
Ferroni, Filippo; Fisher, Jonas D. M.; Melosi, Leonardo

Working Paper

Unusual shocks in our usual models

Working Paper, No. WP 2022-39

Provided in Cooperation with:
Federal Reserve Bank of Chicago

Suggested Citation: Ferroni, Filippo; Fisher, Jonas D. M.; Melosi, Leonardo (2022) : Unusual
shocks in our usual models, Working Paper, No. WP 2022-39, Federal Reserve Bank of
Chicago, Chicago, IL,
https://doi.org/10.21033/wp-2022-39

This Version is available at:
https://hdl.handle.net/10419/267994

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.21033/wp-2022-39%0A
https://hdl.handle.net/10419/267994
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

 

 
 
 
 

 
Fe

de
ra

l R
es

er
ve

 B
an

k 
of

 C
hi

ca
go

 
 

Unusual Shocks in Our Usual Models 
 
Filippo Ferroni, Jonas D. M. Fisher, and 
Leonardo Melosi 

 
 

September 6, 2022 
 

WP 2022-39 
 

https://doi.org/10.21033/wp-2022-39 

 
*Working papers are not edited, and all opinions and errors are the 
responsibility of the author(s). The views expressed do not necessarily 
reflect the views of the Federal Reserve Bank of Chicago or the Federal 
Reserve System. 

 



Unusual shocks in our usual models∗

Filippo Ferroni† Jonas D. M. Fisher Leonardo Melosi

September 6, 2022

Abstract

We propose an event-study research design to identify the nature and propagation of large 
unusual shocks in DSGE models and apply it to study the macroeconomic effects of the Covid 
shock. The initial outbreak is represented as the onset of a new shock process where the shock 
loads on wedges associated with the model’s usual shocks. Realizations of the Covid shock 
come with news about its propagation, allowing us to disentangle the role of beliefs about the 
future of the pandemic. The model attributes a crucial role to the novel Covid shock in 
explaining the large contraction in output in the second quarter of 2020 and the rebound in 
growth expected at the same time. The Covid shock loads significantly on wedges that 
generate both demand and supply effects but, on net, supply forces dominate. The effects of 
Covid on hours worked are quite persistent, although the successive pandemic waves (e.g., the 
Delta wave) have a progressively smaller impact on the macroeconomy. Our methods provide 
a foundation to estimate structural models with data that include the pandemic without having 
to specify a micro-founded epidemiological block.
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1. Introduction

Dynamic stochastic general equilibrium models have proven to be a valuable empirical frame-

work for understanding aggregate economic dynamics. Since these models are estimated

using historical data, they are suitable to study recurrent dynamics, such as the business

cycle. Can these models remain useful in the face of large unprecedented shocks? We pro-

pose a new methodology to incorporate large unprecedented shocks into our usual models

that does not require modeling the fundamentals of the shock, and we apply it to study

the Covid-19 pandemic recession and recovery within the context of a medium scale New

Keynesian business cycle model.

Figure 1: Recessions and recoveries in real GDP, 1947–2021
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Note: The figure shows recessions and recoveries in the level of real GDP since 1947. GDP is normalized
to 100 at the business cycle peak in quarter 0. The black line corresponds to medians and shading is the
interquartile range from before the Covid recession. The blue line corresponds to the index of the level of
output during the Covid recession and recovery.

The Covid recession and recovery are indeed highly unusual. Typical recessions last a few

quarters and generally involve a gradual recovery. These dynamics get reflected in private

sector forecasts. Figure 1 compares the Covid recession to all previous recessions since 1947

with the level of real GDP normalized to 100 at the most recent peak prior to a recession. The

black line corresponds to the median path of output, the grey shading indicates interquartile

ranges, and the blue line shows the Covid recession and recovery. The collapse in output

in 2020q2 is an order of magnitude larger than in a typical post-War recession. Yet output
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Figure 2: Forecast revisions at the onset of recessions, 1968–2021
Revision of Expectations from recession (t) and previous peak (t-1)
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Note: Real GDP growth forecast revisions in the quarter of the onset of a recession compared to the quarter
before taken from the Survey of Professional Forecasters which begins in 1968. The revision in period 0 is
the difference between the nowcast and the forecast at the peak. The horizontal axis indicates the horizon
of the forecast. In period 0 the revision is the difference between the one-quarter ahead growth forecast in
the quarter before the recession starts and the nowcast in the quarter it starts. Black line is medians and
shading is the interquartile range from before the Covid recession. The blue line corresponds to forecast
revisions at the onset of the Covid recession.

takes just a quarter longer to reach the previous peak. The Covid recession and recovery is

far deeper and the recovery is much faster than a typical business cycle.

Figure 2 shows forecast revisions for real GDP growth in the first quarter of an NBER

recession taken from the Survey of Professional Forecasters (SPF) starting from the beginning

of the survey in 1968 (the lines and shading are constructed analogously to the previous

figure). The revision in period 0 is the difference between the SPF nowcast and the forecast

the period before when the economy was at its business cycle peak. Before the Covid

recession forecasters would downgrade their forecasts from prior to the recession’s start for

a couple quarters out – they would expect a slow to start and gradual recovery. In contrast

forecasters surveyed in May 2022 expected a fast start to a rapid recovery with forecast

revisions large and positive for three quarters out.1

We show that the usual shocks in a canonical medium scale DSGE model estimated from

1Eichenbaum, Rebelo, and Trabandt (2021) highlight other unique aspects of the Covid recession. Unlike
a typical recession the drop in output is driven by consumption, which tracks output quite closely. Investment
declines by much less, but also recovers much faster than it does typically.
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before the pandemic struggles to capture the highly unusual dynamics shown in Figures 1

and 2. This poses a challenge to the viability of our usual models. We tackle this challenge

by developing a framework to estimate a new shock called the Covid shock. This shock proves

to play a crucial role in explaining the large contraction in output in the second quarter of

2020 and the revision to forecasts in that period.

The initial outbreak is represented as the onset of a new shock process where the shock

loads on wedges in the DSGE model in the same way as a subset of its usual shocks. We

focus on wedges that propagate business cycle co-movement as well as other shocks that

play a major role explaining consumption, investment, and inflation. The chosen wedges

and corresponding loadings define the nature of the Covid shock.

We adopt an event-study approach to identify the nature of the Covid shock. The macroe-

conomic data in 2020q2 clearly are dominated by the public and private sector responses to

the pandemic and so should be particularly informative about the nature of the new shock.

We acknowledge this by estimating the parameters defining the nature of the Covid shock

with data from this quarter alone.2

Surprise Covid shocks come with news about their propagation. The surprise and news

structure of the Covid shock provides the flexibility not provided by the usual shocks to

account for the dramatic fall in output in 2020q2 and professional forecasts at that time of

a sharp rebound and rapid recovery starting in 2020q3. We use revisions to SPF forecasts

of output growth and inflation to identify this news over time. Including news and holding

fixed the nature of the Covid shock enables us to separate its effects from those of the usual

shocks.

Observing professional forecasters’ expectations is particularly helpful when studying an

unusual shock. Forecasters recognize that by its very nature an unusual shock is not captured

in the historical dynamics. As such their forecasts will not be restricted by the historical

dynamics and will incorporate any new information they are absorbing in real time about

how the shock will propagate through the economy. As forecasters update their beliefs about

2The economic impact of the pandemic began to take hold in March 2020 but only shows up as a small
contraction in activity in 2020q1.
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the propagation of the shock this will get reflected in their forecast revisions along with the

usual shocks.3

The nature of the Covid shock includes significant loadings on wedges that generate both

demand and supply effects. On net the supply forces dominate in 2020q2 as the Covid shock

lowered output and put upward pressure on prices. The latter is notable given that prices

actually fell. The supply effects were expected to persist as the revisions to the SPF forecasts

in 2020q2 attributed to the Covid shock have output remaining below pre-pandemic levels

and prices higher over the next four quarters.

An advantage of our methodology is the ability to quantify the role played by the surprise

and news components of the unusual shock. This is due to the news structure of the unusual

shock and the observation of revisions to the private sector’s expectations. We find that the

economic effects of the pandemic were hard to anticipate by the private sector. In other

words, the private sector was continually surprised by the abrupt turns the pandemic took,

especially in its first year. These repeated surprises were the dominant factor shaping the

effects of the Covid shock throughout the sample.

This finding does not imply that there was scarcity of news about the pandemic. Rather,

most of this news was imprecise and thereby failed to move the private sector’s beliefs about

the future macroeconomic effects of the pandemic. As a result, news played a relatively

subaltern role in shaping the macroeconomic effects of the pandemic. Nevertheless we find

that in 2020q2 the anticipated rebound of the economy in the following quarter raised GDP

growth by roughly 10 percentage points. Concern about the impact of the pandemic going

forward depressed GDP growth by 7 pp in 2020q3.

We use our model to disentangle the contributions of the unusual and usual shocks on

aggregate activity and inflation. We focus on de-trended per capita hours, which is a useful

indicator of the cyclical position of the US economy, and inflation over the period 2020q2

to 2021q3, taking into account possible effects from the Delta wave in 2021q3. The Covid

3Professional forecasts are also valuable when the effects of an unusual shock are studied in real time.
Given the large uncertainty and the scarcity of data that characterize the initial periods of an unusual
episode, observing such data allows for the best possible real-time estimation of the effects of the unusual
events.
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shock explains about two thirds of the massive decline in hours in 2020q2 and contributed

considerably to the extraordinary economic rebound in the next quarter. Over the following

four quarters, the shock is a significant drag on economic activity. The inflationary effects

of the Covid shock are more muted mostly because of the flat Phillips curve. Interestingly,

the Covid shocks contributes to propel inflation throughout the sample period, significantly

so in 2020q2.

The news structure of the novel shock is helpful when unusual events repeat themselves

after their first occurrence. In the case of the Covid pandemic, we observed recurrent waves

of infections as well as the emergence of new variants. In every repetition of the unusual

event, agents become more knowledgeable about the effects of the event. We show that once

the nature of the shock is estimated at the onset of the unusual event, the news structure

of the shock can be used to make different assumptions regarding how much agents have

learned from previous experiences. For instance, when we estimate the effect of the Delta

wave we assume that agents have perfect ex-ante knowledge about the path of the Covid

shock as given by the estimates from the initial wave.

We estimate the Delta shock to be small fraction of the original shock and so it has little

effect. A substantial caveat to this result and our analysis in general is that in 2020q2 the

pandemic (including the lockdowns) came with a large fiscal intervention that confound the

identification of the Covid shock. The Delta wave did not involve any new fiscal interventions.

We expect that a model with a richer fiscal structure than in a standard DSGE model would

better isolate the pandemic-specific features of the initial wave and therefore provide a better

assessment of the impact of the pandemic and the Delta wave in particular.

In the remainder of the paper we begin by reviewing the related literature. Next we

describe the unusual shock, how we use it to isolate the role of beliefs about the pandemic,

and how we estimate it. We then discuss the effects of the estimated shock within the context

of an off-the-shelf medium scale New Keynesian DSGE model. Lastly we have concluding

remarks.
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2. Related literature

The event study approach to identification has a long tradition in macroeconomics. Gen-

erally the approach infers times series of discrete shocks from institutional information and

historical evidence. It is central to narrative studies of fiscal policy and monetary policy.

Key contributions to identifying fiscal shocks include Ramey and Shapiro (1998), Ramey

(2011), Mertens and Ravn (2014) and Romer and Romer (1989, 2010). Kuttner (2001),

Gürkaynak, Sack, and Swanson (2005), and Bauer and Swanson (2022) exploit the discrete

release of monetary policy information to identify the effects of monetary policy shocks. The

event study approach also underlies some identification strategies in SVARS, for example

Antolin-Diaz and Rubio-Ramı́rez (2018), Ben Zeev (2018), Gertler and Karadi (2015), and

Gürkaynak and Wright (2013). All of these papers consider recurring shocks so they are

able to identify their propagation from regular time series data. We identify the nature and

propagation of a new shock from a singular event and a structural model estimated with

similar times series augmented with forward looking variables.

Our analysis contrasts with the now very large literature that embeds epidemiological

models within otherwise standard business cycle models to study the Covid-19 pandemic,

for example Eichenbaum et al. (2021) and Acemoglu, Chernozhukov, Werning, and Whin-

ston (2021). These “epi-mac” models yield important new insights but add considerable

complexity. Our framework does not involve changing our usual models, but leverages their

existing structure to synthesize a new shock that can capture the dynamics resulting from

the unusual event. By basing our analysis on a medium-scale DSGE model we can assess

the empirical relevance of the new shock relative to the usual shocks that have proved to

be useful in accounting for U.S. business cycles. This assessment is possible because of the

relatively large size of our model that fits the data comparably to VAR models. So our

methodology allows us to single out the effects of the Covid-19 shock from the effects of the

usual business cycle shocks that fit the data in normal times. This suggests our framework

can be used to configure a benchmark for the epi-mac literature.

There are now several papers that attempt to incorporate the Covid pandemic into our
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usual models without modeling the epidemiology. Del Negro, Gleich, Goyal, Johnson, and

Tambalotti (2022) introduce a new Covid shock into the Federal Reserve Bank of New

York’s DSGE model. They represent Covid with three i.i.d. wedge shocks with variances

estimated using data in 2020q2 after scaling down the variances of the usual shocks. In

our framework the wedges are perfectly correlated as they depend on a common factor with

constant loadings. Furthermore, we make no changes to the variances of the usual shocks

when we estimate the nature of our Covid shock in 2020q2, letting the data determine their

relative magnitudes. Another similarity is they include one-quarter ahead news about the

wedges in their Covid shock. However, they do not exploit the information in professional

forecasts to identify the news, and calibrate, rather than estimate, the variances of the news.

This implies that they cannot tease out the role played by surprise and news during the

pandemic.4

Primiceri and Tambalotti (2020) use the event study approach to identify a new surprise

Covid shock defined as the linear combination of reduced form shocks in a VAR. They

estimate their shock using data in March and April 2020 under the assumption that aggregate

dynamics were dominated by the Covid shock in these months. We differ in that our shock is

derived from wedges in a structural model and that we include forward looking information

to identify news shocks that come with the surprise. Including the news shocks turns out to

be crucial to our estimation of the Covid shock.

Lenza and Primiceri (2022) model Covid in a VAR by scaling the variances of the usual

i.i.d. residuals by a common scaling parameter that decays exponentially over time. They

estimate the scaling parameter and its rate of decay using data from March, April, and May

2020. They use their framework to demonstrate that one obtains similar VAR parameter

estimates by dummying out those observations. This will be helpful going forward to estimate

VARs with data that includes the pandemic period. We provide a way to estimate structural

models with these data.

4Cardani, Croitorov, Giovannini, Pfeiffer, Ratto, and Vogel (2021) model a Covid shock with unexpected
forced savings and labor hoarding in an open economy DSGE model to characterize the Euro area experience
during the pandemic. They calibrate the standard deviations of the Covid shock and assume it declines
deterministically.
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We synthesize our Covid shock from wedges in a structural model. Inoue, Kuo, and

Rossi (2020) use wedges to measure model miss-specification. Our approach acknowledges

miss-specification through wedges but attributes it all to the Covid shock. Chari, Kehoe,

and McGrattan (2009) use correlated wedges in accounting exercises as a way to assess which

margins are important for business cycles. In our framework the shocks to the wedges that

represent the Covid shock are perfectly correlated by assumption.

We find that both supply and demand components of the Covid shock play large roles in

accounting for the effects of Covid. Guerrieri, Lorenzoni, Straub, and Werning (2022) show

how a supply shock like Covid causes demand shortages in a two-sector New Keynesian

model. In our setting the endogenous effects of the supply shock on demand they describe

would be captured by all our exogenous wedges, but the supply and demand components

dominate. The wedges can also be viewed as a reduced form characterization of the interac-

tion of demand and supply shocks in the New Keynesian model with input-output linkages

studied by Baqaee and Farhi (2022).

Our approach is motivated by the absence of a major pandemic in the post-WWII data

before Covid. Alternatively one could use additional time-series data to learn from history

about the possible effects of the Covid shock on the economy. The only comparable major

pandemic was the Spanish influenza of 1918 and 1919. Barro, Ursua, and Weng (2020),

Barro (2020), and Velde (2020) use this episode to shed light on the economic effects of a

pandemic. Ludvigson, Ma, and Ng (2020) project the economic impact of Covid-19 based

on estimates of the impact of deadly disasters in recent U.S. history.

We estimate inflation’s surge in 2021q1 and 2021q2 was due to cost-push shocks. This

finding is consistent with Del Negro et al. (2022) who we discussed earlier estimate a dif-

ferently specified Covid shock in a DSGE model. Their Covid shock has virtually no effect

on inflation over the pandemic period. This contrasts with our estimates that show Covid

having much larger effects on inflation, particularly in 2020q2.5

5Cost-push shocks are specified differently in Del Negro et al. (2022). In their model they follow an
AR(1) process with AR coefficient estimated with a sample starting in 1964. Consequently they estimate
a persistent cost-push shock which likely plays an important role in explaining their findings. We estimate
an ARMA(1,1) with data beginning in 1994 (when the overnight interest rate futures we use to estimate
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3. The Covid shock

This section describes how we introduce the new Covid shock into a DSGE model and show

how it can be used to disentangle surprise and news about the propagation of the shock.

We introduce enough structure to separately identify the nature of the shock and news

about its evolution. We then discuss some implications of the surprise-news structure of the

Covid shock. Finally, we describe the estimation of the Covid shocks. A key feature of our

methodology is that it allows agents’ beliefs about the evolution of the Covid shock to vary

over time. We use data on professional forecasts of output and inflation to identify revisions

to these beliefs.

3.1. The unusual shock

The Covid shock Ψt is defined as

Ψt =
N∑
j=0

ψjt−j, N ≥ 0 (1)

where the random variables ψjt−j are shocks that are anticipated at time t to hit the economy

in period t+ j and N is the anticipation horizon of agents. This information can be divided

into two components. The first component – called surprise – contains all the information

about the current effects of Covid that were not anticipated in previous periods. The surprise

in period t is ψ0
t . The second component – called news – represents all the information about

the future effects of Covid received by agents in the current period. The news received in

period t is {ψ1
t , ψ

2
t , . . . , ψ

N
t }.

We assume that agents observe perfectly the current and past realizations of the Covid

shock. It follows that shocks ψjt reflect date t revisions to expectations about future Covid

our model become available) and with multiple wage and price series and find the cost-push shock is very
transitory.
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shocks Ψt+j. Specifically, from (1) we have

ψjt = EtΨt+j − Et−1Ψt+j j ∈ {0, 1, . . . , N}. (2)

The news shocks have a factor structure given by

ψjt = λj(t)ft, j ∈ {0, 1, . . . , N}, (3)

where the common factor ft is an independent Gaussian random variable with mean zero

and standard deviation σ(t). We assume ft = 0 for t < t∗, where t∗ is the date of the onset

of the pandemic. The time-varying factor loadings λ(t) = {λj (t)}Nj=0 and variance of ft are

not random variables from the perspective of agents in the model. Agents treat them as

parameters and we estimate them.

Notice that given the structure of shocks summarized by equations (1) and (3) we can

write the Covid shock as

Ψt =
N∑
j=0

λj(t− j)ft−j. (4)

It follows that the Covid shock Ψt is serially correlated as it depends on current and past

realizations of ft.

We assume that each of the ψjt map into M DSGE wedges Σt(i), i ∈ {1, 2, . . . ,M}, that

enter into our DSGE model identically to shocks already present, for example technology

and discount factor shocks, or wedges that are not already shocked. In our application we

only consider wedges that are already shocked. We assume the wedges have i.i.d. surprise

and news components that relate directly to the news about the Covid shock. Specifically,

Σt(i) =
N∑
j=0

εjt−j(i), (5)

10



where

εjt(i) = φiψ
j
t . (6)

Combining (1), (5), and (6) we can see that the wedges are proportional to the Covid shock,

that is

Σt(i) = φiΨt.

The scalar parameters φi are the loadings of the Covid shock Ψt onto the wedges. We refer

to the choice of wedges and the loadings as the nature of the Covid shock. Note that while

the underlying wedge shocks are i.i.d., the surprise-news structure allows agents to forecast

persistence. Also note that the weights φ = {φi}Mi=1 do not depend on the anticipation horizon

of the wedges so that the combination of the DSGE wedges which is used to approximate

expectations about the evolution of the pandemic does not vary across anticipation horizons.

We think this assumption is natural but it also allows us to economize on the number of

parameters that we need to estimate. Combined with constant φ this assumption identifies

the Covid news separately from news of the usual shocks if it is already present in the DSGE

model provided that news of each usual shock is not perfectly correlated as the Covid wedges

are in our framework.

To sum up, we capture the dynamics of the Covid shock with the loadings φ and λ(t)

and the common factor ft. The vector φ describes the nature of the Covid shock, defined as

a particular combination of wedges that enter into the model in the same way as a subset

of the usual shocks. The loadings λ(t) capture evolving beliefs about the Covid shock. The

variance σ(t) summarizes the uncertainty underlying these beliefs. Individual realizations of

the exogenous variable ft account for revisions to agents’ expectations of the future path of

the Covid shock.
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3.2. Surprise, News, and Perfect Foresight

As we already discussed, the news shocks ψjt equal time t revision to agents’ expectations

about the effects of Covid in period t+ j. This anticipation structure allows us to construct

counterfactual exercises under various assumptions regarding the flow of information about

the effects of Covid received by agents. For instance, it is conceivable that agents are more

aware about what to expect from a second pandemic wave than what they were at the

onset of the pandemic. To illustrate how this can be implemented using our methodology,

we assume that agents have perfect foresight about the effects of the second wave. In this

scenario, agents have fully learned what going through a pandemic wave means and will

commit no errors in forecasting the effects of the second wave.

To implement this scenario, we assume that when the second wave hits in period t∗,

the following Covid shocks realize ψjt∗ = δ · Ψt+j for any j ∈ {0, 1, ...,M}, where Ψt+j

denote the economic effects of the first Covid wave j periods later the start of the first

wave and M denotes the duration of the first pandemic wave. The parameter δ is a scaling

factor, which determines whether the economic effects of the second wave are more severe

(δ > 1) or less severe (δ < 1) than those of the first wave. In the subsequent periods

(t∗ + 1, t∗ + 2, . . . , t∗ +M), there will be neither surprise nor news since all the effects of the

second wave were correctly anticipated from the start (i.e., in period t∗) and hence there is

no revision to agents’ expectations after the first period (t∗). In symbols, ψjt∗+i = 0 for any

i ∈ {1, 2, . . . ,M} and j ∈ {1, 2, . . . ,M}.6

3.3. Estimation

To identify the Covid shock Ψt we need to estimate φ and Ξ(t) = [λ(t), σ(t)] for the number

periods we determine a priori that agents update their beliefs about the Covid shock. We

apply an event-study approach to identify φ. In 2020q2 there was an unusually large drop

6Note that, in this example, ψ0
t 6= 0 implies that agents do not anticipate the start of the second wave

and, in fact, are surprised by that. However, at the beginning of the second wave, they can perfectly foresee
its effects. It is straightforward to relax that assumption and assume that agents can correctly anticipate
the start of a new wave k periods in advance: ψj+kt∗−k = Ψt∗+j and ψj+kt∗−k+i = 0 in any subsequent period
i = {1, 2, . . . ,M}.
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in economic activity, far beyond the bounds of a typical business cycle peak to trough, and

an unusual expected rebound in the following quarter. We expect the dramatic variation in

2020q2 is due chiefly to the Covid shock. This suggests 2020q2 data on current and expected

future activity and inflation will be particularly informative about φ.

Let Θ denote the usual parameters in our DSGE model, which are taken as given. We

use Bayes’ theorem to obtain a distribution of Ξ(t) and φ conditional on the usual data up

to date t, denoted X t. At date t = t∗ we have,

p
(
Ξ(t), φ|X t,Θ, st−1;M

)
∝ L

(
X t|Ξ(t), φ,Θ, st−1;M

)
p (Ξ(t), φ) , (7)

whereM denotes our DSGE model and st−1 is the model’s state vector estimated one quarter

earlier. The density p (·) is our prior on the new parameters capturing the nature of and

beliefs about the Covid shock. The density L (·) is the likelihood function associated with

the data X t. We expect the dramatic movements in the data at date t = t∗ to be particularly

informative about the nature of the Covid shock, φ. After that period we have

p
(
Ξ(t∗ + j)|X t∗+j, φ,Θ, st∗+j−1;M

)
∝ L

(
X t∗+j|Ξ(t∗ + j), φ,Θ, st∗+j−1;M

)
p (Ξ(t∗ + j)) ,

(8)

for j = 1, 2, . . . , N − 1.

We estimate φ and Ξ(t) sequentially by maximizing the posterior modes in (7) and (8).

For t = t∗ the intuition is to find the combination of the wedges Σt(i) that, along with the

usual shocks, best explain the one-step-ahead forecast error of the usual data, that includes

current activity and professional forecasts. For t > t∗ the Ξ(t) are identified by the revisions

to the professional forecasts of output and inflation.

We use the Kalman smoother to estimate ft. With ft and our estimates of φ and λ(t)

we obtain estimates of the Covid shock and its anticipated and unanticipated components

from (1) and (3).
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4. The DSGE Model

We study the Covid shock within Campbell, Fisher, Justiniano, and Melosi (2017)’s medium-

scale NK model. Most of the model is familiar as it is a variant of Christiano, Eichen-

baum, and Evans (2005) and Smets and Wouters (2007) and so here we just provide a brief

overview.7 The main differences with similar models is the inclusion of monetary policy

forward guidance and permanent shocks to the investment-specific technology.8

The representative household’s preferences are non-separable over consumption and hours

worked and separable with respect to real government bonds.9 Preferences are buffeted by

shocks to the discount factor and to the preference for government bonds.10 A positive dis-

count factor shock reduces output, consumption and hours but increases investment because

it raises the preference for future consumption relative to current consumption. Justiniano,

Primiceri, and Tambalotti (2010) and others show that it is an important driver of con-

sumption fluctuations.11 We refer to the shock to the preference for government bonds as

the liquidity preference shock. This shock is a source of co-movement between output, con-

sumption, investment and hours. A positive liquidity preference shock raises the marginal

utility of government bonds. This increases the demand for government bonds over private

capital and consumption which drives both down. The two preference shocks follow AR(1)

processes.

The specification of the production side of the economy is standard. It includes perfectly

7The model is closest to Justiniano, Primiceri, and Tambalotti (2013).
8The details of our model and its estimation are provided in the appendix. Those details are not crucial

to understanding our analysis.
9As discussed by Fisher (2015) and Campbell et al. (2017) including preferences for government bonds

allows for an empirically plausible spread between interest rates on private and government bonds that is
otherwise absent. This brings discounting into the household’s linearized inter-temporal Euler equation for
consumption which mitigates the forward guidance puzzle highlighted by Del Negro, Giannoni, and Patterson
(2015). Including a preference for government bonds is now common in the literature, for example Michaillat
and Saez (2021), Eichenbaum, Johannsen, and Rebelo (2021), and Anzoategui, Comin, Gertler, and Martinez
(2019).

10Fisher (2015) showed the latter shock provides a simple micro-foundation for Smets and Wouters (2007)’s
ad hoc shock to the consumption Euler equation.

11It is often used, for example by Eggertsson and Woodford (2003), to motivate why monetary policy
might become constrained by the ELB and so it is particularly relevant for our analysis which includes
episodes in which the ELB is binding.

14



competitive producers that aggregate intermediate goods into the final good; monopolistic

competitive intermediate goods producers with identical Cobb-Douglas production functions

that require labor and capital as inputs; and labor compositors that package the differentiated

labor of households into a homogeneous labor input supplied to the intermediate goods

producers. The intermediate goods producers and suppliers of differentiated labor are subject

to Calvo price and wage setting frictions and charge markups that are subject to shocks.

These “cost-push” shocks follow ARMA(1,1) processes.

The model also includes variable capital utilization with capital depreciation an increas-

ing function of utilization; stochastic investment adjustment costs; and permanent shocks

to neutral and investment-specific technologies. We refer to the shock to investment ad-

justment costs as the marginal efficiency of investment (MEI) shock. A positive MEI shock

increases the yield of capital from an additional unit of investment. This drives investment

up and consumption down. Investment rises by more than consumption falls so output and

hours also risee. Justiniano et al. (2010) and others show that it is an important driver

of investment. There is a neutral technology shock that shifts the production functions of

intermediate goods producers. In our model this shock is a major source of business cycle

co-movement. A positive neutral technology shock raises the desired stock of capital and

makes households richer. Therefore consumption, investment, and output rise. Because the

substitution effect dominates the wealth effect hours also rise. The investment-specific tech-

nology shock changes the rate at which final goods can be transformed into investment goods.

This shock turns out to be relatively unimportant for cyclical fluctuations.12 The model also

includes stochastic government spending. These shocks are unimportant for business cycles.

The shocks to the growth rates of the two technology shifters and the government spending

shock are all assumed to be AR(1) processes.

There is a central bank that sets its policy rate (the interest rate on one-period govern-

ment bonds) with a conventional policy rule augmented with news about future deviations

from that rule as in Campbell, Evans, Fisher, and Justiniano (2012) and Campbell et al.

12This is a common finding with empirical NK models. It contrasts with Fisher (2002) who found using
structural VAR methods that these shocks are a significant driver of aggregate fluctuations.
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(2017) who build on Laséen and Svensson (2011) and Gürkaynak et al. (2005).13 Without

forward guidance shocks agents’ expectations of future policy rates could violate the effective

lower bound. However, our estimation prevents this from happening because it matches data

on expected future funds rates with the model’s private expectations of future policy.14 Note

that including monetary policy news has the added benefit of allowing the model to explain

strategic deviations from the rule, such as a policy of “lower-for-longer” in which lift-off from

the ELB is delayed and slower than otherwise predicted by the monetary policy rule. The

conventional policy rule includes gap terms that depend on publicly observable measures

of the output and inflation and a time-varying constant term to address inflation’s low-

frequency movements. The latter is assumed to be an AR(1) process with auto-correlation

coefficient set to .999.

Government spending is financed by lump sum taxes and government bonds are in zero

net supply. This simple fiscal block is standard in the literature. However it is a limitation

of our analysis of the Covid episode since the first wave of the virus spurred a substantial

fiscal intervention that included both transfers and spending. This means our estimated

Covid shock and its propagation will likely confound some of the effects of these policies.

For example, the revisions to forecasters’ expectations about GDP and inflation we use

to identify the Covid shock and its propagation will include updated views of how fiscal

policy will play out. While we recognize this limitation it is a consequence of choosing an

off-the-shelf model to demonstrate our approach.

Our empirical strategy involves the solution to the model’s log-linearized equilibrium

conditions and applies econometric techniques that rely on linearity to estimate the model’s

parameters. Using a linearized model to study the dramatic variation due to Covid is another

13Using insights from Chahrour and Jurado (2018), Campbell, Ferroni, Fisher, and Melosi (2019) show
how including monetary policy news is equivalent to an environment in which the central bank communicates
about future policy deviations via noisy signals where agents’ use Bayes’ rule to update their beliefs about
those deviations.

14Since the ELB is not imposed explicitly, distributions of interest rates over states on given dates include
negative values. Our model solution is certainty equivalent so this does not influence agents’ decisions. As
such, our solution method does not take into account that the probability distributions of future outcomes
are non-symmetric in models with occasionally binding constraints and that this asymmetry affects agents’
beliefs and thereby equilibrium outcomes. Nakata (2017) studies this uncertainty.
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limitation of our analysis. However our methods can be applied to non-linear settings.

5. Estimation of the DSGE model with the unusual shock

We now describe the estimation of our model’s usual structural parameters with pre-pandemic

data and the unusual shock and its propagation with data up to 2021q3.

5.1. Pre-Pandemic Period

We estimate the model’s usual structural parameters using Bayesian methods with data

prior to the pandemic and then use the onset of the pandemic to estimate the nature and

propagation of the Covid shock as described in Section 3.15 Our pre-pandemic estimation

follows Campbell et al. (2019) and we refer the reader to that paper for most of the details.

The pre-pandemic sample period is 1993q1–2016q4 and we assume a sample break in 2008q4.

The sample break is motivated by the evidence of lower interest rates and trend economic

growth later in the sample, the increase in horizon of forward guidance following the Great

Financial Crisis, and the stabilization of inflation and inflation expectations in the mid-2000s.

The sample break is characterized by unanticipated and permanent reductions in the return

on government bonds and steady state growth, increasing the horizon of forward guidance

from four to ten quarters, and setting the variance of the inflation drift term to zero.16

The model is estimated with a rich array of data, including 26 time series in the first

sample and an additional 6 in the second sample to identify longer forward guidance.17

These data include GDP, consumption and investment growth, hours, multiple wage and

price inflation series, and series on expected future inflation, output, and interest rates. The

expectations data includes one- to four-quarter-ahead core CPI and GDP growth, ten-year-

ahead-average expected CPI inflation from the SPF, and one- to four-quarter-ahead interest

15A general overview of Bayesian estimation is provided in Herbst and Schorfheide (2015) and Fernandez-
Villaverde, Rubio-Ramirez, and Schorfheide (2016)

16See Del Negro, Giannone, Giannoni, and Tambalotti (2017) for a more flexible way of modeling the
trends in interest rates and output growth.

17The interest rate futures data is from the Chicago Fed. Unless otherwise noted all other data are from
Haver Analytics.
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rate futures. The second sample estimation is restricted to estimating the parameters of

the new forward guidance, holding fixed the remaining model parameters at their values

estimated using the first sample.18 Six additional quarters of interest rate futures data are

added to the data-set for this estimation to identify the longer horizon of forward guidance.19

Our estimation forces data on real activity, wages, and prices to coexist with the interest

rate futures data, and our model includes a preference for government bonds. These features

yield plausible estimates of the effects of shocks to forward guidance.20

5.2. The first wave of the pandemic

We assume the synthetic Covid shock is comprised of liquidity preference, permanent neutral

technology, marginal efficiency of investment (MEI), discount factor, and inflation cost-push

shocks (M = 5). The first two shocks are major sources of co-movement in the model

while the MEI and discount factor shocks are important determinants of consumption and

investment. We include the price mark-up shock because we anticipate their is a cost-push

aspect of Covid. We assume that agents try to anticipate the effects of the Covid shock up

to four quarters ahead (N = 4). Note that the time horizon of the SPF forecasts ranges

from one quarter to four quarters out, exactly matching the horizon of the anticipated Covid

shocks in the model. As we shall explain, observing these expectations is key to identifying

the Covid shocks.

We set t∗ = 2020q2 and use the Kalman filter, data prior to that quarter, and our pre-

pandemic parameter estimates to obtain the state vector in that quarter.21 Since we find that

18We also include two auxiliary inflation measures (which do not enter the DSGE model) to map the
model concepts of output and inflation to the their empirical counterparts. We estimate the AR(1) processes
for these variables separately for the two samples.

19Our identification of the forward guidance with only 33 observations in the second sample relies on its
factor structure and our priors. Our priors are informed by estimating a factor model over the second sample
using Gürkaynak et al. (2005)’s high-frequency estimation strategy.

20The interest rate futures data is from the Chicago Fed. Unless otherwise noted all other data are from
Haver Analytics.

21We also reduce the variance of the measurement error shocks in the equations bridging the model
forecasts of GDP and core PCE inflation one to four quarters ahead with the SPF observed counterparts by
a factor of 10 starting in 2020q2. This is to more closely tie revisions to the SPF forecasts to our estimates
of λ(t).
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λ(t) is poorly identified when we try to estimate it in 2021q1, we assume ft = 0 in 2021q1

and 2021q2.22 We follow the strategy outlined in Section 3.3 and data from 2020q2–2020q4

to obtain estimates of the Covid parameters, φ̂ and Ξ̂(t).

5.3. The Delta wave

With the arrival of the Delta variant in 2021q3 we assume another Covid shocks hits the

model economy under the assumption that agents have learned from the first wave and so

have perfect foresight of its propagation. Specifically we suppose the path of the Delta variant

is proportional to the first wave, with δΨ̂t, t ∈ {t∗, t∗+ 1, ..., t∗+ 4}, as the path expected by

agents. The the size of the shock, δ, is estimated with 2021q3 data. A potential drawback

of this approach is that the first wave of Covid came with a substantial fiscal intervention

which potentially influenced our estimate of the composition and propagation of the synthetic

shock. The Delta wave did not involve any new substantial fiscal interventions. We expect

that a model with a richer fiscal structure would better isolate the pandemic-specific features

of the initial wave.23

6. The estimated effects of Covid

This section studies the Covid shock. First, we describe its nature and identification. We then

discuss the contributions of the unusual and usual shocks to the one-ahead-forecast errors

and forecast revisions of output and inflation in 2020q2 and the importance of including the

Covid shock to explain the dynamics in Figures 1 and 2. Lastly, we examine the role of the

unusual and usual shocks and the role of Covid’s surprise and news components over the

pandemic period 2020q2 to 2021q3.
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Table 1: Parameter Estimates

2020Q2 2020Q3 2020Q4 2021Q3
φb 0.0038 0.0038 0.0038 0.0038
φs 1 1 1 1
φi 0.1696 0.1696 0.1696 0.1696
φν -0.444 -0.444 -0.444 -0.444
φp 0.0103 0.0103 0.0103 0.0103

λ0 1 1 1 1
λ1 -0.1298 -0.3922 -0.0109 -0.5074
λ2 -0.1044 -0.3535 -0.1051 -0.1193
λ3 -0.1405 -0.225 -0.2956 -0.0052
λ4 -0.1068 0.1724 0.2786 0.1021

σf 11.6863 11.6737 9.7799 NA

Note: The parameters φb, φs, φi, φν , and φp, denote the loadings of the Covid shock onto its components
which include the discount rate, liquidity preference, marginal efficiency of investment, permanent neutral
technology, and the cost push shocks. The entries in the rightmost column replicate the perfect anticipation
of the path of the Covid shock over the horizon of the SPF forecasts. Since this is a deterministic path the
variance is not applicable. The estimates are modal values of the posterior distribution based on normally
distributed loose priors.

6.1. Parameter estimates and their identification

Our estimates of the parameters of the Covid shock are displayed in Table 1. The first three

columns shows the estimated φis and λjs for 2020q2–2020q4. The final column shows the

λis that replicate the perfectly anticipated propagation of the Covid shock. The parameters

φs, φb, φi, φν , and φp, denote the loadings of the Covid shock on the liquidity preference,

discount rate, MEI, neutral technology, and cost-push components of Covid. Because these

parameters are estimated using just 2020q2 data they do not change across quarters. We

normalize the loading for the liquidity preference component to 1. Covid loads more on this

component than the others. Neutral technology loads negatively and MEI positively and

they are the next largest. The discount factor and cost-push components have much smaller

22By poorly identified we mean the marginal likelihoods of the parameters become very flat.
23In principle we could re-estimate the nature and propagation of the Delta shock in 2021q3. We explored

this approach but found the nature of the shock was poorly identified.
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loadings, both positive.

A liquidity preference shock is a demand shock – it moves output and prices in the same

direction. This shock enters the household’s Euler equation for consumption as the discount

factor shock does, but unlike the discount factor it does not appear in the Euler equation

for capital accumulation. As such a positive liquidity preference shock increases the demand

for government bonds over private capital and a desire to consume less today compared to

tomorrow. This means the positive shock reduces both consumption and investment and is

therefore broadly contractionary.24 A neutral technology shock is a supply shock as it moves

output and prices in opposite directions. A negative neutral shock lowers consumption due to

the wealth effect and investment because capital is less productive. The strong contribution

of these two components of the Covid shock is broadly consistent with the widely held view

that the Covid shock has both demand and supply side aspects to it.

The loadings λ of the common factor onto the Covid news shocks are re-estimated each

quarter. From equation (2) we see that Covid news j-steps ahead reflects one-step-ahead

forecast errors of the Covid shock. The loading of the common factor ft onto the unan-

ticipated component of the Covid shock, λ0, is normalized to one. In 2020q2 the Covid

shock is entirely unanticipated by construction. The negative values of the λ’s in that quar-

ter indicate expectations of the Covid shock going forward were a persistent reversal from

the unanticipated shock. The table shows there are similar revisions to expectations in the

remaining quarters of 2020.

We can gain insight into the sign reversal by studying the one-step-ahead forecast errors

and revisions to expectations for GDP growth and core PCE inflation in 2020q2. These

are displayed in Figure 3. The red lines indicate the forecast is conditioned on 2020q1 data

and the black line indicates conditioning on data in 2020q2. Note that the forecasts for

GDP growth and core PCE growth are determined by the SPF data we use.25 The units

24This contrasts with a positive discount factor shock that causes investment to rise by more than con-
sumption falls.

25When we estimate the DSGE model we include measurement error on the SPF forecasts. For the Covid
period we reduce the variances of the measurement error by a factor of 10 so there is very little difference
between the SPF forecasts and the model forecasts.
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Figure 3: One-step-ahead forecast error decomposition in 2020q2

2020Q1 2020Q2 2020Q3 2020Q4 2021Q1 2021Q2

-35

-30

-25

-20

-15

-10

-5

0

5

10
Output

Measurement
Business Cycles Shocks
Monetary Policy
Covid Shock
Condition on 2020Q2
steady state
Condition on 2020Q1

2020Q1 2020Q2 2020Q3 2020Q4 2021Q1 2021Q2

-5

-4

-3

-2

-1

0

1

2

Inflation

Data

2020Q1 2020Q2 2020Q3 2020Q4 2021Q1 2021Q2
-50

-40

-30

-20

-10

0

10

20

f 20
Q

2
 s

ho
ck

Permanent Tech
Liquidity Preference
MEI
Discount Factor
Price Markup

2020Q1 2020Q2 2020Q3 2020Q4 2021Q1 2021Q2
-3

-2

-1

0

1

2Note: Decomposition of one-step-ahead forecast error of output and inflation into the parts attributed
to the Covid shock, usual business cycle shocks, monetary policy shocks including forward guidance, and
measurement. The black lines indicate 2020q2 output and inflation and SPF forecasts of these variables one
to four quarters ahead. The red line is the forecast conditioned on 2020q1 data. The colored bars show the
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are percentage points at an annual rate. In 2020q2 output collapsed and prices fell, but

forecasters expected a quick rebound of both in 2020q3. The expected rebound explains the

sign reversal in our estimates of the λs in 2020q2. Figure 3 also reveals output growth and

inflation were expected to revert to steady state and target gradually, output from above

and inflation from below. The strength of the recovery in output that eventually transpired

in 2020q3 was largely anticipated. This contrasts with forecasters failing to anticipate the

sharp rise in inflation that was to come in that quarter.

6.2. Contribution of the Covid shocks to forecast errors and revisions in 2020q2

The colored bars in Figure 3 show the decomposition of the forecast errors and revisions

into contributions of the Covid shock, including both surprise and news (blue), the usual

business cycle shocks (pink), shocks to monetary policy including forward guidance (green),

and measurement (grey).26 The left plot in Figure 3 shows that Covid explains almost all the

drop in output in 2020q2 and accounts for a substantial fraction of the rebound anticipated

26Measurement includes shocks to variables from outside the model used to map model-consistent GDP
and core PCE inflation into their BEA counterparts and classical measurement error on wage and price
inflation and interest rate futures.
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to occur 2020q3. Monetary policy is a drag on activity throughout the forecast horizon, due

to the zero lower bound on nominal interest rates. The usual shocks reappear as substantial

drivers in 2021q3.

Note that we do not scale down the volatility of business cycle shocks in q2 and let the

data speak about the relative contribution of the Covid shock. If the usual shocks were

useful to explain the dynamics of output and inflation and the other observables in 2020q2,

the likelihood would have attributed no role or junior role to the unusual shock. But this

is not what Figure 3 shows us. The Covid shock explains the lion’s share of the dramatic

contraction in output in 2020q2 and of the expected rebound in the next quarter, the atypical

pattern we highlighted in Figure 1.

Figure 4: Forecast in 2020q2 of GDP growth from the SPF and the DSGE model without the
Covid shock

2020Q3 2020Q4 2021Q1 2021Q2

-4

-2

0

2

4

6

8

10

12

pe
rc

en
t

10.63

6.48 6.76

4.09

Note: Red stars indicate the median SFP forecast in 2020q2 of GDP growth in 2020q3–2021q2. The black line
shows the DSGE model’s inferred forecast without the Covid shock but with otherwise identical parameters.
The difference between the black line and the red stars is due to measurement error identified by the Kalman
filter.

Why does the likelihood function attribute such a large role to the unusual shock? Figure

4 provides some insight into this question. The red stars denote SPF forecasts (and the model

with Covid) in 2020q2 for GDP growth over the next four quarters.27 The black line shows

27We reduce the measurement error (estimated with pre-pandemic data) to ensure the model with Covid
corresponds closely to the data
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the forecast based on inferring the usual shocks in 2020q2 from the model without the Covid

shock. The difference between them is measurement error, which provides a visual character-

ization of the models’ struggles to explain the data when the Covid shock is shut down. This

error is very large to explain the private sector’s expectations of GDP growth over the next

three quarters, three orders of magnitude in 2020q3 larger than its standard deviation. This

standard deviation is estimated using data from the more recent pre-pandemic recessions

in Figures 1 and 2 and so the model infers shocks that inherit these dynamics, which are

very different from the Covid dynamics. This implies that our medium-scale DSGE models

with only their usual set of shocks cannot understand the unusual pandemic recession and

its anticipated recovery shown in Figure 1

The right plot of Figure 3 shows Covid pushed prices higher in 2020q2 and was expected

to put upward pressure on prices through 2021q. The model attributes the decline in current

and expected inflation to the usual business cycle shocks. The fall in output and rise in prices

attributed to Covid in 2020q2 indicate that the model interprets Covid on net as a supply

shock. The accumulated effect of Covid on the levels of output and prices indicate that in

2020q2 agents expected the relatively strong supply effects of Covid to persist.

6.3. The effects of the shocks from 2020q2 to 2021q3

We now study the Covid shock’s contributions to aggregate outcomes alongside the usual

shocks over the period 2020q2 to 2021q3. We do so by measuring the shocks with the Kalman

smoother. For ease of interpretation we group the model’s usual shocks into five categories:

demand, transitory supply, persistent supply, monetary policy, and other. The composition

of each category is summarized in Table 2.

We will focus on the contributions of all the shocks to log hours worked and core PCE

inflation. Our empirical measure of hours is de-trended from outside the model using under-

lying trends in labor force participation and average hours per worker, and estimates of the

natural rate of unemployment.28 This measure of hours is a good indicator of the cyclical

28We use the trends and natural rate variables that enter into the Federal Reserve Board of Governors’
large scale macro-econometric model FRB/US. These variables are available on the Board’ public web site.
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Table 2: Categories of usual shocks

Category Usual shock
Demand Liquidity preference + Discount factor

Transitory supply Wage and price cost push

Persistent supply Neutral technology + IS technology + MEI

Monetary policy Unanticipated and forward guidance

Other Residual (government) spending + measurement

Note: IS denotes investment-specific. Residual spending includes net exports, inventory investment, and
government spending. Measurement includes measurement error in core PCE, and shocks to consumer
durable inflation and inflation in the consumption price of residual output. The latter two variables are used
in the measurement equations to map model GDP and inflation into BEA GDP and core PCE inflation.

Figure 5: The estimated effects of unusual and the usual shocks, 2020q2–2021q3
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position of the US economy.

The contributions are displayed in Figure 5. The red lines show the forecast of log hours

(in percentage point deviations from its trend) and inflation conditioned on 2020q1 data.

The black lines show the realizations of these variables from 2020q2 to 2021q3. The colored

bars indicate contributions of the shocks to deviations from steady state. The sum of the

colored bars corresponds to the difference between the red and the black lines.

The left hand plot in Figure 5 shows the sharp contraction and fast recovery of the labor

market. The Covid shock is the largest factor contributing to the sharp downturn in 2020q2.

This shock is also largely responsible for the initial recovery in 2020q3. If not for demand

shocks hours would have been 10 p.p. higher. The Covid shock is a persistent drag on

hours, significantly so in 2021. This seems consistent with the impact on labor supply often

attributed to Covid, for example fear of in person public facing jobs. The impact of Delta is

very small (we estimate δ = .03). While overall the contributions of Covid are substantial,

the usual shocks play an important role as well. Demand shocks are a large drag on the

labor market early on. Persistent supply shocks provide a notable boost to activity later on.

Monetary policy is initially contractionary but its effects turn positive at the beginning of

2021.

The right hand plot in Figure 5 shows the volatility of core PCE inflation and its sharp

rise in the middle of 2021. Covid is inflationary throughout, consistent with our earlier

interpretation of it as being, on net, a supply shock. While it pushes up inflation it does so

by relatively little after 2020q2. The model attributes most of the gyrations in inflation to

transitory supply shocks, in this case price cost-push shocks.

6.4. Surprise and news components of the Covid shock

Figure 6 shows the contribution of the smoothed Covid shock to output growth and inflation

and decomposes it from the effects of today’s surprise (blue) and news (yellow) and the

propagation of past Covid shocks, both surprise and news (grey).29 The dashed line is the

29The blue corresponds to the impact effect of surprise ψ0
t in each period t and the news ψ1

t , ...,ψNt . The
grey is simply the sum of the impulse response functions of past surprise and news shocks.
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overall effect of Covid and the red stars indicate data.

Figure 6: The contributions of surprise and news shocks, 2020q2 to 2021q3
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Note: Smoothed decomposition of the contributions of the surprise and news shocks as described in the main
text. The dashed lines shows the total effects of the Covid shock. The bars decompose the total effects into
three components. The blue bars show the contribution of the surprise shock in the period it is realized. The
yellow bars show the contribution of news in the period it is received. The grey bars shows the contribution
of past surprises and news through their propagation. The red stars indicate data.

The left plot shows that news about the pandemic influenced forward looking expectations

to reduced the magnitude of the 2020q2 contraction in GDP by roughly 10 p.p. In 2020q3

and 2020q4 the news about the pandemic drags down activity. This finding is consistent

with concerns about the future path of the pandemic summarized in Blue Chip surveys at

the time. Beliefs of a recrudescence of the pandemic later on lowers growth by 8 p.p and 0.7

p.p, respectively, in those quarters (note that the scale obscures the effects in 2020q4).

The left plot in Figure 6 also reveals that the macroeconomic consequences of the first

wave of Covid-19 were hard to anticipate. This can be captured visually by the predominance

of blue (surprise component) over yellow (news component) in both plots. Arguably, agents

received a lot of news regarding the future effects of Covid on the economy in 2020. However,

this news apparently failed to move agents’ expectations very much.

The contribution of news and surprise on inflation on the right, is the mirror image of

that on GDP growth. This suggests that surprise and news were both predominantly were

supply-driven.
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7. Conclusion

We proposed a new methodology for addressing unusual shocks in business cycle models

that relies on an event-study research design. We applied it to study the macroeconomic

effects of the Covid-19 pandemic shock in an off-the-shelf NK business cycle model. The

initial outbreak is represented by the onset of a new shock process where the shock loads

onto wedges corresponding to a subset of the model’s usual structural shocks. Realizations

of the Covid shock come with news about its propagation which we identify using SPF

forecasts of inflation and output growth. We estimate the nature and propagation of the

Covid shock within the context of a particular DSGE model, but our framework can be

applied to estimate any DSGE model with data including the pandemic without necessarily

having to model the detailed epidemiology. It also is easy to extend our setup to include

survey data that might help inform the propagation of the Covid shock.

Only when we introduce the Covid shock is the model able to account for the highly

unusual dynamics exhibited in Figures 1 and 2. Overall the Covid shock accounts for a sig-

nificant fraction of the early business cycle dynamics in activity and is inflationary through-

out. We also find that most of the effects of the Covid shock were unanticipated. The

estimated Covid shock has both supply and demand side effects but, on net, the supply

forces dominated.

Our findings are based on the canonical model which has a rudimentary fiscal block. In

order to better isolate the Covid shock one would need to consider a DSGE model with

a sophisticated fiscal block to address the unusual fiscal policy that was implemented to

cushion the blow of the pandemic. This is an important area for future research. Another

important area for future research is to consider the Covid shock in non-linear models. The

Covid shock is so large it is likely that non-linear effects are important for its propagation.
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Not for publication appendix:
The DSGE model and its estimation in detail30

This appendix proceeds as follows. The next section presents the model economy’s prim-
itives. Section B gives the formulas used to remove nominal and technological trends from
model variables and thereby induce model stationarity, and Sections C and D discuss the
stationary economy’s steady state and the log linearization of its equilibrium necessary con-
ditions around it. Section E discusses measurement issues which arise when comparing
model-generated data with data measured by the BEA and BLS. Section F describes our
mixed Calibration-Bayesian Estimation empirical strategy and presents the resulting param-
eter values.

A. The Model’s Primitives

Eight kinds of agents populate the model economy: Households, investment producers, com-
petitive final goods producers, monopolistically-competitive differentiated goods producers,
labor packers, monopolistically-competitive guilds, a fiscal authority, and a monetary author-
ity. These agents interact with each other in markets for: final goods used for consumption
and investment, investment goods used to augment the stock of productive capital, differen-
tiated intermediate goods, capital services, raw labor, differentiated labor, composite labor,
government bonds, privately-issued bonds, and state-contingent claims.

A.1. Households

Our model’s households are the ultimate owners of all assets in positive net supply (the cap-
ital stock, differentiated goods producers, and guilds). They provide labor and divide their
current after-tax income (from wages and assets) between current consumption, investment
in productive capital, and purchases of financial assets, both those issued by the government
and those issued by other households. The individual household divides its current resources
between consumption and the available vehicles for intertemporal substitution (capital and
financial assets) to maximize a discounted sum of current and expected future felicity.

Et

[
∞∑
τ=0

βτεbt+τ

(
Ut+τ + εst+τL

(
Bt+τ

Pt+τRt+τ

))]

with

Ut =
1

1− γc
(
(Ct − %C̄t−1)(1−H1+γh

t )
)(1−γc)

(9)

The function L(·) is strictly increasing, concave, and differentiable everywhere on [0,∞).
In particular, L′(0) exists and is finite. Without loss of generality, we set L′(0) to one. The
argument of L(·) equals the real value of government bonds in the household’s portfolio:

30This appendix is co-authored with Jeffrey Campbell.
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their period t+ 1 redemption value Bt divided by their nominal yield Rt expressed in units
of the consumption good with the nominal price index Pt. The time-varying coefficient
multiplying this felicity from bond holdings, εst , is the liquidity preference shock introduced
by Fisher (2015). A separate shock influences the household’s discounting of future utility to
the present, εbt . Specifically, the household discounts a certain utility in t+ τ back to t with
βτEt

[
εbt+τ/ε

b
t

]
. In logarithms, these two preference shocks follow independent autoregressive

processes.

ln εbt = (1− ρb) ln εb∗ + ρb ln εbt−1 + ηbt , η
b
t ∼ N(0, σ2

b ) (10)

ln εst = (1− ρs) ln εs∗ + ρs ln εst−1 + ηst , η
s
t ∼ N(0, σ2

s). (11)

A household’s wealth at the beginning of period t consists of its nominal government
bond holdings, Bt, its net holdings of privately-issued financial assets, and its capital stock
Kt−1. The household chooses a rate of capital utilization ut, and the capital services resulting
from this choice equal utKt−1. The cost of increasing utilization is higher depreciation. An
increasing, convex and differentiable function δ(U) gives the capital depreciation rate. We
specify this as

δ(u) = δ0 + δ1(u− u?) +
δ2
2

(u− u?)2 .

A household can augment its capital stock with investment, It. Investment requires paying
adjustment costs of the “i-dot” form introduced by Christiano, Eichenbaum, and Evans
(2005). Also, an investment demand shock alters the efficiency of investment in augmenting
the capital stock. Altogether, if the household’s investment in the previous period was It−1,
and it purchases It units of the investment good today, then the stock of capital available in
the next period is

Kt = (1− δ(ut))Kt−1 + εit

(
1− S

(
AKt−1It
AKt It−1

))
It. (12)

In (12), AKt equals the productivity level of capital goods production, described in more
detail below, and εit is the investment demand shock. In logarithms, this follows a first-order
autoregression with a normally-distributed innovation.

ln εit = (1− ρi) ln εi∗ + ρi ln ε
i
t−1 + ηit, η

i
t ∼ N(0, σ2

i ) (13)

A.2. Production

The producers of investment goods use a linear technology to transform the final good into
investment goods. The technological rate of exchange from the final good to the investment
good in period t is AIt . We denote ∆ lnAIt with ωt, which we call the investment-specific
technology shock and which follows first-order autogregression with normally distributed
innovations.

ωt = (1− ρω)ω? + ρωωt−1 + ηωt , η
ω
t ∼ N(0, σ2

ω) (14)
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Investment goods producers are perfectly competitive.
Final good producers also operate a constant-returns-to-scale technology; which takes as

inputs the products of the differentiated goods producers. To specify this, let Yit denote
the quantity of good i purchased by the representative final good producer in period t, for
i ∈ [0, 1]. The representative final good producer’s output then equals

Yt ≡
(∫ 1

0

Y
1

1+λ
p
t

it di

)1+λpt

.

With this technology, the elasticity of substitution between any two differentiated products
equals 1 + 1/λpt in period t. Although this is constant across products within a time period,
it varies stochastically over time according to an ARMA(1, 1) in logarithms.

lnλpt = (1− ρp) lnλp? + ρp lnλpt−1 − θpη
p
t−1 + ηpt , η

p
t ∼ N(0, σ2

p) (15)

Given nominal prices for the intermediate goods Pit, it is a standard exercise to show
that the final goods producers’ marginal cost equals

Pt =

(∫ 1

0

P
− 1

λ
p
t

it di

)−λpt
(16)

Just like investment goods firms, the final goods’ producers are perfectly competitive. There-
fore, profit maximization and positive final goods output together require the competitive
output price to equal Pt. Therefore, we can define inflation of the nominal final good price
as πt ≡ ln(Pt/Pt−1).

The intermediate goods producers each use the technology

Yit = (Ke
it)
α (AYt Hd

it

)1−α − AtΦ (17)

Here, Ke
it and Hd

it are the capital services and labor services used by firm i, and AYt is
the level of neutral technology. Its growth rate, νt ≡ ln(AYt /A

Y
t−1), follows a first-order

autogregression.
νt = (1− ρν) ν∗ + ρvνt−1 + ηνt , η

ν
t ∼ N(0, σ2

ν), (18)

The final term in (17) represents the fixed costs of production. These grow with

At ≡ AYt
(
AIt
) α

1−α . (19)

We demonstrate below that At is the stochastic trend in equilibrium output and consumption,
measured in units of the final good. We denote its growth rate with

zt = νt +
α

1− α
ωt (20)
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Similarly, define
AKt ≡ AtA

I
t (21)

In the specification of the capital accumulation technology, we labelled AKt the “productivity
level of capital goods production.” We demonstrate below that this is indeed the case with
the definition in (21).

Each intermediate goods producer chooses prices subject to a Calvo (1983) pricing
scheme. With probability ζp ∈ [0, 1], producer i has the opportunity to set Pit without
constraints. With the complementary probability, Pit is set with the indexing rule

Pit = Pit−1π
ιp
t−1π

1−ιp
? . (22)

In (22), π? is the gross rate of price growth along the steady-state growth path, and ιp ∈
[0, 1].31

A.3. Labor Markets

Households’ hours worked pass through two intermediaries, guilds and labor packers, in their
transformation into labor services used by the intermediate goods producers. The guilds take
the households’ homogeneous hours as their only input and produce differentiated labor
services. These are then sold to the labor packers, who assemble the guilds’ services into
composite labor services.

The labor packers operate a constant-returns-to-scale technology with a constant elas-
ticity of substitution between the guilds’ differentiated labor services. For its specification,
let Hit denote the hours of differenziated labor purchased from guild i at time t by the rep-
resentative labor packer. Then that packer’s production of composite labor services, Hs

t are
given by

Hs
t =

(∫ 1

0

(Hit)
1

1+λwt di

)1+λwt

.

As with the final good producer’s technology, an ARMA(1, 1) in logarithms governs the
constant elasticity of substitution between any two guilds’ labor services.

lnλwt = (1− ρw) lnλw? + ρw lnλwt−1 − θwηwt−1 + ηwt , η
w
t ∼ N(0, σ2

w) (23)

Just as with the final goods producers, we can easily show that the labor packers’ marginal
cost equals

Wt =

(∫ 1

0

(Wit)
− 1
λwt di

)−λwt
. (24)

Here, Wit is the nominal price charged by guild i per hour of differentiated labor. Since labor
packers are perfectly competitive, their profit maximization and positive output together

31To model firms’ price-setting opportunities as functions of st, define a random variable upt which is
independent over time and uniformly distributed on [0, 1]. Then, firm i gets a price-setting opportunity if
either upt ≥ ζp and i ∈ [upt − ζp, u

p
t ] or if upt < ζp and i ∈ [0, upt ] ∪ [1 + upt − ζp, 1].
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require that the price of composite labor services equals their marginal cost.
Each guild produces it’s differentiated labor service using a linear technology with the

household’s hours worked as its only input. A Calvo (1983) pricing scheme similar to that
of the differentiated goods producers constrains their nominal prices. Guild i has an un-
constrained opportunity to choose its nominal price with probability ζw ∈ [0, 1]. With the
complementary probability, Wit is set with an indexing rule based on πt−1 and last period’s
trend growth rate, zt−1.

Wit = Wit−1 (πt−1e
zt−1)ιw (π?e

z?)1−ιw . (25)

In (25), z? ≡ ν? + α
1−αω? is the unconditional mean of zt and ιw ∈ [0, 1].

A.4. Fiscal and Monetary Policy

The model economy hosts two policy authorities, each of which follows exogenously-specified
rules that receive stochastic disturbances. The fiscal authority issues bonds, Bt, collects
lump-sum taxes Tt, and buys “wasteful” public goods Gt. Its period-by-period budget con-
straint is

Gt +Bt−1 = Tt +
Bt

Rt

. (26)

The left-hand side gives the government’s uses of funds, public goods spending and the
retirement of existing debt. The left-hand side gives the sources of funds, taxes and the
proceeds of new debt issuance at the interest rate Rt. We assume that the fiscal authority
keeps its budget balanced period-by-period, so Bt = 0. Furthermore, the fiscal authority sets
public goods expenditure equal to a stochastic share of output, expressed in consumption
units.

Gt = (1− 1/gt)Yt, (27)

with
ln gt = (1− ρg) ln sg? + ρg ln gt−1 + ηgt , η

g
t ∼ N(0, σ2

g). (28)

The monetary authority sets the nominal interest rate on government bonds, Rt. For
this, it employs a Taylor rule with interest-rate smoothing and forward guidance shocks.

lnRt = ρR lnRt−1 + (1− ρR) lnRn
t +

M∑
j=0

ξjt−j. (29)

The monetary policy disturbances in (29) are ξ0t , ξ
1
t−1, . . . , ξ

M
t−M . The public learns the value

of ξjt−j in period t− j. The conventional unforecastable shock to current monetary policy is
ξ0t , while for j ≥ 1, these disturbances are forward guidance shocks. We gather all monetary
shocks revealed at time t into the vector εRt . This is normally distributed and i.i.d. across
time. However, its elements may be correlated with each other. That is,

εRt ≡
(
ξ0t , ξ

1
t , . . . , ξ

M
t

)
∼ N(0,Σε). (30)
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The off-diagonal elements of Σ1 are not necessarily zero, so forward-guidance shocks need
not randomly impact expected future monetary policy at two adjacent dates independently.
Current economic circumstances influence Rt through the notional interest rate, Rn

t .

lnRn
t = ln r?+lnπ?t +

φ1

4
Et

1∑
j=−2

(lnπt+j − ln π?t )+
φ2

4
Et

1∑
j=−2

(lnYt+j − ln y? − lnAt+j) . (31)

The constant r? equals the real interest rate along a steady-state growth path, and π?t is
the central bank’s intermediate target for inflation. We call this the inflation-drift shock. it
follows a first-order autoregression with a normally-distributed innovation. Its unconditional
mean equals π?, the inflation rate on a steady-state growth path.

ln π?t = (1− ρπ)π? + ρπ lnπ?t−1 + ηπt , η
π
t ∼ N(0, σ2

π) (32)

Allowing π?t to change over time enables our model to capture the persistent decline in
inflation from the early 1990s through the early 2000s engineered by the Greenspan FOMC.

A.5. Other Financial Markets and Equilibrium Definition

All households participate in the market for nominal risk-free government debt. Additionally,
they can buy and sell two classes of privately issued assets without restriction. The first is
one-period nominal risk-free private debt. We denote the value of household’s net holdings of
such debt at the beginning of period t with BP

t−1 and the interest rate on such debt issued in
period t maturing in t+1 with RP

t+1. The second asset class consists of a complete set of real
state-contingent claims. As of the end of period t, the household’s ownership of securities
that pay off one unit of the aggregate consumption good in period τ if history sτ occurs is
Qt(s

τ ), and the nominal price of such a security in the same period is Jt(s
τ ).

We define an equilibrium for our economy in the usual way: Households maximize their
utility given all prices, taxes, and dividends from both producers and guilds; final goods pro-
ducers and labor packers maximize profits taking their input and output prices as given; dif-
ferentiated goods producers and guilds maximize the market value of their dividend streams
taking as given all input and financial-market prices; differentiated goods producers and
guilds produce to satisfy demand at their posted prices; and otherwise all product, labor,
and financial markets clear.

B. Detrending

To remove nominal and real trends, we deflate nominal variables by their matching price
deflators, and we detrend any resulting real variables influenced permanently by technological
change. All scaled versions of variables are the lower-case counterparts.

ct =
Ct
At

it =
It

AtAIt
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kt =
Kt

AtAIt
ket =

Ke
t

AtAIt

wt =
Wt

AtPt
w̃t =

W̃t

AtPt

p̃t =
P̃t
Pt

πt =
Pt
Pt−1

yt =
Yt
At

mct =
MCt
Pt

rkt =
Rk
tA

I
t

Pt
wht =

W h
t

AtPt
λ1t = Λ1

tA
γC
t λ2t = Λ2

tA
γC
t AIt

εst = AγCt εst

B.1. Detrended Equations

The detrended equations describing our model are listed in the following sections.

Households’ FOC

λ1t = εbt

[(
ct − %

ct−1
ezt

) (
1− εht h

1+γh
t

)]−γc (
1− εht h

1+γh
t

)
λ1tw

h
t = (1 + γh)ε

b
t

[(
ct − %

ct−1
ezt

)(
1− εht h

(1+σh)
t

)]−γc (
ct − %

ct−1
ezt

)
εht h

γh
t

λ1t
RP
t

= βEt

[
λ1t+1e

−γCzt+1

πt+1

]
λ1t
Rt

− L′(0)
εbtε

s
t

Rt

= βEt
λ1t+1

πt+1

e−zt+1γC

λ1t = εitλ
2
t

(
(1− St(·))− S ′t(·)

it
it−1

)
+ βEt

[
εit+1e

(1−γC)zt+1λ2t+1S
′
t+1(·)

i2t+1

i2t

]
λ2t = βEt

[
e−γCzt+1−ωt+1

(
λ1t+1r

k
t+1ut+1 + λ2t+1(1− δ(ut+1))

)]
λ1t r

k
t = λ2t δ

′(ut)

kt = (1− δ(ut)) kt−1e−zt−ωt + εit (1− S(·)) it
ket = utkt−1e

−zt−ωt

Final Goods Price Index

1 =

[
(1− ζp)p̃

1
1−λp,t
t + ζp(π

ιp
t−1π

∗(1−ιp)π−1t )
1

1−λp,t

]1−λp,t
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Intermediate Goods Firms: Capital-Labor Ratio

ket
hdt

=
α

1− α
wt
rkt

Intermediate Goods Firms: Real Marginal Costs

mct =
w1−α
t

(
rkt
)α

εatα
α(1− α)1−α

Intermediate Goods Firms: Price-Setting Equation

0 =Et

∞∑
s=0

ζspβ
sλ1t+s

ỹt,t+s
λp,t+s − 1

(
At+s
At

)1−γC [
λp,t+smct+s − X̃p

t,sp̃t

]

where

X̃p
t,s =

{
1 : s = 0∏s
j=1 π

1−ιp
t+j−1π

ιp
∗∏s

j=1 πt+j
: s = 1, . . . ,∞

}

ỹt,t+s denotes the time t+ j output sold by the producers that have optimized at time t the
last time they have reoptimized. Since it can be shown that optimizing producers all choose
the same price, then we do not have to carry the i-subscript.

Labor Packers: Aggregate Wage Index

wt =

[
(1− ζw)w̃

− 1
λw,t

t + ζw
(
eιwzt−1−zte(1−ιw)z∗πιt−1π

−1
t π1−ιw

∗ wt−1
)− 1

λw,t

]−λw,t

Guilds: Wage-Setting Equation

0 =Et

∞∑
s=0

ζswβλ
1
t+s

(
At+s
At

)1−γC h̃t,t+s
λw,t+s

(
(1 + λw,t+s)w

h
t+s − X̃ l

t,sw̃t

)
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where

X̃ l
t,s =

{
1 : s = 0∏s
j=1(πt+j−1e

zt+j−1)
1−ιw

(πγ)ιw∏s
j=1 πt+je

zt+j : s = 1, . . . ,∞

}

h̃t,t+s denotes the time t + j labor supplied by the guild that have optimized at time t the
last time they have reoptimized. Since it can be shown that optimizing guilds all choose the
same wage, then we do not have to carry the i-subscript.

Monetary Authority

Rt = RρR
t−1

r∗π∗t
(

1∏
j=−2

πt+j
π∗t

)ψ1
4
(

1∏
j=−2

yt+j
y∗

)ψ2
4

1−ρR
M∏
j=0

ξt−j,j

The Aggregate Resource Constraint

yt
gt

=ct + it

Production Function

yt =εat (ket )
α (hdt )

1−α − Φ

Labor Market Clearing Condition

ht = hdt

C. Steady State

We normalize most shocks and the utilization rate:

u? =1 εi =1

εa =1 εb =1

Next, we set the following restriction on adjustment costs:

S(·∗) ≡ 0

S ′(·∗) ≡ 0
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C.1. Prices and Interest Rates

Given β, z∗, γC , and π∗, we can solve for the steady-state nominal interest rate on private
bonds RP

∗ by using the FOC on private bonds:

RP
∗ =

π∗
(βe−γCz∗)

(33)

From the definition of δ(u), we have

δ(1) =δ0

δ′(1) =δ1.

Next, given ω∗, δ0, and the above, we can solve for the real return on capital rk∗ using the
FOC on capital:

rk∗ =
eγCz∗+ω∗

β
− (1− δ0) (34)

C.2. Ratios

Moving to the production side, we can use the aggregate price equation to solve for p̃∗:

p̃∗ = 1

Using this result and given λp,∗, we can use the price Phillips curve to solve for mc∗:

mc∗ =
1

1 + λp,∗
(35)

Given values for α and εa∗, we can use the marginal cost equation to solve for w∗:

w∗ =
(
mc∗α

α(1− α)1−α(rk∗)
−α) 1

1−α (36)

The definition of effective capital gives us a value for ke∗ in terms of k∗:

ke∗ = k∗e
−z∗−ω∗

Calculating y∗ using the labor share of output 1− α:

y∗ =
w∗h∗
1− α

Using capital shares based off our value of α, we can calculate the output to capital ratio
as follows:

y∗
ke∗

=
rk∗
α
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y∗
k∗

=e−z∗−ω∗
rk∗
α

Using the capital accumulation equation, we can get a value for i∗
k∗

i∗
k∗

= 1− (1− δ0)e−z∗−ω∗

Using the resource constraint, we can get c∗
k∗

:

c∗
k∗

=
y∗
k∗s

g
?
− i∗
k∗

These ratios will give us the remaining steady-state levels and ratios:

k∗ =y∗

(
y∗
k∗

)−1
i∗ =

i∗
k∗
k∗

c∗ =
c∗
k∗
k∗ g∗ =gyy∗

C.3. Liquidity Premium

Using the aggregate wage equation, we can get the following for w̃∗:

w̃∗ = w∗

Combining this result with the wage Phillips curve, we get the following:

wh∗ =
w∗

1 + λw,∗

We can use the FOC for consumption and the labor supply to pin down εh and λ1∗

εb
[
c∗

(
1− %

ez

)]−γc (
1− εhh(1+γh)∗

)
− λ1∗ = 0

−(1 + γh)ε
bc(1−γc)∗

(
1− %

εz

)(1−γc) (
1− εhh(1+γh)∗

)−γc
εhhγh∗ + λ1∗w

h
∗ = 0

Finally, the government bond rate is calculated from

λ1∗ − εb∗εs∗ = βR∗
λ1∗
π∗
e−γCz

π∗
βe−γCz︸ ︷︷ ︸
RP∗

− εb∗εs∗
π∗

βe−γCzλ1∗
= R∗
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Noting that RP
∗ = π∗

βe−γCz
we can write

RP
∗ −R∗
RP
∗

=
εb∗ε

s
∗

λ1∗
.

This is the liquidity premium in steady state.

D. Log Linearization

Hatted variables refer to log deviations from steady-state (x̂ = ln
(
xt
x∗

)
). In the cases of zt,

ωt, and νt, we have that x̂ = xt − x∗ as these variables are already in logs.

Households’ First Order Conditions

ε̂bt − λ̂1t − γc
1

1− %
ez

ĉt + γc

%
ez

1− %
ez

(ĉt−1 − ẑt) (37)

λ̂1t + ŵht − ε̂bt − ε̂ht −
1− γc
1− %

ez

ĉt + (1− γc)
%
ez

1− %
ez

(ĉt−1 − ẑt) (38)

−
(
γh + γc (1 + γh)

εhh1+γh∗

(1− εhh1+γh∗ )2

)
ĥt = 0

λ̂1t =
RP
∗ −R∗
RP
∗

(ε̂st + ε̂bt) +
R∗
RP
∗

(R̂t + Et[(λ̂
1
t+1 − π̂t+1 − γC ẑt+1]) (39)

λ̂1t = Et

[
λ̂1t+1 − γC ẑt+1 + R̂t − π̂t+1

]
(40)

λ̂1t =
(

ln εit + λ̂2t

)
− S ′′ (̂ıt − ı̂t−1) + βe(1−γC)γS ′′Et (̂ıt+1 − ı̂t) (41)

λ2∗λ̂
2
t = βe−γCz∗−ω∗

[
λ1∗u∗r

k
∗Et

(
−γC ẑt+1 − ω̂t+1 + λ̂1t+1 + r̂kt+1 + ût+1

)]
+ (42)

+ βe−γCz∗−ω∗
[
(1− δ0)λ2∗Et

(
−γC ẑt+1 − ω̂t+1 + λ̂2t+1

)
− λ2∗δ1u∗Etût+1

]
λ̂1t = λ̂2t +

δ2
δ1
u∗ût − r̂kt (43)

k̂t =

(
1− εi∗i∗

k∗

)(
k̂t−1 − ẑt − ω̂t

)
+
εi∗i∗
k∗

(
ε̂it + ı̂t

)
− δ1u∗e−z∗−ω∗ût (44)

k̂et = ût + k̂t−1 − ẑt − ω̂t (45)

Capital-Labor Ratio

k̂et = ŵt − r̂kt + ĥdt (46)
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Real Marginal Costs

m̂ct = (1− α) ŵt + αr̂kt − ε̂at (47)

The New Keynesian Phillips Curve for Inflation

π̂t =
(1− βζpe(1−γC)z∗)(1− ζp)

(1 + βιpe(1−γC)z∗)ζp

[
λp,∗

1 + λp,∗
λ̂p,t + m̂ct

]
+ (48)

+
ιp

1 + βιpe(1−γC)z∗
π̂t−1 +

βe(1−γC)z∗

1 + βιpe(1−γC)z∗
Etπ̂t+1

Wage Mark-Up

µ̂wt = ŵt − ŵht (49)

The New Keynesian Phillips Curve for Wages

ŵt =
1

1 + βe(1−γC)z∗
ŵt−1 +

βe(1−γC)z∗

1 + βe(1−γC)z∗
ŵt+1 +

βe(1−γC)z∗

1 + βe(1−γC)z∗
(Etπ̂t+1 + Etẑt+1)+ (50)

ιw
1 + βe(1−γC)z∗

(π̂t−1 + ẑt−1)−
1 + ιwβe

(1−γC)z∗

1 + βe(1−γC)z∗
(π̂t + ẑt)+

1− βζwe(1−γC)z∗
1 + βe(1−γC)z∗

1− ζw
ζw

[
λw,∗

1 + λw,∗
λ̂w,t − µ̂wt

]

The Aggregate Resource Constraint

y∗
g∗

(ŷt − ĝt) =
c∗

c∗ + i∗
ĉt +

i∗
c∗ + i∗

ı̂t (51)

The Production Function

ŷt =
1

mc∗

(
ln εat + αk̂et + (1− α) ĥdt

)
(52)

Labor Market Clearing Condition

ĥt = ĥdt (53)
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Monetary Authority’s Reaction Function

R̂t = ρRR̂t−1 + (1− ρR)

[
(1− ψ1) π̂

∗
t +

ψ1

4

(
1∑

j=−2

π̂t+j

)
+
ψ2

4

(
1∑

j=−2

ŷt+j

)]
+

M∑
j=0

ξ̂t−j,j

(54)

E. Measurement

E.1. National Income Accounts

The model economy’s basic structure, with the representative household consuming a single
good and accumulating capital using a different good, differs in some important ways from the
accounting conventions of the Bureau of Economic Analysis (BEA) underlying the National
Income and Product Accounts (NIPA). In particular

1. The BEA treats household purchases of long-lived goods inconsistently. It classifies
purchases of residential structures as investment and treats the service flow from their
stock as part of Personal Consumption Expenditures (PCE) on services. The BEA
classifies households purchases of all other durable goods as consumption expendi-
tures. No service flow from the stock of household durables enters measures of current
consumption. In the model, all long-lived investments add to the productive capital
stock.

2. In our model all government purchases are consumption. In fact government spending
includes investment goods purchased on behalf of the populace. In the model, these
should be treated as additions to the single stock of productive capital.

3. The BEA sums PCE and private expenditures on productive capital (Business Fixed
Investment and Residential Investment), with government spending, inventory invest-
ment, and net exports to create Gross Domestic Product. The model features only the
first three of these.

To bridge these differences, we create four model consistent NIPA measures from the BEA
NIPA data.

1. Model-consistent GDP. Since the model’s capital stock includes both the stock of house-
hold durable goods and the stock of government-purchased capital, a model-consistent
GDP series should include the value of both stocks’ service flows. To construct these,
we followed a five-step procedure.

(a) We begin by estimating a constant (by assumption) service-flow rate by dividing
the nominal value of housing services from NIPA Table 2.4.5 by the beginning-of-
year value of the residential housing stock from the BEA’s Fixed Asset Table 1.1.
We use annual data and average from 1947 through 2014. The resulting estimate
is 0.096. That is, the annual value of housing services equals approximately 10
percent of the housing stock’s value each year.

46



(b) In the second step, we estimate estimate constant (by assumption) depreciation
rates for residential structures, durable goods, and government capital. We con-
structed these by first dividing observations of value lost to depreciation over a
calendar year by the end-of-year stocks. Both variables were taken from the BEA’s
Fixed Asset Tables. (Table 1.1 for the stocks and Table 1.3 for the deprecation
values.) We then averaged these ratios from 1947 through 2014. The resulting
estimates are 0.021, 0.194, and 0.044 for the three durable stocks.

(c) In the third step, we calculated the average rates of real price depreciation for the
three stocks. For this, we began with the nominal values and implicit deflators for
PCE Nondurable Goods and PCE Services from NIPA Table 1.2. We used these
series and the Fisher-ideal formula to produce a chain-weighted implicit deflator
for PCE Nondurable Goods and Services. Then, we calculated the price for each
of the three durable good’s stocks in consumption units as the ratio of the implicit
deflator taken from Fixed Asset Table 1.2 to this deflator. Finally, we calculated
average growth rates for these series from 1947 through 2014. The resulting
estimates equal 0.0029, −0.0223, and 0.0146 for residential housing, household
durable goods, and government-purchased capital.

(d) The fourth combines the previous steps’ calculations to estimate constant (by as-
sumption) service-flow rates for household durable goods and government-purchased
capital. To implement this, we assumed that all three stocks yield the same finan-
cial return along a steady-state growth path. These returns sum the per-unit ser-
vice flow with the appropriately depreciated value of the initial investment. This
delivers two equations in two unknowns, the two unknown service-flow rates. The
resulting estimates are 0.29 and 0.12 for household durable goods and government-
purchased capital.

(e) The fifth and final step uses the annual service-flow rates to calculate real and
nominal service flows from the real and nominal stocks of durable goods and
government-purchased capital reported in Fixed Asset Table 1.1. This delivers an
annual series. Since the stocks are measured as of the end of the calendar year,
we interpret these as the service flow values in the next year’s first quarter. We
create quarterly data by linearly interpolating between these values.

With these real and nominal service flow series in hand, we create nominal model-
consistent GDP by summing the BEA’s definition of nominal GDP with the nominal
values of the two service flows. We create the analogous series for model-consistent
real GDP by applying the Fisher ideal formula to the nominal values and price indices
for these three components.

2. Model-consistent Investment. The nominal version of this series sums nominal Busi-
ness Fixed Investment, Residential Investment, PCE Durable Goods, and government
investment expenditures. The first three of these come from NIPA Table 1.1.5, while
government investment expenditures sums Federal Defense, Federal Nondefense, and
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State and Local expenditures from NIPA Table 1.5.5. We construct the analogous
series for real Model-consistent Investment by combining these series with their real
chain-weighted counterparts found in NIPA Tables 1.1.3 and 1.5.3 using the Fisher
ideal formula. By construction, this produces an implicit deflator for Model-consistent
investment as well.

3. Model-consistent Consumption. The nominal version of this series sums nominal PCE
Nondurable Goods, PCE Services, and the series for nominal services from the durable
goods stock. The first two of these come from NIPA Table 1.1.5. We construct the
analogous series for real Model-consistent consumption by combining these series with
their real chain-weighted counterparts using the Fisher ideal formula. The two real
PCE series come from NIPA Table 1.1.3. Again, this produces an implicit deflator for
Model-consistent consumption as a by-product.

4. Model-consistent Government Purchases. Conceptually, the model’s measure of Gov-
ernment Purchases includes all expenditures not otherwise classified as Investment
or Consumption: Inventory Investment, Net Exports, and actual Government Pur-
chases. We construct the nominal version of this series simply by subtracting nominal
Model-consistent Investment and Consumption from nominal Model-consistent GDP.
We calculate the analogous real series using “chain subtraction.” This applies the
Fisher ideal formula to Model-consistent GDP and the negatives of Model-consistent
Consumption and Investment.

Our empirical analysis requires us to compare model-consistent series measured from the
NIPA data with their counterparts from the model’s solution. To do this, we begin by solving
the log-linearized system above, and then we feed the model specific paths for all exogenous
shocks starting from a particular initial condition. for a given such simulation, the growth
rates of Model-consistent Consumption and Investment equal

∆ lnCobs
t = z∗ + ∆ĉt + zt and

∆ ln Iobst = z∗ + ω∗ + ∆ît + zt + ωt

The measurement of GDP growth in the model is substantially more complicated, because
the variables Yt and yt denote model output in consumption units. In contrast, we mimic
the BEA by using a chain-weighted Fisher ideal index to measure model-consistent GDP.
Therefore, we construct an analogus chain-weighted GDP index from model data. Since
such an ideal index is invariant to the units with which nominal prices are measured, we
can normalize the price of consumption to equal one and employ the prices of investment
goods and government purchases relative to current consumption. Our model identifies
the first of these relative prices as with investment-specific technology. However, the model
characterizes only government purchases in consumption units, because private agents do not
care about their division into “real” purchases and their relative price. For this reason, we
use a simple autoregression to characterize the evolution of the price of government services
in consumption units. Denote this price in quarter t with P g

t . We construct this for the US
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economy by dividing the Fisher-ideal price index for model-consistent government purchases
by that for model-consistent consumption. Then, our model for its evolution is

πg,obst = ln(P g
t /P

t
t−1) = (1−β2,1−β2,2)π∗g +β2,1 ln(P g

t−1/P
g
t−2) +β2,2 ln(P g

t−2/P
g
t−3) +ugt . (55)

Here, ugt ∼ N(0, σ2
g). Given an arbitrary normalization of P g

t to one for some time period,
simulations from (55) can be used to construct simulated values of P g

t for all other time
periods. With these and a simulation from the model of all other variables in hand, we can
calculate the simulation’s values for Fisher ideal GDP growth using

Qt

Qt−1
≡
√
Q̇P
t Q̇

L
t , (56)

where the Paasche and Laspeyres indices of quantity growth are

Q̇P
t ≡ Ct + P I

t It + PG
t (Gt/P

G
t )

Ct−1 + P I
t It−1 + PG

t (Gt−1/P
g
t−1)

and (57)

Q̇L
t ≡

Ct + P I
t−1It + PG

t−1(Gt/P
G
t )

Ct−1 + P I
t−1It−1 + PG

t−1(Gt−1/PG
t−1)

. (58)

In both (57) and (58), P I
t is the relative price of investment to consumption. In equilibrium,

this always equals AIt .
The above gives a complete recipe for simulating the growth of model-consistent real

GDP growth. However, we also embody its insights into our estimation with a log-linear
approximation. For this, we start by removing stochastic trends from all variables in (57)
and (58), and we proceed by taking a log-linear approximation of the resulting expression.
Details are available from the authors upon request.

E.1.1. Output Growth Expectations

We also discipline our model’s inferences about the state of the economy by comparing
expectations of one- to four-quarter ahead real GDP growth from the Survey of Professional
Forecasters with the analogous expectations from our model. The Survey of Professional
Forecasters did not report these expectations prior to 2007, so we use them only in the
second sample. As discussed in previous section, the quarterly per-capita model-consistent
real GDP growth (∆ lnQt) does not map one-to-one with the SPF forecast of the BEA
annual real GDP growth (∆ lnY BEA

t ). So we transform the former into the latter by adding
back population growth to the per-capita model-consistent real GDP growth and by fitting
a linear regression model of BEA real GDP growth on model-consistent real GDP growth
over the sample 1993:Q1-2016Q4. In particular, we estimate the following model

∆ lnY BEA
t = a︸︷︷︸

−0.14

+ b︸︷︷︸
1.06

[4× (∆ lnQobs
t + popt)] R2 = 0.996
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When we bridge model and SPF forecasts, we allow these two sets of expectations to dif-
fer from each other by including serially correlated measurement errors. The observation
equations are

∆ lnY l,obs
t = a+ 4b(∆ lnQl,obs

t + poplt), l = 1, 2, 3, 4;

and we assume that population forecast is at 1 percent at annual rate throughout. The two
measurement errors follow mutually-independent first-order autoregressive processes.

E.2. Hours Worked Measurement

Empirical work using DSGE models like our own typically measure labor input with hours
worked per capita, constructed directly from BLS measures of hours worked and the civilian
non-institutional population over age 16. However, this measure corresponds poorly with
business cycle models because it contains underlying low frequency variation. This fact led
us to construct a new measure of hours for the model using labor market trends produced
for the FRB/US model and for the Chicago Fed’s in-house labor market analysis.

We begin with a multiplicative decomposition of hours worked per capita into hours per
worker, the employment rate of those in the labor force, and the labor-force participation rate.
The BLS provides CPS-based measures of the last two rates for the US as a whole. However,
its measure of hours per worker comes from the Establishment Survey and covers only the
private business sector. If we use hours per worker in the business sector to approximate
hours per worker in the economy as a whole, then we can measure hours per capita as

Ht

Pt
=
HE
t

EE
t

EC
t

LCt

LCt
PC
t

.

Here, Ht and Pt equal total hours worked and the total population, HE
t /E

E
t equals hours

per worker measured with the Establishment survey, EC
t /L

C
t equals one minus the CPS

based unemployment rate, and LCt /P
C
t equals the CPS based labor-force participation rate.

Our measure of model-relevant hours worked deflates each component on the right-hand
side by an exogenously measured trend. The trend for the unemployment rate comes from
the Chicago Fed’s Microeconomics team, while those for hours per worker and labor-force
participation come from the FRB/US model files.

E.3. Inflation

Our empirical analysis compares model predictions of price inflation, wage inflation, inflation
in the price of investment goods relative to consumption goods, and inflation expectations
with their observed values from the U.S. economy. We describe our implementations of these
comparisons sequentially below.
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E.3.1. Price Inflation

Our model directly characterizes the inflation rate for Model-consistent Consumption. In
principle, this is close to the FOMC’s preferred inflation rate, that for the implicit deflator
of PCE. However, in practice the match between the two inflation rates is poor. In the
data, short-run movements in food and energy prices substantially influences the short-
run evolution of PCE inflation. Our model lacks such a volatile sector, so if we ask it to
match observed short-run inflation dynamics, it will attribute those to transitory shocks to
intermediate goods’ producers’ desired markups driven by λpt .

To avoid this outcome, we adopt a different strategy for matching model and data inflation
rates, which follows that of Justiniano, Primiceri, and Tambalotti (2013). This relates three
observable inflation rates – core CPI inflation, core PCE inflation, and market-based PCE
inflation – to Model-consistent consumption inflation using auxiliary observation equations.
For core PCE inflation, this equation is

π1,obs
t = π∗ + π1

∗ + βπ,1π̂t + γπ,jπd,obst + uπ,1t , (59)

In (59) as elsewhere, π∗ equals the long-run inflation rate. The constant π1
∗ is an adjust-

ment to this long-run inflation rate which accounts for possible long-run differences between
realized inflation and the FOMC’s goal of π? (for PCE inflation π1

∗ is set to zero). The right-
hand side’s inflation rates, π̂t and πd,obst equal Model-consistent consumption inflation and
PCE Durables inflation. We refer to the coefficients multiplying them, βπ,1 and γπ,1, as the
inflation loadings. We include PCE Durables inflation on the right-hand side of (59) because
the principle adjustment required to transform Model-consistent inflation into core PCE in-
flation is the replacement of the price index for durable goods services with that for durable
goods purchases. The disturbance term uπ,1t follows a zero-mean first-order autoregressive
process.

The other two observed inflation measures, market-based PCE inflation and core CPI
inflation, have identically specified observation equations. We use 2 and 3 in superscripts
to denote these equations parameters and error terms, and we use the same expressions as
subscripts to denote the parameters governing the evolution of their error terms. We assume
that the error terms uπ,1t , uπ,2t , and uπ,3t are independent of each other at all leads and lags.

To produce forecasts of inflation with these these three observation equations, we must
forecast their right-hand side variables. The model itself gives forecasts of π̂t. The forecasts
of durable goods inflation come from a second-order autoregression.

πd,obst = (1− β1,1 − β1,2)πd∗ + β1,1π
d,obs
t−1 + β1,2π

d,obs
t−2 + udt (60)

Its innovation is normally distributed and serially uncorrelated.

E.3.2. Wage Inflation

Although observed wage inflation does not feature the same short-run variability as does
price inflation, it does include the influences of persistent demographic labor-market trends
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which we removed ex ante from our measure of hours worked. Therefore, we follow the same
general strategy of relating observed measures of wage inflation to the model’s predicted wage
inflation with a error-augmented observation equation. For this, we employ two measures of
compensation per hour, Earnings per Hour and Total Compensation per Hour. In parallel
with our notation for inflation measures, we use 1 and 2 to denote these two wage measures
of wage inflation. The observation equation for Earnings per Hour is

∆ lnw1,obs
t = z∗ + wj∗ + βw,1 (ŵt − ŵt−1 + ẑt) + uw,1t , (61)

where “∆” is the first difference operator. Just as with the price inflation measurement
errors, uw,1t follows a zero-mean first-order autoregressive process. The observation equation
for Total Compensation per Hour is analogous to (61).

E.3.3. Relative Price Inflation

To empirically ground investment-specific technological change in the model, we use an error-
augmented observation equation to relate the relative price of investment to consumption,
both model-consistent measures constructed from NIPA and Fixed Asset tables as described
above, with the model’s growth rate of the rate of technological transformation between
these two goods, ωt.

πi,obst = ω∗ + ω̂t + u
c/i
t ;

Here, πi,obst denotes the price of consumption relative to investment. The measurement error

u
c/i
t follows a i.i.d. zero-mean normally-distributed innovation.

We also discipline our model’s inferences about the state of the economy by comparing
expectations of one- to four-quarter ahead and 10-year inflation from the Survey of Profes-
sional Forecasters with the analogous expectations from our model. Just as with all of the
other inflation measures, we allow these two sets of expectations to differ from each other
by including serially correlated measurement errors. The observation equations are

πl,j,obst = π∗ + πl,j∗ + βl,jEtπ̂t+l + ul,j,πt , j = 1, 2, l = 1, ...4;

πl,j,obst = π∗ + πl,j∗ +
βl,j

l

l∑
i=1

Etπ̂t+i + ul,j,πt , j = 1, 2, l = 40;

The measurement errors follow mutually-independent first-order autoregressive processes.

E.4. Interest Rates and Monetary Policy Shocks

Since our model features forward guidance shocks, it has non-trivial implications for the
current policy rate as well as for expected future policy rates. To discipline the parameters
governing their realizations, the elements of Σε, using data, we compare the model’s monetary
policy shocks to high-frequency interest-rate innovations informed by event studies, such as
that of Gürkaynak, Sack, and Swanson (2005). Those authors applied a factor structure
to innovations in implied expected interest rates from futures prices around FOMC policy
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announcement dates. Specifically, they show that the vector of M implied interest rate
changes following an FOMC policy announcement, ∆rt, can be written as

∆rt = Λft + ηt

Where f is a 2×1 vector of factors, Λ is a H×2 matrix of factor loadings, and η is an H×1
vector of mutually independent shocks. Denoting the 2 × 2 diagonal variance covariance
matrix of f with Σf and the H × H diagonal variance-covariance matrix of η with Ψ, we
can express the observed variance-covariance matrix of ∆r as ΛΣfΛ

′ + Ψ.
Our model has implications for this same variance covariance matrix. For this, use

the model’s solution to express the changes in current and future expected interest rates
following monetary policy shocks as ∆r = Γ1ε

R. Here, εRt is the vector which collects the
current monetary policy shock with M − 1 forward guidance shocks, and Γ1 is an H × H
matrix. In general, Γ1 does not simply equal the identity matrix, because current and future
inflation and output gaps respond to the monetary policy shocks and thereby influence future
monetary policy “indirectly” through the interest rate rule.

We assume that a factor structure determines the cross-correlations among monetary
policy shocks. Specifically, we assume

εjR,t = αjf
α
t + βjf

β
t + ηjt ,

where the factors fαt and fβt and factor loadings αi and βi are scalars, ηjt is a measurement
error. The factors and shocks have zero means and are independent and normally distributed.
In matrix notation, we have

εRt = αfαt + βfβt + ηt,

where α = [α0, . . . , αH ]′, β = [β0, . . . , βH ]′. Let Ση = E (ηtη
′
t) denote the variance-covariance

matrix of the idiosyncratic shocks, and σ2
α (σ2

β) denote the variance of fαt (fβt ). Therefore
we have that

ΛΣfΛ
′ + Ψ = Γ1(αα′σ2

α + ββ′σ2
β)Γ′1 + Γ1ΣηΓ

′
1

E.5. Measurement Equations Synthesis

To summarize the measurement equations are as follows:

∆ lnQobs
t = f

(
ĉt, ĉt−1, ît, ît−1, ĝt, ω̂t, π̂

g,obs
t

)
≡ ∆ lnQj

t ;

∆ lnY l,obs
t = a+ 4b(∆ lnQl

t + poplt), l = 1, 2, 3, 4;

∆ lnCobs
t = z∗ + ∆ĉt + ẑt;

∆ ln Iobst = z∗ + ω∗ + ∆ı̂t + ẑt + ω̂t;

logHobs
t = Ĥt;

πi,obst = ω∗ + ω̂t + uit;

Robs
t = R∗ + R̂t;
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Rj,obs
t = R∗ + EtR̂t+j, j = 1, 2, . . . , H;

πl,j,obst = π∗ + πl,j∗ + βl,jEtπ̂t+l + ul,j,πt , j = 1, 2, l = 1, ...4;

πl,j,obst = π∗ + πl,j∗ +
βl,j

l

l∑
i=1

Etπ̂t+i + ul,j,πt , j = 1, 2, l = 40;

πj,obst = π∗ + πj∗ + βπ,jπ̂t + γπ,jπd,obst + uj,pt , with βπ,1 = 1, j = 1, 2, 3;

∆ lnwj,obst = z∗ + wj∗ + βw,j (ŵt − ŵt−1 + ẑt) + uj,wt , with βw,1 = 1, j = 1, 2;

πd,obst = (1− β1,1 − β1,2)πd∗ + β1,1π
d,obs
t−1 + β1,2π

d,obs
t−2 + udt ;

πg,obst = (1− β2,1 − β2,2)πg∗ + β2,1π
g,obs
t−1 + β2,2π

g,obs
t−2 + ugt .

The left hand side variables represent data (Q denotes chain-weighted GDP). The function f
in the first equation represents the linear approximation to the chain-weighted GDP formula.
As previously discussed, two variables are included to complete the mapping from model to
data but are not endogenous to the model. Specifically, the consumption price of government
consumption plus net exports, πg,obst , helps map model GDP to our model-consistent measure
of chain-weighted GDP, and inflation in the consumption price of consumer durable goods,
πd,obst , is used to complete the mapping from model inflation to measured inflation.

The measurement equations indicate we use 21 time series to estimate the model in the
first sample. In addition to the real quantities and federal funds rate that are standard
in the literature our estimation includes multiple measures of wage and consumer price
inflation, two measures each of average inflation expected over the next ten years and over
one quarter, and H = 4 quarters of interest rate futures. Our second sample estimation is
restricted to estimating the parameters of the stochastic process for forward guidance news
with H = 10 plus the processes driving πg,obst and πd,obst (only the constant and the standard
deviation). This estimation uses the measurement equations involving the current federal
funds rate and 10 quarters of expected future policy rates plus the last two equations. We
take into account the change in steady state but keep the remaining structural parameters
at their first sample values. Because our estimation forces data on real activity, wages and
prices to coexist with the interest rate futures data, we expect the estimation to mitigate
the forward guidance puzzle. Finally, it is worth stressing that our estimation respects the
ELB in the second sample. This is because we measure expected future rates in the model,
the EtR̂t+j, using the corresponding empirical futures rates, Rj,obs

t , and we use futures rates
extending out 10 quarters. Finally, in the second sample we extend the use the Survey of
Professional Forecasts about near term inflation expectations using the 1Q-4Q ahead CPI
and PCE inflation expectations, and introduce the SPF expectations about near term real
GDP growth expectations, i.e. 1Q ahead until 4Q ahead.

E.6. Data Synopsis

32

32Unless otherwise indicated all data are from Haver Analytics.
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Model-Consistent Output: gdp pcLD100

• The DSGE model output is the chained sum of conventional GDP with government
capital services and durable goods services. This series is de-trended by population
growth.

Model-Consistent Consumption: cons pcLD100

• DSGE consumption is defined as the chained sum of conventional PCE nondurable
goods with PCE services and durable goods services. This series is de-trended by
population growth.

Model-Consistent Investment: inv pcLD100

• Model-consistent Investment is the chained sum of durable goods purchases, fixed in-
vestment, and government investment. This series is de-trended by population growth.

Model-Consistent Residual Output Inflation: gnx CONSINF

• The residual output is the chained difference of model consumption and investment
from model GDP. Residual output reflects government spending and net exports.

Relative Price of Consumption to Investment: RPCtoI LD100

• The relative price is constructed by dividing the consumption price series and invest-
ment price series.

Deflators for Consumer Durables: JCD LD100

• We take the log difference33 of the PCE Durable Goods Chain Price Index for the
deflators for consumer durables.

Inflation Expectations: inf 10YQ PCE, ASAF1CPX, inf 10YQ CPI, ASAF1CX

• Our inflation expectations series are quarterly inflation expectations data from the
Survey of Professional Forecasters at the Philadelphia Fed. They report inflation ex-
pectations at various horizons for both PCE and CPI measures. We use measures of
1Q ahead and 40Q ahead CPI and core PCE inflation expectations. The 40Q ahead
series are the ten-year ahead expectations, not the annual average over the next ten
years. The SPF did not report expectations for core PCE prior to 2007, so we do
not have many observations for the first sample of our data. However, we continue to
include these few observations in order to initialize the kalman filter for second sample
estimation. We have the full data for CPI expectations.

Real GDP Growth Expectations: GDP 1Q SPF-GDP 4Q SPF

33All log differenced series are multipled by 100.
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• Our real GDP growth expectations series are annualized expectations data from the
Survey of Professional Forecasters at the Philadelphia Fed. They report BEA real
GDP growth expectations at various horizons, from 1Q to 4Q ahead. The SPF reports
these expectations throughout our sample period. We use them only in the second
sample because the inflation data are only available for the second sample.

Real Wages: lepriva CORE, ls CORE

• We have two different measures of wages in the model - average hourly earnings and
employment compensation. We take the average hourly earnings and divide by the
chain price index of core PCE, then take the log difference.

• We repeat the same steps to calculate employment compensation but use the employ-
ment cost index for the compensation of civilian workers.

Price Inflation: JCXFE LD100, JCMXFE LD100, PCUSLFE LD100

• We use three different measures of price inflation: Core PCE, Market-Based Core PCE,
and Core CPI.

Hours: hours L

• We construct our hours series with the methodology as described in Forward Guidance
and Macroeconomic Outcomes Since the Financial Crisis (Campbell et al., 2016).

Effective Federal Funds Rate: ffed q

• For the first sample (1993q1-2008q3), we use the federal funds target rate observed as
the average over the last month of the quarter.

• For the second sample (2008q4-2018q4), we use the federal funds target rate observed
at the end of the quarter.

• We divide the series by 4 to convert to quarterly rates.

Expected Federal Funds Rate (FFR): 1-10QAhead

• From 1993Q1 to 2005Q4, our 4-quarter ahead path comes from Eurodollar futures.
Eurodollar futures have expiration dates that lie about two weeks before the end of
each quarter. Eurodollar rate is closely tied to expectations for the Federal Funds rates
over the same period, so the Eurodollar futures rate corresponds with the Fed Funds
rate at the middle of the last month of each quarter.

• Beginning with 2006Q1, our 4-quarter ahead, and later, 10-quarter ahead path comes
from the Overnight Index Swaps (OIS). The OIS data are converted into a point
estimate of the Fed Funds for a particular date using a Svensson term structure model.
The dates of the OIS data reflect the middle of the quarter values, and we interpolate
to obtain the end of quarter values.
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• From 2014Q1, we began to use the expected Fed Funds from the Survey of Market
Participant (SMP). The SMP correspond to the survey participants’ expected Fed
Funds at the end of the quarter.

• All expected FFR series are in quarterly rates.

F. Calibration and Bayesian Estimation

As we discussed, we follow a two-stage approach to the estimation of our model’s parame-
ters. In a calibration stage, we set the values of selected parameters so that the model has
empirically-sensible implications for long-run averages from the U.S. economy. In this stage,
we also enforce several normalizations and a judgemental restriction on one of the measure-
ment error variances. In the second stage, we estimate the model’s remaining parameters
using standard Bayesian methods.

F.1. Calibration

Our calibration strategy is the same as in Campbell, Fisher, Justiniano, and Melosi (2016)
except that we address the well-known evidence of secular declines in economic growth and
rates of return on nominally risk free assets. We address these developments by imposing
a change in steady state in 2008q4 (the choice of this date is motivated in the next subsec-
tion). Steady state GDP growth is governed by the mean growth rates of the neutral and
investment-specific technologies, ν∗ and ω∗. We adjust ω∗ down to account for the slower
decline in the relative price of investment since 2008q4. Given this change we then lower ν∗
so that steady state GDP growth is reduced to 2%. To match a lower real risk-free rate of 1%
we increase the steady state marginal utility of government bonds using εs∗.

34 These adjust-
ments leave the other calibrated parameters unchanged but do change the steady state values
of the endogenous variables and therefore the point at which the economy is log-linearized.35

We observe the long-run average of the following aggregates: nominal federal funds rate,
labor share, government spending share, investment spending share, the capital-output ratio,
real per-capita GDP growth (gy), inflation in price of government, net exports and inventory
investment relative to non-durables and services consumption, and the growth rate of the
consumption-investment relative price.

• The labor share can be used to calibrate the parameter α.

• The government spending share determines sg∗.

• The government price growth rate pins down πg∗ .

34The targets for steady state GDP growth and risk-free rate reflect a variety of evidence including the
Fed’s Summary of Economic Projections.

35Our re-calibration changes the return on private assets by a little. This small change is consistent with
Yi and Zhang (2017) who show that rates of return on private capital have stayed roughly constant in the
face of declines in risk free rates.
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• The growth rate of the consumption-investment relative price pins down ω∗.

• The investment share pins down i∗/y∗.

• The capital output ratio pins down k∗/y∗.

• Calculate the consumption-output share

c∗
y∗

=

(
1− i∗

y∗
− g∗
y∗

)
. (62)

• The growth rate of real chain-weighted GDP is used to pin down the growth rate of
the common trend z∗. First

gy = ez∗

√√√√ c∗
y∗

+ eω i∗
y∗

+ (πg∗)
−1 g∗

y∗
c∗
y∗

+ e−ω i∗
y∗

+ πg∗
g∗
y∗

All the variables in this equation are known except for z∗. So we can solve for z∗:

z∗ = gy −
1

2
ln

(
c∗
y∗

+ eω i∗
y∗

+ (πg∗)
−1 g∗

y∗
c∗
y∗

+ e−ω i∗
y∗

+ πg∗
g∗
y∗

)
(63)

• The growth rate of the labor-augmenting technology ν∗ can be easily obtained by
exploiting the following equation:

z∗ = v∗ +
α

1− α
ω∗. (64)

• We are now in a position to identify the depreciation rate δ0 using the steady-state
equation pinning down the investment capital ratio:

i∗
k∗

= 1− (1− δ0)e−z∗−ω∗

⇒ δ0 = 1 +

(
i∗
k∗
− 1

)
ez∗+ω∗

where the investment capital ratio is obtained combining the investment share and the
capital output ratio:

i∗
k∗

=
i∗/y∗
k∗/y∗

. (65)

• From the steady-state equilibrium we have that

y∗
k∗

= e−z∗−ω∗
δ1
α
. (66)
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Therefore

δ1 = α

(
k∗
y∗

)−1
ez∗+ω∗ (67)

where the capital output ratio is given above.

• In steady state, the real rate of return on private bonds is derived from the first order
condition for private bonds:

rp∗ ≡
RP
∗
π∗

=
eγcz∗

β
. (68)

In steady state the real rental rate of capital is derived from the first order condition
for capital:

rk∗ =

[
eγcz∗

β

]
eω∗ − (1− δ0) (69)

Combining these last two equations yields

rk∗ = rp∗e
ω∗ − (1− δ0)

and hence
rp∗ =

[
rk∗ + 1− δ0

]
e−ω∗ .

Note that rk∗ = δ1 from the first order condition for capacity utilization. It follows that

rp∗ = (1− δ0 + δ1) e
−ω∗

• The liquidity premium in steady state (i.e., R∗/π∗
rp∗

) can be computed now by assuming
a nominal average federal funds rate, R∗, and an annualized average inflation rate.

• Using equation (69) and the fact that rk∗ = δ1, we can calibrate the discount factor β :

β = (1− δ0 + δ1)
−1 eω∗eγcz∗

where γc is a parameter of the utility function to be estimated.

F.2. Bayesian Estimation

Our Bayesian estimation uses the same split-sample strategy as in Campbell, Fisher, Jus-
tiniano, and Melosi (2016) except that we incorporate the change in steady state described
above and one other change noted below. As in Campbell, Fisher, Justiniano, and Melosi
(2016) our sample begins in 1993q1. This date is based on the availability and reliability of
the overnight interest rate futures data. The sample period ends in 2016q4 but we impose a
sample break in 2008q4. Our choice of this latter date is motivated by three main consider-
ations. First, there is the evidence that points to lower interest rates and economic growth
later in the sample. Second, it seems clear that the horizon over which forward guidance
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was communicated by the Fed lengthened substantially during the ELB period. Finally, the
downward trends in inflation and inflation expectations from the early 1990s appear to come
to an end in the mid-2000s. Splitting the sample in 2008q4 and assuming some parameters
change at that date is our way of striking a balance between parsimony and addressing the
multiple structural changes that seem to occur around the same time.

We estimate the full suite of non-calibrated structural parameters in the first sample
under the assumption that forward guidance extends for H = 4 quarters. Starting in 2008q4
we assume the model environment changes in three ways. First we assume the change in
the steady state described above. Second, forward guidance lengthens to H = 10 quarters
Third, the time-varying inflation target from the first sample becomes a constant equal to
the steady state rate of inflation, 2% at an annual rate. All three changes are assumed to
be unanticipated and permanent.

We employ standard prior distributions, but those governing monetary policy shocks
deserve further elaboration. Our estimation requires the variance-covariance matrix of mon-
etary policy shocks to be consistent with the factor-structure of interest rate innovations used
by Gürkaynak, Sack, and Swanson (2005), as described above. Therefore, we parameterize
Σε in terms of factors STD (σα and σβ), factor loadings (α and β) and STD of the idiosyn-
cratic errors (ση,j). We then center our priors for these parameters at their estimates from
event-studies. However, we do not require our estimates to equal their prior values. Our
Bayesian estimation procedure employs quarterly data on expected future interest rates, the
posterior likelihood function includes them as free parameters. It is well known that factors
STD and loadings are not separately identified, so we impose two scale normalizations and
one rotation normalization on α and β. The rotation normalization requires that the first
factor, which we label “Factor A”, is the only factor influence the current policy rate. That
is, the second factor, “Factor B” influences only future policy rates. Gürkaynak, Sack, and
Swanson (2005) call Factors A and B the “target” and “path” factors.

F.3. Posterior Estimates

We report the results of our two-stage two-sample estimation in a series of tables. Table 3
reports our most notable calibration targets. The long-run policy rate equals 1.1 percent
on a quarterly basis. We target a two percent growth rate of per capita GDP. Given an
average population growth rate of one percent per year, this implies that our potential GDP
growth rate equals three percent. The other empirical moments we target are a nominal
investment to output ratio of 26 percent and nominal government purchases to output ratio
of 15 percent. Finally, we target a capital to output ratio of approximately 10 on a quarterly
basis.

Table 4 lists the parameters which we calibrate along with their given values. The table
includes many more parameters than there are targets in Table 3. This is because Table
3 omitted calibration targets which map one-to-one with particular parameter values. For
example, we calibrate the steady-state capital depreciation rate (δ0) using standard methods
applied to data from the Fixed Asset tables. It is also because Table 4 lists several parameters
which are normalized prior to estimation. Most notable among these are the three factor
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loadings listed at the table’s bottom. Tables 5 and 8 report prior distributions and posterior
modes for the model’s remaining parameters, for the first and second samples respectively.
gnificantly.

61



Table 3: First Sample Calibration Targets

Description Expression Value
Fixed Interest Rate (quarterly, gross) R∗ 1.011
Per-Capita Steady-State Output Growth Rate (quarterly) Yt+1/Yt 1.005
Investment to Output Ratio It/Yt 0.2597
Capital to Output Ratio Kt/Yt 10.7629
Fraction of Final Good Output Spent on Public Goods Gt/Yt 0.1532
Growth Rate of Relative Price of Consumption to Investment PC/PI 0.371
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Table 4: First Sample Calibrated Parameters

Parameter Symbol Value
Discount Factor β 0.9857
Steady-State Measured TFP Growth (quarterly) z∗ 0.489
Investment-Specific Technology Growth Rate ω∗ 0.371
Elasticity of Output w.r.t Capital Services α 0.401
Steady-State Wage Markup λw∗ 1.500
Steady-State Price Markup λp∗ 1.500
Steady-State Scale of the Economy H∗ 1.000
Steady-State Inflation Rate (quarterly) π∗ 0.500
Steady-State Depreciation Rate δ0 0.0162
Steady-State Marginal Depreciation Cost δ1 0.0385
Core PCE, 1Q Ahead and 10Y Ahead Expected PCE

Constant π1
∗, π

l,1
∗ 0.000

Loading 1 βπ,1, βl,1 1.000
Core CPI, 1Q Ahead and 10Y Ahead Expected CPI

Constant π2
∗, π

l,2
∗ 0.122

10Y Ahead Expected CPI and PCE

Standard Deviation of u40,j,πt 0.010
PCE Durable Goods Inflation

1st Lag Coefficient β1,1 0.418
2nd Lag Coefficient β1,2 0.379

Inflation in Relative Price of Government,
Inventories and Net Exports to Consumption

1st Lag Coefficient β2,1 0.311
2nd Lag Coefficient β2,2 0.0057

Compensation
Constant w1

∗ -0.202
Loading βw,1 1.000

Earnings Constant w2
∗ -0.237

Loading 0 Factor A α0 0.981
Loading 0 Factor B β0 0.000
Loading 4 Factor B β4 0.951
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Table 5: First Sample Estimated Parameters

Prior Posterior
Parameter Symbol Density Mean Std.Dev Mode

Depreciation Curve δ2
δ1

G 1.0000 0.150 0.474

Active Price Indexation Rate ιp B 0.5000 0.150 0.409
Active Wage Indexation Rate ιw B 0.5000 0.150 0.077
External Habit Weight λ B 0.7500 0.025 0.780
Labor Supply Elasticity γH N 0.6000 0.050 0.589
Price Stickiness Probability ζp B 0.8000 0.050 0.831
Wage Stickiness Probability ζw B 0.7500 0.050 0.914
Adjustment Cost of Investment ϕ G 3.0000 0.750 5.354
Elasticity of Intertemporal Substitution γc N 1.5000 0.375 1.319
Interest Rate Response to Inflation ψ1 G 1.7000 0.150 1.791
Interest Rate Response to Output ψ2 G 0.2500 0.100 0.398
Interest Rate Smoothing Coefficient ρR B 0.8000 0.100 0.801
Autoregressive Coefficients of Shocks

Discount Factor ρb B 0.5000 0.250 0.813
Inflation Drift ρπ B 0.9900 0.010 0.998
Exogenous Spending ρg B 0.6000 0.100 0.887
Investment-Demand ρi B 0.5000 0.100 0.791
Liquidity Preference ρs B 0.6000 0.200 0.887
Price Markup ρλp B 0.6000 0.200 0.136
Wage Markup ρλw B 0.5000 0.150 0.469
Neutral Technology ρν B 0.3000 0.150 0.492
Investment Specific Technology ρω B 0.3500 0.100 0.303

Moving Average Coefficients of Shocks
Price Markup θλp B 0.4000 0.200 0.307
Wage Markup θλw B 0.4000 0.200 0.391

Standard Deviations of Innovations
Discount Factor σb U 0.5000 2.000 1.768
Inflation Drift σπ I 0.0150 0.0075 0.077
Exogenous Spending σg U 1.0000 2.000 4.139
Investment-Demand σi I 0.2000 0.200 0.549
Liquidity Preference σs U 0.5000 2.000 0.341
Price Markup σλp I 0.1000 1.000 0.101
Wage Markup σλw I 0.1000 1.000 0.035
Neutral Technology σν U 0.5000 0.250 0.530
Investment Specific Technology σω I 0.2000 0.100 0.259
Relative Price of Cons to Inv σ c

i
I 0.0500 2.000 0.675

Monetary Policy
Notes: Distributions (N) Normal, (G) Gamma, (B) Beta, (I) Inverse-gamma-1, (U) Uniform
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First Sample Estimated Parameters (Continued)

Prior Posterior
Parameter Symbol Density Mean Std.Dev Mode

Unanticipated ση0 N 0.0050 0.0025 0.012
1Q Ahead ση1 N 0.0050 0.0025 0.012
2Q Ahead ση2 N 0.0050 0.0025 0.008
3Q Ahead ση3 N 0.0050 0.0025 0.009
4Q Ahead ση4 N 0.0050 0.0025 0.012

Compensation

Standard Deviation of u1,wt I 0.0500 0.100 0.194

AR(1) Coefficient of u1,wt B 0.4000 0.100 0.458
Earnings

Loading 1 βw,2 N 0.8000 0.100 0.904

Standard Deviation of u2,wt I 0.0500 0.100 0.143

AR(1) Coefficient of u2,wt B 0.4000 0.100 0.674
Core PCE

Loading 2 γπ,1 N 0.0000 1.000 0.045

Standard Deviation of u1,pt I 0.0500 0.100 0.046

AR(1) Coefficient of u1,pt B 0.2000 0.100 0.108
Core CPI

Loading 1 βπ,2 N 1.0000 0.100 0.808
Loading 2 γπ,2 N 0.0000 1.000 0.087

Standard Deviation of u2,pt I 0.1000 0.100 0.077

AR(1) Coefficient of u2,pt B 0.4000 0.200 0.586
Market-Based Core PCE

Constant π3
∗ N -0.1000 0.100 -0.037

Loading 1 βπ,3 N 1.0000 0.100 1.121
Loading 2 γπ,3 N 0.0000 1.000 0.015

Standard Deviation of u3,pt I 0.0500 0.100 0.035

AR(1) Coefficient of u3,pt B 0.2000 0.100 0.144
1Q Ahead Expected PCE

Standard Deviation of u1,1,πt I 0.0500 0.100 0.026

AR(1) Coefficient of u1,1,πt B 0.2000 0.100 0.196
1Q Ahead Expected CPI

Loading β1,2 N 1.0000 0.100 0.980

Standard Deviation of u1,2,πt I 0.0500 0.100 0.062

AR(1) Coefficient of u1,2,πt B 0.2000 0.100 0.198
10Y Ahead Expected PCE

AR(1) Coefficient of u40,1,πt B 0.2000 0.100 0.271
10Y Ahead Expected CPI

Loading β40,2 N 1.0000 0.100 1.021
Notes: Distributions (N) Normal, (G) Gamma, (B) Beta, (I) Inverse-gamma-1, (U) Uniform
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First Sample Estimated Parameters (Continued)

Prior Posterior
Parameter Symbol Density Mean Std.Dev Mode

AR(1) Coefficient of u40,2,πt B 0.2000 0.100 0.213
PCE Durable Goods Inflation

Constant πd∗ N -0.3500 0.100 -0.360
Standard Deviation of udt I 0.2000 2.000 0.286

Notes: Distributions (N) Normal, (G) Gamma, (B) Beta, (I) Inverse-gamma-1, (U) Uniform
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First Sample Estimated Parameters (Continued)

Prior Posterior
Parameter Symbol Density Mean Std.Dev Mode

Inflation in Relative Price of Government,
Inventories and Net Exports to Consumption

Constant πg∗ N 0.1980 1.000 -0.666
Standard Deviation of ugt I 0.5000 2.000 1.861

Factor A
Loading 1 α1 N 0.6839 0.200 1.305
Loading 2 α2 N 0.5224 0.200 0.877
Loading 3 α3 N 0.4314 0.200 0.306
Loading 4 α4 N 0.3243 0.200 -0.012
Standard Deviation σα N 0.1000 0.0750 0.040

Factor B
Loading 1 β1 N 0.3310 0.200 0.656
Loading 2 β2 N 0.6525 0.200 1.104
Loading 3 β3 N 0.8059 0.200 1.162
Standard Deviation σβ N 0.1000 0.0750 0.078

Notes: Distributions (N) Normal, (G) Gamma, (B) Beta, (I) Inverse-gamma-1, (U) Uniform
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Table 6: Second Sample Calibration Targets (Different from First Sample)

Description Expression Value
Fixed Interest Rate (quarterly, gross) R∗ 1.007
Per-Capita Steady-State Output Growth Rate (quarterly) Yt+1/Yt 1.003
Growth Rate of Relative Price of Consumption to Investment PC/PI 0.171

Table 7: Second Sample Calibrated Parameters (Different from First Sample)

Parameter Symbol Value
Steady-State Measured TFP Growth (quarterly) z∗ 0.489
Investment-Specific Technology Growth Rate ω∗ 0.171
Steady-State Marginal Depreciation Cost δ1 0.038
Core CPI, 1Q Ahead and 10Y Ahead Expected CPI

Constant π2
∗, π

l,2
∗ 0.122

10Y Ahead Expected CPI and PCE

Standard Deviation of u40,j,πt 0.020
PCE Durable Goods Inflation

1st Lag Coefficient β1,1 0.000
2nd Lag Coefficient β1,2 0.000

Inflation in Relative Price of Government,
Inventories and Net Exports to Consumption

1st Lag Coefficient β2,1 0.320
2nd Lag Coefficient β2,2 -0.240

Compensation Loading βw,1 1.000
Loading 5 Factor A α5 0.932
Loading 8 Factor B β8 0.210
Loading 10 Factor B β10 0.000
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Table 8: Second Sample Estimated Parameters

Prior Posterior
Parameter Symbol Mean Std.Dev Mode
Compensation

Constant w1
∗ -0.2023 0.000 -0.2023

Standard Deviation of u1,wt 0.1941 0.100 0.284

AR(1) Coefficient of u1,wt 0.4579 0.000 0.4579
Earnings

Constant w2
∗ -0.2370 0.000 -0.237

Loading 1 βw,2 0.9039 0.000 0.9039

Standard Deviation of u2,wt 0.1434 0.100 0.304

AR(1) Coefficient of u2,wt 0.6741 0.000 0.6741
Core PCE

Loading 2 γπ,1 0.0449 0.000 0.0449

Standard Deviation of u1,pt 0.0457 0.100 0.274

AR(1) Coefficient of u1,pt 0.1081 0.000 0.1801
Core CPI

Loading 1 βπ,2 0.8083 0.00 0.8083
Loading 2 γπ,2 0.0868 0.000 0.0868

Standard Deviation of u2,pt 0.0770 0.100 0.2517

AR(1) Coefficient of u2,pt 0.5856 0.000 0.5856
Market PCE

Constant π3
∗ -0.0367 0.000 -0.0367

Loading 1 βπ,3 1.1213 0.000 1.1213
Loading 2 γπ,3 0.0153 0.000 0.0153

Standard Deviation of u3,pt 0.0349 0.100 0.2553

AR(1) Coefficient of u3,pt 0.1436 0.000 0.1436
1Q Ahead Expected PCE

Standard Deviation of u1,1,πt 0.0259 0.020 0.0412

AR(1) Coefficient of u1,1,πt 0.1960 0.050 0.1832
2Q Ahead Expected PCE

Standard Deviation of u2,1,πt 0.0259 0.020 0.0175

AR(1) Coefficient of u2,1,πt 0.1960 0.050 0.2140
3Q Ahead Expected PCE

Standard Deviation of u3,1,πt 0.0259 0.020 0.0193

AR(1) Coefficient of u3,1,πt 0.1960 0.050 0.2202
4Q Ahead Expected PCE

Standard Deviation of u4,1,πt 0.0259 0.020 0.0156

AR(1) Coefficient of u4,1,πt 0.1960 0.050 0.2075
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Second Sample Estimated Parameters (Continued)

Prior Posterior
Parameter Symbol Mean Std.Dev Mode
1Q Ahead Expected CPI

Loading β1,2 0.9803 0.080 1.0022

Standard Deviation of u1,2,πt 0.0622 0.020 0.095

AR(1) Coefficient of u1,2,πt 0.1982 0.050 0.206
2Q Ahead Expected CPI

Loading β1,2 0.9803 0.080 1.2433

Standard Deviation of u2,2,πt 0.0622 0.020 0.0411

AR(1) Coefficient of u2,2,πt 0.1982 0.050 0.2532
3Q Ahead Expected CPI

Loading β1,2 0.9803 0.080 1.2662

Standard Deviation of u3,2,πt 0.0622 0.020 0.0399

AR(1) Coefficient of u3,2,πt 0.1982 0.050 0.2607
4Q Ahead Expected CPI

Loading β1,2 0.9803 0.080 1.2354

Standard Deviation of u4,2,πt 0.0622 0.020 0.0406

AR(1) Coefficient of u4,2,πt 0.1982 0.050 0.2782
10Y Ahead Expected PCE

AR(1) Coefficient of u40,1,πt 0.2711 0.000 0.2711
10Y Ahead Expected CPI

Loading β40,2 1.0207 0.000 1.0207

AR(1) Coefficient of u40,2,πt 0.2133 0.000 0.2133
1Q Ahead Expected GDP

Standard Deviation of u1,1,Yt 0.10 0.100 0.9827

AR(1) Coefficient of u1,1,Yt 0.20 0.100 0.1300
2Q Ahead Expected GDP

Standard Deviation of u2,1,Yt 0.10 0.100 0.6263

AR(1) Coefficient of u2,1,Yt 0.20 0.100 0.1825
3Q Ahead Expected GDP

Standard Deviation of u3,1,Yt 0.10 0.100 0.9779

AR(1) Coefficient of u3,1,Yt 0.20 0.100 0.1767
4Q Ahead Expected GDP

Standard Deviation of u4,1,Yt 0.10 0.100 0.3664

AR(1) Coefficient of u4,1,Yt 0.20 0.100 0.2747
PCE Durable Goods Inflation

Constant πd∗ -0.4500 0.200 -0.4858
Standard Deviation of udt 0.5000 0.150 0.325

Inflation in Relative Price of Government,
Inventories and Net Exports to Consumption
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Second Sample Estimated Parameters (Continued)

Prior Posterior
Parameter Symbol Mean Std.Dev Mode

Constant πg∗ 0.8900 0.400 -0.1177
Standard Deviation of ugt 0.8143 0.150 1.267

Factor A
Loading 0 α0 0.0180 0.250 0.099
Loading 1 α1 0.0574 0.250 0.202
Loading 2 α2 0.1941 0.250 0.397
Loading 3 α3 0.3996 0.250 0.591
Loading 4 α4 0.6520 0.250 0.792
Loading 6 α6 1.2266 0.250 1.116
Loading 7 α7 1.5237 0.250 1.281
Loading 8 α8 1.8139 0.250 1.406
Loading 9 α9 2.0914 0.250 1.517
Loading 10 α10 2.3523 0.250 2.851
Standard Deviation σα 0.0442 0.100 0.056

Factor B
Loading 0 β0 -0.0181 0.300 0.051
Loading 1 β1 0.2211 0.300 0.083
Loading 2 β2 0.3679 0.300 0.125
Loading 3 β3 0.4424 0.300 0.152
Loading 4 β4 0.4612 0.300 0.167
Loading 5 β5 0.4370 0.300 0.181
Loading 6 β6 0.3817 0.300 0.192
Loading 7 β7 0.3032 0.300 0.203
Loading 9 β9 0.1074 0.300 0.210
Standard Deviation σβ 0.0334 0.100 0.449

Standard Deviations of Monetary Policy Innovations
Unanticipated ση0 0.0061 0.005 0.011
1Q Ahead ση1 0.0021 0.005 0.010
2Q Ahead ση2 0.0004 0.005 0.010
3Q Ahead ση3 0.0019 0.005 0.010
4Q Ahead ση4 0.0001 0.005 0.010
5Q Ahead ση5 0.0025 0.005 0.009
6Q Ahead ση6 0.0019 0.005 0.010
7Q Ahead ση7 0.0011 0.005 0.009
8Q Ahead ση8 0.0001 0.005 0.009
9Q Ahead ση9 0.0014 0.005 0.010
10Q Ahead ση10 0.0028 0.005 0.0001
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