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Abstract 

Carbon farming, particularly soil carbon climate strategies, has emerged as a popular tool in 

addressing climate change and variability in worldwide agriculture. Yet, there is a paucity of 

evidence on its application, and even more so, limited evidence exists on the welfare impacts 

in developing countries, where the negative impacts of climate change and variability remain 

disproportionately higher. This paper presents the results of a study on biochar and compost 

production training and its welfare effects on farm households in Northern Ghana using 

doubly robust estimators. We find that the intervention had statistically significant positive 

effects on agricultural productivity and welfare outcomes. The results show the prospect of 

using soil carbon climate strategies in improving the welfare of farm households in developing 

countries.  

Keywords: Climate-smart Agriculture, Carbon Farming; Biochar; Compost; Welfare; Poverty; 

Northern Ghana 

JEL classification: Q12; Q15; Q16; Q18; Q57; C21; I31; I32
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1. Introduction 

Currently, more than one-third of the worldwide population suffers from moderate or severe 

food insecurity, and between 700 to 828 million are considered undernourished; an increase 

of about 150 million from before Covid-19 level in 2019 (FAO et al., 2022). Similarly, about 8.6 

percent of the global population lives in poverty (The World Bank, 2021a). These figures make 

it appears very unlikely to achieve the United Nation’s (UN’s) Sustainable Development Goals 

(SDGs) related to welfare (UN, 2021) such as: poverty reduction (Goal 1), zero hunger (Goal 

2), good health and wellbeing (Goal 3), and gender equality (Goal 5) (UN, 2013; 2016). 

Evidently, economic wellbeing is determined by several factors related to the lack of adequate 

infrastructure (Morgan et al. 2020; Shively, 2017; Shively and Thapa, 2017), conflict and war 

(FAO et al., 2021; World Bank, 2021a), price volatility (Kalkuhl et al. 2016), lack of improved 

agricultural technologies and inputs (Suri and Udry, 2022), limited access to extension services 

(Tambo and Matimelo, 2021; Sheahan and Barret, 2017; Aker, 2011), and climate change and 

variability (FAO, 2015; FAO et al., 2021; World Bank, 2021a; Wheeler and von Braun 2013). 

These factors either singly or in combination, affect farm performance in terms of yields, 

technical efficiency, income and therefore, contributing to the vicious poverty cycle or 

intergenerational poverty mostly found in farm households in developing countries.  

In addition, climate change and weather variability threaten economic growth and 

development of many low-and-middle-income countries (LMICs) (Lomborg, 2020). They are 

ranked topmost among the factors affecting agricultural production in rainfed agricultural 

systems. Thus, climate change and weather variability negatively affect global food systems, 

particularly in the arid and semi-arid regions of Sub-Saharan Africa (SSA) (FAO et al., 2021; 

World Bank, 2021a; Wheeler and von Braun, 2013). The food system is interlinked with 

neighbouring systems, such as the health, ecological and energy system. Therefore, 

agriculture and climate are directly interdependent (von Braun et al. 2021). Specifically, 

climate change and weather variability affect farm performance whilst the food system also 

has implication for climate change as the main greenhouse gas (GHG) emitter.  

To address the challenges posed by the interlinkage between climate change and agricultural 

production, several innovative approaches, broadly classified as climate-smart agriculture 

(CSA), have been developed and adopted (World Bank, 2021b; Lipper et al. 2014). CSA 

includes climate-resilient agriculture (CRA) (Reddy, 2015; Alvar-Beltran et al. 2021), an 

approach to develop production methods and farming systems, such as integrated soil fertility 

management (ISFM) (Vanlauwe et al. 2015), that better cope with increasing climate 

variability. Additionally, the application of organic fertilisers including compost has positive 

effects on soil fertility (Ouédraogo et al. 2001; D’Hose et al. 2014; Hernández et al. 2016).  

Carbon farming (CF) has gained prominence as CSA approach in worldwide agriculture for 

simultaneously mitigating the negative impacts of climate change and variability, and also 

contributing to lower GHG emission. CF encompasses approaches to optimise soil carbon 

sequestration (McDonald et al. 2021; Nyssens, 2021).  Previous studies (Amelung et al. 2020; 
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FAO, 2019) have showed the potential link of soil carbon sequestration to food and nutrition 

security through improvement of soil health. According to FAO (2021), soil organic carbon is 

the primary indicator for assessing soil health. Additionally, recent initiatives promoted to 

improve soil carbon include FAO’s “recarbonization of global soils (RECSOIL)” programme 

(Amelung et al. 2020; FAO, 2019) which aims at improving farm households’ income, and food 

and nutrition security (FAO, 2019). Therefore, improving soil fertility is essential for rural 

poverty reduction in SSA (Vanlauwe et al. 2015).  

As another approach, the application of biochar (i.e. biological charcoal)-a product from 

partial pyrolysis of organic matter- has been proven to be effective in improving soil carbon 

sequestration (Gwenzi et al. 2015; Bach et al. 2016). Biochar is relatively stable in soils in the 

long-term and the abundant availability of biomass in countries like Ghana makes it suitable 

for large scale production (Duku et al. 2011). Similarly, previous studies have shown that the 

use of compost or organic fertilizer improve crop yield through higher gains in soil fertility 

(D’Hose et al. 2014; Hernández et al. 2016; Ouédraogo et al. 2001). Improvement of soil 

carbon sequestration through the application of biochar and compost could be useful in 

improving soil fertility, moisture retention and soil structure. For instance, a meta-analysis by 

Gross and Glaser (2021) found that biochar application improves nutrient availability and soil 

organic carbon (SOC) in a variety of different contexts. Mohammadi et al. (2017) found that 

the application of biochar increased the net present value of rice production by 12 percent in 

North Vietnam. Additionally, Kim et al. (2017) found that biochar application increases rice 

yield and also reduces CH4 emissions. Similar results have been reported on economic and 

agricultural productivity benefits for the application of biochar together with either organic 

or inorganic fertilizer (Zheng et al. 2017; Badu et al. 2019; Frimpong et al. 2021; MacCarthy et 

al. 2020).  

Interestingly, recent high prices for fertiliser and agricultural inputs require redoubling of 

efforts to local production of organic resources (i.e. biochar and compost) for farming in SSA. 

Promoting own production of organic resources from locally available raw materials is 

important for the sustainability of agricultural production in SSA. For instance, organic 

resources will make farming more efficient and boost soil health and yields in SSA. Besides, 

the application of biochar-compost (i.e. co-compost) mixtures combines the advantages of 

different CSA approaches and support soil fertility, restores degraded lands, and mitigates 

climate changes through carbon sequestration (Agegnehu et al. 2017; Gross and Glaser 2021; 

D’Hose et al. 2014; Gwenzi et al. 2015; Bach et al. 2016). In return, increased agricultural 

productivity could lead to high income, food and nutrition security, poverty reduction, among 

other welfare outcomes (see for example, FAO, 2019). While there is abundant evidence in 

the agronomic literature on the importance of biochar and compost as adaptation strategies 

to climate change and variability, soil fertility and agricultural productivity (Gwenzi et al. 2015; 

Bach et al. 2016; Mohammadi et al. 2017; Gross and Glaser, 2021; Kim et al. 2017; Zheng et 

al. 2017; Badu et al. 2019; Frimpong et al. 2021; MacCarthy et al. 2020), there is limited 

evidence on the determinants and economic benefits of adoption of these technologies by 
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farm households in developing countries (see a review on biochar by Gwenzi et al. 2015; Bach 

et al. 2016), particularly in settings where climate change is a threat to agricultural 

productivity. Unsurprisingly, the literature on adoption of biochar as soil amendment strategy 

in worldwide agriculture is dominated by studies in developed countries with limited evidence 

coming from Sub-Saharan Africa (Gwenzi et al. 2015).  Previous studies have shown that the 

application of organic resources (including biochar and compost) in worldwide agricultural 

system is affected by several constraints including high cost of production, lack of appropriate 

technology in production, land tenure system, and high application rate required per hectare 

(Gwenzi et al. 2015; Bach et al. 2016; Ouédraogo et al. 2001).  

Most importantly, the adoption of carbon farming techniques involves a complex mix of 

resources and policy frameworks. Therefore, training farmers on owned production of 

organic resources as soil carbon mitigation strategies is a crucial step in the adoption of such 

technologies. We find that the biochar and compost production training have a positive and 

statistically significant effect on diverse welfare outcomes, such as farm performance and 

poverty reduction. Specifically, relative to the comparison group, participating farm 

households increase the use of compost or organic fertilizer by 25.8 percent; the yield of 

maize by 487.49 kilograms per hectare (kg/ha); maize gross revenue per hectare by GHS 

760.75 (US$ 107); maize farming expenses by GHS 201.44 (US$ 29); per capita monthly food 

consumption expenditure by GHS 33.93 (US$ 5); and per capita total yearly expenditure by 

GHS 481.03 (US$ 68). Interestingly, probability of poverty likelihood decreased by 5.39 

percent.   

This study contributes to filling the gap in the literature with respect to welfare implications 

of carbon farming, specifically biochar-compost mixture, in tropical agricultural systems. 

Previous studies (Ouédraogo et al. 2001; Badu et al. 2019; Frimpong et al. 2021; MacCarthy 

et al. 2020) in developing countries context have analysed the potential of using biochar 

and/or compost to improve agricultural productivity in field experimental settings. This study 

takes a step further in analysing the decision to participate in biochar and compost production 

training and also subsequent application on farmer fields. Specifically, we examine the 

welfare effects of a 5-year (2015-2020) project implemented by the University of Ghana in 

Northern Ghana in which farmers were offered training on biochar and compost production 

using locally available resources. The project had additional components such as:  household 

waste sorting training; technical and business skills training; and biotechnology awareness 

programme. This is an important step in the empirical literature in adopting biochar and 

compost as carbon farming mechanisms in developing countries. To our knowledge, we 

present the first study on biochar and compost production training in SSA context; the region 

most affected by climate change and variability.  

Second, we add to the rapidly burgeoning literature on the effects of CSA practices on farm 

performance and welfare, particularly in the social science literature on moving agricultural 

production technologies from field experiments to farm household level. This is essential in 

the adoption of new and improved agricultural technologies, as many promising technologies 
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and innovations developed for agricultural production in developing countries are largely 

abandoned at the field experiment level without actual use by farm households. Additionally, 

issues of endogeneity due to non-random adoption of these techniques persist leading to 

potentially biased estimates. We rely on rigorous econometric techniques with several 

robustness checks such as doubly robust treatment effect estimations to address potential 

selection bias to generate evidence on the impact of biochar and compost production training 

on the welfare of farm households in the semi-arid regions of Ghana.  

Third, the project targeted multiple crops including staple (maize and rice) and cash crop 

(soya) cultivated by farm households and this is an important addition to the empirical 

literature. Previous studies (Badu et al. 2019; Ouédraogo et al. 2001; Frimpong et al. 2021; 

MacCarthy et al. 2020) have targeted one crop and largely concentrated on either staples or 

vegetables which are mainly cultivated on small piece of plot, particularly in experimental 

studies. By concentrating on multiple crops, the results from the training programme suggest 

that soil carbon mitigation strategies could have broader appeal to rural farm households in 

developing countries and that such technologies have the prospect of improving the welfare 

of farm households.  

Finally, the study shows that properly designed carbon farming techniques, particularly 

training programmes on soil climate mitigation strategies can relax the constraints in the 

adoption of soil fertility practices and increase the agricultural productivity of farm 

households, allowing them to purchase food and other essential goods and services, and 

thereby contribute to welfare improvement such as poverty reduction. The results suggest 

that the project could be replicated in other developing countries and the impacts could be 

much more if targeted to high valued horticultural crops including vegetables which tend to 

have higher profitability margins. Therefore, our results are more likely to be lower bound of 

the potential welfare impacts of soil climate mitigation strategies in developing countries.  

The rest of the paper is arranged as follows: Section 2 describes the concept of carbon 

farming. Section 3 describes the methodology and data while Section 4 presents the results 

and discussion. Section 5 concludes the study by indicating the policy implications and areas 

for future research.  

2. Background 

2.1 Carbon Farming  

The concept of “carbon farming” has become one of the popular mechanisms in worldwide 

agricultural system, particularly in developed countries as a tool for climate change and 

variability mitigation and/or adaptation. Even though it is a relatively new concept in the 

literature, the term follows the footsteps of antecedents in addressing climate change and 

variability such as CSA, CRA, CA, and IFM. In the literature, CF is largely discussed in relation 

to land use management practices in improving soil carbon sequestration. The European 

Environmental Bureau (EEB), for example, defines carbon farming as “the management of 
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land-based greenhouse gas (GHG) fluxes, including carbon pools and flows in soils, materials 

and vegetation, with the purpose of reducing emissions and increasing carbon removal and 

storage” (Nyssens, 2021) while McDonald et al. (2021) refer to carbon farming as “… 

sequestering and storing carbon and/or reducing GHG emissions at farm level”. The common 

theme through these definitions is the idea that CF reflects the ability of land use 

management practices to increase soil carbon sequestration to address climate change and 

variability. By explicitly contributing to mitigating GHG emissions and carbon sequestration, 

CF goes beyond most existing CSA and CRA approaches. However, implementation of carbon 

farming techniques including soil climate mitigation strategies is complex and resource 

intensive, and at times with uncertain outcomes (see for example, McDonald et al. 2021). 

Interestingly, carbon farming does not occur in isolation from the existing farming systems 

but involves the application of certain good agricultural practices which have long been 

associated with climate change and variability mitigation and/or adaptation, such as organic 

fertilisation through composting and biochar. As such, training farmers on the production of 

carbon farming resources as soil carbon mitigation strategies is an important component of 

the adoption of such technologies.  

McDonald et al. (2021) classified CF into five main components, such as: managing peatlands; 

agroforestry; maintain and enhance SOC on mineral soils; livestock and manure management; 

nutrient management on croplands and grasslands. Furthermore, each category of CF 

addresses different source of actions, per hectare mitigation potential, benefits to farmers 

and society, and associated risks (see McDonald et al. 2021 for details), although they all fit 

as mitigation and/or adaptation strategies for climate change and variability. For instance, 

SOC option has mitigation potential of 0.5-7 tCO2-e per hectare per year (tCO2-e/ha/yr) and 

the benefits for applying this option include increased soil water retention capacity and yields 

(McDonald et al. 2021). Therefore, CF factor in diverse options of land use management in 

improving soil carbon sequestration (see for example, McDonald et al. 2021; Nyssens, 2021). 

More importantly, the SOC component of carbon farming is applicable to “any farming 

system” (McDonald et al. 2021) and its potential risk include the application of contaminated 

biochar and compost that could have negative effect on soil health and biodiversity 

(McDonald et al. 2021). However, it remains an empirical issue to understand if CF options in 

developing countries could have economic welfare benefits through reducing the effects of 

climate change and variability. 

2.2 Study Setting 

The importance of agriculture for welfare improvement is more evident in Northern Ghana, 

where in some regions (Upper East and Upper West), over 80% of the population depends on 

it for their livelihoods (Ghana Statistical Service (GSS), 2019). However, agricultural 

production in Northern Ghana is characterized by poor soil fertility and increased climate 

variability leading to low productivity (see for example, Ministry of Food and Agriculture 

(MoFA), 2021). Therefore, it is not surprising that poverty, hunger, and malnutrition are 

disproportionately higher in Northern Ghana compared to Southern Ghana (GSS, 2019). In 
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Northern Ghana, agricultural production is undertaken under rainfed system with limited 

application of improved agricultural technologies. Agricultural production is undertaken from 

May of the year with harvesting taking place in December, meaning that only one major 

planting season per year. Furthermore, most of the agricultural production are undertaken 

by smallholder farmers for subsistence purposes with limited commercialization (MoFA, 

2021).  

In recent times, climate change and variability have become more visible with low levels of 

rainfall for agricultural production in Northern Ghana (i.e. the semi-arid part of Ghana). 

Northern Ghana experiences daytime temperatures as high as above 40 0Celcius (MoFA, 

2021). The 10-year average rainfall was 1,069 mm, 940 mm, and 675 mm for Northern, Upper 

East and Upper West regions, respectively. In 2020, the average rainfall was 1000 millimetres 

(mm) in Sudan Savannah and 1100 mm in the Guinea Savannah agro-ecological zones 

compared to 1800 mm in the rain forest agro-ecological zone. Besides, Northern, Upper West 

and Upper East regions experienced 32.9%, 0.3% and 38.3% less rainfall in 2020 compared to 

2019, respectively (MoFA, 2021). Previous studies have shown the importance of both CSA 

practises (Issahaku and Abdulai, 2019) and conventional agricultural training and improved 

technologies (Bedi et al. 2022) to address climate change and variability in the region.  

Therefore, several programmes (e.g, National Climate Change Master Plan (2015–2020); 

Climate Change Adaptation in Northern Ghana; and Resilient and Sustainable Livelihoods 

Transformation in Northern Ghana) have been undertaken to address climate change and 

variability in Ghana with varying degree of success (refer to Etwire et al. 2022 for discussion 

on this topic). Similarly, soils in Northern Ghana are poor with low soil organic matter and 

phosphorus levels (MoFA, 2021). For instance, soil organic matter was 0.00-6.74%, 0.54-

6.74%, and 0.77-6.74% in Northern, Upper East, and Upper West regions, respectively. These 

figures are low compared to other food production regions such as Ashanti and Brong Ahafo 

regions (0.00-13.83%) (MoFA, 2021). The general low-quality soils in Northern Ghana have 

led to the implementation of soil health and land use management interventions such as the 

Alliance for a Green Revolution in Africa (AGRA)’s Soil Health Project (SHP) (refer to Martey 

and Kuwornu, 2021 for additional information).  

2.3 USAID-UG Project 

In light of previous soil health interventions, the School of Agriculture, College of Basic and 

Applied Sciences, University of Ghana, Legon worked with smallholder farmers in three 

districts in Northern Ghana (refer to Figure 1 for the map of the study area): Lawra district, 

Upper West; West Mamprusi municipal, North East region (formerly part of Northern region); 

and Bawku municipal, Upper East region through the various Departments of Agriculture 

based on the production of crops of interest (i.e. maize, rice and soyabean) and previous 

experience on similar programmes. The Department of Agriculture is a government 

institution responsible for supporting farmers in the adoption of improved agricultural 

technologies. The project districts are located in the Guinea and Sudan savannah 
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agroecological zones which experience monomodal rainfall pattern (MoFA, 2021; Etwire et 

al. 2022; Martey and Kuwornu, 2021).  

The USAID-UG Institutional Capacity Building for Agriculture Productivity Project (i.e. USAID-

UG Project) involved Departments of Crop Science, Soil Science, Agricultural Extension, and, 

Agricultural Economics and Agribusiness. The main goal of the project was to increase 

agricultural productivity, food security and poverty reduction in farming communities 

through strengthening the capacity of households, farmer groups and agricultural extension 

agents to promote the adoption of soil carbon climate mitigation strategies (i.e. CF practices). 

Specifically, the project aimed at increasing the productivity of rice, maize and soya beans 

through the production and scaling up of biochar, and combination of biochar and compost 

(Co-compost); and undertaking a series of capacity building initiatives of stakeholders such as 

household waste sorting training; technical and business skills training; and biotechnology 

awareness programme. Additionally, the project undertook pilot study on evaluating the 

impact of project components on smallholder farmers in the three districts in Northern 

Ghana. 

Farmer groups in the project sites were selected in 2016 based on previous experience with 

the various Departments of Agriculture. In 2017, training on the various components was 

undertaken where 10 farmers from each district, making a total of 30 farmers were selected 

for a short capacity building on carbon farming strategies, business support, among others at 

the University of Ghana, Legon. Participants were nominated by the farmer groups for the 

training programme. After this initial training programme, further training programmes were 

organized in the various districts where 30 farmers from each district, making a total of 90 

farmers were taken through various components of the projects. Facilitators from the School 

of Agriculture designed the training protocols and implemented with the various 

Departments of Agriculture.  

Beginning from the 2018 farming season, experimental fields, compost platforms, locally 

manufactured kilns, among other equipment were procured to produce biochar and compost 

for field experiments and on-farm field trials. These activities were undertaken with the active 

participation of the farmers and the agricultural extension agents (AEA) from the 

Departments of Agriculture. At this stage, all farmer group members were entitled to 

participate in the project activities.  

Since 2018, each farmer group met weekly at the project venue for the collection of raw 

materials, charring and compost preparation. In 2018 and 2019 farming seasons, the field 

experiments demonstrated the different application rates for biochar and inorganic fertilizer. 

Similarly, during the 2020 farming season, the project experimented the application of 

biochar with compost known as “co-compost”. Interestingly, since the completion of the 

project in 2020, the farmer groups continue to meet regularly to produce biochar and 

compost for agricultural production. More significantly, some of the farmers produced their 

own biochar and compost for farming activities. Lastly, whilst biochar and compost were 
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produced by the various farmer groups based on training and logistical arrangements, the 

products were shared to the farmers for the use on their plots. Since the inception of the 

project in 2015, about 200 farmers have participated in the biochar and compost production 

project either been originally selected by their farmer groups or through project activities at 

the farmer group levels.  

Figure 1: Map of the Project Sites  

 

3. Methodology and Data 

3.1 Research Design and Sample Selection 

The study was granted ethical approval from the Ethics Committee of the Basic and Applied 

Sciences (ECBAS), University of Ghana, Legon in December 2021. The study employed a 

multistage sampling procedure to select 472 farm households in Northern Ghana. The study 

selected farm households who participated in the USAID-UG Project and similar farm 

households in non-project communities. We relied on the list of 90 participants1 from the 

Project Secretariat that was used in previous pilot surveys in 2020 and 2021. We undertook a 

census where participants on the list formed the initial sampling frame. Additional tracking 

was undertaken based on information from project and farmer group leaders to identify all 

members who have participated in the project activities. In total, we identified 192 farm 

households with participants in the USAID-UG project activities, of which 165 participated in 

the biochar and compost component (i.e. the focus of this study).  

                                                           
1 This was defined as farm households originally selected as participants by their farmer groups for project 
activities.  
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Furthermore, the pilot surveys identified 47 non-participant farm households 2 in the project 

communities and we relied on this list to form the first half of the comparison group. We then 

proceeded to adjoining non-project communities to randomly select additional farm 

households to form the other half of the comparison group, making a total of 280 comparison 

farm households. Sampling of farm households from non-project communities was 

undertaken by dividing the communities into four quadrants based on the principal streets. 

Then in each quadrant, every fourth (4th) household was interviewed for the survey. 

Interviews were conducted with the household head or spouse based on their knowledge of 

climate change and variability adaptation practices, sociodemographic, food and nutrition 

security and agricultural production characteristics. At the end of the household survey, we 

enumerated 151, 152 and 169 farm households in Bawku municipal3, Lawra district and West 

Mamprusi municipal, respectively.  

Taking into consideration the COVID-19 safety protocols and the location of residence of the 

field data enumerators, the study adopted several innovative approaches for the data 

collection exercise. First, we employed experienced field data enumerators with tertiary 

education and also able to speak the local language of the farm households in the respective 

project districts. Second, the survey instruments were shared with the field data enumerators 

about five days prior to the training workshop for the data collection. This was to ensure that 

the field data enumerators acquainted themselves with the survey instruments before the 

virtual training workshop. Third, a 2-day online (virtual) training was undertaken using Zoom 

software for all the field data enumerators based on the paper survey instruments. Constant 

roll-calls and tasking of field data enumerators to read and explain portions of the survey 

instruments were undertaken to ensure punctuality and understanding of the survey 

instruments.  

Fourth, after the virtual training workshop, each field data enumerator was tasked to identify 

and interview two farm households in their communities using the revised paper-based 

survey instruments. Fifth, a 2-day in-person training sessions were organized for each survey 

team in the project districts using an electronically developed CAPI programme based on 

CsPro software. Another round of pretesting and role plays were undertaken by the field data 

enumerators before the commencement of the actual data collection. In total, 5 days of 

training and pretesting activities were undertaken before data collection exercise. Sixth, 

robust data quality mechanism was put in place to monitor in real time the submitted data 

                                                           
2 This included farmers who were not originally selected by their farmer groups to participate in the project 
activities and also non-farmer group members. Therefore, we relax this definition in this study and include farm 
households who have participated in the project activities as participants leaving out the non-farmer group 
members as the non-participants. In all, about 30 farmers were re-classified as participants.  
3 Due to ethnic conflict in Bawku municipal during the data collection, the study based on ethical reasons did 
not undertake data collection in the city center and also communities affected by the conflict such as Kpalore, 
etc. Therefore, periphery communities were targeted for the data collection to avoid risking the lives of the data 
enumerators. In addition, residents and district agricultural extension agents with tertiary education used for 
the pilot surveys in 2020 and 2021 were recruited for the data collection due to their knowledge on the terrain 
in the municipality.  
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by the field data enumerators. Data delivered by the field data enumerators to the servers 

were occasionally checked and field data enumerators were promptly informed on the 

outcomes of their interviews. Seventh, all field data enumerators were advised to follow 

strictly the COVID-19 safety protocols. Lastly, participating farm households were given three 

pieces of soap as a token of appreciation for responding to the survey instruments.   

The survey was conducted in March-April 2022 on the 2021 farming season together with 

socioeconomic characteristics. For project crops of interest (i.e. rice, maize and soya), a recall 

data collection for the 2020 and 2019 farming seasons was undertaken where production 

information was collected to create a 3-year recall panel4 (i.e. 2019, 2020 and 2021). Previous 

studies (Atta-Ankomah et al. 2022; Benin, 2015) have employed this technique to collect 

household and firm level data on performance and mechanization services in Ghana. The 

detailed household survey instrument included modules on location and identification 

including GPS coordinates of dwelling and community; dwelling characteristics and household 

possession; integrated soil fertility management, climate change and variability; agricultural 

production; household income and expenditure; Innovations for Poverty Action (IPA)’s 

poverty probability index (PPI); food security; business enterprises; shocks and environmental 

resource scarcity; institutional and business support services, social capital and risk attitude; 

beneficiary module; and willingness to pay for biochar and compost; among others. Similarly, 

a short community questionnaire was designed to identify existing rural infrastructure and 

agricultural production activities in the project sites. In total, data collection was undertaken 

in 38 communities with the breakdown as follows: 15, 12, and 11 communities in Bawku 

municipal, Lawra district and West Mamprusi municipal, respectively.   

3.2 Treatment Effects Estimations  

The main objective of the study is to examine the effects of the biochar and compost 

production training (i.e. carbon farming training) on six indicators of welfare of farm 

households in Northern Ghana: maize productivity (kg/ha), gross maize revenue (GHS/ha), 

maize farming expenses (GHS/ha), per capita food expenditure (GHS), per capita total 

expenditure (GHS), and poverty likelihood (%). This could be achieved by employing a 

standard econometric technique, for example, ordinary least squares (OLS) to estimate the 

basic regression model, specified as follows: 

𝑊𝑖 = 𝛽 + 𝛾𝑃𝑖 + 𝑋𝑖𝛿 + 휀𝑖                                                                                                                     (1) 

where 𝑊𝑖 is the welfare measure (for instance, poverty likelihood status) of farm household 

𝑖. Let 𝑃𝑖  represents an indicator variable for participation in biochar and compost production 

training measured as 1 if a farm household had a participant in the project and 0 for the 

comparison group, and 𝛾 represents the coefficient for the treatment effect estimates. In all 

regression models, we include a vector of household and community characteristics including 

                                                           
4 Whilst this approach is cost-effective in creating a panel data, it may be affected by recall bias. However, since 
this study deals with agricultural production which forms part of household daily activities, the effect of recall 
bias should be minimum.  
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district dummies, which is represented as 𝑋𝑖 and, 휀𝑖 represents the error term. Clustered 

standard errors adjusted at the 38 communities are reported.  

However, this approach could lead to biased estimates of the effects of biochar and compost 

production training due to non-random selection of participants leading to endogeneity 

problems. As described in Section 3, selection bias due to self-selection and the influence of 

farmer group leaders could possibly affect participation in the project. Therefore, without 

adequately addressing these potential selection bias and endogeneity scenarios could result 

in upward biased estimates of the treatment effects. Similarly, participating farm households 

may be systematically different from the non-participating farm households, and this could 

also lead to biased estimates of the treatment effects.  

We address these endogeneity issues related to the non-random selection of participants by 

estimating treatment effects using the inverse probability weighting regression adjustment 

(IPWRA) (Imbens & Wooldridge, 2009; Cattaneo, 2010; Drukker, 2016). The IPWRA has been 

employed by several empirical papers (Okyere and Ahene-Codjoe, 2022; Okyere et al., 2022; 

Manda et al., 2018; Okyere, 2021; Okyere & Usman, 2021; Tambo & Mockshell, 2018) based 

on its doubly robust property (Imbens & Wooldridge, 2009; Cattaneo, 2010; Drukker, 2016), 

where correct specification of either the treatment or outcome model generates robust 

estimates of the effects of carbon farming training on welfare. The IPWRA estimator allows 

the comparison of the expected welfare of farm households with participants in the biochar 

and compost production training to their counterparts that did not participate in the training. 

As previously shown in literature (Cattaneo, 2010; Manda et al., 2018), we estimate an 

average treatment effect on the treated (ATT) using the following basic regression model: 

𝐴𝑇𝑇 = 𝐸(𝑊1𝑖|𝑃𝑖 = 1) − 𝐸(𝑊0𝑖|𝑃𝑖 = 1)                                                                                                    (2) 

where 𝐸() represents the expectation operator, 𝑃𝑖  is a dummy variable measured as 1 if the 

farm household had a participant in the biochar and compost production training,  𝑊1𝑖 and 

𝑊0𝑖 represent welfare outcomes of participating and non-participating farm households, 

respectively. In estimating the effects of participation in carbon farming training, we compare 

the average outcomes for participating farm households with the outcomes of non-

participating farm households. Additionally, we estimate the effects of the project on not only 

the direct outcomes but also the indirect effects including poverty likelihood. This study 

expects that the project will increase the adoption of soil health strategies, increase resilience 

to climatic shocks, and increase technical efficiency leading to increased agricultural 

productivity, and finally, reduction in poverty likelihood in the project sites. Specifically, the 

study anticipates that the project will increase farm households’ knowledge and perceptions 

on soil fertility practices and increase the adoption of good agricultural practices which will 

translate to higher technical efficiency, agricultural productivity, and ultimately, reduction in 

poverty likelihood in Northern Ghana.  

We undertake robustness checks by employing least absolute shrinkage and selection 

operator treatment effects (TELASSO) method.  Lasso is a machine learning technique that 
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allows the selection of relevant covariates for a model and its treatment effect model has the 

doubly robust property (Chernozhukov et al. 2018; Koch et al. 2018; StataCorp. 2021).  

4. Empirical Results 

4.1. Descriptive Statistics 

Table 1 presents the summary statistics on indicators for the USAID-UG Project. We find that 

majority of the farm households (56%) were aware of the project in their communities. 

Interestingly, 41 percent of the farm households participated in at least one component of 

the project whilst about 35 percent of the farm households were participants in the biochar 

and compost production component. The average period of participation in the project was 

40 months (equivalent over 3 years). Overwhelming majority of the farm households were 

satisfied with the application of biochar and/or compost for agricultural production and 

would like to partake in the project in the future. On average, 93.43 kilograms (kg) of biochar 

and/or compost were applied on farmer plots during the 2021 farming season. Lastly, 

majority of the farm households (64.8%) rely on inorganic fertilizer only for maize farming in 

the study sites, followed by the application of both organic and inorganic fertilizer (23.6%). 

About 3.9 percent of the households rely on organic fertilizer only for maize farming in the 

study sites.   

Table 1: Summary Statistics of USAID-UG Project Indicators 
Indicators Mean S.D. 

 (1) (2) 

Awareness of USAID-UG Project (dummy) 0.561 0.497 

Participated in the USAID-UG Project (dummy) 0.407 0.492 

Participated in the biochar and compost component of the USAID-
UG Project (dummy) 

0.350 0.477 

Number of months of participation in the USAID-UG Project 
(number) a 

40.516 16.089 

Partake in the USAID-UG Project in the future (dummy)a 0.990 0.102 

Respondent is very satisfied or satisfied with the use of biochar 
and/or compost b 

0.990 0.100 

Amount of biochar and/or compost applied to farm during 2021 
farming season (kg) (including 0s) 

93.432 273.744 

Household used neither organic nor inorganic fertilizer 0.078 0.268 

Household used inorganic fertilizer only 0.648 0.478 

Household used organic fertilizer only 0.039 0.194 

Household used both organic and inorganic fertilizer 0.236 0.425 

Notes: a reports results for participating farm households and S.D. indicates standard deviation. b represents 

only farm households using biochar and/or compost.  

Table 2 present the summary statistics of fertilizer application and farm performance. Results 

show that adoption of both organic and inorganic fertilizer leads to higher maize yield and 

gross revenue. Surprisingly, application of neither organic nor inorganic fertilizer application 

generates higher yields compared to use of inorganic or organic fertilizer only. This is 

counterintuitive and may be due to the relatively small samples for the neither organic nor 

inorganic, and organic fertilizer only categories. Another plausible explanation could be the 
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lag effects of fertilizer application on farmer fields (i.e., benefit of previous usage of fertilizer 

on the plots).  

Table 2: Summary Statistics of Fertilizer Application and Farm Performance 
Indicators Maize yield (kg/ha) Maize gross margin 

(GHS/ha) 
Maize gross revenue 
(GHS/ha) 

 (1) (2) (3) 

Neither organic nor inorganic 
fertilizer 

868.574 (155.725) 993.980 (325.262) 1713.163 (279.9778) 

Inorganic fertilizer only 753.845 (77.880) 371.184 (86.547) 1689.255 (88.823) 

Organic fertilizer only 754.615 (162.511) 1303.241 (312.271) 1768.859 (291.790) 

Both organic and inorganic fertilizer 1234.225 (137.847) 630.713 (211.317) 2198.911 (203.892) 

Notes: Standard errors in parentheses. 

Table 3 presents the summary statistics for our data, disaggregated by participants and non-

participants in the biochar and compost production training. The results showed that majority 

of the farm households in Northern Ghana are male-headed and have an average household 

size of five members. The average household head is about 48 years and largely illiterate (i.e. 

cannot read and write in English) or with low educational status. Agricultural production in 

Ghana is dominated by smallholder farmers (MoFA, 2021) and this is evident in our sample 

where average maize farm size is about 1.42 hectares and total land under cultivation was 

about 2.21 hectares. Most of the farm households are risk neutral based on perceived risk 

attitude and this is similar to previous results found in Rwanda and Zambia (Tambo and 

Matimelo, 2021; Tambo et al. 2021). Interestingly, we find that most of the household head 

characteristics were similar for both participating and non-participating farm households.  

However, we find statistically significant differences in farm and household socio-economic 

characteristics between participating and non-participating farm households in the biochar 

and compost production. For instance, participating farm households were more likely to 

belong to farmer groups, have larger farm area under cultivation and have better off-farm 

business activities. Compared to non-participating farm households, participating farm 

households have longer distance from their dwelling to agricultural extension offices, agro-

dealer shops, and markets, but have better access to extension services.  Table 3 also presents 

the descriptive statistics on farm performance. Unsurprisingly, participating farm households 

have better farm performance such as maize productivity and gross revenue compared to 

non-participating farm households. Similarly, participants have higher perception on soil 

quality compared to non-participant, but do not adopt more climate change and variability 

adaptation strategies than their non-participating farm households. Compared to non-

participating farm households, participating farm households are more likely to purchase or 

use compost or organic fertilizer, herbicides, insecticides, seeds and irrigation for agricultural 

production during the 2021 farming season. Participating farm households have higher 

premium for compost and biochar compared to their non-participating farm household 

counterparts. Interestingly, both groups are similar when it comes to the adoption of 

monocropping farming system, sloppiness of farm land, and hiring of farm labour. 
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Finally, Table 3 also presents the welfare measures.  Similarly, per capita household and food 

consumption expenditure were higher for participating farm households compared to non-

participating farm households.  Additionally, using IPA (2019)’s PPI score, we find poverty 

likelihood to be high in Northern Ghana (see also GSS, 2019). The IPA’s PPI is based on ten 

questions ranging from consumption of meat and eggs in the past one month to ownership 

of television, fan, refrigerator to housing construction materials. Based on the PPI, 55.78 

percent, 29.10 percent and 17.50 percent of the farm households in our sample were likely 

to be poor based on the national poverty, extreme poverty and US$ 1.25 per person per day 

poverty lines, respectively. Significantly less participating farm households were poor than 

non-participating farm households. Overall, our results suggest that farm households 

participating in the biochar and compost production are more productive, spend more on 

food and non-food items, and less poor than non-participating farm households, and thus 

give an indication of positive association of the training on farm performance and welfare.  

The next sub-section ascertains using doubly robust econometric analyses on whether this 

positive relationship is the causal effect of the carbon farming training after accounting for 

differences in 20 covariates among the participating and non-participating farm households.  
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Table 3: Summary Statistics and Balance Test for Biochar and Compost Production Training 
Variable  Full sample  

(1) 

Participant farm 

households  

(2) 

Non-participant farm 

households 

(3) 

Differences 

(4) 

Household socio-demographic characteristics     

Age of household head (years) 48.021 (13.838) 48.412 (12.792) 47.811 (14.384) 0.601 (1.337) 

Household size (number) 4.875 (2.091) 5.055 (2.234) 4.779 (2.007) 0.276 (0.202) 

Male headed household (dummy) 0.697 (0.460) 0.679 (0.468) 0.707 (0.456) -0.028 (0.044) 

Household head is educated to at least Junior High School 

level (dummy) 

0.227 (0.419) 0.242 (0.430) 0.218 (0.414) 0.024 (0.040) 

Household head is illiterate (i.e. cannot read and/or write 

in English) (dummy) 

0.773 (0.419) 0.764 (0.426) 0.779 (0.416) -0.015 (0.040) 

Household head is married (dummy)  0.756 (0.430) 0.788 (0.410) 0.739 (0.440) 0.048 (0.041) 

Household head is Muslim (dummy) 0.523 (0.500) 0.558 (0.498) 0.505 (0.501) 0.053 (0.048) 

Farming is main activity of household head (dummy) 0.725 (0.447) 0.782 (0.414) 0.694 (0.462) 0.088 (0.043)** 

Household resides in Bawku municipal (dummy) 0.320 (0.467) 0.400 (0.491) 0.276 (0.448) 0.123 (0.045)*** 

Household resides in West Mamprusi municipal (dummy) 0.358 (0.480) 0.358 (0.481) 0.358 (0.480) -0.001 (0.046) 

Household resides in Lawra district (dummy) 0.322 (0.468) 0.242 (0.430) 0.365 (0.482) -0.122 (0.045)*** 

Household member belongs to a farmer group (dummy) 0.608 (0.489) 0.727 (0.447) 0.544 (0.499) 0.183 (0.046)*** 

Perceived risk attitude of respondent (number) 5.727 (2.822) 5.806 (2.845) 5.684 (2.812) 0.122 (0.273) 

System on mutual aid among farmers (dummy) 0.506 (0.500) 0.582 (0.495) 0.466 (0.500) 0.116 (0.048)** 

Household has participated in survey in the last 3 years  0.644 (0.479) 0.897 (0.305) 0.508 (0.501) 0.389 (0.043)*** 

Off-farm business activity (dummy) 0.328 (0.470) 0.424 (0.496) 0.277 (0.448) 0.147 (0.045)*** 

10 year average rainfall (mm) 900.850 (164.614) 921.885 (150.946) 889.544 (170.679) 32.341 (15.837)** 

30 year average rainfall (mm) 1034.430 (100.356) 1025.558 (105.927) 1039.199 (97.073) -13.641 (9.677) 

Distance from dwelling to extension office (km) 4.376 (4.947) 5.289 (5.345) 3.886 (4.655) 1.403 (0.474)*** 

Distance from dwelling to extension office (mins) 57.824 (49.987) 65.418 (50.514) 53.743 (49.301) 11.676 (4.800)** 

Distance from dwelling to agro-dealer (km)  3.350 (5.085) 4.312 (5.126) 2.832 (4.995) 1.480 (0.487)*** 

Distance from dwelling to agro-dealer (mins) 45.722 (48.484) 55.145 (51.005) 40.658 (46.372) 14.487 (4.637)*** 

Distance from dwelling to market (km) 3.875 (5.211) 4.294 (4.946) 3.650 (5.342) 0.644 (0.503) 

Distance from dwelling to market (mins) 49.956 (44.438) 53.327 (45.978) 48.143 (43.556) 5.184 (4.287) 
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Distance from dwelling to all-weather road (km) 2.427 (5.178) 3.414 (5.427) 1.896 (4.968) 1.518 (0.495)*** 

Distance from dwelling to all-weather road (mins) 25.422 (32.628) 34.994 (41.037) 20.277 (25.693) 14.717 (3.079)*** 

Household participate in extension services (dummy) 0.722 (0.448) 0.909 (0.288) 0.622 (0.486) 0.287 (0.041)*** 

Awareness of climate change and variability (dummy) 0.801 (0.400) 0.830 (0.377) 0.785 (0.411) 0.045 (0.039) 

Total number of climate change and variability adaptation 

strategies (number; 0-8) 

2.835 (1.776) 2.891 (1.838) 2.805 (1.744) 0.086 (0.172) 

Farm soil quality perceived to be poor (dummy) 0.208 (0.406) 0.151 (0.360) 0.238 (0.426) -0.086 (0.039)** 

Total agriculture land ownership (ha) 2.665 (3.062) 3.365 (4.303) 2.289 (2.025) 1.076 (0.292)*** 

Total cultivated land (ha) 2.211 (1.976) 2.439 (2.090) 2.088 (1.905) 0.351 (0.190)* 

Farm performance indicators     

Household cultivated maize during 2021 farming season 

(dummy) 

0.926 (0.262) 0.927 (0.260) 0.925 (0.264) 0.002 (0.025) 

Maize area under cultivation (ha)b 1.421 (1.290) 1.630 (1.604) 1.308 (1.071)   0.322 (0.129)** 

Maize yield (kg/ha) b 875.604 (1266.244) 1210.713 (1156.026) 689.714 (1288.363) 521.000 (127.817)*** 

Maize gross margin (GHS/ha) b 506.364 (1613.269) 937.828 (1880.731) 286.621 (1412.263) 651.207 (166.415)*** 

Maize farming expenditure (GHS/ha) b 1164.922 (763.135) 1313.939 (818.615) 1089.028 (723.107) 224.911 (79.414)*** 

Maize gross revenue (GHS/ha) b 1808.572 (1600.747) 2397.898 (1841.532) 1508.551 (1372.396) 889.348 (160.538)*** 

Household purchases seeds (dummy) b 0.239 (0.427) 0.346 (0.477) 0.182 (0.387) 0.164 (0.042)*** 

Household purchases inorganic fertilizer (dummy) b 0.883 (0.321) 0.850 (0.359) 0.901 (0.299) -0.052 (0.032) 

Total inorganic fertilizer application (kg/ha) b 364.112 (276.787) 367.587 (277.791) 362.240 (276.717) 5.347 (27.788) 

Total amount spent on inorganic fertilizer (GHS/ha) b 701.995 (596.585) 744.425 (613.546) 678.975 (586.997) 65.450 (59.889) 

Household purchases organic fertilizer (dummy) b 0.273 (0.446) 0.449 (0.499) 0.179 (0.384) 0.270 (0.042)*** 

Total organic fertilizer and/or biochar application during 

2021 farming season (including 0s; kg) 

93.432 (273.744) 238.182 (388.159) 15.635 (131.233) 222.547 (24.379)*** 

Household purchases weedicides/herbicides (dummy) b 0.582 (0.494) 0.667 (0.473) 0.536 (0.500) 0.131 (0.049)*** 

Household purchases insecticides/pesticides (dummy) b 0.336 (0.473) 0.417 (0.495) 0.292 (0.456) 0.125 (0.047)*** 

Household uses irrigation (dummy) 0.307 (0.462) 0.382 (0.487) 0.267 (0.443) 0.115 (0.044)*** 

Household uses hired labour (dummy) b 0.474 (0.500) 0.526 (0.501) 0.447 (0.498) 0.079 (0.050) 

Farmland perceived to be flat (dummy) 0.629 (0.484) 0.630 (0.484) 0.629 (0.484) 0.002 (0.047) 

Monocropping farming system (dummy) 0.549 (0.498) 0.552 (0.499) 0.547 (0.499) 0.004 (0.048) 

WTP for biochar (GHS) 43.083 (25.109) 51.176 (24.256) 38.733 (24.511) 12.443 (2.357)*** 
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WTP for compost (GHS) 45.735 (25.294) 52.782 (23.507) 41.948 (25.445) 10.834 (2.393)*** 

WTP for both biochar and compost (GHS) 88.818 (48.877) 103.958 (46.971) 80.681 (48.007) 23.277 (4.599)*** 

Welfare indicators     

Household monthly food expenditure per capita (GHS) 69.082 (111.503) 95.844 (150.349) 54.699 (80.177) 41.145 (10.606)*** 

Household yearly food expenditure per capita (GHS) 828.983 (1338.040) 1150.124 (1804.191) 656.382 (962.119) 493.742 (127.276)*** 

Non-food yearly expenditure per capita (GHS) 635.836 (866.128) 705.882 (951.375) 598.189 (815.797) 107.694 (83.548) 

Total yearly expenditure per capita (GHS) 1464.819 (1806.090) 1856.007 (2328.380) 1254.571 (1410.119) 601.436 (172.307)*** 

National poverty line PPI scorecard 22.561 (12.647) 24.370 (13.984) 21.590 (11.776) 2.780 (1.215)** 

National poverty likelihood status 55.776 (21.690) 52.936 (23.597) 57.302 (20.470) -4.366 (2.086)** 

Extreme poverty line PPI scorecard 15.693 (10.094) 17.758 (11.293) 14.583 (9.217) 3.175 (0.964)*** 

Extreme poverty likelihood status 29.097 (16.622) 26.435 (17.138) 30.528 (16.186) -4.093 (1.595)** 

Poverty likelihood PPI scorecard (US$1.25/person/day) 22.112 (12.731) 25.030 (13.837) 20.544 (11.824) 4.486 (1.213)*** 

Poverty likelihood status (US$1.25/person/day) 17.498 (13.301) 14.990 (12.965) 18.846 (13.305) -3.856 (1.273)*** 

No. of observations 472 165 307 --- 

Notes: b reports summary statistics for only maize growers during 2021 farming season. Columns (1)-(3) presents the means and standard deviation (in parentheses) for each 
group.  Column (4) indicates the mean differences and standard error (in parentheses).  Results on maize productivity and household expenditure are controlled for outliers 
and therefore are fitted within 95 percentile. 
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4.2 Effects of Carbon Farming Training on Farm Performance and Welfare 

We rely on several farm performance and welfare measures such as adoption of organic 

fertiliser, agricultural productivity, maize gross revenue, expenditure, and poverty status. We 

first present the balance diagnostics tests on whether the overlap and covariate balancing 

conditions are satisfied (see also Tambo et al. 2021; Okyere et al. 2022; Okyere and Ahene-

Codjoe, 2022) in Figure 2. It shows that there is sufficient overlap of the propensity score 

distribution between participating and non-participating farm households. Furthermore, we 

found no statistically significant Chi-squared (p-value of 32.29) overidentification test for the 

20 covariates included in the treatment model. Similarly, the covariate balancing tests shows 

that the mean and variance are closer to zero and one, respectively, after weighting. 

Therefore, we can safely conclude that the IPWRA estimator generates comparability 

between the participating and non-participating farm households, and therefore the 

assumptions underlying treatment effects estimates are satisfied. Lastly, we rely on another 

doubly robust estimator-TELASSO- which controls for the choice of important covariates to 

be included in the models using machine learning technique. The results from TELASSO 

reported in Columns (3) and (4) are very similar to those obtained from our preferred IPWRA 

estimator (i.e. Columns 1 and 2).  

Figure 2: Overlap Plot for IPWRA Estimator 

 
 
Table 4 presents the effects of CF training on farm performance and welfare. First and 

foremost, participating farm households are about 25.8 percent more likely to use compost 

or organic fertilizer and 9.7 percent less likely to report that their soil quality is poor. However, 

we find that participation in carbon farming training does not statistically and significantly 

increase climate change and variability adaptation strategies. These results are not counter-
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intuitive as farm households may have perceived the project to be related to soil health 

improvement rather than broader climate change and variability adaptation strategies. 

Besides, several climate change and variability adaptation strategies have been promoted in 

the project sites and therefore, farmers are widely aware of its negative effects. The results 

on the adoption of organic fertilizer and perception on soil quality are interesting findings, 

since soil fertility is essential for poverty reduction in SSA (Vanlauwe et al. 2015), and in recent 

times there has been global urgency of improving soil health including soil carbon (Amelung 

et al. 2020; FAO, 2019).  

We also found statistically significant positive effects of CF training on maize yield, revenue 

and expenses. In particular, participants obtained 487.49 kg/ha maize yield increase relative 

to non-participants. Similarly, participating in carbon farming training is statistically and 

significantly associated with GHS 201.44 increase in maize farming expenses and GHS 760.75 

increase in gross maize revenue. Taken together, the results suggest that CF training increases 

agricultural investment decisions and productivity, and this concurs with previously reported 

studies in the literature on the increase in agricultural productivity due to the adoption of 

climate change and variability adaptation strategies (Etwire et al. 2022) and CA (Tambo and 

Mockshell, 2018, Tambo and Kirui, 2021) and organic fertilizer (Martey, 2018).  

Table 4 also reports that participation in CF training statistically and significantly contributes 

to a reduction in the likelihood that a household is poor. The results show that relative to non-

participating farm households, farm households that participated in the carbon farming 

training are 5.39 percent less likely to be poor based on IPA’s PPI national poverty line. These 

are interesting findings considering that the semi-arid regions of Ghana (i.e., project sites) 

have the highest number of populations living in poverty or extreme poverty. Finally, we find 

that participation in carbon farming training increases total household expenditure and food 

consumption expenditure. Taken together, our results show that CF training generates 

positive effects on important welfare indicators, and this partly confirms Vanlauwe et al. 

(2015) and Martey (2018)’s study on the importance of improving soil health for poverty 

reduction in SSA.  

Table 4: Effects of Carbon Farming Training on Farm Performance and Welfare 
 Model 1: IPWRA Model 2: TELASSO 

 ATT Clustered SE ATT Clustered SE 

 (1) (2) (3) (4) 

Farm performance     

Compost or organic fertilizer 
(dummy) 

0.258*** 0.056 0.295*** 0.061 

Poor soil quality (dummy) -0.097** 0.047 -0.085** 0.035 

Adoption of climate change and 
variability adaptation practices 
(#; 0-8) 

-0.193 0.223 -0.089 0.223 

Maize yield (kg/ha) 487.489*** 151.691 546.242*** 161.271 

Maize gross revenue (GHS/ha) 760.753*** 231.451 722.383*** 174.888 

Maize farming expenses 
(GHS/ha) 

201.437** 80.230 202.487*** 77.759 



20 
 

Welfare measures     

Household monthly food 
expenditure per capita (GHS) 

33.932** 14.449 41.977** 17.340 

Total yearly expenditure per 
capita (GHS) 

481.027** 240.100 634.099** 281.032 

National poverty likelihood (%) -5.389** 2.676 -5.747* 3.257 

No. of observations (N) 472  472  

Controls Yes  Yes  

Notes: 20 covariates included in both treatment and outcome models are: natural log of distance to market and 

district extension office, natural log of quantity of inorganic fertilizer application, off-farm business activities, 

risk attitude, farmer group membership, irrigation, monocropping farming system, natural log of maximum 

willingness to pay for both biochar and compost,  male-headed households, age of household and its squared, 

marital status, religion of household, household head’s educational status, dummies for West Mamprusi and 

Lawra districts.  

4.3 Multiple Hypotheses Testing of Outcome Measures  

This section presents results on multiple hypothesis testing of the outcome measures as it is 

possible that some of the statistically significant treatment effect estimates are due to 

chance. We address this problem using the false discovery rate (FDR) approach (Benjamini 

and Hochberg 1995; Arouna et al 2021; Tambo et al. 2020) by undertaking multiple hypothesis 

testing. FDR was chosen due to computational convenience as its applications are relatively 

easier including the option of manual estimation. Our results (available upon request) show 

that all the statistically significant results reported in Table 4 maintain their significance, 

except for poverty likelihood results from the TELASSO estimator. This further shows that our 

results are robust to alternative specifications.  

5. Conclusion 

In Sub-Saharan Africa (SSA), climate change and variability are widely recognised as one of 

the major factors for low agricultural productivity. This evidence has necessitated the 

promotion of several climate change and variability adaptation strategies in which various 

land use management practices are adopted for agricultural production. In recent times, CF, 

particularly soil carbon mitigation strategies are gaining prominence in worldwide agriculture 

as one of the mechanisms for climate change and variability mitigation and/or adaption 

strategies. However, few empirical studies have been undertaken on the uptake and effect 

on economic welfare of farm households in developing countries. More so, little is known 

about CF training on farm performance and welfare in developing countries. This study 

attempts to fill these gaps in the literature by examining the welfare effects of carbon farming 

training, particularly soil carbon mitigation strategies in which farmers received training on 

biochar and compost production in three semi-arid regions of Ghana. Our results have policy 

relevance, especially based on recent global urgency in improving soil health, particularly soil 

carbon towards achieving agricultural productivity, food security, poverty reduction and 

wellbeing; which are key components of the SDGs.  

Using data from 472 farm households, we analysed whether participation in the training led 

to increased adoption of organic fertiliser, climate change and variability adaptation 

strategies, maize productivity and returns, household expenditure, and finally, reduction in 
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poverty. In consonance with previous studies (Etwire et al. 2022; Tambo and Mockshell, 2018, 

Tambo and Kirui, 2021; Martey, 2018) on climate change and variability adaptation, 

conservation agriculture and organic fertilizer, our results show that training on carbon 

farming generates positive effects on key welfare outcomes. Our findings show that 

participation in carbon farming training encourages the use of organic fertiliser leading to 

significant maize productivity and gross return gains of 487.49 kg/ha and GHS 760.75, 

respectively. Additionally, CF training is statistically and significantly associated with an 

increase in household expenditure and also a reduction of poverty likelihood.  

In conclusion, our results suggest that CF training is beneficial in terms of adoption of organic 

fertiliser, perception on soil quality, increased productivity and achieving poverty reduction. 

While there are recent efforts in improving soil carbon at the global level, biochar and 

compost production could be considered as possible avenues for such interventions. More 

importantly, policy support for the training of farm households on the production of soil 

carbon resources (i.e. biochar and compost) could be a viable option to pursue in addressing 

climate change and variability in the global south. Specifically, our results suggest the need to 

provide comprehensive training programmes on carbon farming techniques to encourage 

smallholder farmers to adopt soil carbon mitigation strategies in SSA.  

Lastly, our study has some limitations that could serve as areas for future research. First, 

relying on a relatively small sampled observational data limits the ability of making strong 

causal inferences on the long-term effects of carbon farming training. Similarly, we do not 

undertake soil quality analysis on carbon sequestration. Therefore, we recommend a 

longitudinal analysis combining survey, plot level data, and soil quality data analysis to 

examine the social, economic, and environmental welfare effects of carbon farming 

techniques. Another interesting area to consider is the design of sustainable business models 

for the production and scaling up of carbon farming practices in the global south. This is 

important as Jefferey et al. (2017) showed that the application of biochar to tropical soils 

could achieve higher productivity gains compared to temperate soils. Due to limited samples 

and estimation challenges, we do not consider heterogeneity in treatment effects based on 

gender, age, and socio-economic status, and this is important in closing productivity and 

gender gaps in agriculture, thereby achieving women’s economic empowerment and gender 

equality.  
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