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Abstract

In this paper, we examine the relationship between p-hacking and data-

sharing policies for published articles. We collect 38,876 test statistics from

1,106 articles published in leading economic journals between 2002–2020.

While a data-sharing policy increases the provision of research data to the

community, we find a well-estimated null effect that requiring authors to share

their data at the time of publication does not alter the presence of p-hacking.

Similarly, articles that use hard-to-access administrative data or third-party

surveys, as compared to those that use easier-to-access (e.g., own-collected)

data are not different in their p-hacking extent. Voluntary provision of data

by authors on their homepages offers no evidence of reduced p-hacking.
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The data used in applied economics has increased in both quality and quantity

(Einav and Levin 2014). Access to large-scale administrative or proprietary data

now provide economics researchers with opportunities to answer new and subtle

questions using reliable and often representative samples (see Künn (2015) for a

discussion). However, this type of data is not often shareable with the research

community. While this sometimes prevents later researchers from accessing the

data for their own purposes, it also prevents independent verification that results

are reproducible, replicable and robust. Leveraging their position in the publication

process, academic journals have begun requiring authors to submit their data at the

time of publication - Christensen and Miguel (2018) document that the ‘Top Five’

journals in economics explicitly require data and code to be provided, with possible

exemptions. The underlying motivation is that increasing the availability of data

to the community enables it to reproduce or replicate the results of a prior study.1

While a large literature documents the extent of p-hacking and publication bias

in economics and other disciplines (Adda et al. (2020); Andrews and Kasy (2019);

Brodeur et al. (2016); Bruns et al. (2019); DellaVigna and Linos (2022); Doucoulia-

gos and Stanley (2013); Elliott et al. (2022); Franco et al. (2014); Furukawa (2019);

Gerber and Malhotra (2008a); Havránek (2015); Havránek and Sokolova (2020);

Rosenthal (1979)), the question of whether p-hacking and publication bias depend

on data-sharing policies and data availability has not received a great deal of at-

tention. We believe this is a key research question as publication bias or p-hacking

continue to cast doubt upon the credibility of published research in the eyes of

policymakers (and others) with meaningful consequences. For example, if studies

that identify a statistically significant effect of a given policy are more likely to be

published, then this would lead to a misrepresentation of the policy’s real effect

(Blanco-Perez and Brodeur (2019)).

In this paper, we investigate the relationship between data-sharing policies, data

(and code) availability, and data type on the presence of p-hacking and publication

bias. We define p-hacking, publication bias, data availability and data-sharing

policy as follows:

p-Hacking refers to researcher choices being made in such a way as to manipulate

or selectively report statistical significance.

Publication bias occurs when the likelihood that research is published depends upon

the statistical significance of its result.

Data availability refers to whether an article’s data is available either from the

1Availability of data is important for reproducibility of results, but also replicability (i.e.,
replicating prior results using the same codes but new data) and generalizability (i.e., extension of
findings to other populations or settings). See Bollen et al. (2015) for definitions and a discussion
of reproducibility and replicability.

2



publishing journal’s website or from any one of the authors’ homepages.2

Data-sharing policy refers to when a journal has implemented an editorial policy

that requires authors to provide a replication package including data and code or

(if granted an exemption) explicit instructions on how to obtain the data.3

Data type refers to a classification of an article’s underlying data into four possi-

ble categories: administrative data, third-party surveys, researchers’ own-collected

data, and other data types, including financial data.4

The main hypotheses to be tested are: (1) the extent of p-hacking and publica-

tion bias in leading economics journals depends upon the existence of a data-sharing

policy, and data availability; and (2) the extent of p-hacking and publication bias in

leading economics journals depends upon data types.5 We also investigate several

secondary (albeit closely related) research questions such as whether p-hacking and

publication bias depend on voluntary data availability on authors’ homepages.

While the primary goal of data-sharing policies is not to decrease p-hacking

and publication bias, but rather to enable the reproducibility and replicability of

empirical results, it is plausible that these policies nonetheless decrease p-hacking

through an increase in potential monitoring (we provide a more formal conceptional

framework in Section 1). Data-sharing policies increase the likelihood that other

interested researchers will use the uploaded replication files and thereby increase the

rate of detection of (potential) p-hacking. If we assume that authors believe there

will be some form of monitoring and punishment if ‘caught’ p-hacking, data-sharing

policies might have a deterrence effect. The increased risk of being ‘caught’ p-

hacking might change researchers’ behaviour prior to publication so that p-hacking

is lower in the case of strictly enforced data-sharing policies. One way to circumvent

these data-sharing policies are exemptions to authors granted by the publishing

journal. For instance, in case of privacy concerns attached to the release of their

2Due to the size of our sample, we do not check the reproducibility of the numerical results for
the studies in our sample. However, we do verify whether all or only some data-sets are present.

3For example, the Economic Journal ’s website states that authors must provide a replication
package and that: “Authors who have requested an exemption for the publication of their datasets
can either (1) grant temporary distance or physical access to the data to the journal’s staff for the
sole purpose of replication (the data will not be published), or (2) supply a simulated dataset or
a synthetic dataset instead of the actual dataset(s) used for the analysis for replication purposes.
The nature of the data used for the reproducibility checks will be indicated on the published
version of the paper”.

4Examples of administrative data include Medicare Claim Data, Tax Return Data, and Court
Records. Examples of third-party survey data include the American Community Survey and
the German Socio-Economic Panel. Examples of own-collected data include data from author-
conducted field and lab experiments. Examples of the other data type includes those derived from
Compustat and Thomson Reuters.

5In our context we define the extent (rather than just the presence) of p-hacking or publication
bias to be related to the magnitude of our underlying test’s result. For example, in the case of
our caliper tests where we compare the number of test statistics above and below a threshold, the
extent is related to the magnitude of the difference between these numbers.
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data, researchers may not legally be allowed to share their data, making a replication

of their results impossible.

To answer our research questions, we augment Brodeur et al. (2020)’s data set

and collect hypothesis tests reported in journal articles employing experimental and

quasi-experimental methods from 2002 to 2020 and focus on the 13 of the 25 jour-

nals who have implemented a data-sharing policy during that time. Specifically,

our sample contains 38,876 test statistics published in 1,106 articles. In order to

comprehensively measure data availability, we collect replication data from the pub-

lishing journals website and visit each of the authors’ homepages to check voluntary

data availability. For articles providing partial or no data, we collect the author-

offered reasons provided by each README file. Last, we code each data set into

four data types, reflective of their underlying features (e.g., administrative data is

hard to access, owned by an organization, and not originally generated for research

purposes).

We rely on multiple approaches to formally document the extent of p-hacking

and publication bias. We start with a visual inspection of the raw distribution

of z-statistics. We then follow Gerber and Malhotra (2008b) and apply caliper

tests. This method focuses on discontinuities in the probability of a test statistic

appearing just above or below a conventional statistical threshold. One advantage

of the caliper test in comparison to other methods to detect p-hacking is that

we can control for journal and year fixed effects as well as authors’ and articles’

characteristics. This is potentially important in our context if researchers which

willingly share their data and codes have characteristics that are related to p-hacking

behaviour. We also rely on a battery of p-hacking tests introduced in Elliott et al.

(2022).

First, we test whether the extent of p-hacking and publication bias in lead-

ing economics journals depends upon a data-sharing policy and consequent data-

availability. Using the caliper test, we do not find sufficient evidence to reject

the hypothesis that sharing data and codes through a journal’s webpage reduces

the extent of p-hacking. Our estimates in that regard are small and statistically

insignificant. We also do not find sufficient evidence to reject the hypothesis that

voluntarily sharing replication material on author homepages is related to p-hacking

once we control for a large set of authors and articles’ characteristics. The addi-

tional battery of tests from Elliott et al. (2022) to detect p-hacking find our results

robust.

Our findings are potentially driven by the fact that many articles do not share

complete data and code even after the implementation of data-sharing policies. This

may be partly due to authors properly complying with confidential data usage terms

being exempt from providing a complete replication package. In our sample, we find
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that about 60% of articles provide full data and codes in journals with a data-sharing

policy. We thus employ an instrumental variable strategy, exploiting data-sharing

journal policy implementation as an instrumental variable for the provision of full

data and codes. While our first-stage estimates are large and statistically significant

(that a data-sharing policy increases the sharing of data), our second stage again

finds no evidence that data-sharing policies affect the presence of p-hacking or

publication bias.

Second, we turn to testing whether the extent of p-hacking and publication

bias in leading economics journals depend upon the data type. We classify data

type according to colloquial categories ‘administrative’, ‘third-party survey’, ‘own-

collected’, and ‘other’. This classification reflects meaningful features of the data.

For example, third-party surveys and own-collected data have the common feature

that both were created for research purposes and represent relatively easier access

to data, while ownership of the data differs between the two. Administrative data

is hard-to-access and not originally created for research purposes, whereas own-

collected data are often easier-to-access. We detail the features more fully in Section

1.

One potential disadvantage for administrative (admin) data in our setting over

other data types is the relative difficulty of data access for other researchers. In

our sample only 13% of administrative data are in articles which provide access

to data and code for replication in comparison to 24% for third-party surveys and

55% for own-collected data. Given that a relatively large proportion of articles

receiving exemptions from data-sharing policies use administrative records data, its

increasing use in applied economics may raise concerns about the reproducibility of

its research findings.

Nonetheless, our results suggest that the proportion of test statistics that are

statistically significant (around significance thresholds) across data types is not

significantly different. This result is robust to the inclusion of authors’ and articles’

characteristics and are consistent with additional tests of publication bias and p-

hacking.

We contribute to the literature in various ways. First, we contribute to a broader

literature studying the impact of journal editorial policies and the behaviour of

editors and reviewers.6 Second, we contribute to a recent literature discussing the

credibility of research findings. In a recent literature review, Christensen and Miguel

(2018) discuss various tools such as mandating greater data sharing and the use of

6See Card and DellaVigna (2020), Card et al. (2020) and Carrell et al. (2020) for recent studies
documenting how reviewers evaluate papers and whether editors follow reviewers’ recommenda-
tions. See Blanco-Perez and Brodeur (2020), Feige (1975) and Höffler (2017) for comments on
editorial policies.
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pre-analysis plans.7 A relevant study is Brodeur et al. (2016) who document for

three top economics journals that data or code availability does not mitigate p-

hacking. We formalize their analysis, and extend it by analyzing this relationship

for a larger number of journals, and controlling for journal fixed effects as well as

authors’ and articles’ characteristics in our model.

Last, our results contribute to a growing literature on meta-analyses and re-

search transparency by better informing the determinants of publication bias and

p-hacking (Abadie (2020); Havránek et al. (2020); Ioannidis et al. (2017); Miguel

et al. (2014); Stanley (2008); Stanley and Doucouliagos (2014); Swanson et al.

(2020)).8 Two relevant studies are Brodeur et al. (2020) and Vivalt (2019) which

document differences in selective reporting by research method by providing empir-

ical evidence that randomized control trials and regression discontinuity designs in

comparison to other non-experimental methods are less p-hacked. We add to this

literature by testing other potential determinants of p-hacking and publication bias

in economics.

The remainder of this paper is structured as follows. In Section, 1, we provide

a brief conceptual framework. Section 2 details our data collection. Section 3 in-

vestigates whether replication material availability policies decrease the extent of

p-hacking and publication bias. Section 4 documents differences in the researchers

who make use of admin, third-party survey and own-collected data. It also inves-

tigates whether the likelihood of providing replication material is related to data

type. In Section 5, we document the impact of the “revise and resubmit” process.

Section 6 concludes.

1 Conceptual Framework

In this section, we provide a brief conceptual framework providing a rationale for

why data-sharing policies or certain features of data types might be expected to

decrease p-hacking and publication bias.

One potential advantage of data-sharing policies is that they may change re-

searchers’ behaviour through (perceived) monitoring.9 Authors might be less in-

clined to p-hack with additional monitoring following the increased likelihood that

their p-hacking will be detected by the research community. This in turn could lead

to a decrease in the proportion of test statistics just-rejecting the null hypothesis

7See Christensen et al. (2019) and McCullough et al. (2008) for a discussion of the benefits
and limitations of data sharing.

8See Camerer et al. (2016), Chang et al. (2022), Hamermesh (2017) and Maniadis et al. (2017)
among others for a discussion of replication in economics.

9A relevant framework is that of Becker (1968)’s crime and punishment. A p-hacker increases
the presented statistical significance of their hypothesis test, but must do so under uncertainty of
whether they will be detected and the severity of any repercussions.

6



for both submissions and published articles in journals with a data-sharing policy.

However, this mechanism assumes that authors believe there will be some form

of punishment if they are caught p-hacking.10 It may also not be possible to (easily)

detect p-hacking for journals that do not strictly enforce their data-sharing policy.

As of 2022, only the American Economic Association journals, the Economic Jour-

nal and the Review of Economics Studies have a dedicated data editor verifying the

completeness of the replication package for the journals in our sample.

A data-sharing policy may also signal to authors that a journal’s editorial board

has preferences for open science practices, including positively valuing null research

findings. Authors with a manuscript that does not reject the null hypothesis may

then believe that their results are more likely to get published in journals with a

data-sharing policy. It is thus plausible that these policies affect researchers’ be-

haviour in the short run through redirecting the composition of submissions - at least

where statistical significance is concerned. Data-sharing policies may also directly

change the behaviour of editors and reviewers themselves. While it remains unclear

whether reviewer preferences for statistically significant estimates have changed over

time, there is evidence that adopting open science practices lead to changes in editor

preferences for null results (e.g., Blanco-Perez and Brodeur (2020)).

Last, it is increasingly difficult to publish in top journals and incentives to pub-

lish in leading outlets are strong (Card and DellaVigna (2013)). These incentives

may lead researchers to p-hack regardless of data-sharing policies. It thus remains

unclear whether such policies could be effective at decreasing p-hacking or other

questionable research practices.

In terms of data type, three features may largely determine the potential for

monitoring: ease of data access, ownership of the data (by researcher or another

organization), and purpose of the data (e.g. originally for research purposes or

not). We thus categorize data sets in four categories informed by these features.

Administrative data features more restrictive access, is owned by an organization,

and was not originally generated for academic research. Third-party survey data

features easier access, is owned by an organization, and was originally generated for

research (whether policy or academic). Own-collection data features easy access11

and is owned by the researchers who collected it (and generated it for their academic

purposes). Last, ‘other’ data typically features ambiguous access, is owned by

organizations, and is not originally generated for academic research.

10Existing reviews of published replication activities mostly document small or even minuscule
replication rates (e.g., Mueller-Langer et al. (2019)).

11We note here that without a journal data-sharing policy own-collected data may not be
easy to access for the research community. Potential p-hacking with own-collected data remains
undetectable.
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2 Data

In this section, we describe in detail our data collection. First, how our sample

of journals and their comprising articles were chosen. Second, how test statistics

were collected from articles. Third, how additional characteristics, such as data

availability and data type were gathered and coded.

2.1 Journal Polices and Article Selection

Our focus is to examine the impact of journals adopting data-sharing policies, data

availability, and article data-types on the presence of p-hacking and publication bias.

To do this we require test statistics from many journals over a long period of time

(i.e., years pre- and post-data sharing policies). We begin with the data provided by

Brodeur et al. (2020) which contains 21,440 test statistics from 684 articles published

in 2015 and 2018 in 25 leading economics journals.12 The sample contains only

articles using one of the following four methods: difference-in-differences (DID),

instrumental variable (IV), randomized control trial (RCT) and sharp regression

discontinuity design (RDD).13 We then expand this data set as follows.

Of the 25 top journals, we identify which ones have implemented a data-sharing

policy. Table 1 provides a list and their associated announcement dates.14 In total,

16 journals in our sample had a data-sharing policy. All Top 5 economic journals

have a mandatory data- and code-sharing policy.15 The American Economic Review

and Econometrica both announced their mandatory data- and code-sharing policy

already in 2004. The last Top 5 journal adopting a data-sharing requirement was

the Quarterly Journal of Economics in April 2016. Several other general interest

and top field journals explicitly require data and code to be submitted at the time of

article publication, including the American Economic Journals, Economic Journal,

the Journal of the European Economic Association and the Review of Economics

and Statistics. Last, one journal, the Journal of Finance, has a code-sharing policy.

We code this journal as not having a data-sharing policy throughout.

We collect test statistics from articles between 2002 and 2020 (inclusive) in

the exact same manner as in Brodeur et al. (2020).16 Our additional data collec-

tion differs only with the exception that ours is a random sample (rather than the

12Top journals were identified using RePEc’s Simple Impact Factor: https://ideas.repec.

org/top/top.journals.simple10.html.
13Articles using matching, fuzzy RDD or Structural Equation Model are removed.
14We unfortunately could not obtain the announcement date for some journals where me must

instead rely on the year of implementation.
15The Top 5 journals refer to the American Economic Review, Econometrica, the Journal of

Political Economy, the Quarterly Journal of Economics, and the Review of Economic Studies.
16This is done by searching the text of every article published by the selected journals in the

given years for keywords related to the identification strategies (e.g. difference-in-difference* and
difference in difference* for DID).
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universe) of articles using the aforementioned identification methods from the 12

journals which (at some point in this almost twenty-year window) implemented a

data-sharing policy.17 Five of the journals that did not implement a data-sharing

policy instead simply encourage authors to share a replication package, while three

more have no specific data-sharing policies. We also note that Economic Policy

does not publish many articles using causal identification strategies. Last, we do

not include the American Economic Journals in this expanded data collection as all

of them had a data and code policy throughout the entire time period. Nonetheless,

we keep test statistics for 2015 and 2018 from these journals in our final sample.

Their exclusions does not affect our main conclusions. Table 1 also provides details

on the number of articles, test statistics, and years of data collection. Our final

sample includes 38,876 test statistics published in 1,106 articles.

From these identified articles, we collect test statistics from within tables and

only those that relate to main results. Estimates from summary statistics, balance

tables, appendices, robustness checks, and placebo tests were excluded. Test statis-

tics drawn from multiple specifications of the same hypothesis were collected. Each

article was independently coded by two of the original authors to reduce concerns

that only coefficients of interest were selected. All of the tests relate to two-tailed

tests. In our sample, about 5%, 6% and 89% report p-values, t-statistics and co-

efficients with associated standard errors, respectively. We transform each of these

into associated ‘z-statistics’.18

2.2 Additional Context - Data-Sharing

We collected additional details about the availability of replications files, data ac-

cessibility and reasons for less-than-complete replication files.

To determine the availability of data and codes, we manually check every ar-

ticle to see if there is a replication package included on the publishing journal’s

webpage.19 We also document the completeness. More specifically, we distinguish

between full data and code, partial data and code, only code, and no provision at

all. Note that we could not quantify the completeness of the codes for all articles

in our sample, only the completeness of the package. We then also manually check

17We also collect test statistics from 2002 to 2020 for the Journal of Finance.
18When p-values are reported we transform them into their equivalent two-sided z-statistic

values. When t-statistics are reported, we treat them as asymptotically following the normal
distribution. For the most common, whereby authors report regression coefficients and standard
errors, we assume the null hypothesis to be zero and so construct the associated z-statistic as the
estimated regression coefficient divided by the reported standard error.

19Due to the manual nature of this data collection, measurement error is possible. Some
articles may be considered to be ‘data not provided’ when in reality data is available (and vice
versa, although the insightful reader may suspect that to be much less common). It is worth
mentioning that we do not check for data availability or access per se, but rather if replication
files are provided on journals’ webpages.
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every author’s homepage for a replication package.20 Appendix Table A1 provides

summary statistics by data and code availability and the presence of data-sharing

policy. Appendix Table A2 shows summary statistics data and code availability by

journal.

Figure 1 illustrates the share of articles providing replication material for one

year prior to five years after the implementation of a data-sharing policy. The year 0

is the year of the policy announcement. We restrict the sample to the balanced set of

journals who ever adopt a data-sharing policy. In the year before the announcement,

virtually no journal articles provided data nor codes on the journals’ websites.21 In

year 1, about one-third of articles provided full data and codes, about 15% provided

partial data and codes, and slightly less than 20% provided only codes. From year 3

to year 5, about 20% of articles still did not provide codes nor data. Approximately

60% of articles provided full data and codes.

To determine data accessibility, we manually check each replication package

and corresponding README file. Graphically presented in Appendix Figure A1,

we see that from between year 3 to 5 about 60% of replication packages provide

direct access to the data. An additional 20% of authors offer some forms of help or

guidance on how to access the data. The remaining 20% of articles do not provide

any access nor guidance on how to obtain the data for replication.

To determine the reasons for less-than-complete replication data, we examine the

README file and check whether a reason was provided for incomplete or missing

data.22 We categorized exemption reasons into the following categories: (1) need

approval (i.e., authors encourage interested researchers in writing an application and

provide contact details), (2) need approval and paying a fee (i.e., authors explicitly

mention a necessary payment), (3) confidential data (i.e., authors use confidentiality

reasons/proprietary data as an excuse and provide no help or contact details in

accessing the data), and (4) non-distributable data (i.e., authors are not allowed to

share the data but they provide a link, where the data can be accessed). Multiple

exemption reasons may be provided for a given study. For example, a study may

use two datasets, with different reasons for not sharing each dataset. For articles

published in journals with a data-sharing policy that do not fully provide their

20In total, we accessed 98,796 homepages (including duplicate access for repeated authors).
In our sample, about 18% of articles had replication material on at least one of the authors’
homepage. This figure goes down to 12% for articles published in journals without a data-sharing
policy. Appendix Figure A2 illustrates that the share of authors sharing data and codes on their
personal homepages does not meaningfully change after the implementation of a data-sharing
policy.

21One article published in the Quarterly Journal of Economics released full data and codes on
the journal’s website prior to the implementation of the data-sharing policy.

22We code data accessibility as reported in the README files and check for data access at
the time of publication. Of note, this may lead to measurement error in instances where the data
become public-use over time (e.g., court records obtained via multiple FOIA requests).
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data, only 53% of authors provide exemption reasons for not sharing (some or all

of) their data. For those that do provide a reason, the majority (76%) mention

“need approval”. Only 7% mention “need approval and paying a fee”, while about

17% and 20% mention confidential data and not distributable, respectively. We

note that exemption reasons are often interchangeable and that measurement error

is likely. Readers should thus be careful when interpreting these findings.

2.3 Additional Contextual Data

We follow Brodeur et al. (2020) and collect additional contextual data. For each

article, we record: the journal, year of publication and the number of authors. For

each author, we record: gender, current institution, PhD granting institution, year

of graduation, and whether the author was an editor of an economics journal at the

time of publication.23 These included article and author characteristics are the same

as in Brodeur et al. (2020). Table 2 provides descriptive statistics for article and

author characteristics by data availability. The unit of observation is a test statistic.

We see that about 34% of tests in our sample come from articles published in the

Top 5 journals in economics. Approximately 11% of tests come from solo-authored

articles. The average years of experience of authors (years since PhD completion) in

our sample is 10.9 and about 23% of tests are in articles written by authors affiliated

with a top institution.24 We find that articles providing full data and codes on the

journals’ website are more likely to be published in a Top 5 journal. Similarly, there

appears to be a positive relationship between years of experience (and affiliation

ranking) and providing full data and codes. In contrast, data-sharing practices do

not seem to be related to gender and number of authors.

2.4 Additional Context - Data-Type

For each article, we collect information on data sets used. More specifically, we

collect information on the method of data collection and the name of the data set.

When classifying our data-types we used the following guidelines, character-

tized by certain features of the data. Administrative data is originally collected for

a purpose other than for academic research. Third-party survey data is collected by

organizations (including governments) for later research use. Own-collected data

23We record gender using self-reported information in CVs and authors’ homepage biographies
and head-shots. Other authors’ characteristics are collected from authors’ homepage biographies
as well.

24We follow Brodeur et al. (2020) and code as “top” institutions the following institu-
tions/departments: Barcelona GSE, Boston University, Brown, Chicago, Columbia, Dartmouth,
Harvard, MIT, Northwestern, NYU, Princeton, PSE, TSE, UC Berkeley, UCL, UCSD, UPenn,
Stanford, and Yale. The choice of institutions was based on RePec’s ranking of top institutions
(https://ideas.repec.org/top/top.econdept.html).
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is collected by researchers (or individuals under direct researcher supervision). If

none of these labels apply, we classify the dataset as “other”. We note that this

manual classification may include misclassification. While we believe some misclas-

sifications are more likely than others, we believe that misclassification of any type

into the “other” category is most likely, and so remain reserved when interpreting

any conclusion based on that data-type.

Administrative (or register) data are generally collected by government agencies

used for administrative purposes. Typical examples are social security or vital

records. Compared to administrative data, third-party survey differ in terms of

their purposes. Third-party surveys are conducted to answer specific questions,

while often targeting only subgroups of individuals. For example, a candidate survey

conducted during an election. Two prominent examples are the Current Population

Survey (CPS) and the General Social Survey (GSS). These data are gathered by a

third party and not by later academic researchers themselves.25 Own-collected data

by researchers on the other hand, describe data sets that are manually collected by

researchers or research assistants. Such data might be an own-implemented survey

or field experiment. We coded all remaining data sets as other. This involves data

collected from financial data streams such as Bloomberg or Compustat but also

statistical data like GDP or unemployment figures that are publicly available and

provided by organizations such as the OECD or World Bank.

For our data type analyses, we restrict the sample to articles relying solely on

one type (we refer to the moniker ’pure sample’). Appendix Figure A3 illustrates

the evolution of data type use over the entire time period. We document a large

increase in the use of admin and own-collected data, and a sharp decrease on the

use of third-party surveys. Table 3 provides summary statistics for the type of data

used in our sample and Appendix Table A3 further describes data type by data and

code availability.26 In total we identified 20,701 observations and 597 articles that

rely on solely one data type. The largest share of tests is collected by the researchers

themselves (37.5%), while approximately 27.7% employ admin, 19.0% third-party

survey and 15.9% rely on other data, respectively. We also see that about 40% of

articles using admin and own-collected data are published in Top 5 journals against

20% for third-party survey data. Articles using own-collected data are more likely

to be solo-authored and have more years of experience on average.

If we restrict the sample to articles which rely solely on one data type (i.e., pure

sample) and provide full data and code, we observe some differences that confirm

25See Kapteyn and Ypma (2007) for a discussion of issues and problems with third-party survey
and admin data. The authors point out, for instance, that surveys are more costly and subject
to non-response issues, while admin data may suffer from mismatching due to imperfect linkage
information from different sources.

26Appendix Table A4 also provides an overview of data type by journal.
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some of our anecdotal expectations. Tests from research that use administrative

data are the least likely to provide full data and code at 5.4%. Research published

using data that researchers collected on their own is the largest share of those that

provide full data and code at 66.2%. Third party surveys and other data make up

16.7% and 11.7% respectively. These differences are not driven by outliers – if we

consider the sample of articles that provide full data and code, we observe the same

pattern. Across those articles that provide full data and code, 12.3% use admin,

while 54.6% rely on own-collected data by researchers. This result is consistent with

two possibilities; (1) a large share of admin journal articles receiving exemptions

from data-sharing policies at top journals and/or (2) through composition effect in

which admin data papers are more likely to be published in journals that do not

have data-sharing policy.

3 Data-Sharing Policy, P-Hacking and Publication Bias

We first visually investigate the distribution of z-statistics for journals with and

without data-sharing policies. In a second step, we apply more formal approaches

to detect p-hacking and publication bias.

It is useful to clarify what the distribution of z-statistics ‘should’ look like in

the absence of p-hacking and publication bias. Brodeur et al. (2016, 2020) noted

that in a region where the incentives for a researcher to misrepresent statistical

significance are small, the observed distribution of test statistics closely resembles

a student’s t-distribution. More recently, Elliott et al. (2022) derive theory that

for any underlying distribution of true effects a p-curve (a mechanical equivalent to

the z-statistic distribution) should be non-increasing and continuous without the

presence of p-hacking or publication bias.

In our setting, if publication bias is present (that is the publication process at

some point prefers higher z-statistics to lower ones, as in Brodeur et al. (2016)) we

expect a rightward shift of mass in the z-statistic distribution that maintains the

monotonically decreasing aspect of the z-statistic distribution. On the other hand,

p-hacking could result in too many z-statistics that are just above a threshold

(Simonsohn et al. (2014)) or too few z-statistics below a threshold (Brodeur et al.

(2016)). If either (or their combined) effect is large enough the monotonically

decreasing aspect of the z-statistic distribution could be violated, and most likely

around a statistical significance threshold where researchers perceive a benefit to

just crossing. Under p-hacking, we expect to see either a valley, a peak, or both

around a threshold.
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3.1 Distribution of z-Statistics

In what follows, we illustrate the raw distribution of z-statistics for several sub-

samples for z ∈ [0, 10]. Similar to Brodeur et al. (2020), we create z-curves by

estimating kernel densities. A kernel smooths the distribution, softening both val-

leys and peaks. Reference lines are provided at conventional two-tailed significance

levels.

Data-Sharing Policies. Figure 2 illustrates the distributions of test statistics

for three subsamples. The first panel restricts the sample to articles published in

journals with no data-sharing policy. The second panel restricts the sample to

articles published in journals with a data-sharing policy. The third panel restricts

the sample to articles published in journals only encouraging data-sharing. Later,

we treat those observations with an encouraging data policy as having no journal

policy. We include all years in our sample. Appendix Figure A4 plots the three

z -curves into a single panel for ease of comparison.27 To the eye, the distributions

are remarkably similar28 exhibiting a non-monotonic peak at about 1.96 after a

valley between 1.5 and 1.65. More precisely, the z-curves for articles in journals

with and without a data-sharing policy are right on top of each other for the entire

distribution. This is a first piece of evidence that data-sharing policies have little

impact on p-hacking and publication bias.

Data and Code Availability. We further investigate this relationship by

restricting the sample to journals that implemented a data-sharing policy. Figure 3

plots the distribution of z-statistics from the articles providing full data and code,

partial data and code, only code, and no replication material separately. The four

panels reveal qualitatively similar patterns29 each with an apparent peak around

1.96. The peak appears to be a bit sharper for articles providing full data and codes.

This is a second piece of evidence that data-sharing policies do not meaningfully

decrease p-hacking.30

27In the appendix we provide figures plotting multiple z -curves into a single panel for ease of
comparison. Referring to ‘Data-Sharing Policies’, see Appendix Figure A4. Referring to ‘Availabil-
ity of Replication’ Material, see Appendix Figure A5. Referring to ’Timing of the Implementation
of Data-Sharing Policies’ see Appendix Figures A6, A7 and A8.

28Despite a two-sided Kolmogorov–Smirnov test comparing no policy to a policy returning a
p-value of 0.025, no policy to encouragement of 0.0298, and policy to encouragement of 0.014.

29A Kolmogorov–Smirnov test comparing full data and code to partial data and code returns
a p-value of 0.110, partial data and code to only code 0.074, and only code to no provision 0.035.

30We explore heterogeneity effects across different subsamples in Appendix Figures A9 – A12.
These figures illustrate decompositions by journal ranking (Top 5 and non-Top 5), number of
authors, institutional rank and PhD institutional rank. Test statistics in Top 5 journals seem to
behave the same as non-top 5 in all replication availability material settings, although partial data
and code does look flatter for Top 5. This pattern repeats with multi versus solo authorship with
solo-authored partial data flatter than multi-authored test statistics. A high ranking institution
seems to differ from others when only code is provided, this is less pronounced when we consider
a high ranking PhD granting institution.
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Timing of the Implementation of Data-Sharing Policies. Last, we visually

investigate the timing of the implementation of data-sharing policies. We start

by looking at whether the distribution of z-statistics changes from before to after

the implementation of a data-sharing policy. Figure 4 plots the distribution of z-

statistics for the 5 years prior to the announcement of the policy (left panel) and

the distribution of z-statistics for the 5 years after the announcement (right panel),

respectively. Visually, there does not seem to be any discernible change from before

to after the announcement and implementation of the data-sharing policy.31 To

determine if a data-sharing policy becomes more effective at reducing bunching near

statistical significance thresholds over time, we decompose the post-policy years into

two categories: first two years vs third to fifth year after policy implementation.

Again the two z-curves are mostly on top of each other for most of the distribution,

although there seems to be slightly less bunching around 1.96 for third to fifth year

after policy (see Appendix Figures A7 and A8).

Voluntary Provision by Authors. We also explore whether the distribution

of z-statistics differ depending on the availability of any replication material at all,

including authors’ homepages. In Appendix Figure A16, we plot the distribution of

z-statistics for articles for which replication material is available on at least one of

the authors’ homepages. As a comparator, we plot the distribution of z-statistics for

articles in which no material was available on the journal’s webpage nor any of the

authors’ homepages. There is little discernible differences between the two panels.

Overall, our visual inspection seems to suggest that neither voluntary data-sharing

nor data-sharing policy have an impact on the distribution of z-statistics.

Reasons for Data Exemptions. We last investigate whether the distribution

of test statistics is similar for authors providing a reason for not sharing data in

comparison to those not providing a reason. For this exercise, we restrict the sample

to articles published in journals with a data-sharing policy and have partial or no

data. The distributions are illustrated in Figure 5 and Appendix Figure A17. These

figures show that the two kernel density lines are on top of each other for most of

the distribution, with slightly more mass near 0 for articles without a reason. We

interpret those findings as suggestive evidence that providing a reason or not is not

related to p-hacking or publication bias.

31One potential issue is the overrepresentation of round values (e.g., coefficient of 0.02 and
standard error of 0.01). We follow Brodeur et al. (2016) and deal with this potential issue by
randomly redrawing a number in the interval of potentially true numbers around each collected
value using a uniform distribution. This de-rounding method has no impact on our conclusions.
See Appendix Figures A13-A15.
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3.2 Methods and Tests for Detecting P-Hacking

In this subsection, we formally test whether data-sharing policies decrease the extent

of p-hacking and publication bias. We first describe and present results based on

the caliper test, which consists of comparing test statistics close to significance

thresholds (Gerber et al. (2008)). We then conduct additional tests designed to

detect p-hacking introduced by Elliott et al. (2022) before turning to testing whether

data-sharing policies decrease publication bias using the methodology developed by

Andrews and Kasy (2019). Of note, the caliper test method and the battery of

tests from Elliott et al. (2022) jointly identify p-hacking and publication bias in the

additional presence of publication bias.32

3.2.1 Caliper Test The caliper test compares the number of test statistics in a

narrow equal-sized range above and below a statistical significance threshold. If

there is a large difference in the number of observations just above a statistical

significance threshold, we take this as evidence towards the presence of p-hacking

or publication bias. Under the null hypothesis that the number of test statistics

should be equal above and below a statistical threshold33 if there is a sufficiently

large difference in the numbers the probability the difference is due to chance is

small and we may reject the null hypothesis.

We focus throughout on the 5%, but provide similar analyses for the 1% and

10% thresholds.

Relationship between data-sharing and the p-hacking We estimate the follow-

ing equation to estimate the relationship between data-sharing and the likelihood

to report a statistically significant result:

Pr(Significantiajt = 1) = Φ(α + βj + γt + λDataProvidedJournalajt+

µDataProvidedAuthorajt +X ′
iajtδ) (1)

where Significantiajt is a dummy variable for whether test i in article a in journal

j in year t is statistically significant at the 10%, 5% or 1%-level. We rely on probit

models throughout and present the average marginal effects and associated stan-

dard errors clustered at the journal article-level. The variables of interest are Data

Sharing Journalajt, which represents a dummy variable for whether the authors

shared full data and codes on the journal’s website, and Data Sharing Authorajt,

32Consistent with the current literature, any method we employ in this paper is a joint test for
p-hacking and publication bias when in the presence of both. In our analysis, we consider a broad
set of articles, across a large set of journals, and across a significant period of time which in our
opinion is more likely to contain both than the absence of either.

33Equally, that there is nothing influencing whether a test statistic is just below or just above
a threshold.
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which represents a dummy variable for whether one of the authors provided a repli-

cation package on their homepage. These variables equal zero if the authors provide

partial data, only code, or no replication package at all on the journal’s webpage and

author homepages, respectively. The main advantage of using caliper test instead

of a graphical examination of the distribution of z-statistics is that we can control

for authors’ and articles’ characteristics. The vector X ′
iajt denotes a set of covari-

ates identical to the ones used by Brodeur et al. (2020), which includes dummy

variables for how results are reported (i.e., p-values, standard errors or t statistics),

a dummy variable for whether the submission is solo-authored and the following

author-level characteristics aggregated to the paper-level: average years since PhD

(and its square), average PhD (granting) institutional rank, average (current) insti-

tutional rank, share of female authors, and an indicator for whether at least one of

the authors was an editor of an economics journal at the time of publication. We

supplement the set of covariates by adding identification strategy dummies (e.g.,

instrumental variable) as well as both year and journal fixed effects.

Estimates of equation (1), with the 5% significance thresholds as the dependent

variable, are reported in Table 4. In columns 1 and 2, we restrict the sample to

z ∈ [1.46, 2.46] for the 5% statistical significance threshold. We present estimates

for successively smaller bandwidths in columns 3–6 (i.e., z ∈ [1.61, 2.31] and z ∈
[1.76, 2.16]).34 In column 2, 4 and 6, we add authors’ and articles’ covariates to

account for any characteristics that might also be related to p-hacking behaviour.

In Table 4, the estimated coefficients for data-sharing on the journal’s website,

λ, are small, positive and statistically insignificant in all columns. This is not

consistent with the hypothesis that sharing full replication material reduces the

extent of p-hacking.35 Appendix Tables A5 and A6 find the same for the 10% and

1% levels.36

The estimated coefficients for sharing replication material on at least one of

the authors’ homepage, µ, are small, negative and statistically significant solely

34We note here that the assumed equality of mass above and below a threshold holds in the
limit (as the bandwidth approaches zero). We have chosen our bandwidth both from convention
(Gerber and Malhotra (2008a), Brodeur et al. (2020)) and considerations towards having sufficient
test statistics to operationalize the test.

35An additional assumption being made is subtle but meaningful. When examining the effect
of an author or article characteristic in the light of the caliper test, we are assuming that the
characteristic in question does not meaningfully change the probability of a test statistic being
just over or below a statistical threshold. For example, test statistics which have their data shared
on a journal’s website or of different data types may have an underlying distribution (absent
p-hacking and publication bias) that differs from the expected equality (or perhaps may even
increase) in the small interval surrounding a statistical threshold. While we cannot rigorously rule
out such discontinuities from occurring ‘naturally’, in terms of the variables of interest we consider
(provision of replication materials, underlying data type) we do not have a compelling reason for
a strong discontinuity to exist other than through the p-hacking or publication bias mechanisms
- but we cannot definitely rule out the possibility either.

36We present estimates for the main control variables in Appendix Table A7.
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in columns 1 and 3. The estimates are smaller in magnitude and statistically in-

significant in columns 2 and 4 when we add the authors’ and articles’ covariates,

suggesting that voluntarily sharing a replication package may not be random and

may be related to observable authors’ and articles’ characteristics. Notably, the

estimates are small and insignificant in columns 5 and 6 where we rely on a smaller

bandwidth. For the 10% threshold, the same pattern occurs with only marginal

significance in the largest bandwidth, which disappears following the introduction

of article and author controls and smaller bandwidths. For the 1% threshold, µ is

never statistically significant, and is also inconsistently signed.

We take a moment here to discuss whether these results are meaningfully well-

estimated null effects or if our results are statistically insignificant simply due to

noise in the data. If we consider a 95% confidence interval, we can rule out that

data and code sharing at the journal’s webpage does not decrease p-hacking by more

than 7.8% and that voluntary data and code sharing at any author’s homepage does

not decrease p-hacking by more than 2.7%.

Data-Sharing Policy and p-hacking We now turn to estimating the relation-

ship between a data-sharing policy and p-hacking behaviour. The equation we are

estimating is similar to equation (1), but we replace the variable Data Sharingajt

with the dummy variable Data Sharing Policyjt indicating whether journal j had

announced or implemented a data-sharing policy in year t. This analysis can be

thought of as a ‘reduced form’ in a more conventional instrumental variables esti-

mation we conduct momentarily. These results are presented in the third row of

Table 5. For this analysis, we restrict the sample to journals with a data availability

policy and to five years pre- and post-policy. No estimate is statistically significant

and are inconsistently signed depending upon the bandwidth chosen.

Instrumental Variables Approach We now rely on an instrumental variable

strategy to investigate if data-sharing reduces p-hacking and publication bias. Specif-

ically, we require an instrument that is correlated with the likelihood to share data

and affects the likelihood to report statistically significant results around signif-

icance thresholds only through data-sharing (i.e., exclusion restriction). We thus

use the data-sharing policies as an instrument for data-sharing. There are a number

of reasons why the exclusion restriction may not be satisfied. For instance, data

availability policies might impact the types of submissions received by journals who

implement them. For this reason, we also report IV estimates after controlling for

our full set of authors’ and articles’ characteristics. However, the results should be

treated with caution when interpreting as causal.

We estimate the following equations:
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{
Pr(DataSharingiajt = 1) = Φ(ρ+ βj + γt + ϕ ·DataSharingPolicyajt +X ′

iajtψ)

Pr(Significantiajt = 1) = Φ(α + βj + γt + λ · ¤�DataSharingajt +X ′
iajtδ)

(2)

The first-stage is reported in the first panel of Table 5. (See Appendix Tables

A8 and A9 for the 10% and 1% significance thresholds.) Unsurprisingly, we find

that data-sharing policies meaningfully increase the likelihood of sharing full data

and codes. The point estimates are all statistically significant at conventional levels

regardless of control inclusion and bandwidth selection.37

The second-stage estimates are reported in the middle panel of Table 5. Consis-

tent with the reduced form and the results from Table 4, the second-stage estimates

are all statistically insignificant; data-sharing (even when instrumented using data-

sharing policies) do not change the share of significant estimates published. The sign

is positive in two columns and the ‘expected’ negative in four columns. This result

is robust to different bandwidths and the inclusion of control variables, significance

thresholds.38

3.3 Further Tests for P-Hacking

Elliott et al. (2022) formalized the expectations of the test statistic distribution

under the hypothesis of no p-hacking. They provide testable conditions of the p-

curve (a histogram of p-values) in comparison to our primary analysis of z -statistics.

We are motivated by a desire for reader ease and so discuss our analysis in terms

of p-curves in this section.

We apply the code provided by Elliott et al. (2022) to our full dataset as well

as sub-samples of interest; each application provides results from six different tests

of p-hacking: Binomial, Fisher’s, Discontinuity, CS1, CS2B, and LCM.39

For this section, we apply the methodology to four divisions of our data and

present them in Table 6. First, for all journals and years we compare p-hacking

and publication bias by whether full data and code were provided on the journal

website. Second, we restrict the sample to only those journals that adopted a data

and code policy and examine up to 5 years before its implementation by whether

37We estimate OLS models in Appendix Table A10 and report Cragg-Donald Walt F-statistics.
The F-Statistic ranges from 105 to 144 in our baseline model.

38We show that our results for the 5% significance threshold are robust to the use of article
weights and de-rounding in Appendix Tables A11-A14.

39For the most salient statistical significance threshold of z = 1.96, we have no need to modify
the replication code provided by Elliott et al. (2022). We also conduct the same battery of tests
for the 10% and 1% thresholds. Notable, only the Binomial and Discontinuity tests require re-
application, as the other tests examine the broad histogram rather than a single point. The results
of those tests can be found in Appendix Table A15.
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full data and code were provided. Third, we restrict the sample in the same way but

examine up to 5 years after the data and code policy was implemented. Fourth, we

examine for those journals that do implement a policy both before and after their

implementation. For context, Elliott et al. (2022) considered any p-value less than

0.10 to be evidence of p-hacking in the original article.

The binomial test, as originally operationalized, compares the mass p ∈ (0.045, 0.050]

(those test statistics that are just statistically significant) to the mass in p ∈
[0.040, 0.045] (those that are just slightly more statistically significant). Under the

null of no p-hacking (and no publication bias) the histogram of p-values should be

non-increasing, in other words the mass of p ∈ [0.040, 0.045] should be greater than

the mass of p ∈ (0.045, 0.050]. Visually, this would correspond to a histogram bar

just to the left of the threshold that is too-tall compared to its left-neighbour.40

For the entire sample, we can reject the null hypothesis of no p-hacking and no

publication bias with great confidence (p < 0.000). In comparing each of the four

divisions, there seems to be little difference in the results of the binomial test.

The discontinuity test is an application of Cattaneo et al. (2020) using data-

driven bandwidth selection (Cattaneo et al. (2021)). When examining the full

sample, those articles published with replication materials exhibit a discontinuity

(p = 0.002) whereas those without are not (p = 0.760). This result highlights the

benefits to restricting our sample - as soon as we examine instead the post-policy

period, the replication materials articles have ‘marginally weaker’ evidence of a

discontinuity (p = 0.082) as compared to Other (p = 0.001).

The CS1 (non-increasingness) and CS2B (bounds on the p-curve and its first

two derivatives) tests are both histogram-based tests introduced by Elliott et al.

(2022) and are more powerful than the more commonly used binomial and Fisher’s

- particularly in situations where p-hacking need not violate the non-increasingness

of the p-curve.41 Perhaps due to this increased power, we receive a statistically

significant result regardless of division.

The LCM test, which attempts to reject the null that the CDF of the p-curve

is concave (a direct consequence from the property that the p-curve itself is non-

increasing), does not find large differences between whether or not replication ma-

terials are provided, regardless of division.

In summary, while there may be some suggestive evidence that comes from one

test (the Binomial) that providing data and code post policy reduces p-hacking,

the tests we apply from Elliott et al. (2022) do not detect a consistent or definitive

difference between the statistical behaviour of articles which provide data and code

40Notably our calipers compare the just-above to just-below significance masses of test statistics,
making the addition of the Elliott et al. (2022) analysis valuable along an additional dimension.

41We have omitted an analysis of Fisher’s as it returns p = 1.000 regardless of application.
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and those who do not.

3.4 Publication Bias

Andrews and Kasy (2019) provide a framework and methodology aimed at identify-

ing and correcting for publication bias. As a reminder, publication bias specifically

refers to the statistical significance of a result affecting the probability of that re-

sult being published. While their key findings are that corrected-meta analyses

and replication studies offer similar results (in the topics where both are available),

their developed methodology allows us to examine relative publication probabili-

ties. That is, we can compare whether the statistical significance of a result affects

whether it was published. This allows us to assess the extent of publication bias,

i.e., the magnitude of the relative publication probability.

We apply the code provided by Andrews and Kasy (2019) in an unchanged form

to four divisions of our sample: First, for all journals and years whether full data

and code replication materials were provided on the journal website against any

Other. Second, we restrict the sample to only those journals who would eventually

adopt a data and code policy and examine up to 5 years before its implementation by

whether full data and code were provided. Third, we restrict the sample in the same

way but examine up to 5 years after the data and code policy was implemented.

Fourth, we examine for those journals that do implement a policy both before

and after their implementation. This method involves applying a step function

at statistical significance thresholds, we choose to model the 10%, 5%, and 1%

thresholds jointly. We assume that the underlying distribution should follow a

generalized t-distribution.

Table 7 presents the estimates for the relative publication probability of a test

statistic as compared to a baseline or reference test statistic that falls in the inter-

val z > 2.58. The first three columns of the table present the parameters of the

underlying distribution fit by the model. The first column fits the ‘mean effect’,

which, in the original context of meta-analysis would be a literature’s estimate of

the underlying effect (for example the effect of minimum wage on employment from

a number of independent studies). We do not provide an interpretation of this vari-

able as our estimates come from studies estimating different effects - it is simply

the location parameter - however we include it for later replicators. The second

column provides the scale parameter and the third column presents the degrees of

freedom. The remaining columns present our main estimates; for the full sample a

statistically insignificant result is just over a third (35.7%) as likely to be published

as one that is statistically significant at the 1% level. A significant result with one

star is around 79.1% as likely. Interestingly (and not an anomaly to our study)
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those test statistics that are statistically significant at the 5% level are more likely

to be published than one at the 1% level - indicative of publication bias.

Whether we examine the full sample, up to 5-years before a journal data and

code policy is implemented, up to 5 years after a journal data and code policy is

implemented, or 5 years pre-and-post-policy, there seems to be little difference be-

tween those articles (tests) that provide data and codes and others. Once again, we

have suggestive but not definitive evidence of a reduction in publication bias fol-

lowing the implementation of a data and code policy - noting the change of relative

publication probabilities from around 1.5 to around 1.1 of two-star as compared

to three-star results following the implementation of the policy.42 To sum up, we

find limited evidence that data-sharing policies significantly reduce the extent of

publication bias in economics using the method and code provided by Andrews and

Kasy (2019).

4 Data Type, P-Hacking and Publication Bias

Our analysis of data-sharing policies uncovered no reduction in p-hacking and pub-

lication bias. In this section, we first investigate whether data-sharing practices

vary across types of data. As a preview, we find that articles using administrative

data are less likely to share full data and codes than own-collected data. We then

investigate whether different types of data may suffer from more p-hacking. A lack

of differences in p-hacking behaviour across data types could provide a plausible

explanation for our lack of significant results on the effectiveness of data-sharing

policies in reducing p-hacking.

Throughout this section, we restrict the sample to articles relying solely on one

data type (a ’pure’ sample). This decision was made to avoid issues related to

studies with multiple data types (e.g., dependent variable uses admin data while

independent variables use survey data).43

42While one-star results are also less likely to be published compared to three-star results
following a policy, this move is also accompanied by a reduction in publication probability of
statistically insignificant (no-star) results, suggesting that the policy may have only increased
publication probabilities of very significant results. This is further noted by the relative stability
of the relative publication probability ratios between one-and two-star results before and after a
policy.

43We provide evidence that the omission of journal articles using multiple types of data has
no effect on our conclusions. In Appendix Figure A18, we plot two z-curves into a single panel.
The first z-curve restricts the sample to journal articles that rely on one type of data, while the
second curve does not impose this restriction and rely on the full sample. The distribution for
both samples is extremely similar, and both exhibit a peak between 1.65 and 2.5. See Appendix
Figure A19 for the de-rounded distributions.
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4.1 Data Type and Replication Material Availability

We first test the relationship between types of data and replication material avail-

ability. We estimate the following equation:

Pr(DataSharingJournaliaft = 1) = Φ(α +X ′
iatδ + γSurveyiat

+ λOwnCollectediat + θOtheriat) (3)

where DataSharingJournaliaft is a dummy variable for whether the authors shared

full data and codes on the journal’s website for test i in journal article a in field

f in year t. We rely on probit models and present standard errors clustered at the

journal article-level. The variables of interest are Surveyia, Own Collectedia and

Otheria, which represent dummy variables for different data types. Administrative

data is the reference category, which is omitted.

We include in our model the term Xiat, which is a vector of articles’ and authors’

characteristics. We include our usual set of covariates, which includes dummy vari-

ables for methods (e.g., instrumental variable). The inclusion of method dummies

is very important given that own-collected papers are often randomized controlled

trials. A key remaining concern is that unobservable characteristics could be related

to data types and p-hacking behaviour. Readers should thus view our analysis here

as exploratory and particularly non-causal.

The results are presented in Table 8. In columns 1–3, the dependent variable is

whether full data and codes are provided on journals’ webpages. For columns 4–6,

the dependent variable is a dummy variable indicating that at least the codes for

replication are provided on journals’ webpages. In columns 1 and 4, we include only

our variables of interest for data type. Columns 2 and 5 add to the model articles’

and authors’ characteristics. In columns 3 and 6, we also include field fixed effects.

More precisely, we include dummy variables for the following fields: general interest,

finance, macroeconomics, development, experimental, public and urban economics.

We find that third-party surveys and own-collected data are significantly more

likely to provide data and codes than the reference category of admin data.44 Our

estimates in column 3 suggest that third-party survey and own-collected data are

about 25 and 40 percentage points more likely to provide full data and codes than

admin data, respectively. The estimates are statistically significant at conventional

levels. For columns 4–6, we also find that studies relying on own-collected data are

more likely to provide at least codes for replication than studies using admin data.

44A related question is what predicts the provision of data and codes in the presence of a data-
sharing policy? Appendix Table A16 replicates Table 8 but we restrict the sample to journals with
a data-sharing policy. Our conclusions are similar with articles using admin data being less likely
to provide full data and codes.
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In contrast, we do not find evidence that studies relying on third-party survey data

are significantly more likely to provide at least codes for replication compared to

admin data – estimates are small and statistically insignificant in all models.

The estimates for most of the control variables are not statistically significant.

One exception is the Top 5. The estimates are statistically significantly and suggest

that articles published in these outlets are more likely to provide full data and codes.

This result is consistent with the fact that Top 5 journals all had a mandated data

sharing by 2016 (Christensen and Miguel (2018)).

We also investigate the reasons for not providing full data by data type. We

restrict the sample to articles published in journals that have a data-sharing policy

and did not provide full data. For admin and third-party survey data, we find that

about 74% and 58% of articles do provide a reason for not sharing all their data,

respectively. This is against only 12% and 35% for own-collected and other data,

respectively. The most popular reason given for all data types is need approval

(i.e., authors encourage interested researchers in writing an application and provide

contact details). We take from this the following conclusion; many authors that use

admin data are aware they cannot release their data, but aim to alleviate this lack

of monitoring by offering to help interested researchers apply for the data.

4.2 Distribution of z-Statistics Across Types of Data

Figure 6 displays the raw distribution of z-statistics for each of the four data types.45

The shapes are striking with all featuring a hump around the 5% significance thresh-

old. For third-party survey data, the distribution exhibits a local minimum around

1.5 and a maximum around 1.96. Approximately 54.7%, 46.2% and 30.6% of test

statistics are significant at the 10, 5 and 1 percent levels, respectively. The distribu-

tion of z-statistics for admin data also exhibits a local maximum around 1.96. About

56.9%, 50.3% and 37.2% of test statistics are significant at the 10, 5 and 1 percent

levels, respectively. In contrast, own-collected data displays an almost monotoni-

cally falling curve with a much smaller local maximum around 1.96. 48.2%, 41.0%

and 27.2% of own-collected test statistics are respectively significant at the 10, 5

and 1 percent levels.46

45In Appendix Figure A20, we plot the z-curves into a single panel. In Appendix Figure A21,
we deal with the overrepresentation of round values. The only noticeable change is less mass at
exactly z = 2 for the own-collected distribution.

46We further investigate these patterns for different subsamples in Appendix Figures A22-A25.
These figures illustrate decompositions by data type by journal ranking (Top 5 and non-Top 5),
number of authors, institutional rank and PhD institutional rank. Of note, we find that the spike
around 1.96 is more pronounced for journal articles with no authors who graduated from a top
university for admin data users. In contrast, current institutional rank does not appear to be
related to the spike around the 5% threshold for all data types. The shape of the distributions is
quite similar for solo- and multi-authored articles, with the exception of own-collected data where
the spike is particularly striking for solo-authored articles.
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Last, the distribution of z-statistics in journal articles categorized as using data

in the Other category has a global and local maximum around 1.96 and seems to

suffer the most from p-hacking and/or publication bias. 72%, 65% and 48% of

Other test statistics are significant at the 10, 5 and 1 percent levels, respectively.

Appendix Figure A26 splits the Other data type into two categories: financial data

and non-financial data. Among the test statistics in Other, about half are in articles

relying on financial data. This split into financial and non-financial data illustrate

that the distribution of z-statistics for both these subgroups is remarkably similar

(Kolmogorov–Smirnov test, p=0.139).

4.3 Methods and Tests for Detecting P-Hacking

We show caliper estimates for the 5% significance threshold in Table 9. (See Ap-

pendix Tables A20 and A21 for our estimates for the 10% and 1% significance

levels.) The table has the same structure as Table 4. One key difference is that our

variables of interest are dummy variables for data types instead of dummy variables

for the provision of full data and codes. The coefficients presented are increases in

the probability of statistical significance relative to the baseline category (admin).

Our sample is smaller as we now restrict the sample to articles using only one type

of data, as noted earlier.

In columns 1 and 2, we restrict the sample to z ∈ [1.46, 2.46] for the 5% statistical

significance. We present estimates for smaller bandwidths in columns 3–6 (i.e.,

z ∈ [1.61, 2.31] and z ∈ [1.76, 2.16]). We include year and journal fixed effects in

all columns and our usual set of control variables in even columns. We also control

for the identification method for two reasons. First, Brodeur et al. (2020) provide

suggestive evidence that studies relying on instrumental variables as a method are

more p-hacked than studies using RCTs or RDD. Second, in our sample 85% of

own-collected data rely on RCTs.47

Overall, we find no evidence that specific data types suffer differently from p-

hacking or publication bias. The point estimates for hand collected, third-party

survey and other data are very small in magnitude.48

47Appendix Figures A27 - A30 illustrate the distribution of z-statistics by method of data
collection for difference-in-differences, instrumental variables, randomized control trials and re-
gression discontinuity design, respectively. Similarly, Appendix Figures A31 - A34 illustrate the
distribution of z-statistics by availability of replication material for difference-in-differences, in-
strumental variables, randomized control trials and regression discontinuity design, respectively.
We include these figures for the interested reader but caution that the small sample sizes make
drawing conclusions tenuous at best.

48We also apply a suite of tests from Elliott et al. (2022). The results are presented in Appendix
Table A17. The binomial test finds evidence of either publication bias or p-hacking for all data
types, while the discontinuity test does not find evidence of either for all data types. Both CS1 and
CS2B (tests of the non-increasingness of the p-curve and considered more powerful than the others
by Elliott et al. (2022)) detect p-hacking or publication bias for administrative, own-collected, and
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4.4 Publication Bias

In this subsection we apply the model of Andrews and Kasy (2019) in order to

examine publication bias using relative publication probabilities.49 In Appendix

Table A22, we present the results of applying the model separately to each of our four

data type sub-samples. That is, we compare the relative publication probabilities

within data type. The structure of the table is the same as Table 7. We find that

a statistically insignificant test statistic derived from a study using administrative

data (where 0 < t < 1.645) is around 43.5% as likely to be published as one from the

omitted category of very statistically significant test statistics (where t > 2.576).

In magnitude this is roughly similar for own-collected data. More severely, third-

party survey and other data sources which provide statistically insignificant test

statistics are 28.8% and 20.2% as likely to be published - around a quarter to a fifth

as likely - evidence of a relationship between statistical significance and publication

probability for these data types.50

4.5 Public and Private Data

Another meaningful distinction is between data sources that have a public-use ver-

sion versus those that do not (i.e., private data). Following our conceptual frame-

work which focuses on the threat of a potential p-hacker being detected, we might

expect research using public data sources to be less p-hacked than research using

private data (given the increase of the probability of a later independent researcher

accessing the data). However, we do note two facts: (1) public datasets often dif-

fer from private in their purpose and underlying variables (in the same manner

third-party and administrative dataset might) and so the research using public and

private data may not be directly comparable and (2) less (more) researchers have

access to private (public) datasets, potentially increasing (decreasing) the marginal

contribution of research based on it. We note that if publication bias is a combina-

tion of both statistical significance and contribution to the literature, it could also

differently affect research derived from public and private data sources.

Our sample consists of 1,845 test statistics that rely solely on private data

sources, and 15,613 tests that only use data collected by public entities. We omit ar-

ticles using own-collected data or a mix of own-collected, public and private data.51

third-party survey data. We provide derounded and article weighted results for our calipers in
Table A18 and A19.

49We describe the methodology more fully in Section 3.
50For both admin and own-collected data, a two-star result is more likely to be published than

a three-star result by not-insignificant margin, while for third-party survey and other data types,
a two-star result is almost as likely to be published as a three-star result (97.5% and 94.4%,
respectively.

51Private data that becomes public through being shared due to (for example) a later data and
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We first check whether it is harder to share private data (or harder to obtain for

other researchers) than it is for public data. In our full sample around one-third

of all data can be directly accessed. Among studies relying solely on private data,

about 5% of test statistics provide direct access to the data and 83% provide no

access nor help in obtaining the data. For studies using public data, 17% of test

statistics provide direct access, while 59% provide no access nor help in obtaining

the data.

We now turn to comparing the distribution of test statistics for studies using

solely private or public data. Appendix Figure A35 provides this comparison. Vi-

sually, we find that the spike near the 5% significance threshold is more visible for

private data. We formally examine this possibility using caliper tests. The results

for the 5%, 10% and 1% statistical significance levels are presented in Appendix

Tables A23-A25, respectively. These tables have the same structure as Table 9, but

the key independent variable is a dummy variable that takes the value one if the

dataset is categorized as ‘public’ and zero if it is categorized as ‘private’. The point

estimates are all statistically insignificant, suggesting no significant differences in

p-hacking and publication bias for public and private-data users.

5 Role of the Review Process

In this section, we investigate the role of the reviewing process in mitigating or

exacerbating the extent of p-hacking by journal data policy and data type. For this

exercise, we directly compare the distribution of z-statistics in our sample of pub-

lished articles to the distribution of z-statistics in the corresponding working papers

for each data type. The objective of this exercise is to document whether journal

editors and reviewers require or propose changes that would lead to meaningful

changes in the prevalence of marginally significant tests.

For this analysis, we focus on the sample from Brodeur et al. (2020). In order

to document the impact of the reviewing process, we only rely on working papers

released before the date of submission to the journal. For the 11 journals for which

we do not have the date of submission, we rely only working papers released at least

two years prior to publication. For those with multiple working papers, we chose the

working paper closest to the date of submission (or the two-year threshold). Our

final sample of working papers comprises 133 articles/working papers published in

2015 and 2018.52

Our data collection methodology for the working papers is the same as for the

published version. While some working papers include additional main tests/tables,

code policy, we continue to classify it as private.
52The likelihood to find a valid working paper is not statistically related to data type. See

Appendix Table A26.
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or rely on different clustering or weighting techniques, we find that the distribution

of z-statistics is remarkably similar between the working paper and published ver-

sion for journals with a data-sharing policy. Appendix Figure A36 illustrates the

estimated kernel densities for the working paper and published version, respectively.

The curves for the working paper and published version are mostly on top of each

other for the entire distribution. Similarly, Appendix Figure A37 shows the es-

timated kernel densities for the working paper and published version for journals

without a data-sharing policy. Again, the curves are on top of each other, suggesting

limited changes to the main results from the submission to the publication.

For data types, we also find that the distribution of z-statistics is remarkably

similar between the working paper and published version for all data types. Ap-

pendix Figure A38 illustrates the estimated kernel densities for the working paper

and published version for all data types. Again, the curves are on top of each other

for the entire distribution for all data types.

We formally test whether there are changes in reporting of significant results

due to the reviewing process using the following equation:

Pr(Significanti,a = 1) = Φ(α + ω + νa) (4)

where Significanti,a is an indicator variable that test statistic i is statistically

significant for for the 5% significance threshold. Following Brodeur et al. (2020),

we define ω as one when test statistic i is in the working-paper version of article

a and zero otherwise. Article fixed effects are represented by νa. We apply this

parsimonious equation to the entire sample and then restrict to subsamples, allowing

for flexible estimation of α.

Appendix Table A27 reports the caliper tests. Column 1 includes all data types

while columns 2–5 restrict the sample to admin, third-party survey, own-collected

and other data type, respectively. Overall, we find that the estimated effect of the

publication process is very small and statistically insignificant for the entire sample

and for each type separately. This leads us to believe the editorial process does not

change the extent of selective reporting.

6 Conclusion

Demands for and use of ‘big data’ to analyze different aspects of our lives, our soci-

ety, and our economy continue to grow. In this paper, we documented unexplored

facets of the link between data-sharing policies, methodologies for data collection

and research transparency; the extent of p-hacking across data types and whether

data-sharing policies decrease p-hacking. Our analysis points to no appreciable

effect of data-sharing policies or between-data type differences.
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These results are key from the point of view of journals and their editors con-

sidering the implementation of a data-sharing policy. Of note, our results should

not be viewed as indicating that archives for replication material are not useful.53

Our results instead suggest that the benefits of such archives are more limited than

previously thought, but still extremely valuable by allowing, for instance, other re-

searchers to replicate research findings. Our results are also key for policymakers

and researchers who are interested in knowing to what extent they should be skepti-

cal about the credibility of the published literature using specific data types. Overall

our findings suggest that the increased monitoring (perceived or real) resulting from

providing data and code is not a key factor driving p-hacking in economics.

To conclude, we briefly discuss some of the limitations of our study. First, our

study deals with journal articles from top economics journals, and thus our findings

might not generalize to less elite academic outlets. Second, we are unable to say

much about the colloquial ‘file drawer’ problem (where researchers abandon projects

to the file drawer after finding, for example, statistically insignificant results), and

cannot say much of the possibility that studies using specific data types are more

or less likely to remain unpublished. This could be an issue if unpublished studies

that are more/less p-hack are more/less likely to use a specific methodology for data

collection.

53It is worth mentioning the recent increase in formal restricted-access data environments, which
facilitate access to admin data for a large number of researchers. Examples of such environments
include the U.S. Federal Statistical Research Data Center and the German IAB FDZ.
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Figure 1: Data and Code Availability by Implementation Year

Notes: This figure displays the provision of data and code by implementation year for: Full Provision of Data and
Code, Partial Data and Code, Only Code, and No Material. We consider a balanced sample of journals: Ameri-
can Economic Review, Journal of Political Economy, Econometrica, Quarterly Journal of Economics, Review of
Economic Studies, Review of Economics and Statistics, Journal of the European Economic Association, Economic
Journal, and Journal of Labor Economics. Of note, one article published in the Quarterly Journal of Economics
released full data and codes on the journal’s website prior to the implementation of the data-sharing policy.
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Figure 2: Estimated Density of z-Statistics by Journal Policy
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Notes: This figure displays 36,975 test statistics for z ∈ [0, 10]. See Table 1 for an overview of journals by journal
policy. Histogram bins are 0.1 wide. Reference lines are displayed at conventional two-tailed significance levels. We
also provide a kernel density with data-driven bandwidth. We do not weight our estimates.
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Figure 3: Estimated Density of z-Statistics for Journals with Data-Sharing Policy
by Data and Code Availability
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Notes: This figure restricts the sample to those tests that have a Journal policy and displays 23,650 test statistics
for z ∈ [0, 10]. Histogram bins are 0.1 wide. Reference lines are displayed at conventional two-tailed significance
levels. We also provide a kernel density with data-driven bandwidth. We do not weight our estimates.

Figure 4: Estimated Density of z-Statistics and Data-Sharing Policy: Five Years
Prior vs. Five Years After
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Notes: This figure restricts the sample to observations five years before and five years after a policy change. It
displays 12,900 test statistics for z ∈ [0, 10]. See Table 1 for an overview of journals by journal policy. Histogram
bins are 0.1 wide. Reference lines are displayed at conventional two-tailed significance levels. We also provide a
kernel density with data-driven bandwidth. We do not weight our estimates.
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Figure 5: Estimated Density of z-Statistics for Partial and No Data Provision:
Reason for Data Exemption

Notes: We restrict the sample to articles published in journals with a data-sharing policy and have partial or no
data. In our sample, we have 24,742 tests with a journal policy and 12,747 of those tests do not provide full
data and code. 53.3% or 6,791 test statistics provide a reason for data exemption, while 46.7% do not. Reference
lines are displayed at conventional two-tailed significance levels. We also provide a kernel density with data-driven
bandwidth. We do not weight our estimates.

Figure 6: Estimated Density of z-Statistics by Data Type
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Notes: This figure displays histograms of test statistics for z ∈ [0, 10] by data type: admin, third-party survey,
own-collected and other. We restrict the sample to studies using only one method of data collection. Histogram
bins are 0.1 wide. Reference lines are displayed at conventional two-tailed significance levels. We also provide a
kernel density with data-driven bandwidth. We do not weight our estimates.
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Table 1: Journal Data-Sharing Policies

Journal Policy Announcement # Articles # Test Data Collection
(Year) Statistics (Year)

American Economic Review Yes 2004 132 5,238 2002-2020
A. Econ. J.: Applied Econ. Yes 2009 50 2,470 2015, 2018
A. Econ. J.: Econ. Policy Yes 2009 42 1,251 2015, 2018
A. Econ. J.: Macroeconomics Yes 2009 5 54 2015, 2018
Econometrica Yes 2004 22 578 2002-2020
Economic Journal Yes 2012 78 2,629 2002-2020
Economic Policy Yes 2017 6 2,629 2015, 2018
Experimental Economics Encourage 6 79 2015, 2018
J. of Applied Econometrics Yes 1994 5 86 2015, 2018
J. of Development Economics Yes 2014 64 2,818 2015, 2018
J. of Economic Growth Encourage 8 100 2015, 2018
Journal of Finance Only Code 2018 51 2,084 2002-2020
J. of Financial Economics No 39 569 2015, 2018
J. of Finan. Intermediation Encourage 16 185 2015, 2018
J. of Human Resources Yes 2019 57 1,697 2002-2020
J. of International Econ. No 19 488 2015, 2018
J. of Labor Economics Yes 2010 39 1,114 2002-2020
J. of Political Economy Yes 2005 51 1,854 2002-2020
J. of Public Economics Encourage 74 2,605 2015, 2018
J. of Urban Economics Encourage 26 660 2015, 2018
J. of the Euro. Econ. Ass. Yes 2011 56 1,648 2002-2020
Quarterly Journal of Econ. Yes 2016 71 3,951 2002-2020
Review of Economic Studies Yes 2006 26 1,634 2002-2020
Review of Econ. & Stat. Yes 2010 96 3,286 2002-2020
Review of Financial Studies No 67 1,618 2002-2020

Total 1106 38876

Notes: This table provides an overview of data and code journal policies. We obtained this information on the journals’ websites. We also
obtained some of the implementation dates from Christensen and Miguel (2018) and Mueller-Langer et al. (2019). Columns 3 and 4 report
the number of articles and test statistics in our sample. Column 5 reports the years for which we collected test statistics.
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Table 2: Summary Statistics: Data and Code Availability and Author Characteristics

Availability of Replication Material Total
Full Data and Code Partial Data and Code Only Code No Material

(1) (2) (3) (4) (5)
Top 5 0.51 0.37 0.37 0.22 0.34

(0.50) (0.48) (0.48) (0.41) (0.47)
Editor present 0.56 0.51 0.33 0.47 0.49

(0.50) (0.50) (0.47) (0.50) (0.50)
Solo-authored 0.10 0.14 0.09 0.12 0.11

(0.30) (0.34) (0.29) (0.32) (0.31)
Average 12.22 9.71 10.44 10.40 10.93
experience (6.47) (5.01) (6.44) (5.90) (6.14)

Female authors 0.20 0.23 0.17 0.21 0.20
(0.28) (0.28) (0.28) (0.29) (0.29)

Top institutions 0.27 0.26 0.23 0.20 0.23
(0.30) (0.34) (0.30) (0.26) (0.29)

Top PhD 0.37 0.37 0.30 0.29 0.33
institutions (0.31) (0.35) (0.32) (0.31) (0.32)
Test statistics 12580 3828 3954 18514 38876

Notes: Each observation is a test. The Top 5 journals in economics are the American Economic Review, Econometrica, Journal of Political
Economy, Quarterly Journal of Economics, and Review of Economic Studies. Average experience is the mean of years since PhD for an
article’s authors. The other variables are the share of female authors, share of authors affiliated with top institutions, and share of authors
who completed a PhD at a top institution, respectively.

Table 3: Summary Statistics: Data Type and Article and Author Characteristics

Method of Data Collection Total
Admin 3rd Party Survey Own Collected Other
(1) (2) (3) (4) (5)

Top 5 0.39 0.21 0.40 0.25 0.34
(0.49) (0.41) (0.49) (0.44) (0.47)

Editor present 0.43 0.38 0.67 0.50 0.52
(0.49) (0.48) (0.47) (0.50) (0.50)

Sole authored 0.17 0.17 0.08 0.09 0.12
(0.38) (0.38) (0.27) (0.28) (0.33)

Average 10.34 10.16 13.15 12.43 11.69
experience (7.20) (6.07) (6.38) (6.96) (6.79)

Female authors 0.16 0.24 0.28 0.11 0.21
(0.29) (0.34) (0.28) (0.22) (0.29)

Top institutions 0.28 0.11 0.29 0.22 0.24
(0.31) (0.20) (0.32) (0.29) (0.30)

Top PhD 0.30 0.23 0.44 0.26 0.33
institutions (0.33) (0.25) (0.35) (0.28) (0.33)
Test statistics 5726 3932 7754 3289 20701

Notes: Each observation is a test. In this table, we only consider those observations that rely solely on one data
type within each study (“pure” sample). The Top 5 journals in economics are the American Economic Review,
Econometrica, Journal of Political Economy, Quarterly Journal of Economics, and Review of Economic Studies.
Average experience is the mean of years since PhD for an article’s authors. The other variables are the share of
female authors, share of authors affiliated with top institutions, and share of authors who completed a PhD at a
top institution, respectively.
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Table 4: Caliper Tests 5% Threshold: Data-Sharing

Significant at 5% Level
(1) (2) (3) (4) (5) (6)

Data & Code Provided (Author) -0.038∗ -0.020 -0.042∗ -0.031 -0.026 -0.021
(0.020) (0.021) (0.023) (0.023) (0.028) (0.029)

Data & Code Provided (Journal) 0.008 0.019 0.006 0.016 0.010 0.020
(0.019) (0.019) (0.020) (0.020) (0.024) (0.024)

Year FE ✓ ✓ ✓ ✓ ✓ ✓
Journal FE ✓ ✓ ✓ ✓ ✓ ✓
Additional Controls ✓ ✓ ✓
Observations 9,334 9,332 6,829 6,828 4,060 4,059
Threshold 1.96 1.96 1.96 1.96 1.96 1.96
Window 0.50 0.50 0.35 0.35 0.20 0.20

Notes: Each observation is a test statistic. We rely on probit models and present the average marginal effects and associated
standard errors clustered at the journal article-level. Observations are unweighted. Additional controls include identification
strategy fixed effects, dummy variables for how results are reported, a dummy for solo-authorship, average years since PhD,
average years since PhD squared, share of authors graduated from top PhD institution, share of authors at top institution, share
of female authors, and an indicator for whether at least one of the authors was an editor of an economics journal at the time of
publication. The dependent variable takes a value one if the test statistic is significant at the 5% level and zero otherwise. The
primary independent variables take a value one if the test statistic is drawn from an article with data and code provided (on the
author’s homepage or journal’s website) and zero otherwise.

Table 5: Caliper Tests 5% Threshold: Data-Sharing and Data-Sharing Policy

(1) (2) (3) (4) (5) (6)

First Stage DV: Data and Code Provided
Data & Code Policy 0.797∗∗∗ 0.788∗∗∗ 0.731∗∗∗ 0.675∗∗∗ 0.725∗∗∗ 0.697∗∗∗

(0.167) (0.173) (0.173) (0.160) (0.173) (0.171)

Second Stage DV: Significant at 5% Level
Data & Code Provided -0.253 -0.503 -0.070 -0.239 0.291 0.266
(Journal) (0.387) (0.436) (0.456) (0.501) (0.514) (0.555)

Reduced Form DV: Significant at 5% Level
Data & Code Policy -0.046 -0.080 -0.011 -0.031 0.048 0.037

(0.066) (0.064) (0.072) (0.066) (0.084) (0.076)

Year FE ✓ ✓ ✓ ✓ ✓ ✓
Journal FE ✓ ✓ ✓ ✓ ✓ ✓
Additional Controls ✓ ✓ ✓
Observations 3,177 3,177 2,282 2,282 1,362 1,362
Threshold 1.96 1.96 1.96 1.96 1.96 1.96
Window 0.50 0.50 0.35 0.35 0.20 0.20

Notes: All Panels: Each observation is a test statistic. We rely on probit models and present the average marginal effects
and associated standard errors clustered at the journal article-level. Observations are unweighted. Additional controls include
identification strategy fixed effects, dummy variables for how results are reported, a dummy for solo-authorship, average years
since PhD, average years since PhD squared, share of authors graduated from top PhD institution, share of authors at top
institution, share of female authors, and an indicator for whether at least one of the authors was an editor of an economics
journal at the time of publication. First Stage: Requiring data and code to be posted increases the provision of data and code.
The dependent variable takes a value one if the test statistic is drawn from an article with data and code provided on the
journal’s website and zero otherwise. The primary independent variable takes a value one if the article was published in a
journal up to 5 years after the journal implemented a data and code availability requirement and zero up to 5 years before
the journal implements a policy. Second Stage: Provision of data and code, instrumented by journal policy, does not affect
statistical significance. The dependent variable takes a value one if the test statistic is significant at the 5% level and zero
otherwise. The primary independent variable takes a value one if the article was predicted to provide data and code on the
journal’s website using journal policy as an instrument. Reduced Form: Requiring data and code to be posted does not affect
statistical significance. The dependent variable takes a value one if the test statistic is significant at the 5% level and zero
otherwise. The primary independent variable takes a value one if the article is published in a journal with a data and code
policy.
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Table 6: Results from Application of Elliott et al. (2022): Data and Code Availability

Sample Bin. Disc. CS1 CS2B LCM Obs Total

Full Sample
Full Data And Code 0.000 0.002 0.002 0.000 0.006 419 7368
Other 0.000 0.760 0.000 0.000 0.000 840 15929

Pre-Journal Policy
Full Data And Code . . . . . 1 103
Other 0.008 0.863 0.140 0.000 0.794 83 1657

Post-Journal Policy
Full Data and Code 0.006 0.082 0.002 0.000 0.179 145 2428
Other 0.000 0.001 0.000 0.000 0.418 186 3682

(Only Journals That Switch)
Full Data And Code 0.005 0.029 0.002 0.000 0.185 146 2531
Other 0.000 0.005 0.008 0.000 0.140 269 5339

Notes: This table provides the result from the battery of tests proposed in Elliott et al. (2022) for the 5% threshold for data
and code availability.

Table 7: Relative Publication Probabilities by Data and Code Availability

Sample u t df [0,1.1645] (1.645,1.960] (1.960,2.576]

All 0.003 0.003 1.486 0.357 0.791 1.134

Full Sample
Full Data and Code 0.003 0.003 1.659 0.340 0.769 1.121
Other 0.002 0.003 1.419 0.360 0.787 1.130

Pre-Journal Policy
Full Data and Code 0.062 0.078 2.177 0.558 1.173 1.509
Other 0.005 0.007 1.366 0.636 1.335 1.584

Post-Journal Policy
Full Data and Code 0.003 0.002 1.666 0.350 0.807 1.123
Other 0.001 0.003 1.470 0.346 0.658 0.987

(Only Journals That Switch)
Full Data and Code 0.003 0.002 1.655 0.337 0.786 1.101
Other 0.003 0.004 1.434 0.418 0.826 1.140

Notes: The table presents the results of applying the publication bias model presented in Andrews and Kasy (2019) to data
and code availability. The model assumes that the underlying effect sizes follow a generalized t distribution. We report
the model’s estimated location parameter, scale parameter, and degrees of freedom in the first three columns. In the fourth
column, 0.357 represents the relative probability that a test statistic in the [0,1.1645] interval is 35.7% as likely to be published
as a test statistic greater than 2.576 (the reference interval).
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Table 8: Prediction of Provision of Full Data and at Least Code

Provision of ... Full Data and Code At least Code
(1) (2) (3) (4) (5) (6)

Method of Data Collection: (omitted admin)
Third-Party Survey 0.230*** 0.297*** 0.255*** 0.025 0.128* 0.170

(0.064) (0.062) (0.059) (0.089) (0.076) (0.283)
Own Collection 0.530*** 0.420*** 0.421*** 0.220*** 0.202** 0.727***

(0.061) (0.062) (0.057) (0.080) (0.084) (0.273)
Other 0.182** 0.153*** 0.236*** -0.032 -0.017 0.557**

(0.084) (0.052) (0.061) (0.094) (0.067) (0.271)
Controls
DID -0.038 -0.031 0.080 0.297

(0.055) (0.055) (0.072) (0.247)
IV -0.065 -0.073 0.066 0.224

(0.050) (0.051) (0.072) (0.257)
RDD – 0.189** – 0.191** 0.042 0.160

(0.076) (0.076) (0.092) (0.348)
Top 5 0.285*** 1.262*** 0.398*** 7.090***

(0.040) (0.087) (0.053) (0.185)
Experience 0.012 0.012 0.007 0.024

(0.009) (0.008) (0.011) (0.042)
Experience2 -0.024 -0.023 -0.011 -0.027

(0.024) (0.022) (0.030) (0.111)
Top Institution -0.045 -0.025 0.019 0.048

(0.081) (0.073) (0.101) (0.325)
PhD Top Institution -0.098 -0.101 0.001 0.009

(0.075) (0.070) (0.090) (0.286)

Other Controls
Year FE Y Y Y Y Y Y
Solo Authored Y Y Y Y
Share Female Authors Y Y Y Y
Editor Y Y Y Y
Field Y Y
Observations 20,701 19,593 19,222 20,701 20,373 20,002

Notes: We rely on probit models and present the average marginal effects (equation (3)). The dependent variable in column
(1)-(3) is a dummy for whether full data and code can be accessed, while the dependent variable is a dummy for whether at
least code is available on webpages of the journals for column (4)-(6). The omitted category is admin. The omitted category
for the methods is RCT. Robust standard errors are in parentheses, clustered by article. Observations are unweighted.
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Table 9: Caliper Tests 5% Threshold: Data Type

Significant at 5% Level
(1) (2) (3) (4) (5) (6)

Own-Collected -0.007 0.043 0.010 0.071∗ 0.021 0.023
(0.024) (0.038) (0.029) (0.043) (0.037) (0.054)

Third-Party Survey 0.002 0.003 -0.009 0.007 0.008 -0.001
(0.030) (0.028) (0.033) (0.031) (0.043) (0.042)

Other -0.037 -0.051 -0.025 -0.031 -0.009 -0.014
(0.033) (0.032) (0.037) (0.037) (0.048) (0.047)

Year FE ✓ ✓ ✓ ✓ ✓ ✓
Journal FE ✓ ✓ ✓ ✓ ✓ ✓
Data and Code Provided ✓ ✓ ✓
Additional Controls ✓ ✓ ✓
Observations 4,814 4,814 3,517 3,517 2,089 2,089
Threshold 1.96 1.96 1.96 1.96 1.96 1.96
Window 0.50 0.50 0.35 0.35 0.20 0.20

Notes: Each observation is a test statistic. We rely on probit models and present the average marginal effects and
associated standard errors clustered at the journal article-level. Observations are unweighted. Additional controls
include identification strategy fixed effects, dummy variables for how results are reported, a dummy for solo-authorship,
average years since PhD, average years since PhD squared, share of authors graduated from top PhD institution, share
of authors at top institution, share of female authors, and an indicator for whether at least one of the authors was an
editor of an economics journal at the time of publication. The dependent variable takes a value one if the test statistic
is significant at the 5% level and zero otherwise. The primary independent variables are dummy variables for each data
type.
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Appendix Figures: NOT FOR PUBLICATION

Figure A1: Data Access by Implementation Year

Notes: This figure displays data access by implementation year for: Direct Access, Help from the Authors, and No
Access. We consider a balanced sample of journals: American Economic Review, Journal of Political Economy,
Econometrica, Quarterly Journal of Economics, Review of Economic Studies, Review of Economics and Statistics,
Journal of the European Economic Association, Economic Journal, and Journal of Labor Economics. Of note, one
article published in the Quarterly Journal of Economics released full data and codes on the journal’s website prior
to the implementation of the data-sharing policy.
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Figure A2: Data and Code Availability on Authors’ Homepages by Implementation
Year

Notes: This figure restricts the sample to observations within five years before and after a policy change. It displays
the share of articles that provide data and codes on the authors’ homepages. The sample consists of 10,042 test
statistics for z ∈ [0, 10]. The solid line represents the share of articles where authors voluntarily upload data and
code files on their homepages, while the dashed line show the share of articles without data and code files on
authors’ homepages.
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Figure A3: Data Type by Cohort

Notes: In this figure, we restrict the sample to articles relying solely on one data type. Cohort 2005 for articles
published from 2002–2005; Cohort 2010 for articles published from 2006–2010; Cohort 2015 for articles published
from 2011–2015; Cohort 2020 for articles published from 2020 onward.

Figure A4: Estimated Density of z-Statistics by Journal Policy
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Notes: This figure displays 36,975 test statistics for z ∈ [0, 10]. The solid line presents test statistics with no data
policy, while the dotted line presents test statistics that face a journal policy. The dashed line represents test
statistics that do not face strict journal policies but authors are encouraged by journals to upload replication files.
We also provide a kernel density with data-driven bandwidth. We do not weight our estimates. See Table 1 for an
overview of data-sharing policies.
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Figure A5: Estimated Density of z-Statistics for Journals with Data-Sharing Policy
by Data and Code Availability
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Notes: This figure restricts the sample to those tests that have a Journal policy and displays 23,650 test statistics
for z ∈ [0, 10]. The solid line presents test statistics that provide full data and code, the dotted line partial provision
of data and code, the long-dashed line presents tests that provide only code and last, the short-dashed line presents
those test statistics that provide no material. See Table 1 for an overview of data-sharing policies. We also provide
a kernel density with data-driven bandwidth. We do not weight our estimates.

Figure A6: Estimated Density of z-Statistics and Data-Sharing Policy: Five Years
Prior vs. Five Years After
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Notes: This figure restricts the sample to observations five years before and five years after a policy change. It
displays 12,900 test statistics for z ∈ [0, 10]. We also provide a kernel density with data-driven bandwidth. We do
not weight our estimates.
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Figure A7: Estimated Density of z-statistics After Data-Sharing Policy: First two
Years vs. Three to Five Years
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Notes: This figure restricts the sample to observations within five years after a policy change. It displays 10,042
test statistics for z ∈ [0, 10]. Reference lines are displayed at conventional two-tailed significance levels. We also
provide a kernel density with data-driven bandwidth. We do not weight our estimates.

Figure A8: Estimated Density of z-statistics After Data-Sharing Policy: First two
Years vs. Three to Five Years
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Notes: This figure restricts the sample to observations within five years after a policy change. It displays 10,042
test statistics for z ∈ [0, 10]. We also provide a kernel density with data-driven bandwidth. We do not weight our
estimates.
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Figure A9: z-statistics by Data and Code Availability and Journal Ranking with
Data-Sharing Policy
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Notes: This figure displays histograms of test statistics for z ∈ [0, 01]. Test statistics are partitioned by data and
code availability: Full data and code, partial data and code, only code and nothing. We also provide a kernel
density with data-driven bandwidth. We do not weight our estimates.

Figure A10: z-statistics by Data and Code Availability and Number of Authors
with Data-Sharing Policy
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Notes: This figure displays histograms of test statistics for z ∈ [0, 01]. Test statistics are partitioned by data and
code availability: Full data and code, partial data and code, only code and nothing. We also provide a kernel
density with data-driven bandwidth. We do not weight our estimates.
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Figure A11: z-statistics by Data and Code Availability and Affiliation with Data-
Sharing Policy

0
.1

.2
.3

.4

D
en

si
ty

0 2 4 6 8 10

z-Statistic

No Top Authors
Any Top Authors

Full Data and Code

0
.1

.2
.3

.4

D
en

si
ty

0 2 4 6 8 10

z-Statistic

No Top Authors
Any Top Authors

Partial Data and Code

0
.1

.2
.3

.4

D
en

si
ty

0 2 4 6 8 10

z-Statistic

No Top Authors
Any Top Authors

Only Code

0
.1

.2
.3

.4

D
en

si
ty

0 2 4 6 8 10

z-Statistic

No Top Authors
Any Top Authors

Nothing

Notes: This figure displays histograms of test statistics for z ∈ [0, 01]. Test statistics are partitioned by data and
code availability: Full data and code, partial data and code, only code and nothing. We also provide a kernel
density with data-driven bandwidth. We do not weight our estimates.

Figure A12: z-statistics by Data and Code Availability and PhD Institution with
Data-Sharing Policy
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Notes: This figure displays histograms of test statistics for z ∈ [0, 01]. Test statistics are partitioned by data and
code availability: Full data and code, partial data and code, only code and nothing. We also provide a kernel
density with data-driven bandwidth. We do not weight our estimates.
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Figure A13: Estimated Density of z-Statistics for Journals with Data-Sharing Policy
by Data Availability (De-Rounded) - with Histograms
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Notes: Notes: This figure restricts the sample to those tests that have a Journal policy and displays 23,542 of
test statistics for z ∈ [0, 10]. Histogram bins are 0.1 wide. Reference lines are displayed at conventional two-tailed
significance levels. We also provide a kernel density with data-driven bandwidth. Compared to figure 3 we use
de-rounded z-Statistics. We do not weight our estimates.
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Figure A14: Estimated Density of z-Statistics by Journal Policy (De-rounded z-
Statistics)
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Notes: This figure displays 36,924 of test statistics for z ∈ [0, 10]. See Table 1 for an overview of journals by journal
policy. Histogram bins are 0.1 wide. Reference lines are displayed at conventional two-tailed significance levels. We
also provide a kernel density with data-driven bandwidth. Compared to figure 2 we use de-rounded z-Statistics.
We do not weight our estimates.

Figure A15: Estimated Density of z-Statistics and Data-Sharing Policy: Five Years
Prior vs. Five Years After (De-rounded z-Statistics)
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ADJUST Notes: This figure restricts the sample to observations five years before and five years after a policy
change. It displays 12,870 of test statistics for z ∈ [0, 10]. See Table 1 for an overview of journals by journal policy.
Histogram bins are 0.1 wide. Reference lines are displayed at conventional two-tailed significance levels. We also
provide a kernel density with data-driven bandwidth. Compared to figure 4 we use de-rounded z-Statistics. We do
not weight our estimates.
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Figure A16: Estimated Density of z-statistics by Data and Code Availability on
Personal Homepages
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Notes: This figure displays histograms of test statistics for z ∈ [0, 10]. The left figure plots all tests with no provision
of replication files either on the journal or on authors’ homepages. The right figure displays only test statistics with
provision only on authors’ but not on journals’ homepages.

Figure A17: Incomplete Data Provision and Implemented Journal Policy: Reason
for Data Exemption

Notes: We restrict the sample to articles published in journals with a data-sharing policy and have partial or no
data. In our sample, we have 24,742 tests with a journal policy and 12,747 of those test statistics do not provide
full replication material. 53.28% or 6,791 test statistics provide a reason for data exemption, while 46.72% do not.
We also provide a kernel density with data-driven bandwidth. We do not weight our estimates.
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Figure A18: Estimated Density of z-statistics for Full and Pure Samples
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Notes: This figure displays two distributions. First, the solid line plots the z-statistics for those estimates that
rely on a ’mixed’ data type and second, the dotted line plots the z-statistics for the sub-sample of estimates that
rely solely on one data type. We also provide a kernel density with data-driven bandwidth. We do not weight our
estimates.
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Figure A19: Estimated Density of z-statistics for Full and Pure Samples (De-
rounded z-statistics
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Notes: This figure displays two distributions. First, the solid line plots the z-statistics for those estimates that rely
on a ’mixed’ data type and second, the dotted line plots the z-statistics for the sub-sample of estimates that rely
solely on one data type. Compared to figure A18 we use de-rounded z-statistics.

55



Figure A20: Estimated Density of z-Statistics by Data Type
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Notes: This figure displays four distributions of test statistics for z ∈ [0, 10] by data type: admin, third-party
survey, own-collected and other. We restrict the sample to studies using solely one data type (“pure sample”). We
also provide a kernel density with data-driven bandwidth. We do not weight our estimates.

Figure A21: Estimated Density of z-Statistics by Data Type (De-rounded) - with
Histograms
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Notes: This figure displays histograms of test statistics for z ∈ [0, 10] by data type: admin, third-party survey,
own-collected and other. We restrict the sample to studies using only one method of data collection. Histogram
bins are 0.1 wide. Reference lines are displayed at conventional two-tailed significance levels. We also provide a
kernel density with data-driven bandwidth. We do not weight our estimates. We rely on a de-rounding method
(Brodeur et al. (2016)).
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Figure A22: Estimated Density of z-statistics by Data Type and Journal Ranking
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Notes: This figure displays histograms of test statistics for z ∈ [0, 01]. Test statistics are partitioned by data type:
Admin, third-party survey, own collection and other. We also provide a kernel density with data-driven bandwidth.
We do not weight our estimates.

Figure A23: Estimated Density of z-statistics by Data Type and Number of Authors
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Notes: This figure displays histograms of test statistics for z ∈ [0, 01]. Test statistics are partitioned by data type:
admin, third-party survey, own collection and other. We also provide a kernel density with data-driven bandwidth.
We do not weight our estimates.
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Figure A24: Estimated Density of z-statistics by Data Type and Affiliation
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Notes: This figure displays histograms of test statistics for z ∈ [0, 01]. Test statistics are partitioned by data type:
admin, third-party survey, own collection and other. We also provide a kernel density with data-driven bandwidth.
We do not weight our estimates.

Figure A25: Estimated Density of z-statistics by Data Type and PhD Institution

0
.1

.2
.3

.4

D
en

si
ty

0 2 4 6 8 10

z-Statistic

No Top PhD's
Any Top PhD's

Admin

0
.1

.2
.3

.4

D
en

si
ty

0 2 4 6 8 10

z-Statistic

No Top PhD's
Any Top PhD's

3rd Party Survey

0
.1

.2
.3

.4

D
en

si
ty

0 2 4 6 8 10

z-Statistic

No Top PhD's
Any Top PhD's

Own Collection

0
.1

.2
.3

.4

D
en

si
ty

0 2 4 6 8 10

z-Statistic

No Top PhD's
Any Top PhD's

Other

Notes: This figure displays histograms of test statistics for z ∈ [0, 01]. Test statistics are partitioned by data type:
admin, third-party survey, own collection and other. We also provide a kernel density with data-driven bandwidth.
We do not weight our estimates.
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Figure A26: Estimated Density of z-Statistics for Other Category: Financial Data
vs Remaining Other
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Notes: This figure displays 3,028 of test statistics for z ∈ [0, 10] only for those that rely on other data. As in the
pure sample, we consider here only test statistics that uniquely belong to the data type other. We split the data
type category other into those test statistics that use non-financial data (left figure) and those that only rely on
financial data (right figure). We also provide a kernel density with data-driven bandwidth. We do not weight our
estimates.

Figure A27: Estimated Density of z-Statistics using DID by Data Type
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Notes: This figure displays histograms of test statistics for z ∈ [0, 10] using a difference-in-differences (DID)
approach by data type: admin, 3rd party survey, own-collected and other. We only consider those observations
that rely solely on one type of data within each article. Histogram bins are 0.1 wide. Reference lines are displayed
at conventional two-tailed significance levels. We also provide a kernel density with data-driven bandwidth. We do
not weight our estimates.
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Figure A28: Estimated Density of z-Statistics using IV by Data Type
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Notes: This figure displays histograms of test statistics for z ∈ [0, 10] using a instrumental variables (IV) approach
by data type: admin, third-party survey, own-collected and other. We only consider those observations that rely
solely on one type of data within each article. Histogram bins are 0.1 wide. Reference lines are displayed at
conventional two-tailed significance levels. We also provide a kernel density with data-driven bandwidth. We do
not weight our estimates.
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Figure A29: Estimated Density of z-Statistics using RDD by Data Type
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Notes: This figure displays histograms of test statistics for z ∈ [0, 10] using a regression discontinuity design (RDD)
by data type: admin, third-party survey, own-collected and other. We only consider those observations that rely
solely on one type of data within each article. Histogram bins are 0.1 wide. Reference lines are displayed at
conventional two-tailed significance levels. We also provide a kernel density with data-driven bandwidth. We do
not weight our estimates.
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Figure A30: Estimated Density of z-Statistics using RCT by Data Type
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Notes: This figure displays histograms of test statistics for z ∈ [0, 10] using a randomized control trials (RCT) by
data type: admin, third- party survey, own-collected and other. We only consider those observations that rely solely
on one type of data within each article. Histogram bins are 0.1 wide. Reference lines are displayed at conventional
two-tailed significance levels. We also provide a kernel density with data-driven bandwidth. We do not weight our
estimates..
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Figure A31: Estimated Density of z-Statistics using DID by Data and Code Avail-
ability
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Notes: This figure displays histograms of test statistics for z ∈ [0, 10] using a difference-in-differences (DID)
approach by data and code availability: full data and code, partial data and code, only code and no material. We
only consider those observations that rely solely on one type of data within each article. Histogram bins are 0.1
wide. Reference lines are displayed at conventional two-tailed significance levels. We also provide a kernel density
with data-driven bandwidth. We do not weight our estimates.

63



Figure A32: Estimated Density of z-Statistics using IV by Data and Code Avail-
ability
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Notes: This figure displays histograms of test statistics for z ∈ [0, 10] using a instrumental variables (IV) approach
by data and code availability: full data and code, partial data and code, only code and no material. We only
consider those observations that rely solely on one type of data within each article. Histogram bins are 0.1 wide.
Reference lines are displayed at conventional two-tailed significance levels. We also provide a kernel density with
data-driven bandwidth. We do not weight our estimates.
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Figure A33: Estimated Density of z-Statistics using RDD by Data and Code Avail-
ability
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Notes: This figure displays histograms of test statistics for z ∈ [0, 10]using a regression discontinuity design (RDD)
by data and code availability: full data and code, partial data and code, only code and no material. We only
consider those observations that rely solely on one type of data within each article. Histogram bins are 0.1 wide.
Reference lines are displayed at conventional two-tailed significance levels. We also provide a kernel density with
data-driven bandwidth. We do not weight our estimates.
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Figure A34: Estimated Density of z-Statistics using RCT by Data and Code Avail-
ability
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Notes: This figure displays histograms of test statistics for z ∈ [0, 10] using a randomized control trials (RCT) by
data and code availability: full data and code, partial data and code, only code and no material. We only consider
those observations that rely solely on one type of data within each article. Histogram bins are 0.1 wide. Reference
lines are displayed at conventional two-tailed significance levels. We also provide a kernel density with data-driven
bandwidth. We do not weight our estimates.

Figure A35: Estimated Density of z-Statistics: Private vs. Public Data
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Notes: This figure displays 16,387 of test statistics for z ∈ [0, 10]. For clarity we only display test statistics that
uniquely belong to the private or public type and ignore own collection. The sample is restricted to articles using
only one type of data. We also provide a kernel density with data-driven bandwidth. We do not weight our
estimates.
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Figure A36: Estimated Density by Publication Status and Data and Code Avail-
ability: Journals with Data-Policy

0
.1

.2
.3

.4

D
en

si
ty

0 2 4 6 8 10

z-Statistic

published (N=  13,043)
working paper (N=   5,140)

Notes: This sample is restricted to articles that are published in journals with a data-sharing policy. This figure
displays two distributions. First, the solid line plots the z-statistics for those estimates that are published and
second, the dotted line plots the z-statistics for those estimates that are published in a working paper. We also
provide a kernel density with data-driven bandwidth. We do not weight our estimates.

Figure A37: Estimated Density by Publication Status and Data and Code Avail-
ability: Journals without Data-Policy
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Notes: This sample is restricted to articles that are published in journals without a data-sharing policy. This figure
displays two distributions. First, the solid line plots the z-statistics for those estimates that are published and
second, the dotted line plots the z-statistics for those estimates that are published in a working paper. We also
provide a kernel density with data-driven bandwidth. We do not weight our estimates.
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Figure A38: Estimated Density by Publication Status and Data Type
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Notes: This figure displays histograms of test statistics for z ∈ [0, 10] by data type: admin, third-party survey,
own-collected and other. The solid line represent published z-statistics, while the dashed line represent those from
working papers. The samples is accordingly restricted to estimates from published articles that had an associated
working paper. Histogram bins are 0.1 wide. Reference lines are displayed at conventional two-tailed significance
levels. We also provide a kernel density with data-driven bandwidth. We do not weight our estimates.
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Appendix Tables: NOT FOR PUBLICATION

Table A1: Summary Statistics: Data Availability and Journal Data-Sharing Policy

Full Sample
Full Data Partial Data Only Code No Material Total

Total Articles 302 123 106 576 1107
Articles in % 27.28 11.11 9.58 52.03 100
Total Tests 12579 3828 3954 18513 38874
Tests in % 32.36 9.85 10.17 47.62 100

Sample with Policy
Full Data Partial Data Only Code No Material Total

Total Articles 293 122 102 137 654
Articles in % 44.80 18.65 15.60 20.95 100
Total Tests 12366 3666 3848 4861 24741
Tests in % 49.98 14.82 15.55 19.65 100

Sample w/o Policy
Full Data Partial Data Only Code No Material Total

Total Articles 9 1 4 439 453
Articles in % 1.99 0.22 0.88 96.91 100
Total Tests 213 162 106 13652 14133
Tests in % 1.507 1.146 0.750 96.60 100

Pure Sample
Full Data Partial Data Only Code No Material Total

Total Articles 163 44 56 334 597
Articles in % 27.30 7.37 9.38 55.95 100
Total Tests 6981 1490 1770 10460 20701
Tests in % 33.72 7.198 8.550 50.53 100

Notes: The first part of this table provides an overview of the distribution of test statistics and total articles by data
and code availability for the full sample. The second and third parts restrict the sample to articles published in a
journal with and without a data-sharing policy, respectively. The bottom panel restrict the sample to articles relying
solely on one data type.
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Table A2: Summary Statistics: Data and Code Availability by Journal

Provision of: Full Data Partial Data Only Code No Material
Journal and Code and Code
American Econ. J.: Applied Econ. 1,478 549 380 63
American Econ. J.: Econ. Policy 440 586 225
American Econ. J.: Macroeconomics 18 24 12
American Economic Review 3266 748 996 228
Econometrica 191 206 181
Economic Policy 21 59
Experimental Economics 79
Journal of Applied Econometrics 16 35 35
Journal of Development Economics 809 27 24 1958
Journal of Economic Growth 38 62
Journal of Financial Economics 569
Journal of Financial Intermediation 285
Journal of Human Resources 48 25 1624
Journal of International Economics 10 478
Journal of Labor Economics 387 219 146 362
Journal of Political Economy 1184 57 292 321
Journal of Public Economics 2605
Journal of Urban Economics 40 620
J. of the European Econ. Association 771 79 202 596
Review of Financial Studies 1618
The Economic Journal 960 272 424 973
The Journal of Finance 27 186 96 1775
The Quarterly Journal of Economics 673 109 3 3166
The Review of Economic Studies 1051 298 170 115
The Review of Economics and Statistics 1162 433 949 742
Total 12580 3828 3954 18514

Notes: This table provides an overview of test statistics and data and code availability by journal. It alphabetically presents our
sample of Top 25 journals.
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Table A3: Summary Statistics: Data Availability and Data Type

Pure Sample Admin Third-Party Own Collected Other Total
Survey

Total Articles 159 131 161 146 597
Articles in % 26.63 21.94 26.97 24.46 100
Total Tests 5726 3932 7754 3289 20701
Tests in % 27.66 18.99 37.46 15.89 100

Full Data and Code Admin Third-Party Own Collected Other Total
Survey

Total Articles 20 32 89 22 163
Articles in % 12.27 19.63 54.60 13.50 100
Total Tests 379 1165 4622 815 6981
Tests in % 5.429 16.69 66.21 11.67 100

Partial Data and Code Admin Third-Party Own Collected Other Total
Survey

Total Articles 25 10 2 7 44
Articles in % 56.82 22.73 4.545 15.91 100
Total Tests 754 283 248 205 1490
Tests in % 50.60 18.99 16.64 13.76 100

Only Code Admin Third-Party Own Collected Other Total
Survey

Total Articles 32 12 2 10 56
Articles in % 57.14 21.43 3.571 17.86 100
Total Tests 1231 272 35 232 1770
Tests in % 69.55 15.37 1.977 13.11 100

At Least Code Admin Third-Party Own Collected Other Total
Survey

Total Articles 77 54 93 39 263
Articles in % 29.28 20.53 35.36 14.83 100
Total Tests 2364 1720 4905 1252 10241
Tests in % 23.08 16.80 47.90 12.23 100

Nothing Admin Third-Party Own Collected Other Total
Survey

Total Articles 82 77 68 107 334
Articles in % 24.55 23.05 20.36 32.04 100
Total Tests 3362 2212 2849 2037 10460
Tests in % 32.14 21.15 27.24 19.47 100

Notes: The sample for all panels is restricted to test articles that rely solely on one data type within each article
(“pure” sample). The first panel of this table provides an overview of the distribution of test statistics and articles
by data and code availability and data type. The second panel restricts the sample to articles that provide full data
and code. The third panel restricts the sample to articles providing partial data. The fourth panel restricts the
sample to articles that provide only code. The fifth panel restricts the sample to articles that provide at least code.
The last panel restricts the sample to articles that provide no data nor code.
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Table A4: Summary Statistics: Data Type by Journal

Type of Data Admin 3rd Party Own Other
Journal Survey Collection Total
American Econ. J.: Applied Econ. 149 162 959 98 1,368
American Econ. J.: Econ. Policy 251 47 142 64 504
American Econ. J.: Macroeconomics 22 22
American Economic Review 779 590 1,460 526 3,355
Econometrica 126 86 106 5 323
Economic Policy 24 29 53
Experimental Economics 73 73
Journal of Applied Econometrics 35 16 51
Journal of Development Economics 51 153 1,321 120 1,645
Journal of Economic Growth 17 81 98
Journal of Financial Economics 40 9 269 318
Journal of Financial Intermediation 26 100 126
Journal of Human Resources 84 848 226 25 1,183
Journal of International Economics 148 206 48 402
Journal of Labor Economics 355 293 171 819
Journal of Political Economy 149 43 552 114 858
Journal of Public Economics 815 73 374 54 1,316
Journal of Urban Economics 284 14 298
J. of the European Econ. Association 197 206 328 150 881
Review of Financial Studies 63 46 62 521 692
The Economic Journal 527 362 284 118 1,291
The Journal of Finance 37 352 543 932
The Quarterly Journal of Economics 1,021 53 590 95 1,759
The Review of Economic Studies 134 61 370 96 661
The Review of Economics and Statistics 516 556 384 217 1,673
Total 5,726 3,932 7,754 3,289 20,701

Notes: This table provides an overview of test statistics by data type and journal. It alphabetically presents our sample of Top 25
journals. We only consider those estimates that rely solely on one type of data (“Pure” sample).

Table A5: Caliper Tests 10% Threshold: Data-Sharing

Significant at 10% Level
(1) (2) (3) (4) (5) (6)

Data & Code Provided (Author) -0.036∗ -0.016 -0.027 -0.015 -0.020 -0.006
(0.020) (0.019) (0.020) (0.020) (0.023) (0.024)

Data & Code Provided (Journal) 0.010 0.027 0.007 0.016 0.003 0.009
(0.016) (0.017) (0.018) (0.019) (0.022) (0.024)

Year FE ✓ ✓ ✓ ✓ ✓ ✓
Journal FE ✓ ✓ ✓ ✓ ✓ ✓
Additional Controls ✓ ✓ ✓
Observations 9,224 9,223 6,110 6,110 3,597 3,596
Threshold 1.65 1.65 1.65 1.65 1.65 1.65
Window 0.50 0.50 0.35 0.35 0.20 0.20

Notes: Each observation is a test statistic. We rely on probit models and present the average marginal effects and associated
standard errors clustered at the journal article-level. Observations are unweighted. Additional controls include identification
strategy fixed effects, dummy variables for how results are reported, a dummy for solo-authorship, average years since PhD,
average years since PhD squared, share of authors graduated from top PhD institution, share of authors at top institution, share
of female authors, and an indicator for whether at least one of the authors was an editor of an economics journal at the time of
publication. The dependent variable takes a value one if the test statistic is significant at the 10% level and zero otherwise. The
primary independent variables take a value one if the test statistic is drawn from an article with data and code provided (on the
author’s homepage or journal’s website) and zero otherwise.
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Table A6: Caliper Tests 1% Threshold: Data-Sharing

Significant at 1% Level
(1) (2) (3) (4) (5) (6)

Data & Code Provided (Author) 0.022 0.025 -0.002 -0.000 0.004 0.000
(0.022) (0.022) (0.024) (0.024) (0.031) (0.030)

Data & Code Provided (Journal) -0.009 0.001 -0.014 -0.008 -0.015 -0.006
(0.019) (0.019) (0.021) (0.021) (0.026) (0.026)

Year FE ✓ ✓ ✓ ✓ ✓ ✓
Journal FE ✓ ✓ ✓ ✓ ✓ ✓
Additional Controls ✓ ✓ ✓
Observations 7,185 7,181 4,949 4,946 2,854 2,851
Threshold 2.58 2.58 2.58 2.58 2.58 2.58
Window 0.50 0.50 0.35 0.35 0.20 0.20

Notes: Each observation is a test statistic. We rely on probit models and present the average marginal effects and associated
standard errors clustered at the journal article-level. Observations are unweighted. Additional controls include identification
strategy fixed effects, dummy variables for how results are reported, a dummy for solo-authorship, average years since PhD,
average years since PhD squared, share of authors graduated from top PhD institution, share of authors at top institution, share
of female authors, and an indicator for whether at least one of the authors was an editor of an economics journal at the time of
publication. The dependent variable takes a value one if the test statistic is significant at the 1% level and zero otherwise. The
primary independent variables take a value one if the test statistic is drawn from an article with data and code provided (on the
author’s homepage or journal’s website) and zero otherwise.

Table A7: Control Variables for the Caliper Tests 5% Threshold: Data-Sharing

(1) (2) (3) (4) (5) (6)
Data & Code Provided (Author) -0.038∗ -0.020 -0.042∗ -0.031 -0.026 -0.021

(0.020) (0.021) (0.023) (0.023) (0.028) (0.029)
Data & Code Provided (Journal) 0.008 0.019 0.006 0.016 0.010 0.020

(0.019) (0.019) (0.020) (0.020) (0.024) (0.024)
Solo-Authored -0.043∗ -0.040 -0.044

(0.025) (0.027) (0.034)
Experience -0.001 0.001 0.007

(0.003) (0.004) (0.004)
Experience2 0.002 -0.005 -0.025∗

(0.010) (0.012) (0.013)
Editor Present -0.048∗∗∗ -0.031 -0.044∗

(0.018) (0.020) (0.024)
Top Institution -0.034 -0.012 -0.036

(0.031) (0.035) (0.041)
PhD Top Institution -0.021 -0.025 0.002

(0.030) (0.033) (0.039)
Share Female Authors -0.012 -0.019 -0.009

(0.027) (0.030) (0.037)
Identification: IV 0.015 -0.001 -0.019

(0.019) (0.021) (0.026)
Identification: RCT -0.034∗ -0.033 -0.055∗∗

(0.020) (0.022) (0.027)
Identification: RDD -0.019 -0.018 -0.032

(0.023) (0.025) (0.029)
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Journal FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 9,334 9,332 6,829 6,828 4,060 4,059
Threshold 1.96 1.96 1.96 1.96 1.96 1.96
Window 0.50 0.50 0.35 0.35 0.20 0.20

Notes: Appendix Table 4 with controls exposed. Each observation is a test statistic. We rely on probit models and present the average
marginal effects and associated standard errors clustered at the journal article-level. Observations are unweighted. Controls include
identification strategy fixed effects, dummy variables for how results are reported, a dummy for solo-authorship, average years since
PhD, average years since PhD squared, share of authors graduated from top PhD institution, share of authors at top institution,
share of female authors, and an indicator for whether at least one of the authors was an editor of an economics journal at the time
of publication. The dependent variable takes a value one if the test statistic is significant at the 5% level and zero otherwise. The
primary independent variables take a value one if the test statistic is drawn from an article with data and code provided (on the
author’s homepage or journal’s website) and zero otherwise.
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Table A8: Caliper Tests 10% Threshold: Data-Sharing and Data-Sharing Policy

(1) (2) (3) (4) (5) (6)

First Stage DV: Data and Code Provided
Data & Code Policy 0.839∗∗∗ 0.846∗∗∗ 0.889 0.926∗∗∗ 0.940∗∗∗ 1.028∗∗∗

(0.156) (0.168) (.) (0.177) (0.165) (0.204)

Second Stage DV: Significant at 10% Level
Data & Code Provided 0.139 0.177 0.179 0.307 0.400 0.519
(Journal) (0.268) (0.332) (0.279) (0.317) (0.328) (0.370)

Reduced Form DV: Significant at 10% Level
Data & Code Policy 0.030 0.031 0.041 0.058 0.095 0.107

(0.056) (0.060) (0.062) (0.062) (0.075) (0.075)

Year FE ✓ ✓ ✓ ✓ ✓ ✓
Journal FE ✓ ✓ ✓ ✓ ✓ ✓
Additional Controls ✓ ✓ ✓
Observations 3,222 3,222 2,160 2,160 1,288 1,287
Threshold 1.65 1.65 1.65 1.65 1.65 1.65
Window 0.50 0.50 0.35 0.35 0.20 0.20

Notes: All Panels: Each observation is a test statistic. We rely on probit models and present the average marginal effects and
associated standard errors clustered at the journal article-level. Observations are unweighted. Additional controls include
identification strategy fixed effects, dummy variables for how results are reported, a dummy for solo-authorship, average years
since PhD, average years since PhD squared, share of authors graduated from top PhD institution, share of authors at top
institution, share of female authors, and an indicator for whether at least one of the authors was an editor of an economics
journal at the time of publication. First Stage: Requiring data and code to be posted increases the provision of data and
code. The dependent variable takes a value one if the test statistic is drawn from an article with data and code provided on
the journal’s website and zero otherwise. The primary independent variable takes a value one if the article was published in
a journal up to 5 years after the journal implemented a data and code availability requirement and zero up to 5 years before
the journal implements a policy. Second Stage: Provision of data and code, instrumented by journal policy, does not affect
statistical significance. The dependent variable takes a value one if the test statistic is significant at the 10% level and zero
otherwise. The primary independent variable takes a value one if the article was predicted to provide data and code on the
journal’s website using journal policy as an instrument. Reduced Form: Requiring data and code to be posted does not affect
statistical significance. The dependent variable takes a value one if the test statistic is significant at the 10% level and zero
otherwise. The primary independent variable takes a value one if the article is published in a journal with a data and code
policy.
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Table A9: Caliper Tests 1% Threshold: Data-Sharing and Data-Sharing Policy

(1) (2) (3) (4) (5) (6)

First Stage DV: Data and Code Provided
Data & Code Policy 0.623∗∗∗ 0.574∗∗∗ 0.623∗∗∗ 0.560∗∗∗ 0.667∗∗∗ 0.490∗∗∗

(0.184) (0.161) (0.187) (0.161) (0.179) (0.151)

Second Stage DV: Significant at 1% Level
Data & Code Provided 0.745 0.815 0.903 1.138∗ 0.608 0.977
(Journal) (0.509) (0.565) (0.636) (0.692) (0.580) (0.679)

Reduced Form DV: Significant at 1% Level
Data & Code Policy 0.116∗ 0.110∗ 0.135∗ 0.154∗∗ 0.113 0.152

(0.066) (0.064) (0.076) (0.074) (0.096) (0.094)

Year FE ✓ ✓ ✓ ✓ ✓ ✓
Journal FE ✓ ✓ ✓ ✓ ✓ ✓
Additional Controls ✓ ✓ ✓
Observations 2,390 2,389 1,643 1,642 959 958
Threshold 2.58 2.58 2.58 2.58 2.58 2.58
Window 0.50 0.50 0.35 0.35 0.20 0.20

Notes: All Panels: Each observation is a test statistic. We rely on probit models and present the average marginal effects
and associated standard errors clustered at the journal article-level. Observations are unweighted. Additional controls include
identification strategy fixed effects, dummy variables for how results are reported, a dummy for solo-authorship, average years
since PhD, average years since PhD squared, share of authors graduated from top PhD institution, share of authors at top
institution, share of female authors, and an indicator for whether at least one of the authors was an editor of an economics
journal at the time of publication. First Stage: Requiring data and code to be posted increases the provision of data and code.
The dependent variable takes a value one if the test statistic is drawn from an article with data and code provided on the
journal’s website and zero otherwise. The primary independent variable takes a value one if the article was published in a
journal up to 5 years after the journal implemented a data and code availability requirement and zero up to 5 years before
the journal implements a policy. Second Stage: Provision of data and code, instrumented by journal policy, does not affect
statistical significance. The dependent variable takes a value one if the test statistic is significant at the 1% level and zero
otherwise. The primary independent variable takes a value one if the article was predicted to provide data and code on the
journal’s website using journal policy as an instrument. Reduced Form: Requiring data and code to be posted does not affect
statistical significance. The dependent variable takes a value one if the test statistic is significant at the 1% level and zero
otherwise. The primary independent variable takes a value one if the article is published in a journal with a data and code
policy.
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Table A10: Instrumental Variable Approach (OLS)

(1) (2) (3) (4) (5) (6)

First Stage DV: Data and Code Provided
Data & Code Policy 0.462∗∗∗ 0.402∗∗ 0.407∗∗ 0.340∗∗ 0.424∗∗ 0.363∗∗

(0.171) (0.155) (0.172) (0.153) (0.174) (0.154)

Second Stage DV: Significant at 5% Level
Data & Code Provided -0.099 -0.198 -0.032 -0.095 0.114 0.104

(0.152) (0.176) (0.176) (0.192) (0.199) (0.213)

Reduced Form DV: Significant at 5% Level
Data & Code Policy -0.046 -0.079 -0.013 -0.032 0.048 0.038

(0.066) (0.064) (0.072) (0.066) (0.084) (0.076)

Year FE ✓ ✓ ✓ ✓ ✓ ✓
Journal FE ✓ ✓ ✓ ✓ ✓ ✓
Additional Controls ✓ ✓ ✓
Observations 3,177 3,177 2,282 2,282 1,362 1,362
Threshold 1.96 1.96 1.96 1.96 1.96 1.96
Window 0.50 0.50 0.35 0.35 0.20 0.20
First Stage F 144.87 105.79 81.35 56.00 53.18 38.70

Notes: Each observation is a test statistic. We rely on OLS models and associated standard errors clustered at the
journal article-level. Observations are unweighted. Additional controls include identification strategy fixed effects, dummy
variables for how results are reported, a dummy for solo-authorship, average years since PhD, average years since PhD
squared, share of authors graduated from top PhD institution, share of authors at top institution, share of female authors,
and an indicator for whether at least one of the authors was an editor of an economics journal at the time of publication.
First Stage: Requiring data and code to be posted increases the provision of data and code. The dependent variable
takes a value one if the test statistic is drawn from an article with data and code provided on the journal’s website and
zero otherwise. The primary independent variable takes a value one if the article was published in a journal up to 5
years after the journal implemented a data and code availability requirement and zero up to 5 years before the journal
implements a policy. Second Stage: Provision of data and code, instrumented by journal policy, does not affect statistical
significance. The dependent variable takes a value one if the test statistic is significant at the 5% level and zero otherwise.
The primary independent variable takes a value one if the article was predicted to provide data and code on the journal’s
website using journal policy as an instrument. Reduced Form: Requiring data and code to be posted does not affect
statistical significance. The dependent variable takes a value one if the test statistic is significant at the 5% level and
zero otherwise. The primary independent variable takes a value one if the article is published in a journal with a data
and code policy.

Table A11: Article Weights: Caliper Tests 5% Threshold: Data-Sharing

Significant at 5% Level (Article Weights)
(1) (2) (3) (4) (5) (6)

Data Or Code Provided (Author) 0.006 0.018 -0.004 0.001 -0.021 -0.024
(0.028) (0.028) (0.030) (0.030) (0.040) (0.039)

Data Or Code Provided (Journal) -0.023 -0.029 -0.019 -0.026 -0.010 -0.015
(0.030) (0.030) (0.032) (0.032) (0.039) (0.039)

Year FE ✓ ✓ ✓ ✓ ✓ ✓
Journal FE ✓ ✓ ✓ ✓ ✓ ✓
Additional Controls ✓ ✓ ✓
Observations 9,334 9,332 6,829 6,828 4,060 4,059
Threshold 1.96 1.96 1.96 1.96 1.96 1.96
Window 0.50 0.50 0.35 0.35 0.20 0.20

Notes: This table replicates Table 4 after applying article weights. Each observation is a test statistic. We rely on probit models
and present the average marginal effects and associated standard errors clustered at the journal article-level. Observations are
unweighted. Additional controls include identification strategy fixed effects, dummy variables for how results are reported, a
dummy for solo-authorship, average years since PhD, average years since PhD squared, share of authors graduated from top PhD
institution, share of authors at top institution, share of female authors, and an indicator for whether at least one of the authors
was an editor of an economics journal at the time of publication. The dependent variable takes a value one if the test statistic is
significant at the 5% level and zero otherwise. The primary independent variables take a value one if the test statistic is drawn
from an article with data and code provided (on the author’s homepage or journal’s website) and zero otherwise.
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Table A12: De-Rounding: Caliper Tests 5% Threshold: Data-Sharing

Significant at 5% Level (Derounded)
(1) (2) (3) (4) (5) (6)

Data Or Code Provided (Author) -0.024 -0.015 -0.028 -0.026 -0.016 -0.024
(0.019) (0.020) (0.022) (0.023) (0.025) (0.027)

Data Or Code Provided (Journal) -0.028 -0.065∗∗ -0.044 -0.076∗∗ -0.032 -0.064∗

(0.026) (0.030) (0.028) (0.033) (0.031) (0.037)
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Journal FE ✓ ✓ ✓ ✓ ✓ ✓
Additional Controls ✓ ✓ ✓
Observations 9,329 9,329 6,825 6,825 4,057 4,057
Threshold 1.96 1.96 1.96 1.96 1.96 1.96
Window 0.50 0.50 0.35 0.35 0.20 0.20

Notes: This table replicates Table 4 after applying a de-rounding method as in Brodeur et al. (2016). Each observation is a test
statistic. We rely on probit models and present the average marginal effects and associated standard errors clustered at the journal
article-level. Observations are unweighted. Additional controls include identification strategy fixed effects, dummy variables for how
results are reported, a dummy for solo-authorship, average years since PhD, average years since PhD squared, share of authors
graduated from top PhD institution, share of authors at top institution, share of female authors, and an indicator for whether at least
one of the authors was an editor of an economics journal at the time of publication. The dependent variable takes a value one if the
test statistic is significant at the 5% level and zero otherwise. The primary independent variables take a value one if the test statistic
is drawn from an article with data and code provided (on the author’s homepage or journal’s website) and zero otherwise.

Table A13: Article Weights: Caliper Tests 5% Threshold: Data-Sharing and Data-
Sharing Policy

(1) (2) (3) (4) (5) (6)

First Stage DV: Data and Code Provided
Data & Code Policy 0.556∗∗∗ 0.535∗∗∗ 0.480∗∗∗ 0.463∗∗∗ 0.479∗∗∗ 0.479∗∗∗

(0.175) (0.164) (0.175) (0.155) (0.179) (0.165)

Second Stage DV: Significant at 5% Level
Data & Code Provided -1.143∗∗ -1.266∗ -1.209∗ -1.203 -0.646 -0.556
(Journal) (0.565) (0.648) (0.622) (0.755) (0.790) (0.870)

Reduced Form DV: Significant at 5% Level
Data & Code Policy -0.143∗ -0.134∗ -0.127 -0.104 -0.066 -0.050

(0.075) (0.074) (0.081) (0.077) (0.093) (0.089)

Year FE ✓ ✓ ✓ ✓ ✓ ✓
Journal FE ✓ ✓ ✓ ✓ ✓ ✓
Additional Controls ✓ ✓ ✓
Observations 3,177 3,177 2,282 2,282 1,361 1,361
Threshold 1.96 1.96 1.96 1.96 1.96 1.96
Window 0.50 0.50 0.35 0.35 0.20 0.20

Notes: This table replicates Table 5 after applying article weights. Each observation is a test statistic. We rely on probit models
and present the average marginal effects and associated standard errors clustered at the journal article-level. Observations are
unweighted. Additional controls include identification strategy fixed effects, dummy variables for how results are reported, a
dummy for solo-authorship, average years since PhD, average years since PhD squared, share of authors graduated from top
PhD institution, share of authors at top institution, share of female authors, and an indicator for whether at least one of the
authors was an editor of an economics journal at the time of publication. First Stage: Requiring data and code to be posted
increases the provision of data and code. The dependent variable takes a value one if the test statistic is drawn from an article
with data and code provided on the journal’s website and zero otherwise. The primary independent variable takes a value one
if the article was published in a journal up to 5 years after the journal implemented a data and code availability requirement
and zero up to 5 years before the journal implements a policy. Second Stage: Provision of data and code, instrumented by
journal policy, does not affect statistical significance. The dependent variable takes a value one if the test statistic is significant
at the 5% level and zero otherwise. The primary independent variable takes a value one if the article was predicted to provide
data and code on the journal’s website using journal policy as an instrument. Reduced Form: Requiring data and code to be
posted does not affect statistical significance. The dependent variable takes a value one if the test statistic is significant at the
5% level and zero otherwise. The primary independent variable takes a value one if the article is published in a journal with a
data and code policy.
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Table A14: De-Rounding: Caliper Tests 5% Threshold: Data-Sharing and Data-Sharing
Policy

(1) (2) (3) (4) (5) (6)

First Stage DV: Data and Code Provided
Data & Code Policy 0.797∗∗∗ 0.788∗∗∗ 0.730∗∗∗ 0.675∗∗∗ 0.725∗∗∗ 0.697∗∗∗

(0.168) (0.175) (0.173) (0.162) (0.174) (0.172)

Second Stage DV: Significant at 5% Level
Data & Code Provided -0.378 -0.755∗ -0.212 -0.535 0.102 -0.100
(Journal) (0.400) (0.450) (0.446) (0.504) (0.488) (0.537)

Reduced Form DV: Significant at 5% Level
Data & Code Policy -0.069 -0.122∗ -0.033 -0.070 0.017 -0.014

(0.066) (0.064) (0.071) (0.067) (0.080) (0.075)

Year FE ✓ ✓ ✓ ✓ ✓ ✓
Journal FE ✓ ✓ ✓ ✓ ✓ ✓
Additional Controls ✓ ✓ ✓
Observations 3,174 3,174 2,279 2,279 1,359 1,359
Threshold 1.96 1.96 1.96 1.96 1.96 1.96
Window 0.50 0.50 0.35 0.35 0.20 0.20

Notes: This table replicates Table 5 after applying a de-rounding method as in Brodeur et al. (2016). Each observation is a
test statistic. We rely on probit models and present the average marginal effects and associated standard errors clustered at
the journal article-level. Observations are unweighted. Additional controls include identification strategy fixed effects, dummy
variables for how results are reported, a dummy for solo-authorship, average years since PhD, average years since PhD squared,
share of authors graduated from top PhD institution, share of authors at top institution, share of female authors, and an
indicator for whether at least one of the authors was an editor of an economics journal at the time of publication. First Stage:
Requiring data and code to be posted increases the provision of data and code. The dependent variable takes a value one if the
test statistic is drawn from an article with data and code provided on the journal’s website and zero otherwise. The primary
independent variable takes a value one if the article was published in a journal up to 5 years after the journal implemented a
data and code availability requirement and zero up to 5 years before the journal implements a policy. Second Stage: Provision
of data and code, instrumented by journal policy, does not affect statistical significance. The dependent variable takes a value
one if the test statistic is significant at the 5% level and zero otherwise. The primary independent variable takes a value one
if the article was predicted to provide data and code on the journal’s website using journal policy as an instrument. Reduced
Form: Requiring data and code to be posted does not affect statistical significance. The dependent variable takes a value one
if the test statistic is significant at the 5% level and zero otherwise. The primary independent variable takes a value one if the
article is published in a journal with a data and code policy.
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Table A15: Results from Application of Elliott et al. (2022) at the 10% and 1% Signifi-
cance Thresholds

10% Threshold Total Obs Bin Disc. LCM CS1 CS2B

Full Sample
Full Data and Code 7368 164 0.002 0.120 0.006 0.002 0.000
Other 15928 328 0.391 0.014 0.000 0.000 0.000

Pre-Journal Policy
Full Data and Code 103 0 . . . . .
Other 1657 45 0.036 0.664 0.794 0.140 0.000

Post-Journal Policy
Full Data and Code 2428 53 0.006 0.053 0.179 0.002 0.000
Other 3682 63 0.401 0.000 0.418 0.015 0.000

(Only Journals That Switch)
Full Data and Code 2531 53 0.006 0.042 0.185 0.002 0.000
Other 5339 108 0.074 0.001 0.140 0.006 0.000

Data Type
Admin 3681 72 0.638 0.072 0.253 0.001 0.001
Own 4106 88 0.002 0.024 0.071 0.025 0.006
Survey 2343 54 0.752 0.060 0.444 0.000 0.000
Other 3319 58 0.448 0.077 0.133 0.601 0.202

1% Threshold Total Obs Bin Disc. LCM CS1 CS2B

Full Sample
Full Data and Code 7368 894 1.000 0.194 0.006 0.002 0.000
Other 15928 1681 1.000 0.601 0.000 0.000 0.000

Pre-Journal Policy
Full Data and Code 103 19 . . . . .
Other 1657 181 0.617 0.787 0.794 0.140 0.000

Post-Journal Policy
Full Data and Code 2428 292 0.955 0.683 0.179 0.002 0.000
Other 3682 374 1.000 0.783 0.418 0.015 0.000

(Only Journals That Switch)
Full Data and Code 2531 311 0.979 0.552 0.185 0.002 0.000
Other 5339 555 0.999 0.815 0.14 0.006 0.000

Data Type
Admin 3681 368 0.973 0.717 0.253 0.001 0.001
Own 4106 465 1.000 0.938 0.071 0.025 0.006
Survey 2343 270 0.961 0.884 0.444 0.000 0.000
Other 3319 392 0.999 0.822 0.133 0.601 0.202

Notes: This table provides the result from the battery of tests proposed in Elliott et al. (2022) for the 10% and 1% Thresholds
for both data-sharing and data-type analysis.
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Table A16: Prediction of Provision of Full Data and at Least Code: Journals with Data-
Sharing Policy

Provision of ... Full Data and Code At least Code
(1) (2) (3) (4) (5) (6)

Method of Data Collection: (omitted admin)
Third-Party Survey 0.428*** 0.380*** 0.379*** 0.047 0.044 0.290

(0.088) (0.081) (0.071) (0.095) (0.060) (0.332)
Own-Collected 0.585*** 0.421*** 0.455*** -0.014 -0.059 0.098

(0.073) (0.085) (0.079) (0.094) (0.075) (0.374)
Other 0.357*** 0.191** 0.212** -0.037 -0.122 -0.283

(0.128) (0.088) (0.089) (0.111) (0.090) (0.390)
Controls
DID –0.126* –0.161** -0.029 -0.320

(0.068) (0.065) (0.058) (0.289)
IV –0.113* –0.131** 0.039 0.164

(0.061) (0.059) (0.059) (0.302)
RDD –0.199** –0.267*** 0.107 0.217

(0.100) (0.087) (0.087) (0.439)
Top 5 0.228*** -0.059 0.300*** 1.044**

(0.052) (0.096) (0.056) (0.472)
Experience 0.013 0.017* 0.000 0.011

(0.011) (0.010) (0.011) (0.052)
Experience2 -0.026 -0.031 0.003 0.031

(0.031) (0.027) (0.030) (0.151)
Top Institution -0.118 -0.077 -0.083 -0.033

(0.106) (0.090) (0.087) (0.384)
PhD Top Institution -0.123 –0.164* -0.020 -0.219

(0.107) (0.091) (0.085) (0.342)

Other Controls
Year FE Y Y Y Y Y Y
Solo Authored Y Y Y Y
Share Female Authors Y Y Y Y
Editor Y Y Y Y
Field Y Y
Observations 13,220 12,950 12,788 13,220 12,677 12,151

Notes: We rely on probit models and present the average marginal effects (equation (3)). We restrict the sample to journals with
a data-sharing policy. The dependent variable in column (1)-(3) is a dummy for whether full data and code can be accessed,
while the dependent variable is a dummy for whether at least code is available on webpages of the journals for column (4)-(6).
The omitted category is admin. The omitted category for the methods is RCT. Robust standard errors are in parentheses,
clustered by article. Observations are unweighted.

Table A17: Results from Application of Elliott et al. (2022): Data Type

Sample Bin. Disc. CS1 CS2B LCM Obs Total

Admin 0.033 0.717 0.001 0.001 0.253 171 3681
Own Collected 0.000 0.938 0.025 0.006 0.071 252 4106
3rd Party Survey 0.000 0.884 0.000 0.000 0.444 123 2343
Other 0.000 0.822 0.601 0.202 0.133 163 3319

Notes: This table provides the result from the battery of tests proposed in Elliott et al. (2022) for the 5%
threshold for data type. We restrict the sample to articles relying solely on one data type.
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Table A18: Article Weights: Caliper Tests 5% Threshold: Data Type

Significant at 5% Level (Article Weights)
(1) (2) (3) (4) (5) (6)

Own-Collected -0.032 -0.011 -0.011 0.012 0.031 0.040
(0.031) (0.049) (0.034) (0.050) (0.046) (0.061)

Third-Party Survey -0.018 -0.028 -0.011 -0.012 0.090∗ 0.075
(0.033) (0.033) (0.036) (0.036) (0.052) (0.053)

Other -0.019 -0.036 -0.037 -0.057 -0.002 -0.009
(0.041) (0.038) (0.045) (0.043) (0.055) (0.055)

Year FE ✓ ✓ ✓ ✓ ✓ ✓
Journal FE ✓ ✓ ✓ ✓ ✓ ✓
Data and Code Provided ✓ ✓ ✓
Additional Controls ✓ ✓ ✓
Observations 4,814 4,814 3,517 3,517 2,089 2,089
Threshold 1.96 1.96 1.96 1.96 1.96 1.96
Window 0.50 0.50 0.35 0.35 0.20 0.20

Notes: This table replicates Table 9 after applying article weights. Each observation is a test statistic. We rely on probit
models and present the average marginal effects and associated standard errors clustered at the journal article-level.
Observations are unweighted. Additional controls include identification strategy fixed effects, dummy variables for how
results are reported, a dummy for solo-authorship, average years since PhD, average years since PhD squared, share of
authors graduated from top PhD institution, share of authors at top institution, share of female authors, and an indicator
for whether at least one of the authors was an editor of an economics journal at the time of publication. The dependent
variable takes a value one if the test statistic is significant at the 5% level and zero otherwise. The primary independent
variables are dummy variables for each data type.

Table A19: De-Rounding: Caliper Tests 5% Threshold: Data Type

Significant at 5% Level (Derounded)
(1) (2) (3) (4) (5) (6)

Own-Collected -0.013 0.048 0.002 0.075∗ 0.007 0.038
(0.024) (0.036) (0.028) (0.039) (0.032) (0.049)

Third-Party Survey -0.013 -0.006 -0.031 -0.006 -0.033 -0.036
(0.032) (0.028) (0.033) (0.030) (0.039) (0.039)

Other -0.046 -0.075∗∗ -0.035 -0.060∗ -0.034 -0.079∗

(0.033) (0.032) (0.035) (0.035) (0.042) (0.043)
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Journal FE ✓ ✓ ✓ ✓ ✓ ✓
Data and Code Provided ✓ ✓ ✓
Additional Controls ✓ ✓ ✓
Observations 4,811 4,811 3,514 3,514 2,087 2,087
Threshold 1.96 1.96 1.96 1.96 1.96 1.96
Window 0.50 0.50 0.35 0.35 0.20 0.20

Notes: This table replicates Table 9 after applying a de-rounding method as in Brodeur et al. (2016). Each observation is
a test statistic. We rely on probit models and present the average marginal effects and associated standard errors clustered
at the journal article-level. Observations are unweighted. Additional controls include identification strategy fixed effects,
dummy variables for how results are reported, a dummy for solo-authorship, average years since PhD, average years since
PhD squared, share of authors graduated from top PhD institution, share of authors at top institution, share of female
authors, and an indicator for whether at least one of the authors was an editor of an economics journal at the time of
publication. The dependent variable takes a value one if the test statistic is significant at the 5% level and zero otherwise.
The primary independent variables are dummy variables for each data type.
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Table A20: Caliper Tests 10% Threshold: Data Type

Significant at 10% Level
(1) (2) (3) (4) (5) (6)

Own-Collected 0.013 0.015 0.029 0.017 0.004 -0.018
(0.024) (0.037) (0.027) (0.045) (0.034) (0.050)

Third-Party Survey 0.045 0.022 0.050 0.025 0.017 -0.029
(0.028) (0.028) (0.032) (0.033) (0.040) (0.042)

Other 0.088∗∗∗ 0.072∗∗ 0.088∗∗ 0.068∗ 0.041 0.015
(0.032) (0.032) (0.037) (0.037) (0.047) (0.050)

Year FE ✓ ✓ ✓ ✓ ✓ ✓
Journal FE ✓ ✓ ✓ ✓ ✓ ✓
Data and Code Provided ✓ ✓ ✓
Additional Controls ✓ ✓ ✓
Observations 4,832 4,832 3,198 3,198 1,853 1,852
Threshold 1.65 1.65 1.65 1.65 1.65 1.65
Window 0.50 0.50 0.35 0.35 0.20 0.20

Notes: Each observation is a test statistic. We rely on probit models and present the average marginal effects and
associated standard errors clustered at the journal article-level. Observations are unweighted. Additional controls include
identification strategy fixed effects, dummy variables for how results are reported, a dummy for solo-authorship, average
years since PhD, average years since PhD squared, share of authors graduated from top PhD institution, share of authors
at top institution, share of female authors, and an indicator for whether at least one of the authors was an editor of an
economics journal at the time of publication. The dependent variable takes a value one if the test statistic is significant at
the 10% level and zero otherwise. The primary independent variables are dummy variables for each data type.

Table A21: Caliper Tests 1% Threshold: Data Type

Significant at 1% Level
(1) (2) (3) (4) (5) (6)

Own-Collected 0.017 0.006 0.025 0.003 0.039 0.019
(0.028) (0.036) (0.029) (0.042) (0.039) (0.057)

Third-Party Survey 0.047 0.055 0.036 0.056 0.001 0.016
(0.034) (0.036) (0.035) (0.038) (0.046) (0.049)

Other 0.079∗∗ 0.091∗∗ 0.086∗∗ 0.091∗∗ 0.125∗∗∗ 0.132∗∗

(0.034) (0.036) (0.038) (0.040) (0.048) (0.051)
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Journal FE ✓ ✓ ✓ ✓ ✓ ✓
Data and Code Provided ✓ ✓ ✓
Additional Controls ✓ ✓ ✓
Observations 3,680 3,679 2,549 2,548 1,477 1,476
Threshold 2.58 2.58 2.58 2.58 2.58 2.58
Window 0.50 0.50 0.35 0.35 0.20 0.20

Notes: Each observation is a test statistic. We rely on probit models and present the average marginal effects and associated
standard errors clustered at the journal article-level. Observations are unweighted. Additional controls include identification
strategy fixed effects, dummy variables for how results are reported, a dummy for solo-authorship, average years since PhD,
average years since PhD squared, share of authors graduated from top PhD institution, share of authors at top institution,
share of female authors, and an indicator for whether at least one of the authors was an editor of an economics journal at
the time of publication. The dependent variable takes a value one if the test statistic is significant at the 1% level and zero
otherwise. The primary independent variables are dummy variables for each data type.

82



Table A22: Relative Publication Probabilities by Data Type

Sample u t df [0,1.1645] (1.645,1.960] (1.960,2.576]

Admin 0.001 0.001 1.016 0.435 0.876 1.237
0.000 0.001 0.021 0.026 0.058 0.063

Own-Collected 0.016 0.012 1.649 0.495 0.856 1.199
0.002 0.002 0.044 0.030 0.055 0.065

Third-Party Survey 0.006 0.005 2.048 0.288 0.711 0.975
0.001 0.001 0.074 0.019 0.054 0.062

Other 0.001 0.003 1.425 0.202 0.593 0.944
0.000 0.001 0.036 0.009 0.039 0.049

Notes: The table presents the results of applying the publication bias model presented in Andrews and Kasy (2019) to
data type. The model assumes that the underlying effect sizes follow a generalized t distribution. We report the model’s
estimated location parameter, scale parameter, and degrees of freedom in the first three columns. In the fourth column,
0.435 represents the relative probability that a test statistic in the [0,1.1645] interval is 43.5% as likely to be published as a
test statistic greater than 2.576 (the reference interval).

Table A23: Public Versus Private Data: Caliper Test 5% Threshold

(1) (2) (3) (4) (5) (6)
Public Data -0.042 -0.049 -0.050 -0.043 0.006 -0.002

(0.039) (0.038) (0.042) (0.041) (0.058) (0.061)
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Journal FE ✓ ✓ ✓ ✓ ✓ ✓
Additional Controls ✓ ✓ ✓
Observations 4,175 4,175 3,042 3,042 1,800 1,800
Threshold 1.96 1.96 1.96 1.96 1.96 1.96
Window 0.50 0.50 0.35 0.35 0.20 0.20

Notes: Each observation is a test statistic. We rely on probit models and present the average marginal effects
and associated standard errors clustered at the journal article-level. Observations are unweighted. Additional
controls include identification strategy fixed effects, dummy variables for how results are reported, a dummy for
solo-authorship, average years since PhD, average years since PhD squared, share of authors graduated from top
PhD institution, share of authors at top institution, share of female authors, and an indicator for whether at least
one of the authors was an editor of an economics journal at the time of publication. The dependent variable takes
a value one if the test statistic is significant at the 5% level and zero otherwise. The primary independent variable
is a dummy variable that takes the value one if the dataset is categorized as ‘public’ and zero if ‘private’.

Table A24: Public Versus Private Data: Caliper Test 10% Threshold

Significant at 10% Level
(1) (2) (3) (4) (5) (6)

Public Data -0.009 -0.021 0.025 0.012 -0.003 -0.028
(0.050) (0.048) (0.061) (0.058) (0.076) (0.075)

Year FE ✓ ✓ ✓ ✓ ✓ ✓
Journal FE ✓ ✓ ✓ ✓ ✓ ✓
Additional Controls ✓ ✓ ✓
Observations 4,082 4,082 2,715 2,715 1,581 1,580
Threshold 1.65 1.65 1.65 1.65 1.65 1.65
Window 0.50 0.50 0.35 0.35 0.20 0.20

Notes: Each observation is a test statistic. We rely on probit models and present the average marginal effects
and associated standard errors clustered at the journal article-level. Observations are unweighted. Additional
controls include identification strategy fixed effects, dummy variables for how results are reported, a dummy for
solo-authorship, average years since PhD, average years since PhD squared, share of authors graduated from top
PhD institution, share of authors at top institution, share of female authors, and an indicator for whether at least
one of the authors was an editor of an economics journal at the time of publication. The dependent variable takes
a value one if the test statistic is significant at the 10% level and zero otherwise. The primary independent variable
is a dummy variable that takes the value one if the dataset is categorized as ‘public’ and zero if ‘private’.
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Table A25: Public Versus Private: Caliper Test 1% Threshold

Significant at 1% Level
(1) (2) (3) (4) (5) (6)

Public Data -0.006 -0.015 -0.027 -0.026 -0.049 -0.044
(0.045) (0.046) (0.047) (0.050) (0.049) (0.052)

Year FE ✓ ✓ ✓ ✓ ✓ ✓
Journal FE ✓ ✓ ✓ ✓ ✓ ✓
Additional Controls ✓ ✓ ✓
Observations 3,280 3,279 2,253 2,252 1,282 1,281
Threshold 2.58 2.58 2.58 2.58 2.58 2.58
Window 0.50 0.50 0.35 0.35 0.20 0.20

Notes: Each observation is a test statistic. We rely on probit models and present the average marginal effects
and associated standard errors clustered at the journal article-level. Observations are unweighted. Additional
controls include identification strategy fixed effects, dummy variables for how results are reported, a dummy for
solo-authorship, average years since PhD, average years since PhD squared, share of authors graduated from top
PhD institution, share of authors at top institution, share of female authors, and an indicator for whether at least
one of the authors was an editor of an economics journal at the time of publication. The dependent variable takes
a value one if the test statistic is significant at the 1% level and zero otherwise. The primary independent variable
is a dummy variable that takes the value one if the dataset is categorized as ‘public’ and zero if ‘private’.

Table A26: Working Paper Available?

(1) (2) (3) (4)
Method of Data Collection: (omitted admin)
third party survey 0.082 0.064 0.069 0.035

(0.074) (0.075) (0.077) (0.077)
own collection 0.055 0.045 0.033 0.038

(0.064) (0.065) (0.066) (0.065)
other -0.089 -0.114* -0.051 -0.031

(0.066) (0.067) (0.075) (0.073)

Other Controls
Reporting Method Y Y Y
Solo Authored Y Y Y
Share Female Authors Y Y Y
Editor Y Y Y
Field FE Y
Journal FE Y
Articles 404 404 404 397

Notes: We rely on probit models and present the average marginal effects (equation (4)). The dependent variable
is a dummy that takes a value of one if a published article has a public working paper. No article weights applied.

Table A27: Working Paper vs Published Version: Caliper Test 5% Threshold

(1) (2) (3) (4) (5)
ALL Admin 3rd Party Survey Own Collected Other

Published Version -0.015 -0.027 0.027 -0.021 -0.089
(0.018) (0.038) (0.031) (0.028) (0.058)

Test Statistics 3,818 622 552 833 138
Articles 332 41 29 51 14
Window [1.96±0.50] [1.96±0.50] [1.96±0.50] [1.96±0.50] [1.96±0.50]

Notes: This table reports estimates from a linear probability regression with article fixed effects. The dependent variable is a dummy
that takes a value one if a given test statistic is significant at the 5% level (i.e. equal to 1.96). The independent variable of interest
is a dummy that takes the value of one if a given test statistic is from the published version of an article. The sample is accordingly
restricted to estimates from published articles that had an associated working paper. We apply no weights. The analysis is based on
the “pure” sample (i.e., solely one data type per article).
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