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Bo E. Honoré� Luojia Hu� Ekaterini Kyriazidou§ Martin Weidner¶

July 2022

Abstract

Two of Peter Schmidt’s many contributions to econometrics have been to introduce a simulta-
neous logit model for bivariate binary outcomes and to study estimation of dynamic linear fixed
effects panel data models using short panels. In this paper, we study a dynamic panel data
version of the bivariate model introduced in Schmidt and Strauss (1975) that allows for lagged
dependent variables and fixed effects as in Ahn and Schmidt (1995). We combine a conditional
likelihood approach with a method of moments approach to obtain an estimation strategy for
the resulting model. We apply this estimation strategy to a simple model for the intra-household
relationship in employment. Our main conclusion is that the within-household “correlation” in
employment differs significantly by the ethnicity composition of the couple even after one allows
for unobserved household specific heterogeneity.
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1 Introduction

A large recent literature has been concerned with estimation of models with binary outcomes that

interact with each other. The papers by Bresnahan and Reiss (1991) and Tamer (2003) are early

examples of this. This literature was predated by Schmidt and Strauss (1975) which proposed

a statistical model that has the feature that the conditional distribution of each binary variable

depends on the outcome of the other.

At the same time, a large econometric literature has been concerned with estimation of linear

panel data models with fixed effects and lagged dependent variables. Ahn and Schmidt (1995) is a

prominent example of this literature.

This paper combines insights from these literatures by illustrating how the simultaneous binary

outcome model in Schmidt and Strauss (1975) can be modified to allow for panel data with indi-

vidual specific fixed effects and lagged dependent variables. The main contribution of the paper is

to develop a toolbox of estimation procedures that can be used to estimate the resulting models.

Methodologically, the paper fits into the literature that is concerned with estimation of standard

nonlinear panel data models with fixed effects using short panels. This literature has a long history

in econometrics. For example, Rasch (1960) considered conditional likelihood estimation of a static

binary logit model with fixed effects, while Manski (1987) proposed a maximum score estimator

a semiparametric version of the models. Other classical nonlinear models that have been studied

include the censored and truncated regression models (Honoré (1992)), the sample selection model

(Kyriazidou (1997)), and the Poisson regression model (Hausman, Hall, and Griliches (1984)).

Dynamic versions of the same models were studied by Honoré and Kyriazidou (2000), Hu (2002),

Kyriazidou (2001), and Wooldridge (1997). More recently, Kitazawa (2013), Honoré and Weidner

(2020) and Honoré, Muris, and Weidner (2021) derived moment conditions for logit-type models

with fixed effects and lagged dependent variables. The approach to constructing moment conditions

in the paper is in the same spirit as that work.

We illustrate the proposed methods in the context of husband’s and wife’s employment. In

this context, it is natural to allow for the possibility that the outcome for each spouse is related

to the outcome of the other’s, which makes it natural to consider the Schmidt-Strauss framework.

At the same time it is also important to allow for dynamics and heterogeneity in this application

given the panel structure of our data. This makes the models studied in this paper relevant. The

specific empirical question is how the parameter that captures the dependence between outcomes
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for husbands and wives differs by the ethnicity of the couple and varies over time.

The paper is organized as follows: In Section 2, we present the Schmidt and Strauss (1975)

model. In Section 3, we discuss the data. Section 4 presents simple evidence for the intra-household

dependence in couples’ employment by ethnicity. Section 5 discusses the conditional likelihood ap-

proach for estimating the Schmidt and Strauss model incorporating the lagged dependent variables

and fixed effects. Section 6 discusses the method of moments approach of Honoré and Weidner

(2020) which allows for estimating the main parameter of interest. Section 7 concludes. The

Appendix provides moment conditions for a special case of the model.

2 The Schmidt-Strauss Model

Schmidt and Strauss (1975) proposed a cross sectional simultaneous equations logit model in which

two binary variables for an individual i are each distributed according to a logit model conditional

on the other and on a set of explanatory variables

P (y1,i = 1| y2,i, x1,i, x2,i) = Λ
(
x′1,iβ1 + ρy2,i

)
, (1)

P (y2,i = 1| y1,i, x1,i, x2,i) = Λ
(
x′2,iβ2 + ρy1,i

)
,

where x1,i and x2,i are vectors of explanatory variables, β and ρ are parameters to be estimated, and

Λ (·) is the logistic cumulative distribution function1. When ρ is positive (negative), the probability

that y1,i equals one is higher (lower) conditional on y2,i being one than conditional on being zero.

The same holds for the probability that y2,i is one conditional on y1,i. A positive (negative) ρ

therefore corresponds to a positive (negative) statistical relationship between y1,i and y2,i.

The conditional probabilities in (1) emerge from a statistical model in which y1,i and y2,i have

the joint probability distribution

P (y1,i = c1, y2,i = c2|x1,i, x2,i) (2)

=
exp

(
c1x

′
1,iβ1 + c2x

′
2,iβ2 + c1c2ρ

)
1 + exp

(
x′1,iβ1

)
+ exp(x′2,iβ2) + exp

(
x′1,iβ1 + x′2,iβ2 + ρ

) .
1Schmidt and Strauss (1975) show that this model cannot be generalized to allow for different values for ρ in the

distribution of y1,i given y2,i and in the distribution of y2,i given y1,i.
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To see that ρ measures the dependence between y1,i and y2,i in (2) note that

ρ = log (P (y1,i = 1, y2,i = 1|x1,i, x2,i)) + log (P (y1,i = 0, y2,i = 0|x1,i, x2,i)) (3)

− log (P (y1,i = 0, y2,i = 1|x1,i, x2,i))− log (P (y1,i = 1, y2,i = 0|x1,i, x2,i)) .

Therefore, log (P (y1,i = c1, y2,i = c2|x1,i, x2,i)) is supermodular or submodular depending on whether

ρ > 0 or ρ < 0.

The simultaneous logit model of Schmidt and Strauss (1975) has been applied in a variety of

cross sectional studies and in various fields such as labor economics (see, for example, Lehrer and

Stokes (1985)), urban economics (Boehm (1981)), health economics (Akin, Guilkey, and Popkin

(1981) and WANG and ROSENMAN (2007)), transportation (Ye, Pendyala, and Gottardi (2007)),

political science (Kau, Keenan, and Rubin (1982)), finance (Chen, Firth, and Xu (2009)), demog-

raphy (Koo and Janowitz (1983)), and marketing (Chen and Hitt (2000)).

Below, we apply the model of Schmidt and Strauss (1975) (and its panel data extensions) to an

empirical study of husbands’ and wives’ employment status. In this context, i denotes the identity

of the household. The next section introduces the data.

3 Data

For the analysis in this paper, we use the Current Population Survey (CPS) Basic Monthly micro

data from the 40 years between January of 1982 and December of 2021. The data is sourced from

https://www.ipums.org/ (Flood, King, Rodgers, Ruggles, Warren, and Westberry (2021)). The

monthly CPS has a panel design. Households are interviewed for four consecutive months, then

not interviewed for eight months, and finally interviewed for four more consecutive months. We

identify households with one head of household and one married or unmarried partner (of the head).

The data consists of these heads and partners provided that they are of different sex and are both

between the age of 25 and 65 (inclusive).2 Below, we sometimes refer to the partners as husbands

and wives or as spouses although they are not always legally married. Since our ultimate goal is

to investigate the dynamics of the employment status and a number of missing observations are

missing in the last four months, we restrict the sample to the first four interview months, and we

2We further clean the data by eliminating individuals with missing or logically inconsistent age increases or
inconsistent sex or race.
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only use households who are in the sample in all of those four months.

We define four race/ethnicity groups: White, Black, Hispanic, and Other. Below we inter-

changeably refer to these groups as “race”, “ethnicity” or “race/ethnicity”. The couples are then

grouped into five groups based on the race/ethnicity of the two partners: White-White, Black-Black,

Hispanic-Hispanic, Other-Other, and Mixed Race. We refer to these groups as the “ethnicity mix”

(or sometimes just the “ethnicity”) of the couple.

Table 1 presents summary statistics for the variables used in this paper. The first is a dummy

variable for working defined as the employment status being “At work”. The remaining variables

are age in years, a dummy variable for children under the age of 5, a dummy variable for any

children, and dummy variables for three education levels: high school or less, some college and

college degree or more. Note that we report the number of individuals. Since this is a balanced

panel with four time periods, the number of observations is larger by a factor of four.

Table 1: Summary Statistics By Household Ethnicity

Women
All Whites Blacks Hispanics Other Mixed

Working 0.64 0.65 0.67 0.52 0.62 0.67
Age 43.35 43.80 43.41 40.61 41.92 41.26
Kids < 5 0.19 0.18 0.18 0.28 0.25 0.23
Kids 0.65 0.63 0.69 0.81 0.77 0.65
HS or Less 0.50 0.49 0.53 0.73 0.41 0.39
Some College 0.23 0.24 0.26 0.16 0.18 0.28
College+ 0.27 0.28 0.21 0.10 0.42 0.33
No. Individuals 1,002,489 783,312 54,342 63,999 39,765 61,071

Men
All Whites Blacks Hispanics Other Mixed

Working 0.83 0.84 0.76 0.83 0.82 0.84
Age 45.53 45.93 45.88 42.81 44.76 43.52
Kids < 5 0.19 0.18 0.18 0.28 0.25 0.23
Kids 0.65 0.63 0.69 0.81 0.77 0.65
HS or Less 0.50 0.48 0.60 0.75 0.38 0.39
Some College 0.22 0.22 0.23 0.15 0.17 0.28
College+ 0.29 0.30 0.17 0.10 0.44 0.33
No. Individuals 1,002,489 783,312 54,342 63,999 39,765 61,071

The table shows averages by the ethnicity of the couple for the variables used in this paper. The data is from IPUMS

CPS and covers a balanced panel of couples where each individual’s age is between 25 and 65. The data covers the

period between 1982 and 2021.
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4 Simple Evidence

4.1 Summary Statistics

We start by presenting summary statistics for the joint probability of working by ethnicity. The

first panel of Table 2 is for the whole sample, while the next two panels are for the subsamples of

couples without children and with children. Our main takeaway from this table is that there is a

large difference in these probabilities across the ethnicities, with Hispanic-Hispanic couples looking

quite different from the others.

Table 2: Joint Probability of Employment by Ethnicity of the Couple

All
White/White Black/Black Hisp./Hisp. Other/Other Mixed

Husband Husband Husband Husband Husband
No Yes No Yes No Yes No Yes No Yes

Wife No 0.087 0.260 0.114 0.217 0.096 0.388 0.088 0.294 0.074 0.258
Yes 0.076 0.578 0.129 0.540 0.071 0.444 0.087 0.531 0.091 0.577

Without Children
White/White Black/Black Hisp./Hisp. Other/Other Mixed

Husband Husband Husband Husband Husband
No Yes No Yes No Yes No Yes No Yes

Wife No 0.096 0.231 0.124 0.202 0.106 0.342 0.093 0.255 0.081 0.226
Yes 0.084 0.589 0.138 0.537 0.080 0.471 0.096 0.557 0.100 0.593

With Children
White/White Black/Black Hisp./Hisp. Other/Other Mixed

Husband Husband Husband Husband Husband
No Yes No Yes No Yes No Yes No Yes

Wife No 0.044 0.389 0.072 0.283 0.071 0.508 0.073 0.412 0.053 0.364
Yes 0.039 0.528 0.090 0.555 0.048 0.373 0.062 0.453 0.059 0.523

The table shows the fraction of couples in each group that report each combination of working and not working. The

data is from IPUMS CPS and covers a balanced panel of couples where each individual’s age is between 25 and 65.

The data covers the period between 1982 and 2021.

Table 2 aggregates the data for all years. In Figure 1 we plot the joint probability of working

over time for each ethnicity. These are depicted in the four left most plots. The two plots to

the right are the marginal probabilities of working for the husbands and wives. Again, that main

takeaway is that there are interesting differences across ethnicities, with Hispanics and, to a lesser

extent, Blacks standing out. In terms of the evolution of the probabilities over time, the most
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distinct feature is the increase in the employment of women in the first part of the sample. This is

seen in the marginal probabilities as well and the joint probabilities. It is also interesting that the

2008 recession had a large impact on the employment of men, but almost no effect for the women.

Figure 1: Probability Distribution of Employment Over Time By Ethnicity

The data is from IPUMS CPS and covers a balanced panel of couples where each individual’s age is between 25 and

65. The data covers the period between 1982 and 2021.

The left panel of Figure 2 displays the correlation between the spouses’ employment over time.

The reported correlation is a five year centered moving average. The correlation is always positive

for all of the ethnicities. For Blacks and Whites, it remained more or less stable over time, while it

decreased dramatically for the other groups, especially for Hispanics and for Others. It is difficult

to compare correlations of different pairs of binary variables when the marginal probabilities differ

across the pairs. In the right panel of Figure 2, we therefore present the five year centered mov-

ing average of the estimate of the parameter ρ in a Schmidt-Strauss model with no explanatory

variables. Here ρ̂ is calculated by the sample analog of equation (3). The estimated trend for ρ is

similar to that for the correlation, although ρ shows a larger difference between Whites and Blacks.
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Figure 2: Within Household Correlations In Employment Over Time By Ethnicity

The data is from IPUMS CPS and covers a balanced panel of couples where each individual’s age is between 25 and

65. The data covers the period between 1982 and 2021.

4.2 Static Cross Sectional Logit Models

It is clear from the evidence in Section 4.1 that there is a strong relationship between employment

of husbands and of wives. In this section, we document that this persists after controlling for a

set of observable characteristics. Specifically, in the first four columns of Table 3, we present the

results from estimating separate logit models for employment for husbands and for wives as well

as the results from maximum likelihood estimation of the Schmidt-Strauss model in equation (2).

The explanatory variables are dummy variables for the presence of children younger than 5, for any

children, for the person’s own ethnicity, for the education categories “some college” and “college

and above,” and dummy variables for the ethnicity of the couple. The estimation also controls

for year dummies, the age and the age-squared of both the husband and the wife, as well as the

interaction of the ages. The last four columns present the results from estimating the same models

after also including the ethnicity and the education variables of the spouse as explanatory variables.

The estimates of ρ in Table 3 clearly suggest that there is positive association between the

employment of husbands and wives after controlling for observed characteristics. In order to inves-

tigate whether this association varies systematically across ethnicities, we re-estimate the model in

the last two columns of Table 3 separately for each ethnicity. In Table 4, we report the estimated

ρ’s. The most striking finding is that the estimated ρ for Whites is much larger than for other

ethnicities, while the estimate for Hispanics is the lowest. This ordering is consistent with that

found in Figure 2.

Figure 2 above suggested a dramatic fall in the association between the employment of wives
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Table 3: Estimation Of Static Cross Sectional Models Of Employment

Logit Schmidt-Strauss Logit Schmidt-Strauss
Women Men Women Men Women Men Women Men

Kids < 5 −0.808*** 0.015* −0.814*** 0.146*** −0.801*** 0.009 −0.804*** 0.143***
(0.006) (0.008) (0.006) (0.009) (0.006) (0.009) (0.006) (0.009)

Kids −0.183*** 0.218*** −0.209*** 0.253*** −0.180*** 0.220*** −0.206*** 0.254***
(0.005) (0.006) (0.005) (0.006) (0.005) (0.006) (0.005) (0.006)

Black (Woman) −0.041 −0.055 −0.055 −0.114* −0.045 −0.107*
(0.045) (0.045) (0.052) (0.063) (0.053) (0.064)

Hispanic (Woman) −0.095*** −0.111*** −0.132*** −0.003 −0.134*** 0.019
(0.020) (0.020) (0.039) (0.047) (0.039) (0.048)

Other (Woman) −0.156*** −0.171*** −0.199*** −0.078* −0.195*** −0.047
(0.020) (0.020) (0.038) (0.046) (0.039) (0.047)

Some College (Woman) 0.381*** 0.365*** 0.395*** 0.188*** 0.381*** 0.124***
(0.005) (0.005) (0.005) (0.007) (0.005) (0.007)

College+ (Woman) 0.571*** 0.537*** 0.699*** 0.228*** 0.687*** 0.116***
(0.005) (0.005) (0.006) (0.008) (0.006) (0.008)

Black (Man) −0.376*** −0.392*** 0.109*** −0.409*** 0.153*** −0.433***
(0.033) (0.033) (0.039) (0.046) (0.040) (0.047)

Hispanic (Man) 0.003 −0.018 −0.062 −0.039 −0.060 −0.030
(0.025) (0.026) (0.039) (0.048) (0.040) (0.049)

Other (Man) −0.192*** −0.214*** −0.109*** −0.239*** −0.086** −0.225***
(0.028) (0.028) (0.040) (0.048) (0.041) (0.049)

Some College (Man) 0.318*** 0.298*** 0.104*** 0.259*** 0.079*** 0.247***
(0.006) (0.006) (0.005) (0.007) (0.005) (0.007)

College+ (Man) 0.742*** 0.699*** −0.219*** 0.631*** −0.281*** 0.676***
(0.006) (0.006) (0.006) (0.007) (0.006) (0.007)

Black-Black Couple 0.141*** −0.134*** 0.220*** −0.144*** 0.028 0.013 0.033 0.007
(0.045) (0.035) (0.046) (0.035) (0.077) (0.093) (0.078) (0.095)

Hispanic-Hispanic Couple −0.419*** −0.147*** −0.392*** −0.028 −0.331*** −0.065 −0.332*** −0.006
(0.021) (0.027) (0.022) (0.028) (0.075) (0.091) (0.076) (0.093)

Other-Other Couple −0.092*** −0.147*** −0.051** −0.086*** 0.079 −0.016 0.080 −0.027
(0.022) (0.030) (0.022) (0.031) (0.074) (0.090) (0.076) (0.091)

Mixed Couple 0.002 −0.153*** 0.029** −0.134*** 0.042 −0.105** 0.052 −0.113**
(0.012) (0.015) (0.012) (0.015) (0.038) (0.046) (0.039) (0.047)

ρ 0.718*** 0.730***
(0.005) (0.005)

*** p<0.01, ** p<0.05, * p<0.1

The dependent variable is working and the parameters are estimated by maximum likelihood. The data is from

IPUMS CPS and covers a balanced panel of couples where each individual’s age is between 25 and 65. The data

covers the period between 1982 and 2021. Coefficients on year dummies, husband’s and wife’s age, their interaction

and their squares are not reported. Standard errors are clustered at the household level.
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Table 4: Estimation Of Static Cross Sectional Models Of Employment By Ethnicity

Estimates for each ethnicity
Whites Blacks Hispanics Other Mixed

Schmidt-Strauss Schmidt-Strauss Schmidt-Strauss Schmidt-Strauss Schmidt-Strauss
ρ 0.814*** 0.540*** 0.356*** 0.604*** 0.506***

(0.006) (0.019) (0.019) (0.025) (0.020)

*** p<0.01, ** p<0.05, * p<0.1

The dependent variable is working and the parameters are estimated by maximum likelihood using the same specifi-

cation as in Table 3. The data is from IPUMS CPS and covers a balanced panel of couples where each individual’s

age is between 25 and 65. The data covers the period between 1982 and 2021. Standard errors are clustered at the

household level.

Figure 3: Evolution Of Cross Sectional ρ Over Time By Ethnicity

The dependent variable is working and the parameters are estimated by maximum likelihood using the same specifi-

cation as in Table 3. The data is from IPUMS CPS and covers a balanced panel of couples where each individual’s

age is between 25 and 65. The data covers the period between 1982 and 2021 and the estimation is done over five

year centered rolling windows.

and husbands for Hispanic households and for households composed of “other ethnicities”. To

investigate whether this holds after controlling for observable covariates, we estimate the model in

Table 3 for each ethnicity and for rolling 5-year time-spans. The estimated coefficients are presented

in Figure 3. Qualitatively, the pattern in Figure 3 is similar to that in Figure 2: The association

between the employment of wives and husbands has been falling for Hispanics and for Others, while

it has been relatively stable for White, Black and Mixed couples.
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4.3 Simultaneous Logit Models With Lagged Dependent Variables

In the Schmidt-Strauss model estimated in Table 3, Figure 2 and Figure 3, the only avenue for

interdependence between the employment of wives and husbands (conditional on the observed

characteristics) is through the parameter, ρ. If the employment of a partner depends on the lagged

employment of both partners, then this will be captured by ρ.

In order to investigate the role of dynamics, we first estimate the Schmidt-Strauss model in Table

3 after including an individual’s own lagged employment as well as the partner’s as explanatory

variables. Specifically, we estimate the model

P
(
y1,it = c1, y2,it = c2| {y1,is, y2,is}s<t , {x1,is}

t
s=1 , {x2,is}

t
s=1

)
=

exp (c1 (z1,it) + c2 (z2,it) + c1c2ρ)

1 + exp (z1,it) + exp(z2,it) + exp (z1,it + z2,it + ρ)

for c1, c2 ∈ {0, 1} where

z1,it = x′1,itβ1 + y1,it−1γ11 + y2,it−1γ12

z2,it = x′2,itβ2 + y1,it−1γ21 + y2,it−1γ22

and x1,it and x2,it are the explanatory variables used above. The results are presented in Table

5. The results in Table 5 suggest that each partner’s employment depends strongly and positively

on her or his own lagged employment, and that it depends negatively on the partner’s lagged

employment (after controlling for the observed covariates). In combination, these will introduce a

negative correlation in the contemporaneous employment status, which - in turn - would lead to a

downward bias in the estimate of ρ when these dynamic interactions are not controlled for in the

model. This is reflected in the higher estimate of ρ in the model that allows for lagged employment

of both partners as explanatory variables.

Controlling for the lagged employment status of both partners dramatically changed the esti-

mate of ρ. We also estimate the Schmidt-Strauss model in Table 5 separately for each ethnicity

group. Table 6 reports the estimated coefficients on the lagged employment variables as well as

the estimated ρ. In this specification, Hispanics and Blacks are quite similar to each other in

terms of the contemporaneous interdependence between the employment status of the two partners

(measured by ρ) as well as in terms of the dynamic interdependence (measured by the γ’s).

The evolution of parameters that govern the dynamics and the interdependence are shown in
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Table 5: Estimation Of Dynamic Models Of Employment

Schmidt-Strauss
Women Men

Lagged Employment (Woman) 4.684*** −1.668***
(0.005) (0.008)

Lagged Employment (Man) −1.668*** 4.343***
(0.008) (0.006)

Kids < 5 −0.425*** 0.067***
(0.006) (0.007)

Kids −0.110*** 0.162***
(0.004) (0.005)

Black (Woman) −0.049 −0.028
(0.047) (0.052)

Hispanic (Woman) −0.097*** 0.037
(0.035) (0.040)

Other (Woman) −0.115*** −0.004
(0.034) (0.038)

Some College (Woman) 0.213*** 0.077***
(0.005) (0.006)

College+ (Woman) 0.382*** 0.077***
(0.006) (0.006)

Black (Man) 0.055 −0.223***
(0.035) (0.039)

Hispanic (Man) −0.041 0.011
(0.035) (0.040)

Other (Man) −0.054 −0.111***
(0.036) (0.041)

Some College (Man) 0.036*** 0.151***
(0.005) (0.006)

College+ (Man) −0.159*** 0.393***
(0.005) (0.006)

Black-Black Couple 0.076 −0.077
(0.069) (0.077)

Hispanic-Hispanic Couple −0.160** −0.068
(0.067) (0.076)

Other-Other Couple 0.079 −0.066
(0.066) (0.075)

Mixed Couple 0.059* −0.102***
(0.034) (0.039)

ρ 2.040***
(0.008)

*** p<0.01, ** p<0.05, * p<0.1

The dependent variable is working and the parameters are estimated by maximum likelihood. The data is from

IPUMS CPS and covers a balanced panel of couples where each individual’s age is between 25 and 65. The data

covers the period between 1982 and 2021. Coefficients on year dummies, husband’s and wife’s age, their interaction

and their squares are not reported. Standard errors are clustered at the household level.
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Table 6: Estimation Of Dynamic Models Of Employment By Ethnicity

All Whites Blacks Hispanics Other Mixed
γ11 4.684*** 4.678*** 4.481*** 4.716*** 4.976*** 4.678***

(0.005) (0.006) (0.023) (0.021) (0.029) (0.022)
γ12 −1.668*** −1.759*** −1.041*** −1.096*** −1.475*** −1.629***

(0.008) (0.009) (0.037) (0.037) (0.050) (0.034)
γ21 −1.668*** −1.759*** −1.061*** −1.082*** −1.460*** −1.638***

(0.008) (0.009) (0.037) (0.036) (0.050) (0.034)
γ22 4.343*** 4.363*** 4.344*** 4.019*** 4.470*** 4.359***

(0.006) (0.007) (0.024) (0.023) (0.032) (0.025)
ρ 2.040*** 2.170*** 1.357*** 1.262*** 1.764*** 1.868***

(0.008) (0.009) (0.037) (0.037) (0.050) (0.033)

*** p<0.01, ** p<0.05, * p<0.1

The dependent variable is working and the parameters are estimated by maximum likelihood using the same specifi-

cation as in Table 5. The data is from IPUMS CPS and covers a balanced panel of couples where each individual’s

age is between 25 and 65. The data covers the period between 1982 and 2021. Standard errors are clustered at the

household level.

Figures 4 and 5. Specifically, we estimated the Schmidt-Strauss model in Table 5 for each ethnicity

over rolling 5-year time-spans and plotted the estimated of the γ’s and of ρ against time.

Comparing the patterns in Figure 5 to the patterns in Figure 3, we see that Black and Hispanic

couples are more similar. This is consistent with the finding in Table 6. Interestingly, the estimated

ρ’s for Hispanics and for Others are now much more stable over time, while the ρ for Whites is now

trending up.

It is well-understood that it can be difficult to disentangle state dependence (the causal depen-

dence of a variable at one point in time from its value in the previous period) from unobserved

heterogeneity. In the next section, we therefore investigate whether it is possible to allow for fixed

effects in the dynamic Schmidt-Strauss framework.

5 Simultaneous Logit Models With Lagged Dependent Variables

And Fixed Effects

Honoré and Kyriazidou (2019) adapts the Schmidt-Strauss model discussed in Section 2 to a static

panel data setting where each outcome can also depend on an individual specific fixed effect.

12



Figure 4: Evolution Of γ’s Over Time By Ethnicity

The dependent variable is working and the parameters are estimated by maximum likelihood using the same specifi-

cation as in Table 5. The data is from IPUMS CPS and covers a balanced panel of couples where each individual’s

age is between 25 and 65. The data covers the period between 1982 and 2021 and the estimation is done over five

year centered rolling windows.

13



Figure 5: Evolution Of ρ Over Time By Ethnicity

The dependent variable is working and the parameters are estimated by maximum likelihood using the same specifi-

cation as in Table 5. The data is from IPUMS CPS and covers a balanced panel of couples where each individual’s

age is between 25 and 65. The data covers the period between 1982 and 2021 and the estimation is done over five

year centered rolling windows.

Specifically, assume that

P
(
y1,it = 1| y2,it, {y1,is, y2,is}s<t , {x1,is}

T
s=1 , {x2,is}

T
s=1 , α1,i, α2,i

)
= Λ

(
α1,i + x′1,itβ1 + ρy2,it

)
(4)

and

P
(
y2,it = 1| y1,it, {y1,is, y2,is}s<t , {x1,is}

T
s=1 , {x2,is}

T
s=1 , α1,i, α2,i

)
(5)

= Λ
(
α2,i + x′2,itβ2 + ρy1,it

)
In this model, α1,i and α2,i are the fixed effects, x1,it and x2,it are strictly exogenous explanatory

variables, and ρ is the cross-equation dependence parameter, which, as Schmidt and Strauss (1975)

show, needs to be the same in the two equations given the structure in (4) and (5).

Following Schmidt and Strauss (1975) it can be shown that

P
(
y1,it = c1, y2,it = c2| {y1,is, y2,is}s<t , {x1,is}

T
s=1 , {x2,is}

T
s=1 , α1,i, α2,i

)
=

exp
(
c1

(
α1,i + x′1,itβ1

)
+ c2

(
α2,i + x′2,itβ2

)
+ c1c2ρ

)
1 + exp

(
α1,i + x′1,itβ1

)
+ exp(α2,i + x′2,itβ2) + exp

(
α1,i + x′1,itβ1 + α2,i + x′2,itβ2 + ρ

)
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for c1, c2 ∈ {0, 1} . Honoré and Kyriazidou (2019) show that a conditional likelihood argument can

be used to identify and estimate β1, β2, and ρ with as few as T = 2 time periods. Indeed, ρ can be

allowed to be time dependent in (4) and (5).

Honoré and Kyriazidou (2019) also consider a vector autoregressive simultaneous logit model:

P
(
y1,it = 1| y2,it, yt−1

1,i , yt−1
2,i , α1i, α2i

)
= Λ(α1i + y1,it−1γ11 + y2,it−1γ12 + ρy2,it) , (6)

P
(
y2,it = 1| y1,it, yt−1

1,i , yt−1
2,i , α1i, α2i

)
= Λ(α2i + y1,it−1γ21 + y2,it−1γ22 + ρy1,it) .

This model is arguably the most relevant fixed effects model for the application in this paper.

For each individual, we only use data from four months, so with the exception of time-dummies,

there is essentially no exogenous variability in the explanatory variables over time. Moreover, we

use one time period to provide the initial conditions, and the effect of time variables is probably

not important over a three month period.3

Honoré and Kyriazidou (2019) show that (γ11, γ12, γ21, γ22) is identified in the model given in

equation (6) with a total of four time periods (including the one that delivers the initial condition).

However, the conditioning argument that leads to the identification eliminates the parameter ρ

along with the fixed effects, α1i and α2i. On the positive side, this implies that one can allow the

parameter ρ in equation (6) to be individual-specific. On the other hand, ρ may be the parameter of

interest in many applications. This makes it problematic that the conditioning argument eliminates

it along with α1i and α2i. In the next subsection, we first generalize the results in Honoré and

Kyriazidou (2019) to show that using a conditional likelihood approach to eliminate α1i and α2i in

equation (6) will also eliminate ρ for all values of T . The conditional likelihood approach is then

illustrated empirically by obtaining estimates of the γ’s in equation 6 in the context of husbands’

and wives’ employment. Since the simultaneity parameter, ρ, is not generally identified from a

conditional likelihood approach, we next consider a restricted version of the model, in which the

two individual fixed effects are the same, except for an additive constant. In our application,

we interpret this as a model with household specific fixed effects. This model is also illustrated

empirically.

3The 2008 financial crisis and the onset of the pandemic in 2020 are possible exceptions to this.
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5.1 Conditional Likelihood For The AR(1) Schmidt-Strauss Model With Fixed

Effects

The traditional approach to estimating nonlinear fixed effects models is to find a sufficient statistic

for the fixed effects, and then to construct a conditional likelihood function conditioning on the

sufficient statistic. By construction, this conditional likelihood function will not depend on the

fixed effects and it may or may not depend on some or all of the parameters of interest. In this

subsection, we consider the conditional likelihood approach for the model in equation (6). This

extends the analysis in Honoré and Kyriazidou (2019).

We consider a situation in which a pair of outcomes4 (y1,t, y2,t) from equation (6) are observed

for T periods. We also assume that the initial condition, (y1,0, y2,0), is observed. We denote

the probability distribution of (y1,0, y2,0) by p (y1,0, y2,0, α1, α2), and we do not assume that it is

necessarily generated by the same model. For notational simplicity, we let z1,t = γ11y1,t + γ12y2,t

and z2,t = γ21y1,t + γ22y2,t.

With this, the probability of a particular sequence is

p (y1,0, y2,0, α1, α2)
T∏
t=1

exp (y1,t (z1,t−1 + α1)) exp (y2,t (z2,t + α2)) exp (y1,ty2,tρ)

T∏
t=1

{1 + exp (z1,t−1 + α1) + exp (z2,t−1 + α2) + exp (z1,t−1 + z2,t−1 + α1 + α2 + ρ)}

=
p (y1,0, y2,0, α1, α2)

1 + exp (z1,0 + α1) + exp (z2,0 + α2) + exp (z1,0 + z2,0 + α1 + α2 + ρ)

T∏
t=1

exp (y1,t (z1,t−1 + α1)) exp (y2,t (z2,t + α2)) exp (y1,ty2,tρ)

T−1∏
t=1

{1 + exp (z1,t + α1) + exp (z2,t + α2) + exp (z1,t + z2,t + α1 + α2 + ρ)}
.

Now consider two different sequences of {(y1,t, y2,t)}Tt=1 with the same (y1,0, y2,0). The prob-

ability of one of the sequences conditional on observing one of the two depends on the ratio of

the probabilities for the two sequences. The key question is whether the individual-specific effects

cancel in that ratio.

In the numerator, the α’s cancel if two sequences have the same
∑T

t=1 y1,t and the same
∑T

t=1 y2,t.

In the denominator, each combination of (y1,ty2,t) must appear equally often. The latter is the same

4Here we drop the subscript i for simplicity.
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as saying that
∑T−1

t=1 y1,t,
∑T−1

t=1 y2,t,
∑T−1

t=1 y1,ty2,t must be the same5. This suggests the sufficient

statistic (
y1,0, y2,0,

T−1∑
t=1

y1,t,

T−1∑
t=1

y2,t,

T−1∑
t=1

y1,ty2,t, y1,T , y2,T

)

and the conditional likelihood function (for a given observation with fixed effects α1 and α2) is

therefore

L =

T∏
t=1

exp (y1,t (γ11y1,t−1 + γ12y2,t−1)) exp (y2,t (γ21y1,t−1 + γ22y2,t−1))

∑
B

T∏
t=1

exp (ct (γ11ct−1 + γ12dt−1)) exp (dt (γ21ct−1 + γ22dt−1))

(7)

where B is the set of all sequences such that

c0 = y1,0, d0 = y2,0,
T−1∑
t=1

ct =
T−1∑
t=1

y1,t,
T−1∑
t=1

dt =
T−1∑
t=1

y2,t,

T−1∑
t=1

ctdt =
T−1∑
t=1

y1,ty2,t, cT = y1,T , dT = y2,T .

Note that not only does α drop out of the conditional likelihood, but so does ρ. In other words,

a conditional likelihood approach does not identify ρ for any T . Also note that the conditional

likelihood is constant if T < 3, so at least three period are needed in addition to the one providing

the initial conditions.

We finally note that the argument above is unchanged if one replaces γ11, γ12, γ21, γ22, and

ρ with functions of exogenous covariates as long as the functions do not change over time. For

example, in the application some of these parameters could be functions of the level of education

or of the presence of children.

5.2 Empirical Illustration

In Table 7, we present the results from estimating γ11, γ12, γ21, and γ22 using the conditional

likelihood approach discussed above. As expected, the fixed effects estimates are much lower than

those reported in Table 6, which did not allow for unobserved heterogeneity. Figure 6 shows the

5On the other hand, it seems that the only way to generalize the conditioning argument to a model that also
allows for time varying explanatory variables is to condition on equality of the explanatory variables across different
time periods. Without such a restriction, the fixed effects in the denominators cannot cancel each other. Chountas
and Kyriazidou (2021) pursue such a strategy for the conditional likelihood in a multinomial multivariate model
with discrete explanatory variables. In the case of continuous explanatory variables, one may use the kernel weight
approach introduced in Honoré and Kyriazidou (2000), although this would lead to an estimator that converges slower
that the usual

√
n.
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Table 7: Estimation Of Dynamic Model With Individual Fixed Effects By Ethnicity

All Whites Blacks Hispanics Other Mixed
γ11 1.620*** 1.611*** 1.640*** 1.601*** 1.684*** 1.761***

(0.014) (0.016) (0.061) (0.056) (0.080) (0.062)
γ12 −0.296*** −0.338*** −0.193** −0.078 −0.030 −0.268***

(0.022) (0.025) (0.085) (0.085) (0.113) (0.088)
γ21 −0.280*** −0.311*** −0.246*** −0.039 −0.079 −0.302***

(0.021) (0.024) (0.086) (0.080) (0.112) (0.085)
γ22 1.357*** 1.350*** 1.415*** 1.324*** 1.381*** 1.420***

(0.017) (0.019) (0.065) (0.058) (0.086) (0.067)

*** p<0.01, ** p<0.05, * p<0.1

The dependent variable is working and the parameters are estimated maximizing the conditional likelihood in (7).

The data is from IPUMS CPS and covers a balanced panel of couples where each individual’s age is between 25 and

65. The data covers the period between 1982 and 2021.

results of estimating the model on rolling 5-year sub-samples for each ethnicity. The estimates are

fairly stable over time, and not very different across ethnicities. Overall, there is strong evidence

that, after controlling for fixed effects, an individual’s own lagged employment has a positive effect.

The effect of the spouse’s lagged employment tends to be negative and smaller in magnitude.

As a comparison, Chountas and Kyriazidou (2021) estimate multinomial fixed effects model of

husbands and wives employment. They use quarterly data from the German Socio-Economic panel

for the years 2013-15 and four different labor states (full time employment, part time employment,

unemployment and out of labor force), and find strong negative effects of the husband’s lagged

employment on the wife, but mostly positive although statistically insignificant effects of the wife’s

lagged employment on the husband.

5.3 Conditional Likelihood With Restricted Fixed Effects

In this subsection, we investigate whether additional identification can be obtained by assuming

that α1 = α and α2 = α1 + κ for some constant κ. Our motivation is to see whether this will allow

for identification of ρ. In our application, we interpret this as a model with a family specific fixed

effect and a spouse specific level (κ).

As before, we consider a situation in which a pair of outcomes from equation (6) are observed

for T periods (in addition to period 0, which delivers the initial condition). Again, we use the

notation z1,t = γ11y1,t + γ12y2,t and z2,t = γ21y1,t + γ22y2,t. With α2 = α1 + κ , the probability of a
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Figure 6: Evolution Of γ’s Over Time By Ethnicity Allowing For Individual Fixed Effects

The dependent variable is working and the parameters are estimated maximizing the conditional likelihood in (7).

The data is from IPUMS CPS and covers a balanced panel of couples where each individual’s age is between 25 and

65. The data covers the period between 1982 and 2021 and the estimation is done over five year centered rolling

windows.
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particular sequence becomes

p (y1,0, y2,0, α)
T∏
t=1

exp (y1,t (z1,t−1 + α)) exp (y2,t (z2,t + α+ κ)) exp (y1,ty2,tρ)

T∏
t=1

{1 + exp (z1,t−1 + α) + exp (z2,t−1 + α+ κ) + exp (z1,t−1 + z2,t−1 + 2α+ κ+ ρ)}

=
p (y1,0, y2,0, α)

1 + exp (z1,0 + α) + exp (z2,0 + α+ κ) + exp (z1,0 + z2,0 + 2α+ κ+ ρ)

T∏
t=1

exp (y1,t (z1,t−1 + α)) exp (y2,t (z2,t + α+ κ)) exp (y1,ty2,tρ)

T−1∏
t=1

{1 + exp (z1,t + α) + exp (z2,t + α+ κ) + exp (z1,t + z2,t + 2α+ κ+ ρ)}
.

As above, the key question is whether the individual-specific a’s cancel in the ratio of the proba-

bilities of two different sequences with the same initial conditions. In the numerator, the α’s cancel

if the two sequences have the same
∑T

t=1 y1,t +
∑T

t=1 y2,t. In the denominator, each combination of

(y1,t, y2,t) must appear equally often6. The latter is the same as saying that
∑T−1

t=1 y1,t,
∑T−1

t=1 y2,t,∑T−1
t=1 y1,ty2,t must be the same. This suggests the sufficient statistic

(
y1,0, y2,0,

T−1∑
t=1

y,
T−1∑
t=1

y2,t,
T−1∑
t=1

y1,ty2,t, y1,T + y2,T

)

The difference from the case where the α’s are unrestricted is that we do not need to condition on

y1,T and y2,T , but only on the sum. The implication is that a conditional likelihood approach will

lead to more sequences being compared to each other.

The conditional likelihood function (for a given individual) is

L =

T∏
t=1

exp (y1,t (γ11y1,t−1 + γ12y2,t−1)) exp (y2,t (γ21y1,t−1 + γ22y2,t−1 + κ))

∑
B

T∏
t=1

exp (ct (γ11ct−1 + γ12dt−1)) exp (dt (γ21ct−1 + γ22dt−1 + κ))

(8)

where B is the set of all sequences such that

c0 = y0, d0 = z0,

T−1∑
t=1

ct =

T−1∑
t=1

y1,t,

T−1∑
t=1

dt =

T−1∑
t=1

y2,t,

T−1∑
t=1

ctdt =

T−1∑
t=1

y1,ty2,t, cT + dT = y1,T + y2,T

6As was the case in Section 5.1, it seems that the only way to generalize the conditioning argument to a model
that also allows for time varying variables is to condition on equality of the explanatory variables across different
time periods.
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Table 8: Estimation Of Dynamic Model With Household Fixed Effects By Ethnicity

All Whites Blacks Hispanics Other Mixed
γ11 2.385*** 2.374*** 2.364*** 2.403*** 2.436*** 2.485***

(0.014) (0.016) (0.058) (0.059) (0.078) (0.060)
γ12 −1.511*** −1.542*** −1.409*** −1.318*** −1.298*** −1.505***

(0.015) (0.018) (0.063) (0.060) (0.081) (0.065)
γ21 −1.538*** −1.576*** −1.392*** −1.403*** −1.310*** −1.485***

(0.015) (0.016) (0.060) (0.060) (0.078) (0.061)
γ22 2.263*** 2.285*** 2.231*** 2.097*** 2.206*** 2.315***

(0.016) (0.018) (0.064) (0.059) (0.083) (0.065)

*** p<0.01, ** p<0.05, * p<0.1

The dependent variable is working and the parameters are estimated maximizing the conditional likelihood in (8).

The data is from IPUMS CPS and covers a balanced panel of couples where each individual’s age is between 25 and

65. The data covers the period between 1982 and 2021.

Note that while α and ρ drop out of this expressions, κ does not. Also note that this argument is

unchanged if one replaces κ with some function of predetermined covariates as long as the function

does not change over time. The same is true for the parameters γ11, γ12, γ21, and γ22.

5.4 Empirical Illustration

In Table 8, we present the results from estimating γ11, γ12, γ21, and γ22 using the conditional

likelihood approach discussed above. The fixed effects estimates are again lower than those reported

in Table 6, which did not allow for unobserved heterogeneity, but they are larger than the ones

that were obtained when we did not restrict the fixed effects for the husbands and the wives. Since

the conditional likelihood in equation (8) uses more observations that the one in equation (7), we

would expect the estimated standard error to be smaller in Table 8 than in Table 7.

Figure 7 shows the results of estimating the model on rolling 5-year sub-samples for each

ethnicity. The estimates are fairly stable over time, and not very different across ethnicities.

6 Moment Conditions For The AR(1) Schmidt-Strauss Model With

Fixed Effects

In panel data models with fixed effects, it is sometimes possible to construct moment conditions

that do not depend on the fixed effects. When that is the case, one can consider estimating the

common parameters of the model by generalized methods of moments. The dynamic linear panel
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Figure 7: Evolution Of γ’s Over Time By Ethnicity Allowing For Household Fixed Effects

The dependent variable is working and the parameters are estimated maximizing the conditional likelihood in (8).

The data is from IPUMS CPS and covers a balanced panel of couples where each individual’s age is between 25 and

65. The data covers the period between 1982 and 2021 and the estimation is done over five year centered rolling

windows.

data model is a simple example of this; see, for example Anderson and Hsiao (1981) or Holtz Eakin,

Newey, and Rosen (1988). Applications of this idea to nonlinear models include Honoré (1992),

Kyriazidou (2001), Hu (2002) and Kitazawa (2013).7 Bonhomme (2012) propose a general approach

for constructing such moment conditions and Honoré and Weidner (2020) develop a specific numeric

strategy for determining whether such moment conditions can be constructed in particular models

with discrete outcomes. In this section, we report the results from applying the approach in Honoré

and Weidner (2020) to determine whether there are moments that can be used to estimate ρ in a

Schmidt-Strauss model with lagged dependent variables and fixed effects.

7The maximum score estimator in Manski (1987) can be motivated in terms of moment inequalities.
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We consider two versions of the model

P
(
y1,it = c1, y2,it = c2| {y1,is, y2,is}s<t , {x1,is}

T
s=1 , {x2,is}

T
s=1 , α1,i, α2,i

)
=

exp (c1 (z1,it + α1,i) + c2 (z2,it + α2,i) + c1c2ρ)

1 + exp (z1,it + α1,i) + exp(z2,it + α2,i) + exp (z1,it + α1,i + z2,it + α2,i + ρ)

for t = 1, 2, 3 and c1, c2 ∈ {0, 1} where

z1,it = x′1,itβ1 + y1,it−1γ11 + y2,it−1γ12

z2,it = x′2,itβ2 + y1,it−1γ21 + y2,it−1γ22.

In one version, α1,i and α2,i are unrestricted, while the other version restricts them to be identical

except for an additive constant. Table 9 reports the number of moment conditions for each of the

two versions of the dynamic fixed effects Schmidt-Strauss model when one has 3, 4 or 5 time periods

of observations in addition to the one that provides the initial conditions.

The data used in this paper has a total of four consecutive time periods, and the results for

T = 3 are therefore the relevant ones here. In the illustration in Sections 5.2 and 5.4, we have

no strictly exogenous time-varying explanatory variables, so according to the calculation reported

in Table 9, there will be no moment conditions that depend on ρ when the fixed effects are left

unrestricted. On the other hand, there will be six moment conditions for each initial condition

when the fixed effects are restricted to be equal except for an additive constant. With more that

three time periods (in addition to the one providing the initial conditions), the results suggest that

there are moment conditions that depend on ρ even when the fixed effects are unrestricted. While

introducing explanatory variables changes the number of moment conditions, it does not change

the answer to the questions of whether there exist moment conditions that depend on ρ for a given

value of T .

6.1 Moment Conditions For ρ

It is not always easy to derive analytical expressions for the moment conditions. For the empirical

application in Sections 5.2 and 5.4 of this paper, T is three and there are no strictly exogenous

time-varying explanatory variables. In order to make statements about ρ, we therefore have to limit

attention to the model in which the fixed effect is household specific in the sense that αi2 = αi1+κ.

As mentioned above, there will be a total of 45 moment conditions in this case. One can write
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Table 9: The Number of Moment Conditions in the Schmidt-Strauss Model

T = 3 T = 4 T = 5

xk,it = 0, unrestricted (αi,1, αi,2) 24 / 21 / 0 180 / 136 / 4 900 / 534 / 16

xk,it = 0, restricted αi,2 = αi,1 + κ 45 / 42 / 6 229 / 185 / 18 989 / 623 / 36

xk,it ̸= 0, unrestricted (αi,1, αi,2) 4 / 4 / 0 120 / 120 / 64 780 / 780 / 256

xk,it ̸= 0, restricted αi,2 = αi,1 + κ 45 / 45 / 16 229 / 229 / 48 989 / 989 / 96

Results from the numerical counting of moment conditions for the dynamic simultaneous logit are reported. Four

different model specifications are considered: additional exogenous regressors are present (xk,it ̸= 0) or not (xk,it = 0),

and the fixed effects (αi,1, αi,2) are unrestricted or restricted (αi,2 = αi,1 + κ). For each of those four specifications

and each value of T we report ntot / npara / nρ, where ntot is the total number of moment conditions available, npara

is the number of moment conditions available that depend on any of the common parameters (γ, β, ρ, κ), and nρ is

the number of moment conditions available that depend on the parameter ρ. All results are for one fixed value of the

initial condition (y1,i0, y2,i0), but the number of moment conditions is independent from the initial condition. Notice

that for T = 3 and unrestricted (αi,1, αi,2) we have nρ = 0, and in general we believe that the parameter is not

identified in that case. However, for either T > 3 or restricted αi,2 = αi,1 + κ we find that nρ > 0 and the parameter

ρ can be identified and estimated from those moment conditions.

these as six that depend on ρ, 36 that depend on some of the common parameters in the model,

but not on ρ, and three that do not depend on any of the parameters in the model. In principle,

one may need to use all of these moments to construct an efficient GMM estimator. On the other

hand, we can already identify the γ’s and κ from the conditional likelihood approach in Section

5.3, so we only need to use one moment8 that depends on ρ in order to (inefficiently) estimate

ρ. We therefore focus on finding the six moment linearly independent moment conditions that

depend on ρ. Unfortunately, these will not be unique. For example, adding a linear combination of

moment conditions that do not depend on ρ to one of the six that do, will leave us with six linearly

independent moment conditions that depend on ρ. This also means that some of the moment

conditions can be extremely complicated.

Fortunately, it turns out that for the model considered here, one can find six linearly independent

moment conditions (for each initial condition) which all depend on ρ, and where each only depends

on five of the 64 possible sequences. They are given in the Appendix, and we use those to estimate

ρ in the next subsection. These moment conditions are linear in exp (ρ).

8Subject to an identification condition that guarantees that the moment condition has a unique solution for ρ.
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Table 10: GMM Estimates Of ρ By Ethnicity Allowing For Household Fixed Effects

All Whites Blacks Hispanics Other Mixed
ρ 1.260*** 1.420*** 0.360* 0.550*** 0.730*** 0.960***

(0.041) (0.052) (0.211) (0.156) (0.207) (0.163)

*** p<0.01, ** p<0.05, * p<0.1

The dependent variable is working and the parameters are estimated by generalized method of moments using the

moment conditions in the Appendix. The data is from IPUMS CPS and covers a balanced panel of couples where

each individual’s age is between 25 and 65. The data covers the period between 1982 and 2021. Standard errors are

calculated via the bootstrap. Bootstrap estimates of the vector of γ’s are obtained by bootstrapping their influence

function. Bootstrap estimates of ρ are then calculated using GMM after recalculating the weighting matrix.

6.2 Empirical Illustration

In this subsection, we illustrate how the method of moments approach discussed above can be used

to estimate ρ. We proceed in two steps. We first estimate the γ’s and κ using the conditional

likelihood approach. We then fix the γ’s and κ at those estimates and estimate ρ by generalized

method of moments using the moment conditions in the appendix. As weighting matrix, we use

the inverse of a diagonal matrix that has the variance of the moments evaluated at ρ = 0 in the

diagonal. This choice is arbitrary and may lead to statistical inefficiency, but ρ = 0 is a natural

benchmark, and the hope is that using a diagonal matrix will alleviate small sample issues resulting

from estimation of an efficient weighting matrix.9 Since the moment conditions are linear in exp (ρ),

the GMM objective function will be quadratic in exp (ρ). This implies that it is numerically well

behaved and that ρ is actually identified from it. On the other hand, the solution for exp (ρ),

can sometimes be negative in finite samples. For the estimation below, we search over values of ρ

between −2 and 4.

The results of the estimation of ρ are presented in Table 10. Compared to the estimates

on ρ presented in Table 6, the fixed effects estimates are much smaller. This suggests that the

household specific fixed effect captures much more of the intra-household correlation than the

observed characteristics.

Figure 8 presents the results of estimating ρ separately for each ethnicity over rolling 5-year

periods. The estimates for Whites seem fairly stable over time and are statistically significantly

different from 0 in all time periods.10 When testing at a 5% level of significance, the estimates for

9While the overall sample is large, each of the moment only depends on specific sequences that comprise very
small fraction of the observations. In our application, these fractions ranged from less than 0.1% to 3%.

10The p-value for the test is less than 1% in all cases. All test referred to in this paragraph are based on estimating

25



Figure 8: Evolution Of ρ By Ethnicity Allowing For Household Fixed Effects

The dependent variable is working and the parameters are estimated by generalized method of moments using the

moment conditions in the appendix and the γ’s from Figure 7. The data is from IPUMS CPS and covers a balanced

panel of couples where each individual’s age is between 25 and 65. The data covers the period between 1982 and

2021 and the estimation is done over five year centered rolling windows.

the other ethnicities are statistically significantly different from 0 in only six of 144 cases (four for

Blacks and two for Others).

7 Conclusion

Two of Peter Schmidt’s many contributions to econometrics have been to introduce an econometric

model for bivariate binary outcomes and to study estimation of dynamic linear fixed effects panel

data models using short panels. In this paper, we have combined aspects of this research by studying

a version of the model introduced in Schmidt and Strauss (1975) that allows for lagged dependent

variables and fixed effects.

We first use the conditional likelihood approach of Honoré and Kyriazidou (2019) to construct

a likelihood function that does not depend on the fixed effects of the model. While this conditional

likelihood can be used to estimate the other parameters of the model when the total number of time

periods is at least four, it turns out that it does depend on the parameter ρ, which in the Schmidt-

Strauss model captures the intra-household dependence. Our conditional likelihood approach can

exp(ρ) without imposing that it is positive, and then testing whether it differs from exp(0). The reason is that when
we estimate ρ, we sometimes obtain a point estimate at the lower bound of the parameter space.
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therefore not be used to estimate the simultaneity parameter, ρ.

We next use the approach in Honoré and Weidner (2020) to study whether one can construct

moment conditions that can be used to estimate ρ. We find that it is in principle possible to

estimate the common parameters of such models when the total number of time periods for each

individual is at least five. To construct moment conditions for four time periods, it is necessary to

restrict the model. We do this by restricting the fixed effects for the two outcomes to be equal,

except for an additive constant.

We apply the estimation strategy developed in this paper to estimate a simple model for the

relationship of employment of husbands and wives. Our main conclusion is that the parameter that

captures the intra-household “correlation” in employment differs by the ethnicity composition of

the couple even after one allows for unobserved household specific heterogeneity.
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Appendix: Moment Conditions

In this Appendix, we explicitly present the six moment conditions discussed in Section 6.1. To

simplify the notation, we write Γij = exp (γij), B = exp (β), and P = exp (ρ).

Moment Condition 1

E

[
5∑

k=1

mk1
{(

{y1,t}3t=0 , {y2,t}
3
t=0

)
= sk

}]
= 0

where

s1 = (a, 0, 0, 1, b, 0, 1, 0)

s2 = (a, 0, 0, 1, b, 0, 1, 1)

s3 = (a, 0, 1, 0, b, 0, 1, 0)

s4 = (a, 0, 1, 0, b, 1, 1, 0)

s5 = (a, 0, 1, 1, b, 0, 1, 0)

and

m1 = BΓ11Γ22P
[
Γ12

(
−BΓ21Γ

2
22 + (B + 1)Γ22 + Γ11 (Γ21Γ22 (BΓ22 −B − 1) + 1)− 1

)
+B (Γ21 − 1) Γ22 + Γ11 (Γ21 − 1) Γ22Γ

2
12

]

m2 = Γ11

[
B2 (Γ21 − 1) Γ2

22+

Γ2
12

(
−BΓ2

22P + Γ11

(
BΓ21Γ

2
22P − (B + 1)Γ22 + 1

)
+ (B + 1)Γ22 − 1

)
+BΓ22Γ12 (BΓ22 − Γ21 ((B + 1)Γ22 − 1) + Γ11 (1− Γ21P ) + Γ22 + P − 2)

]

m3 = −BΓ11Γ12Γ22[
Γ12

(
−BΓ21Γ

2
22 + (B + 1)Γ22 + Γ11 (Γ21Γ22 (BΓ22 −B − 1) + 1)− 1

)
+B (Γ21 − 1) Γ22 + Γ11 (Γ21 − 1) Γ22Γ

2
12

]
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m4 = −Γ11Γ12Γ
−a
21 Γ

1−b
22

[
Γ11(

B2 (Γ21 − 1) Γ21Γ
2
22 +BΓ22Γ12

(
2Γ21(P − 2) + Γ2

21 + 1
)
−
(
(Γ21 − 1) Γ2

12

))
+ Γ12Γ

2
11 (BΓ21Γ22 (1− Γ21P ) + Γ12 (Γ21 − 1)) +BΓ22 (Γ12 (Γ21 − P )−B (Γ21 − 1) Γ21Γ22)

]

m5 = BΓ22

[
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2
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−BΓ2
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2
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)
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2
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]
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[
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mk1
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)
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}]
= 0

where

s1 = (a, 0, 0, 1, b, 1, 0, 0)

s2 = (a, 0, 0, 1, b, 1, 0, 1)

s3 = (a, 0, 1, 0, b, 0, 1, 1)
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and
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11Γ

b
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[
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where

s1 = (a, 0, 0, 0, b, 0, 1, 0)
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Γ21 (−(B + 1)Γ22 + P − 2) + (B + 1)Γ2

21 + Γ22

)
+ Γ12 (Γ21 (BΓ22P −B − 1) + 1)

]
+ B (BΓ21 (Γ22 − Γ21) + Γ12 (Γ21 − Γ22P ))]
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m5 = B
[
Γ11

(
B2Γ21 (Γ21 − Γ22) Γ22 +BΓ12

(
2Γ22Γ21(P − 2) + Γ2

21 + Γ2
22

)
+ Γ2

12 (Γ22 − Γ21)
)

+ Γ2
11 (BΓ21 (Γ22 − Γ21P ) + Γ12 (Γ21 − Γ22)) +BΓ12Γ22 (BΓ21 (Γ22 − Γ21) + Γ12 (Γ21 − Γ22P ))

]
Moment Condition 6

E

[
5∑

k=1

mk1
{(

{y1,t}3t=0 , {y2,t}
3
t=0

)
= sk

}]
= 0

where

s1 = (a, 0, 0, 0, b, 1, 0, 1)

s2 = (a, 0, 1, 0, b, 1, 0, 1)

s3 = (a, 0, 1, 1, b, 0, 0, 0)

s4 = (a, 0, 1, 1, b, 0, 0, 1)

s5 = (a, 1, 0, 0, b, 0, 1, 0)

and

m1 = Γa
11Γ

1−a
21 Γb

12Γ
−b
22

[
−Γ12

(
−Γ22

(
B2 − 2BP + 4B + 1

)
+B(B + 1)Γ2

22 +B + 1
)

+ Γ2
12

(
BΓ2

22P − (B + 1)Γ22 + 1
)
+B

(
BΓ2

22 − (B + 1)Γ22 + P
)]

m2 = BPΓa
11Γ

−a
21 Γ

b
12Γ

1−b
22 [B (Γ21 − Γ22) + Γ12 (Γ22 (B (−Γ21) +B + 1)− 1)

+ Γ11 (Γ21 (BΓ22 −B + Γ12 − 1)− Γ12Γ22 + 1)]

m3 = B2Γ21Γ
a−1
11 Γb

12[
Γ12(−B2Γ22 +BΓ22P + Γ11 (Γ22 (BΓ21(−P ) +B + 1)− 1)

− 2BΓ22 +BΓ21 ((B + 1)Γ22 − 1) +B − Γ22 + 1)

+B (Γ22 (B (−Γ21) +B + 1) + Γ11 (Γ21P − Γ22)− P )
]
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m4 = B2Γa−1
11 Γb

12 [B (Γ22 − Γ21) + Γ12 (Γ22 (BΓ21 −B − 1) + 1)

+ Γ11 (Γ21 (B (−Γ22) +B − Γ12 + 1) + Γ12Γ22 − 1)]

m5 = B
[
B2 (Γ21 − Γ22) Γ22 +BΓ12 (Γ22 ((B + 1)Γ22 + P − 2)− Γ21 ((B + 1)Γ22 − 1))

+ Γ2
12

(
−BΓ2

22P + (B + 1)Γ22 − 1
)

+ Γ11 (B (Γ22 − Γ21P ) + Γ12 (Γ22 (BΓ21P −B − 1) + 1))]
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