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Abstract

In the wake of rising inflation in the aftermath of unprecedented debt financed

stimulus packages, we ask: Can governments use real bonds (TIPS) as part of their

debt portfolio to commit to stable inflation rates? We propose a novel framework of

optimal debt management in the presence of sticky prices with a government that

can issue nominal and real non state-contingent bonds. Nominal debt can be inflated

away giving ex-ante flexibility, whereas real bonds are cheaper but constitute a real

commitment ex-post. Under Full Commitment, the government chooses a leveraged

portfolio of nominal liabilities and real assets to use inflation effectively to smooth

fiscal policy. When the government cannot commit to future policies, it reduces

borrowing costs ex ante using real debt strategically to mitigate incentives for the

future government to monetize debt ex-post. Without commitment, the policies are

quantitatively consistent with US data, suggesting that such a framework realistically

captures the relevant constraints governments face.
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1 Introduction

Inflation has returned.1 Indeed, the annual inflation rate in the US edged up to a 40-

year high of 8.6% for the 12 months ending in May 2022, with inflation expectations

rising alongside. Similarly, after a decade that was dominated by central bankers’ fear of

deflation, inflation forecasts and long term Treasury yields have been widening recently as

well. These concerns reflect not only the potential upward pressure on prices caused by

supply and capacity shortages when demand recovers in the aftermath of the pandemic, but

also the surge in government debt across the globe following fiscal stabilization programs

and stimulus packages both around the Great Recession and the Pandemic. The 1.9 trillion

dollar American Rescue Plan Act of 2021, further adds to US government debt, which is

projected to reach around 200 percent of GDP in 2050, according to the CBO (as of March

2021). In situations with such unprecedented debt levels, governments and central banks

may be tempted to restore budget balance by monetizing debt, thereby strengthening

inflationary pressure.

In this paper, we examine how governments can optimally manage their debt portfo-

lios in the presence of inflation concerns and high debt levels. Starting from the simple

observation that real or indexed debt (TIPS) cannot be inflated away ex-post, we examine

the government’s optimal debt portfolios when it has access to both nominal and real non

state-contingent bonds. We consider both governments that can commit to future policies

under Full Commitment, and such that cannot and respond strategically to the actions of

future governments under No Commitment, thereby solving for the Ramsey equilibrium

and the optimal time-consistent policy, respectively.

First, we solve for the Ramsey equilibrium in a setting in which the government has to

finance an exogenous stochastic expenditure stream either by levying distortionary labor

taxes or by issuing real or nominal non state-contingent debt. We allow for multi-horizon

debt and assess the implications of short versus long term debt for equilibrium quantities

and debt portfolios. Inflation has real costs because of the presence of nominal rigidities

through sticky prices and is affected by the monetary authority which sets the nominal

short-term interest rate by responding to inflationary pressure following a Taylor rule.

Therefore, our paper contributes to the literature started in the seminal work of Lucas and

Stokey (1983) on optimal fiscal and monetary policy, and considers both long-term nominal

and real debt with incomplete markets and in models with nominal rigidities, building on

1The Economist ’s issue of December 12, 2020, was titled “will inflation return?”.
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to Siu (2004), Schmitt-Grohe and Uribe (2004), Marcet, Oikonomou, and Scott (2013) ,

and Lustig, Sleet, and Yeltekin (2008).

When the government cannot issue TIPS, the Ramsey planner faces a trade-off be-

tween responding to shocks using distortionary taxes versus inflation. On the one hand,

by inflating away the nominal liability, the government can finance additional expenditures

without increasing labor taxes. However, by raising expected inflation, the planner re-

duces the value of household savings and decreases the price of government nominal bonds.

Therefore, both current and future prices of nominal bonds are lowered. The addition of

inflation protected securities in the government debt portfolio affects this trade-off in two

ways. On the one hand, inflation protected securities constitute a real commitment ex-post

and cannot be inflated away as the planner needs to compensate real bond holders. On the

other hand, higher inflation has smaller impact on the cost of current and future borrowing

since inflation does not affect the price of real bonds.

We find that in equilibrium, the Ramsey planner uses both types of bonds and that

the optimal government portfolio prescribes a substantial role to real bonds. We derive

analytical results showing that the use of inflation allows to implement real and nominal

price differences that help to complete the markets and that the investment position in real

and nominal bonds depends on the type of shock considered. In the quantitative model

we consider an economy with exogenous government expenditure shocks and find that the

optimal policy prescribes the allocation to nominal bonds in good times and reallocation

to real bonds in bad times. By doing this the planner uses inflation to reduce the nominal

liability and at the same time issues real bonds, whose price does not decrease as much

in the presence of rising inflation expectations. Quantitatively, in our baseline calibration,

inflation is more volatile but on average lower than in the model with only nominal bonds.

This implies a welfare gain of 0.223%, which is achieved through better management of

inflation risk and bond prices.

We find that inflation response is shaped by (i) the outstanding nominal debt and (ii) the

maturity of debt. When the outstanding nominal debt is high, it becomes more tempting

to use inflation as the same inflation rate allows to alleviate a larger debt burden, while

creating the same misallocation cost due to nominal rigidities. We find that higher nominal

debt leads to high inflation, which is optimal as long as the government reallocates to real

bonds once the rising inflation begins to affect nominal bond prices. Longer debt maturity,

on the other hand, is related to lower inflation rates as a longer planning horizon allows

to spread inflation costs across multiple periods. We find that longer maturity implies

2



inflation that is less volatile but more responsive to expenditure shocks, which, overall,

improves household welfare.

Critically, we find that the commitment friction drives the difference between the ob-

served debt portfolios in the data and the optimal allocations under Full Commitment. The

optimal policy without commitment is strategically biased, designed not only to smooth

fiscal policy but also to best respond to the future government in order to reduce borrowing

costs. A hedging portfolio with levered positions constitutes an expensive financial choice

ex-ante and exacerbates the dilemma posed by the lack of commitment ex-post. Future

governments have incentives to monetize debt ex-post to which households respond by

raising the current government’s borrowing costs ex ante. In this situation, the current

government finds it optimal to borrow using real debt so as to lower borrowing costs and

mitigating future governments’ incentive to inflate nominal debt away. Notably, the tension

is resolved by an optimal debt management policy that match the data.

The nonlinear nature of the equilibrium inflation response in our model requires an

accurate global solution. We solve the optimal policy under Full Commitment using an

algorithm similar in spirit to the Parameterized Expectations Algorithm (den Haan and

Marcet, 1990). This is computationally challenging in our environment, as the complexity

of solving Ramsey problems with multiple maturities increases in the length of the longest

maturity and the state space is highly multicollinear. In this paper we exploit a machine

learning algorithm based on artificial neural networks to tackle these problems, as proposed

in Valaitis and Villa (2021). As mentioned, we build on a version of the parameterized

expectations algorithm (den Haan and Marcet, 1990) and use neural networks to project

expected value terms on the state space. A detailed description of the solution algorithm

under Full Commitment can be found in Appendix A.1. We solve the optimal policy with

No Commitment with a different methodology, adopting an algorithm similar in spirit to

the one introduced by Clymo and Lanteri (2020). A detailed description of the solution

algorithm under No Commitment can be found in Appendix A.2.

2 Related Literature

The paper builds on the papers studying the Ramsey problem with non-state contin-

gent government debt (Aiyagari, Marcet, Sargent, and Sappala, 2002; Angeletos, 2002;

Buerra and Nicolini, 2004; Faraglia, Marcet, Oikonomou, and Scott, 2019; Bhandari, Evans,

Golosov, and Sargent, 2019). Aiyagari, Marcet, Sargent, and Sappala (2002) show that
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when the government can only issue real bonds of one period maturity, the Ramsey plan-

ner achieves the complete markets outcome in the long-run by accumulating assets and

using government savings to smooth tax distortions. Angeletos (2002) shows that complete

markets outcome can be achieved if the number of maturities available is weakly greater

than the number of states, while Buerra and Nicolini (2004) argue quantitatively that this

requires unrealistically large long and short positions and rebalancing of government debt.

Bhandari, Evans, Golosov, and Sargent (2019) study optimal maturity structure in a model

with Epstein-Zin preferences and show that such extreme positions are optimal because of

counterfactual asset pricing implications. With Epstein-Zin preferences the optimal policy

implies moderate portfolio positions with little rebalancing. Faraglia, Marcet, Oikonomou,

and Scott (2019) remove the assumption that government buys back the whole debt in

every period and, instead, consider another extreme where bonds cannot be repurchased

before the maturity. They show that under this assumption the optimal debt positions are

closer to the data and government borrows in both types of bonds. Debt in long bonds is

used to smooth taxes over states and short bonds are used to smooth taxes over time.

The paper is most closely related to the literature studying the optimal mix of monetary

and fiscal policy with non-state contingent nominal debt (Chari and Kehoe, 1999; Siu, 2004;

Schmitt-Grohe and Uribe, 2004; Lustig, Sleet, and Yeltekin, 2008; Marcet, Oikonomou, and

Scott, 2013; Leeper and Zhou, Forthcoming). As known since Lucas and Stokey (1983), the

Ramsey planner seeks to manage government debt in order to smooth distortionary taxes

over time and across states. Chari and Kehoe (1999) show that such smoothing of tax dis-

tortions can be achieved with inflation surprises when the Ramsey planner has control over

the monetary policy. Chari and Kehoe (1999)’s conclusion is achieved in a model without

nominal rigidities, which means that inflation is no real cost. Siu (2004) and Schmitt-Grohe

and Uribe (2004) contemporaneously consider an optimal fiscal and monetary policy mix

when planner faces a trade-off between distortionary taxes and inflation in the presence

of nominal rigidities. In such a setting optimal policy prescribes a very limited role for

inflation even when nominal rigidities are small. Lustig, Sleet, and Yeltekin (2008) show

that inflation‘s role is larger when the government can issue bonds with long maturities.

The idea is that large inflation implies a higher interest rate on new debt and long ma-

turity allows the government to postpone such costly increase. Such idea is reaffirmed

in Marcet, Oikonomou, and Scott (2013). In addition, Leeper and Zhou (Forthcoming)

show that importance of inflation also depends on the starting level of government debt

and Siu (2004) shows that the role of inflation in optimal policy increases with the size
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of government expenditure shocks. Marcet, Oikonomou, and Scott (2013) show that the

optimal use of inflation depends on the independence of the monetary authority and, when

it is independent, on the values of Taylor rule coefficients. Overall, the Ramsey planner is

more likely to inflate the debt when the monetary authority is independent. Another paper

closely related to ours is Equiza-Goni, Faraglia, and Oikonomou (2020), which studies the

role of inflation-indexed debt when the planner issues long-term debt that is nominal and

short-term debt that is inflation-indexed. In this paper we study the trade-off between

nominal and real bonds with the same maturity.

Lastly, we contribute to the literature on optimal fiscal policy under no commitment. In

analyzing the allocations under No Commitment, we follow an approach by Klein, Krusell,

and Rios-Rull (2008) and solve for optimal time-consistent policies. Our paper is related

to Debortoli, Nunes, and Yared (2017) who show how commitment friction changes the

implications for the optimal maturity structure. Similar to them, we find that under

No Commitment leveraged position of nominal and real bonds create incentives for the

future governments to monetize debt, which increases the borrowing costs for the current

government. The need to reduce the borrowing costs is quantitatively important and the

optimal portfolio allocation features positive amounts of both real and nominal bonds.

Solving the Ramsey problem with multiple maturities is computationally challenging

because the number of state variables increases in the length of the largest maturity and the

state space is highly multicollinear. In this paper we exploit the neural networks approach

to tackle these problems, as proposed in Valaitis and Villa (2021).

The paper is organized as follows. Section 3 presents stylized facts that strengthen

the motivation to investigate the proposed question. Section 4 describes our model and

characterizes the optimal policy under Full Commitment. Section 4 also includes a stylized

two-period version of the model designed to convey intuition. Section 4.8 augments the

baseline model of section 4 with generic long-term bonds. Section 5 presents our quanti-

tative analysis. Section 6 describes and characterizes the optimal time-consistent policy

(without Commitment). Section 7 concludes.

3 Stylized Facts

We begin by presenting some stylized facts that motivate our analysis. We focus on the

evolution of inflation, government debt and real bonds.

5



Figure 1 illustrates the evolution of inflation expectations, as captured by the ten-year

break-even inflation. The break-even inflation rate stabilizes at a level of about 2.5%

from 2004 through 2007. In 2008, the break-even inflation rate sharply fell. After having

reached almost a value of zero during the pandemic, inflation expectations recently spiked

up sharply above pre-crisis level but remained fairly volatile.

Figure 1: 10 year break-even inflation [%]
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Notes: The figure show the US 10-year break-even inflation rate. Break-even inflation is the difference

between 10-year nominal and inflation-indexed bond yields. Source: St. Louis Fred database.

Figure 2 depicts the evolution of government debt as measured by the debt-to-gdp

ratio. The evolution of government debt exhibits long swings, and hovered between around

forty and sixty percent of GDP before the financial crisis. In response to fiscal stimulus

packages around the financial crisis and then the pandemic, it has recently reached World

War II levels for the first time. Moreover, according to the CBO, under current policies it

is projected to reach two hundred percent of GDP by around 2050.
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Figure 2: US Debt to GDP Ratio [%]

Notes: The figure shows US total public debt to GDP ratio. Data is quarterly and seasonally adjusted.

Source: St. Louis Fred database.

Figure 3 plots the evolution of real debt as a fraction of total US government debt. That

fraction has grown since the inception of the market for inflation-protected bonds (TIPS)

and has stabilized around a modest eight percent in the last ten years.

7



Figure 3: Share of US Real Debt [%]

Notes: The figure shows the share of US inflation-protected securities (TIPS) to US total pub-

lic debt. Source: US department of Treasury. Treasury data can be found at the follow-

ing link: https://fiscaldata.treasury.gov/datasets/monthly-statement-public-debt/summary-of-treasury-

securities-outstanding.

We now turn to a general equilibrium model that informs us about the optimal com-

position of government debt portfolios in the presence of a high fiscal burden and inflation

pressure.

4 Model

In this section, we describe an infinite-horizon model with non state-contingent nominal

and real bonds. The key friction in this environment is the lack of state-contingent bonds.

That is, the value of outstanding debt at time t is independent from the realization of the

shock at time t but, instead, measurable with respect to t − 1. If state-contingent bonds

were available, i.e. bonds’ markets were complete, the trade-off between nominal and real

8
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bonds would not be meaningful. We introduce the reader to our framework with short-term

one-year bonds. We then augment the model with long-term nominal and real bonds before

presenting the quantitative results.

4.1 Environment

We consider a stochastic production economy populated by a continuum of identical house-

holds, a continuum of identical firms, a central bank and a government. Time is discrete

and infinite, t = 0, 1, 2, ...

Preferences. Households rank streams of consumption ct and leisure lt according to the

following utility function

E0

∞∑
t=0

βt [u(ct) + v(lt)] , (1)

where β ∈ (0, 1) is the discount factor, u(.) and v(.) are differentiable functions such that

uc > 0, ucc < 0, vl > 0, vll < 0.

Technology. A continuum of perfectly competitive intermediate firms, indexed by i ∈
[0, 1], produces output through a linear production function F (hi), where hours worked

is the only input. Intermediate goods are sold at a price Pi,t to the final good producer.

Aggregate output is given by Yt = A · ht.

Resource. The resource constraint of the economy is given by

ct + Φt + gt = Yt, (2)

where ht = 1− lt is labor, and gt is an exogenous stochastic stream of government expendi-

tures. Furthermore, we assume each firm can set prices Pi,t incurring the following convex

quadratic reduced-form adjustment cost

Φt =
ϕ

2
· (πt − π)2 ,

where πt ≡ Pi,t/Pi,t−1 denotes inflation, and π is the inflation target of the central bank.

Shocks. We assume that gt follows a discrete Markov process with transition probability

matrix Pg. We denote by gt ≡ {g0, g1, ..., gt} a history of realizations of government spend-
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ing. To simplify notation, we avoid explicitly denoting allocations as functions of histories

gt, but it is understood that ct, and lt are measurable with respect to gt.

Households demand consumption goods, supply labor and trade: (i) claims St to the

aggregate firm’s dividend dt, (ii) nominal and (iii) real non-contingent government bonds

denoted as Bt and bt, respectively. To simplify notation, we avoid explicitly denoting

bonds as functions of histories gt−1, but it is understood that Bt, and bt are measurable

with respect to gt−1. The household budget constraint reads

ct +QtBt+1 + qtbt+1 + ptSt+1 = (1− τt)wtht +
Bt

πt
+ bt + (pt + dt)St, (3)

where Qt is the price of nominal bonds, qt is the price of real bonds, πt denotes inflation, and

pt is the price of the firm’s claim to dividend.2 In equilibrium St = 1, since all households

are identical.

4.2 Household and Firm Optimality

Households maximize utility (1) subject to their budget constraint (3). The intratemporal

labor-consumption margin and the Euler equations for all savings instruments are

(1− τt) · uc(ct) · wt = vl(lt), (4)

uc(ct) ·Qt = βEtuc(ct+1) · π−1t+1, (5)

uc(ct) · qt = βEtuc(ct+1) · 1, (6)

uc(ct) · pt = βEtuc(ct+1) · [pt+1 + dt+1] . (7)

Intermediate firms set prices Pi,t and hire labor to maximize expected net present value

of dividends

E0

∞∑
t=0

βt
u(ct)

u(c0)
· [Pi,tYi,t − Ptwthi,t − PtΦt] ,

where the demand for the intermediate good is given by static profit maximization of

the final good producer Yi,t =
(
Pi,t
Pt

)− 1
ν
Yt. In a symmetric equilibrium (Pi,t = Pt), the

2Notice that we did not allow households to trade risk-free bonds among themselves, since they are
identical. In equilibrium these bonds would be in zero-net supply, rendering these bonds immaterial for
equilibrium allocations.
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intermediate firm’s profit maximization problem yields the New-Keynesian Phillips Curve

Yt ·
(
ν − 1

ν
+
wt
A

)
− Φπ(πt)πt + Et

[
β
uc(ct+1)

uc(ct)
· Φπ(πt+1)πt+1

]
= 0. (8)

4.3 Government

The government needs to finance spending gt using labor income taxes and bonds, subject

to the following budget constraint:

qtbt+1 +QtBt+1 + τtwtht = gt + bt +
Bt

πt
. (9)

At date t, the government chooses current tax rate τt, and current bonds bt+1 and Bt+1,

which are are measurable with respect to gt.

Given initial conditions b−1, B−1, the benevolent government chooses stochastic se-

quences of current tax rates τt and bonds Bt, bt to maximize the households utility (1).

4.4 Central Bank

We assume the central bank seeks to achieve an inflation target π by setting the nominal

rate according to the following Taylor Rule:

Q−1t =
1

β
π
(πt
π

)φπ
. (10)

We would like to emphasize that we are particularly interested in answering our question

from the perspective of a government that is separate from the monetary authority. That

is: we analyze the problem of a government that takes the behavior of the monetary

authority as given and utilizes fiscal policy tools to hedge against unexpected government

expenditures.3

4.5 Implementability Constraint

We now derive the implementability constraint of the government problem and follow Lucas

and Stokey (1983) by taking the primal approach to the characterization of competitive

equilibria since this allows us to abstract away from bond prices and taxes.

3From a theoretical perspective, consolidating the monetary and fiscal authorities could be interesting.
In practice, that would require to remove the Taylor Rule and study optimal fiscal and monetary policy
jointly.
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The government budget constraint (9) can be combined with the private sector’s first

order conditions (4)-(6), to obtain a single implementability constraint for t = 0, 1, .. that

reads: (
Bt

πt
+ bt

)
= st + Et

[
β
uc(ct+1)

uc(ct)
·
(
Bt+1

πt+1

+ bt+1

)]
, (11)

where st ≡
(

1− vl(lt)
uc(ct)

wt

)
· wt · ht − gt denotes the government’s surplus and wage wt can

be obtained from the New-Keynesian Phillips Curve (8). Moreover, we substitute leisure

and labor lt = 1 − ht everywhere using the resource constraint (2). The implementability

constraint (11) prices the government’s liabilities Bt
πt

+ bt as an expected net present value

of surpluses. We assume that there exist debts limits to prevent Ponzi schemes:

Bt ∈ [B,B], bt ∈ [b, b].

In our calibration, we let the bounds (B, b) be sufficiently low and (B, b) be sufficiently high

so that they never bind in equilibrium. Forward substitution into equation (11) combined

with a transversality condition implies the following implementability condition:

Bt

πt
+ bt = Et

[
∞∑
j=0

βj
uc(ct+j)

uc(ct)
· st+j

]
.

4.6 Optimal Policy with Full Commitment

We now consider optimal debt management and fiscal policy under the assumption that

the government has Full Commitment. The government chooses stochastic sequences of

allocations and prices {c(gt), w(gt), π(gt)}∞t=0, and stochastic sequences of nominal and real

non state-contingent bonds {B(gt−1), b(gt−1)}∞t=0 to maximize the household’s utility (1)

subject to the implementability constraint (11), with multiplier µt, the New-Keynesian

Phillips Curve (8), with multiplier λπ, the Taylor Rule (10), with multiplier λT , the bounds

(B, B, b, b), with multipliers (Λ, Λ, λ, λ).

The first order conditions with respect to nominal bonds Bt and real bonds bt are

µt · Et
[
π−1t+1 · uc(ct+1)

]
= Et

[
µt+1 · uc(ct+1) · π−1t+1

]
+ β−1

(
Λt − Λt

)
, (12)

µt · Et [uc(ct+1)] = Et [µt+1 · uc(ct+1)] + β−1
(
λt − λt

)
. (13)

Note that equations (12) and (13) pin down a dynamic for the Lagrange multiplier µt
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on the implementability constraint similar in spirit to the one of Aiyagari, Marcet, Sargent,

and Sappala (2002).

The first-order condition with respect to wage wt is

Aν · µt · uc(ct) + λπt = 0. (14)

This condition captures the trade-off between the marginal effect that wage has on the

implementability constraint (11) through government’s surplus and the New-Keynesian

Phillips Curve (8). The remaining first-order conditions with respect to consumption ct

and inflation πt are reported in Appendix A.1, and they are given by equations (61) and

(62), when maturity N is set to 1.

Special Case We consider a special case with risk-neutral households u(ct) = ct and no

lending limits λt = Λt = 0. In this case equation (13) becomes

µt = Et [µt+1] + β−1λt.

Since the Lagrange multiplier on the borrowing limit is non-negative λt ≥ 0, then µt ≥
Et[µt+1]. We can use the submartingale convergence theorem: µt converges almost surely.

This last condition and result is equivalent to Aiyagari, Marcet, Sargent, and Sappala

(2002): in the long-run the government eventually accumulates enough real assets that it

never needs to tax again. Differently from Aiyagari, Marcet, Sargent, and Sappala (2002),

the simultaneous presence of both nominal and real bonds requires an extra condition to

be satisfied. This is given by the optimal policy of nominal government debt (12). If, for

explanation purposes, we further assume there are no lending and borrowing limits - i.e.,

λt = Λt = λt = Λt = 0 - we can combine (12) and (13) to get

Covt(π
−1
t+1, µt+1) = 0. (15)

Intuitively, this condition states that under risk-neutrality and in absence of lending and

borrowing limits it is ex-ante optimal for the government to create policies such that,

averaging on all future states, inflation is not used to relax the implementability constraint.

13



4.7 Inspecting the Mechanism: Two-Period Model

The Ramsey problem we lay out can be thought of as a dynamic portfolio choice problem

with incomplete markets in which the planner looks for the optimal government debt allo-

cations of two securities, namely non state-contingent nominal and real bonds. To provide

intuition about the determinants of these allocations, we now examine stylized examples in

which the objective of the planner is most transparent, namely specifications in which the

economy can be in two states only. In such an environment, the planner’s objective is to

choose a portfolio of non state-contingent bonds that replicates Arrow-Debreu securities.

That is, the planner aims at implementing the complete markets allocation.

We thus ask how the government can use inflation fluctuations to replicate a portfolio

of Arrow-Debreu securities?

Consider a two-period t = 0, 1 version of the model where u(c) = c and disutility for

labor v(h) = h2/4. Moreover, assume that at time 1 there are two realizations of the exoge-

nous shocks, i.e. a low state (πL1 , g
L
1 ) and a high state (πH1 , g

H
1 ).4 Assume each realization

happens given a joint conditional probability f(π1, g1|π0, g0). Under these conditions, the

household optimality conditions imply Q0 = βE0

[
π−11

]
, q0 = β and ht = 2(1− τt)w. Firms

take the exogenous sequence of prices as given and chooses labor such that w = A, which

we further assume normalized to a unitary value.5 The resource constraint of the economy

ct = ht−gt− ϕ
2
(πt−π)2 yields expressions for consumption. We follow the primal approach

to get the following implementability constraints

B0

π0
+ b0 + g0 = h0

(
1− h0

2

)
+ βE0

[
π−11

]
B1 + βb1,

B1

π1
+ b1 + g1 = h1

(
1− h1

2

)
.

The optimal policy under full commitment requires to find {h0, h1, B1, b1, µ0, µ1} such that

(i) the implementability constraints hold, (ii) nominal and real debt are chosen optimally

µ0E0[1/π1] = E0[µ1/π1], (16)

µ0 = E0[µ1], (17)

4Note that {πt}1t=0 can be chosen such that the Taylor rule 1 = π
(
π0

π

)φπ E0

[
1
π1

]
is satisfied.

5In the spirit of the New-Keynesian Phillips Curve, this would be equivalent to w = A(1 − ν)/ν with
ν = 1/2.
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and (iii) labor is chosen optimally

1− ht/2− µt(ht − 1) = 0. (18)

Proposition 1 (Debt Management, Labor and Tax Smoothing). Given initial

conditions B0, b0, g0, π0, optimal nominal and real debt management and tax management

are such that smoothing of taxes and leisure is achieve across states

lH1 = lL1 ⇐⇒ τH1 = τL1 , (19)

where lL1 and lH1 denote leisure at time 1 in the low and high state. respectively. Moreover,

smoothing of taxes and leisure is achieve across time

lx1 = l0 ⇐⇒ τx1 = τ 01 , (20)

where x ∈ {L,H}.

Proof. Equation (19) follows from equation (17), combined with a formula for µt(ht), which ca
be derived directly from equation (18). Apply the definition of expectation to get lH1 = lL1 κ, with

κ = fH

fL
·
E0

1
π1
− 1

πH1
1

πL1

−E0
1
π1

= 1. Similarly, equation (20) follows from equation (16), combined with the

formula for µ. Apply the definition of expectation to get lL1 = l0η, with η = fL + fH 1
κ = 1. �

Equation (19) reveals that nominal debt is used for smoothing taxes across states. In

oderde to see this, use the implementabiliy constraints to express leisure in function of the

portfolio choices6

l0 =

√
1− 2

(
B0

π0
+ b0 + g0 − βE0

[
π−11

]
B1 − βb1

)
, (21)

l1 =

√
1− 2

(
B1

π1
+ b1 + g1

)
. (22)

Substitute equation (22) in equation (19), to get the following cross-states smoothing con-

6Note that the each implementability constraint yields two solutions for labor. For simplicity, we pick
the one such that ht ≤ 1. Moreover, we also checked analytically that picking the other solution would
lead to the same exact formulas for nominal and real bonds as they appear in proposition 2.
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dition

B1

πL1
+ gL1 =

B1

πH1
+ gH1 , (23)

which does not contain real debt. Similarly, substitute equations (21), (22) in equation

(20), to get the following inter-temporal smoothing condition

B0

π0
+ b0 + g0 − βE0

[
π−11

]
B1 − βb1 =

B1

πx1
+ b1 + gx1 , (24)

where x = {L,H}. Note that since equation (24) needs to hold for both x = {L,H}, you

can arbitrary choose, and without loss of generality, the x that matches the realization of

the shock at time 0, to further simplify

B0 −B1

π0
+ b0 − βE0

[
π−11

]
B1 = (1 + β)b1. (25)

These considerations lead us to formulate the following proposition.

Proposition 2 (Optimal Nominal and Real Debt Management). Given initial

conditions B0, b0, g0, π0, optimal nominal debt management is such that

B1 = B∗1 ≡
gH1 − gL1
πH1 − πL1

· πL1 πH1 , (26)

satisfy the intra-temporal (cross-states) smoothing condition (19). Given equation (26),

optimal real debt management is such that

b1 = b∗1 ≡
1

1 + β

[
B0

π0
+ b0 −

(
1

π0
+ βE0

[
1

π1

])
B∗1

]
, (27)

satisfy the inter-temporal smoothing condition (20).

Proof. Equation (26) follows directly from equation (23). Equation (27) follows directly from
equation (25). �

Note that if shocks are inflationary, i.e. πH1 > πL1 and gH1 > gL1 , then B∗1 is positive.

Viceversa, if shocks are deflationary, i.e. πH1 < πL1 and gH1 > gL1 , then B∗1 is negative.

The sign for real debt depends on the initial amount of oustanding liabilities B0π
−1
0 + b0.

In order to gain intuition, we assume the government has a zero net holdings of initial

real liabilities, i.e. B0π
−1
0 + b0 = 0. Under this condition, equation (27) reveals that b∗1 is
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negative with inflationary shocks and positive with deflationary shocks.

The intuition is simple. Holding a leveraged portfolio position enables the planner to

achieve insurance without re-adjusting the debt structure.

On the one hand, with inflationary shocks, it is optimal to have positive nominal debt

since it maintains the option to get inflated away when a positive government expenditure

shock hits, inducing the government liability to fall. This mechanism insures the govern-

ment with an economic force that tends to relax the implementability constraint when it

is most needed, by counterbalancing the high government expenditure shock with a falling

liability. We call this a risk management motive: borrow with the most volatile asset (nom-

inal debt), that falls in inflationary times. Moreover, with inflationary shocks, the position

of real debt b∗1 should be negative, i.e. the government should accumulate real assets to

smooth labor and taxes through time in high government expenditure inflationary times.

We call this a precautionary motive: buy assets that pay in inflationary times (real assets).

Viceversa, the opposite applies with deflationary shocks. For example, in this case, the

government chooses to optimally hold nominal assets which appreciate in period of high

government expenditures helping relaxing the implementability constraint.

4.8 Quantitative Model with Long-Term Bonds

For the sake of clarity, we introduced the model with short-term bonds. Before turning

to the quantitative analysis, we augment the model by introducing long-term nominal and

real bonds when both instruments exhibit a generic, but same, maturity N .7 We then

proceed to formulate the Ramsey problem and characterize the optimal policy.

Environment The model is identical to section (4) except that the representative house-

hold saves through: (i) a N -period non-contingent nominal debt BN
t traded at a price QN

t

and (ii) a N -period non-contingent inflation-protected debt bNt traded at a price qNt . The

government issues both types of debt, collects revenues in the current period and repays

7Note that the model with long-term bonds collapses to the short-term formulation when N = 1.
Alternatively, we could have introduced maturities through long-term perpetuities with decreasing coupon
rates. With our approach with N = 5 the problem requires to keep track of 26 state variables and solve
for 10 policy functions. With perpetuities it would have required 8 state variables and 14 policy functions.
With perpetuities, the additional 4 policy functions for bonds prices and associated Lagrange multipliers
are required, since nominal and real bonds prices are expressed recursively and would not be substitutable
directly in the implementability constraint. We chose our methodology since the stochastic simulation
approach we adopted is scalable in function of the state variables but less effective and stable the more
policies need to be solved jointly at each time step. Note also that with 8 state variables a stochastic
simulation approach would still be needed.
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debt at maturity. In particular, the government repays nominal maturing debt at a unitary

price and real maturing debt at a price ΠN
j=1πt−j+1. As before, the government levies a

distortionary labor tax τt on labor income. The representative household, conjointly with

government financial needs, make savings decisions in long-term nominal and real debts.

In every period t, the representative household receives labor and investment income

according to the following budget constraint

ct +QN
t B

N
t + qNt b

N
t + ptSt+1 = (1− τt)wtht +

BN
t−N

ΠN
j=1πt−j+1

+ bNt−N + (pt + dt)St. (28)

Household Optimality Households maximize utility (1) subject to their budget con-

straint (28). The intratemporal labor-consumption margin and the firm’s stock pricing

equation are identical to those of section (4). The Euler equations that price long-terms

bonds are

uc(ct) ·QN
t = βEtuc(ct+N) ·

(
ΠN
j=1πt+j

)−1
, (29)

uc(ct) · qNt = βEtuc(ct+N), (30)

Government The government needs to finance spending gt using labor income taxes and

bonds, subject to the following budget constraint:8

QN−1
t

BN
t−1

πt
+ qN−1t bNt−1 = τtAhtwt − gt +QN

t B
N
t + qNt b

N
t . (31)

Implementability Substitute τ , QN
t , and qNt in equation (31) using equations (4), (29),

and (30) to get sequences of implementability constraints

Et

[
uc(ct+N−1)

ΠN−1
j=1 πt+j

]
BN
t−1

πt
+ bNt−1Et [uc(ct+N−1)] = uc(ct)st +BN

t Et
[
uc(ct+N)

ΠN
j=1πt+j

]
+ bNt Et [uc(ct+N)] ,

(32)

where st is surplus as defined in subsection 4.5.

Optimal Policy with Full Commitment We now consider optimal debt management

and fiscal policy under the assumption that the government has Full Commitment and issue

8We implicitly assume that the government can buy back both nominal and real bonds from the private
sector. As documented in the OECD report by Blommestein and Hubig (2012), more than 80% of countries
engage in some forms of debt buyback and some of them they do so on a regular basis.
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long-term nominal and real bonds. The government chooses stochastic sequences of allo-

cations {c(gt), h(gt)}∞t=0 and prices {w(gt), π(gt)}∞t=0, and stochastic sequences of nominal

and real non state-contingent bonds {BN(gt−1), bN(gt−1)}∞t=0 to maximize the household’s

utility (1) subject to the resource constraint (2), with associated Lagrange multiplier λt,

the implementability constraint (32), with multiplier µt, the New-Keynesian Phillips Curve

(8), with multiplier λπ, the Taylor Rule (10), with multiplier λT , the bounds (B, B, b, b),

with multipliers (Λ, Λ, λ, λ).

The first order conditions with respect to nominal bond Bt and real bond bt are

µt · Et
[
ΠN
j=1π

−1
t+j · uc(ct+N)

]
= Et

[
µt+1 · uc(ct+N) · ΠN

j=1π
−1
t+j

]
+ β−1

(
Λt − Λt

)
, (33)

µt · Et [uc(ct+N)] = Et [µt+1 · uc(ct+N)] + β−1
(
λt − λt

)
. (34)

Note that equations (33) and (34) collapse to (12) and (13) when N = 1. The first

order condition with respect to wage is identical to equation (14). The remaining first-

order conditions with respect to consumption ct and inflation πt, together with further

details about the computational methodology, can be found in Appendix A.

5 Quantitative Analysis

In this section, we calibrate our model and discuss our quantitative results when considering

an optimal policy under Full-Commitment.

5.1 Calibration and Solution Method

We parameterize the utility function as follows: u(c) ≡ c1−γ

1−γ and v(l) ≡ χ l
1−η

1−η , with η = 1.8

to match a unitary Frisch elasticity of labor supply and χ = 4.3276 to normalize average

labor to 1/3 of the time endowment in the stochastic simulation of the Full-Commitment

model. The production function is linear, with: F (k, l) ≡ Ah, and A is normalized to a

unit value.

We calibrate fiscal parameters using data from Fernández-Villaverde, Guerrón-Quintana,

Kuester, and Rubio-Ramı́rez (2015). In particular, we use measures of government expen-

ditures and labor tax rate for the period 1971-2013.9 We also use this data to compute the

9We convert the data from a quarterly to an annual frequency, obtained as average values in each year.
The data can be found at the following link:
https://www.openicpsr.org/openicpsr/project/112890/version/V1/view.
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average ratio of government spending to GDP, which is around 20%.

We calibrate the Markov process for gt as an AR(1) in logs, formally: log gt+1 =

(1 − ρg) log µg + ρg log gt + εt, with εt normally distributed with mean zero and standard

deviation σg. We then match the average ratio of government spending to GDP, as well as

the standard deviation and autocorrelation of linearly detrended (log) government spend-

ing, using the data described above. We do not discretize this process, since we adopt a

stochastic simulation approach.

We set the maturity of government debt N equal to 5 years for both nominal and real

bonds. This is close to the average maturity of US federal debt (∼5.5 years).

We set parameter the price elasticity of demand 1/ν to 10, which is a standard value used

in the literature. The Taylor rule responds only to deviations from the steady state inflation

rate. We set the steady state inflation rate to 2%, which is the Fed target level. Moreover,

ν and ϕ are such that the quarterly slope of the New Keynesian Phillips Curve, given by

h/(4νϕ) is on average ∼0.041, calculated as average of a long stochastic simulation under

Full Commitment. This in the range of estimates provided in Gali and Gertler (1999).10

Table 1: Parameter Values

Parameter Value

Preferences Discount factor β 0.96

Risk aversion ηc 2

Labor disutility χ 4.3276

Labor elasticity ηl 1.8

Firm Price elasticity 1/ν 10

Adjustment cost ϕ 20

Government Average g µg 0.068

Volatility of log(g) σg 0.016

Autocorr. of log(g) ρg 0.977

Maturity (Years) N 5

Notes: The table reports the parameter values.

We solve the optimal policy under Full Commitment using an algorithm similar in

spirit to the Parameterized Expectations Algorithm (den Haan and Marcet, 1990).11 We

10Gali and Gertler (1999) directly estimate a Phillips curve with a slope in the range 0.018-0.047, as
reported in Table 1.

11Note that we use this method only for the optimal policy under Full Commitment. In order to solve for
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provide extensive details on the solution method in Appendix A, which has been proposed

by Valaitis and Villa (2019). This method relies on a neural network to approximate the

forward looking terms in the optimality conditions, as functions of the state vector. Note

that in appendix A.3, we conduct robustness checks of our results by changing the seed

through which the stochastic simulation is generated and by changing the variance of the

gt process.

5.2 Baseline Results

We begin by comparing our calibrated model to a counterfactual scenario where the gov-

ernment can only issue nominal bonds. When the government cannot issue TIPS, the

Ramsey planner faces a trade-off between responding to shocks using distortionary taxes

versus inflation. On the one hand, by inflating away nominal debt, the government can

finance the additional expenditure without increasing labor taxes. On the other hand, by

raising expected inflation, the planner reduces the value of household savings and decreases

the price of government nominal bonds. Therefore, both the current and the future price

of nominal bonds fall. In addition to that, inflation distorts firms’ production decisions as

price adjustment is costly. The presence of TIPS in the government debt portfolio affects

this trade-off in two ways.

First, higher inflation has less impact on the cost of current and future borrowing, since

it does not affect the price of inflation protected bonds. Second, the use of inflation becomes

more costly because the planner needs to compensate households holding real bonds.

the optimal policy under No Commitment, described in section 6, we use a different methodology similar in
spirit to the one introduced by Clymo and Lanteri (2020). A detailed description of the solution algorithm
under No Commitment can be found in Appendix A.2.
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Figure 4: Impulse Response Functions
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Notes: The figure shows the impulse response functions to a government expenditure shock of +3% of

GDP. X-axes report time t. Solid blue line: baseline model. Dashed red line: model without TIPS

bonds. The panels for inflation and taxes report percentage points difference. The panels for bonds show

percentage points difference expressed as a ratio of GDP.

We investigate the workings of the model using impulse response functions in figure 4

where we shock the economy with a one-time government expenditure shock equal to 3%

of GDP. We find that real bonds play a substantial role in shaping the optimal policy. The

optimal policy prescribes: (i.) the accumulation of nominal liabilities and real assets in

good times, and, (ii.) inflating away nominal liabilities and financing government expen-

ditures using real assets in bad times. This stands in contrast to a counterfactual model

without TIPS bonds, where government accumulates nominal liabilities in bad times and

decumulates it otherwise. Because the government chooses to borrow in nominal bonds in

response to shocks, it tried to keep the current nominal bond price high and, therefore,

inflation plays a minor role in this counterfactual economy.

Reallocation to TIPS bonds in bad times is supported by moments from model sim-

22



ulation reported in table 2. It shows that TIPS bonds are countercyclical and nominal

bonds are procyclical, while the total debt portfolio is countercyclical in both models.12

On average, the optimal policy features lower levels of tax, inflation and short rates, but a

higher responsiveness of these policy tools to government expenditure shocks.

Table 2: Summary of Moments

Description Moments No Tips Baseline

Avg. Inflation E(π) 2.00 1.702

Avg. Tax E(τ) 23.75 21.97

Avg. Short Nom. Rate E(i) 6.25 5.88

Avg. Real to GDP E(bN/Y ) - -0.28

Avg. Nominal to GDP E(BN/Y ) 0.40 0.24

Std. Inflation σ(π) ∼0 0.002

Std. Tax σ(τ) 0.066 0.124

Corr. Inflation and Gvt. Exp. ρ(π, g) 0.66 0.84

Corr. Tax and Gvt. Exp. ρ(τ, g) 0.88 0.79

Corr. Nominal and Gvt. Exp. ρ(BN , g) 0.70 -0.64

Corr. Real and Gvt. Exp. ρ(bN , g) - 0.75

Corr. Debt and Gvt. Exp. ρ(BN + bN , g) 0.70 0.42

Corr. Inflation Vol. and Gvt. Exp. ρ(σ(π), g) 0.55 0.24

Notes: The table reports sample moments from simulating model equilibrium dynamics for 5000 periods.

The simulation is initialized at bN = BN = 0 and we drop the first 100 periods before calculating

moments.

5.3 Example: Simulation With Prolonged Period of High Gov-

ernment Expenditures

In figure 5, we present an extract from the model simulation with a prolonged period of high

government expenditure. The top left panel shows the exogenous process for government

expenditure, which starts to increase around period 100 and remains high for around 100

periods. The other three panels show policy variables in the baseline model (solid blue line)

and the model without TIPS bonds (dashed red line). Inflation and taxes are on average

lower in the baseline model but more responsive to increases in government expenditure.

Because inflation is on average lower, nominal bond prices tend to be higher in the baseline

12An increase in government expenditure indicates economic downturn. Therefore negative correlation
with gt means that a variable is procyclical.
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model. By keeping the average inflation below the steady state target of 2%, the Ramsey

planner incurs real costs, which are compensated by the marginal benefits of having higher

bond prices. Likewise, the Ramsey planner internalizes that higher volatility of inflation

translates into more volatile nominal bond price - it drops by 2 percentage points during

the period of high expenditure but then recovers from around 0.74 to around 0.80. The

nominal bond price volatility has a relatively small cost for the planner in the baseline

model, since it is always possible to refactor the portfolio toward real bonds, if nominal

bonds have to sell at a high discounts. This substitution is impossible in the one bond

model. Therefore, inflation features very little volatility in the counterfactual economy.

Figure 5: Simulation: Policy Variables
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Notes: The figure shows an excerpt from the simulation of model equilibrium dynamics. X-axes report

time t. Solid blue line: baseline model. Dashed red line: benchmark model without TIPS bonds. Both

models are simulated with the same realization of government expenditure shocks. The same simulation

was used to calculate moments in table 2.

As shown by figure 6, higher welfare is achieved through higher consumption and less

volatile leisure. Compared to the benchmark model, consumption increases by an average
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∼0.8% and leisure volatility falls by 6.64%. In fact, in the baseline model taxes are on

average lower and household tends to work more. At the same time, labor supply is less

elastic and it does not fluctuate as much even when in presence of a more volatile labor

tax rate in the baseline model. Overall, compared to the benchmark model, the higher

consumption and lower leisure volatility leads to a consumption equivalent welfare gain of

0.223%. The next session analyzes the role of outstanding debt in shaping the optimal

policy.

Figure 6: Simulation: Allocations
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Notes: The figure shows an excerpt from the simulation of model equilibrium dynamics. X-axes report

time t. Solid blue line: baseline model. Dashed red line: benchmark model without TIPS bonds. Both

models are simulated with the same realization of government expenditure shocks. The same simulation

was used to calculate moments in table 2.

5.4 Role of Nominal Rigidities

We next turn to study the role of nominal rigidities for bonds positions and inflation

volatility. Chari and Kehoe (1999) show that in the model with flexible prices the planner

relies heavily on inflation to absorb the expenditure shocks. But, as shown in Siu (2004),

if the model is calibrated to match the empirically realistic degree of price rigidity, the

real cost of inflation on firms pricing decisions begins to outweight the benefits of relaxing

the budget constraint and there is little incentive to use inflation in a model, where only

nominal bonds are available. Our results are consistent with Siu (2004). In figure ?? we

compare the bond positions and inflation in our baseline model and the model with only

nominal bonds. In addition to that, we analyze a counterfactual where we resolve both

models with a much lower degree of nominal rigidity, controlled by the parameter Φπ. We

find that, indeed, the size of nominal rigidity affects inflation volatility in both models but
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its’ role is more pronounced in the one-bond model. Compared to the baseline calibration,

in the counterfactual with low inflation adjustment costs, inflation increases by 78% in the

baseline model and by 267% in the one-bond model.

Figure 7: Role of Nominal Rigidities
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(b) Bonds
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(c) Inflation πt [%]
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Notes: The figure shows an excerpt from the simulation of model equilibrium dynamics. X-axes report

time t. Solid blue line: baseline model. Dashed red line: benchmark model without TIPS bonds. Both

models are simulated with the same realization of government expenditure shocks. The same simulation

was used to calculate moments in table 2.

5.5 Role of Initial Debt

In this section we analyze the relation between outstanding debt and the use of inflation

when TIPS bonds are available. Specifically, we ask whether more debt causes more infla-

tion. By using inflation, the Ramsey planner weights the benefits of inflating away nominal

liabilities against two types of costs. First, by rational expectations, higher inflation even-

tually gets reflected in nominal bond prices (equation 6) and new nominal bonds need to
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sell at a higher discount. Second, inflation has real costs as it distorts firms’ pricing deci-

sions (equation 8). The reason that we observe more volatile inflation in the baseline model

is because inflations’ effect on nominal prices is not relevant for the Ramsey planner when

the TIPS bonds are available. In this section we ask if high outstanding nominal debt can

lead to high inflation.

The level of outstanding nominal debt changes the trade-off between inflation of nominal

liabilities and real distortions. When the outstanding nominal debt is high, the same

inflation rate allows to achieve a greater reduction in nominal liability while incurring

the same distortion. At the same time, the trade-off between nominal liability effect and

inflations’ effect on nominal bond prices does not change. The same inflation rate allows

to inflate more liabilities but more bonds need to be reissued in the next period. This

together suggests that more nominal debt should lead to higher inflation.

Figure 8: Role of Nominal Debt
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Notes: The figure plots policy functions of inflation and taxes in function of nominal debt. Other state

variables are fixed at their mean values. Left panel: inflation. Right panel: tax rate. Solid blue line:

baseline model. Dashed red line: model without TIPS bonds.

We investigate the role of nominal debt in models with and without TIPS bonds by

looking at the policy functions of inflation and taxes in figure 8, which plots optimal

inflation and taxes in function of nominal debt by keeping other state variables at their

average levels.13 The left panel shows that inflation responds positively to nominal debt

in both models but the response in the baseline model is much larger. As the outstanding

nominal debt increases from 0 to 75% of the GDP, inflation rate increases from 1.4% to

2.9% holding everything else fixed. In contrast, inflation in the one bond model moves from

13Since we solve the model using the parameterized expectations algorithm, we are not solving for the
policy functions explicitly. Instead, we use the model simulated data and the neural network to fit the
relation between the policy and the state variables.
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1.9% to 2.05%. If real misallocation was the main cost of the use of inflation, one would

expect that optimal inflation would respond to outstanding nominal debt similarly in both

models. However, we observe that inflation responds little to shocks or outstanding debt in

a one bond model, consistent with Siu (2004) and Marcet, Oikonomou, and Scott (2013).

Yet the reason for this lack of response is that the Ramsey planner mostly cares about the

effect that inflation has on nominal bond prices. Since this concern is close to irrelevant in

the model with TIPS bond, here the Ramsey planner uses inflation more aggressively.

5.6 Role of Maturity

In this section we analyze the role of maturity on optimal inflation and taxes. In general,

longer maturity brings greater benefits of using inflation. As maturity increases, both

inflation and taxes become less volatile, as shown in the left panel of figure 9. Intuitively,

longer maturity allows the planner to spread the inflation policy intervention across multiple

periods. On the one hand, optimal policy prescribes lower volatility of taxes and inflation

as maturity increases. but, on the other hand, higher responsiveness of these policy tools to

government expenditures. As shown in the right panel of figure 9, increasing the maturity

from five to eight years is associated with a consumption equivalent welfare gain of +0.13%.

Figure 9: Role of Maturity
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Notes: The figure shows comparative statics when the bond maturity is exogenously increased from five

to eight years in our baseline model. Each panel describes the relative values of respective moments

relative to the counterpart in the model where maturity is five years. The left panel shows the volatility

of inflation (dashed blue line) and the volatility of taxes (dotted-dashed red line). The middle panel

shows the correlation of inflation with government expenditures (dashed blue line) and the correlation

between taxes and government expenditures (dotted-dashed red line).The right panel shows the welfare

increase relative to the model where the bond maturity is five years.
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5.7 Alternative Shocks

In this subsection, we analyze the role of TFP shocks. As discussed, the government ex-

penditure shocks analyzed in the previous subsections are inflationary. That is: period

with high government expenditures are associated with high inflation. We consider an al-

ternative model where the only source of stochasticity is given by total factor productivity

shocks At. We assume that At follows an AR(1) process in logs. Table 3 shows the relevant

moments of the alternative model together with the baseline model with government ex-

penditure shocks. Columns 4 and 5 in table 3 reveal a similar pattern. In the model with

TFP shocks, average real bond to GDP ratio is still negative and nominal bond to GDP

ratio is still positive. Moreover, the two bonds remain negatively correlated negatively and

inflation follows a similar pattern as in the baseline model. The difference is that now infla-

tion inflation increases in recession and nominal debt gets inflated away. At the same time,

during recession, the government optimally finances it using real assets and borrows in real

bonds, if necessary. This is a manifestation of the negative correlation between inflation

and nominal bonds and the positive correlation between inflation and real bonds. It is

worth noticing, that the presence of the Taylor rule imposes a constraint that the nominal

interest rate needs to follow the dynamics of inflation. And the inverse of this rate also

discounts the net present value of future government surpluses. Therefore, the net present

value is likely to move in the same direction as inflation for most types of shocks, unless

these shocks have drastically different implications for the expected government primary

surpluses.
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Table 3: Comparison with a model with TFP shocks

Description Moments No TIPS Baseline Baseline Data

g shocks g shocks TFP shocks

Avg. Real to GDP E(bN/Y ) - -0.28 -0.37 0.06

Avg. Nominal to GDP E(BN/Y ) 0.40 0.24 0.40 0.86

Corr. Tax and GDP ρ(τ, Y ) 0.54 0.3 -0.84 0.17

Corr. Inflation and GDP ρ(π, Y ) 0.39 0.39 -0.66 0.18

Corr. Tax and Inflation ρ(τ, π) 0.84 0.96 0.81 0.08

Corr. Inflation and Real ρ(π, bN) - 0.93 0.45 0.25

Corr. Inflation and Nominal ρ(π,BN) 0.68 -0.69 -0.22 -0.54

Corr. Real and Nominal ρ(bN , BN) - -0.84 -0.70 0.14

Notes: The table shows the relevant moments from the model with TFP shocks only compared with

two models with government expenditure shocks only. The third column (No TIPS ) corresponds to the

model with government expenditures shocks when nominal bonds are not available. The fourth column

corresponds to the baseline model with both types of bonds and government expenditures shocks. The

fifth column corresponds to the baseline model with both types of bonds and TFP shocks. To compute

mean and correlations of government spending, taxes, and other data, we log and linearly detrend each

variable, in both the model (where necessary) and data. Fiscal parameters such as labor taxes are taken

from from Fernández-Villaverde, Guerrón-Quintana, Kuester, and Rubio-Ramı́rez (2015) as described

in section 5. The source of other data is the St. Louis FRED database. Given the recently adoption

of TIPS we considered a time span from 1997 to 2013. Data about TIPS and debt can be found on

the treasury website at the following link: https://fiscaldata.treasury.gov/datasets/monthly-statement-

public-debt/summary-of-treasury-securities-outstanding.

6 Optimal Policy with No Commitment

In this section, we turn our attention to a different assumption on the commitment tech-

nology. In particular, we view the public sector as a succession of decision makers—one

government at each time t—with no commitment to future realized policies. The gov-

ernment in power at t seeks current level of labor tax rate and government expenditure,

together with issuance of nominal and real non-contingent bonds that will be inherited by

the future government. Consistent with our assumptions in the previous subsection, these

bonds are non-contingent with respect to future shocks. We follow Debortoli and Nunes

(2013), who discuss in depth the role of endogenous government expenditure. Similarly

to Debortoli and Nunes (2013), we have chosen to combine the optimal time-consistent

policy with endogenous government expenditure since we believe is a realistic feature, not
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only because governments can opt to change expenditures levels, but also to capture dis-

agreements among consecutive government about public expenditure. As a consequence,

we consider a private sector with utility identical to (1), except for an additional public

expenditure component

E0

∞∑
t=0

βt [u(ct) + v(lt) + θt · vg(gt)] , (35)

where θt are preference shocks, and vg(.) is a differentiable function such that vgg(.) > 0 and

vggg(.) < 0. Note that θt is low (high) when public expenditures are less (more) valuable to

the private sector.

We focus on a symmetric Markov-perfect equilibrium and we denote the state of the

economy at time t by xt ≡ (Bt, bt, θt). In this environment, let all future governments set

their policy according to functions c̃(x), h̃(x), w̃(x), B̃(x), b̃(x), g̃(x), and π̃(x).

Furthermore, let W̃ (x) be the present discounted value of government utility (35) as

associated with the policy functions introduced above, given the state of the economy

x. Using this notation, the government in power at time t chooses allocations and wage

(c, h, w), as well as policies (B′, b′, g, π) to maximize

u(c) + v(l) + θ · vg(g) + βEW̃ (x′), (36)

subject to the resource constraint

Ah− c− g − Φ(π) = 0, (37)

with associated multiplier λ, and the implementability constraint

uc(c) · s+ Et
[
βuc(c̃(x

′)) ·
(

B′

π̃(x′)
+ b(x′)

)]
− uc(c)

(
B

π
+ b

)
= 0, (38)

with multiplier µ, the New-Keynesian Phillips Curve (8)

N (x, x′) ≡ uc(c)

(
Y ·
(
ν − 1

ν
+
w

A

)
− Φπ(π)π

)
+ Et [uc(c̃(x

′)) · Φπ(π̃(x′))π̃(x′)] = 0,

(39)
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with multiplier λπ and the Taylor Rule (10)

T (x, x′) ≡ π1−φππ(x)φπEt
[
uc(c̃(x

′)) · π̃(x′)−1
]
− uc(c) = 0, (40)

with multiplier λT .14

It is important to note that our solution method is a global method that tackles directly

problem (36), following a computational methodology similar in spirit to the one introduced

by Clymo and Lanteri (2020). We do not work directly with the Generalized Euler Equa-

tions in our computational work, since the policy functions for debts could contain jumps.

A detailed description of the solution algorithm can be found in Appendix A.2. Even if

not used in the solution method, we derive and interpret Generalized Euler Equations that

characterize the optimal time-consistent policy as they reveal key distinctive feature of this

problem with respect to Full Commitment.

Differentiable Markov-perfect We follow the literature on Markov-perfect fiscal policy

(e.g., Klein, Krusell, and Ŕıos-Rull, 2008; Debortoli and Nunes, 2013; Debortoli, Nunes, and

Yared, 2017) and we focus our attention on policies that are differentiable functions of the

“natural” state space x. Under the assumption of differentiability, it is possible to derive

and interpret Generalized Euler Equations that characterize the optimal time-consistent

policy.

The first-order conditions with respect to consumption, labor, and wage are

λ = uc(c)− µucc(c)
(
B

π
+ b

)
+ µucc(c)s+ µuc(c)

∂s

∂c
+ λπNc + λTTc, (41)

vl(l) = λA+ µuc(c) ·
∂s

∂h
+ λπuc(c)A ·

(
ν − 1

ν
+
wt
A

)
, (42)

0 = µuc(c)
∂s

∂w
+ λπuc(c)h. (43)

In equation (41), the planner equalizes the marginal effect on the resource constraint to-

day (λ) with the marginal utility gain of an additional unit of consumption today plus

the impact of that additional unit of consumption through s in the implementability con-

straint today, plus the marginal impacts on the Philllips Curve and Taylor Rule, plus the

second order effects of an additional unit of consumption on the future government’s im-

plementability constraint. In equation (42), the planner offsets the marginal disutility of

14Note that since we dropped the subscript t from inflation and in order to avoid confusion we denote
the inflation target as π, instead of π.
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labor with the marginal increase in production, the marginal effects on the implementabil-

ity constraint through s, plus the marginal impact of h on the Phillips Curve. Finally, in

equation (43) the planner sets the wage by equating the marginal effect of the wage on

the implementability constraint (through government surplus s) with the marginal effect

on the New-Keynesian Phillips Curve.

The first-order conditions with respect to nominal bond, real bond, inflation, and gov-

ernment expenditures are

0 = βEW̃B(x′) + µβEtSB′ + λπNB′ + λTTB′ , (44)

0 = βEW̃b(x
′) + µβEtSb′ + λπNb′ + λTTb′ , (45)

0 = −λΦπ + µuc(c)
B

π2
+ λπNπ + λTTπ, (46)

0 = θvgg(g)− λ− µuc(c), (47)

where S(x′) ≡ uc(c̃(x
′)) · (B′π̃(x′)−1 + b(x′)). To set the nominal and real bonds, the social

planner balances the expected present discounted value of an additional unit of B or b on the

future government’s continuation value with the marginal impacts on the Taylor Rule and

New-Keynesian Phillips Curve plus the expected marginal effect on the consumer’s Euler

equation (S). Inflation is optimally chosen by equating the marginal effects on the Taylor

Rule and New-Keynesian Phillips Curve with the marginal effect on the implementability

constraint (through the marginal utility of consumption and the amount of nominal bonds).

An important difference between these optimality conditions and their counterparts

in the Full Commitment problem of the previous subsection is that past multipliers on

the implementability constraint (11) are absent here, because the government disregards

the effects of current policy on past decisions of the private sector, and in particular past

bonds. Moreover, the derivatives of the future policy functions appear inside the terms

EtSB′(x′), EtSb′(x′), Nb′(x, x′), Tb′(x, x′), rendering these optimality conditions Generalized

Euler Equations.

The envelope conditions are

W̃B(x) = µ · ucc(c) · π−1, (48)

W̃b(x) = µ · ucc(c). (49)

The envelope conditions on the government’s continuation function W̃ for B and b synthe-

size the second order effects on consumption ucc(c) expressed in real terms by dividing by
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inflation (in the case of nominal bonds). Imposing symmetric Markov-perfect equilibrium

we can use the envelope conditions to back out the Generalized Euler Equations

0 = βEµ(x′)ucc(c̃(x
′))π′

−1
+ µβEtSB′ + λπNB′ + λTTB′ , (50)

0 = βEµ′ucc(c̃(x′)) + µβEtSb′ + λπNb′ + λTTb′ . (51)

Formally, a differentiable symmetric Markov-Perfect equilibrium, is a set of policy func-

tions for allocations and wage c(x) = c̃(x), h(x) = h̃(x), w(x) = w̃(x), for bonds, inflation

and government expenditure B′(x) = B̃′(x), b′(x) = b̃′(x), π(x) = π̃(x), g(x) = g̃(x), and

for the Lagrange multipliers λ(x), µ(x), λπ(x), λT (x) that solve equations (37)-(43), (46),

(47), (50), (51).

6.1 Inspecting the Mechanism: Two-Period Model

Consider the same two-period model of section 4.7, except assume that there are two

different governments in power at period 0 and 1. In particular, the government in power

at period 1 can choose inflation optimally. Under these conditions, the optimal choice of

π1 of the government at time 1 is given by the optimality condition:

−Φπ(π1) + µ1
B1

π2
1

= 0. (52)

This has an intuitive interpretation. On the one hand, the government at time 1 faces

the marginal cost of the nominal rigidities which, through the resource constraint, tends to

lower consumption. On the other hand, the government internalizes the marginal benefit of

inflating away nominal debt B1, which is inherited as a choice of the government in power

at t = 0. Assume u(c) = c, a generic disutility for labor v(h) = χh2/2, and a linear cost

Φ = ϕ(π1 − π). Under these conditions, expression (52) yields the following relationship

between nominal debt and inflation at period 1:

π1 =

√
µ1

ϕ
B1. (53)

Now we turn our attention to the government in power at time 0. This government chooses

b1 and B1 in order to best respond to the government at time 1. The Generalized Euler
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Equations

µ0

(
Q+

∂Q

∂B1

)
= βE0

[
µ1

π1

]
, (54)

µ0

(
q +

∂q

∂b1

)
= βE0[µ1], (55)

capture the inter-temporal strategic interactions among governments and lead us to formu-

late the following proposition that benchmarks the optimal policy under No Commitment

against Full Commitment (see two-period model under Full commitment in subsection 4.7).

Proposition 3 (Optimal Nominal and Real Debt Management). Given initial

conditions B0, b0, g0, π0, and under all the assumptions of this subsection, optimal nominal

and real debt management is such that the intra-temporal (cross-states) smoothing condition

is strategically biased

βCov0

(
µ1,

1

π1

)
= µ0

∂Q

∂B1

, (56)

and the inter-temporal smoothing condition is satisfied without wedge

µ0 = E0[µ1]. (57)

Proof. First, note that q = β. Hence, ∂q
∂b1

= 0 and equation (55) collapses to its counterpart
under Full Commitment (17), which corresponds to equation (57). Combine equation (57) with
equation (54) to get equation (56) directly. �

Under risk-neutrality, it is intuitive that the first-order condition with respect to real debt

collapses to equation (17), consistent with the fact that under these circumstances the

government looses at time 0 any power to manipulate time 0 real rates, since they are not

forward-looking.

Equation (55) is clearly different from its counterpart under Full Commitment (15),

since it contains the additional strategic terms ∂Q
∂B1

through which the government at time

0 internalizes the effects that its nominal debt choice has on time 0 nominal rates. Recall

that Q = βE0

[
π−11

]
to compute the strategic bias term contained in equation (56):

∂Q

∂B1

= −βE0

[
1

π2
1

∂π1
∂B1

]
< 0,
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since ∂π1
∂B1

= 1
2ϕπ1

(
µ1 +B1

∂µ1
∂B1

)
> 0, as clear from equation (53).15 Therefore, the sign

of the strategic bias contained in equation (56) is negative which reveals that, under no

commitment, the optimal policy is such that

Cov0

(
µ1,

1

π1

)
< 0. (58)

Equation (58) suggests that, in general under No Commitment, the government does not

reach a perfect smoothing across states even with just two realizations of shocks as in

subsection 4.7. In fact, given the assumptions of subsection 4.7, equation (58) implies

that16 µH1 > µL1 and πH1 > πL1 ,

µH1 < µL1 and πH1 < πL1 ,

whereas, under Full Commitment, the planner was explicitly seeking to achieve µH1 = µL1

as implied by equation (19) of proposition 2.

This is manifestation that the government at time 0 internalizes the effects that its

nominal debt choice has on time 0 nominal rates. Intuitively, the time 0 government is

facing a trade-off between: (i) diminishing its nominal borrowing costs and (ii) smooth-

ing fiscal policy. This tension drives the optimal portfolio allocations under the optimal

time-consistent policy: the hedging portfolio achievable with levered positions under Full

Commitment is typically a sub-optimal choice under No Commitment. In fact, it would

be an expensive financial choice ex-ante and accentuate the dilemma posed by the lack

of commitment ex-post. That is, it would give incentive to the future government to use

inflation excessively ex-post. Notably, our results are similar in spirit to those of Debortoli,

Nunes, and Yared (2017), although we analyze a different problem.

We now turn our attention to the infinite-horizon model described in section 6, which

we calibrate to capture these forces quantitatively.

15Since µ1 > 0 and ∂µ1

∂B1
> 0, since more debt chosen at time 0 renders the government at time 1

more constrained. In general, µt is such that the first-order optimality condition with respect to labor
1− χht − µt(2χht − 1) = 0 is satisfied.

16Consistently also with equation (53).
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6.2 Quantitative Results

We now discuss our quantitative results for the case in which the government lacks com-

mitment and, among other policies, issue one-period non state-contingent nominal and real

bonds.

We calibrate the Markov process θt as an AR(1) in logs, formally: log θt+1 = (1 −
ρθ) log µθ + ρθ log θt + εθ, with ρθ = ρg, µθ = −.005, and εθ normally distributed with mean

zero and standard deviation σθ = 0.03. This calibration allows us to match an average ra-

tio of government spending to GDP, as well as the standard deviation and autocorrelation

of linearly detrended (log) government spending, in agreement with the data described in

section 5, also used to solve for the optimal policy under Full Commitment.17 We discretize

this process with an 11-valued Markov-Chain. More details can be found in the computa-

tional appendix A.2. For simplicity, we choose vg(g) = log g and we calibrate the model

imposing zero lower bounds on nominal and real debts, which are occasionally binding.

All the other parameters we use to solve the model are identical to Full Commitment, as

reported in table 1, except for ϕ. We increase ϕ from 20 to 50 to match a quarterly slope

of the New Keynesian Phillips curve of ∼0.018, calculated as average of a long stochastic

simulation under No Commitment with σl = 1.8.18 As shown in figure 7 of subsection

5.4, a higher level of nominal rigidities, which results in a flatter New Keynesian Phillips

Curve, helps increasing both bonds positions, calculated as average of a long stochastic

simulation. We solve the model and present results in the third column of table 4. Table

4 shows that, differently from Full Commitment, it is possible to calibrate the NC model

to obtain average positive portfolio weights (with underlying positive debt to GDP ratios).

The intuition that drives this result is explained in the two-period model presented in sub-

section 6.1. Under no commitment, a government needs to simultaneously tackle the need

of smoothing fiscal policy and the need to lessen its borrowing costs. This latter force helps

achieve the calibration with positive nominal and real bonds presented in table 4, whereas

it is difficult to attain it under Full Commitment given the strong need for levered bond

positions in order to smooth fiscal policy. As a concluding exercise, we lower σl from 1.8 to

1. As reported in table 4, this results in a ∼50% increase in the Frisch elasticity. Intuitively,

this parameter regulates the quantitative trade-off between reducing the average borrowing

costs and reducing fiscal policy volatility. In particular, a higher Frisch elasticity is linked

17In particular, with the calibration reported in Table 1 we get an average ratio of government spending
to GDP of ∼23% and an implied σg = 0.0167, which is aligned with 0.016 we used in section 5.

18Note that this is still in the range 0.018-0.047 provided by Gali and Gertler (1999).
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to higher welfare gains from smoothing fiscal policy. As shown in the fourth column of ta-

ble 4, the optimal time-consistent policy is such that more leveraged positions are adopted

resulting in portfolio weights close to those observe in reality.

Table 4: No Commitment and Portfolio Shares

Description Moments σl = 1.8 σl = 1 Target/Data

Real Portfolio Weight E[b/(b+B)] 0.39 0.08 0.07

Nominal Portfolio Weight E[B/(b+B)] 0.61 0.92 0.93

Frisch Elasticity E
[
∂h
∂w
· w
h

]
1.04 1.53 2

Corr. Tax and GDP ρ(τ, Y ) 0.84 0.89 0.17

Corr. Inflation and GDP ρ(π, Y ) 0.64 0.92 0.18

Corr. Inflation and Real ρ(π, b) 0.83 0.77 0.25

Corr. Inflation and Nominal ρ(π,B) -0.69 -0.57 -0.54

Notes: The table reports the first portfolio weights of real and nominal bonds, together with the implied
Frisch elasticity, and salient correlations among monetary and fiscal policy instruments. All moments are
calculated in a simulation with T = 10000 periods. The first column refers to the NC model with σl = 1.8;
the second row refers to the model with to the NC model with σl = 1. For the Frisch Elasticity we consider
a reference value of 2, as it is standard in the literature. To compute mean and correlations of other
variables, we log and linearly detrend each variable, in both the model (where necessary) and data. The
source of other data is the St. Louis FRED database. Given the recently adoption of TIPS we considered
a time span from 1997 to 2013. Data about TIPS and government debt in general can be found on the
treasury website at the following link: https://fiscaldata.treasury.gov/datasets/monthly-statement-public-
debt/summary-of-treasury-securities-outstanding.

7 Conclusion

In the wake of rising inflation in the aftermath of unprecedented debt financed stimulus

packages, controlling inflation has again moved to the forefront of governments attention.

In this paper, we examine optimal government debt management in the presence of inflation

concerns in a setting where i) the government can issue long-term nominal and real (TIPS)

non state-contingent bonds, ii) the monetary authority sets short-term interest rates ac-

cording to a Taylor rule, and iii) inflation has real costs as prices are sticky. Nominal debt

can be inflated away, but bond prices reflect elevated inflation expectations. Real bond

prices are higher, but such debt constitutes a real commitment ex post. In other words,

nominal debt can be inflated away giving ex-ante flexibility, but real bonds constitute a

real commitment ex-post. We analyze the optimal policy under full commitment and the

optimal time-consistent policy without commitment.
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The optimal policy under full commitment prescribes a leveraged portfolio of nominal

liabilities and real assets, designed to exploit inflation fluctuations to smooth fiscal policy.

In contrast, the optimal policy without commitment is strategically biased, designed not

only to smooth fiscal policy but also to best respond to the future government in order

to reduce borrowing costs. A hedging portfolio with levered positions would be an expen-

sive financial choice ex-ante and exacerbate the dilemma posed by the lack of commitment

ex-post. Notably, the tension is resolved by an optimal debt management policy that pre-

scribes a realistic allocation to real liabilities. Intuitively, without commitment, the current

government can reduce borrowing costs by strategically mitigating future governments’ in-

centive to monetize nominal debt ex post, an incentive that households anticipate and price

in.

Intriguingly, our model specification without commitment provides a remarkably accu-

rate quantitative description of US data, quite in contrast to the specification with full

commitment. This suggests that this framework realistically captures the relevant con-

straints actual governments face. We thus view modeling limited government commitment

as a useful starting point for relevant policy design.
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A Computational Appendix

In this appendix we describe the computational procedure we used to solve the model under

Full Commitment and No Commitment.

A.1 Algorithm under Full Commitment

We solve the model under Full Commitment using a generalization of the Parameter-

ized Expectations Algorithm (den Haan and Marcet, 1990) proposed by Valaitis and Villa

(2019). In this appendix, we describe how to adapt the methodology introduced by

Valaitis and Villa (2019) in this context. At every instant t the information set is It =

{gt, {BN
t−k}N−1k=0 , {bNt−k}

N−1
k=0 , {µt−k}Nk=1, {λTt−k}Nk=1, {λπt−k}Nk=1}.19 Consider projections of the

forward looking terms in the model onto It. We model these relationships using a single

hidden-layer artificial neural network ANN (It) with 10 neurons in the hidden layer and

as many neurons as many inputs and outputs in the input and output layers, respectively.

Moreover, the activation functions we use are hyperbolic tangent sigmoid and the training

algorithm is Levenberg-Marquardt backpropagation.

Before proceeding, we calculate the remaining first-order conditions with respect to

consumption and inflation under Full Commitment, which were omitted in the main text.

The first-order condition with respect to consumption ct is

ucc(ct)− vl(l)A−1 + µt

(
ucc(ct)st +

∂st
∂ct

uc(ct)

)
+ b̃tucc(ct)(µt−1 − µt) (59)

+ λπt

(
ν − 1

ν
+
wt
Aν
− ucc(ct)

uc(ct)2
βEt [uc(ct+1)Φπ(πt+1)πt+1]

)
+ (60)

λπt−1
ucc(ct)

uc(ct−1)
Φπ(πt)πt − λTt

1

π

(πt
π

)−φπ
ucc(ct) + λTt−1ucc(ct)

1

βπt
= 0. (61)

The first-order condition with respect to inflation πt is20

vl(lt)

uc(ct)

Φπ(πt)

A
= µt

∂st
∂πt

+Bt
µt − µt−1

π2
t

+ λπtHt +
λπt−1Kt
uc(ct−1)

+
(πt
π

)−φπ−1 λTt φπ
π2
−
λTt−1
βπ2

t

.

(62)

We describe the procedure for a generic maturity N . In particular, when maturity

19For example, with N = 5 the problem requires to keep track of 26 state variables and solve for 10
policy functions.

20Define Ht ≡
(
ν−1
ν + wt

Aν

)
Φπ(πt)−Kt and Kt ≡ ϕ(2πt − π).
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N ≥ 2, then we approximate all the following terms:

ANN 1 = Et
[ uc(ct+N)

ΠN
j=1πt+j

]
,

ANN 2 = Et
[µt+1uc(ct+N)

ΠN
j=1πt+j

]
,

ANN 3 = Et[uc(ct+N)],

ANN 4 = Et[uc(ct+N−1)],

ANN 5 = Et[uc(ct+N)bNt+N ],

ANN 6 = Et[µt+1uc(ct+N)],

ANN 7 = Et[µt+1uc(ct+1)b
N
t+1],

ANN 8 = Et[µt+1uc(ct+N)bNt+1],

ANN 9 = Et[µt+1uc(ct+N)bNt+N ],

ANN 10 = Et[µt+Nuc(ct+N)bNt+N ],

ANN 11 = Et[µt+N−1uc(ct+N−1)bNt+N−2],

ANN 12 = Et[uc(ct+1){ϕ(πt+1 − π)πt+1}],

ANN 13 = Et[ϕ(πt+1 − π)πt+1],

ANN 14 = Et[λπt+1{ϕ(πt+2 − π)πt+2}],

ANN 15 = Et[uc(ct+1){ϕ(πt+1 − π)πt+1}],

ANN k
16 = Et

[
uc(ct+N−k)

(
ΠN−1
j=1 πt−k+j+1

)−1]
, for k ∈ {1, 2, . . . , N − 1},

ANN 17 = Et
[
uc(ct+1)

1

πt+1

]
,

ANN 18 = Et[{ϕ(πt+1 − π)πt+1}bNt+1].

The solution procedure is summarized by the following algorithm. Given starting values

I0 = {g0, {BN
−k}N−1k=0 , {bN−k}

N−1
k=0 , {µ−k}Nk=1} and initial weights for the ANN , perform a

stochastic simulation {ct, µt, BN
t , b

N
t , πt, λ

T
t , λ

π
t , wt}Tt=1 as follows.21

1. Impose the Maliar moving bounds, see Maliar and Maliar (2003), on debt, These

bounds are particularly important and need to be tight and open slowly since the

ANN at the beginning can only make accurate predictions around zero debt - that

is our initialization point. Proper penalty functions are used to approximate the

21The network can be initially trained imposing {bt} = 0.
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behavior of the Lagrange Multipliers (Λ, λ) which avoid out of bound solutions while

the Maliar moving bounds are opening, see Faraglia, Marcet, Oikonomou, and Scott

(2014) for more details.22

2. At every instant t, given the information set It and the prediction ANN (It), solve

for ct, µt, B
N
t , b

N
t , πt, λ

T
t , λ

π
t , and wt such that all the following equations are satisfied:

the resource constraint (2), the implementability constraint (32), the New-Keynesian

Phillips Curve (8), the Taylor Rule (10), the planner first-order condition with respect

to nominal debt (33), the planner-first order condition with respect to real debt (34),

the planner-first order condition with respect to wage (14), the planner-first order

condition with respect to consumption (61), and the planner-first order condition

with respect to inflation (62). Note that simply substituting predictions of the neural

network in equations (33) and (34) such as

µt = ANN 1(It)−1
[
ANN 2(It) +

Λt

β
− Λt

β

]
,

µt = ANN 3(It)−1
[
ANN 6(It) +

λt
β
− λt
β

]
,

render the system over-identified. We tackle this problem by using a Forward-States

approach, as described in Faraglia, Marcet, Oikonomou, and Scott (2014). This

involves approximating the expected value terms with the state variables that are

relevant at period t+ 1 and invoking the law of iterated expectations.23 For example,

equations (33) and (34) using the Forward-States approach are:

µt = [EtANN 1(It+1)]
−1
[
EtANN 2(It+1) +

Λt

β
− Λt

β

]
,

µt = [EtANN 3(It+1)]
−1
[
EtANN 6(It+1) +

λt
β
− λt
β

]
.

3. If the solution error is large, or a reliable solution could not be found, the algorithm

automatically restores the previous period ANN and tries to proceed with a reduced

Maliar bound.24

22We also find that including Λ and λ terms explicitly in the training set improves prediction accuracy.
23For a detailed description of the procedure using polynomial regressions see Faraglia, Marcet,

Oikonomou, and Scott (2019) or Faraglia, Marcet, Oikonomou, and Scott (2014). Here we follow the
same logic using the neural network.

24If the unreliable solution has been detected in iteration i the algorithm restore the i− 1 environment
and tries to proceed with Boundi−1 = αBoundi−1 + (1− α)Boundi−2.
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4. If the solution calculated shrinking the bound at iteration i − 1 is not satisfactory,

the algorithm does not go back another iteration but uses the same ANN and tries to

lower the Boundi−1 again towards Boundi−2. Once a reliable solution is found, the

algorithm proceeds to calculate the solution for iteration i again, but with Boundi =

Boundi−1+(Boundi−1−Boundi−2). In this way, if an error is detected multiple times

we guarantee that both Boundi and Boundi−1 keep shrinking toward Boundi−2 and

there must exist a point close enough to Boundi−2 such that the system can be reliably

solved with both Boundi−1 and Boundi.

5. If the solution found at iteration i is satisfactory, the ANN enters the learning phase

supervised by the implied model dynamics, the Maliar bounds are increased and a

new iteration starts again.

Keep repeating until the ANN prediction errors converge below a certain small threshold

and the simulated sequences for ct, µt, B
N
t , b

N
t , πt, λ

T
t , λ

π
t , and wt converge among iterations.

A.2 Algorithm under No Commitment

We now describe the key steps of the algorithm we use to compute the NC equilibrium

of the model of Section 6. We solve the model using global methods and, specifically, an

algorithm similar in spirit to Clymo and Lanteri (2020). Recall that the state space is

x ≡ (B, b, θ).

1. We discretize the sets of B and b with 13 linear nodes each. Moreover, we discretize

the AR(1) process for θ with Rouwenhorst with 11 nodes and a grid that spans 3

unconditional standard deviations.

2. We guess the future government policy functions g(x), B′(x), and b′(x) as three-

dimensional tensors with 13×13×11 nodes and piece-wise linear interpolation. That

is, g(x) ' g̃(Bi, bj, θw), B′(x) ' B̃(Bi, bj, θw), b′(x) ' b̃(Bi, bj, θw), with 1 ≤ i ≤ 13,

1 ≤ j ≤ 13, 1 ≤ w ≤ 11. Evaluations of the policies outside of the specified indices

are obtained through 3-D linear interpolation.

3. We define policy functions for inflation π(x, xg) and labor h(x, xg) on an augmented

state space that includes both x and the additional space xg ≡ (B′, b′, g), that we use

to evaluate all possible strategic interactions between current and future government.
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Note that given π(x, xg) and h(x, xg), it is possible to back-out the associated policy

for consumption

c(x, xg) = Ah(x, xg)− g(x, xg)− Φ(π(x, xg)), (63)

from the resource constraint equation (2), for wage

w(x, xg) = Φπ(π(x, xg))
π(x, xg)

h(x, xg)
− 1

h(x, xg)
E
[
β
uc(c(x

′, xg
′
))

uc(c(x, xg))
· Φπ(π(x′, xg

′
))π(x′)

]
− A ·

(
ν − 1

ν

)
,

(64)

through the NKPC equation (8), and for labor tax

τ(x, xg) = 1− c(x, xg)ηc

(1− h(x, xg))ηlw(x, xg)
, (65)

from the intra-temporal consumption-labor substitution margin equation (4).

4. Given the guesses for the linearly-interpolated future government policy functions

g(x) ' g̃(Bi, bj, θw), B′(x) ' B̃(Bi, bj, θw), b′(x) ' b̃(Bi, bj, θw) and expressions (63),

(64), and (65); we solve with projection the implementability constraint, equation

(38), and the Taylor Rule, equation (40) in order to find augmented policy functions

for inflation π(x, xg) and labor h(x, xg) approximated using the following polynomial

P (x, xg;φ) ≡φ(1) + φ(2) ·B + φ(3) · b+ φ(4) ·B′ + φ(5) · b′ + φ(6) · θ+

+ φ(7) ·B2 + φ(8) · b2 + φ(9) ·B′2 + φ(10) · b′2 + φ(11) · θ2+

+ φ(12) ·B · θ + φ(13) · b · θ + φ(14) ·B′ · θ + φ(15) · b′ · θ + φ(16) ·B · b+ φ(17) ·B′ · b′+

+ φ(18) ·B ·B′ + φ(19) ·B · b′ + φ(20) · b ·B′ + φ(21) · b · b′+

+ φ(22) · g + φ(23) · g2 + φ(24) · g ·B · b+ φ(25) · g ·B′ · b′ + φ(26) · g · θ,

with different sets of parameters φπ and φh, respectively.

5. Given updated guess for π(x, xg) = P (x, xg;φπ), h(x, xg) = P (x, xg;φh), and an initial

guess for the value function W̃ (x′), and given all the other policies given by expressions

(63), (64), and (65), solve the government problem described in equation (36) using

one iteration of Value Function Iteration in order to find updated best responses for all

government policies g(x) ' g̃(Bi, bj, θw), B′(x) ' B̃(Bi, bj, θw), b′(x) ' b̃(Bi, bj, θw).
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Note that multiple iterations on the Value Function can be done, since we look for

a symmetric MPE where all best responses and value functions converge to a fixed

point, i.e. all governments are symmetric.

6. Use the updated best responses for all government policies g(x) ' g̃(Bi, bj, θw),

B′(x) ' B̃(Bi, bj, θw), b′(x) ' b̃(Bi, bj, θw), to restart from point 4. Iterate till

convergence. At this step we use all policies to simulate an equilibrium sequence

of T=10.000 periods. We declare the algorithm has converged when the maximum

absolute errors of the simulated sequences for consumption, labor, bonds, and gov-

ernment expenditures between two consecutive iterations is in the order of 10−4 or

lower.

7. At convergence, the augmented policy functions for π(x, xg) = P (x, xg;φπ), h(x, xg) =

P (x, xg;φh) can be reduced to standard policy functions just in function of the state

space x by plugging the converged government optimal policies: π(x) = P (x, (B̃(x), b̃(x), g̃(x));φπ)

and h(x) = P (x, (B̃(x), b̃(x), g̃(x));φh).

A.3 Robustness

The following robustness checks refer to the Full Commitment solution with a ϕ of 4.8.

A.3.1 Changing the Seed

To see how our results depend on the specific realization of the gt process we solve the

model with 20 different seeds using the same staring point as in the main body of the

paper. Overall, the main result is robust. Correlation between real and nominal bonds

is on average -0.7904 and is negative for all realizations of gt. Correlation between the

difference of BN and bN is also negative on average and is only positive in two realizations.

We also find that government issues nominal debt and holds real assets most of the time.

The mean difference between BN and bN is 34.01% of GDP and has been on average

negative for only one realizations. The results are summarized in table 5.
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ρ(bNt , B
N
t ) ρ(BN

t − bNt , gt) E(bNt /Yt) E(BN
t /Yt) E((BN

t − bNt )/Yt)

Mean -0.7904 -0.3733 -0.1465 0.1936 0.3401

Minimum -0.9698 -0.8164 -0.3433 -0.2153 -0.0667

Maximum -0.1315 0.5964 -0.0275 0.6289 0.697

Table 5: Average moments across multiple realizations of gt

Notes: Table shows the mean, minimum and maximum of selected moments when the model is solved

with using different realizations of gt.

A.3.2 Variance of gt Process

In this subsection we analyze how the results depend on the variance of government ex-

penditure. Specifically, we solve the model with the same seed but changing the variance

of the shock process. We mainly find that the main result of accumulating nominal debt

and real assets in good times is stronger when the government expenditure is more volatile.

As shown in figure 10, the correlation between nominal bonds and gt and the correlation

between real bonds and gt increases in absolute value as gt becomes more volatile. Also,

the government debt position becomes more levaraged as shown in the right panel.

Figure 10: Role of variance of gt
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Notes: The figure shows correlation of real and nominal bonds of gt and average values of real and

nominal bonds in function of the variance of gt.

In addition to above, we find that 1. volatility of inflation is invariant and volatility of

taxes increases in variance of gt. 2. Correlation of total portfolio and gt and the correlation

between nominal and real bonds are stable. 3. Average inflation increases.
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