0.051 0.062 0.977
0.434 0.042 0.037 0.054 0.062 1.000
0.926 0.044 0.036 0.052 0.062 1.000
p=209
. . tnL(TB,3) R
0  tpp(TB2) tp.1(TB3) CVendo CVexo CVpr P(IB3=Tp)
0 0.128 0.217 0.239 0.313 0.348 0.010
5 0.318 0.192 0.246 0.324 0.364 0.979
10 0.875 0.188 0.254 0.329 0.367 1.000
20 1.000 0.198 0.259 0.334 0.374 1.000
p=0.38
R R tp NL(TB,3) .
0  tpp(TB2) tp,0(TB3) CVeindoe CVexo CVpyr P(IB3=Tg)
0 0.407 0.676 0.635 0.718 0.753 0.012
5 0.746 0.637 0.765 0.837 0.867 0.973
10 0.997 0.640 0.766 0.844 0.874 1.000
20 1.000 0.637 0.769 0.844 0.874 1.000
T =200
p=1
. . tp,nL(TB,3) R
0  tpp(TB2) tp.1(TB3) CVendo CVexo CVpr P(IB3=Tp)
0 0.050 0.050 0.047 0.057 0.060 0.004
5 0.070 0.055 0.039 0.049 0.053 0.969
10 0.229 0.057 0.038 0.048 0.052 1.000
20 0.732 0.060 0.040 0.050 0.055 1.000
p=0.9
R R t,NnL(TB,3) .
0  tpp(TB2) tp,0(TB3) CVeindoe CVexo CVpyr P(IB3=Tg)
0 0.408 0.726 0.675 0.723 0.742 0.006
5 0.592 0.702 0.793 0.834 0.848 0.967
10 0.947 0.713 0.806 0.850 0.864 1.000
20 1.000 0.713 0.799 0.843 0.861 1.000
p=028
A A t, N (TB,3) .
0 t/A’uP(TB«,Q) 2Sﬁ,L(T‘B,S) Cvendn CV(‘XU CVDF P(TB,3 = T’B)
0 0.963 0.999 0.990 0.993 0.994 0.005
5 0.995 0.985 0.985 0.987 0.987 0.961
10 1.000 0.999 1.000 1.000 1.000 1.000
20 1.000 0.999 1.000 1.000 1.000 1.000
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Table 8: Results of unit root tests for annual inflation rates

Series Sample T ADF 74 k MO Tp A k
Canada  1971-2006 36  -1.421 0 -3.688** 1982 033 0
France  1971-2006 36  -1.219 1 -5.238*** 1984 0.39 5
Ttaly 1971-2006 36  -1.107 0 -4.815*** 1984 0.39 4
Japan 1971-2006 36 -1.991 0 -1.548 1979 0.25 0
UK 1971-2006 36 -1.774 0 -1.108 1979  0.25 3
Us 1971-2006 36  -2.679* 1  -3.446** 1984 0.39 4
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