
Marquardt, Kelli

Working Paper

Mis(sed) diagnosis: Physician decision-making and
ADHD

Working Paper, No. WP 2022-23

Provided in Cooperation with:
Federal Reserve Bank of Chicago

Suggested Citation: Marquardt, Kelli (2022) : Mis(sed) diagnosis: Physician decision-making
and ADHD, Working Paper, No. WP 2022-23, Federal Reserve Bank of Chicago, Chicago, IL,
https://doi.org/10.21033/wp-2022-23

This Version is available at:
https://hdl.handle.net/10419/267982

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.21033/wp-2022-23%0A
https://hdl.handle.net/10419/267982
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Fe
de

ra
l R

es
er

ve
 B

an
k 

of
 C

hi
ca

go
 Mis(sed) Diagnosis: Physician Decision-Making 

and ADHD 

Kelli Marquardt

June 2022 

WP 2022-23 
https://doi.org/10.21033/wp-2022-23 

*Working papers are not edited, and all opinions and errors are the
responsibility of the author(s). The views expressed do not necessarily
reflect the views of the Federal Reserve Bank of Chicago or the Federal
Reserve System.



Mis(sed) Diagnosis: Physician Decision-Making and 
ADHD

Kelli Marquardt∗

Federal Reserve Bank of Chicago†

The University of Arizona

June 2022

Abstract

While the presence of disparities in healthcare is well documented, the mechanisms
of such disparities are less understood, particularly in relation to mental health. This
paper develops and estimates a structural model of diagnosis for the most prevalent
child mental health condition, Attention Deficit Hyperactivity Disorder (ADHD). The
model incorporates both patient and physician influences to highlight four key mecha-
nisms of mental health diagnosis: underlying prevalence of ADHD symptoms, mental
healthcare utilization, diagnostic uncertainty, and disutility from diagnostic errors. I
estimate gender-specific model parameters using novel doctor note data together with
machine learning and natural language processing techniques. In raw comparisons,
male patients are 2.3 times more likely to be diagnosed with ADHD than female ones.
Counterfactual simulations using model estimates show that less than half of this di-
agnostic disparity can be explained by differences in underlying symptom prevalence
by gender. Through this exercise, I find that physicians view missed diagnosis to be
costlier than misdiagnosis, especially for their male patients. Back of the envelope cal-
culations suggest that reducing ADHD diagnostic errors could save $27.6-$52.8 billion
dollars nationally.
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1 Introduction

Healthcare disparities, traditionally defined as differences in health treatment and outcomes

across population groups, are of substantial concern in the United States.1 While overall

health disparities have been declining recently, mental health disparities show the opposite

trend (AHRQ, 2019). Within mental health, disparities are particularly salient for Attention

Deficit Hyperactivity Disorder (ADHD). Approximately 10% of children are diagnosed with

ADHD, and males are diagnosed and treated 2 to 3 times more frequently than females. The

psychology literature suggests that this clinical diagnostic difference is larger than what can

be explained by true underlying prevalence rates, with evidence showing over-diagnosis of

males and under-diagnosis of females on average (Bruchmüller et al., 2012; Hinshaw, 2018).

Both missed and mis-diagnoses are costly, including lower productivity and human capital

accumulation for untreated ADHD and harmful side-effects from over-treatment.2 Ensuring

accurate diagnosis for ADHD is essential because its annual economic impact is large, ranging

from $168 to $312 billion U.S. dollars (Doshi et al., 2012).3

This paper develops and estimates a model of ADHD diagnosis in order to explore the

potential causes of differing diagnosis rates across male and female children. I propose and

analyze four key mechanisms of ADHD diagnostic disparities: (1) differences in patient

preference to seek mental health care, (2) varying rates of diagnostic uncertainty, (3) het-

erogeneous physician preferences for ADHD diagnosis, and (4) underlying differences in the

true prevalence of ADHD symptoms between boys and girls. Importantly, the model also

allows me to identify the extent of ADHD diagnostic errors (both missed and mis-diagnosis)

according to national guidelines as well as the potential heterogeneous impact across patients.

1U.S. Congress mandates annual National Healthcare Quality and Disparities Reports in accordance with
the Healthcare Research and Quality Act of 1999. State governments have also enacted legislation in response
to healthcare disparities (see: https://www.ncsl.org/research/health/health-disparities-laws.

aspx).
2Diagnosed ADHD is often managed with stimulant medications that fall under the CDC schedule IIN

controlled substance category associated with “high potential for abuse which may lead to severe psycholog-
ical or physical dependence.” See: https://www.deadiversion.usdoj.gov/schedules/

3Inflated to 2019 U.S. dollars using consumer-price-index from the U.S. Bureau of Labor Statistics.
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My model has three distinct stages to reflect how the mental health diagnosis decision is

made. In the first stage, patients (or rather their parents) decide whether or not to sched-

ule a behavioral assessment with a diagnosing physician. This is a function of underlying

unobserved symptom severity in addition to mental healthcare utilization costs. Second,

physicians conduct a behavioral assessment for this subset of patients and record/document

the patient responses in a clinical doctor note. The physicians use this information to update

their belief as to whether the patient matches national guidelines for ADHD diagnosis via

a Bayesian learning process. In the final stage, physicians decide whether or not to diag-

nose the patient with ADHD. They do so if the patient specific posterior belief of ADHD

symptom match is above a gender-specific diagnostic threshold. This threshold is set by the

physician ex-ante and is a function of the costs they bear from potential diagnostic errors. I

allow for both diagnostic uncertainty and diagnostic preferences to vary by patient gender to

emphasize how the physician decision-making process contributes to diagnostic disparities.4

I empirically analyze the male/female ADHD diagnostic disparity using data derived from

electronic health records from 2014 to 2017 provided by a large healthcare system in Arizona.

The dataset includes over 136,000 pediatric visits for approximately 30,500 patients. In the

raw data, 8% of males and 3% of females are diagnosed with ADHD, implying a male-to-

female ADHD diagnostic disparity of 2.26:1. This disparity persists even after controlling for

a variety of patient observables, supporting the need for a structural model and estimation

approach.

I first construct mental health related variables necessary for model estimation using

novel data that includes clinical doctor notes and advanced data analytic techniques including

machine learning and natural language processing. Specifically, I determine whether patients

receive a behavioral assessment using a machine learning prediction approach based on a

4Within the medical community, it remains an open question as to whether the difference in ADHD
prevalence stems from biological (sex) or social/cultural (gender) factors. In reference to ADHD prevalence
differences in general, Hinshaw (2018) writes: “All-biological or all-cultural perspectives are therefore re-
ductionist and short-sighted.” To be consistent within this paper, I refer to differences in male and female
model parameters and outcomes as gender-specific differences.
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training set of appointments in which this label is readily observed in the electronic health

record. For the set of patients that seek mental health care, I also use the information

provided in the clinical doctor note to construct an observable proxy for the ADHD match

signal that physicians receive during the behavioral assessment. To do this, I use natural

language processing techniques and measure how closely the encounter summary provided

in the doctor note matches with national diagnostic guidelines for ADHD which are outlined

in The Diagnostic and Statistical Manual of Mental Disorders, currently in its 5th edition

(DSM-V).

I then use the constructed mental health variables and clinical diagnoses to estimate the

underlying parameters of the structural model. My first stage presents a selection problem

in which the ADHD match signal is only observed if the patient first chooses to sched-

ule a behavioral assessment with a diagnosing physician. While this diagnosing physician

may be chosen endogenously, I assume that the patients’ choice of original primary care

physician is orthogonal to behavioral symptom development. I show that these base pri-

mary care physicians have different referral rates, providing me with an exclusion restriction

that allows identification of patient costs from scheduling a behavioral assessment (patient

utilization costs). This also allows me obtain selection-adjusted estimates of the popula-

tion mean ADHD risk for males and females via extrapolations of ADHD match signals on

quasi-exogenous behavioral assessment propensity. This exogenous extrapolation approach

is similar to the methods proposed by Arnold et al. (2020), who measure racial discrimination

in judge bail decisions.

Finally, the outcome for the third stage is the patients’ clinical diagnosis, assigned by

the physician and observed in the electronic health record. I estimate the components of

diagnostic uncertainty and physician preferences by analyzing differences in diagnosis rates

by patient gender conditional on the constructed ADHD match signal. The weight that the

physician places on this signal identifies varying levels of diagnostic uncertainty, with higher

weights corresponding to stronger signal quality. I then show that conditional on diagnostic

uncertainty and patient selection, the mean diagnosis rates for each gender is a function of

physician prior beliefs and physician disutility from diagnostic errors. I am able to separately
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identify these two values using estimates of mean male/female ADHD risk obtained in the

initial selection stage.

The model parameter estimates show that less than half of the observed ADHD diagnostic

disparity between male and female patients can be attributed to differences in the underlying

ADHD risk distribution, with the rest explained by variation in physician decision-making

across patient gender. In particular, I find that physicians perceive female ADHD signals

to be more informative of true health states and thus place more weight on female patient

symptoms when making a diagnosis decision. This is consistent with the vignette study

by Bruchmüller et al. (2012) which finds that physicians rely on heuristics rather than

official DSM-V criteria when diagnosing males with ADHD. I also find that physicians use

significantly lower diagnostic thresholds for male patients, suggesting that physicians bear

greater costs of inaccurately diagnosing male patients than female ones.

Using the diagnosis model and parameter estimates, I run counterfactual simulations to

examine the extent of over and under diagnosis. I find that physicians view missed diagnosis

to be more costly than misdiagnosis on average, though the cost is much larger for males

than females. While this finding may suggest that ADHD is over-diagnosed, simulations that

additionally account for patient selection and physician uncertainty show that this condition

is slightly underdiagnosed in the sample population. Based on the DSM-V definition of

ADHD, I estimate that 1.9% of the adolescent population is over-diagnosed (2.7% of males

and 1.2% of females) and 2.5% of the adolescent population is under-diagnosed (2.7% of males

and 2.3% females). Importantly, simulations show that the majority of the missed diagnosis

rate is due to high patient costs of seeking mental health care, suggesting a potential need

to increase mental health education and reduce stigma in the sample population.

These results add to the existing literature exploring the potential for ADHD diagnostic

errors. For example, in the health economic literature a list of papers show where a child’s

birth-date falls in relation to the school entry cut-off date is a strong predictor of ADHD

diagnosis, implying that teachers are subjectively comparing the younger students in the

class to older students and mistaking immaturity for ADHD (e.g., Elder, 2010; Layton et al.,

2018; Persson et al., 2021). Understanding ADHD diagnosis is also explored in the medical
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and public health literature, including meta analyses on diagnostic differences (e.g., Sciutto

and Eisenberg, 2007; AHRQ, 2011; Hinshaw, 2018), physician and patient surveys (e.g.,

Visser et al., 2015; Chan et al., 2005), and vignette studies exploring variation in ADHD

diagnosis decisions by patient groups (e.g., Morley, 2010; Bruchmüller et al., 2012). My

paper adds to this literature by presenting new estimates of over/under diagnosis along with

a structural model to identify where these errors come from.

My paper also contributes to the vast literature on explaining variation and disparities

in healthcare. This includes papers estimating physician practice style (e.g., Epstein and

Nicholson, 2009; Currie et al., 2016; Gowrisankaran et al., 2017), structural models of physi-

cian decision making under uncertainty (e.g., Abaluck et al., 2016; Currie and MacLeod,

2017; Chan et al., 2021), and identification of physician prejudice (e.g., Balsa et al., 2005;

Chandra and Staiger, 2010; Anwar and Fang, 2012). This existing literature typically fo-

cuses on physical health applications and thus relies on two assumptions that do not hold in

mental health settings. The first is that patient preferences play a small role in explaining

variation in health care (Cutler et al., 2019). While this assumption of insignificant demand-

side influences might be supported in physical health applications, it is not the case with

mental health in which stigma plays a potentially large role in determining mental health-

care utilization. My paper develops a novel model of mental health diagnosis taking insights

from this literature and adds a patient selection stage in order to explore how both demand-

side and supply-side factors can lead to disparities in mental health diagnosis. Second, the

extant literature assumes that health states or true diagnoses are observed on some level,

which is not the case in mental health applications as diagnosis is based on the presence of

behavioral symptoms and cannot be confirmed via traditional medical testing. My paper

innovates to deal with this challenge by instead using clinical doctor note data and text

analysis techniques to construct a proxy for ADHD symptom match according to national

diagnostic guidelines.

Finally, the methods I use in this paper also add to the more recent literature on using

text analysis, machine learning, and natural language processing in economic research (see

Currie et al., 2020, and citations therein). In this paper, I combine machine learning methods
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outlined in Clemens and Rogers (2020) with text analysis methods proposed in Marquardt

(2021) to construct key mental health variables which I then use in a structural model to

estimate variation in both patient and physician decision-making. While I focus on ADHD

in particular, the methods I propose can be used in a variety of settings where researchers

have access to clinical doctor notes, especially those focused on mental health in which

diagnosis depends on subjective interviews documented via text as opposed to biological

testing/ medical imaging.

The remainder of this paper is structured as follows. Section 2 provides medical details on

ADHD diagnosis to help motivate the theoretical model, which is then outlined in Section 3.

In Section 4, I summarize the electronic health record data with reduced form comparisons

and describe the the machine learning/natural language processing techniques used to extract

important information from clinical doctor notes. Section 5 presents the empirical strategy,

identification discussion, and parameter estimates. In Section 6 I conduct ADHD diagnostic

simulations to isolate mechanisms of disparities and quantify diagnostic errors. Finally,

Section 7 concludes.

2 Background and Medical Details

I study the physician decision to diagnose Attention Deficit Hyperactivity Disorder in chil-

dren and young adolescents. ADHD is a chronic mental disorder associated with symptoms

of inattention, hyperactivity, and impulsivity. These symptoms are associated with lower ed-

ucational attainment (Currie and Stabile, 2006) in addition to long term effects on earnings

and employment opportunities (Fletcher, 2014; Knapp et al., 2011). Importantly, treatment

through stimulant medication and/or behavioral therapy has been shown to reduce the symp-

toms and associated costs related with this condition (Jensen et al., 2001), making accurate

ADHD diagnosis and subsequent treatment essential for human capital development.

While the exact cause of ADHD is unknown, the medical literature agrees there is a strong

heritability component. However, genetics alone do not indicate a diagnosis, and there is less
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consensus regarding other environmental and structural factors (Hinshaw, 2018).5 There is

no biological or medical test to determine the presence of ADHD in a given patient. Instead,

an ADHD diagnosis is defined by a list of behavioral symptoms outlined in The Diagnostic

and Statistical Manual of Mental Disorders, currently in its fifth edition (DSM-V).6 There

are three possible types or presentations of ADHD: inattentive, hyperactive-impulsive, and

combined type. A child (ages 4-17) meets the clinical definition of ADHD if they meet 6

or more behavioral symptoms presented in Table 1. In addition, these symptoms should be

present in two or more settings (e.g., home and school) and experienced before age 12.

Table 1: DSM-V Symptoms for ADHD

Type I- Inattention
1. Often fails to give close attention to details or makes careless mistakes.
2. Often has difficulty sustaining attention in tasks or play activities.
3. Often does not seem to listen when spoken to directly.
4. Often does not follow through on instructions.
5. Often has difficulty organizing tasks and activities.
6. Often is reluctant to engage in tasks that require sustained mental effort.
7. Often loses things necessary for tasks or activities.
8. Is often easily distracted by extraneous stimuli.
9. Is often forgetful in daily activities.
Type II- Hyperactive/Impulsive
1. Often fidgets with or taps hands or feet or squirms in seat.
2. Often leaves seat in situations when remaining seated is expected.
3. Often runs about or climbs in situations where it is inappropriate.
4. Often unable to play or engage in leisure activities quietly.
5. Is often “on the go,” acting as if “driven by a motor.”
6. Often talks excessively.
7. Often blurts out an answer before a question has been completed.
8. Often has difficulty waiting his or her turn.
9. Often interrupts or intrudes on others.

Note: This table reflects abbreviated list of DSM-V symptoms by ADHD type. The full version is published
in American Psychiatric Association (2013).

5Common risk factors mentioned in the medical literature include: low birth-weight, prenatal toxins, and
exposure to lead. A list of more debated causes include: food additives/diet, in-utero cellphone radiation,
and excess exposure to television/video games.

6The 5th edition of the DSM was released in May 2013; however, guidelines for ADHD in particular did
not change significantly from the DSM-IV edition(Epstein and Loren, 2013).
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It should be noted that the DSM-V does not have different symptom definitions or diag-

nostic guidelines for males and females. This is important for modeling and counterfactual

diagnosis purposes as it explicitly restricts differences in ADHD prevalence to come only

from differences in symptom expression between male and female children. Bruchmüller

et al. (2012) discuss the medical and epidemiological literature on ADHD presentation and

diagnosis, and conclude it is “unlikely that gender differences in the expression of ADHD can

fully account for the fact that boys with ADHD receive treatment two to three times more

often than girls with ADHD.” This motivates the question: what other factors contribute

to the large difference in ADHD diagnosis rates between boys and girls? To answer this

question I first outline how an ADHD diagnosis is made.

In order to receive a clinical diagnosis, a patient must schedule and receive a behavioral

assessment from a diagnosing physician. Scheduling this assessment is not required for all

children, but may be encouraged based on feedback from teachers, guidance counselors, or

primary care physicians during annual wellness checks.

According to pediatric best-care practices outlined in American Academy of Pediatrics

(2011), a behavioral assessment should include an interview with the patient, the parent,

and a teacher or alternative care-giver. Physicians may use published ADHD rating-scales

along with open-ended questions, but should consult the DSM and document the presence of

relevant symptoms. Based on this assessment, the physician should diagnose ADHD if they

believe the patient meets the minimum requirements for diagnosis outlined in the DSM-V.

While American Academy of Pediatrics (2011) outlines best-practices for ADHD diag-

nosis, they also admit that these guidelines are often difficult for pediatricians and primary

care physicians to follow in practice “because of the limited payment provided for what re-

quires more time than most of the other conditions they typically address.” Due to time,

payment, or a variety of other constraints, it is unlikely that physicians are able to strictly

follow these best-practice guidelines. In fact, surveys suggest that only about 60% of physi-

cians incorporate these guidelines into their practice (Rushton et al., 2004; Chan et al.,

2005). This finding, along with the institutional features of non-mandatory mental health

screening, motivates the need for a structural model of ADHD diagnosis that incorporates
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these different elements of diagnosis in order to separately identify the different mechanisms

leading to diagnostic disparities.

3 Conceptual Framework

In traditional models of decision-making under uncertainty, deciding agents receive a noisy

signal of the true state of the world, use the signal to update their prior beliefs, and make

a decision to maximize utility. These types of models have been empirically estimated in

healthcare settings (e.g., Anwar and Fang, 2012; Chan et al., 2021) in addition to other

applications such as the judicial system (e.g., Arnold et al., 2020). What is missing from

these models, however, is individual selection, which I show is an important mechanisms to

understanding disparities in outcomes across patient groups, specifically in relation to mental

health. In what follows, I present a model of ADHD diagnosis that pairs a physician decision-

making under uncertainty model with a first-stage selection component that endogenizes the

patient decision to seek mental health care (selection). I allow, but do not enforce, key model

parameters to vary based on patient gender. I then discuss comparative statics to highlight

the four potential mechanisms underlying ADHD diagnostic disparities between boys and

girls: symptom prevalence, patient utilization costs, diagnostic uncertainty, and physician

preferences.

3.1 Diagnosis Model with Endogenous Selection

The model is composed of three stages: a patient selection stage, a physician learning stage,

and a clinical diagnosis stage. In the first stage, patients choose to schedule a behavioral

assessment if their ADHD symptoms outweigh any costs associated with mental healthcare

utilization. Conditional on selecting into care, the patient enters the second stage of the

model in which the physician conducts a behavioral assessment, learns about the relevant

symptoms, and develops a posterior probability of ADHD likelihood. In the final stage,

the physician will choose a diagnosis decision based on ADHD posterior risk and the costs

he bears from making a diagnostic error. The model allows for prevalence rates, patient
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scheduling costs, physician costs, and physician learning rates to vary by patient gender as

a way to capture the varying components of mental health diagnostic disparities.

ADHD Prevalence

Each child has some unobserved latent ADHD risk, vi, which measures the extent of ADHD

related symptoms. This comes from a continuous distribution Fθ(v), where θ indicates

whether patient gender is male or female: θ ∈ {m, f}. For computational simplicity, I

assume Fθ(v) is a Normal CDF, though this assumption is not essential for identification,

further discussed in Section 5.

vi ∼ N(µθ, σ
2
θ) (1)

This continuous mental health risk is in line with the medical literature that suggests

ADHD symptoms present on a continuum (AHRQ, 2011). Despite this fact, ADHD diagno-

sis is binary by definition. Following the diagnostic guidelines in defining ADHD, a child has

ADHD if and only if they meet all the requirements for diagnosis outlined in the DSM-V.

Therefore, letting Si ∈ {0, 1} denote the true ADHD status, we have Si = 1(vi > v) where

v is the DSM-V defined minimum requirement for diagnosis, which by definition does not

vary by patient gender.7 Thus, differences in true ADHD prevalence between boys and girls

depend only on differences in ADHD risk distribution parameters, with prevalence increasing

in population mean risk, µθ.

Stage 1: Patient Choice to Schedule Behavioral Assessment

In the first selection stage of the model, the patient/parent must decide whether or not to

schedule a behavioral assessment.8 Parents will schedule a behavioral assessment if the child’s

7In the 2013 DSM-V release, guidelines were updated to reflect varying levels of symptoms severity. While
these are associated with different CPT codes in how a physician is reimbursed, ICD-9 and ICD-10 codes
were not adjusted and still reflect binary indicators, validating the assumption to use a single-valued cut-off.
In the main estimation section of this paper, I do not assume a v value. However, this is necessary in
counterfactual simulations which I discuss further in Section 6.

8Because I focus on children as patients, I assume the parent and child make joint decisions and thus
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behavioral symptoms outweigh any scheduling costs, ci, which include a gender-specific mean

component, cθ, and an idiosyncratic cost εi | vi ∼ N(0, 1). Because health insurance typically

covers behavioral assessments with little to no out of pocket expenditures, ci includes non-

monetary constraints (or conversely nudges) impacting the decision to schedule a behavioral

assessment. This can include parent time constraints, distance to the nearest health center,

recommendations from school teachers, or information obtained from primary care physicians

during annual wellness visits. In other words, ci captures everything that impacts the decision

to seek mental health care net of child symptom level, vi. I allow for differences in the gender-

specific mean utilization cost, cθ, but do not enforce a difference empirically.

I assume the patient observes their costs ci and their symptoms vi, but does not have

enough medical information to know v, thus motivating them to seek a professional opinion.

Denoting Qi as an indicator for behavioral assessment, I define Qi = 1(vi > ci). Equation

(2) defines the gender-specific behavioral assessment rate, which follows from (1) and the

assumption that ci = cθ + εi ⊥⊥ vi.

Pr (Qi = 1 | θ) = Φ

(
µθ − cθ√
1 + σ2

θ

)
(2)

Stage 2: Physician Learning via Behavioral Assessment

I assume that the physician knows the gender-specific ADHD risk distribution, but does not

know patient specific ADHD risk, vi, nor the patient specific healthcare utilization costs, ci.

Thus, the physician prior can be defined by (1) and is a function of ADHD risk distribution

parameters µθ and σθ.
9

If a patient chooses to schedule a behavioral assessment, the physician will learn about

the patient specific ADHD risk, vi. Through this process, the physician receives a noisy

signal, xi, of the true ADHD risk vi, defined by equation 3. The signal is unbiased and

correlated with the true state through ρθ ∈ (0, 1). I allow correlation to vary by patient

simply refer to “patient” throughout the model.
9This assumption allows me to interpret the diagnostic threshold parameter τθ as physician preferences

over diagnostic errors. In Appendix C.2, I discuss the benefits of this assumption and implications if it fails.
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gender as a way to capture variation in diagnostic uncertainty coming from signal quality.10

 vi
θ

xi

 ∼ N

µθ

µθ

 ,

 σ2
θ ρθσ

2
θ

ρθσ
2
θ σ2

θ

 (3)

The physicians then uses this information to update their belief of ADHD risk via a

Bayesian updating process. After observing xi = x the physicians update their prior, re-

sulting in the posterior ADHD risk distribution defined in (4). Notice that the updated risk

posterior mean is a weighted average of patient observed signal, x, and the physician prior

risk mean, µθ, where the weight placed on the signal depends on the signal quality ρθ.

vi | x ∼ N

(
(ρθx+ (1− ρθ)µθ) , σ

2
θ

√
1− ρ2θ

)
(4)

Stage 3: Physician Diagnosis Decision

Finally, the physician makes a binary diagnosis decision, Di ∈ {0, 1}. I follow the literature

in assuming the goal of the physician is to match the diagnosis decision to the true health

state, and thus minimize diagnostic errors. This can be modeled as a a risk-threshold decision

rule where physicians diagnose ADHD to patients whose posterior risk of ADHD is above a

diagnostic threshold, τθ.

Di | x, θ = 1(vi | x ≥ τθ) (5)

In Appendix C.1, I present a physician utility framework and derive this risk-threshold

decision rule to show how τθ can be interpreted as physician preferences over diagnostic errors.

Intuitively, if physicians view misdiagnosis as costly, they are worried about diagnosing

children on the margin of ADHD according to risk and will thus apply a higher diagnostic

threshold. On the other hand, if physicians view missed diagnoses as costly, they would

10This health signaling structure is very similar to that defined in Chan et al. (2021), but assumes that
signal strength varies across patient types as opposed to physician types.
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prefer to diagnose children on the margin of ADHD and will thus apply a lower diagnostic

threshold. I allow these thresholds to differ by patient gender to capture potential differences

in physician perceived cost of diagnostic errors.11

Using the physician posterior in equation 4, the probability a patient is diagnosed, con-

ditional on behavioral assessment and received signal, is:

Pr (Di = 1 | Qi = 1, xi, θ) = Φ

(
1

σθ

√
1− ρ2θ

(ρθxi + (1− ρθ)µθ − τθ)

)
(6)

3.2 Mechanisms of Diagnosis and Diagnostic Disparities

Combining equations 2 and 6 yields the following gender-specific diagnosis rate:

Pr (Di = 1 | θ) = Pr (Di = 1 | Qi = 1, xi, θ)× Pr (Qi = 1 | θ)

= Φ

(
1

σθ

√
1− ρ2θ

(ρθxi + (1− ρθ)µθ − τθ)

)
︸ ︷︷ ︸

Physician Diagnosis Rate

× Φ

(
µθ − cθ√
1 + σ2

θ

)
︸ ︷︷ ︸

Patient Assessment Rate

(7)

Diagnosis rates are a function of underlying prevalence, mental healthcare utilization

costs, diagnostic uncertainty, and physician preferences/diagnostic thresholds. My structural

model captures each of these elements via µθ, cθ, ρθ, and τθ, respectively.

The comparative statics of population-group diagnosis rates are quite intuitive. Groups

with higher prevalence, captured by mean risk, µθ, are associated with higher diagnosis

rates.12 This increase can be attributed to both the patient selection channel (∂Pr(Qi)
∂µθ

> 0)

and the physician conditional diagnosis channel (∂Pr(Di|Qi)
∂µθ

> 0), where the latter is due

11In analogous models coming from the physician bias literature, this threshold is often referred to as taste-
based discrimination as it captures the difference in diagnosis rates for identical patients in terms of risk.
However, it may be that the cost of diagnosis errors differ by patient gender, in which case the heterogeneous
thresholds are justified. I leave this distinction to the medical literature and instead refer to differences in
τθ as differences in perceived cost of errors, remaining agnostic about its medical accuracy.

12Prevalence rates are technically defined as P (S = 1|θ) = P (vi > v|θ) where v is the DSM-V specified
cut-off rule. Provided v is not too large, it follows from vi ∼ N(µθ, σ

2
θ) that there is a one-to-one monotonic

correspondence between prevalence and mean risk.
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to higher physician prior beliefs. On the other hand, high values of patient utilization

costs imply lower diagnosis rates because fewer patients choose to seek mental health care

(∂Pr(Qi)
∂cθ

< 0). In terms of physician preferences, high diagnostic thresholds, corresponding

to large cost of misdiagnosis, are associated with lower diagnosis rates (∂Pr(Di|Qi)
∂τθ

< 0).

Finally, groups with lower diagnostic uncertainty (i.e., higher ρθ) will have higher population

diagnosis rates ( ∂P (Di=1|Qi=1)
∂ρθ

> 0 in the selected sample).13

These population-group comparative statics map directly into mechanisms explaining di-

agnostic disparities between males and females: ∆ = P (D|θ=m)
P (D|θ=f)

. Diagnosis rates increase with

population prevalence and signal quality and decrease with utilization costs and diagnostic

thresholds. Therefore, the ADHD diagnostic disparity seen between males and females may

be attributed to higher male prevalence (µm > µf ), higher signal strength for male patients

(ρm > ρf ), lower utilization costs for male children (cm < cf ), or lower diagnostic thresholds

applied to male patients (τm < τf ). From a health care policy standpoint, it is essential

to identify which of these mechanisms explain the diagnostic disparity and by how much.

The direction and relative contribution of each mechanisms is an empirical question which I

explore in the remainder of this paper.

3.3 Empirical Approach Outline

To identify the mechanisms of diagnostic disparities, I separately estimate the model param-

eters for both male and female patients: (µθ, σθ, cθ, ρθ, τθ) for θ ∈ {m, f}. I use electronic

health record data and estimate equation 7 separately for male and female sub-samples.

The variables required to estimate gender-specific diagnosis rates (7) are clinical diagnosis

decision, Di, behavioral assessment indicator, Qi, ADHD risk signal, xi, and patient gender,

13 ∂P (Di=1|Qi=1)
∂ρ = ϕ(ρ(x−µ)+µ−τ

σ(1−ρ2)(1/2)
)(x−µ+ρ(µ−τ)

σ(1−ρ2)(3/2)
). By contradiction, assume this partial derivative is nega-

tive. As σ > 0 and ρ ∈ (0, 1), this implies that ρ(x− µ) + (µ− τ) and x− µ+ ρ(µ− τ) have opposite signs.
For the selected sample with Qi = 1, symptoms are on average higher than underlying risk implying x > µ.
Additionally, assuming physicians would diagnose less than 50% of population, τ > µ. Therefore, partial
derivative is negative if and only if ρ > τ−µ

x−µ and ρ > x−µ
τ−µ which violates the requirement that ρ ∈ (0, 1).

Thus, it must be that ∂P (Di=1|Qi=1)
∂ρθ

> 0 for selected sample.
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θi. However, the only variables directly observed in the electronic health record are Di (via

associated ICD-10 codes) and patient gender, θi. Even though behavioral assessment, Qi,

and patient signals, xi, are not directly imputed into electronic health record systems, I show

how both variables can be recovered from clinical doctor note text.

I then use these observed and constructed variables to estimate the structural model

parameters. I break this down into two steps where the first recovers the gender-specific

population mean ADHD risk parameter, µθ. Because ADHD risk signals are only observed for

an endogenously selected sample, I recover this parameter using quasi-exogenous variation in

scheduling costs following an approach outlined in Arnold et al. (2020). Once male and female

population mean risk are estimated, the remaining parameters are identified and estimated

from moments defined by behavioral assessment rates and the conditional diagnosis probit

following equation (7). I discuss this process in detail in Section 5.

4 Data and Variable Construction

The data come from de-identified electronic health records provided by a large healthcare

center in Arizona. I obtain encounter level data for all pediatric patients (age<18) who had

a health appointment with a diagnosing physician at some point during the sample period

of January 2014 to September 2017.14 I first exclude children younger than 5 years old,

whose rates of ADHD diagnosis and treatment are very low and whose medical care requires

peer-to-peer review and prior authorization (N=11,183). I then drop erroneous encounters,

encounters with insufficient documentation, or patients with missing demographic informa-

tion (N=1784). The remaining data encompass 37,021 unique patient encounters, for 11,397

unique patients. Patient characteristics include: birthdate, gender, race/ethnicity, original

primary care physician, and insurance status. Encounter characteristics include: appoint-

ment date, physician seen, associated diagnoses (if any), and most importantly, the clinical

14A diagnosing physician is identified as one who diagnosed ADHD at least once during the sample period.
There are 220 diagnosing physicians in my dataset.
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doctor note summarizing the encounter.

As ADHD is a chronic condition, the unit of observation in the model is at the patient

level. I label a patient as clinically diagnosed with ADHD (Di = 1) if the patient has an

encounter during the sample period in which one of the first three associated diagnosis codes

reflect an ADHD diagnosis.15 Simple summary statistics are available in Appendix Tables

A1 and A2.

Of the roughly 11,000 patients seen from 2014 to 2017, 6.24% have a clinical ADHD

diagnosis.16 Males are diagnosed with ADHD significantly more than females. The raw

diagnostic disparity is 2.33:1, with 8.68% of males receiving a clinical diagnosis and only

3.72% of females. Table 2 shows that this male-female diagnostic disparity persists even

after controlling for readily observable characteristics such as patient age, insurance status,

race/ethnicity, and previous health care utilization.

Table 2: Reduced Form ADHD Diagnostic Comparisons

(1) (2) (3)

Male 0.048*** 0.048*** 0.039***
(0.004) (0.004) (0.004)

Added Patient Observables:
Demographic Variables N Y Y
Healthcare Utilization Variables N N Y

Adj. R-squared 0.010 0.014 0.072
Observations 11,265 11,265 11,265

Note: This table presents the estimated coefficient on patient gender from a OLS regression of ADHD clinical diagnosis on
patient controls. Demographic Variables: patient age, insurance status, and race/ethnicity. Health Care Utilization Variables:
# of doctors seen, # of appointments, appointment year fixed effects, and indicators for other mental health diagnosis, wellness
visit, visit with psychiatrist. All controls based on average (or max) across patient appointments, with only those prior to
ADHD diagnosis appointment for patients with a clinical diagnosis. Robust standard errors in parenthesis. * p < 0.10, **
p < 0.05, *** p < 0.01

15The ICD-9 codes include 314.00 and 314.01, and the ICD-10 codes include F90.0, F90.1, F90.2. I group
together the different types of ADHD into a single diagnosis category as a way to increase power in the
presence of small sample sizes.

16The in-sample ADHD diagnosis rate is slightly lower than the national average during this time period.
This is likely due to the fact that a large portion of the population is of Hispanic ethnicity, and research
suggests a significantly lower diagnosis rate for this group (see Morgan et al., 2013). I discuss the implications
of this sample bias in Section 7.
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As discussed in Section 3.3, there are two key mental health variables that are unobserved

to the econometrician yet play a central role in the physician diagnosis decision. These are

(1) Qi, which is an indicator for whether a patient receives a behavioral assessment, and

(2) xi, which is the patient specific ADHD match signal observed conditional on behavioral

assessment. In the next two sections I discuss how both of these variables are defined and

constructed using clinical doctor note data combined with machine learning and natural

language processing techniques, respectively.

4.1 Behavioral Assessment- Qi

The electronic health record does not specifically indicate whether a behavioral assessment

was conducted during the visit. Therefore, I manually construct this variable from the data

by applying machine learning techniques to clinical doctor notes as a way to predict whether

a behavioral assessment was conducted during an appointment using the content of the

doctor note. I give a general outline of the procedure here and provide additional details in

Appendix B.

I first take a subset of appointments in which the behavioral assessment indicator variable

is known with almost certainty. For model training purposes, this must include appointments

with a positive behavioral assessment label and appointments with a negative behavioral

assessment label. I assume that a behavioral assessment was conducted if the encounter

is associated with an ADHD diagnosis, a differential mental health diagnosis (e.g., bipolar

disorder), or a comorbid condition (e.g., generalized anxiety disorder) as noted by the DSM-

V. The negative labeled appointments are those with an associated diagnosis that is never

co-diagnosed with a mental health condition. These include conditions such as strep throat,

skin rashes, and sinus infections. Table B10 presents the full list of icd9 codes included

under each hand label. The remaining appointments are considered ‘unlabeled’ due to either

no associated diagnoses or appointments with ambiguous icd9 codes that could be related

to either mental or physical health concerns (e.g., abdominal pain can be associated with

anxiety or a virus). The purpose of this machine learning approach is to determine whether
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behavioral symptoms were discussed and ADHD diagnosis considered by the physician during

these unknown set of appointments.

I first determine a set of model features using information from the clinical doctor notes in

the labeled dataset. I consider 41 features, including note length, relative frequency of the top

20 ‘positive’ label words, and relative frequency of the top 20 ‘negative’ label words. Figure 1

provides a visual of these features with a word cloud representation broken up by behavioral

assessment label, where Qij = 1 indicates a behavioral assessment was included in notes for

appointment j, and Qij = 0 indicates no behavioral symptom discussion. As expected, the

positive behavioral assessment label includes words related to behavioral symptoms such as:

school, social, behavior, family, and feel. The negative behavioral assessment label includes

words more related to physical rather than mental health concerns. These include words

such as: pain, fever, cough, and rash.

Figure 1: Behavioral Assessment Indicator Word Clouds

Non-Behavioral Words Behavioral Words
Note: Word clouds based on relative frequency of word-stems in labeled appointments used for machine learning model training,
shown separately for Non-Behavioral (Qij = 0) and Behavioral (Qij = 1) labeled appointments, respectively. This figure
presents full words, whereas actual stems used for prediction are listed in Appendix B.

Finally, I use the labeled data and selected features to train a random forest machine

learning algorithm, which I then apply to the unlabeled dataset in order to predict whether

behavioral symptoms were discussed during the appointment based on the information in

the clinical doctor note. I take the maximum of this prediction across patient encounters

to obtain the behavioral assessment indicator Qi used in model estimation, based on a 0.5

prediction cut-off.

There is an important distinction to be made here between full symptom discussion
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(i.e., behavioral assessment) and symptoms mentioned casually during wellness checks. As

ADHD diagnosis can only be made following the former, I require Qi = 1 if and only if the

patient receives a behavioral assessment during the sample period. This follows naturally

by the construction of the labeled set used in training the machine learning model. The

machine learning algorithm will only assign a positive prediction label if the words in the

doctor note closely align with the words in the set of appointments with a positive label. By

construction, these appointments were ones associated with a mental health diagnosis code

and thus the notes most likely reflect a full behavioral assessment. Therefore, appointments

in which only a few symptoms were mentioned in passing will not be assigned a positive

behavioral assessment label by the machine learning prediction. This includes patients who

only briefly (or not at all) talk about child behavior when asked during annual wellness

checks. Therefore, the only way in which patient i receives a positive label Qi = 1 is if either

(i) patient i receives a clinical mental health diagnosis during the sample period and thus falls

in the training set with positive label, or (ii) at least one of the doctor notes associated with

an appointment for patient i contains enough mental health symptom words to be labeled

as a behavioral assessment by the machine learning prediction.

The machine learning algorithm predicts that approximately 17% of children receive a

behavioral assessment, with males scheduling these assessments more than females. This

average estimate is in line with the American Academy of Pediatrics Clinical Guidelines for

ADHD which states: “Primary care pediatricians and family physicians recognize behavior

problems that may affect academic achievement in 18 percent of the school-aged children

seen in their offices and clinics” (Herrerias et al., 2001).

4.2 ADHD match signal- xi

Recall that vi is the (unobserved) true health state and represents a measure of ADHD risk

based on behavioral symptoms and that xi is an unbiased yet noisy signal of vi that physi-

cians observe during patient behavioral assessment. Because ADHD diagnosis is defined by

a list of behavioral symptoms (see Table 1), I interpret vi as a composite measure summa-
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rizing number and severity of symptoms experienced by patient i. Following this logic, xi is

then a composite measure summarizing number and severity of symptoms discussed with a

physician during behavioral assessment.

Even detailed electronic health records do not report readily observable patient behav-

ioral symptoms. Instead, this information is collected during an interview and documented in

the clinical doctor note. With access to these clinical doctor notes, I construct a proxy for xi

using natural language processing techniques originally proposed in Marquardt (2021). Es-

sentially, I calculate the overlap between symptoms in the DSM-V symptom criteria list (see

Table 1) and symptoms in the collective doctor notes for a given patient, making necessary

adjustment to account for semantic content. This text-constructed value is a proxy for the

signal observed by the physician assuming they follow clinical guidelines in documenting all

“relevant behaviors of inattention, hyperactivity, and impulsivity from the DSM” (American

Academy of Pediatrics, 2011).17

As xi is defined on the patient level, I first combine patient notes across encounters into a

single document. I combine only notes that were labeled as ‘positive behavioral assessment’

by the machine learning prediction described in the previous section. For patients with an

eventual ADHD diagnosis code, I include the note associated with the first appearance of

ADHD diagnosis and behavioral notes from earlier encounters. I also include notes that occur

within 60 days after the initial diagnosis to account for the fact that behavioral assessments

may expand over multiple visits and physicians are not always consistent on when diagnosis

codes are assigned during this process.18

With the behavioral assessment notes combined into one document per patient, I then

calculate ADHD signal match, xi. I follow the natural language processing algorithm pro-

17In Appendix C.2, I discuss the implications of this full documentation assumption. I argue that if the
assumption fails, then I under-estimate mean ADHD risk. Given that my ADHD prevalence rates derived
from ADHD risk parameters (presented in Table 6) align with what is found in the medical literature, I do
not consider this to be a large concern for the main results.

18Of the children that are diagnosed with ADHD in my sample, 33% have a behavioral assessment within
30 days of the initial diagnosis and 42% have a behavioral assessment appointment within 60 days of the
initial diagnosis. This suggests that physicians may be breaking up behavioral assessments into multiple
visits and assigning ADHD diagnosis codes slightly before the assessment is fully complete.

20



posed in Marquardt (2021), in which patient documents and DSM-V symptom requirements

are compared using an Adjusted Bag-of-Words Model.

I first pre-process the clinical texts following standard text cleaning procedures (e.g.,

spell check, abbreviation replacement, and size reductions). I next group words according to

contextual meaning which requires part-of-speech tagging and synonym replacement. Each

document is then broken into uni-gram and bi-gram tokens, where the latter is included

to preserve meaning from negation. Using these tokenized documents, I build the adjusted

Bag-of-Words (BOW) matrix where rows (i) represent documents, columns (k) represent

bi-grams of word groups, and binary matrix elements indicate the presence of bi-gram k in

document i. In this application, I consider N+3 documents. The first N correspond to the

patient doctor notes for the N patients that receive behavioral assessments. The latter 3

documents correspond to (1) the list of Inattentive symptoms (Type I in Table 1), (2) the list

of Hyperactive/Impulsive symptoms (Type II in Table 1), and (3) the combined list of Type

I and Type II symptoms. In the notation of Marquardt (2021), s = {1, 2, 3} corresponds

the 3 types of ADHD: Inattentive, Hyperactive/Impulsive, and Combined Type. Finally,

patient-type specific match values, xis are calculated by taking the cosine similarity measure

between the BOW row vector for patient i and the BOW row vector for ADHD Type s.

Because I do not distinguish between the different diagnosis types when defining a clinical

diagnosis in the data, I construct the patient overall ADHD match signal as the maximum

of the patient match value across types. In other words, I calculate xi = max{xi1, xi2, xi3}.

See Marquardt (2021) for additional algorithm details.

Across both males and females, the average signal match is is 0.314 with a standard

deviation of 0.170. For reference, a value of xi = 1 indicates that the note for patient i

references all symptoms in either the Inattentive list, the Hyperactive/Impulsive List, or

the Combined List, and a value of xi = 0 indicates no reference to any symptoms.19 The

19Recall that only a sub-set of symptoms are necessary for appropriate diagnosis, which implies there
is some threshold x of which xi > x implies ADHD. I remain agnostic about the this threshold value in
estimation of the general model, and discuss potential values of this cut-off in Section 6 along with its
implications on diagnostic errors.
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signal for males is slightly larger than for females; however, the difference is only significant

at the 10% level. Figure 2 presents a visual for the ADHD match signal distribution by

patient gender. This provides only suggestive evidence of true prevalence differences as the

plot represents the match for the (endogenous) set of patients that receive a behavioral

assessment. Therefore, in the general population, ADHD risk signal distributions would be

shifted to the left, though the magnitude of the shift and change in dispersion depend on

mental health utilization costs, which may differ based on patient gender.

Figure 2: Observed ADHD Match Signal by Patient gender

Note: Figure shows gender-specific distribution of constructed ADHD match signals xi based on NLP techniques described
in Section 4.2. This implicitly covers the set of patients with behavioral assessment, Qi = 1, thus shows only a truncated
distribution of the true population ADHD risk.

Table 3 presents summary statistics for the key variables needed to estimate the diagnosis

model parameters. The top panel of Table 3 presents ADHD diagnosis rates for the full

sample and highlights the diagnostic disparity between males and females. While males

do receive behavioral assessments significantly more than females, this selection does not

explain the entire diagnostic disparity as seen by the lower panel of Table 3. For those that

receive a behavioral assessment, 43.3% of males will be diagnosed with ADHD and only 25%

of females will be diagnosed. It is also unlikely that differences in symptom presentation

fully explain the diagnostic gap as the difference in symptom match is only significant at
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the 10% level. This table provides suggestive evidence that the ADHD diagnostic disparity

is a function of selection, prevalence, and physician decision-making biases. Therefore, a

structural estimation approach is needed to separate out the magnitude and direction of

these underlying mechanisms.

Table 3: Mental Health Observational Comparisons

Total Male Female Difference
Full Sample

ADHD Dx. 0.0624 0.0868 0.0372
0.0495***

(0.242) (0.282) (0.189)
Behav. Appt. (Qi) 0.169 0.194 0.143

0.0505***
(0.375) (0.395) (0.350)

N 11397 5786 5611
Behavioral Assessment Subsample (Qi = 1)

ADHD Dx. 0.357 0.433 0.250
0.183***

(0.479) (0.496) (0.433)
ADHD Match Signal (xi) 0.314 0.320 0.305

0.0149*
(0.170) (0.162) (0.179)

N 1923 1120 803

Note: ADHD Dx. (Di) based on ICD codes in EHR. Behavioral Assessment rates (Qi) and ADHD Match Signal measures (xi)
are constructed using machine learning and natural language processing techniques outlined in Sections 4.1 and 4.2, respectively.
Differences calculated as female means subtracted from male means, and significance based on two-sample T-test difference in
means. * p < 0.10, ** p < 0.05, *** p < 0.01

5 Model Parameter Estimation and Identification

With data on ADHD diagnosis Di, behavioral assessment Qi, patient gender θi, and condi-

tional ADHD risk signal xi, I estimate parameters of the structural model: (µθ, σθ, cθ, ρθ, τθ)

for θ ∈ {m, f}. As discussed in Section 3.3, the parameter estimation procedure requires

two steps where the first recovers gender-specific population mean ADHD risk parameter,

µθ, and the remaining parameters are obtain via maximum likelihood estimation of behav-

ioral assessment and conditional diagnosis probabilities following equation (7), estimated

separately for male and female patient groups.
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5.1 First Stage: ADHD Population Risk

The reason for a first stage estimation of population mean ADHD risk µθ is shown math-

ematically in equation (7) but also intuitively following the comparative statics discussion

in Section 3.2. Behavioral assessment rates are increasing in mean risk, µθ, and decreasing

in patient utilization costs, cθ. At the same time, conditional diagnosis rates are increas-

ing in mean risk, µθ, and decreasing in diagnostic thresholds, τθ. This makes it difficult to

separately identify the three components even with information on Qi, xi, and Di. In an

ideal setting in which risk signals are observed for all patients, one could estimate µθ using

gender-specific sample average risk,
∑

i∈Nθ
xi. However, xi is only observed for the subset

of patients that receive a behavioral assessment. Because patients endogenously select into

behavioral assessment according to unobserved ADHD risk, the average value of observed

signals will over-estimate the population risk mean, as shown by equation (8).

E[xi|Qi = 1] = E[xi|vi > ci] = µθ + ρθσ
2
θ

ϕ( ci−µθ

σθ
)

1− Φ( ci−µθ

σθ
)︸ ︷︷ ︸

upward bias

(8)

I use quasi-exogenous variation in behavioral assessment scheduling costs to recover un-

biased estimates of mean population risk for males and females. To build intuition for this

approach, consider a set of patients with extremely low behavioral assessment scheduling,

ci. For low enough levels of ci, the probability of behavioral assessment is approximately 1,

so the patient will schedule a behavioral assessment and thus ADHD risk signals, xi, will be

observed. Further, the bias term in (8) for these patients with low ci goes to 0, and thus

sample mean of xi for patients with low scheduling costs (or conditionally high probability

of behavioral assessment) provides an unbiased estimation of population mean risk, µθ.

As ci is unobserved in application, I instead estimate individual propensity to schedule

a behavioral assessment using quasi-exogenous “cost-shifters”. An individual factor, Zi, is a

valid cost-shifter under the following two conditions:

(a) Zi is correlated with behavioral assessment propensity through patient scheduling

costs, ci.
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(b) Zi is independent of patient ADHD risk, vi.

I use primary care physician identifiers as the source of quasi-exogenous behavioral as-

sessment scheduling costs in this application. The electronic health record includes both the

diagnosing physician as well as the patients’ original primary care physician (PCP) where

the former denotes who the patient meets with during a given appointment, and the latter

is the PCP originally seen when the patient first entered the health system. Because diag-

nosing physicians may be chosen endogenously, I instead focus on the original primary care

physician and define Zi as a vector of size p, where Zip = 1 if child i is a patient of PCP p.20

To see how the original PCP identifier is correlated with behavioral assessment scheduling

costs, it is relevant to recall Section 2 where I discuss the institutional details of behavioral

assessment scheduling. Parents may schedule these appointments independently based on

own concerns or suggestions from teachers. However, it is likely that they first bring up these

concerns with their child’s primary care physician who is trained to ask about patient school

performance and behavioral concerns during annual wellness visits (American Academy of

Pediatrics, 2011). If warranted by the response, PCPs may encourage the parent to sched-

ule a follow-up appointment (either with themselves, with another pediatrician, or with a

psychiatrist) so that a full behavioral assessment can be conducted. This discussion and sub-

sequent recommendation from the child’s original primary care physician can reduce the cost

of scheduling a full behavioral assessment through increased mental health awareness, help

with internal scheduling, comfortability with health system personnel, etc., thus satisfying

the relevance condition (a).

Importantly, PCPs have discretion over what to address during routine check-ups and

whether or not to suggest the patient seek follow-up mental health care. Some may be more

thorough during these wellness checks in regard to questions about child behavior, and thus

differ in the rates at which they suggest their patients seek follow-up care and schedule behav-

20I use the original primary care physician as opposed to the diagnosing physician as the latter is likely
chosen endogenously. Patients with behavioral concerns may specifically schedule appointments with physi-
cians who specialize in mental health. This would suggest a positive relationship between the diagnosing
physician and vi which violates requirement (b).
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ioral assessments (referral rates). Appendix Figure A1 shows the variation in referral rates

across primary care physicians. To empirically verify that the PCP identifier meaningfully

influences the patient probability of scheduling a behavioral assessment, I regress patient

behavioral assessment indicator, Qi, on patient controls and original PCP fixed effects. I

test for and find strong joint significance of PCP fixed-effects, results presented in Appendix

Table A3.

Condition (b) is satisfied if original PCPs are chosen or assigned independently of true

ADHD risk, vi. As vi is unobserved, I cannot test for this directly, though a list of observa-

tions and institutional details provide support for its validity. First, primary care physicians

are typically selected by patients before age 5, which is the age at which behavioral symp-

toms may develop. This timing structure means that parents do not chose primary care

physicians selectively after observing vi. Second, there are 600 original primary care physi-

cians covering the patients in my sample, but only 24 of these ever diagnose ADHD.21 So

while PCPs may differ in the number of patients they encourage to seek follow-up mental

health care, they generally do not diagnose ADHD themselves, suggesting that patients set

up behavioral assessments with alternative physicians, again implying no relation between

the original PCP and patient vi. Finally, while patients may not select PCP based on vi

directly, condition (b) would still be violated if PCP selection is based on other factors, Wi,

that are correlated with ADHD risk, such as age, race/ethnicity, and income. I test for this

by analyzing an ordinary least squares regression of PCP referral rate on various patient

demographics. I define PCP referral rate as the leave-one-out average behavioral assessment

rate among all other patients of the given PCP. Appendix Table A5 presents the coefficients

from this regression, which are not significantly different from zero, providing support for

balance across original primary care physicians.22

21There are 220 diagnosing physicians in my sample. 24 of these are the original primary care physician
of the patient they diagnose. The remaining 196 physicians are either pediatricians or psychologists that
conduct behavioral assessments for patients referred to them by other PCPs in the system.

22There may still be concern that patients choose PCPs based on unobserved factors that are correlated
with ADHD risk, leading to biased estimates of µθ. However, so long as these unobserved factors are
independent of patient gender, the relative difference between male and female ADHD risk is unaffected. I
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Under conditions (a) and (b), I can recover population ADHD risk estimates for male and

female patients by taking the vertical intercept at one from the fitted relationship between

observed ADHD signals and exogenous behavioral assessment propensity. Empirically, I

first conduct a probit regression of behavioral assessment Qi according to equation 9 where

Wi includes a set of demeaned patient controls and Zi denotes original PCP identifiers.

Additional details and first stage coefficients are presented in Appendix Table A4.

P (Qi = 1) = Φ (Wiβ + δMalei + Ziγ) (9)

Next, I obtain exogenous behavioral assessment propensity, ̂Pθ(Qi|Zi), by predicting

behavioral assessment for each patient, holding Wi at sample means. With Wi demeaned,

̂Pθ(Qi|Zi) = Φ(δ̂Malei + γ̂PCPi
) and is interpreted as the regression-adjusted exogenous

behavioral assessment propensity due to quasi-exogenous variation in scheduling costs coming

from original PCP referral rates.

While there is significant variation in selection-adjusted behavioral assessment probabil-

ity, the maximum value is only 0.65. In the absence of a sufficient number patients with

̂Pθ(Qi|Zi) ≈ 1, values of µθ can be estimated via extrapolations of observed ADHD match sig-

nals on exogenous behavioral assessment propensity. Specifically, I fit a model of observed

ADHD signals, xi, on ̂Pθ(Qi|Zi) for both male and female patients, and obtain selection-

adjusted values of µm and µf by evaluating the fitted model at ̂Pθ(Qi|Zi) = 1 for θ ∈ {m, f},

respectively. This exogenous extrapolation approach is similar to the methods proposed in

Arnold et al. (2020) and in line with the literature on identification in selection models (see

Chamberlain, 1986; Heckman, 1990).

Figure 3 provides a visualization of the identification for mean ADHD risk by patient

gender. The vertical axis plots patient ADHD match signal, xi, for the set of patients in

which it is observed (Qi = 1), paired with their selection-adjusted behavioral assessment

propensity on the horizontal axis.

further discuss the implications of this assumption in Appendix C.2.
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Figure 3: Behavioral Assessment Rates and Observed ADHD Risk

Note: This figure plots gender-specific observed ADHD risk signals on predicted behavioral assessment probabilities from
equation (9), with demeaned patient controls set to 0, for the set of patients with Qi = 1. The figure also plots gender-specific
exponential curves of best fit and the associated male and female intercept at 1.

Consistent with the theory, observed ADHD risk signals, xi, are decreasing in exogenous

behavioral assessment propensity, ̂Pθ(Qi|Zi). A low value of ̂Pθ(Qi|Zi) implies that child i

is a patient of a PCP with generally low referral rates. Thus, these patients are ex-ante

unlikely to schedule a behavioral assessment appointment. Despite this, the patient appears

in the data as receiving a behavioral assessment anyway, which means that they must have

a high ADHD risk draw, vi, consistent with high observed signal, xi. On the other hand,

a large value of ̂Pθ(Qi|Zi) implies the child is a patient of a PCP with conditionally high

referral rates. These patients are more likely to schedule behavioral assessments regardless

of true risk, and thus have lower observed risk signals on average.

The two dashed lines in Figure 3 represent the gender-specific lines of best fit through the

data. These are obtained via non-linear least squares estimation, specifying an exponential

functional form to ensure estimates above 0. Appendix Table A6 presents the estimated

model fit coefficients for both males and females. The vertical intercept at one of the gender-

specific curves provides an estimate of population mean ADHD risk, µθ. These values are
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reported in the figure and again in Table 4 which presents the full set of parameters estimates.

I estimate population mean ADHD risk for males to be µm = 0.130 and mean ADHD risk

for females to be µf = 0.064, with bootstrap standard errors of 0.039 and 0.053, respectively.

5.2 Second Stage: Recovering Remaining Parameters

I estimate the remaining model parameters by matching moments defined by behavioral

assessment rates and coefficients from a conditional diagnosis probit obtained via maximum

likelihood estimation, separately for male and female patient groups.

With µθ estimated in first stage, it is clear how remaining parameters are identified

up to ADHD risk dispersion, σθ. Gender-specific mean utilization cost, cθ, is identified

through variation in behavioral assessment rates conditional on mean ADHD risk parameter

µθ. Both diagnostic uncertainty (ρθ) and diagnostic thresholds (τθ) are identified in the

conditional physician diagnosis probability equation. The correlation between physician

diagnosis, Di, and patient ADHD match signal, xi, identifies the signal strength ρθ. The

diagnostic threshold, τθ, is identified by mean diagnosis rates conditional on ADHD signals,

xi, and mean risk, µθ.

Up to this point, the parameter identification has not relied on any functional form

assumptions, and thus would follow through if instead ADHD risk and signals were modeled

using alternative distributions (e.g., the Beta distribution). However, estimation of the final

parameter, ADHD risk dispersion (σ2
θ), requires an additional moment that depends on this

parametric form. Specifically, I estimate σθ using the moment defined by equation 10 which

follows from the truncated normality of selected risk signals. Thus σθ is identified by the

difference between observed risk signals and population mean risk, adjusting for selection

due to different healthcare utilization costs and signal strength by patient gender.

xobs|θ = E[xi|vi > ci] = µθ + ρθσθ

ϕ
(
Φ−1(1− Q̂|θ)

)
Q̂|θ

(10)
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Table 4 presents the full set of results for male and female patients. The differences in

model parameters in Table 4 are informative about which mechanisms lead to ADHD diag-

nostic disparities and in what direction. As discussed in Section 3.2, diagnostic disparities

between male and female patients can be attributed to differences in prevalence, mental

healthcare utilization, diagnostic uncertainty, and diagnostic thresholds. The results in Ta-

ble 4 suggest that each of these channels play an important role in explaining diagnostic

disparities.

Table 4: Model Parameter Estimates

Male Female Difference

Pop. Mean Risk µθ 0.130 0.064
0.066***

(0.037) (0.047)
Pop. Risk Dispersion σθ 0.384 0.375

0.009
(0.067) (0.067)

Utilization Costs cθ 0.459 0.463
-0.004*

(0.041) (0.053)
Signal Quality ρθ 0.351 0.408

-0.057***
(0.054) (0.062)

Diagnostic Threshold τθ 0.258 0.398
-0.140***

(0.019) (0.030)

Note: Standard errors in parenthesis based on 1000 bootstrapped patient samples. Differences calculated as female parameter
estimate subtracted from male parameter estimate with significance based on paired T-test difference in means using bootstrap
sample estimates. * p < 0.10, ** p < 0.05, *** p < 0.01.

First, the population mean risk for males is significantly higher than that of females

(difference of 0.066), which increases diagnostic disparities through both the patient selection

(behavioral assessment scheduling) channel and through higher physician posterior beliefs.

This finding is directionally consistent with the medical literature which notes higher ADHD

symptom prevalence in boys than girls (AHRQ, 2011). Second, males and females have

similar mental health utilization costs suggesting patient preferences do not drive differences

in ADHD diagnosis rates. I find that physicians put more weight on female ADHD risk

signals (ρf > ρm), which by construction measures the overlap between patient symptoms

and DSM-V symptoms. This finding is consistent with the results in Bruchmüller et al.

(2012), who show that physicians are more likely to follow DSM-V criteria when diagnosing

female patients and rely on heuristics for male patients. Finally, I find that physicians use
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lower diagnostic threshold for male patients (τm < τf ). This means that physicians are more

likely to diagnose a male patient than a female patient with identical posterior ADHD risk,

suggesting that perceived cost of missed-diagnosis is higher for male patients.

6 ADHD Diagnosis Simulations

In the previous section, I presented estimates of model parameters and discussed differences

by patient gender. I now use the model parameters in Table 4 and run ADHD diagnosis

simulations using the structural model in Section 3. This allows me to (1) identify how much

of the diagnostic disparity can be attributed to the different mechanisms of diagnosis, and

(2) provide estimates of both missed and mis-diagnosis for male and female patients based

on the DSM-V definition of ADHD. Appendix Table A7 shows how well the simulated model

matches key moments of the observed data, both overall and for male and female subsets of

patients. The simulated model does extremely well at predicting average diagnosis rates (D)

and behavioral assessment rates (Q). It slightly over-estimates mean ADHD match signals

(x|Q) and conditional diagnosis rates (D|Q), but the differences are small.

6.1 Mechanisms of Diagnostic Disparities

To show how the various mechanisms contribute to the ADHD diagnostic disparity measure,

I analyze simulated diagnosis rates under counterfactual scenarios that place restrictions on

the source of gender-specific variation. The results of this analysis are presented numerically

in Table 5 and visually in Figure 4.

The first row of Table 5 shows no diagnostic disparity (1.00:1), in which parameters are

restricted to be identical for both boys and girls. The second panel shows the results when

only ADHD risk distribution parameters µθ and σθ are allowed to vary. The remaining

parameters are held constant at either the male or female estimates. When only ADHD

underlying risk varies by patient gender, the diagnostic disparity increases from 1.00:1 to

1.57:1 or 1.63:1 depending on at which estimates the remaining parameters are held. This

represents 45.2% or 50.0% of the observed disparity, suggesting that at most half of the diag-
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nostic disparity can be attributed to differences in underlying symptom prevalence between

male and female patients.

When patient utilization costs are also allowed to vary by patient gender, diagnostic

disparities increase only slightly, suggesting that the very little of the diagnostic disparity can

be attributed to differences in selection into mental health care (net of symptom prevalence

differences). Finally, to analyze the physician decision making contribution, I relax the

restrictions on signal quality and physician thresholds sequentially. The differences in signal

quality actually reduces the diagnostic disparity, but this is more than made up for by

different diagnostic thresholds which explain between 56.3% to 60.3% of the diagnostic gap

between male and female patients.

Table 5: Disparity Mechanism Contribution

Diagnostic Disparity Relative
Disparity Effect Contribution

No Disparity 1.00 - -

Prevalence Contribution
ADHD Risk Distribution: µθ and σθ

at Male estimates 1.57 +0.57 45.2%
at Female estimates 1.63 +0.63 50.0%

Patient Contribution
Utilization Costs: cθ

at Male estimates 1.59 +0.02 1.6%
at Female estimates 1.65 +0.02 1.6%

Physician Contribution
Signal Quality: ρθ

at Male estimates 1.50 -0.09 -7.1%
at Female estimates 1.55 -0.10 -7.9%

Diagnostic Thresholds: τθ
at Male estimates 2.26 +0.76 60.3%
at Female estimates 2.26 +0.71 56.3%

Observed Disparity 2.26 +1.26 100%
Note: This table presents results from diagnostic simulations with sequential restrictions the model parameters. Rows show
which parameters are varied, starting with no variation, and adding variation until all parameters are at estimated value.
Diagnostic disparity is calculated as simulated male diagnosis rate divided by simulated female diagnosis rate. Disparity effect
calculates the net difference from disparities in previous simulation. Relative Contribution calculated as disparity effect divided
by total effect of 1.26.
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Figure 4: Cumulative Disparity Mechanism Effect

Note: This figure shows the cumulative effect of each mechanism in explaining ADHD diagnostic disparity. Values come from
Column 2 of Table 5, where parameter restrictions in simulations are set at male parameter values.

6.2 Estimates of Mis(sed) Diagnosis

As less than one-half of the ADHD diagnostic disparity can be attributed to true underlying

ADHD prevalence differences, the remaining difference in ADHD diagnosis rates between

male and female patients is unwarranted, at least according to the DSM-V guidelines. In this

section, I use the model estimates along with the DSM-V definition of ADHD, to determine

the extent of over and under diagnosis for both male and female patients. I define ADHD

diagnostic errors as any deviation from the DSM-V definition of ADHD.

I find that physicians are making diagnostic errors in the sense that they do not follow the

DSM-V guidelines. However, I preface this section by noting that from a medical (or even

an economic) standpoint, these errors may be justified. It may be the case that the DSM-V

definition of ADHD is outdated or too terse, in which case physician discretion and variation

from these guidelines is warranted. In fact, this is a common consensus among psychologists.

A recent Psychology Today article written by a psychiatrist and pediatric neurologist states:

“...behavioral issues that patients face are not so easily cataloged as medical books (including

the DSM) might tempt a person to believe. The DSM is just a tool designed to categorize

human behavior in a clinically useful way — but it is inherently artificial, and must be taken
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with a grain of salt (and preferably used by a well-trained clinician with plenty of practical

experience and good judgment)” (Cheyette and Cheyette, 2020). Therefore, while I estimate

rates of ADHD diagnostic errors, I remain agnostic about the resulting policy implications.

It may be that physicians require more training in recognizing ADHD, or it may imply a need

to adjust DSM-V definition of this condition. I leave the interpretation and implications of

the following estimates to the medical profession.

Defining ‘True’ ADHD

Recall that while ADHD risk, vi, presents itself on a continuum, the DSM-V definition of

ADHD is binary by construct. I follow the DSM-V definition of ADHD and assume that a

child has ADHD, Si = 1, if and only if they meet all the requirements for diagnosis outlined

in the DSM-V. In other words, Si = 1(vi > v) where v is implicitly defined as the DSM-V

minimum requirement of diagnosis, which by definition does not differ by patient gender.

Thus far I have remained agnostic about the value of v as it is not necessary to estimate

sources of diagnostic disparities. However, to examine inaccuracies in diagnosis according to

guidelines, it is important to use this value. For purposes of classifying ADHD diagnostic

inaccuracies, I refer back to the DSM-V guidelines for ADHD that requires a patient meets

6 (or more) of the 9 specified ADHD symptoms (see Table 1). As ADHD signal, xi, and

therefore ADHD risk, vi, measures the fraction of DSM-V symptoms experienced by patient

i (see construction of xi in Section 4.2), the DSM-V defined minimum threshold is 6/9 = .66,

corresponding to a v value of 0.66.

Estimates of DSM-V defined errors

Using v = 0.66 along with population risk distribution parameters, µθ and σθ, I can simulate

DSM-V defined ADHD prevalence rates by patient gender. Combining this with the full

diagnosis model allows me to simulate the extent of over/under diagnosis for both boys and

girls, as well as potential sources of error. I present the results of this simulation exercise in

Table 6.
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Table 6: Mis(sed) Diagnosis Simulations

% Misdiagnosed % Missed Diagnosis
Panel A: Total
DSM-V defined ADHD: 6.99%
Clinical Dx: 6.05%

Overall 1.90 2.46
Patient Effect - 1.59

Physician Effect 1.90 0.86

Panel B: Male
DSM-V defined ADHD: 8.39%
Clinical Dx: 8.49%

Overall 2.65 2.68
Patient Effect - 1.77

Physician Effect 2.65 0.91

Panel c: Female
DSM-V defined ADHD: 5.63%
Clinical Dx: 3.62%

Overall 1.16 2.26
Patient Effect - 1.44

Physician Effect 1.16 0.81

Note: This table shows simulated diagnosis rates Di based on simulated diagnosis decisions and Si based on simulated risk vi
larger than v = 0.66. DSM-V defined ADHD is then proportion of children with Si = 1 and Clinical Dx is proportion with
Di = 1. Misdiagnosis is defined by Si = 0, Di = 1 and Missed Diagnosis by Si = 1, Di = 0. Within column 3, the Patient
Effect denotes set of patients with Si = 1, Di = 0, Qi = 0 and Physician Effect set of patients with Si = 1, Di = 0, Qi = 1.
Panel A shows results for full sample, and Panel B and C for male/female subsamples, respectively.

There are three key takeaways from this table. First, comparing simulated DSM-V

defined ADHD and clinical diagnosis decisions allows me to estimate net over and under

diagnosis. Based on the simulation results in Panel A, approximately 7% of children meet

the diagnostic criteria for ADHD, 1.90% of children are misdiagnosed, and 2.46% of children

have ADHD but do not receive clinical diagnosis, resulting in a small net under-diagnosis

estimate of 0.94%. Both the prevalence rates and error rates are heterogeneous across patient

gender, as shown in Panels B and C. 8.39% of males and 5.63% of females meet the DSM-V

defined requirement for ADHD, however on net, 0.10% of males are over-diagnosed compared

to a net female under-diagnosis of 2.01%.

The second insight from Table 6 is the source of diagnostic errors. Whereas a misdiagnosis

falls on the physician decision, a missed diagnosis can be attributed to either physician error
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or patient error, with the latter coming from the high cost of mental healthcare utilization.

Panel A shows that 1.59% of children who have ADHD do not seek care from a physician, and

0.86% of children who have ADHD do seek care, but do not receive an appropriate diagnosis.

This suggests that the majority of missed diagnosis is due to patients not appropriately

seeking care as opposed to physicians missing a warranted diagnosis. This is true in the

male and female sub-samples as well.

Finally, the simulations also provide insight on the impacts of heterogeneous physician

decision making. In total, physicians are much more likely to misdiagnose than to miss a

diagnosis (1.90% to 0.86% in Panel A). While this is true for both male and female patients,

the relative difference in error rates in heterogeneous. The rate of missed diagnosis from a

physician error is similar for both male and female patients (0.91% and 0.81, respectively);

however, the misdiagnosis rate is much higher for male patients than female (2.65% and

1.16%, respectively). These findings suggest that the perceived cost of missed diagnosis is

larger than cost of misdiagnosis on average, with a larger relative cost for male patients.

6.3 Economic Impact of ADHD Diagnostic Errors

Thus far, the literature that monetizes the economic impact of ADHD has only provided

evidence of incremental costs associated with having an ADHD clinical diagnosis. Adjusting

to 2019 U.S. dollars, Doshi et al. (2012) estimate the annual economic impact of ADHD

diagnoses to be between $168 to $312 billion dollars. However, this estimate is based on

diagnosis rates alone and therefore does not consider how much of the estimated costs come

from misdiagnosis, and additionally excludes costs associated with missed diagnoses. Both of

these types of diagnostic errors are costly to individuals, families, and society. Amisdiagnosis

can lead to excess medical and educational spending, along with indirect costs associated

with treatment side effects and psychological stigmatization. A missed diagnosis can lead to

decreased educational attainment (Currie and Stabile, 2006) and lower earnings/employment

(Fletcher, 2014). However, in order to accurately quantify these costs, one would need to

identify individuals with diagnostic errors and subsequently link to educational attainment,
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medical expenditures, and long run economic outcomes.

While I am able to simulate rates of ADHD diagnostic errors, it is not possible to obtain

the level and detail of data necessary to determine the observed economic impact of these

errors. Instead, I provide a rough approximation of the economic impact associated with both

over and under diagnosis of ADHD using per-person cost components from the literature

combined with rates of ADHD diagnostic errors shown in Table 6.

I use ADHD cost estimates from Doshi et al. (2012), Table 2 (pg 996), which provides

monetized ranges of ADHD economic impact based on a comprehensive literature review.

Importantly, the authors break up the over-all economic impact into different categories:

health care, productivity/income loss, justice system, and education. As these are based

on those with an ADHD clinical diagnosis, I make some assumptions about how these cat-

egories carry over unto those with ADHD diagnostic inaccuracies. I assume that those who

are misdiagnosed incur the health care costs (e.g., through treatment and follow-up visits)

and the educational costs, which includes special education services used for children with

diagnosed ADHD. I assume that those whose ADHD is missed (missed diagnosis) do not have

to incur the direct medical spending for treatment in childhood, but as a result experience

the productivity and income loss as adults.

Appendix Table A9 provides the relevant table from Doshi et al. (2012), and highlights

the costs I consider for this analysis. I make necessary adjustments to the ‘Per-Person

Incremental Costs’ column in order to re-monetize accounting for inflation and rates of

diagnostic errors. I first inflate costs to 2019 U.S. dollars based on CPI and medical care

CPI from the U.S. Bureau of Labor Statistics.23 As the literature has not fully explored

differential costs by patient gender, I must assume per-person costs within each category are

the same for males and females. Therefore, differences in costs across gender comes from

differences in diagnostic error rates. I determine the number of population incurring cost by

multiplying the diagnostic error rates in Table 6 with 2019 population estimates from the

U.S. Census. Finally, I calculate national incremental costs of ADHD diagnostic errors by

23Health care costs are adjusted using medical care component of CPI and all others using CPI-U.
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multiplying the per-person cost by the number of children in each ADHD diagnostic error

category. Table 7 presents the results from this back-of-the-envelope calculation.

Table 7: Cost of ADHD Mis(sed) Diagnosis

Population Per-Person National Cost of
Incurring Cost Cost of Error Errors (billions)

Misdiagnosis 1,400,440 $3402-$8989 $4.8-$12.6
Males 977,266 $3.3-$8.8
Females 427,784 $1.5-$3.8

Missed Diagnosis 1,814,395 $12,593-$22,156 $22.8-$40.2
Males 988,329 $12.4-$21.9
Females 833,442 $10.5-$18.5

Note: Table reflects estimates of costs associated with ADHD diagnostic errors, separated into misdiagnosis and missed diag-
noses, by patient gender. All costs reported in 2019 U.S. dollars. Population counts based on 2019 Census population estimates
and rates of errors in Table 6. Per-Person costs from Doshi et al. (2012), and are the same for males and females within each
category.

The annual economic impact of ADHD diagnostic errors is $27.6-$52.8 billion U.S. dollars,

with $4.8-$12.6 due to excess medical and education spending for those misdiagnosed, and

$22.8-$40.2 due to productivity and income loss following a missed diagnosis. My findings

suggest that the national estimate provided by Doshi et al. (2012) underestimates the cost

of ADHD by at least $10.2-$35.4 billion dollars.24

The per-person cost of missed diagnosis is about 3 times larger than the cost of mis-

diagnosis. This suggest that physicians may in fact be optimal in their average diagnostic

threshold, which recall reflects a higher relative cost of missed diagnosis. However, as these

per-person cost estimates were not broken down by patient gender, this table does not yet

provide support for why physicians use significantly lower thresholds for males, suggesting

higher relative per-person costs for male patients. Future research analyzing differences in

per-person excess expenditures by patient gender is warranted.

Interestingly, while females are under-diagnosed more than males on net, almost two-

thirds of the economic impact is incurred by males. This comes from the important break-

down of net diagnosis rates in Table 6 which shows males have more misdiagnoses and missed

24This underestimate is determined by subtracting cost of misdiagnosis and adding cost of missed diagnosis
to Doshi et al. (2012) estimates.
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diagnoses than females. The former is attributed to higher diagnostic uncertainty for male

patients (i.e., lower signal quality estimate ρθ), and the latter comes from lower diagnostic

thresholds. This demonstrates the extreme importance of examining both misdiagnosis and

missed diagnosis as opposed to net rates of errors, and further exploring the differential

impact by patient gender.

These cost estimates may underestimate the true cost of misclassified ADHD as they

do not include the potential spill-over effects of misdiagnosis (Persson et al., 2021) or the

productivity loss of family members (Birnbaum et al., 2005). They also do not reflect

health costs associated with over-use of stimulants, or personal costs through hindered peer

relationships and self-esteem (Coghill, 2010). On the other hand, these estimates would

overstate the true cost of diagnostic errors if physicians use the DSM-V with discretion and

adjust the definition to fit each patient accordingly. Given that the estimates of diagnostic

errors are significant, how the DSM-V defines errors and how additional indirect costs affect

children and society are important topics for future research.

7 Conclusion

Attention Deficit Hyperactivity Disorder is the most diagnosed child mental health condition

in the United States. Yet, recent research presents evidence of improper ADHD diagnosis de-

cisions and documents heterogeneous national diagnosis rates by patient gender, with 14.8%

of males diagnosed with ADHD and 6.7% of females. In this paper I combine structural mod-

eling, selection estimation techniques, and text analysis procedures, to explore mechanisms

of ADHD diagnosis and show how these contribute to the significant diagnostic disparity

between male and female patients.

I develop a model of ADHD diagnosis, composed of three distinct stages, to demonstrate

how both patient and physician factors contribute to the ADHD diagnosis rate. Importantly,

each stage of the model depends on an unobservable patient ADHD risk value, coming from

a gender-specific risk distribution, which accounts for variation in true ADHD prevalence

between male and female children. My model highlights four key mechanisms of ADHD
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diagnostic disparities: (1) differences in patient selection into mental health care, (2) varying

rates of diagnostic uncertainty, (3) heterogeneous physician preferences for ADHD diagnosis,

and (4) underlying differences in the true prevalence of ADHD symptoms between boys and

girls.

I estimate the gender-specific model parameters using electronic health records and clin-

ical doctor notes. I address the lack of necessary observable mental health variables by

using clinical doctor note data combined with natural language processing and text analysis

techniques to create proxies for two mental health related variables- the patient decision

to schedule behavioral assessment and an ADHD match signal measuring how closely the

behavioral assessment aligns with DSM-V criteria. In a first stage selection approach, I

use quasi-exogenous variation coming from primary care physician referral rates to estimate

population mean ADHD risk for males and females. I then back out the remaining model

parameters using observed behavioral assessment rates and maximum likelihood estimates

from a gender-specific conditional diagnosis probit. I find that males have higher ADHD

prevalence, higher diagnostic uncertainty, and lower diagnostic thresholds than their female

counterparts.

I then use these estimated parameters and structural model to simulate ADHD diagnosis

rates in order to (1) identify the mechanism contribution in explaining ADHD diagnostic

disparities and (2) provide estimates of over and under diagnosis for males and females.

The raw ADHD male-to-female diagnostic disparity is 2.26:1. I show that less than half

of this disparity can be explained by differences in true underlying symptom prevalence.

The remaining difference is due to variation in physician decision-making based on patient

gender.

Using the DSM-V definition of ADHD, I show that males are slightly over-diagnosed

and females under-diagnosed on net. This can be broken down into heterogeneous rates of

misdiagnoses (2.7% males and 1.2% females) and missed-diagnoses (2.7% males and 2.3%

females). I conduct back-of-the-envelope calculations and estimate an annual economic im-

pact of ADHD diagnostic error in the range of $27.6 to $52.8 billion U.S. dollars. The cost of

missed diagnosis is more than 3 times larger than the estimated cost of mis-diagnosis. This
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finding suggests that physicians may be acting optimally by internalizing these costs (on av-

erage) and setting diagnostic thresholds lower than that specified by the DSM-V guidelines.

However, I also find that physicians use lower diagnostic thresholds for male patients than

female patients with identical ADHD risk, implying that physicians perceive the relative cost

of type II vs type I diagnostic error (as explained in Section 2) to be higher for male patients.

The clinical support for these heterogeneous costs should be explored further, and perhaps

even warrant a re-evaluation of how ADHD is defined in the DSM-V, noting its associated

effects on male and female clinical diagnoses and subsequent treatment.

I also decompose ADHD missed diagnosis into physician and patient decisions. On the

demand side, I find that approximately 80% of under-diagnosis for both male and females can

be attributed to selection- i.e., high mental health care utilization costs limiting number of

warranted appointments. As missed diagnoses are extremely costly, this suggests a potential

policy response through targeted mental health education to reduce associated stigmas.

It is important to note the limitations of interpreting the results in this paper. First, iden-

tification of mean ADHD risk for each gender relies on the assumption that patients do not

select primary care physicians in a way that is correlated with their underlying ADHD risk.

In an ideal (econometric) setting, patients would be assigned to PCPs randomly. However, in

application, families may select their primary care physician. If this choice is correlated with

unobserved ADHD risk, then my estimates of population mean risk will be biased, though

the direction depends on the sign of this correlation which is theoretically ambiguous. The

ADHD prevalence rates derived from my estimates align with the medical literature, which

helps alleviate this concern; however, it is still important to note the limitations. Although

not feasible in this paper due to data constraints, an alternative source of exogenous be-

havioral assessment scheduling costs would be primary care physician time pressures. If a

patient has a wellness visit on a “busy” day, the PCP may be less able to provide a thor-

ough evaluation and thus less likely to suggest follow-up mental health care. This idea is

motivated by the recent work by Freedman et al. (2021), and should be explored further,

especially in relation to mental health care.

Finally, I emphasize that the suggested policy responses and diagnostic error estimates
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are likely sample-location dependent. The in-sample ADHD diagnosis rate of 6.3% is lower

than the national average during this time period, suggesting a potential under-estimate of

misdiagnosis and over-estimate of missed diagnoses when compared to national rates. This

is likely due to the fact that a large portion of the population in Arizona is of Hispanic

ethnicity, and research suggests a significantly lower diagnosis rate for this group coming

from cultural biases (Morgan et al., 2013). This is consistent with my large estimates of

patient utilization costs, which include mental health stigma levels that may be lower in

more nationally representative samples.

Despite the limits to external validity, the proposed model and methods are general

enough to be applied to a variety of other applications. This paper addresses an understudied

yet important area of research: mental health diagnostic errors and disparities. Mental health

conditions are costly to both the individual and society. Thus, understanding mechanisms

across additional geographies, other disparities (e.g., by race/ethnicity), and alternative

mental health conditions is an important goal for future research.
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Gowrisankaran, G., Joiner, K. A., and Léger, P.-T. (2017). Physician practice style and
healthcare costs: evidence from emergency departments. NBER Working Paper 24155,
National Bureau of Economic Research.

Heckman, J. (1990). Varieties of selection bias. The American Economic Review, 80(2):313–
318.

Herrerias, C. T., Perrin, J. M., and Stein, M. T. (2001). The child with adhd: Using the aap
clinical practice guideline. American Family Physician, 63(9):1803.

Hinshaw, S. P. (2018). Attention deficit hyperactivity disorder (adhd): controversy, develop-
mental mechanisms, and multiple levels of analysis. Annual review of clinical psychology,
14.

Jensen, P. S., Hinshaw, S. P., Swanson, J. M., Greenhill, L. L., Conners, C. K., Arnold,
L. E., Abikoff, H. B., Elliott, G., Hechtman, L., Hoza, B., et al. (2001). Findings from
the nimh multimodal treatment study of adhd (mta): implications and applications for
primary care providers. Journal of Developmental & Behavioral Pediatrics, 22(1):60–73.

Knapp, M., King, D., Healey, A., and Thomas, C. (2011). Economic outcomes in adulthood
and their associations with antisocial conduct, attention deficit and anxiety problems in
childhood. Journal of mental health policy and economics, 14(3):137–147.

Layton, T. J., Barnett, M. L., Hicks, T. R., and Jena, A. B. (2018). Attention deficit–
hyperactivity disorder and month of school enrollment. New England Journal of Medicine,
379(22):2122–2130.

Marquardt, K. (2021). Identifying physician practice style for mental health conditions.
available at: www.kellimarquardt.com.

Morgan, P. L., Staff, J., Hillemeier, M. M., Farkas, G., and Maczuga, S. (2013). Racial
and ethnic disparities in adhd diagnosis from kindergarten to eighth grade. Pediatrics,
132(1):85–93.

45

www.kellimarquardt.com


Morley, C. P. (2010). The effects of patient characteristics on adhd diagnosis and treatment:
A factorial study of family physicians. BMC Family Practice, 11(1):1–10.

Persson, P., Rossin-Slater, M., and Qiu, X. (2021). Family spillover effects of misdiagnosis:
The case of adhd. NBER Working Paper 28334, National Bureau of Economic Research.

Rushton, J. L., Fant, K. E., and Clark, S. J. (2004). Use of practice guidelines in the primary
care of children with attention-deficit/hyperactivity disorder. Pediatrics, 114(1):e23–e28.

Sciutto, M. J. and Eisenberg, M. (2007). Evaluating the evidence for and against the over-
diagnosis of adhd. Journal of attention disorders, 11(2):106–113.

Visser, S. N., Zablotsky, B., Holbrook, J. R., Danielson, M. L., and Bitsko, R. H. (2015).
Diagnostic experiences of children with attention-deficit/hyperactivity disorder. National
health statistics reports, (81):1–7.

Data: The data were purchased using funds awarded via the University of Arizona Graduate

and Professional Student Council Research and Project Grant 2019. Data provided by The

University of Arizona Center for Biomedical Informatics & Biostatistics- Department of

Biomedical Informatics Services.

46



Appendices

A Additional Tables and Figures

Table A1: Additional Patient Demographics

Mean Std. Dev. Minimum Maximum
Medicaid 0.540 0.498 0 1
Private Ins. 0.419 0.493 0 1
White-Non Hispanic 0.345 0.475 0 1
Black-Non Hispanic 0.070 0.255 0 1
Hispanic 0.489 0.500 0 1
Psych Physician 0.069 0.254 0 1
Age 10.312 3.535 5 18
# of Appt. 3.248 4.043 1 85
# of Physicians 1.927 1.491 1 15
# Yrs. in Sample 1.693 0.891 1 4
N 11,397

Note: Table presents summary statistics for full set of patients included in sample. Psych Physician indicates whether patient
has an appointment with psychiatrist. Age is based on age at last appointment in sample. # of physicians indicates the number
of unique physicians the patient sees over sample period. Alternative insurance category includes ‘self-pay’ and ‘other’.

Table A2: Male/Female Difference in Observables

Male Female Difference
Full Sample
Age 10.165 10.463 -0.298***
Medicaid 0.535 0.545 -0.010
Private Ins. 0.421 0.417 0.005
White 0.346 0.345 0.001
Hispanic 0.483 0.496 -0.013
N 5,786 5,611
Behavioral Assessment Sample
Age 10.227 11.757 -1.529***
Medicaid 0.519 0.497 0.022
Private Ins. 0.437 0.477 -0.040*
White 0.412 0.447 -0.035
Hispanic 0.466 0.440 0.026
N 1,120 803

Note: Table presents gender-specific means and difference in means for full sample and Behavioral Assessment subsample
(Qi = 1). Significance based on two-sample T test with * p < 0.10, ** p < 0.05, *** p < 0.01.
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Figure A1: Original PCP Referral Rate Distribution

Note: This figure plots histogram of original primary care physicians referral rates. PCP referral rate calculated as the fraction
of patients of each original PCP that eventually appear in the electronic health record with Qi = 1.

Table A3: Test of First Stage PCP Relevance

Wald Test for PCP Fixed-Effect Significance
Total Male Female
(1) (2) (3)

Wald Chi-Squared Test Statistic 1773*** 1352*** 1378***
Degrees of Freedom 205 146 128
Patients 8934 4363 4258
Mean Behavioral Assessment Rates .173 .198 .150

Patient Controls

Male, Age, Psych Referral, Medicaid,
Private Ins., Hispanic, White, Appt. Type,

# of Physicians, #of Appts. Year FE

Note: This table shows results from Wald Chi-squared joint test of significance on original PCP fixed effects in a probit
regression of patient behavioral assessment indicator on set of patient controls and PCP fixed effects. Results shown for three
separate regressions based on total sample, male sample, and female sample, respectively. The coefficients and construction of
patient controls presented in Table A4. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table A4: First Stage Behavioral Assessment Coefficients

Total Male Female
(1) (2) (3)

Male 0.120
(0.036)

Age 0.021 -0.005 0.053
(0.005) (0.007) (0.008)

Psych Referral 2.039 2.051 2.389
(0.111) (0.153) (0.217)

Medicaid -0.065 -0.136 0.099
(0.099) (0.135) (0.159)

Private Ins. -0.159 -0.212 -0.011
(0.101) (0.139) (0.162)

Hispanic 0.119 0.103 0.139
(0.055) (0.076) (0.085)

White 0.365 0.309 0.442
(0.060) (0.083) (0.092)

Behavioral Appt. 2.352 2.478 2.198
(0.185) (0.256) (0.286)

Wellness Appt. 0.058 -0.034 0.110
(0.074) (0.107) (0.108)

# of Phys. -0.010 -0.029 0.020
(0.024) (0.035) (0.036)

# of Appt. -0.247 -0.257 -0.266
(0.033) (0.048) (0.049)

1(2014) 0.292 0.300 0.313
(0.034) (0.049) (0.049)

1(2015) 0.258 0.276 0.263
(0.034) (0.050) (0.049)

1(2016) 0.136 0.138 0.133
(0.038) (0.055) (0.055)

PCP Fixed Effects Y Y Y
Observations 8934 4363 4258

Note: This table shows patient control coefficients from probit regression of patient behavioral assessment indicator on demeaned
patient controls and PCP fixed effects. Results shown for three separate regressions based on total sample, male sample, and
female sample, respectively. All controls are based on the average (or max) across patient appointments prior to and including
behavioral assessment appointment. All controls demeaned using sample average. Behavioral Appt, indicator based on previous
other mental health diagnoses, and Wellness Appt. indicator based on broad appointment type categories. Psych Referral
indicates whether patient was seen by a psychiatrist during first behavioral assessment visit. Year fixed effect included to
control for changes in mental health trends over time. Robust standard errors in parenthesis.
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Table A5: Test of PCP Selection

Full Male Female
(1) (2) (3)

Male 0.002
(0.003)

Age -0.000 -0.000 -0.000
(0.000) (0.001) (0.000)

Medicaid -0.005 -0.006 -0.005
(0.007) (0.007) (0.007)

Hispanic 0.001 0.005 -0.003
(0.004) (0.004) (0.005)

White 0.005 0.011 -0.002
(0.004) (0.006) (0.005)

N 8929 4463 4466

Joint F-Test (p-value) .849 .320 .813

Note: This table presents results from patient level regression of leave-one-out PCP referral rates on demeaned patient demo-
graphics. Leave-one-out PCP referral rates determined using data from all other patients of the patient’s PCP and calculated
as the percent of other patients from each PCP that eventually receive behavioral assessment in the data (i.e., percent with
Qi = 1). Robust standard errors in parenthesis, clustered at the PCP level. The table also reports the p-value associated with
a joint test of patient demographic significance. Regression results provided for full sample and male/female subsambles.

Table A6: Male/Female Exponential Fit

Male Female
(1) (2)

α̂0 0.364 0.376
(0.013) (0.018)

α̂1 -1.030 -1.778
(0.200) (0.324)

N 878 668
Adj. R-sq. 0.811 0.759
Fitted µθ 0.130 0.064

Note: This table shows coefficients from non-linear least squares regression with exponential functional form: Y = α0exp(α1X)
where Y is the observed ADHD risk signal for patients who receive behavioral assessment and X is the predicted probability of
behavioral assessment coming from quasi-exogenous variation in scheduling costs using patient primary care physician referral
rates. This fits the data in text Figure 3 for male and female subset of patients separately. Fitted µθ denotes the intercept at
1 (i.e., µθ = α̂0exp(α̂1)). Standard errors in parenthesis.
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Table A7: Observed verses Simulated Rates

Observed Simulated

Total Male Female Total Male Female
ADHD Dx. (D) 0.063 0.088 0.037 0.062 0.086 0.038
Behavioral Appt. (Q) 0.170 0.195 0.144 0.169 0.196 0.143
ADHD match (x|Q) 0.305 0.320 0.305 0.314 0.319 0.308
Cond. Dx. (D|Q) 0.357 0.433 0.250 0.365 0.439 0.265

Note: This table presents average values across patients of ADHD diagnosis, behavioral assessment, ADHD risk signals, and
conditional diagnosis. Means are calculated for full set, and subset of male/female patients. Those in the Observed columns are
based on the EHR data and those in the Simulated columns based on diagnostic simulations using model parameters in Table
4 and model outlined in Section 3.1.

Table A8: Independent Disparity Effects

Diagnosis Rates Diagnostic
Male Female Disparity

Baseline Differences 0.086 0.038 2.26

Panel A: Prevalence
ADHD Risk Distribution: µθ and σθ

at Male estimates 0.086 0.061 1.41
at Female estimates 0.055 0.038 1.44

Panel B: Patient Preferences
Utilization Costs: cθ

at Male estimates 0.086 0.039 2.23
at Female estimates 0.848 0.038 2.24

Panel c: Physician Decision-Making
Signal Quality: ρθ

at Male estimates 0.086 0.035 2.46
at Female estimates 0.091 0.038 2.40

Diagnostic Thresholds: τθ
at Male estimates 0.086 0.057 1.50
at Female estimates 0.059 0.038 1.55

Note: This table reflects diagnosis rates from a model simulation exercise that restricts variation in only one set of model
parameters. The simulated gender-specific diagnosis rates are reported in columns 1 and 2 with the ratio in column 3. For
reference, Panel A presents simulations that restrict ADHD risk distribution parameters to be equal for male and female
patients and all other parameters allowed to vary and equal their estimated values in text Table 4. I include diagnosis rates
when equalization is based on male estimate and female estimate. Panel B restricts variation in patient utilization costs, and
Panel C restricts variation in physician parameters, signal quality and diagnostic thresholds, respectively.
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B Variable Construction using Clinical Texts

In this appendix I present the Machine Learning Algorithm used to construct a proxy for

the behavioral assessment indicator, Qi. This closely follows the Text Analysis Appendix in

Clemens and Rogers (2020).

I first break the appointment level data into a labeled and un-labeled subsets, where i

denotes patient and j denotes appointment. The labeled set is determined by icd9 codes

where an appointments receive a positive label (Qij = 1) if the appointment is associated

with an icd9 diagnosis related to mental health (Q1 Codes in table B10). An appointment

receives a negative label (Qij = 0) if the appointment is associated with an idc9 diagnosis

related to physical ailments (Q0 Codes in table B10). To ensure that there is no overlap with

patients in both groups, I restrict the negative labeled set to only those patients that never

receive a mental health diagnosis during the sample period. The un-labeled set contains all

appointments in which there is no associated diagnoses or appointments with ambiguous icd9

codes that could be related to either mental or physical health concerns (e.g., abdominal pain

can be associated with anxiety or a virus). This hand coded separation procedure results

in 40,917 appointments and 14,092 patients in the labeled set (31,716 appointments with

Qij = 0 and 9,200 with Qij = 1) and 105,054 appointments of 28,403 patients in the un-

labled set.25

Q0 Codes Q1 Codes
034, 055, 058, 078, 079, 080, 111, 113, 171, 293-319, 331, V11, V15, V40
192, 204, 250, 251, 273, 277, 278, 283, 287, V41, V61, V62, V71, V79
288, 289, 363-383, 389, 390, 462, 463, 466,
473, 474, 478, 486, 488, 493, 494, 529, 537,
599, 600, 608, 612, 682, 683, 693, 697, 703,
707, 709, 710, 715, 719, 720, 725, 728, 729,
730, 733, 734, 744, 760, 781-791, 849, 907,
919, 920, 960

Table B10: ICD-9 Labeled Dataset Codes

25These sample sizes are larger than the estimation sample as I choose not to make any sample restrictions
in building the machine learning algorithm. Within the estimation sample, 6,711 appointments of 2658
patients are un-labeled.
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I next prepare the doctor notes for feature extraction. This includes traditional text

pre-processing procedures: replace contractions, remove special characters and stop words,

conversion to lowercase and stemming. For both computational and prediction purposes, I

consider only 41 features: note length, relative frequency of top 20 predictive words in the

positive labeled set, and relative frequency of top 20 predictive words in the negative labeled

set. I determine these top predictive words by their “tf-idf” value in a constructed document

term matrix.26

• Positive-label word stems: school, mother, behavior, parent, report, current, social,

disord, anxieti, famili, examin, activ, treatment, therapi, sleep, adhd, psychotherpi,

tablet, feel, diagnosi

• Negative-label word stems: pain, fever, list, care, cough, blood, exam, address, rash,

skin, return, vaccin, left, rang, bilater, ml, resid, hour, puls, record

For cross-validation, I split the labeled data into a training and test set using 90-10

split. Using the training set, I define a random forest learner and tune hyperparameters

using random grid search with hold-out re-sampling. I use false discovery rate (FDR) as the

objective measure for hyperparameter tuning. The main hyperparameters and their tuned

values are: number of trees to grow (ntree=398), number of variables at node split (mtry=3),

and maximum number of observations in terminal nodes (nodesize=3).

Using the tuned hyperparameters, I then train the model on the training set, again

specifying false discovery rate as the objective measure. The confusion matrix applied to the

test set is presented below, with false discovery rate of 0.03487.

Predicted-0 Predicted-1
True-0 3,153 28
True-1 129 775

Before analyzing the final model predictions, I look for issues with context specificity, or

26A document term matrix consists of documents i as rows, words j as columns, and matrix elements tij
representing frequency of word j in document i. The tf-idf value is defined as

tij
Ti
ln( D

Dj
) where Ti denotes

the number of terms in document i, D denotes the total number of documents, and Dj denotes the number
of documents with term j.
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“limitations on a model’s validity outside of its training set” (Clemens and Rogers, 2020). I

take a random sample of 96 notes from the unlabeled dataset, read the unprocessed notes,

and determine the appropriate hand label for behavioral assessment using own discretion.

Then using the training random forest algorithm, I obtain the model’s predictions for these

notes. I specify a probability threshold of 0.5. The confusion matrix is presented in the table

below. 88 of the notes were correctly determined via the random forest algorithm. 7 notes

were incorrectly specified, with only 1 non-mental health related appointment receiving a

positive label.

Predicted-0 Predicted-1
True-0 70 1
True-1 6 18

I consider this performance and validity to be satisfactory, and thus apply the trained

random forest algorithm to the full un-labeled set of appointments to obtain the complete

set of predictions for behavioral assessment. Approximately 9% of appointments receive a

positive predicted label. Results at the patient level are shown in text Table 3.
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C Econometric Appendix

C.1 Physician Diagnostic Threshold

In this appendix, I present a physician utility framework that results in a risk-threshold

diagnosis decision rule, where the threshold is a function of physician perceived cost of

diagnostic errors.27

Let physician utility be defined by:

ui|θ =


−1 if Di = 0, Si = 1

−βθ if Di = 1, Si = 0

0 otherwise

(C1)

The utility of correct diagnoses are normalized to 0 so that physicians receive disutility

from errors. With utility of missed diagnoses (Di = 0, Si = 1) standardized to -1, βθ captures

the potentially gender-specific disutility of misdiagnosis relative to missed diagnoses.

The physician chooses Di = 0 or Di = 1 in order to maximize his expected utility,

where expectation is based on the posterior probability of Si = 1. Let p(x, θ) denote this

probability. p(x, θ) is expressed in equation C2, and follows from posterior ADHD risk in

(4) and the DSM-V defined minimum diagnostic requirement, v .

p(x, θ) = Pr(vi|x > v) = Φ

(
ρθx+ (1− ρθ)µθ − v

σθ

√
1− ρ2θ

)
(C2)

The doctor will choose to diagnose a patient with ADHD if the expected utility of Di = 1

is larger than the expected utility of Di = 0. Based on the utility function (C1), E[ui|Di =

1, θ] = −βθ(1− p(x, θ)) + 0(p(x, θ)) and E[ui|Di = 0, θ] = −1(p(x, θ)) + 0(1− p(x, θ)).

27This is similar to the utility in Chan et al. (2021), but with variation in cost across patient gender as
opposed to variation across physicians.
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Assuming misdiagnoses are costly (i.e., βθ > 0), then the doctor will choose Di = 1 iff

E[ui|Di = 1, θ] ≥ E[ui|Di = 0, θ]

=⇒ −βθ + βθp(x, θ) ≥ −p(x, θ)

=⇒ p(x, θ) ≥ βθ

1 + βθ

Plugging in equation (C2) for p(x, θ), a physician will diagnose if Φ

(
ρθx+(1−ρθ)µθ−v

σθ

√
1−ρ2θ

)
≥

βθ

1+βθ
. Re-writing with posterior ADHD risk mean on the right-hand side results in the

following gender-specific threshold value:

τθ = v + σθ

√
1− ρ2θΦ

−1

(
βθ

1 + βθ

)

For βθ ∈ (0, 1), Φ−1
(

βθ

1+βθ

)
< 0 which implies τθ < v. In words, physicians will use

thresholds lower than the DSM-V defined definition so that they diagnose patients on the

margin of meeting ADHD criteria. Intuitively, this suggests that physicians view missed

diagnoses as costlier than misdiagnosis, which is consistent with βθ ∈ (0, 1) in (C1).

On the other hand, βθ > 1 implies τθ > v. In this case, physicians will use higher thresh-

olds and will not diagnose patients on the margin of meeting ADHD criteria. This suggests

that physicians view misdiagnosis as costlier than missed diagnosis, which is consistent with

βθ > 1 in (C1).

C.2 Modeling Assumptions and Implications

In this appendix, I discuss in the detail the key assumptions made throughout the main text.

While I cannot test for the validity of each assumption, I discuss what would happen if the

assumption fails, and in most cases determine the direction of the resulting estimation bias.

Full Documentation Assumption

In Section 4, I show how ADHD risk signal xi can be constructed using clinical doctor
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note text. This relies on the assumption that physicians accurately document behavioral

symptoms in their notes. There are two situations in which this assumption might fail.

First, it may be the case physicians do not conduct a thorough behavioral assessment and

thus do not learn about all the symptoms that the patient is experiencing. Alternatively, it

may be the case that the physician does learn about the patient symptoms, but does not write

these down in the note. In both cases, xi is a downward biased proxy of individual symptoms

such that xtrue
i = xobs

i + ζi where ζi > 0. While ζi is only unobserved to the physician in the

first case but to the econometrician in both, the implications of the assumption are likely

the same.

Because xi is downward biased, then I underestimate mean ADHD risk in the first stage.

As a result, I also underestimate mental healthcare utilization costs. Assuming the full

documentation assumption fails for both boys and girls equally, then µ̂θ < µθ and ĉθ < cθ

for θ ∈ {m, f}.

It is unlikely that the other parameters will be impacted as these are estimated from the

physician diagnosis decision. In the first case, physicians do not know ζi and therefore use xobs
i

and µ̂θ in the decision making process, which means ρ̂θ = ρθ and τ̂θ = τθ. In the second case,

physicians know ζi and will use xtrue
i = xobs

i + ζi in their decision making process instead of

xobs
i . The ADHD diagnosis probit slope which identifies ρθ remains unchanged with respect to

xobs
i , therefore ρ̂θ = ρθ. The diagnostic threshold estimate becomes, τ̂θ = (1−ρθ)µ̂θ+ρθζ−kθ

for gender-specific constant kθ. Because physicians know ζi, it is reasonable to assume that

they will replace µ̂θ with µθ = µ̂θ+ ζ as their prior belief, thus cancelling out the unobserved

mean ζ and leaving τ̂θ = τθ.

In sum, if the full documentation assumption fails, then I underestimate mean ADHD

risk and mean utilization costs, with no effect on the other parameter estimates. Because

this is true for both boys and girls, the mechanism contribution table and graph (Table 5

and Figure 4) remain the same. However, since mean ADHD risk is underestimated, then

I also under-estimate the rate of missed diagnosis for both boys and girls in Table 6. This

comes from the patient effect entirely.
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Physician Prior Assumption

In Section 3, I present a model of ADHD diagnosis that incorporates both patient selection

and physician decision making under uncertainty. In the second stage, physicians learn

about patient ADHD risk and update their prior beliefs. The key assumption here is that

physicians have unbiased and normally distributed prior beliefs for both males and females:

vi ∼ N(µθ, σ
2
θ).

I make this assumption for two reasons. First, the normality of the prior allows for

computational ease and clearer interpretation of the model parameters. One could argue

that a more complete mathematical model would have physicians update their beliefs twice:

once after patient selection but before behavioral assessment, and then again after patient

assessment. This complicates estimation as it would now require twice-updating where the

second prior has a truncated normal distribution, with an unknown truncation point for

each patient ci. It is still possible to recover the model parameters via simulated maximum

likelihood estimation, but it would require another assumption that physicians know the

distribution of patient mental healthcare utilization costs for males and females, cθ, which is

likely false in this application. Therefore, I argue that a normally distributed prior belief with

single updating is well suited for this application, and the computation and interpretation

benefits outweigh the costs of a more complication physician learning model.

Second, the accuracy of the prior mean is necessary for parameter identification. As is

common with these types of decision-making under uncertainty models, it is not possible to

separately identify both the agent’s prior beliefs and the agent’s preferences without making

additional assumptions. Therefore, I assume that physicians know the gender-specific ADHD

risk parameter µθ (which is identified and estimated in the selection first stage) in order to

separate out the diagnostic threshold parameter τθ in the conditional diagnosis equation 6.

While the accuracy of the prior distribution is a common assumption, it is likely not

satisfied in practice. In what follows, I show that if physicians have inaccurate (albeit

normally distributed) prior beliefs, this will only impact the bias of one model parameter,

τθ, which measures the perceived cost of misdiagnosis relative to missed diagnosis. The

estimated diagnostic threshold will now contain both physician perceived cost of diagnostic
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errors and/or their inaccurate priors. Policy implications will depend on this distinction,

but the main results presented in the paper are unaffected.

Suppose physician prior beliefs follow the distributed defined by equation C3, where γ

determines the deviation from accurate prior mean.

vi ∼ N(µ+ γ, σ2) (C3)

If γ > 0, physicians overestimate population mean ADHD risk, and γ < 0 implies

physicians underestimate population mean ADHD. I drop the θ subscript without loss as

parameters are estimated separately for both males and females, so the thought experiment

holds for both samples.

Recall that the true ADHD risk distribution parameters, µ and σ, and patient mental

health utilization costs, c, are estimated in a first stage patient selection model (see Section

5.1), which does not depend on the physician decision-making process or their prior beliefs.

Therefore, these parameters are accurately identified regardless of the physician prior as-

sumption. If physicians have inaccurate priors (i.e., γ ̸= 0), this can only impact parameters

that are identified in the conditional ADHD diagnosis, in text equation 6.

After receiving the signal xi, physicians update beliefs resulting in posterior distribution:

vi | xi ∼ N
(
(ρxi + (1− ρ) (µ+ γ)) , σ2

√
1− ρ2

)
Using the same utility framework, and letting k = 1

σ
√

1−ρ2
, the new conditional diagnosis

rate is defined by equation C4, where τ̃ = τ − (1− ρ)γ.

P (Di = 1 | Qi = 1, xi) = Φ(kρxi + k(1− ρ)(µ+ γ)− kτ)

= Φ(kρxi + k(1− ρ)µ− kτ̃)
(C4)

The diagnostic uncertainty parameter, ρ, is also unaffected by γ as it is identified by

the slope coefficient measuring correlation between diagnosis decision and patient signal,
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xi. Therefore, the only parameter that is impacted by inaccurate physician priors is the

diagnostic threshold τ , and the bias of the estimate depends on whether physicians over or

under-estimate mean ADHD risk in their priors. If physicians over-estimate mean ADHD

risk with γ > 0, then τ̃ < τ , meaning my estimates of the perceived costs associated with

misdiagnosis are biased downwards. On the other hand, if physicians behave as if ADHD risk

is lower than true risk, then τ̃ > τ , and I over-estimate the perceived cost of a misdiagnosis.

Because the model parameters are identified and estimated separately for boys and girls,

it is possible for the direction of the bias on τ to differ by sub-group. However, regardless of

the inaccuracy in physician prior beliefs, it is still the case that diagnostic thresholds for male

patients are lower than diagnostic thresholds for female patients, i.e., τ̃m < τ̃f . And, it is still

the case that this difference explains a majority of the gender-specific diagnostic disparity.

However, whether and how to eliminate the difference in diagnostic thresholds depends on

if this difference comes from inaccurate physician priors or real differences in costs associ-

ated with diagnostic errors. Distinguishing between the two is outside the scope of this paper.

PCP Selection Assumption

The mean ADHD risk parameters, µθ, are estimated using a selection model approach de-

scribed in Section 5.1. Identification relies on the independence between patient risk, vi, and

their chosen or assigned primary care physician. The main text argues for this assumption

and provides empirical tests showing no selection on observables. There may still be concern

that patients choose PCPs based on unobserved factors that are correlated with ADHD risk.

This will only impact the parameters estimated in the first selection stage (µθ and cθ) as this

assumption does not change the decision-making process of the diagnosing physician, which

is not usually the same as the original PCP (as noted in the main text).

The direction of the bias depends on the direction of unobserved correlation, which can

theoretically be either positive or negative. If patients with high ADHD risk select into high

referring PCPs, then my estimates of mean ADHD risk, µθ, are biased upwards. This can be

seen visually in Figure 3. Under positive risk-referring selection, the patients who see high

referring physicians (high x-axis value) have higher than average ADHD risk (high y-axis
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value), leading to a biased upwards extrapolation point at ̂Pθ(Qi|Zi) = 1. Because utilization

costs are identified off of mean risk, then estimates of cθ are also biased upwards. Under

the reasonable assumption that if boys positively select their PCP, then girls do as well, the

mechanisms contribution table and graph (Table 5 and Figure 4) remain the same. In this

case, I over-estimate the rate of missed diagnosis for both boys and girls, coming from the

patient effect entirely.

Alternatively, if patients with high ADHD risk select into low referring PCPs, then my

estimates of mean ADHD risk and utilization costs are biased downwards. In this case, I

under-estimate the rate of missed diagnosis for both boys and girls, again coming from the

patient effect entirely.

In sum, if the selection independence assumption fails, then my estimates of mean ADHD

risk and mean utilization costs are biased. The mechanism contribution to diagnostic dis-

parities does not depend on this assumption given that selection (if it exists) is in the same

direction for boys and girls. The estimates of diagnostic errors do rely on unbiased ADHD

risk parameter estimates, and are therefore either over-estimated or under-estimated depend-

ing on the direction of selection into PCPs which is theoretically ambiguous and untestable

in this setting. Primary care physician choice and how it relates to the mental health referral

process and child mental healthcare are important topics for future research.
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