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Abstract
Recent experience with interest rates hitting the effective lower bound and agents facing
binding borrowing constraints has emphasised the importance of understanding the be-
haviour of an economy in which some variables may be restricted at times. The extended
path algorithm is a commonly used and fairly general method for solving dynamic non-
linear models with rational expectations. This algorithm can be used for a wide range
of cases, including for models with occasionally binding constraints, or for forecasting
with models in which some variables must satisfy a certain path. In this paper I propose
computational improvements to the algorithm that speed up the calculations via vectori-
sations of the Jacobian matrix and residual equations. I illustrate the advantages of the
method with a number of policy relevant applications: conditional forecasting with both
exactly identified and underidentified shocks, occasionally binding constraints on interest
rates, anticipated shocks, calendar-based forward guidance, optimal monetary policy with
a binding constraint and transition paths.

JEL CLASSIFICATION C53
C61
C63
E37
E47

KEYWORDS Extended path algorithm; conditional forecasting;
occasionally binding constraints; effective lower bound;
optimal monetary policy; transition paths;
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Executive Summary
Recent experience with interest rates hitting the effective lower bound and agents facing
binding borrowing constraints has emphasised the importance of understanding the
behaviour of an economy in which some variables may be restricted at times. These
non-trivial asymmetries are not easily handled in linear models with standard solution
methods. The extended path algorithm is a commonly used and fairly general method
for solving large non-linear models with rational (model consistent) expectations that
can be used in a wide range of situations. Matlab is a commonly used software for
structural macroeconomic modelling. In this paper I describe how Matlab code can be
written that speeds up the implementation of the extended path algorithm. I show how
the code can be applied to a number of policy relevant applications including conditional
forecasting, where a subset of the forecasts are constrained to follow particular paths. This
is particularly useful for forecasters who may want to judgementally adjust forecasts from
a non-linear rational expectations model. I show how occasionally binding constraints can
be implemented in the extended path algorithm in a way that results in significant speed
gains. I also show how the algorithm can be adapted to handle optimal monetary policy
under commitment with a binding lower bound constraint on nominal interest rates. Finally,
I show how the code can be used to compute transitions paths, which can be used to show
policy makers how an economy might adjust to permanent changes in government policy.
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An Efficient Application of
the Extended Path Algorithm
in Matlab With Examples

1. Introduction

Many problems in macroeconomics, like the occasionally binding lower bound constraint
on interest rates or occasionally binding collateral constraints on household borrowing,
can only be investigated using non-linear models. The extended path algorithm, originally
due to Fair & Taylor (1983), is a reliable, flexible and frequently used method for solving
large non-linear rational expectations models. Unlike other non-linear rational expectations
solution methods the extended path algorithm is less prone to the curse of dimensionality
as the size of the problem increases linearly in the number of endogenous variables
in proportion to the solution horizon. Versions of it have been built into the TROLL
programming language and the widely used Dynare toolbox. The extended path algorithm
uses Newton’s method to solve a deterministic problem or a sequence of deterministic
problems to approximate rational expectations. This involves the calculation, at each
iteration, of a large number of model equations, which are stacked into a vector, and a
large Jacobian matrix containing the derivatives of this vector. In this paper I develop
an efficient method in Matlab for vectorising the model equations and their derivatives
which are used to construct a sparse Jacobian matrix. By vectorising this part of the code
I save time that would otherwise be required to fill in and update these matrices using
for-loops which are generally slower to implement in Matlab, and I avoid using the parallel
toolbox. My code exploits the sparsity of the Jacobian matrix and makes use of symbolic
derivatives. I calculate symbolic derivatives using Jakub Rysanek’s symbolic differentiator,
coded in Matlab, which is part of project Dyn:Ammo (Rysanek 2021). To demonstrate the
flexibility of my extended path algorithm I apply it to six policy relevant problems faced
by empirical economists and practitioners, namely conditional forecasting in non-linear
rational expectations models with exactly identified shocks, conditional forecasting in non-
linear rational expectations models with underidentified shocks, matching data, solving
models with occasionally binding constraints, optimal monetary policy under commitment
with a binding lower bound constraint and modelling transition paths.

As highlighted by Waggoner & Zha (1999), forecasters and policy makers are often faced
by questions like “how do the forecasts of key macroeconomic variables change when
forecasts of the interest rate change?”. Conditional forecasting provides a solution to such
problems by finding sequences of shocks that match a set of conditions imposed on a
subset of the model’s forecasts. I show how the extended path algorithm can be adapted
to incorporate conditional forecasting in non-linear rational expectations models with both
exactly identified (the same number of shocks as conditioning points) and underidentified
shocks (more shocks than conditioning points). I demonstrate how the extended path
algorithm can easily be used to back out the shocks of a non-linear model that matches
historical data, which is both important for understanding the drivers of history, but also for
producing counterfactual historical analysis and for bootstrapping exercises.1

Recent experience with both the lower bound on interest rates and collateral constraints
on borrowing have demonstrated the importance of being able to incorporate occasionally

1 See Andrle & Hunt (2020) for examples of using the fitted shocks from the extended path algorithm in a
bootstrapping exercise.
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binding constraints in modelling analysis. The extended path algorithm provides a method
for solving non-linear rational expectations models that are subject to occasionally binding
constraints. Traditionally this has meant using quasi-Newton methods in the extended
path algorithm due to the non-differentiable discontinuities associated with occasionally
binding constraints. Quasi-Newton methods, which use an approximate Jacobian matrix,
are generally slower to converge requiring more numerical operations than pure Newton
methods. I show how occasionally binding constraints can be incorporated in the extended
path algorithm using symbolic derivatives, resulting in code that runs more than two times
faster than quasi-Newton methods. Optimal policy provides a useful counterfactual of what
policy can achieve when set to minimise a policy maker’s loss function, and my application
of the extended path algorithm allows optimal policy to be solved in the presence of
occasionally binding constraints. Policy makers are often concerned with how an economy
will adjust to a permanent policy change. These adjustments can be captured by modelling
transition paths using the extended path algorithm which I demonstrate in this paper.2

The rest of the paper is structured as follows: in Section 2, I describe the simple New
Keynesian Dynamic Stochastic General Equilibrium (DSGE) model I use to illustrate the
algorithm, and how the model can be re-written in a form that complies with the algorithm.
In Section 3 I describe the deterministic and stochastic extended path algorithms. In
Section 4 I show how the time paths for the model variables, equations and derivatives
can be written in a way to exploit the element-wise operators in Matlab and then translated
into a sparse Jacobian matrix. In Section 5 I demonstrate how the algorithm can be used
for a number of exercises, including applications to conditional forecasting, matching data
and finding shocks, occasionally binding constraints such as the effective lower bound,
optimal monetary policy and modelling transition paths. Section 6 concludes.

2. A Simple New Keynesian DSGE Model

In this section I present the equilibrium conditions for a simple non-linear New Keynesian
DSGE model that I use later to illustrate applications of my extended path algorithm in
Matlab. The model is not too dissimilar from the one used in Ascari & Rossi (2012). To
simplify the model I assume that firms are subject to quadratic price adjustment costs
à la Rotemberg (1982). For the sake of brevity, I only present the model’s equilibrium
conditions without their derivation. The model consists of a New Keynesian IS curve, a
New Keynesian Phillips curve, a Taylor-type monetary policy rule, autoregressive shock
processes for both technology and preference shocks, and a white noise monetary policy
shock. The (endogenous) model variables are listed in Table 1.

Table 1 Endogenous Model Variables

Variable Description

Yt Output
πt Gross inflation rate
Rt Gross nominal interest rate
At Technology shock process
Zt Preference shifter process

The model shocks (exogenous variables) are listed in Table 2.
2 The algorithm and code presented in this paper was used to solve the stochastic neoclassical growth

model used in the 2021 Long-Term Fiscal Statement. See Binning (2021) for details.
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Table 2 Shocks

Shock Description

εR,t Monetary policy shock
εA,t Technology shock
εZ,t Preference shifter shock

The model parameters and their descriptions are listed in Table 3.

Table 3 Parameters

Parameter Description

β Time preference parameter
π Steady state inflation rate/target
υ Elasticity of substitution between differentiated intermediate goods
κ Weight on the disutility of working
χ Weight on habit formation
σ Inverse of the intertemporal elasticity of substitution
η Inverse of the Frisch elasticity of labour supply
φ Weight on quadratic price adjustment costs
ψ Weight on price indexation
ρR Interest rate smoothing term
κπ Weight on inflation in the Taylor-type rule
κY Weight on the output gap in the Taylor-type rule
ρA Persistence parameter for total factor productivity process
ρZ Persistence parameter for preference shifter
σR Monetary policy shock standard deviation
σA Technology shock standard devation
σZ Preference shock standard deviation

I list the model equations that describe equilibrium in the simple New Keynesian DSGE
model, The New Keynesian IS curve:

Zt (Yt − χYt−1)−σ = Et

{
β
Rt
πt+1

Zt+1 (Yt+1 − χYt)−σ
}
, (1)

The New Keynesian Phillips curve:(
φ

υ − 1

)
πt

[
πt − πψt−1π

1−ψ
]

=

(
υ

υ − 1

)
κ (Yt − χYt−1)σ Y η

t A
−(1+η)
t − 1 + . . .

. . .+ Et

{(
φ

υ − 1

)
β

(
Zt+1

Zt

)(
Yt+1 − χYt
Yt − χYt−1

)−σ (Yt+1

Yt

)
πt+1

[
πt+1 − πψt π1−ψ

]}
, (2)

Taylor-type rule:

Rt = Rρrt−1

(
R
(πt
π

)κπ (Yt
Y

)κY )1−ρr
exp (σRεR,t) , (3)

Total factor productivity:
logAt = ρA logAt−1 + σAεA,t, (4)

Preference shifter:
logZt = ρZ logZt−1 + σZεZ,t. (5)

This results in a system of five equations in five endogenous variables: Yt, πt, Rt, At, Zt,
and three exogenous variables: εR,t, εA,t, εZ,t. Note that the Rotemberg adjustment cost
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is rebated to households along with firms’ profits and debt is in zero net supply, so that in
equilibrium output is equal to consumption. The dynamic model implies the following steady

state solution: At = 1, Zt = 1, πt = π, Rt = πt
β , Yt =

[(
υ−1
υ

)
κ−1A1+η

t (1− χ)−σ
] 1
σ+η ,

εR,t = 0, εA,t = 0, εZ,t = 0.3

Following Schmitt-Grohé & Uribe (2004) and Adjemian & Juillard (2010), among others, the
set of equilibrium conditions for a wide range of dynamic non-linear rational expectations
models can be written in the general form,

Et {f (xt+1, xt, xt−1, εt)} = 0, (6)

where xt is a vector of date t endogenous variables and εt is a vector of date t exogenous
variables. The simple New Keynesian DSGE model can be recast in this form as follows,

Et {f (xt+1, xt, xt−1, εt)} =

Zt (Yt − χYt−1)−σ − Et
{
β Rt
πt+1

Zt+1 (Yt+1 − χYt)−σ
}(

φ
υ−1

)
πt

[
πt − πψt−1π

1−ψ
]
−
(

υ
υ−1

)
κ (Yt − χYt−1)σ Y η

t A
−(1+η)
t + 1− . . .

. . .− Et
{(

φ
υ−1

)
β
(
Zt+1

Zt

)(
Yt+1−χYt
Yt−χYt−1

)−σ (
Yt+1

Yt

)
πt+1

[
πt+1 − πψt π1−ψ

]}
Rt −Rρrt−1

(
R
(
πt
π

)κπ (Yt
Y

)κY )1−ρr
exp (σRεR,t)

logAt − ρA logAt−1 − σAεA,t
logZt − ρZ logZt−1 − σZεZ,t


= 0, (7)

where xt =
[
Yt, πt, Rt, At, Zt

]>, εt =
[
εR,t, εA,t εZ,t

]> and > is the vec-
tor/matrix transpose operator. I approximate rational expectations with perfect foresight,
which leads to,

f (Et {xt+1} , xt, xt−1, υt) =

Zt (Yt − χYt−1)−σ − β Rt
πt+1

Zt+1 (Yt+1 − χYt)−σ(
φ
υ−1

)
πt

[
πt − πψt−1π

1−ψ
]
−
(

υ
υ−1

)
κ (Yt − χYt−1)σ Y η

t A
−(1+η)
t + 1− . . .

. . .−
(

φ
υ−1

)
β
(
Zt+1

Zt

)(
Yt+1−χYt
Yt−χYt−1

)−σ (
Yt+1

Yt

)
πt+1

[
πt+1 − πψt π1−ψ

]
Rt −Rρrt−1

(
R
(
πt
π

)κπ (Yt
Y

)κY )1−ρr
exp (σRεR,t)

logAt − ρA logAt−1 − σAεA,t
logZt − ρZ logZt−1 − σZεZ,t


= 0. (8)

This is now a deterministic problem. Before solving and simulating the model, I need to
set parameter values for the model. I used a mixed calibration and estimation strategy.
Table 4 lists the parameters that I calibrate and their calibrated values,

Table 4 Calibrated Parameters

β π υ κ

0.9975 1.005 6 2.6272

where I have set κ to ensure that Yt = 1 in the steady state (as per footnote 3). The
remaining parameters are estimated using Bayesian methods on quarterly US data that
spans the 1985Q1 to 2007Q4 period, where data includes demeaned interest rates (the fed
3 I set κ =

(
υ−1
υ

)
(1− χ)−σ, so that Yt = 1 as a normalisation.
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funds rate), demeaned (CPI) inflation and the output gap.4 The output gap is constructed
by taking logs of real GDP and removing a trend using the Hodrick Prescott filter with a
smoothing parameter of 1600. I report the posterior modes which I use in the solution and
simulation of the model in Table 5.

Table 5 Estimated Parameters

χ σ η φ ψ ρR κπ

0.48608 1.7249 0.82397 103.7 0.327 0.84974 1.502

κY ρA ρZ σR σA σZ

0.21104 0.3233 0.75172 0.038779 0.022062 0.001198

3. The Extended Path Algorithm

In this section I give a brief description of the extended path algorithm. Following Heer &
Maussner (2009), I distinguish between the deterministic and the stochastic extended path
algorithms. The deterministic extended path algorithm involves solving time paths for the
variables where the entire sequence of shocks is revealed to agents in the first simulation
period. In all other simulation periods the sequence of shocks is therefore perfectly
anticipated. Under the stochastic extended path algorithm agents are surprised in each
period by that period’s shocks. This is the standard assumption made about unanticipated
shocks when solving rational expectations models. This assumption is implemented in the
stochastic extended path algorithm by solving a sequence of deterministic problems, one
for each time period where the model is subject to shocks, where only shocks for the first
simulation period are revealed to agents. The first simulation period corresponds to the
solution for that time period, with projections of future model variables updated as shocks
are revealed to agents. After solving the deterministic problem at a particular point in time,
the model is rolled forward one period and the solution from the first simulation period in
the previous iteration becomes the initial condition for the next iteration of the algorithm.
This continues for the number of periods that the economy is subject to unexpected shocks.
I start by presenting the pseudocode for the deterministic extended path algorithm. First, I
list some notation and useful definitions for the deterministic extended path algorithm.

• xt is the n × 1 vector of date t endogenous variables and n is the number of
endogenous variables in the model.

• x1:T =
[
x>1 , · · · x>t , · · · x>T

]> is the n.T × 1 vector of endogenous variables
and T is the solution horizon (not to be confused with >, the matrix/vector transpose
operator), which needs to be of sufficient length to ensure the model has converged
to its steady state by period T + 1.

• xht is the hth iterate of xt in Newton’s method.

• xh1:T =
[

(xh1)>, · · · (xht )>, · · · (xhT )>
]> is the n.T × 1 vector of endogenous

variables evaluated at the hth iteration.

• εt is the ne × 1 vector of exogenous variables, where ne is the number of exogenous
variables.

• ε1:T =
[
ε>1 , · · · ε>t , · · · ε>T

]> is the ne.T × 1 vector of exogenous variables.

4 I estimate the model in Matlab using the RISE toolbox, which can be downloaded from https://github.
com/jmaih/RISE toolbox.
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• f (xt+1, xt, xt−1, εt) is the n× 1 vector of date t model equations.

• f
(
xht+1, x

h
t , x

h
t−1, εt

)
is the n× 1 vector of date t model equations evaluated at the

hth iterate of x.

• x0 is the n× 1 vector of initial conditions.

• x0
1:T is the initial guess for the n.T × 1 vector of endogenous variables.

• xT+1 is the n× 1 vector of terminal conditions. The terminal conditions need to be a
steady state that is consistent with the dynamic model.5

• ε is the minimum tolerance for the difference between the h+ 1th and hth iterates
of x, and δ is the minimum tolerance for the model equations holding (the equation
residuals).

• F (xh1:T , ε1:T ) =



f
(
xh2 , x

h
1 , x0, ε1

)
f
(
xh3 , x

h
2 , x

h
1 , ε2

)
...

f
(
xht+1, x

h
t , x

h
t−1, εt

)
...

f
(
xT+1, x

h
T , x

h
T−1, εT

)


,

is the n.T × 1 vector of model equations evaluated at the hth iteration of x1:T , where
x0 and xT+1 do not have h superscripts because they are given.

• J(xh1:T ; ε1:T ) =
∂F (xh1:T ,ε1:T )

∂xh1:T
is the n.T × n.T Jacobian matrix evaluated at the hth

iterate of x. J(xh1:T ; ε1:T ) has a sparse banded representation.6

3.1 The Deterministic Extended Path Algorithm

The pseudocode for the deterministic extended path algorithm is presented in Algorithm 1.

Algorithm 1 The Deterministic Extended Path Algorithm

Set values for: x0, x0
1:T , xT+1,

Set h = 0

while ||xh+1
1:T − xh1:T || > ε and ||F

(
xh1:T , ε1:T

)
|| > δ do

xh+1
1:T = xh1:T − J(xh1:T , ε1:T )−1F (xh1:T , ε1:T )

h = h+ 1

end while
Obtain the date t values for x: x1:T = xh1:T

Because all shocks that hit the economy over the simulation/projection period are revealed
to agents in the first projection period, and are then perfectly anticipated in all subsequent
periods, the deterministic model only needs to be solved once. As a consequence, the
time periods in the algorithm will also correspond exactly with the actual time periods. The
n.T × 1 vector x1:T can be reshaped into a T × n matrix.

However, the standard assumption used when solving rational expectations models is to
assume that shocks are only revealed to agents in the period that they hit the economy.
5 For the examples that I cover in this paper, I assume that the terminal condition is a steady state. However

in certain circumstances the extended path algorithm can handle unbalanced growth paths in which case
the terminal condition need not be a steady state (see Maliar et al. 2020, for example).

6 A sparse banded matrix has zeros off-diagonal and matrix blocks on-diagonal.
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An approximate rational expectations solution can be found by solving a deterministic
extended path problem for each period that shocks hit the economy, with the shocks only
revealed to agents in the period they hit the economy. Following Heer & Maussner (2009)
I refer to this procedure as the stochastic extended path algorithm.

The stochastic extended path algorithm requires the following additional definitions,

• x̃k|t is the n×1 vector of endogenous variables in simulation period k, for k ∈ 1, . . . , T ,
for the deterministic problem solved in time period t with the information available at
time period t.7

• x̃hk|t is the hth iterate of x̃k|t in Newton’s method, for the deterministic problem solved
in period t.

• x̃h1:T |t =
[

(x̃h1|t)
>, · · · (x̃hk|t)

>, · · · (x̃hT |t)
>
]>

is the hth iterate of the n.T × 1

vector of endogenous variables for the deterministic problem solved in time period t.

• f
(
x̃hk+1|t, x̃

h
k|t, x̃

h
k−1|t, εt

)
is the n× 1 vector of model equations in period k, for the

deterministic problem solved in time period t, evaluated at the hth iterate of x̃.

• x̃0|t is the n × 1 vector of initial conditions, for the deterministic problem solved in
time period t. For t > 1, I set x̃0|t = x̃1|t−1, so that the solution in the first simulation
period from the deterministic problem solved in the previous time period becomes
the initial condition for the current time period.

• x̃0
1:T |t is the initial guess for the n.T × 1 vector of endogenous variables, for the

deterministic problem solved in time period t.

• x̃T+1|t is the n× 1 vector of terminal conditions, for the deterministic problem solved
in time period t.

• F (x̃h1:T |t, εt) =



f
(
x̃h2|t, x̃

h
1|t, x̃0|t, εt

)
f
(
x̃h3|t, x̃

h
2|t, x̃

h
1|t, 0

)
...

f
(
x̃hk+1|t, x̃

h
k|t, x̃

h
k−1|t, 0

)
...

f
(
x̃T+1|t, x̃

h
T |t, x̃

h
T−1|t, 0

)


,

is the n.T × 1 vector of model equations evaluated at the hth iteration, for the
deterministic problem solved in time period t.

• J(x̃h1:T |t, εt) =
∂F (xh

1:T |t,εt)

∂xh
1:T |t

is the n.T ×n.T Jacobian matrix, for the deterministic prob-

lem solved in time period t, evaluated at the hth iterate of x̃ (i.e. x̃h1:T |t). J(x̃h1:T |t, εt)

has a sparse banded representation.
7 I make the distinction between k which indexes simulation periods and t which indexes time periods. I

retain T as the length of the simulation horizon. Converting simulation periods to time periods implies
simulation period k, for a simulation constructed at time period t, is equal to time period t+ k− 1, so that
the first simulation period will be the solution for time period t when constructing the ex-post stochastic
time series under rational expectations.
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3.2 The Stochastic Extended Path Algorithm

The pseudocode for the stochastic extended path algorithm is presented in Algorithm
2, where s is the number of time periods that the model economy is hit by unexpected
shocks.

Algorithm 2 The Stochastic Extended Path Algorithm

Set initial values for: x̃0|1, x̃0
1:T |1, x̃T+1|1

for t = 1 to s do
Set h = 0

while ||x̃h+1
1:T |t − x̃

h
1:T |t|| > ε and ||F

(
x̃h1:T |t, εt

)
|| > δ do

x̃h+1
1:T |t = x̃h1:T |t − J(x̃h1:T,|t, εt)

−1F (x̃h1:T |t, εt)

h = h+ 1

end while
Obtain the date t value for x: xt = x̃h1|t
Update the initial condition for the next iteration: x̃0|t+1 = x̃h1|t
Update the initial guess for the next iteration: x̃0

1:T |t+1 = x̃h1:T |t
end for

This is illustrated diagramatically in Figure 16 in Appendix A. The n.s × 1 vector of
endogenous variables is given by,8

x1:s =
[

(x̃1|1)>, · · · (x̃1|t)
>, · · · (x̃1|s)

> ]> ,
=
[
x>1 , · · · x>t , · · · x>s

]>
. (9)

Equation (9) makes it clear that the time path for the endogenous variables, when subjected
to a sequence of unexpected shocks, is the sequence of first (simulation) period solutions
to a sequence of deterministic problems. The vector, x1:s, can be reshaped into an s× n
matrix. The stochastic extended path algorithm can just be thought of as a sequence
of deterministic extended path problems, where the model is only shocked in the first
simulation period.

To ease up on notation and improve readability I will use notation for the deterministic
extended path algorithm in subsequent sections, even though all the examples I investigate
use the stochastic extended path algorithm.

4. Computing Equation Residuals and Filling the
Jacobian Matrix in Parallel

In this section I show how the vector of model equations and the Jacobian matrix used in
the extended path algorithm can be vectorised and calculated using elementwise matrix
and vector operations. Using elementwise operations results in speed gains when the
algorithm is coded in Matlab as the vectors can be calculated and filled in parallel. This
avoids certain for-loops in the code, which are generally slower to implement in Matlab. It
also avoids the explicit use of the parallel toolbox. In order to describe this algebraically, I
introduce notation for the Hadamard product, Hadamard division and Hadamard powers.
Specifically,
8 I ignore the model projections in periods where no shocks are hitting the economy. These can easily be

added by appending the entire n.T × 1 solution for the deterministic problem in time period s to the end
of the stochastic extended path solution.
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• Hadamard (elementwise) product:

A�B = C such that aij · bij = cij , (10)

where A, B and C are all m× p matrices and aij , bij and cij are the elements in the
ith row and the jth column of A, B and C respectively.

• Hadamard (elementwise) division:

A�B = C such that aij/bij = cij , (11)

where A, B and C are all m× p matrices.

• Hadamard (elementwise) power:

A◦(α) = C such that aαij = cij , (12)

where A and C are both m× p matrices.

I use the following notation to represent the T × 1 vectors for each of the endogenous
variables and shocks,

Q1:T =

 Q1
...
QT

 , Q0:T−1 =

 Q0
...

QT−1

 , Q2:T+1 =

 Q2
...

QT+1

 . (13)

In the context of the model presented in Section 2,
Q1:T ∈ {A1:T , Z1:T , Y1:T , R1:T , π1:T , εR,1:T , εA,1:T , εZ,1:T } and
Qt ∈ {At, Zt, Yt, Rt, πt, εR,t, εA,t, εZ,t}.

The n date t model equations can be expressed as,

ft = f (xt+1, xt, xt−1, εt) =


g1 (xt+1, xt, xt−1, εt)

...
gi (xt+1, xt, xt−1, εt)

...
gn (xt+1, xt, xt−1, εt)

 , (14)

where gi (xt+1, xt, xt−1, εt) is the ith model equation. I use gi (xt+1, xt, xt−1, εt) to represent
the ith equation in period t, because ft is used to represent the block of equations in the
tth time period. Also note that gi (xt+1, xt, xt−1, εt) represents both the ith model equation
in period t and the residual for the same equation in the same period. It then follows that
the vector of residuals for the ith model equation in all T simulation periods can be written
as,

gi,1:T = gi (x2:T+1, x1:T , x0:T−1, ε1:T ) =


gi (x2, x1, x0, ε1)

...
gi (xt+1, xt, xt−1, εt)

...
gi (xT+1, xT , xT−1, εT )

 . (15)

Next I demonstrate how elementwise operations can be used to calculate the vector of
equation residuals for each equation in the model using an example. The residual from
equation (1), the first model equation in the simple New Keynesian DSGE model, in time
period t is given by,

g1 = Zt (Yt − χYt−1)−σ − β Rt
πt+1

Zt+1 (Yt+1 − χYt)−σ . (16)
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Let g1,1:T represent the equation residuals for the first equation, over all T simulation
periods. Equation (16), the first equation in the model, can then be rewritten in all T
periods using elementwise operations as follows,

g1,1:T = Z1:T � (Y1:T − χ · Y0:T−1)◦(−σ) − . . .

. . .− β · (R1:T � π2:T+1)� Z2:T+1 � (Y2:T+1 − χ · Y1:T )◦(−σ) . (17)

In a second example I show how the T × 1 vector of equation residuals for the Taylor-type
interest rate rule can be calculated using elementwise operations. The Taylor-type rule (3)
is the third equation in the system, the equation residual in period t is given by,

g3 = Rt −Rρrt−1

(
R
(πt
π

)κπ (Yt
Y

)κY )1−ρr
exp (σRεR,t) . (18)

Let g3,1:T represent the equation residuals for the third equation, over all T simulation
periods. Equation (18) can then be rewritten in all T periods as follows,

g3,1:T = R1:T −R◦(ρr)0:T−1�
(
R · (π1:T /π)◦(κπ) (Y1:T /Y )◦(κY )

)◦(1−ρr)
�exp (σR · εR,1:T ) . (19)

It is relatively straight forward to write a parser to convert the model into this format
and exploit Matlab’s ability to calculate and fill the vectors and matrices in parallel using
elementwise operations. The vector of equation residuals is constructed by reordering the
elements from each equation vector by time as follows,

F (x) = F (x1:T ) =


f1
...
ft
...
fT

 = P


g1,1:T

...
gi,1:T

...
gn,1:T

 , (20)

where P is a permutation matrix,9 and ft is the model equations in period t, which is the
same as equation (8) for the model used in this paper.

4.1 A Sparse Banded Matrix Representation of the Jacobian

Following Boucekkine (1995), the Jacobian matrix for the type of non-linear rational
expectations models covered by the extended path algorithm takes the general form,

J(xh1:T ) =



Bh
1 Ch1 0 . . .

Ah2 Bh
2 Ch2 0 . . .

0 Ah3 Bh
3 Ch3 0 . . .

. . . . . . . . .
. . . 0 Aht Bh

t Cht 0 . . .
. . . . . . . . .

. . . 0 AhT−1 Bh
T−1 ChT−1

. . . 0 AhT Bh
T


, (21)

where

Bh
1 =

∂f
(
xh2 , x

h
1 , x0, εt

)
∂xh1

, Ch1 =
∂f
(
xh2 , x

h
1 , x0, εt

)
∂xh2

,

9 I do not use a permutation matrix in the code, instead reordering the equation residuals using an index.
Reordering is required to put the equation residuals back in the order they occur in the model and over
time.
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Aht =
∂f
(
xht+1, x

h
t , x

h
t−1, εt

)
∂xht−1

, Bh
t =

∂f
(
xht+1, x

h
t , x

h
t−1, εt

)
∂xht

, Cht =
∂f
(
xht+1, x

h
t , x

h
t−1, εt

)
∂xht+1

,

AhT =
∂f
(
xT+1, x

h
T , x

h
T−1, εT

)
∂xhT−1

, Bh
T =

∂f
(
xT+1, x

h
T , x

h
T−1, εt

)
∂xhT

.

The matrix has a sparse banded representation, which I exploit. The sparse Jacobian
matrix can be constructed using Matlab’s sparse matrix function,

J(xh1:T ) = sparse

(
r, c,

[
∂g>1,1:T
∂(xh1:T )>

, · · · , ∂g>i,1:T
∂(xh1:T )>

, · · · , ∂g>n,1:T
∂(xh1:T )>

]>)
, (22)

where r is a matrix of the row locations for the non-zero elements in the sparse matrix, c is
a matrix of the column locations for the non-zero elements in the sparse matrix and,

∂gi,1:T

∂xh1:T

=



∂gi(x
h
2 ,x

h
1 ,x0,ε1)

∂x0

∂gi(x
h
2 ,x

h
1 ,x0,ε1)

∂xh1

∂gi(x
h
2 ,x

h
1 ,x0,ε1)

∂xh2
...

...
...

∂gi(x
h
t+1,x

h
t ,x

h
t−1,εt)

∂xht−1

∂gi(x
h
t+1,x

h
t ,x

h
t−1,εt)

∂xht

∂gi(x
h
t+1,x

h
t ,x

h
t−1,εt)

∂xht+1

...
...

...
∂gi(xT+1,x

h
T ,x

h
T−1,εT )

∂xhT−1

∂gi(xT+1,x
h
T ,x

h
T−1,εT )

∂xhT

∂gi(xT+1,x
h
T ,x

h
T−1,εT )

∂xT+1


. (23)

The columns of ∂gi,1:T
∂xh1:T

can be calculated in parallel using elementwise operations in a
similar fashion to the calculation of the equation residuals as demonstrated earlier in
this section, which greatly speeds up their calculation. The terms ∂gi(x

h
2 ,x

h
1 ,x0,ε1)

∂x0
and

∂gi(xT+1,x
h
T ,x

h
T−1,εT )

∂xT+1
are ignored as they are not used in the Jacobian matrix in equation

(21).10

I use the default sparse matrix left division function in Matlab to invert the sparse Jacobian
matrix, which uses the UMFPACK routines.11

I test the vectorised code against a version of the code where for-loops are used to fill both
the vector of model equations (the equation residuals) and the Jacobian matrix. I compare
the speed of both algorithms when solving and simulating the simple New Keynesian
DSGE model described in Section 2 and a medium sized DSGE with 82 endogenous
variables. When solving and simulating the simple New Keynesian DSGE model, the
vectorised code is actually 2% slower than the code with for-loops. Closer inspection of the
code reveals that while the vectorised code that fills and updates the equation residuals
is faster than the respective code that performs the same task using for-loops, there is
a speed gain from filling and updating the Jacobian matrix using a for-loop in place of
vectorised code. The experiment was carried out using Matlab 2021a and reflects in part
improvements Mathworks has made in the performance of for-loops. When the medium
sized DSGE model is solved and simulated, the vectorised code is 13% faster than the
code using for-loops. While 13% is a modest speed gain, this can add up to hours of
savings if the model needs to be solved and simulated a large number of times as part of
a Monte Carlo simulation exercise. The results are summarised in Appendix B along with
the details of the simulation experiments.
10 Note that I omit any columns of the matrix in equation (23) where the derivative is equal to zero.
11 The profiler in Matlab reveals that this is the last remaining significant bottleneck in the code, typically

taking up 70% of the computation time. While there are other sparse matrix solvers written by third
parties in Matlab, (anecdotally) for most problems it is difficult to beat the performance of the native
sparse matrix division operation in Matlab.
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5. Applications

In this section, I show how to apply my efficient Matlab representation of the extended path
algorithm to six problems: conditional forecasting with exactly identified shocks, conditional
forecasting with underidentified shocks, matching data, occasionally binding constraints,
optimal monetary policy under commitment with a binding lower bound constraint and
modelling transition paths.12

5.1 Conditional Forecasting with Exactly Identified Shocks

In this first application I show how the simple New Keynesian DSGE model, and more
generally dynamic non-linear rational expectations models, can be modified to work with
the extended path algorithm to produce conditional forecasts using exactly identified
shocks. As highlighted by Waggoner & Zha (1999), forecasters and policy makers are
often concerned with questions like “how do the forecasts of key macroeconomic variables
change when forecasts of the policy rate change?” In order to answer questions like these
using a dynamic multivariate model, conditions need to be imposed on the future values
of one or more of the model’s endogenous variables before the forecasts are made. The
resulting forecasts are known as conditional forecasts.

Conditional forecasts are normally produced by finding sequences and/or combinations
of shocks over the forecast period that match the model’s endogenous variables with
the conditions imposed on the forecasts. In this example I consider the case where the
shocks are exactly identified, that is the number of shocks used to match the conditions is
equal to the number of conditions being imposed on the forecasts. In this case the shocks
that match forecast conditions will be unique. Conditional forecasting is introduced into
the model by endogenising the shocks used to match the conditioning information, for
the number of periods the conditions are imposed. This is achieved by adding auxiliary
variables to represent the endogenous shocks. Adding endogenous variables to the
model also means adding auxiliary equations to the system. These additional equations
exogenise the variables to be conditioned on in the conditioning periods. I introduce an
exogenous indicator variable that determines when the conditions are imposed.

In this specific example I condition on an output path, by choosing a sequence of preference
shifter shocks. The preference shifter shock was chosen primarily due to its proximity
to output in the model. The same output path could be obtained by either endogenising
monetary policy shocks or productivity shocks, with different consequences for the other
endogenous variables in the model.13 The process for conditioning on an interest rate or
inflation track over the forecast period is exactly the same.

I start the augmentation of the model by replacing equation (5) with,

logZt = ρZ logZt−1 + ε̃Z,t, (24)

where ε̃Z,t is an endogenous variable that replaces εZ,t in equation (5). The additional
endogenous variable means I need to add the following equation to the system,

Xt (Yt − Yt) + (1−Xt) (ε̃Z,t − εZ,t) = 0, (25)

which takes the form of an occasionally binding constraint, where Xt is an exogenous
indicator variable that takes the value 1 in the periods where I condition on Yt and 0 in
12 Code for the applications can be downloaded from https://sites.google.com/site/andrewbinningecon/

research.
13 The set of preference shifter shocks required to match the forecast conditions is unique, as are the set of

monetary policy shocks and productivity shocks that would match the same set of conditions on output.
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all other periods. When the stochastic extended path algorithm is used and shocks are
unanticipated, Xt will only take the value 1 in the first projection period, taking the value 0
in all other projection periods. Yt captures the conditions I impose on output in period t.
When the constraint binds, Yt is no longer endogenous, but forced to match Yt, and I solve
for the endogenous shock ε̃Z,t such that Yt = Yt. In all other periods when the constraint
does not bind the endogenous shock equals the exogenous shock, so that ε̃Z,t = εZ,t. The
vector of endogenous variables now becomes,

xt =
[
Yt, πt, Rt, At, Zt, ε̃Z,t

]
, (26)

while the vector of exogenous variables becomes,

εt =
[
εR,t, εA,t, εZ,t, Xt, Yt

]
. (27)

The system augmented with the endogenous preference shifter shock and the exogenous
conditions on output now looks like,

f (Et {xt+1} , xt, xt−1, εt) =

Zt (Yt − χYt−1)−σ − β Rt
πt+1

Zt+1 (Yt+1 − χYt)−σ(
φ
υ−1

)
πt

[
πt − πψt−1π

1−ψ
]
−
(

υ
υ−1

)
κ (Yt − χYt−1)σ Y η

t A
−(1+η)
t + 1− . . .

. . .−
(

φ
υ−1

)
β
(
Zt+1

Zt

)(
Yt+1−χYt
Yt−χYt−1

)−σ (
Yt+1

Yt

)
πt+1

[
πt+1 − πψt π1−ψ

]
Rt −Rρrt−1

(
R
(
πt
π

)κπ (Yt
Y

)κY )1−ρr
exp (σRεR,t)

logAt − ρA logAt−1 − σAεA,t
logZt − ρZ logZt−1 − σZ ε̃Z,t

Xt (Yt − Yt) + (1−Xt) (ε̃Z,t − εZ,t)


= 0. (28)

To demonstrate the algorithm, I condition on an output path that falls by 1% each quarter
for the first 4 quarters of the forecast. Starting from the steady state, where output is
equal to 1, I condition on a GDP path equal to

[
0.99, 0.9801, 0.9703, 0.9606

]>, and I
let the algorithm find the sequence of preference shocks that matches this path exactly.
At the end of the conditioning period, the model is free to transition back to the steady
state. The exogenous indicator variable Xt takes the value 1 in the periods the conditions
are imposed and 0 in all other periods. Consistent with rational expectations, I use the
stochastic version of the algorithm when imposing conditions on GDP, which means only
imposing the conditions one period at a time which also means solving the endogenous
shocks one period at a time.14 As the conditions are imposed for 4 quarters, 4 iterations of
the time loop in the stochastic extended path algorithm are required to compute the time
path.

The model’s conditional forecast for output is plotted alongside the forecast conditions in
Figure 1, while a subset of the forecasts for the other variables are plotted in Figure 2.
14 Because the shocks are solved for period by period, the full sequence of shocks that match the forecast

conditions ex post, will not be known to agents ex ante. Imposing the conditions on the first 4 periods, ex
ante, by setting X1:4 = 1 would make the new GDP path fully anticipated after the initial surprise in the
first forecast period, consistent with the deterministic extended path algorithm. While this is not what I do
in this example, it is something that can easily be handled with my solution routines.
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Figure 1 Output

Figure 2 Model Variables

Figure 1 shows that the algorithm is able to match the conditions imposed on output over
the first 4 quarters exactly. This is achieved by adding a sequence of preference shifter
shocks to the first 4 forecast periods. The sequence of preference shifter shocks required
to fit the conditions on the forecast implies weaker demand. Weaker demand is consistent
with lower inflation. Following a Taylor-type rule, the central bank cuts interest rates in
response to the negative output and inflation gaps. The bottom right panel in Figure 2
plots the sequence of shocks the algorithm finds that match the forecast conditions exactly.
Because the shocks are exactly identified, this sequence is unique. Conditional forecasting
with exactly identified shocks does not choose the most likely shock sequence (the shock
sequence with the smallest variance). There may be other shock types, that could be used
to fit this judgement, that have a smaller overall variance. This is illustrated more clearly in
the next section where the same forecast conditions are fitted using multiple shock types.

As mentioned, the same output path could have been achieved using monetary policy
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shocks or total factor productivity shocks. Using either of these shocks would mean
matching the same output path for the first 4 quarters. However, the paths for the other
endogenous variables would look very different, as would the path for output in the periods
after the conditions are imposed. Hence the choice of shock determines the economic
story. Using monetary policy shocks would require adding a sequence of positive shocks
to raise interest rates. Higher interest rates would then make households less willing to
spend and more willing to save, lowering consumption, output and inflation. Likewise,
using productivity shocks would require adding a sequence of negative shocks to lower
productivity levels and the level of output. This in turn would lead to higher inflation. The
interest rate response would depend on the relative weights on inflation and the output
gap (the implied output/inflation trade-off) in the Taylor-type rule.

5.2 Conditional Forecasting with Underidentified Shocks

Often it is the case that policy makers and/or practitioners want to condition on a particular
path for an endogenous variable, but they do not know which shocks to use, or they would
like to use a combination of shocks. This is where conditional forecasting with underidenti-
fied shocks comes into play. When the number of shocks used to match the conditioning
information exceeds the number of conditions (the shocks are underidentified), there
will potentially be an infinite number of shock combinations that match the conditioning
information. Choosing the most likely combination of shocks in an econometric sense
means choosing the shock combination with the smallest variance. This is a least squares
approach and implies adding the smallest amount of judgement to match the conditions
on the endogenous variables.15 This has been handled in the linear case by Doan et al.
(1983), Waggoner & Zha (1999), Beneš et al. (2008) and Maih (2010). I demonstrate how
this can be handled more generally in the non-linear case using an adapted extended
path algorithm. I start by simplifying my previous notation letting x = x1:T . Note that the
shocks that have been “endogenised” to replicate the conditional forecasts, such as ε̃Z,t in
equations (26) and (28) are elements of xt.

The problem of finding the most likely combination of shocks involves minimising the
weighted sum of squares of the model variables, q(x) = x>Hx, subject to the model’s non-
linear equations holding in all periods. This can be written more formally as a minimization
problem with a non-linear equality constraint, as follows,

min
x

x>Hx (29)

subject to F̃ (x) = 0,

where F̃ (x) is the (n.T − z + c) × 1 vector of non-linear equality constraints that come
from the dynamic non-linear model, c is the number of conditions imposed on the forecasts
and z ≥ c is the number of shocks used to fit the conditional forecast, H is the n.T × n.T
Hessian matrix of the function q(x). In this context, H can also be thought of as a diagonal
selection matrix for the shocks used to fit the conditional forecasts. H is defined more
explicitly in the example later in this section.

In order to solve this problem, I take a second order approximation of the objective function
and a first order approximation of the equality constraint. The second order approximation
15 In the linear case, the expected value from the full forecast density, in the absence of parameter

uncertainty, should be the same as the unconditional forecast when no shocks are added. In the
nonlinear case, the expected value from the full forecast density will not necessarily align with the no
judgement point forecast. In this case the vector of shocks that produce the point forecast that matches
the expected value from the full forecast density are probably the most likely outcome. This could be
incorporated into the algorithm, but I do not do that here.
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of q(xh+1) around the point xh is given by,

q(xh+1) = q(xh + ∆xh+1) ≈
(
xh
)>

Hxh + 2
(

∆xh+1
)>

Hxh +
(

∆xh+1
)>

H∆xh+1, (30)

where ∆xh+1 = xh+1 − xh and Hxh is the gradient/Jabobian matrix evaluated at xh. The
first order approximation of the non-linear equality constraint around the point xh is given
by,

F̃
(
xh+1

)
= F̃

(
xh + ∆xh+1

)
≈ F̃

(
xh
)

+ J̃
(
xh
)

∆xh+1, (31)

where J̃(x) is the (n.T − z + c)× n.T matrix of first derivatives. Plugging the Taylor series
approximations of the objective function and the linear constraint into (29) gives,

min
∆xh+1

(
xh
)>

Hxh + 2
(

∆xh+1
)>

Hxh +
(

∆xh+1
)>

H∆xh+1 (32)

subject to F̃
(
xh
)

+ J̃
(
xh
)

∆xh+1 = 0.

Note that the minimisation is now in terms of ∆xh+1, the change in x between each
iteration, rather than xh or xh+1. I minimise the objective function subject to the equality
constraint and obtain the first order condition with respect to ∆xh+1,

2Hxh + 2H∆xh+1 + J̃
(
xh
)>

λ = 0, (33)

where λ is the (n.T − z + c)× 1 vector of Lagrange multipliers on the equality constraints.
The linear equality constraint implies,

F̃
(
xh
)

+ J̃
(
xh
)

∆xh+1 = 0. (34)

Combining equations (33) and (34) in matrix form gives,[
2H J̃(xh)>

J̃(xh) 0
(n.T−z+c)×(n.T−z+c)

] [
∆xh+1

λ

]
=

[
−2Hxh

−F̃ (xh)

]
. (35)

This can be re-written in the form of Newton’s method as follows,[
xh+1

λ

]
=

[
xh

0
(n.T−z+c)×1

]
−

[
2H J̃(xh)>

J̃(xh) 0
(n.T−z+c)×(n.T−z+c)

]−1 [
2Hxh

F̃ (xh)

]
. (36)

I demonstrate the algorithm with an example using the simple New Keynesian DSGE
model. I augment the system of equations with exogenous forecast conditions on output,
Yt, and three endogenous shocks, ε̃Z,t, ε̃A,t and ε̃R,t. That is, I condition on an output
track, but let the algorithm find the combination of preference shocks, technology shocks
and interest rate shocks that have the smallest combined variance. The new augmented
system looks like,

f (Et {xt+1} , xt, xt−1, εt) =

Zt (Yt − χYt−1)−σ − β Rt
πt+1

Zt+1 (Yt+1 − χYt)−σ(
φ
υ−1

)
πt

[
πt − πψt−1π

1−ψ
]
−
(

υ
υ−1

)
κ (Yt − χYt−1)σ Y η

t A
−(1+η)
t + 1− . . .

. . .−
(

φ
υ−1

)
β
(
Zt+1

Zt

)(
Yt+1−χYt
Yt−χYt−1

)−σ (
Yt+1

Yt

)
πt+1

[
πt+1 − πψt π1−ψ

]
Rt −Rρrt−1

(
R
(
πt
π

)κπ (Yt
Y

)κY )1−ρr
exp (σRε̃R,t)

logAt − ρA logAt−1 − σAε̃A,t
logZt − ρZ logZt−1 − σZ ε̃Z,t

Xt (Yt − Yt) + (1−Xt) (ε̃Z,t − εZ,t)
(1−Xt) (ε̃A,t − εA,t)
(1−Xt) (ε̃R,t − εR,t)


= 0, (37)
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where again Xt is an indicator variable that takes the value 1 when the forecast conditions
are imposed, so that Yt = Yt and takes the value 0 when the forecast conditions do not
hold so that the endogenous shocks equal the exogenous shocks, ε̃Z,t = εZ,t, ε̃A,t = εA,t
and ε̃R,t = εR,t. The vector of endogenous variables now becomes,

xt =
[
Yt, πt, Rt, At, Zt, ε̃Z,t, ε̃A,t, ε̃R,t

]>
, (38)

and the vector of exogenous variables becomes,

εt =
[
εR,t, εA,t, εZ,t, Xt, Yt

]>
. (39)

The Hessian matrix is zero everywhere except for the diagonal elements that correspond
to the endogenous shocks in the periods the conditions are imposed. Just as I did in
the first example with exactly identifed shocks, I assume that the conditions are imposed
period by period, consistent with unexpected shocks under rational expectations (i.e. I
am using the stochastic extended path algorithm). This means in this example, ones are
added in the 6th, 7th and 8th diagonal elements as the endogenous shocks are now the
6th, 7th and 8th endogenous variables,

H =



0 0 0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 1 0 0 0 · · · 0
0 0 0 0 0 0 1 0 0 · · · 0
0 0 0 0 0 0 0 1 0 · · · 0
0 0 0 0 0 0 0 0 0 · · · 0
...

...
...

...
...

...
...

...
...

. . .
...

0 0 0 0 0 0 0 0 0 · · · 0



. (40)

The stacked vector of model equations now looks like,

F̃ (x)
(n.T−z+c)×1

=


f1
...
ft
...
fT

 . (41)

In the first projection period the forecasting condition is imposed, which means X1 = 1. In
all subsequent projection periods Xt = 0. This means f1 is given by,

f1
(n−z+c)×1

=



Z1 (Y1 − χY0)−σ − βR1
π2
Z2 (Y2 − χY1)−σ(

φ
υ−1

)
πt

[
π1 − πψ0 π1−ψ

]
−
(

υ
υ−1

)
κ (Y1 − χY0)σ Y η

1 A
−(1+η)
1 + 1− . . .

. . .−
(

φ
υ−1

)
β
(
Z2
Z1

)(
Y2−χY1
Y1−χY0

)−σ (
Y2
Y1

)
π2

[
π2 − πψ1 π1−ψ

]
R1 −Rρr0

(
R
(
π1
π

)κπ (Y1
Y

)κY )1−ρr
exp (σRε̃R,1)

logA1 − ρA logA0 − σAε̃A,1
logZ1 − ρZ logZ0 − σZ ε̃Z,1

Y1 − Y1


(42)
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and ft is given by,

ft
n×1

=



Zt (Yt − χYt−1)−σ − β Rt
πt+1

Zt+1 (Yt+1 − χYt)−σ(
φ
υ−1

)
πt

[
πt − πψt−1π

1−ψ
]
−
(

υ
υ−1

)
κ (Yt − χYt−1)σ Y η

t A
−(1+η)
t + 1− . . .

. . .−
(

φ
υ−1

)
β
(
Zt+1

Zt

)(
Yt+1−χYt
Yt−χYt−1

)−σ (
Yt+1

Yt

)
πt+1

[
πt+1 − πψt π1−ψ

]
Rt −Rρrt−1

(
R
(
πt
π

)κπ (Yt
Y

)κY )1−ρr
exp (σRε̃R,t)

logAt − ρA logAt−1 − σAε̃A,t
logZt − ρZ logZt−1 − σZ ε̃Z,t

ε̃Z,t − εZ,t
ε̃A,t − εA,t
ε̃R,t − εR,t


.

(43)

For comparison I use the same forecast conditions on output from the previous example,
this time I allow the algorithm to choose the combination of shocks with the smallest
combined variance that satisfies the forecast conditions. The results for output using
underidentified shocks are plotted next to the results using exactly identified shocks in
Figure 3. The results for the other variables and the shocks for both methods are presented
in Figure 4.

Figure 3 Output
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Figure 4 Model Variables

The algorithm matches the forecast conditions exactly in the periods they are imposed.
Rather than using a single shock the algorithm now uses a combination of the three model
shocks to match the forecast conditions. These shocks are chosen to have the lowest
combined variance. As a consequence the sequence of preference shocks required to
fit the GDP profile is smaller in absolute value compared with the case where only the
preference shifter shock is used to fit the forecast conditions. Positive monetary policy
shocks are now added to reduce the fall in nominal interest rates consistent with the lower
GDP track, along with a sequence of negative technology shocks.
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The variance of the sequence of preference shifter shocks, when shocks are underidenti-
fied, is smaller than the variance of the shocks in the first exercise, when the preference
shifter shock is exactly identified. This is illustrated in in the bottom left pane of Figure 4
by the sum of squared monetary policy, preference shifter and technology shocks used at
each point in time. When the forecasting conditions are imposed using only preference
shifter shocks, the sum of squared shocks peaks at nearly 11 in the fourth period. When a
mixture of shocks with the smallest combined variance is used, the sum of squared shocks
peaks at about 9 in the fourth quarter and remains below the profile of the squared sum of
shocks for the entire forecast horizon.

While I investigated conditional forecasting with underidentified and unanticipated shocks
in the section, the algorithm can easily be modified to allow for anticipated shocks as is
done in the linear case in Beneš et al. (2008) and Maih (2010). This would be equivalent
to setting up and solving the model using the deterministic extended path algorithm.
Extending the algorithm to incorporate anticipated shocks would require adding 1s in the
locations of future endogenous shocks in the indicator variable Xt and the selection matrix
H. The model equations would then take the same form as f1 in the periods that the
shocks are anticipated.

5.3 Matching Data

In this example, I demonstrate how conditional forecasting with exactly identified shocks
can be used to match the simple New Keynesian DSGE model with historical data.
Matching the data is conceptually the same as the conditional forecasting procedure
that has already been discussed. The procedure calculates historical shocks that are
consistent with both the data and the model. I compare the fitted shocks from the extended
path procedure with the fitted shocks from the linearised version of the model calculated
using the Kalman filter. I match three observable variables from the model – the output gap,
the inflation gap and the interest rate gap – to their counterparts in the data. Because I am
matching three variables I need to endogenise at least three shocks to avoid a stochastic
singularity. I use the algorithm with exactly identified shocks so I use exactly three shock
types.16 This means the vector of endogenous variables is now,

xt =
[
Yt, πt, Rt, At, Zt, ε̃Z,t, ε̃R,t, ε̃A,t

]
, (44)

where ε̃Z,t, ε̃R,t and ε̃A,t are the endogenised preference shock, the endogenised monetary
policy shock and the endogenised technology shock, respectively. I also need to exogenise
the observed variables. The vector of exogenous variables now looks like,

εt =
[
εZ,t, εR,t, εA,t, Xt, Ŷt, R̂t, �̂t

]
, (45)

where Ŷt = log
(

Yt
Y

)
is the output gap, R̂t = Rt−R is the interest rate gap, and �̂t = �t−�

is the inflation gap, all calculated from historical data. Again, Xt functions as an indicator
variable that takes the value 1 in the periods the data is matched and 0 in all other periods.
16 If more shocks than observable variables are used, I can use the extended path algorithm with underi-

dentified shocks to find the fitted shocks over history.
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The augmented model now looks like,

f (Et {xt+1} , xt, xt−1, εt) =

Zt (Yt − χYt−1)−σ − β Rt
πt+1

Zt+1 (Yt+1 − χYt)−σ(
φ
υ−1

)
πt

[
πt − πψt−1π

1−ψ
]
−
(

υ
υ−1

)
κ (Yt − χYt−1)σ Y η

t A
−(1+η)
t + 1− . . .

. . .−
(

φ
υ−1

)
β
(
Zt+1

Zt

)(
Yt+1−χYt
Yt−χYt−1

)−σ (
Yt+1

Yt

)
πt+1

[
πt+1 − πψt π1−ψ

]
Rt −Rρrt−1

(
R
(
πt
π

)κπ (Yt
Y

)κY )1−ρr
exp (σRε̃R,t)

logAt − ρA logAt−1 − σAε̃A,t
logZt − ρZ logZt−1 − σZ ε̃Z,t

Xt

(
log
(
Yt
Y

)
− Ŷt

)
+ (1−Xt) (ε̃Z,t − εZ,t)

Xt

(
Rt −R− R̂t

)
+ (1−Xt) (ε̃R,t − εR,t)

Xt

(
πt − π − �̂t

)
+ (1−Xt) (ε̃A,t − εA,t)



= 0, (46)

where I match log
(
Yt
Y

)
with Ŷt, Rt − R with R̂t and πt − π with �̂t. To capture rational

expectations, I match data in the first period of each iteration of the extended path algorithm,
so that shocks are only seen by agents in the period they hit the economy.

I use the same data the model was estimated on (described in Section 2) in this exercise. I
plot the shocks calculated in the data matching exercise using the extended path algorithm
against the fitted shocks from the linearised model, calculated using the Kalman filter, in
Figure 5 below.17

Figure 5 Fitted Shocks

The shocks fitted using the extended path and the Kalman filter are almost identical.
This highlights two aspects worth mentioning. First, the simple New Keynesian DSGE
17 The model is linearised, solved, Kalman filtered and smoothed using the RISE toolbox.
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model, although non-linear, has dynamics that are close to linear for the shocks and
parameterisation considered. Second, the extended path data fitting exercise is legitimate,
and a good approximation of accepted methodologies like the Kalman filter, if the effects
of uncertainty are not a primary concern.18

5.4 Occasionally Binding Constraints

In this section I show how occasionally binding constraints can be introduced into the
model and handled using the extended path algorithm with symbolic derivatives. More
specifically I model an occasionally binding lower bound constraint on interest rates. I
demonstrate two equivalent approaches for modelling an endogenously binding lower
bound and one approach for modelling an exogenously determined lower bound (otherwise
known as calendar-based Odyssean forward guidance). A more detailed discussion of
how the different methods of imposing the lower bound relate to the different types of
forward guidance is given in Section 5.4.4. I compare the solution for the full non-linear
model, with the results from a version of the algorithm where the lower bound constraint is
imposed on the linearised model. This version of the algorithm may have advantages over
the full non-linear model, especially where the model has dynamics close to linear in the
absence of the constraint, the constraint is the main non-linearity and the model is large,
so that computing the full non-linear solution is time consuming.

I start by explaining two different approaches for modelling an endogenously binding lower
bound on interest rates. In the first method, the lower bound is characterised by a lower
bound regime where interest rates are held constant at the lower bound for as long as the
constraint binds. In the second approach, anticipated shocks are added to make the lower
bound bind. In both cases, it is economic conditions that determine when the lower bound
binds, making entry and exit to the lower bound endogenous.

5.4.1 A Lower Bound “Regime” – Model LBR

In order to allow the effective lower bound on interest rates to bind, I introduce the shadow
interest rate, R?t , which is set according to the Taylor-type rule,19

R?t =
(
R?t−1

)ρr (R(πt
π

)κπ (Yt
Y

)κY )1−ρr
exp (σRεR,t) . (47)

I introduce an additional equation that determines when the lower bound does and does
not bind, which takes the form,

Rt −RELB = Xt (R?t −RELB) , (48)

which is equivalent to Rt = XtR
?
t + (1−Xt)RELB, where Xt is an endogenous indicator

variable, such that,

Xt =

{
0 if R?t ≤ RELB,
1 if R?t > RELB.

(49)

This set up is similar to the way conditions were imposed on the forecasts in the conditional
forecasting examples. The key difference being that the indicator, Xt, which determines
when the constraint does and does not bind, is now endogenous.
18 This is because the extended path algorithm assumes certainty equivalence so that agents do not take

into account shock volatility when making decisions.
19 I set the smoothing term in the shadow rate to the lag of the shadow rate. This could be set to the actual

interest rate if preferred. Hills & Nakata (2018) discuss the consequences of this choice with regard to
the size of fiscal multipliers at the effective lower bound.
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Substituting equations (47) and (48) into (8) gives the augmented system,

f (Et {xt+1} , xt, xt−1, εt) =

Zt (Yt − χYt−1)−σ − β Rt
πt+1

Zt+1 (Yt+1 − χYt)−σ(
φ
υ−1

)
πt

[
πt − πψt−1π

1−ψ
]
−
(

υ
υ−1

)
κ (Yt − χYt−1)σ Y η

t A
−(1+η)
t + 1− . . .

. . .−
(

φ
υ−1

)
β
(
Zt+1

Zt

)(
Yt+1−χYt
Yt−χYt−1

)−σ (
Yt+1

Yt

)
πt+1

[
πt+1 − πψt π1−ψ

]
R?t −

(
R?t−1

)ρr (R (πtπ )κπ (YtY )κY )1−ρr
exp (σRεR,t)

logAt − ρA logAt−1 − σAεA,t
logZt − ρZ logZt−1 − σZεZ,t
Rt −RELB −Xt (R?t −RELB)


= 0. (50)

Note that I leave Xt in the model at this point, treating it as exogenous until the symbolic
(analytical) derivatives have been calculated. After the symbolic derivatives have been
calculated, I substitute R?t > RELB for Xt in the model equations and the Jacobian matrix.
R?t > RELB then takes the value 1 in Matlab when true and 0 otherwise, ensuring that in
the case of the Jacobian matrix the symbolic derivatives are either zeroed out or not, as
appropriate.20

This sequence of events reflects the fact that the indicator function cannot be differentiated,
because it is an inequality. Moreover, derivatives of the endogenous switching mechanism
are not required to solve the model. It is the switches themselves that are important and
these can be added to the model and the Jacobian once the analytical Jacobian matrix
has been calculated. Because derivatives of the switching mechanism are not required
to solve the model, symbolic derivatives can be used in place of numerical derivatives
to solve models with occasionally binding constraints. This has significant computational
advantages over quasi-Newton methods.21

Unlike popular piece-wise linear solution methods like OccBin, which require a guess
and check verification on the number of periods the constraint binds, the extended path
algorithm is able to solve for both the forward paths of the variables and the duration of
the constraint binding in the same step. This is because the duration of the constraint
binding is a function of the solution paths and each Newton iteration is an update of both
the solution paths and the duration of the constraint binding. These iterations continue
until the equation residuals are sufficiently small and the duration of the constraint binding
is found.

To demonstrate the computational advantages of this solution procedure I run a simple
simulation experiment using vectorised code implemented using symbolic derivatives for
the simple New Keynesian model with a binding lower bound constraint on interest rates
described in this section. I compare the results against the same model and sequence
of shocks solved and simulated using vectorised code and a sparse implementation of
Broyden’s method (a quasi-Newton method). The vectorised code implemented using
symbolic derivatives is 63% faster than the sparse implementation of Broyden’s method.
This is a more significant speed gain and could save hours in computation when the
model needs to be solved and simulated a large number of times as part of a Monte Carlo
simulation exercise. A full description of the simulation experiment and the results can be
found in Appendix B.
20 In vectorised form, X1:T in R1:T −RELB −X1:T � (R?1:T −RELB) is replaced with R?1:T > RELB .
21 The endogenous switching mechanism plays the same role if the model is solved using quasi-Newton

methods. The quasi-Newton method does not take derivatives with respect to the switching mechanism
itself, but the parts of the equation that have been switched on or switched off. This is because the
indicator function either takes the value 1 or 0 and is invariant to small changes in the endogenous
variables used to calculate the numerical derivatives.
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5.4.2 Anticipated Monetary Policy Shocks – Model APS

The lower bound on interest rates, and occasionally binding constraints in general, can
also be imposed using anticipated shocks, just as Laséen & Svensson (2011), Holden &
Paetz (2012) and de Groot et al. (2021) have done. In this example I continue using R?t as
the shadow interest rate which is set according to (47). I introduce an additional equation
that maps the shadow rate to the actual interest rate as follows,

Rt = R?t exp (ε̃R,t) , (51)

where ε̃R,t is an endogenously determined anticipated monetary policy shock. In the LBR
model the lower bound is introduced as a constant interest rate that is expected to bind for
as long as economic conditions are expected to support a negative shadow interest rate,
as determined by the Taylor-type rule in equation (47). The same effect is achieved in the
APS model by introducing anticipated monetary policy shocks that prevent the interest
rate from violating the lower bound constraint. As long as the shadow rate of interest is
expected to be below the lower bound, then anticipated monetary policy shocks will be
required to enforce the lower bound constraint. And while these monetary policy shocks
are anticipated so that they are known for a number of periods before they actually hit
the economy, the sequence of shocks will still be a surprise to agents in the first period
that the lower bound binds or is expected to bind. Further unanticipated shocks that hit
the economy over the lower bound period and change agents’ expectations about how
long the shadow rate will be negative will also change the sequence of anticipated shocks
required to enforce the lower bound constraint. This is illustrated graphically in Figure 8 in
the Section 5.4.3. The constraint on interest rates is introduced by adding the equation,

Xtε̃R,t + (1−Xt) (Rt −RELB) = 0, (52)

in place of (48), so that anticipated monetary policy shocks are added to the model when
the lower bound constraint is expected to bind. As in the previous example, Xt is an
endogenous indicator variable, such that,

Xt =

{
0 if R?t ≤ RELB,
1 if R?t > RELB.

(53)

Equation (52) can also be thought of as a complementary slackness condition in a
constrained optimisation problem, because it implies that,

ε̃R,t (Rt −RELB) = 0, (54)

in which case the anticipated monetary policy shock can be interpreted as the Lagrange
multiplier on the lower bound constraint, as has been pointed out by Lindé et al. (2016).

The new augmented system of equations is given by,

f (Et {xt+1} , xt, xt−1, εt) =

Zt (Yt − χYt−1)−σ − β Rt
πt+1

Zt+1 (Yt+1 − χYt)−σ(
φ
υ−1

)
πt

[
πt − πψt−1π

1−ψ
]
−
(

υ
υ−1

)
κ (Yt − χYt−1)σ Y η

t A
−(1+η)
t + 1− . . .

. . .−
(

φ
υ−1

)
β
(
Zt+1

Zt

)(
Yt+1−χYt
Yt−χYt−1

)−σ (
Yt+1

Yt

)
πt+1

[
πt+1 − πψt π1−ψ

]
R?t −

(
R?t−1

)ρr (R (πtπ )κπ (YtY )κY )1−ρr
exp (σRεR,t)

logAt − ρA logAt−1 − σAεA,t
logZt − ρZ logZt−1 − σZεZ,t

Rt −R?t exp (ε̃R,t)
Xtε̃R,t + (1−Xt) (Rt −RELB)


= 0. (55)
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As in the previous model with the lower bound constraint, Xt is treated as exogenous until
after the symbolic derivatives have been calculated, when it is replaced with R?t > RELB.
This is because Xt is an indicator function that is not differentiable, and the derivatives
of the indicator function with respect to the model variables are not required to solve the
model when using Newton’s method. As a consequence symbolic derivatives can be used
to solve the model with occasionally binding constraints, improving the overall performance
of the procedure. Once the derivatives have been taken, all instances of Xt in the vector
of model equations and the Jacobian matrix are replaced with R?t > RELB, which takes
the value 1 when true in Matlab and 0 otherwise.

5.4.3 Comparing the Different Models with Occasionally Binding
Constraints

In this section I compare the results from the the model where the lower bound constraint
is imposed using anticipated monetary policy shocks (the APS model) and the model
where the lower bound is introduced as a separate regime (the LBR model). I show the
equivalence of the methods algebraically and through a scenario, with both methods
delivering the same result.

It is relatively straight forward to show algebraically that the LBR model is equivalent to the
APS model. I start by listing the complementary slackness conditions from both models
and the mapping from the shadow rate to the nominal interest rate in the APS model.

The complementary slackness condition from the LBR model is given by,

Rt −RELB −Xt (R?t −RELB) = 0. (56)

The complementary slackness condition from the APS model is given by,

Xtε̃R,t + (1−Xt) (Rt −RELB) = 0, (57)

where the shadow rate is mapped to the actual nominal interest rate according to,

Rt −R?t exp (ε̃R,t) = 0. (58)

When R?t ≤ RELB then Xt = 0 according to equation (53). In the model with a lower
bound regime, equation (56) becomes,

Rt = RELB, (59)

and in the model with anticipated monetary policy shocks, equation (57) becomes,

Rt = RELB, (60)

so that both models give the same result for the same value of the indicator function, which
is common to both models. This implies,

ε̃R,t = log

(
RELB
R?t

)
, (61)

in the model where the lower bound is imposed using anticipated monetary policy shocks.
When R?t ≥ RELB then Xt = 1 according to equation (53). In the model with a lower
bound regime, equation (56) becomes,

Rt = R?t , (62)

and in the second model with anticipated shocks, equation (57) becomes,

ε̃R,t = 0, (63)
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which implies that equation (58) becomes,

Rt = R?t , (64)

so that both models give the same result when the constraint does and does not bind,
making them equivalent.

Furthermore, I demonstrate that both models give the same result through a scenario.
Using the same sequence of shocks I perturb both model economies for 10 consecutive
quarters with negative preference shocks. These are large enough to take the model
economy to the lower bound. I plot the results in Figure (6) below.

Figure 6 The Effective Lower Bound: Comparing Methods

As expected, both methods give the same result. I plot the shadow rate against the
nominal interest rate in Figure (7).

Figure 7 The Nominal Interest Rate vs The Shadow Interest Rate
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This figure, together with the top two panels of Figure 6, illustrates that the lower bound
constraint in both models only binds while the shadow rate is negative and that the switch
back to monetary policy determined by a Taylor-type rule occurs when the shadow rate
becomes positive. I also show how the anticipated monetary policy shocks change through
the scenario as each unanticipated preference shock is revealed to agents, according
to the standard rational expectations assumption. Each unanticipated preference shock
that hits the economy over the lower bound period changes the shadow rate, altering
the expected duration of the lower bound so that agents update their expectations of the
monetary policy shocks required to enforce the lower bound constraint. This is illustrated
in Figure 8 below.
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Figure 8 The Effective Lower Bound: Comparing Methods

The first panel of Figure 8 shows the actual and anticipated monetary policy shocks
required to prevent interest rates going below the effective lower bound. The economy hits
the lower bound in the seventh simulation period, where the blue bar represents the size of
the actual monetary policy shock in that period and the yellow bars represent anticipated
shocks. Because there is persistence in both the model economy and the preference
shock process, the economy does not immediately revert to a state where the shadow
rate is greater than the effective lower bound. In fact the shadow rate is expected to
remain below the lower bound for a further two periods. As only one negative preference
shock has hit the economy in the first period that the lower bound binds, and no further
preference shocks are expected to hit the economy at this point, the actual and expected
monetary policy shocks required to prevent interest rates going below the lower bound are
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quite small. Each successive panel reveals an additional negative preference shock hitting
the economy, extending the period agents believe they will be at the lower bound and
deepening the recession. With each additional shock and the worsening recession, larger
and larger monetary policy shocks (actual and expected) are required to both stop current
and expected interest rates from violating the lower bound constraint. Using monetary
policy shocks is essentially a modelling device to impose the effective lower bound. Figure
8 makes it clear that expectations and the corresponding expected monetary policy shocks
are continually being updated as unexpected shocks hit the economy.

5.4.4 Comparing the Endogenously Binding Lower Bound Constraint with
Calendar-Based Odyssean Forward Guidance

The previous section illustrated the equivalence between two different methods for en-
dogenously imposing the lower bound constraint on interest rates. In both cases the lower
bound was only binding for as long as the shadow rate – determined by a Taylor-type rule
and hence a function of economic conditions – was below the lower bound. However,
forward guidance has become a new weapon in central banks’ inflation fighting arsenal.
Campbell et al. (2012) make the distinction between Delphic forward guidance, which
is the announcement and publication of conditional or endogenous interest rate tracks
dependent on economic conditions, and Odyssean forward guidance, where central banks
publicly commit to an interest rate track that deviates from their usual reaction function.
Jones et al. (2020) focus on what they call calendar-based Odyssean forward guidance,
where the central bank commits to holding interest rates at the lower bound for a fixed
period of time without explicit regard to current and future economic conditions. In a
modelling context this is equivalent to imposing the lower bound on interest rates using
either exogenous anticipated monetary policy shocks or the lower bound regime for a
fixed period of time, so that the expected exit from the lower bound is not a function of
the shadow interest rate or economic conditions. Calendar-based Odyssean forward
guidance will have different economic implications as the central bank commits to keeping
interest rates at the lower bound for a set period of time. When at the lower bound,
agents’ expectations about the duration of the lower bound binding will not be updated as
economic shocks alter economic conditions.

I compare the results from calendar-based Odyssean forward guidance with an endoge-
nously binding lower bound constraint through a scenario. I impose the lower bound in
both models as a lower bound regime, although the same results could be achieved using
anticipated monetary policy shocks. I repeat the same exercise in Section 5.4.3, where for
10 consecutive quarters the economy is hit by a sequence of negative preference shocks
that take the economy to the lower bound in the seventh simulation period.22 This time I
assume that when the economy hits the lower bound, the central bank announces that
they will keep interest rates at the lower bound for two and a half years, which is believed
by agents. This commitment to keep interest rates at the lower bound is independent of
economic conditions or subsequent shocks, which represents calendar-based Odyssean
forward guidance. This is achieved by setting Xt = 1 for 10 quarters, once the shadow
rate goes below the lower bound, so that agents know once they are at the lower bound
they will be there for at least 10 quarters. This scenario is plotted against the results from
the model with an endogenously binding lower bound constraint in Figure 9 below.
22 In both scenarios I assume that agents’ expectations about future interest rates are subject to the

endogenous lower bound constraint before the lower bound binds (that is expected entry and exit into
the lower bound are determined by expected economic conditions, which determine when the lower
bound is expected to bind). For the simulation using calendar-based Odyssean forward guidance, I take
the first period the lower bound actually binds (the seventh simulation period) as initial conditions for the
simulation. I then splice the first 7 periods of the simulation with the endogenous lower bound (where
the constraint does not bind for the first 6 periods) to the second simulation where the lower bound is
exogenously imposed to create the scenario with calendar-based Odyssean forward guidance.
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Figure 9 The Effective Lower Bound: Extended Path vs Perfect Foresight

The announcement and commitment to keeping interest rates at the lower bound for 10
quarters as soon as the lower bound binds is quite powerful in this simple model.23 At the
onset of the recession agents are unaware how long the recession will last. Committing to
keep rates at the lower bound for two and a half years generates additional inflation, raising
inflation expectations, lowering the real interest rate, which provides some support to
output, relative to the endogenous case, where the expected duration of the lower bound is
gradually extended or updated as the extent of the recession is revealed. This illustrates, at
least in a rational expectations modelling context, the power of forward guidance. However,
it leaves unanswered the extent of the commitment required to optimise the return to
steady state.

5.4.5 Comparing the Non-linear Model with the Linearised Model

In the previous sections the occasionally binding constraint was imposed on the non-linear
model, leading to a fully non-linear solution. As highlighted by Aruoba et al. (2006), many
dynamic non-linear models (in the absence of occasionally binding constraints) display
behaviour that is close to a linear law of motion for plausible parameterisations and shocks.
In many cases it is the introduction and imposition of occasionally binding constraints
that are the main source of non-linearity and asymmetry in otherwise standard dynamic
non-linear models. When combined with larger models that take longer to solve and
simulate, it may prove satisfactory to apply the occasionally binding constraint to the
linearised version of the model. I develop a version of my algorithm that first linearises
the non-linear model automatically, avoiding mistakes from pencil and paper annotations,
before applying the constraint. Appendix C provides the updated equations for this version
of the algorithm. I repeat the same scenario from Section 5.4.3, this time comparing the
output from the linearised model with the constraint applied to the full non-linear solution.
The results are plotted in Figure 10.
23 This may be due to the forward guidance puzzle (see Giannoni et al. 2015, for example).
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Figure 10 The Effective Lower Bound: Non-linear vs Linearised

As was established in Section 5.3, this parameterisation of the simple New Keynesian
model results in behaviour that is close to a linear law of motion. Figure 10 shows that
the results from the linearised solution with the lower bound constraint imposed are
almost identical to the the results from the full non-linear solution. Given the reduced
computational burden, it may be beneficial to use the linearised model with the constraint
imposed, over the full non-linear solution, when the dynamic non-linear model is close to
linear in behaviour.

I run some simulation experiments to illustrate the potential speed gains of solving and
simulating the linearised model with occasionally binding constraints in place of the full
non-linear solution. The linearised model with occasionally binding constraints is 72%
faster to solve and simulate than the same model with the same shocks solved and
simulated using the full non-linear model with the vectorised code. The full details of the
simulation experiments and results are reported in Appendix B.

5.5 Optimal Monetary Policy Under Commitment with a
Binding Lower Bound Constraint

In this section, I show how optimal monetary policy under commitment can be implemented
in the extended path algorithm, with a binding lower bound on nominal interest rates. For
the sake of simplicity, I assume that the social planner sets monetary policy to minimise
the following ad hoc loss function,

L0 = E0

{ ∞∑
t=0

βt

[
(πt − π)2 + ωY

(
Yt − Y
Y

)2

+ ω∆R∆R2
t

]}
, (65)

where L0 is the loss function in period 0, ∆Rt = Rt −Rt−1 is the change in the nominal
interest rate and ωY and ω∆R are the relative weights attached to the deviations of output
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from steady state and changes in the nominal interest.24 The social planner minimises
the ad hoc loss function by choosing allocations of the model variables, Yt, πt, Rt, ∆Rt
and R?t , subject to the model’s equilibrium conditions and the lower bound constraint on
interest rates. I continue to use R?t to represent the shadow interest rate. This can be
written more formally as,

min
Yt,πt,Rt,∆Rt,R?t

E0

{ ∞∑
t=0

βt

[
(πt − π)2 + ωY

(
Yt − Y
Y

)2

+ ω∆R (Rt −Rt−1)2

]}
, (66)

subject to (67)

Zt (Yt − χYt−1)−σ − Et
{
β
Rt
πt+1

Zt+1 (Yt+1 − χYt)−σ
}

= 0, (68)(
φ

υ − 1

)
πt

[
πt − πψt−1π

1−ψ
]
−
(

υ

υ − 1

)
κ (Yt − χYt−1)σ Y η

t A
−(1+η)
t + 1− . . . (69)

. . .− Et

{(
φ

υ − 1

)
β

(
Zt+1

Zt

)(
Yt+1 − χYt
Yt − χYt−1

)−σ (Yt+1

Yt

)
πt+1

[
πt+1 − πψt π1−ψ

]}
= 0,

(70)

logAt − ρA logAt−1 − σAεA,t = 0, (71)
logZt − ρZ logZt−1 − σZεZ,t = 0, (72)

∆Rt − (Rt −Rt−1) = 0, (73)
Rt ≥ RELB. (74)

Note the absence of the Taylor-type interest rate rule from the model’s equilibrium condi-
tions and the social planner’s constraints. This is because interest rates are now being set
to optimise the welfare function. This can be rewritten more generally as,

min
x

[x− x̄]>H [x− x̄] , (75)

subject to F (x) = 0,

where x̄ is the n.T × 1 vector of steady states for the vector n.T × 1 vector of endogenous
variables x. This more general form allows the model to be solved using the extended
path algorithm. This setup is very similar to the conditional forecasting exercise with
underidentified shocks presented in Section 5.2. To improve readability I use xh to
represent xh1:T .25 Here F (xh) contains the model equations for the T simulation periods,

F
(
xh
)

=


f
(
Et
{
xh2
}
, xh1 , x0, ε1

)
...

f
(
Et
{
xht+1

}
, xht , x

h
t−1, εt

)
...

f
(
Et {xT+1} , xhT , xhT−1, εT

)

 , (76)

24 The algorithm I describe should work equally well with a micro-founded loss function.
25 I continue to use notation that is consistent with the deterministic extended path algorithm, even though

my example uses the stochastic extended path algorithm.
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where f
(
Et
{
xht+1

}
, xht , x

h
t−1, εt

)
is the model equations in simulation period t, such that,

f (Et {xt+1} , xt, xt−1, εt) =

Zt (Yt − χYt−1)−σ − β Rt
πt+1

Zt+1 (Yt+1 − χYt)−σ(
φ
υ−1

)
πt

[
πt − πψt−1π

1−ψ
]
−
(

υ
υ−1

)
κ (Yt − χYt−1)σ Y η

t A
−(1+η)
t + 1− . . .

. . .−
(

φ
υ−1

)
β
(
Zt+1

Zt

)(
Yt+1−χYt
Yt−χYt−1

)−σ (
Yt+1

Yt

)
πt+1

[
πt+1 − πψt π1−ψ

]
logAt − ρA logAt−1 − σAεA,t
logZt − ρZ logZt−1 − σZεZ,t

∆Rt −Rt +Rt−1

Rt −RELB −Xt (R?t −RELB)


= 0, (77)

where I substitute Rt−RELB−Xt (R?t −RELB) for Rt ≥ RELB . As before, xt is the vector
of date t endogenous variables, which now look like,

xt =
[
Yt πt Rt At Zt ∆Rt R?t

]
, (78)

εt is the vector of date t exogenous variables,

εt =
[
εZ,t εA,t

]
, (79)

and Xt is an indicator variable that enforces the lower bound constraint on interest rates,

Xt =

{
0 if R?t ≤ RELB,
1 if R?t > RELB.

(80)

As with the endogenous lower bound examples from the previous sections, Xt is only
replaced in the equations after the symbolic derivatives in the Jacobian has been calculated.
The H matrix in the objective function can be expressed as,

H =



H 0 . . . . . . 0

0
. . . 0

...
... 0 βt−1H 0

...
... 0

. . . 0
0 . . . . . . 0 βT−1H


, (81)

where,

H=



ωY
Y 2 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 ω∆R 0
0 0 0 0 0 0 0


. (82)

Note the denominator of ωY
Y 2 is the steady state level of output squared to account for

the squared output gap in the loss function. Taking a second order approximation of the
objective function gives,[

xh+1 − x̄
]>
H
[
xh+1 − x̄

]
=
[
xh + ∆xh+1 − x̄

]>
H
[
xh + ∆xh+1 − x̄

]
(83)

≈
[
xh − x̄

]>
H
[
xh − x̄

]
+ . . . (84)

. . .+ 2
(

∆xh+1
)>

H
[
xh − x̄

]
+
(

∆xh
)>

H∆xh+1 (85)
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Taking a first order approximation of the non-linear equality constraints gives,

F
(
xh+1

)
= F

(
xh + ∆xh+1

)
≈ F

(
xh
)

+ J
(
xh
)

∆xh+1, (86)

where the Jacobian matrix, J
(
xh
)
, is neq × n, and neq < n is the number of model

equations, which is less than n the number of model variables. The Jacobian matrix
is no longer a square matrix under optimal policy, as there are fewer model equations
than model variables, given that the monetary policy reaction no longer features in the
constraints. Replacing the objective function with (85) and the equality constraints with
(86) gives,

min
∆xh+1

[
xh − x̄

]>
H
[
xh − x̄

]
+ 2

(
∆xh+1

)>
H
[
xh − x̄

]
+
(

∆xh
)>

H∆xh+1 (87)

subject to F
(
xh + ∆xh+1

)
≈ F

(
xh
)

+ J
(
xh
)

∆xh+1 (88)

This leads to the following first order condition,26

2H
[
xh − x̄

]
+ 2H∆xh+1 + J

(
xh
)>

λ = 0, (89)

where λ is the neq.T × 1 vector of Lagrange multipliers on the equality constraints. Com-
bining the first order condition of the minimisation problem with the linearised equality
constraint results in,[

2H J
(
xh
)>

J
(
xh
)

0
neq .T×neq .T

] [
∆xh+1

λ

]
=

[
−2H

(
xh − x̄

)
−F

(
xh
) ]

. (90)

Since ∆xh+1 = xh+1 − xh, this can be rewritten in the form of Newton’s method as follows,

[
xh+1

λ

]
=

[
xh

0
neq .T×1

]
−

[
2H J

(
xh
)>

J
(
xh
)

0
neq .T×neq .T

]−1 [
2H
(
xh − x̄

)
F
(
xh
) ]

. (91)

I demonstrate the algorithm with a simple example. I set ωY and ω∆R both to 0.5. I
perturb the economy with a sequence of negative unexpected preference shocks for seven
quarters, until interest rates reach the effective lower bound. The (shadow) interest rate is
set optimally to try and minimise the ad hoc loss function in (65). I solve the model using
the stochastic extended path algorithm, so that shocks are unexpected, consistent with the
usual rational expectations assumptions. The results from the simulation are presented in
Figure 11 below.
26 This is almost identical to equation (33).
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Figure 11 Optimal Policy: Model Variables

The sequence of negative preference shocks introduced in this scenario lowers output by
more than 1.25% of steady state GDP. Interest rates are cut drastically, until they reach
the lower bound. Inflation increases due to the relatively large and fast fall in the nominal
interest rate. This is because optimal monetary policy requires the central bank to cut rates
by an amount that is sufficiently large to raise inflation expectations. Lower nominal interest
rates and higher inflation expectations lead to a large fall in the real interest rate which
provides support to inflation and output. To better understand how this happens period
by period as this scenario unfolds, I plot the simulations after each additional preference
shock is added for the key model variables in Figure 12. For comparison I plot the model
responses after each additional shock is added when policy follows a simple Taylor-type
rule with a binding lower bound constraint, using the parameterisation described in Section
2.
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Figure 12 Optimal Policy: Comparison with Simple Rule

Note: The label “Expected Path n-th Shock” represents the expected paths of the variables after
the shocks have hit in the n-th simulation period. Expectations are updated as more shocks hit the
economy over the simulation period.

WP22/02 An Eff ic ient Appl icat ion of the Extended Path Algor i thm in Mat lab With Examples 36



From Figure 12 it is clear to see that the monetary authority cuts interest rates quite
drastically with each successive shock when policy is set optimally, and that interest rates
are expected to fall further in the future, in response to the negative preference shocks
when they first start hitting the economy. When policy is set according to a Taylor-type rule,
the interest rate response is more sluggish initially, as the nominal interest rate falls by less
than the fall in inflation expectations leading to an increase in the real interest rate, which
is a movement in the wrong direction. The early more aggressive response when policy is
set optimally leads to a smaller overall fall in output and an increase inflation and smaller
cuts in the policy rate as further shocks hit the economy. In fact the larger initial response
when policy is set optimally leads to an increase in expected inflation and an overshoot
in actual inflation. This increase in inflation and inflation expectations causes the real
interest rate to fall by more, further stimulating the economy. This scenario illustrates that
an initial aggressive policy response as prescribed by optimal policy can prevent larger
policy responses later, or as the old adage goes, a stitch in time saves nine.

5.6 Transition Paths

I demonstrate how the code can be used to produce a deterministic transition path,
representing a transition from an initial steady state to a terminal steady state. Although I
don’t demonstrate it with this example, it is also possible to produced stochastic transition
paths by adding shocks in addition to changes in parameters. In the context of the simple
New Keynesian DSGE model, I show how to model a permanent lowering of the inflation
target.27 This requires introducing a time varying inflation target into the model. I assume
that it follows an autoregressive process of the form,

log π∗t = ρπ log π∗t−1 + (1− ρπ) log π. (92)

I also replace all instances of the steady state inflation rate with the time varying inflation
target so that the augmented system of equations becomes,

f (Et {xt+1} , xt, xt−1, εt) =

Zt (Yt − χYt−1)−σ − β Rt
πt+1

Zt+1 (Yt+1 − χYt)−σ(
φ
υ−1

)
πt

[
πt − πψt−1

(
π∗t−1

)1−ψ]− ( υ
υ−1

)
κ (Yt − χYt−1)σ Y η

t A
−(1+η)
t + 1− . . .

. . .−
(

φ
υ−1

)
β
(
Zt+1

Zt

)(
Yt+1−χYt
Yt−χYt−1

)−σ (
Yt+1

Yt

)
πt+1

[
πt+1 − πψt (π∗t )

1−ψ
]

Rt −Rρrt−1

(
R
(
πt
π∗t

)κπ (
Yt
Y

)κY )1−ρr
exp (σRεR,t)

logAt − ρA logAt−1 − σAεA,t
logZt − ρZ logZt−1 − σZεZ,t

log π∗t − ρπ log π∗t−1 − (1− ρπ) log π


= 0.

(93)

To demonstrate, I run a simulation where the central bank cuts the inflation target from
2% to 0%. In the baseline simulation I assume that ρπ = 0. The initial condition in the
simulation, x0, is the model steady state solved with a 2% inflation target, and the terminal
condition, xT+1, is the model steady state solved with 0% inflation target.

I plot inflation against the inflation target in Figure 13 and a subset of key variables in
Figure 14.
27 The same general methodology and Matlab code was used to produce the projections and supporting

analysis for the 2021 Long-Term Fiscal Statement with the stochastic neoclassical growth model. In that
case the transition represented permanent demographic changes and policy developments. See Binning
(2021) for details.
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Figure 13 A Transition Path: Inflation

Figure 14 A Transition Path: Model Variables

The central bank announces the change in the inflation target and it is credibly believed by
agents in the model. The real interest rate needs to increase to lower aggregate demand
and reduce inflation. This is initially achieved by reducing the nominal interest rate at
a slower rate than inflation falls. The increase in the real interest rate and the reduced
aggregate demand cause real GDP to fall, making the disinflation costly.28 To determine
how costly the transition to a lower inflation target is, I calculate the trajectory of the
sacrifice ratio as follows,

SRt = −
∑t

k=0(Yk − Y0)/Y0

π0 − πt
, (94)

28 Disinflation periods are often costly in terms of lost GDP as real interest rates are held high until inflation
has reached its new target. Former Fed chairman Paul Volcker’s efforts to reduce inflation in the early
1980s are widely believed to have contributed to the recession of 1981-82 in the US (see Goodfriend &
King 2005, for example).
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where SRt is the date t sacrifice ratio. The numerator represents the cumulated output
losses up to date t, as a percentage of the steady state and the denominator represents
the change in inflation up to date t. The sacrifice ratio is plotted against time in Figure
(15).

Figure 15 The Sacrifice Ratio

The cumulative sacrifice ratio grows with time, peaking at just under 6 after 10 quarters.
This is in the neighbourhood of estimates by Wascher & Andersen (1999) for the US in the
1985-1998 period.

6. Conclusion

Recent experience with interest rates hitting the effective lower bound and households
facing binding borrowing constraints has emphasised the importance of non-linear solution
methods and the ability to model occasionally binding constraints. The extended path
algorithm is a flexible, reliable and commonly used method for solving large non-linear
rational expectations models. In this paper I show how to code an efficient representation
of the extended path algorithm in Matlab, making use of vectorisation, sparsity and sym-
bolic derivatives, reducing the time taken to calculate the Jacobian and fill in the equation
residuals. I apply my algorithm to a number of policy relevant problems and illustrate
some of the speed gains. I show how the algorithm can be used to handle conditional
forecasting in non-linear rational expectations models with both exactly identified shocks
and overidentified shocks, which is particularly useful for forecasters. I show how occasion-
ally binding constraints can be implemented using symbolic derivatives, which has speed
advantages over slower quasi-Newton methods. I show how calendar-based Odyssean
forward guidance can be implemented using the algorithm. I present a version of the
algorithm where the constraints are applied to the linearised model. This has particular
advantages for larger models, which may take longer to solve using the full non-linear
solution, where the main non-linearity may be the occasionally binding constraint. I also
show how the algorithm can handle optimal monetary policy under commitment with a
binding lower bound constraint on nominal interest rates. This provides an important
counterfactual for policy makers. Finally I show how the algorithm can be used to construct
deterministic transition paths which can be used to show policy makers how an economy
might adjust following a permanent change in policy.
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Beneš, J., Binning, A., & Lees, K. (2008). Incorporating Judgement with DSGE Models.
Reserve Bank of New Zealand Discussion Paper Series DP2008/10, Reserve Bank of
New Zealand. URL https://ideas.repec.org/p/nzb/nzbdps/2008-10.html.

Binning, A. (2021). Shocks and Scenarios Analysis Using a Stochastic Neoclassical
Growth Model. Background Paper for the 2021 Statement on the Long-term Fiscal
Position, The New Zealand Treasury. URL https://www.treasury.govt.nz/sites/default/
files/2021-09/ltfs bp-shocks-scenarios.pdf.

Boucekkine, R. (1995). An Alternative Methodology for Solving Nonlinear Forward-Looking
Models. Journal of Economic Dynamics and Control, 19(4), 711–734. URL https://
EconPapers.repec.org/RePEc:eee:dyncon:v:19:y:1995:i:4:p:711-734.

Campbell, J. R., Evans, C. L., Fisher, J. D., & Justiniano, A. (2012). Macroeconomic Effects
of Federal Reserve Forward Guidance. Brookings Papers on Economic Activity, 43(1
(Spring), 1–80. URL https://ideas.repec.org/a/bin/bpeajo/v43y2012i2012-01p1-80.html.

de Groot, O., Mazelis, F., Motto, R., & Ristiniemi, A. (2021). A Toolkit for Computing
Constrained Optimal Policy Projections (COPPs). Working Paper Series 2555, European
Central Bank. URL https://ideas.repec.org/p/ecb/ecbwps/20212555.html.

Doan, T., Litterman, R., & Sims, C. (1983). Forecasting and Conditional Projection Using
Realistic Prior Distributions. NBER Working Papers 1202, National Bureau of Economic
Research, Inc. URL https://EconPapers.repec.org/RePEc:nbr:nberwo:1202.

Fair, R. & Taylor, J. (1983). Solution and Maximum Likelihood Estimation of Dynamic
Nonlinear Rational Expectations Models. Econometrica, 51(4), 1169–85. URL https:
//EconPapers.repec.org/RePEc:ecm:emetrp:v:51:y:1983:i:4:p:1169-85.

Giannoni, M., Patterson, C., & Del Negro, M. (2015). The Forward Guidance Puzzle. 2015
Meeting Papers 1529, Society for Economic Dynamics. URL https://EconPapers.repec.
org/RePEc:red:sed015:1529.

Goodfriend, M. & King, R. G. (2005). The Incredible Volcker Disinflation. Journal of
Monetary Economics, 52(5), 981–1015. URL https://ideas.repec.org/a/eee/moneco/
v52y2005i5p981-1015.html.

Heer, B. & Maussner, A. (2009). Dynamic General Equilibrium Modeling: Computational
Methods and Applications. Springer Berlin Heidelberg. URL https://books.google.co.nz/
books?id=ZdlEAAAAQBAJ.

WP22/02 An Eff ic ient Appl icat ion of the Extended Path Algor i thm in Mat lab With Examples 40

https://ideas.repec.org/p/esj/esridp/258.html
https://ideas.repec.org/p/imf/imfwpa/2020-064.html
https://ideas.repec.org/p/imf/imfwpa/2020-064.html
https://ideas.repec.org/a/eee/dyncon/v30y2006i12p2477-2508.html
https://ideas.repec.org/a/eee/dyncon/v30y2006i12p2477-2508.html
https://EconPapers.repec.org/RePEc:ecj:econjl:v:122:y:2012:i:563:p:1115-1141
https://EconPapers.repec.org/RePEc:ecj:econjl:v:122:y:2012:i:563:p:1115-1141
https://ideas.repec.org/p/nzb/nzbdps/2008-10.html
https://www.treasury.govt.nz/sites/default/files/2021-09/ltfs_bp-shocks-scenarios.pdf
https://www.treasury.govt.nz/sites/default/files/2021-09/ltfs_bp-shocks-scenarios.pdf
https://EconPapers.repec.org/RePEc:eee:dyncon:v:19:y:1995:i:4:p:711-734
https://EconPapers.repec.org/RePEc:eee:dyncon:v:19:y:1995:i:4:p:711-734
https://ideas.repec.org/a/bin/bpeajo/v43y2012i2012-01p1-80.html
https://ideas.repec.org/p/ecb/ecbwps/20212555.html
https://EconPapers.repec.org/RePEc:nbr:nberwo:1202
https://EconPapers.repec.org/RePEc:ecm:emetrp:v:51:y:1983:i:4:p:1169-85
https://EconPapers.repec.org/RePEc:ecm:emetrp:v:51:y:1983:i:4:p:1169-85
https://EconPapers.repec.org/RePEc:red:sed015:1529
https://EconPapers.repec.org/RePEc:red:sed015:1529
https://ideas.repec.org/a/eee/moneco/v52y2005i5p981-1015.html
https://ideas.repec.org/a/eee/moneco/v52y2005i5p981-1015.html
https://books.google.co.nz/books?id=ZdlEAAAAQBAJ
https://books.google.co.nz/books?id=ZdlEAAAAQBAJ


Hills, T. S. & Nakata, T. (2018). Fiscal Multipliers at the Zero Lower Bound: The Role
of Policy Inertia. Journal of Money, Credit and Banking, 50(1), 155–172. URL https:
//ideas.repec.org/a/wly/jmoncb/v50y2018i1p155-172.html.

Holden, T. & Paetz, M. (2012). Efficient Simulation of DSGE Models with Inequality
Constraints. School of Economics Discussion Papers 1612, School of Economics,
University of Surrey. URL https://EconPapers.repec.org/RePEc:sur:surrec:1612.

Jones, C., Kulish, M., & Rees, D. (2020). International Spillovers of Forward Guidance
Shocks. BIS Working Papers 870, Bank for International Settlements. URL https://ideas.
repec.org/p/bis/biswps/870.html.
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A. The Stochastic Extended Path Algorithm
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B. Speed Tests

In this appendix I carry out some simple speed tests to highlight the efficiency gains from
different features of the code used to produce the examples in this paper. In particular
I compare the speed gains from the vectorised code against code that uses for-loops,
the speed gains from using symbolic derivatives in place of quasi-Newton methods to
solve models with occasionally binding constraints, and the speed gains from using the
linearised model with occasionally binding constraints applied as opposed to the full
nonlinear model and solution. All the speed tests are carried out using Matlab 2021a on a
desktop computer with a 2.60 GHz Intel i5 processor and 8GB RAM. All times are reported
in seconds.

I test the vectorised code against the code that uses for-loops to fill in and update the
equation residuals and Jacobian matrices using two models, the simple New Keynesian
DSGE model outlined in Section 2 and a medium sized DSGE model with 82 endogenous
variables. The simple New Keynesian model is stochastically simulated for 2000 periods,
using the same sequence of shocks for both solution methods. I set the solution horizon,
T , to 200 periods, which is sufficient to ensure the model reaches steady state after the
model is hit by a battery of shocks. I run each solution method 10 times and report the
median time in seconds for each method in Table 6 below.

Table 6 Simple New Keynesian Model: Vectorised Code vs. For-Loops

Model and Solution Method Time Relative Gain

Non-linear, vectorised code 53.84s
Non-linear, for-loops 52.96s 1.63%

In this example the vectorised code is actually slower than the code that uses for-loops.
Closer inspection reveals that while the vectorised code that fills in and updates the
equation residuals is faster than the code that uses for-loops for the same task, the
vectorised code is slower at filling in and updating the Jacobian matrix. This in part reflects
the size of the model and the improvements that Mathworks has made in the performance
of for-loops in recent years. When the same experiment is performed using Matlab 2015b,
the vectorised code comfortably beats the code using for-loops.

To see how the model size affects the results, I stochastically simulate a medium sized
DSGE model for 100 periods, using the same sequence of shocks for both solution codes.
I set the solution horizon, T , to 1000 periods, to ensure the model reaches steady state
after a battery of shocks hit the model. The medium sized DSGE requires a longer solution
horizon than the simple New Keynesian DSGE model because it includes government
debt, private debt and physical capital, all of which can be quite persistent. I run each
code 10 times and report the median time in seconds for each code in Table 7 below.

Table 7 Medium Sized Policy Model: Vectorised Code vs. For-Loops

Model and Solution Method Time Relative Gain

Non-linear, vectorised code 94.81s 12.90%
Non-linear, for-loops 108.86s

When the vectorised code is used to solve a medium sized DSGE model it is 12.90%
faster than the code that uses for-loops.
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To investigate the benefits of using symbolic derivatives with occasionally binding con-
straints, I stochastically simulate the simple New Keynesian model for 1000 periods with a
binding ELB constraint. I repeat the experiment with the same sequence of shocks, solving
the model using a sparse application of Broyden’s method, which is a numerical approach
for calculating and updating the Jacobian matrix. I switch off the monetary policy shock
and double the standard deviation of the technology and preference shocks to ensure the
model hits the lower bound in a sufficient number of periods. I set the solution horizon, T ,
to 200 periods and I run each code 10 times and report the median time in seconds for
each code in Table 8 below.

Table 8 Symbolic Derivatives With OBC’s vs. Quasi-Newton Methods With OBC’s

Model and Solution Method Time Relative Gain

Non-linear model, OBC’s, symbolic derivatives 32.54s 63.43%
Non-linear model, OBC’s, Broyden’s method 88.98s

The simulated model spends 196 periods out of 1000 simulation periods at the lower
bound. The code implemented with symbolic derivatives is 63.43% faster than the sparse
implementation of Broyden’s method.

I compare the linearised model solved with occasionally binding constraints against the
non-linear model with occasionally binding constraints solved using the vectorised code
with symbolic derivatives. I stochastically simulate the simple New Keynesian model for
1000 periods with a binding ELB constraint, using the same sequence of shocks for both
experiments. As in the previous simulation experiment, I switch off the monetary policy
shock and increase the standard deviations of the productivity and preference shocks to
ensure that the model hits the lower bound in a reasonable number of periods. I set the
solution horizon, T , to 200 periods and I run each code 10 times and report the median
time in seconds for each code in Table 9 below.

Table 9 Linearised Model With OBC’s vs. Non-Linear Model With OBC’s

Model and Solution Method Time Relative Gain

Linearised, OBC’s, symbolic derivatives 9.24s 71.56%
Non-linear, OBC’s, symbolic derivatives 32.54s

The linearised code with a binding lower bound constraint is 71.56% faster than the full
nonlinear model solved using the vectorised code with symbolic derivatives.
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C. The Linearised Model and Occasionally
Binding Constraints

In this appendix I describe how occasionally binding constraints can be applied to the
linearised model and solved using the extended path algorithm. The dynamics of many
non-linear rational expectations models are close to linear in the absence of occasionally
binding constraints for plausible parameterisations and shocks. In such models it is often
the introduction of occasionally binding constraints that is the main source of asymmetry
and non-linearity. Applying the occasionally binding constraint to the linearised model
speeds up the algorithm, as in general fewer iterations are needed to solve the model.
I use Jakub Rysanek’s symbolic differentiator procedures in Matlab to write code that
linearises the non-linear model and then applies the occasionally binding constraints
(see Rysanek 2021). By automating the process I save time and avoid the possibility of
mistakes that arise from linearising the model by hand.

I demonstrate the algorithm using the non-linear model in equation (50) from Section 5.4.5,

f (Et {xt+1} , xt, xt−1, εt) =

Zt (Yt − χYt−1)−σ − β Rt
πt+1

Zt+1 (Yt+1 − χYt)−σ(
φ
υ−1

)
πt

[
πt − πψt−1π

1−ψ
]
−
(

υ
υ−1

)
κ (Yt − χYt−1)σ Y η

t A
−(1+η)
t + 1− . . .

. . .−
(

φ
υ−1

)
β
(
Zt+1

Zt

)(
Yt+1−χYt
Yt−χYt−1

)−σ (
Yt+1

Yt

)
πt+1

[
πt+1 − πψt π1−ψ

]
R?t −

(
R?t−1

)ρr (R (πtπ )κπ (YtY )κY )1−ρr
exp (σRεR,t)

logAt − ρA logAt−1 − σAεA,t
logZt − ρZ logZt−1 − σZεZ,t
Rt −RELB −Xt (R?t −RELB,t)


= 0. (95)

The vector of endogenous variables for this model is given by,

xt =
[
Yt, πt, Rt, At, Zt, R?t

]
, (96)

and the vector of unexpected exogenous variables is given by,

εt =
[
εZ,t, εR,t, εA,t

]
. (97)

I introduce an additional vector of anticipated exogenous variables,

Υt =
[
Xt, RELB,t

]
, (98)

where Xt is an indicator variable and RELB,t is the value of the interest rate at the effective
lower bound. The indicator variable, Xt, will eventually be replaced by a function of
endogenous variables when the lower bound regime is endogenously determined, but
for the moment I treat Xt as exogenous. The time paths for the model variables can be
described by the full set of model equations for each time period, as before,

F (x1:T ) =


f (x2, x1, x0, εt)

...
f (xt+1, xt, xt−1, εt)

...
f (xT+1, xT , xT−1, εt)

 . (99)

The non-linear model can be approximated by the linear system as follows,

F (x1:T ) ≈ F(x̂1:T ) = Jx (x̂1:T ) x̂0:T+1 + Jε (x̂1:T ) ε1:T + JΥ (x̂1:T ) Υ1:T , (100)
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where,

Jx (x̂1:T ) =
∂F (x0:T+1; εt,Υt)

∂x0:T+1

∣∣∣∣
x0:T+1=x,ε1:T=0,Υ1:T=Υ(x̂1:T )

, (101)

is the Jacobian matrix for the endogenous variables, evaluated at the steady state,

Jε (x̂1:T ) =
∂F (x0:T+1; εt,Υt)

∂ε1:T

∣∣∣∣
x0:T+1=x,ε1:T=0,Υ1:T=Υ(x̂1:T )

, (102)

is the Jacobian matrix for the unanticipated exogenous variables, evaluated at the steady
state, and

JΥ (x̂1:T ) =
∂F (x0:T+1; εt,Υt)

∂Υ1:T

∣∣∣∣
x0:T+1=x,ε1:T=0,Υ1:T=Υ(x̂1:T )

, (103)

is the Jacobian of the anticipated exogenous variables, also evaluated at the steady
state. Note that Υ1:T = Υ (x̂1:T ), indicating that after the derivatives have been taken, the
indicator variables, Xt, are replaced with the inequalities,29

Xt =

{
0 if R?t ≤ RELB
1 if R?t > RELB

. (104)

Following Boucekkine (1995), I write the Jacobian matrix for the endogenous variables as
follows,

Jx(x̂1:T ) =



A1 B1 C1 0 . . . . . . 0

0 A2 B2 C2 0 . . .
...

... 0 A3 B3 C3 0 . . .
. . . . . . . . .

. . . 0 At Bt Ct 0 . . .
. . . . . . . . .

...
... . . . 0 AT−1 BT−1 CT−1 0
0 . . . . . . 0 AT BT CT


, (105)

where,

At =
∂f (xt+1, xt, xt−1, εt,Υt)

∂xt−1

∣∣∣∣
xt+1,xt,xt−1=x,εt=0,Υt=Υ(x̂t)

,

Bt =
∂f (xt+1, xt, xt−1, εt,Υt)

∂xt

∣∣∣∣
xt+1,xt,xt−1=x,εt=0,Υt=Υ(x̂t)

,

Ct =
∂f (xt+1, xt, xt−1, εt,Υt)

∂xt+1

∣∣∣∣
xt+1,xt,xt−1=x,εt=0,Υt=Υ(x̂t)

.

The Jacobian matrix for the unanticipated exogenous variables has the form,

Jε(x̂1:T ) =



D1 0 . . . . . . 0
0 D2 0 . . . . . . 0
...

. . .
...

... . . . 0 Dt 0
...

...
. . . 0

0 . . . . . . 0 DT


, (106)

29 For the same reasons outlined in Section 5.4.1, derivatives of the indicator function do not need to be
taken to solve the model with occasionally binding constraints.
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where,

Dt =
∂f (xt+1, xt, xt−1, εt,Υt)

∂εt

∣∣∣∣
xt+1,xt,xt−1=x,εt=0,Υt=Υ(x̂t)

. (107)

The Jacobian matrix for the anticipated exogenous variables has the form,

JΥ(x̂1:T ) =



G1 0 . . . . . . 0
0 G2 0 . . . . . . 0
...

. . .
...

... . . . 0 Gt 0
...

...
. . . 0

0 . . . . . . 0 GT


, (108)

where,

Gt =
∂f (xt+1, xt, xt−1, εt,Υt)

∂Υt

∣∣∣∣
xt+1,xt,xt−1=x,εt=0,Υt=Υ(x̂t)

. (109)

Equation (100) can then be rewritten as,

F(x̂1:T ) =



A1 B1 C1 0 . . . . . . 0

0 A2 B2 C2 0 . . .
...

... 0 A3 B3 C3 0 . . .
. . . . . . . . .

. . . 0 At Bt Ct 0 . . .
. . . . . . . . .

...
... . . . 0 AT−1 BT−1 CT−1 0
0 . . . . . . 0 AT BT CT




x̂0

x̂1
...
x̂T
x̂T+1

+. . .

. . .+



D1 0 . . . . . . 0
0 D2 0 . . . . . . 0
...

. . .
...

... . . . 0 Dt 0
...

...
. . . 0

0 . . . . . . 0 DT




ε1

0
...
0

+



G1 0 . . . . . . 0
0 G2 0 . . . . . . 0
...

. . .
...

... . . . 0 Gt 0
...

...
. . . 0

0 . . . . . . 0 GT





Υ1

Υ2
...

Υt
...

ΥT


.

(110)

The Newton step in the extended path algorithm can then be replaced with,

x̂h+1
1:T = x̂h1:T − J

(
x̂h1:T

)−1
F
(
x̂h1:T

)
, (111)

or substituting for F
(
x̂h1:T

)
,

x̂h+1
1:T = x̂h1:T − J

(
x̂h1:T

)−1 [
Jx (x̂1:T ) x̂h0:T+1 + Jε (x̂1:T ) ε1:T + JΥ (x̂1:T ) Υ1:T

]
, (112)

where x̂0 and x̂T+1 in x̂h0:T+1 are given.
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