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Abstract

This paper analyzes the time-varying credibility of the Fed’s inflation target in an
empirical macro model with asymmetric information, where the public has to learn
about the actual inflation target from the Fed’s interest rate policy. To capture
the evolving communication strategy of the Fed, I allow the learning rule and the
structural shock variances to change across monetary policy regimes. I find that
imperfect credibility is pronounced during the Volcker Disinflation and to a lesser
extend in the aftermath of the 2008 Financial Crisis. The announcement of the 2%
target in 2012 did not affect the learning rule strongly but reduced the variance of
transitory monetary policy shocks. The results caution against equating long-term
inflation expectations of professionals with the perceived inflation target.
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“A fuller understanding of the public’s learning rules would improve the central bank’s
capacity to assess its own credibility, to evaluate the implications of its policy decisions and
communications strategy.” Bernanke (2007)

1 Introduction

Central banks, like the Federal Reserve Bank (Fed), interpret price stability as inflation
rates being close to an implicit or explicit inflation target. Thus, to achieve their inflation
target, a central bank should ideally convey that it is credible in fulfilling its mandate of
price stability. However, credibility is fragile and, once lost, can be costly to re-establish,
as argued forcefully by Goodfriend (2004) for example. Therefore, monitoring the state of
credibility at all times is indispensable.

Over most of the postwar period, the exact inflation target of the Fed was unknown
to the public and probably time-varying. Therefore, the inflation target perceived by the
public may sometimes deviate from the actual inflation target, creating a credibility gap.
To help anchor public perceptions at, and strengthen the credibility of its target, the Fed
has changed its communication strategy significantly since the early 1960s. For example, to
foster understanding of the policy actions taken to reduce the high inflation rates of the
late 1970s, “on October 6, 1979, the Fed broke sharply with its tradition of saying little in
public about its actions” (Goodfriend 2007, p. 51) and explained them to a wider public.
In January 2012, the Federal Open Market Committee (FOMC) announced the numerical
inflation target of 2 percent for the annual inflation rate of the Personal Consumption
Expenditure (PCE) index. Later, it redefined the target to be an average inflation target.
Hence, even official target announcements can be subject to change. Moreover, they do
not necessarily eliminate asymmetric information and imperfect credibility. For example,
Coibion et al. (2020) find that, in the US, 60% of survey respondents among firms and 40%
among households said they do not know what the Fed’s inflation target was. Therefore, the
target perceived by the public need not automatically coincide with the officially announced
inflation target by the central bank. Modeling the Fed’s inflation target as time-varying
and not directly observable by the public may still be an accurate representation of the
Fed’s monetary policy, even after 2012 and especially for the purpose of gauging potentially
imperfect credibility.1

1Despite the official inflation target, Shapiro and Wilson (2019) find that the Fed more likely has
targeted a rate of inflation that is slightly lower than the announced 2%, even after 2012. Moreover, average
inflation targeting implies a certain degree of time-variation in the inflation target because the central may
temporarily aim for inflation above or below 2%.
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As pointed out in the lead quote by Bernanke (2007), knowledge of the public learning
mechanism is important for assessing credibility and the impact of different communication
strategies. Therefore, the aim of this paper is to contribute to a better understanding of
the time-varying credibility of the Fed’s inflation target by estimating how the public learns
about the inflation target from the Fed’s monetary policy.

This paper. The starting point of this paper is the learning mechanism of Kozicki and
Tinsley (2005). In their model, the monetary policy rate is set by a Taylor rule with an
unobservable and time-varying inflation target π⋆

t . Due to asymmetric information, the
public has to solve signal extraction problem to learn about the Fed’s inflation target. As a
result, it updates the perceived target πP

t in response to the observed interest rate policy of
the central bank. Since π⋆

t and πP
t need not coincide, the model allows for a precise notion

of imperfect credibility, the credibility gap. This paper then extends the analysis of Kozicki
and Tinsley (2005) along three important dimensions.

First, I derive the learning rate that is optimal from the central bank’s perspective, thus
providing an important benchmark for assessing empirical estimates of the learning rate. To
that end, I propose the expected squared credibility gap at medium- to long horizons as an
indicator of the degree of de-anchoring of πP

t from π⋆
t . This de-anchoring indicator naturally

summarizes two key aspects of anchoring: Persistence and variance of the credibility gap.
In the spirit of Jorgensen and Lansing (2022), the optimal learning rate is then found
by minimizing this de-anchoring indicator. However, in contrast to the literature where
agents learn from inflation surprises instead of monetary policy, a learning rate of zero
is generally not optimal because it implies that the perceived target is unrelated to the
inflation target.2 Therefore, the derived optimal rate adds an interesting new perspective on
the relation between learning and anchoring. As a result of the non-zero optimal learning
rate, a response of the perceived target to monetary policy can be desirable because it helps
to anchor public long-term inflation beliefs at the actual inflation target, as suggested also
by the SVAR evidence in Diegel and Nautz (2021).

Second, I allow for breaks in the structural shock variances and the learning rate across
US monetary policy regimes. Kozicki and Tinsley restrict the shock variances and the
learning rate to be constant. However, the literature demonstrates that changes in shock
variances are important to fit the evolution of the Fed’s monetary policy framework through

2When agents learn from inflation surprises and not from monetary policy, any change in their long-term
inflation belief is considered undesirable and, thus, the degree of anchoring increases the smaller the learning
rate is; see e.g. Jorgensen and Lansing (2022), Gáti (2022), Carvalho et al. (2022) and Lansing (2009).
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the postwar period; see e.g. Primiceri (2005), Sims and Zha (2006), and Belongia and Ireland
(2016). The dates of the regime changes are motivated by narrative historical evidence of
Goodfriend (2004, 2007), the 2012 announcement of the 2% target, and findings of the
structural VAR literature; see e.g. Brunnermeier et al. (2021). Since the optimal learning
rate depends on the shock variances, different monetary regimes may also imply different
optimal learning rates. To capture the effect of the changes to the Fed’s communication
strategy on agent’s learning behavior, I allow the learning rate to vary across regimes as well.
To the best of my knowledge, this is the first paper to estimate a non-constant learning rate
that links public perceptions directly to the inflation target. This allows to check whether
the announcement has had the desired effect: In that case, it should reduce the de-anchoring
indicator by moving the learning rate of the public closer to the optimal value.3

Third, to estimate the Fed’s actual inflation target π⋆
t and perceived inflation target

πP
t from US macro data, I generalize the precision based formulas for Bayesian estimation

and model comparison of univariate correlated unobserved components models of Grant
and Chan (2017) to the multivariate case. This generalization enables the use of precision
based methods of Chan and Jeliazkov (2009) that are computationally more efficient than
algorithms based on the Kalman filter and smoother. Moreover, the precision based methods
directly deliver smoothed estimates that are best suited for the purpose of recovering his-
torical relationships. Another advantage is that the Bayesian approach allows to explicitly
incorporate prior beliefs on structural parameters and the trajectories of the unobserved
components. For example, it is straightforward to explicitly account for the implicit prior
belief that π⋆

t should be close to 2% from 2012 onwards.4

Results. The model is estimated on US macro data from 1962Q1 to 2018Q3. The best
fitting model allows for five breaks in the variances and the learning rate. Interestingly, the
variances of shocks to π⋆

t and πP
t show different patterns of variation across the regimes, a

finding that would have been ruled out by the assumption of equal variances by Kozicki
and Tinsley.

3Other studies that estimate a constant learning rate are Erceg and Levin (2003) and Del Negro and
Eusepi (2011). Carvalho et al. (2022) and Mertens and Nason (2020) estimate time-varying updating
parameters for the inflation trend but their analysis omits an explicit role of the monetary policy and the
inflation target, which are crucial for gauging credibility.

4Kozicki and Tinsley (2005) estimate the model with ML methods and report filtered estimates of π⋆
t

and πP
t from the Kalman filter with no bands for inference. Following Kim and Kim (2022), Bayesian

techniques should be preferred over maximum likelihood estimation for unobserved components models
because they allow for overcoming the so-called ‘pile-up’ problem that can lead to a bias in the estimates of
variances of the unobserved components.
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The estimates for π⋆
t and πP

t indicate that imperfect credibility is an important feature
to fit the evolution of the Fed’s monetary policy. Imperfect credibility was particularly
important in the Volcker Disinflation due to the slow adjustment of agent’s perception after
the shift to a lower inflation target, and to a lesser extent in the aftermath of the 2008
Financial Crisis. A model with perfect credibility, i.e. π⋆

t = πp
t for all t, is strongly rejected

by the data.
The estimated level of the Fed’s inflation target π⋆

t is close to 2% even before the 2012
announcement and it remains there since then. Re-estimating the model under an additional
prior that restricts π⋆

t to be ‘close’ to 2% does not deteriorate the model fit significantly.
However, the de-anchoring indicator improves after the announcement. While the learning
rate increases marginally, this increase is too small to contribute significantly to the
improvement in anchoring. Instead, the improvement in anchoring is driven predominantly
by a reduction of the variance of the transitory monetary policy shock, indicating that the
Fed has followed its policy rule more closely since the announcement.

Moreover, the perceived target and observed long-term inflation expectations should
not be equated directly, even though both capture similar economic concepts. A Bayesian
model comparison shows that using long-term inflation expectations from the Survey of
Professional Forecasters (SPF) as an imperfect measurement of the perceived target as in
Chan et al. (2018) leads to a substantial deterioration in model fit.

Outline. The next section presents the learning mechanism of Kozicki and Tinsley, which
serves as a starting point. It then proceeds to derive the optimal learning rate and
implications for the evolution of the credibility gap and the degree of anchoring of the
perceived target to the Fed’s actual target. Section 3 embeds the learning mechanism into
a multivariate correlated unobserved components model and derives analytical expressions
for Bayesian estimation and model comparison in a precision based framework. Section 4
presents the results of the baseline estimation and alternative specifications to assess the
importance of imperfect credibility. Section 5 summarizes and concludes.

2 An empirical macro model with asymmetric infor-
mation

To assess the time-varying credibility of the Fed’s inflation target I build on the asymmetric
information model by Kozicki and Tinsley (2005). This section briefly revisits the learning
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mechanism of their model. The main components are the monetary policy rule and the
learning rule that updates the perceived inflation target. The subsequent subsection derives
results of the model for credibility and the optimal learning rate.

2.1 The learning mechanism of Kozicki and Tinsley (2005)

Kozicki and Tinsley assume that monetary policy sets the nominal interest rate it according
to a Taylor-type feedback rule in response to deviations of the annual inflation rate π̄4

t

from the current value of the inflation target π⋆
t and to a measure of the output gap gt − ḡ.

Moreover, it smooths past interest rate deviations it−1 from the equilibrium level īt−1. The
monetary policy rule reads

it = īt + ρ(it−1 − īt−1) + ϕπ,t(π̄4
t − π⋆

t ) + ϕy(gt − ḡ) + εMP
t , εMP

t ∼ N(0, σ2
MP ) (1)

with īt = rr + πP
t−1. (2)

The equilibrium level of the nominal rate īt is determined by a long-term Fisher-type relation
where rr denotes the natural real rate and πP

t−1 is the perceived inflation target from the
previous period. As is common in the literature on time-varying inflation targets, π⋆

t follows
an exogenous random walk, see e.g. Ireland (2007) and Cogley et al. (2010).5

π⋆
t = π⋆

t−1 + ε⋆
t , ε⋆

t ∼ N(0, σ2
⋆) (3)

While the monetary policy shock εMP
t only has a transitory effect in the policy interest rate,

the target shock ε⋆
t has a permanent effect.

Asymmetric information enters the model through the assumption that agents outside
the central bank do not directly observe either the current value of the Fed’s inflation target
or the transitory shock. To form beliefs about the inflation target, which is the perceived
inflation target πP

t , agents have to solve a signal extraction problem. This involves forming
expectations about the policy rate ie

t and updating the perceived target πP
t according to the

5Here, I deviate from the original model in two aspects. First, I do not include a ‘Volcker dummy’ in
the law of motion for π⋆

t to account for the large monetary policy shift that occurred between 1979 and
1983. Instead, changes in monetary policy are captured by allowing for changes in the variances of the
shocks. For the Volcker Disinflation, this has the advantage that, while also allowing for larger target
changes, this special regime can also be reflected in a larger variance of temporary monetary policy shocks,
due to non-borrowed reserves targeting. Second, Kozicki and Tinsley allow the inflation target to react to
temporary cost-push shocks, which seems implausible for most of the sample period. Moreover, since this is
not at the heart of the current analysis, I abstract from this feature and assume that the inflation target is
a purely exogenous random walk as in (3).

6



surprise it − ie
t . Since π⋆

t is unknown, agents use their latest value of πP
t−1 to form interest

rate expectations. Thus, agents’ one period ahead expected level of the interest rate is given
by

ie
t = īt + ρ(it−1 − īt−1) + ϕπ(π̄4

t − πP
t−1) + ϕy(gt − ḡ)

After observing the actual level of the interest rate set via (1), agents’ forecast error can be
decomposed into contributions of transitory and permanent monetary policy components
according to

it − ie
t = ϕπ(πP

t−1 − π⋆
t ) + εMP

t . (4)

If monetary policy is more contractionary than expected, the decomposition in (4) implies
that the corresponding forecast error it − ie

t > 0 can be attributed to either a positive
transitory monetary policy shock εMP

t or to agents’ perceived target being higher than the
actual inflation target, i.e. πP

t−1 − π⋆
t > 0. Since both εMP

t and π⋆
t are unobservable, agents

do not know the source of their forecast error. However, they can adjust their perceived
target according to size and direction of the forecast error. Following Kozicki and Tinsley, I
assume that agents employ the following learning rule to update the perceived target

πP
t = πP

t−1 − δ(it − ie
t ) + εP

t , εP
t ∼ N(0, σ2

P ). (5)

The learning rate δ governs the relative weight that agents attach to new information in the
expectation formation process. It can also be interpreted as the amount of attention that
agents devote to monetary policy actions. If monetary policy is more contractionary than
expected, agents revise πP

t downward. The perceptions shock εP
t is an exogenous source of

variation in πP
t and allows for deviations from the learning rule. I deviate from Kozicki and

Tinsley (2005) in that I do not impose the restriction σ2
P = σ2

⋆ that was originally made
for technical reasons but is hard to justify on economic grounds. The Bayesian estimation
allows for replacing this restriction with a reasonable prior that still allows the two variances
to be different.6

6As I am additionally allowing for different volatility regimes in the estimation, relaxing this restriction
is even more important because it would a priori imply the same variance changes in target- and perceived
target shocks in each regime.
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Substituting (4) into (5) yields the law of motion for πP
t as

πP
t = (1 − δϕπ)πP

t−1 + δϕππ⋆
t − δεMP

t + εP
t . (6)

If ϕπ > 0 and δ > 0, (6) implies that πP
t is cointegrated one for one with the inflation target

π⋆
t with adjustment coefficient ϕπδ and perceptions will eventually converge to the Fed’s

target in the absence of shocks. For the observed data, this implies that π⋆
t is the common

trend of inflation πt and the monetary policy interest rate it.

2.2 The credibility gap

The asymmetric information structure of the model prevents a first-best outcome of a
perfectly credible inflation target π⋆

t = πP
t with zero variance for all t. To overcome

asymmetric information in practice, central banks use their communication with the public
as an additional tool for achieving credibility for their inflation targets. To that end, the
communication strategies are often subject to change, while the general monetary policy
framework remains largely unchanged. However, a change in the communication strategy
should affect the weight of monetary policy in the public perceptions formation process,
i.e. the learning rate δ. In fact, the learning rate δ can achieve a second-best outcome that
is associated with minimum volatility and persistence of deviations of πP

t from π⋆
t . This

section first defines the credibility gap πP
t − π⋆

t and then derives a value for the learning rate
δ⋆

t,s that is conditionally optimal from a central bank point of view that seeks to minimize
expected credibility gaps for horizons s = 1 and s = ∞. These two cases allow to illustrate
the intuition of optimal learning and serve as benchmarks for interpreting the empirically
estimated learning in section 4.

The model allows a law of motion for credibility, defined as „the difference between
the policymaker’s plan and the public’s beliefs about those plans” Cukierman and Meltzer
(1986, p.1106). This definition corresponds to the deviation of the perceived target from
the Fed’s actual target πP

t − π⋆
t , that is bad credibility drives a wedge between π⋆

t and πP
t .

To stress that larger magnitudes of |π
P
t − π⋆

t | imply weaker credibility, it is referred to as
the credibility gap. Subtracting π⋆

t from (6) and inserting (3) yields the law of motion for
the credibility gap:7

πP
t − π⋆

t = (1 − δϕπ)(πP
t−1 − π⋆

t−1) + εP
t − δεMP

t − (1 − δϕπ)ε⋆
t (7)

7For the VECM describing the evolution π⋆
t and πP

t , this reformulation corresponds to the more general
transformation in Carvalho and Harvey (2005, p.278) that uses eigenvectors and eigenvalues.
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Again, if 0 < ϕπδ < 1, the credibility gap converges to zero in absence of shocks implying
that πP

t is anchored at π⋆
t in the long run in the sense of the long-run anchoring criterion of

?. For the remainder of this section, assume that this condition is satisfied. The estimation
results show that the upper bound is empirically not binding. Given that πP

t is anchored in
the long run, the volatility and persistence of the credibility gap are two aspects a central
bank might be concerned about.8

2.3 Optimal learning

The volatility and persistence of the credibility gap are naturally summarized by expected
squared deviations of πP

t+s from π⋆
t+s at a medium- to long-term horizon s. To emphasize the

role of these aspects for the degree of anchoring of πP
t to π⋆

t , those deviations are referred
to as the de-anchoring indicator DAIt,s, see Definition 2.3. [The De-Anchoring Indicator]
Conditional on the information set as of period t, denoted It, the degree of de-anchoring of
πP

t+s from π⋆
t+s s periods into the future is measured by

DAIt,s := E
[(

πP
t+s − π⋆

t+s

)2
∣∣∣∣∣ It

]

Given a set of monetary policy coefficients, the rate of learning δ plays a central role for
the DAIt,s. Therefore, a central bank that seeks to maintain credibility in the medium to
long term prefers a value δ⋆

t,s that minimizes DAIt,s:

δ⋆
t,s = argmin

δ∈(0, 1
ϕπ

)
DAIt,s. (8)

Since DAIt,s is the long-run variance of the credibiltiy gap when s → ∞, for this case the
problem resembles the criterion for optimal learning proposed by Lansing (2009). The
value δ⋆

t,s is optimal for a central bank that chooses the Taylor rule coefficient ϕπ based on
considerations about the trade-off between inflation and output stabilization and maximizes
anchoring subject to that policy rule. The announcement of the 2% inflation target by the
Federal Reserve can be understood as such an attempt to maximize anchoring of long-term
inflation expectations conditional on the monetary policy regime already in place. If such
communication tools have the desired anchoring-effect, they should move δ closer to δ⋆

t,s.
Using the law of motion for the credibility gap allows to derive an analytical expression

8This is akin to the criteria considered for the anchoring of long-term inflation expectations, see e.g.
Doh and Oksol (2018).
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for the DAIt,s, see Proposition 2.3. The proof is contained in Appendix A. [Model implied
DAIt,s] The credibility gap in equation (7) implies

DAIt,s =
(
πP

t − π⋆
t

)2
(1 − δϕπ)2s +

(
1 − (1 − δϕπ)2s

) (
δ2σ2

MP + σ2
∗ (1 − δϕπ)2 + σ2

P

)
1 − (1 − δϕπ)2 (9)

For the case s = 0, where the central bank does not care about future deviations of
the perceived target from π⋆

t , DAIt,s collapses to the squared current credibility gap. By
contrast, if the central bank cares also about future deviations, the degree of de-anchoring
is not reflected adequately by only the current credibility gap. As central banks are forward
looking, s = 0 is hardly an empirically relevant choice. Therefore, this section proceeds to
analyze the degree of anchoring for the more plausible case of s > 0.

In principle, the horizon s can be chosen to match the central bank’s definition of the
‘medium term’. However, the mechanics of the DAIt,s are best illustrated by two extreme
cases s → ∞ and s = 1 which allow to simplify DAIt,s considerably, see Corollary 2.3.
[Special cases for DAIt,s] For s → ∞ and s = 1, DAIt,s simplifies to

DAI∞ = δ2σ2
MP + (1 − δϕπ)2σ2

⋆ + σ2
P

1 − (1 − δϕπ)2 (10)

and

DAIt,1 =
(
πP

t − π⋆
t

)2
(1 − δϕπ)2 + δ2σ2

MP + σ2
∗ (1 − δϕπ)2 + σ2

P . (11)

Inserting the expression for DAI∞ from (10) into the expression for DAIt,s in (9) yields

DAIt,s =
(
πP

t − π⋆
t

)2
(1 − δϕπ)2s +

(
1 − (1 − δϕπ)2s

)
DAI∞. (12)

From this, it is easy to see that DAIt,s converges to DAI∞ monotonically as s → ∞.
Moreover, DAIt,s approaches DAI∞ from above (below) if the current squared credibility
gap is larger (smaller) then DAI∞. Given long run anchoring, both DAI∞ and DAIt,1 are
decreasing in the Taylor rule coefficient on inflation ϕπ due to the decline in persistence of
the credibility gap. This intuitive finding is also in line with the theory of anchored inflation
expectations of Gáti (2022), who concludes that a more aggressive central bank reaction
to inflation deviations anchors long-run inflation beliefs. Moreover, both de-anchoring
indicators are increasing in the variances σ2

P , σ2
MP and, σ2

⋆.
Corollary 2.3 summarizes the effect of a change in δ on DAI∞ and DAIt,1. Due to
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the nature of asymmetric information, a higher learning rate does not necessarily improve
anchoring. This is because an increase in δ has two opposite effects. On the one hand, it
improves anchoring by reducing the persistence of the credibility gap, reflected in the right
hand side of the conditions in Corollary 2.3. On the other hand, a higher δ also increases
the impact of transitory monetary policy shocks on the credibility gap, represented by the
left hand side of the conditions. Thus, a higher δ only improves anchoring if the reduction in
persistence dominates the higher impact of the monetary policy shock on the credibility gap.
Moreover, the strength of these opposite effects differs between the horizons s. For example,
for s → ∞, the reduction in persistence is more likely to dominate if σP

t is large. For s = 1,
this is the case if the current credibility gap is large. Given 0 < ϕπ and 0 < δ ≤ 1

ϕπ
, for

s → ∞ we have

∂ DAI∞

∂δ

≤ 0, for δ2σ2
MP ≤ (σ2

∗ + σ2
P ) (1 − δϕπ)

> 0, for δ2σ2
MP > (σ2

∗ + σ2
P ) (1 − δϕπ)

and for s = 1

∂ DAIt,1

∂δ


≤ 0, for δ2σ2

MP ≤
(

σ2
∗ +

(
πP

t − π⋆
t

)2
)

ϕπ (1 − δϕπ)

> 0, for δ2σ2
MP >

(
σ2

∗ +
(
πP

t − π⋆
t

)2
)

ϕπ (1 − δϕπ)

[The optimal learning rates] For s → ∞ and s = 1,

δ⋆
∞ =

√
(σ2

∗ + σ2
P ) (ϕ2

πσ2
∗ + ϕ2

πσ2
P + 4σ2

MP ) − ϕπ (σ2
∗ + σ2

P )
2σ2

MP

(13)

and

δ⋆
t,1 =

ϕπ

((
πP

t − π⋆
t

)2
+ σ2

∗

)
ϕ2

π

(
(πP

t − π⋆
t )2 + σ2

∗

)
+ σ2

MP

. (14)

solve the problem in (8). Solving (8) yields the optimal learning rates, see Proposition
2.3. The proof is contained in Appendix A. The optimal learning rates δ⋆

∞ and δ⋆
t,1 depend

differently on the shock variances and the Taylor rule parameter. Thus, to judge whether a
higher or lower value of δ is needed to improve anchoring at a specific horizon, it is useful
to compare any estimated value for δ with both extreme cases δ⋆

∞ and δ⋆
t,1. For example, in

the case of a perfectly credible inflation target at time t, i.e. πP
t − π⋆

t = 0, and a central
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bank that follows the Taylor rule almost exactly, i.e. σ2
MP → 0, the optimal learning rate

δ⋆
t,1 approaches its upper bound 1

ϕπ
under long-run anchoring. The maximum learning

speed is optimal in this case because every forecast error agents make in forecasting the
interest rate it originates from a change in π⋆

t . If the central bank would not follow the
Taylor rule in setting its interest rate policy, i.e. σ2

MP → ∞, the interest rate contains no
information about the inflation target and, consequently, a learning rate of close to zero
would be optimal. However, in the empirically relevant case, where the central bank follows
the Taylor rule approximately, a modestly positive learning rate is optimal.

In contrast, models that assume long-term inflation beliefs are formed based on inflation
surprises exclusively imply that a learning rate of close to zero maximizes anchoring because
every movement in long-term inflation beliefs is undesirable by definition; see for example
Carvalho et al. (2022). The results of this section show that, when agents learn from
monetary policy instead of inflation surprises, a non-zero learning rate can be optimal.

2.4 US Monetary policy regimes and the learning rate

To estimate a meaningful learning parameter δ, it is necessary to capture monetary policy
adequately in the estimation. The SVAR literature on US monetary policy largely agrees
that the variances of the structural shocks have changed across the different monetary
regimes, while the coefficients of the policy reaction function remained remarkably stable in
post war data (Sims and Zha 2006; Belongia and Ireland 2016). Changes in volatilities are
of particular interest for the anchoring of the perceived target to the actual target because
the optimal learning rate and the de-anchoring indicators depend on the volatilities. To
account for potential changes in volatilities, I follow Brunnermeier et al. (2021) and allow
the structural shock variances to change between break dates suggested by the literature.

In addition to the break dates of Brunnermeier et al. (2021), I allow for a break in
January 2012 for the announcement of the official 2% inflation target. Intuitively, the
variances of changes in the inflation target σ2

⋆ and deviations from the Taylor rule σ2
MP may

have decreased after the announcement.
Even under constant variances the optimal δ⋆

t,1 is time-varying because it depends on
the current value of the credibility gap. In contrast, δ⋆

∞ is constant because it “sees through”
current credibility gaps that are only temporary under long-run anchoring. However, time-
variation in the variances of the shocks can imply time-variation in δ⋆

∞. Since the optimal
learning rates depends on the shock variances, I also allow the learning rate δ to change at
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the break dates.9

Studies focusing on learning from inflation surprises document time-variation in the
estimated learning rates, see e.g. Carvalho et al. (2022), Jorgensen and Lansing (2022) and
Gáti (2022). In contrast, the learning mechanism of Kozicki and Tinsley assumes that
agents learn from monetary policy surprises. To the best of my knowledge, the present
study is the first to estimate the time-varying learning gain in a monetary policy-based
learning mechanism, and hence, adds an important perspective the literature. For example,
if the 2012 announcement had the desired effect on credibility and anchoring, it should have
led to a decline in the variance of the target- and transitory monetary policy shocks and
shifted the learning rate δ closer to its optimal value.

3 Bayesian estimation

To estimate the inflation target π⋆
t and the perceived inflation target πP

t , the structural
equations of the previous section are mapped to state space form, This form yields a
multivariate unobserved components model with correlated errors. The vector of n = 3
macroeconomic variables yt = [gt, πt, it]′ consists of a measure of the output gap gt, inflation
πt and the central bank interest rate it. The data vector yt is decomposed into the r = 2
common trends, collected in the vector τt = [πP

t , π⋆
t ]′. The deviations of the variables from

the trends are denoted ct = [ĝt, π̂t, ît]′ and are assumed to be stationary. The full observation
equation linking the observables to the state vectors is

yt = γ̃y + Γ0τt + Γ1τt−1 + ct (15)

with

γ̃y =


ḡ

0
rr

 Γ0 =


0 0
1 0
0 0

 Γ1 =


0 0
0 0
1 0


where ḡ is the constant average of the output gap that might be different from zero in a
particular sample period and rr is the real interest rate. Note that only πP

t enters directly
into the inflation equation; see second row of Γ0. Moreover, πP

t appears with a lag in the
interest rate equation; see third row of Γ1. The state equations governing the evolution of

9The breaks in the signal-to-noise ratio due to breaks in variances imply changes in the optimal learning
gain not only from the anchoring analysis, but also from a Kalman filter, i.e. optimal forecasting, perspective.
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the cycles ct and the trends τt are

Act = B1ct−1 + ... + Bpct−p + λ0τt + ... + λqτt−q + et, et ∼ N(0, Σt) (16)

τt = Ftτt−1 + Jtet + Otut, ut ∼ N(0, Ωt) (17)

where ut = [εP
t , ε⋆

t ]′ and et = [εg
t , επ

t , εMP
t ]′. The t subscript of the diagonal variance matrices

Σt and Ωt indicates the dependence on the US monetary policy regimes. The coefficient
matrices Ft, Jt, and Ot also have a t subscript because they depend on the learning rate δ,
which is also allowed to vary across the regimes. For brevity, the exact definitions the model
matrices are relegated to Appendix B. Suffice to mention that A is lower triangular with unit
diagonal. The coefficients in the nth row of A, the Bjs and the λjs obey linear restrictions
such that the interest rate equation equals the Taylor rule in (1). After substituting the
decomposition πt = πP

t + π̂t from (15) into the Taylor rule, the λj matrices account for how
π⋆

t and πP
t−i for i = 0, ..., 3 affect interest rate deviations ît. Since π⋆

t and πP
t−i do not enter

any other equation for ct, the λj contains only zeros elsewhere. Equation (17) stacks laws
of motion for π⋆

t and πP
t in (3) and (6). Since the cycle shocks et show up in the equations

for τt and ct, I refer to the model defined by equations (15)-(17) as multivariate correlated
unobserved components (MCUC) model.

3.1 Priors

I use natural conjugate priors where possible to allow for an efficient estimation. This means
normal distributions as priors for all slope coefficients and initial values of the unobserved
components, and inverse gamma distributions for all variances. For the shock variances of
the stationary cycles σ2

g , σ2
π, and σ2

MP , I use inverse gamma distributed priors with a mean
of 0.5 and 6 degrees of freedom. For the shock variances of the trends σ2

⋆ and σ2
P , I use

inverse gamma distributed priors with a smaller mean of 0.05 and 5 degrees of freedom.
The smaller mean is justified because changes in the inflation target or the perceived target
can be expected to be smaller on average than business cycle shocks. Still, the prior is not
overly restrictive. For example, at the prior mean, 95% of the changes in π⋆

t are smaller
than 0.44 in absolute value. For the Taylor rule coefficients ρ, ϕπ, and ϕg, I use informative
normal priors with mean 0.7, 0.45, and 0.15 and variances of 0.05 each that are reminiscent
of priors for these parameters from Smets and Wouters (2007). The use of informative
priors is justified because these are structural parameters with a clear economic meaning.
The other slope coefficients in the Bi matrices of all other cyclical equations have unspecific
and wide normal priors with zero mean and unit variance. For the learning rate δ, I use a
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beta prior of the form δ ∼ beta(aδ, bδ) with aδ = 4 and bδ = 16 implying a mean of 0.2. This
prior restricts 0 < δ < 1 and ensures that the long-run anchoring criterion is obeyed. While
the lower bound also ensures the correct sign for δ, the upper bound is not empirically
relevant.

3.2 Posterior simulation and marginal likelihood computation

The model is estimated using Bayesian methods. The use of Bayesian methods has the
advantage that prior beliefs on structural parameters and the trajectories of unobserved
components can be explicitly taken into account. Moreover, the different priors on the
variances of the cycle and trend shocks add to the identification of the unobserved components
without imposing hard restrictions.10

The posterior of the model is simulated with a Gibbs sampler. The Gibbs sampler
approximates the posterior by iteratively generating draws from the conditional posterior
distribution of the unknown parameters and the states τt, reminiscent of an Expectation
Maximization algorithm. For the purpose of recovering in-sample relations, smoothed
estimates of τt are most appropriate because they use all the available sample information.
The most efficient way to draw τt from its smoothing distribution is by use of the precision
sampler of Chan and Jeliazkov (2009). Unfortunately, the formulas for the precision sampler
for correlated unobserved components models are only available for the univariate case, see
Grant and Chan (2017). Therefore, to estimate the MCUC model, I generalize the formulas
to the multivariate case. The individual steps of the algorithm are detailed in Appendix
D. To ensure convergence of the Gibbs sampler I discard the first 5000 draws as burn-in
sample. All results are based on the 20000 draws following the burn-in.

To efficiently compute the marginal likelihood, required for Bayesian model comparison,
I also generalize the analytical computation of the integrated likelihood of Grant and
Chan (2017) to the multivariate case. The marginal likelihood is obtained by numerically
integrating out the unknown coefficients from the integrated likelihood. This requires
many evaluations of the integrated likelihood, which is greatly facilitated by a closed form
expression that can be evaluated quickly. Using this analytical expression, I obtain the
marginal likelihood via the cross-entropy method of Chan and Eisenstat (2015). The cross-
entropy method is an importance sampling procedure that requires specifying distribution

10Kozicki and Tinsley (2005) estimate the model with ML methods and report filtered estimates of π⋆
t

and πP
t from the Kalman filter with no bands for inference. Following Kim and Kim (2022), Bayesian

techniques should be preferred over maximum likelihood estimation for unobserved components models
because they allow for overcoming the so-called ‘pile-up’ problem that can lead to a bias in the estimates of
variances of the unobserved components.
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families for the proposal densities for all parameters. Following Chan and Eisenstat (2015),
I use proposal densities from the same families as the prior densities for each coefficient. I
use 10 batches with 10000 draws each to compute the marginal likelihood. Since the cross
entropy method yields a numerical approximation, there is also a small error. To gauge
the approximation error, I compute a numerical standard error (NSE) for the marginal
likelihood estimates across the 10 batches.

For brevity, the formulas and derivations are contained in C. The formula for the
integrated likelihood of the MCUC can also be used in maximum likelihood estimation.

4 Credibility of the Fed’s inflation target from 1962
to 2018

I estimate the model on three quarterly US time series from 1962Q1 to 2018Q3: the output
gap gt obtained from the Congressional Budget Office, the annualized quarterly inflation
rate of the Personal Consumption Expenditure πt, and the Fed Funds rate it. From 2009 to
2015, while the zero lower bound was binding, it is equal to the shadow rate of Wu and Xia
(2016), which captures the unconventional monetary measures taken during that time.11

Before interpreting the results, I determine the monetary policy break dates out of the
candidate break dates that yield the best fit.

4.1 Determining the monetary policy break dates

To fit the US data and find the most relevant break dates, I compare the marginal likelihoods
from models estimated with different sets of break dates from Brunnermeier et al. (2021)
plus a break in January 2012 for the inflation target announcement. Table 1 confirms that
variance changes are a relevant feature to fit the data. The best fitting model with the largest
marginal likelihood has five break dates in total; see row 6. The regime breaks refer to the
first month of the new regime. The five breaks that yield the best fit mark the beginnings
of the the Stagflation period in January 1973, the regime change in October 1979 shortly
after Paul Volcker was appointed chairman of the Fed, the end of the monetary targeting in
January 1983, the onset of the financial crisis in January 2008, and the announcement of
the inflation target in January 2012.

11All series are obtained from economic database of the St. Louis Fed, FRED. Only the shadow rate,
which is obtained from Cyntia Wu’s homepage at https://sites.google.com/view/jingcynthiawu/
shadow-rates.
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Table 1: Log marginal likelihoods for various sets of regime break dates

Start date of new regime

Jan-1973 Oct-1979 Jan-1983 Jan-1990 Jan-2008 Jan-2012 log ML
(NSE)

−965.6
(0.67)

✓ −960.29
(0.42)

✓ ✓ ✓ −927.14
(1.5)

✓ ✓ ✓ ✓ −922.64
(1.11)

✓ ✓ ✓ ✓ ✓ −926.32
(1.29)

✓ ✓ ✓ ✓ ✓ −907.93
(1.22)

✓ ✓ ✓ ✓ ✓ ✓ −913.73
(1.27)

Notes: Log marginal likelihoods are computed using the cross-entropy method of (Chan and
Eisenstat 2015) with 10 runs of 10000 importance sampling draws each. Numerical standard error
(NSE) across the 10 runs in parenthesis. Strength of evidence for differences in log ML according
to Kass and Raftery (1995): 0 < ∆ log ML < 1: not worth mentioning, 1 < ∆ log ML < 3:
positive, 3 < ∆ log ML < 5: strong, 5 < ∆ log ML: very strong. Additional break dates of
Belongia and Ireland (2016) in Jan-2000 and Jan-1984 instead of Jan-1983 did not increase the
fit log ML.

Allowing for these breaks in volatilities and the learning rate, the constant Taylor
rule coefficients also have the expected sign; see Table 2. Moreover, the implied long-run
response to inflation deviations from target exceeds unity and obeys the Taylor principle. The
smoothing coefficient ρ is relatively low. Since time-variation in π⋆

t and imperfect credibility,
two elements that are absent in conventional specifications, also capture persistence in the
interest rate, this Taylor rule requires only a smaller smoothing parameter.

The typical response to a temporary monetary policy εMP
t shock implied by the model is

also plausible, see Figure 1. A 25 basis points hike in the fed funds rate leads to a decline in
the output gap and a delayed decrease in inflation after a small price puzzle. The perceived
target decreases modestly after the shock and, by construction, the inflation target remains
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Table 2: Taylor rule coefficients of the best fitting model.

ϕg ϕπ ρ

mean
(5% 95%)

0.25
(0.14 0.36)

0.51
(0.33 0.68)

0.63
(0.5 0.76)

Notes: The posterior means of the implied long-run responses to inflation and
the output gap are ϕπ

1−ρ = 1.11 and ϕg

1−ρ = 0.70.

Figure 1: Impulse responses to a monetary policy shock
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Notes: Posterior means (solid) 16% and 84% posterior quantiles (dashed lines). The shock is normalized to
increase the fed funds rate by 25 basis points. To show the typical response implied by the model, the impulse
responses are averaged over the values of the learning rate δ from the different monetary policy regimes.

constant.12

Since the Taylor rule and the impact of the monetary policy shock of the best fitting
model are plausible, the results in the following sections are based on the same set of regime
breaks. The next section considers the potential time-varying credibility.

4.2 The time-varying credibility of π⋆
t

Figure 2 shows the estimated paths for πP
t and π⋆

t and the credibility gap. It is obvious
that πP

t and π⋆
t do not coincide over large parts of the sample and, thus, that credibility

12Note the inflation decreases on impact because the perceived target πP decreases on impact.
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Figure 2: The evolution of πP
t , π⋆

t and the credibility gap
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Notes: Horizontal lines indicate zero (solid) and 2% (dashed). Dotted lines are 16% and 84% posterior
quantiles.

has not always been perfect. In fact, imperfect credibility was a problem during the Volcker
Disinflation, and the Great Moderation, and, to a lesser extent, in the aftermath of the
2008 Financial Crisis. Until the mid-1970s, both, πP

t and π⋆
t increase steadily. Moreover,

this rise is largely simultaneous indicated by the insignificant credibility gap during that
period. Through the lens of the Taylor rule, a rise of π⋆

t reflects the fact the Fed has not
rigorously enforced low inflation with the ‘go-stop’-type policy; see e.g. Goodfriend (2004).
In the late 1970s and early 1980s, the so-called Volcker Disinflation, an apparent regime
change takes place: π⋆

t drops sharply to below 2% reflecting the Fed taking on the fight
against high inflation. In contrast to the preceding simultaneous rise of πP

t and π⋆
t , the drop

in π⋆
t clearly leads the decline in inflation and the gradual decline of πP

t through the Great
Moderation period. This results in a large positive credibility gap. The 68% probability
bands for the credibility bands contain zero again in the late 1990s.

Note that since the drop of π⋆
t in the early 1980s, 2% is always contained in the 68%

credibility bands.13 This suggests that the 2012 announcement was a mere change in
13However, π⋆

t from Kozicki and Tinsley (2005) drops into negative territory at the end of the Volcker
Disinflation just to increase sharply thereafter. While this excessively sharp drop can be due to their
‘Volcker dummy’ in the law of motion for π⋆

t , their estimate is much more volatile than the one in Figure
2, also in periods other than 1979Q4 to 1982Q4. This is reflected in their relatively large estimate for
σ2

⋆ = 0.23 wich is more than twice the size of the maximum of 0.11 that I obtain outside the period from
1973Q1 to 1979Q3; see Table 3.
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communication rather than a shift in the actual inflation target. However, in the aftermath
of the Financial Crisis, the posterior mean of π⋆

t increases to above 2%. This rise can be
attributed partly to the unconventional monetary policy measures taken, which are reflected
in the shadow rate. It may, despite the announced target, indicate a higher tolerance for
inflation vis-a-vis other goals of the Fed. At the same time πP

t declines below 2%. As a
result, zero remains outside the probability band of the credibility gap through the sample
end in 2018Q3. However, as shown in the previous sections, a central bank that cares
about future credibility should also take into account the regime dependent volatilities and
the learning rate becasue they determine the degree of de-anchoring at medium- to long
horizons. Therefore, the next section considers those aspects jointly.

4.3 Learning and de-anchoring in different monetary regimes

The left panel of Figure 3 plots the estimated and optimal learning rates δ⋆
t,1 and δ⋆

∞ along
with the estimated δ across the regimes. Several stark observations emerge:

First, the estimated δ is lower than both optimal learning rates, in the entire sample
period, indicating that agents update their beliefs too slowly.

Second, the profile of δ follows the profile of the optimal rates δ⋆
∞ and δ⋆

t,1 across the
regimes. For example, all three drop under the Financial Crisis regime. The drop of δ⋆

∞ is
mostly driven by the increase of σ2

MP from 2008Q1 to 2011Q4 while the other variances that
determine δ⋆

∞, i.e. σ2
P and σ2

⋆, remain almost unchanged; see Table 3. The increase in σ2
MP

most likely reflects the modest decline in the interest rate compared to the sharp temporary
drop in inflation. The fact that δ also drops along with δ⋆

∞ in this period suggests that
agents were well aware of this.

Third, the learning rate was higher before the Great Recession than after. This finding
is generally in line with findings of Carvalho et al. (2022), who report a lower learning
rate in the more recent period. Also, Jorgensen and Lansing (2022) find that the learning
rate drops even further after the Great Recession. However, the implications are different:
In their models, agents learn from inflation surprises and, thus, a lower learning rate is
associated with better anchoring of inflation beliefs because shocks to inflation will not lead
big movements in long-term beliefs. In contrast, when agents learn from monetary policy,
a learning rate of close to zero is not optimal because the link between the actual target
and the perceived target becomes weaker. This is reflected in both DAIt,1 and DAI∞, in
the middle and right panel, peaking in the aftermath of the 2008 Financial Crisis. Hence,
considering only the effect of inflation surprises on agent’s long-term inflation beliefs might
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overstate the degree of anchoring.

Figure 3: Estimated and optimal learning rate, and de-anchoring indicators
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Notes: The left panel shows mean of the optimal learning rates δ⋆
t,1 (solid blue) and δ⋆

∞ (dashed red) implied
by the posterior distributions of the parameters, as well as the posterior mean (solid magenta) of the
estimated learning rate δ with 68% credibility bands (dotted magenta) for the various monetary regimes. The
middle and right panels show the posterior mean of the DAIt,1 and DAI∞ evaluated at the actual learning
rate (solid blue) and DAI⋆

t,1 and DAI⋆
∞ evaluated at the respective optimal learning rates (dashed red).

Table 3: Regime dependent learning rate and shock variances

Regime δ σ2
g σ2

π σ2
MP σ2

P σ2
⋆

1972Q4 0.06
(0.01 0.12)

0.61
(0.49 0.74)

0.76
(0.58 0.94)

0.34
(0.25 0.43)

0.06
(0.04 0.09)

0.10
(0.05 0.14)

1973Q1 to 1979Q3 0.04
(0.00 0.09)

0.77
(0.59 0.95)

1.71
(1.26 2.17)

0.90
(0.60 1.19)

0.07
(0.03 0.10)

0.11
(0.04 0.16)

1979Q4 to 1982Q4 0.05
(0.01 0.08)

0.72
(0.51 0.92)

0.91
(0.61 1.21)

2.48
(1.66 3.28)

0.06
(0.03 0.08)

0.29
(0.09 0.46)

1983Q1 to 2007Q4 0.06
(0.04 0.08)

0.24
(0.21 0.28)

1.12
(0.95 1.28)

0.18
(0.14 0.22)

0.04
(0.02 0.05)

0.07
(0.04 0.10)

2008Q1 to 2011Q4 0.01
(0.00 0.01)

0.64
(0.46 0.82)

4.01
(2.91 5.08)

0.78
(0.45 1.10)

0.05
(0.03 0.08)

0.06
(0.03 0.08)

2012Q1 to 2018Q3 0.02
(0.00 0.03)

0.28
(0.21 0.34)

0.81
(0.61 1.01)

0.30
(0.21 0.39)

0.04
(0.03 0.06)

0.05
(0.03 0.08)

Notes: Reported figures are posterior means and 16% and 84% quantiles in parentheses.

To better understand the dynamics of the DAIt,1 and DAI∞ through the entire sample,
it is helpful to also take into account the changing volatilities in Table 3. In line with
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the narrative account of the Great Inflation, the estimated de-anchoring indicators both
peak in the early 1980s and then decline. These peaks are driven by the high volatilities of
temporary monetary policy, and inflation target shocks, σ2

MP and σ2
⋆.

Both de-anchoring indicators peak a second time in the 2008 recession. For DAIt,∞, the
peak in the Volcker Disinflation is lower than the peak in the 2008 Recession, whereas the
opposite is true for DAIt,1. Taken at face value, DAIt,∞ would suggest that the de-anchoring
was as severe as never before in 2008. However, this interpretation might be misleading
because the DAIt,∞ completely ignores the current credibility gap πP

t − π⋆
t , which is much

lower after the Financial Crisis than during the Volcker Disinflation. Therefore, a high
value of DAIt,∞ should not be confused with poor credibility. Rather, the increase in
DAIt,∞ signals that credibility is more vulnerable to future shocks. Therefore, it might
be interpreted as an early warning indicator rather than a reflection of the current state.
In contrast, the peak of DAIt,1 in the early 1980s is much higher than the peak after the
Financial Crisis because it takes into account that credibility gap was much smaller after
the crisis.

Finally, preventing δ from becoming too small is more important than engineering the
exact optimal value. This is due to the shape of the nonlinear mapping from the learning
rate to the de-anchoring indicators. To see this, consider the de-anchoring indicators implied
by the estimated parameters against the level of the indicators DAI⋆

t,∞ and DAI⋆
t,1 that

would prevail under the respective optimal learning rates, all else equal. The gap between
the DAIt,∞ and DAIt,1 and their optimal counterparts is small in the Great Moderation
even though the deviation of δ from δ⋆

∞ is largest during this period. In contrast, the
deviation of δ from δ⋆

∞ is much smaller when DAIt,∞ reaches its maximum. This is because
the de-anchoring indicator penalizes very low learning rates over-proportionally. Thus, from
a central bank’s perspective, it might be more important that δ is not too small, than that
it is exactly at the optimal value. In line with this conclusion, Gáti (2022) finds that a
cost-push shock has almost identical effects on the typical macro variables under a strong
and a weak anchoring of expectations. By contrast, the same shock has a much more adverse
effect under completely unanchored expectations.

Did the 2012 announcement improve anchoring? The decline of both, DAIt,∞ and DAIt,1

after the 2012 supports this hypothesis. At the same time δ recovers only marginally and
cannot explain the decline in the de-anchoring indicators by itself. However, the volatility
of the temporary monetary policy shock drops after the 2012 announcement, see Table 3.
This drop most likely accounts for the bulk of the improvement in the anchoring.
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4.4 The inflation target under perfect credibility

Asymmetric information prevents credibility from being perfect even when the learning rate
is at its optimal value because agents can only imperfectly disentangle between temporary
monetary policy shocks and inflation target shocks. What would the estimated path of π⋆

t

look like under perfect credibility? To answer this question, the model is re-estimated under
perfect information which implies πP

t = π⋆
t for all t, while maintaining time-variation in π⋆

t .
Without asymmetric information π⋆

t is the only common trend of inflation and the central
bank interest rate. The implications of this restriction for the estimated path of π⋆

t and
the model fit allow for drawing conclusions about the empirical importance of imperfect
credibility.14

Figure 4: π⋆
t obtained under perfect credibility
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Notes: Horizontal lines indicate zero (solid) and 2% (dashed). Dotted lines are 16% and 84% posterior
quantiles.

The estimate of π⋆
t , obtained under perfect credibility, reveals a counter intuitive feature:

The decline of π⋆
t during the Volcker Disinflation lags behind the decline of inflation, see

Figure 4. This suggests that the inflation target follows the path of inflation sluggishly not
the other way around. The literature estimating π⋆

t under perfect credibility often finds the
same counter intuitive feature, see e.g. Figure 3 of Castelnuovo et al. (2014) for a direct

14Kozicki and Tinsley (2005) only compare their asymmetric information model with a model of perfect
credibility and constant π⋆

t , thus not allowing to draw conclusions about the statistical relevance of imperfect
credibility alone. Moreover, they do not conduct a formal model comparison.
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comparison.15 However, this estimate of the inflation target is at odds with the view that
the Volcker-Fed set out to reduce inflation already in 1979, when inflation was still very
high as argued for example in Lindsey et al. (2013). Following this argument, the decline in
the inflation target should lead the decline in inflation, as is the case in the baseline results;
see Figure 2.

Moreover, a Bayesian model comparison clearly favors the baseline model against the
perfect credibility model. The log marginal likelihood for the perfect credibility model is
-970.21 with a numerical standard error of 0.39 against -907.93 for the baseline model; see
Table 1.16 The difference in log marginal likelihoods of approximately 62 is very strong
evidence in favor of the baseline model with imperfect credibility according to the Kass
and Raftery (1995) scale. Thus, the results strongly suggest that imperfect credibility is an
important feature of US monetary policy throughout the postwar period.

In contrast, Del Negro and Eusepi (2011) find that rational expectations DSGE models
with perefect information are preferred over asymmetric information specifications using
a sample covering 1984 through 2008. However, this sample period excludes the Volcker
Disinflation and the low-inflation period in the aftermath of the financial crisis, two periods
where imperfect credibility appears to have been especially important according to the
baseline model. Despite many other model differences, the sample period is probably an
important driver of this contrasting result.

4.5 The 2012 announcement and SPF inflation expectations

This section explores implications of using additional information in form of the official
target announcement or observed survey inflation expectations in the estimation of the model.

A 2%-prior for π⋆
t . One may argue that, since the 2012 announcement, the random walk

law of motion allows π⋆
t to wander excessively in comparison to the implicit prior belief

that the inflation target should be close to 2%. To take this implicit prior into account,
an explicit prior on the path of π⋆

t can be added to the model equations. Not only is this
approach preferable for its transparency instead of discarding models with ‘implausible’
trajectories for π⋆

t a posteriori, but it can also help disentangling movements of π⋆
t and πP

t in
the estimation. From a classical perspective, such a prior can be viewed as a soft restriction

15Studies that estimate π⋆
t under perfect credibility include Ireland (2007), Aruoba and Schorfheide

(2011), Coibion and Gorodnichenko (2011), and Castelnuovo et al. (2014). An exception is Milani (2020)
who obtains a nearly constant estimate for π⋆

t under learning on the side of the central bank.
16The perfect credibility model is estimated with the same breaks as the baseline model.
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on the estimated path for π⋆
t . If not rejected by the data, such a restriction can lead to

more economically plausible and precise estimates. The prior takes the following form

π⋆
t = πA + εA

t , εA
t ∼ N(0, s2

A)

⇒ π⋆
t ∼ N(πA, s2

A) for t > January 2012
(18)

with πA = 2. π⋆
t can vary freely until January 2012 but the prior restricts time-variation

thereafter. The standard deviation sA controls the average size of deviations from the
announcement πA that are allowed under this prior. I set sA = 0.1 which implies
P (1.8 < π⋆

t < 2.2) ≈ 0.95. Thus, most of the prior density mass of π⋆
t is in a reason-

ably narrow interval around 2%.

Using survey expectations for estimation of πP
t . Newer literature (e.g. Crump et al.

2018; Chan et al. 2018; Bańbura and van Vlodrop 2018; Del Negro et al. 2017) exploits data
on long-run inflation expectations from surveys, denoted πLR

t , in the estimation of the trend
in inflation. Figure 5 confirms that there is a broad co-movement between 10y inflation
expectations for the consumer price index (CPI) from the Philadelphia Fed’s Survey of
Professional Forecasters and the estimated πP

t . To refine the estimation and relate the model
based perceived target to observed inflation expectations, long-term inflation expectations
could be used as a noisy measurement of πP

t via another observation equation in the spirit
of Chan et al. (2018):

πLR
t = d0 + d1π

P
t + εLR

t , εLR
t ∼ N(0, σ2

LR)

⇒ πLR
t ∼ N

(
d0 + d1π

P
t , σ2

LR

) (19)

The coefficient d0 allows for a potential bias of πLR
t with respect to πP

t and d1 allows
for different volatility of πLR

t and πP
t . A bias may arise because PCE and CPI differ on

average by a constant amount. However, the dynamic properties of both series are hard to
distinguish, supporting the use of CPI expectations as a measurement of the PCE based
πP

t .17

Table 4 compares the log marginal likelihoods of the baseline model with models using
the 2%-prior in (18) and πLR

t as in (19) as additional restrictions. Adding πLR
t to the

baseline model decreases the log ML by about 14 log points to −922.38 indicating a strong
deterioration of the fit to the macro data. Additionally restricting π⋆

t leads to a decrease
17To relate PCE inflation to CPI long-run inflation expectations, Doh and Oksol (2018) rely on a rule of

thumb that CPI is about 0.4 percentage points above PCE inflation on average.

25



Figure 5: πp
t and SPF 10y CPI inflation expectations
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Notes: Philadelphia Fed’s SPF CPI 10y inflation expectations are extended backwards using the bi-annual
series of long-term from the Blue Chip and Livingston Survey, also available from the Philadelphia Fed.
The final series runs from 1979Q4 to 2018Q3.

Table 4: Log marginal likelihoods of models with restrictions on πP
t and π⋆

t

Restrictions on unobserved components
sample none (baseline) only π⋆

t only πP
t π⋆

t and πP
t

1962–2018 −907.93
(1.22)

−910.03
(0.69)

−922.38
(0.66)

−924.15
(1.10)

1962–2007 −721.69
(0.60)

– −737.56
(0.75)

–

Note: Reported figures are log marginal likelihoods and numerical standard error in parenthesis, see
notes of Table 1. To enable an ‘apples-to-apples’ comparison, the likelihoods are computed based
only on the macro variables yt. According to the best-fit, break dates for all models are in January
1973, October 1979, January 1983, January 2008, and January 2012. The restrictions on πP

t and
π⋆

t are the 2%-prior and the use of πLR
t as in (18) and (19), respectively.

of only 2 log points. Taking into account the numerical standard errors suggests that the
deterioration in fit is not very significant. Similarly, the fit of the model with both additional
restrictions is also much worse than the model only restricting π⋆

t but not much worse than
the model that only uses πLR

t . Overall, there is strong evidence against using πLR
t to restrict

πP
t but much less compelling evidence against restricting π⋆

t to close to 2% after 2012.
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5 Conclusion

This paper estimates how the public forms the long-term inflation beliefs by learning from
the Fed’s interest rate policy, thereby contributing to a better understanding of drivers of the
time-varying target credibility and the anchoring of public perceptions at the Fed’s inflation
target. To enable an analysis of the role of learning for the anchoring of public perceptions,
I propose a de-anchoring indicator that is motivated by asymmetric information about the
Fed’s inflation target and derive an optimal learning rate that minimizes de-anchoring. In
this model, a learning rate of zero is generally not optimal.

To apply the analysis to the US, I estimate the model on US postwar data from 1960 to
2018. To account for different monetary policy regimes, I allow for breaks in the variances
and the learning rate. To estimate the model and enable Bayesian model comparison via
the marginal likelihood, I derive precision based expressions for efficient state sampling and
evaluation of the integrated likelihood.

Four main results emerge from the baseline estimation. First, imperfect credibility is an
important feature of the joint evolution of US inflation and the Fed’s interest rate policy. A
model that does not allow for imperfect credibility is clearly rejected by the data. Second,
the optimal learning rate varies between 0.3 and 0.65 in the US postwar period. The profile
of the estimated actual learning rate largely follows the the profile of the optimal rate.
However, there is a substantial level shift: The public learns much too slowly compared
to the optimal rate. Third, the degree of anchoring improves after the announcement of
the 2% inflation target in 2012. This improvement is mainly driven by a reduction in the
volatility of temporary monetary policy shocks. The learning rate increases slightly, but this
has, if at all, only a small effect on the degree of anchoring. Fourth, despite the improved
anchoring, the de-anchoring indicators remain elevated compared to the Great Moderation,
indicating that credibility is more vulnerable to unfavorable shocks. Credibility could be
made more robust if the Fed manages to increase the weight of monetary policy in agent’s
belief formation process.

Finally, this model shows that a decline in the learning rate can also deteriorate the
degree of anchoring of public perceptions to the actual inflation target. In contrast, a
learning rate of zero maximizes anchoring in models where agents learn from inflation
surprises instead of monetary policy. For future research it would be interesting to pin
down the relative importance of these two sources of learning, especially since central banks
around the world are confronted with above target inflation again since 2021.
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A Analytical Results

[Proof of Proposition 2.3] Let π†
t = πP

t − π⋆
t denote the credibility gap and its law of motion

π†
t = απ†

t−1 + ut, ut ∼ N(0, σ2
u,t)

with α = (1 − δtϕπ)

ut = εP
t − δtε

MP
t − (1 − δϕπ)ε⋆

t

and σ2
u,t = σ2

P + δ2
t σ2

MP + (1 − δϕπ)2σ2
⋆

Iterating π†
t forward yields

π†
t+s = αsπ†

t +
s∑

i=1
αs−iut+s−i.

Using this expression, the DAIt,s = E

[(
π†

t+s

)2
∣∣∣∣∣It

]
can be written as

DAIt,s = α2s(π†
t )2 +

s∑
i=1

α2(s−i)σ2
u

= α2s(π†
t )2 + 1 − α2s

1 − α2 σ2
u

= (π†
t )2 (1 − δϕπ)2s +

(
1 − (1 − δϕπ)2s

) (
δ2σ2

MP + σ2
∗ (1 − δϕπ)2 + σ2

P

)
1 − (1 − δϕπ)2

[Proof of Proposition 2.3] For s → ∞

∂ DAI∞

∂δ
= 2 (δ2σ2

MP + (σ2
∗ + σ2

P ) (δϕπ − 1))
δ2ϕπ (δϕπ − 2)2

with ∂ DAI∞
∂δ

∣∣∣∣∣
δ=δ⋆

∞

= 0. It remains to show that ∂2 DAI
∂δ2 > 0, where

∂2 DAI∞

∂δ2 = −2 (2δ3ϕπσ2
MP + (σ2

∗ + σ2
P ) (3δ2ϕ2

π − 6δϕπ + 4))
δ3ϕπ (δϕπ − 2)3 .

The denominator of ∂2 DAI∞
∂δ2 is negative for the admissible parameters space δ ∈ (0, 1

ϕπ
). For

admissible values of δ, the nominator is positive if 3(δϕπ)2 − 6δϕπ + 4 > 0. This quadratic
form is bounded from below by unity for δϕπ = 1 at the upper bound of the admissible
parameter space. Therefore, ∂2 DAIt

∂δ2 is negative everywhere in the admissible parameter
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space.
For s = 1

∂ DAIt,1

∂δ
= 2(πP

t − π⋆
t )2ϕπ (δϕπ − 1) + 2δσ2

MP + 2ϕπσ2
∗ (δϕπ − 1)

with ∂ DAIt,1
∂δ

∣∣∣∣∣
δ=δ⋆

t,1

= 0. Furthermore, we have

∂2 DAIt,1

∂δ2 = 2(πP
t − π⋆

t )2ϕ2
π + 2σ2

MP + 2ϕ2
πσ2

∗ > 0.

B Model matrices

The full model is given by

yt = γ̃y + Γ0τt + Γ1τt−1 + ct (20)

Act = B1ct−1 + ... + Bpct−p + λ0τt + ... + λqτt−q + et, et ∼ N(0, Σt) (21)

τt = Ftτt−1 + Jtet + Otut, ut ∼ N(0, Ωt). (22)

with diagonal variance matrices Σt = diag
(
σ2

g,t, σ2
π,t, σ2

MP,t

)
and Ωt = diag

(
σ2

P,t, σ2
⋆,t

)
, and

γ̃y =


ḡ

0
rr

 Γ0 =


0 0
1 0
0 0

 Γ1 =


0 0
0 0
1 0



A =


1 0 0

a2,1 1 0
−ϕy −ϕπ

4 1

 λ0 =


0 0
0 0
ϕπ

4 −ϕπ

 λi =


0 0
0 0
ϕπ

4 0

 for i = 1, ..., 3

Ft =
1 − ϕπδt ϕπδt

0 1

 Ot =
1 ϕπδt

0 1

 Jt =
0 0 −δt

0 0 0

 .
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Stacking up over T yields

y = γy + γτ + Γτ + c (23)

HA,βc = Λτ + γc + e, e ∼ N(0, Σ) (24)

HF τ = ατ + Je + Ou, u ∼ N(0, Ω) (25)

with

Γ = blockdiag
(
[Γ′

0, Γ′
1]

′)
, O = blockdiag (O1, ..., OT ) , J = blockdiag (J1, ..., JT )

Σ = blockdiag (Σ1, ..., ΣT ) , Ω = blockdiag (Ω1, ..., ΩT )

The impact of initial values is collected in

γy = (1T ⊗ γ̃y)

γc =






λ1 λ2 . . . λq−1 λq

λ2 λ3 . . . λq 0
... ...

λq 0 . . . 0




τ0

τ−1
...

τ−q+1





′

01×(T −q)r



′

γτ = [Γ′
1τ0, 01×n(T −1)]′

ατ = [(F1τ0)′, 01×T (r−1)]′

(26)
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and the large coefficient matrices are

Λ =



λ0 0 . . . 0
λ1 λ0 0 . . . 0

. . . . . . . . . ...
λq . . . λ1 λ0 0 . . . 0
0 . . . . . . . . .
... 0
0 . . . 0 λq . . . λ1 λ0


HF =



Ir 0 . . . 0
−F2 Ir 0 . . . 0

. . . . . . . . . ...
0 . . . −Fs Ir 0 . . . 0
0 . . . . . . . . .
... 0
0 . . . 0 0 . . . −FT Ir



HA,β =



A 0 0 . . . 0
−B1 A 0 . . . 0
−B2 −B1 A 0 . . . 0

... . . . . . . ...
−Bp . . . −B1 A 0 . . . 0

0 . . . . . . . . . . . . ...
... A 0
0 . . . 0 −Bp . . . −B1 A


(27)

C Bayesian model comparison and estimation of the
MCUC

This sections briefly introduces the notation and Bayesian concepts that are useful for
understanding the derivation in the next section and the results from model comparison. It
draws heavily on Chan and Eisenstat (2015), Chan and Grant (2015), and Chan and Grant
(2016).

Let Mk denote model k and y be the data vector. Bayesian model comparison is
conducted by a comparison of the marginal data densities or marginal likelihoods (ML)
p(y|Mk) and p(y|Mj)of models k and j. Akin to likelihood ratio tests, the evidence in favor
of model k over model j is given by the ratio of the marginal likelihoods of the two models,
the so-called Bayes Factor BFkj:

BFkj = p(y|Mk)
p(y|Mj)

(28)
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The ML of a model is be obtained from prior and posterior densities of the model. To
simplify the notation, I omit the the explicit dependence on model Mk and let θ collect
all model parameters and let p(θ) be the prior density. Then p(y|θ) is referred to as the
observed-data likelihood that is implied by the model equations. The marginal likelihood
p(y) of a model is obtained by integrating out the unknown parameters from the observed
data likelihood via

p(y) =
∫

p(y|θ)p(θ)dθ. (29)

In most cases, this integral has to be solved numerically, which requires evaluation of p(y|θ).
However, for state space models like the MCUC that contain a vector of latent state variables
τ , the observed-data likelihood p(y|θ) cannot readily be evaluated analytically. Instead,
only the likelihood p(y|τ, θ) conditional on the latent states τ can be evaluated directly. To
evaluate the observed data, the states τ have to be integrated out via

p(y|θ) =
∫

p(y, τ |θ)dτ =
∫

p(y|τ, θ)p(τ |θ)dτ. (30)

where p(y, τ |θ) is called the complete data likelihood to distinguish it from the conditional
likelihood p(y|τ, θ). To solve this integral, analytical expressions are available for many
linear state space models including the univariate correlated unobserved components model
of Grant and Chan (2017). However, to the best of my knowledge, there is no analytical
expression for p(y|θ) that can suitable for the MCUC. Therefore, in the next section I
generalize the results in Grant and Chan (2017) to a multivariate setting. Being able to
evaluate p(y|θ) analytically enables fast Bayesian model comparison, and Bayesian and
maximum likelihood estimation.18

C.1 The observed data density of the MCUC

This section outlines the derivation of p(y|θ) and its components. For convenience, I repeat
the laws of motions for the vectorized states τ = [τ ′

1, ..., τ ′
T ]′ and c = [c′

1, ..., c′
T ]′, and the

18A less computationally efficient solution would be the Kalman Filter.
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observation equation for y = [y′
1, ..., y′

T ]′:

y = γy + γτ + Γτ + c

HA,βc = Λτ + γc + e, e ∼ N(0, Σ)

HF τ = ατ + Je + Ou, u ∼ N(0, Ω)

Definitions of the matrices HA,β, HF , and the terms for the initial values are in Appendix
B. Note that det (HA,β) = det (HF ) = 1. Inverting HA,β and HF and absorbing the term
involving τ from the equation for the cycles c into the observation equation yields

y = γy + γτ + Xy,τ τ + c̃ (31)

c̃ = mc̃ + H−1
A,βe (32)

τ = H−1
F ατ + H−1

F Je + H−1
F Ou (33)

with

mc̃ = H−1
A,βγc, mτ = H−1

F α̃τ̃ Xy,τ = Γ + H−1
A,βΛ.

The joint distribution of c̃ and τ is implied by model equations (33) and (32), and reads
τ

c̃

 ∼ N

mτ

mc̃

 ,

 H−1
F Στ (H−1

F )′ H−1
F Στ,c̃(H−1

A,β)′

H−1
A,βΣ′

τ,c̃(H−1
F )′ H−1

A,βΣc̃(H−1
A,β)′


with Στ = OΩO′ + JΣJ ′

Σc̃ = Σ

Στ,c̃ = JΣ

This implies the marginal distribution, for τ with precision matrix Kτ as

τ |θ ∼ N(mτ , K−1
τ ) with Kτ = H ′

F Σ−1
τ HF (34)

and corresponding density function

p(τ | θ) = (2π)− rT
2 det(K−1

τ )− 1
2 e− 1

2 (τ−mτ )′Kτ (τ−mτ ). (35)
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From the formulas for conditional normal distributions (see e.g. Kroese et al. 2014, Chapter
3.6), the conditional distribution of (c̃ | τ, θ) is

c̃ | τ, θ ∼ N
(
mc̃ + H−1

A,βBHF (τ − mτ ), K−1
c̃|τ

)
with K−1

c̃|τ = H−1
A,βPH−1

A,β
′

B = Σ′
τ,c̃Σ−1

τ = ΣJ ′(OΩO′ + JΣJ ′)−1

P = Σ − ΣJ ′(OΩO′ + JΣJ ′)−1JΣ

(36)

In the case of constant variances and learning gain δ, the matrices O, J, Ω and Σ have a
Kronecker structure and the expressions for B and P could be further simplified. To handle
breaks in variances I stick to the more general expressions in this derivation. The distribution
in (36) and the observation equation (31) together imply the condition distribution (y | τ, θ)

y | τ, θ ∼ N
(
my,τ − H−1

A,βBHF mτ + Xτ, K−1
y|τ

)
with my,τ = γy + H−1

A,βγc + γτ

X = H−1
A,βBHF + Γ + H−1

A,βΛ

Ky|τ = Kc̃|τ = H ′
A,βP −1HA,β

(37)

with the corresponding conditional data density

p(y| τ, θ) = (2π)− nT
2 det(K−1

y|τ )− 1
2 e− 1

2 (y−my,τ −Xτ)′Ky|τ (y−my,τ −Xτ). (38)

The complete data density p(y, τ | θ) is obtained as the product of the two densities in p(τ | θ)
in (35) and p(y| τ, θ) in (38). Applying the steps in the appendix of Grant and Chan (2017)
to solve the integral in (30) yields the observed data density p(y| θ). To that end, define
c1 = (2π)− (n+r)T

2 det(K−1
y|τ )− 1

2 det(K−1
τ )− 1

2 and rewrite

p(y| θ) =
∫

p(y, τ |θ)dτ =
∫

p(y|τ, θ)p(τ |θ)dτ

= c1

∫
e− 1

2 [(y−my,τ −Xτ)′Ky|τ (y−my,τ −Xτ)+(τ−mτ )′Kτ (τ−mτ )]dτ

After some algebra, the observed data density can be written as

= (2π)− nT
2 det(K−1

y|τ )− 1
2 det(K−1

τ )− 1
2 det(P −1

τ ) 1
2 e− 1

2 [(y−my,τ )′Ky|τ (y−my,τ )+m′
τ Kτ mτ −d′

τ P −1
τ dτ ].
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with Pτ = X ′Ky|τ X + Kτ and dτ = X ′Ky|τ (y − my,τ ) + Kτ mτ . This expression does not
depend on the states tau anymore and thus, be evaluated directly. I employ this expression
in the estimation of the marginal data density of the MCUC using the cross-entropy method
of Chan and Eisenstat (2015).

C.2 Drawing the states τ

A by product of this derivation is an analytical expression for p(y, τ | θ). Bayes’ formula
shows that the full conditional posterior p(τ | y, θ) is proportional to p(y, τ | θ).

p(τ | y, θ) = p(y| τ, θ)p(τ | θ)
p(y)

∝ p(y| τ, θ)p(τ | θ) = p(y, τ | θ)

Then, from the above derivation it follows that

p(τ | y, θ) ∝ e− 1
2 [(τ−P −1

τ dτ )′Pτ (τ−P −1
τ dτ )].

This is the kernel of the multivariate normal distribution N(τ̂ , P −1
τ ) with τ̂ = P −1

τ dτ . The
precision sampler of Chan and Jeliazkov (2009) can be used to generate draws of τ in a
Gibbs sampler that simulates the posterior of the entire model.

D Gibbs sampler for the MCUC with breaks in vari-
ances and the learning rate

This section presents the details of the Gibbs sampler for the baseline model with breaks in
the shock variances and the learning rate. To that end, let

θ =
{
A, β, δ, ḡ, rr, d, σ2

g , σ2
π, σ2

MP , σ2
P , σ2

⋆, σ2
LR

}
collect all parameters that make up the model matrices and let θ−i be all parameters except
parameter set i. The Gibbs sampler to estimate the model in (23) to (25) will consists of
iteration of the following steps:

1. Sample τ jointly.

2. Sample the free parameters in γy and Γ̃.
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3. Sample the free parameters in β and λ equation by equation, subject to stability of
the cycles.

4. Sample δ, the parameter in the trend equation.

5. Sample the shock variances Σ and Ω.

6. Sample the p initial values τ0.

Each parameter block is sampled from its full conditional posterior density. The following
presents the details of the densities for each step.

1. Sampling the states τ jointly. A by product of the derivation of the marginal data
density of the MCUC in Appendix C.1 is an analytical expression for p(y, τ | θ). Bayes’
formula shows that the full conditional posterior p(τ | y, θ) is proportional to p(y, τ | θ).

p(τ | y, θ) = p(y| τ, θ)p(τ | θ)
p(y)

∝ p(y| τ, θ)p(τ | θ) = p(y, τ | θ)

It follows that

p(τ | y, θ) ∝ e− 1
2 [(τ−P −1

τ dτ )′Pτ (τ−P −1
τ dτ )].

This is is the kernel of the multivariate normal distribution N(τ̂ , P −1
τ ) with τ̂ = P −1

τ dτ . The
precision sampler of Chan and Jeliazkov (2009) can be used to generate draws of τ in a
Gibbs sampler that simulates the posterior of the entire model.

2. Sampling the parameters in the observation equation.
To account for linear restrictions on free the parameters in the constants γ̃y and factor
loadings Γ̃, jointly denoted as γ̄ = vec([γ̃y, Γ0, Γ1]′), let the γ̄f collect the free elements that
are related to γ̄ via

γ̄ = Rγ γ̄f + rγ.

In the present model, γ̄f = [ḡ, rr]′. The posterior of γf is given by

p(γf | y, τ, θ−γf
) ∝ p(y| τ, θ)p(γf )
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γf appears in the observation equation (23). Plugging in (24) and collecting terms to write
in terms of the correlated errors e yields

y = γy + γτ + (Γ + H−1
A,βΛ)τ + H−1

A,βe.

Define γτ + γy + Γτ = X̃γ γ̄ to factor out γ̄ yields

y = H−1
A,βΛτ + X̃yγ γ̄ + c̃

with X̃ ′
γ = [xyτ,1, ..., xyτ,T ]′ and x′

yτ,t = In ⊗ [1 τ ′
t τ ′

t−1].

Inserting the linear restrictions for γ̄ implies the following conditional likelihood via (37) in
terms of the free parameters γ̄f

y| θ, τ ∼ N(my,γ + Xyγ γ̄f , K−1
y|,τ )

with my,γ = H−1
A,β(BHF τ − Bατ ) + X̃γrγ + H−1

A,β(Λτ + γc)

and Xγ = X̃γRγ

Combining this conditional likelihood with a normal prior γf ∼ N(aγ, Vγ) yields the posterior
via standard regression results:

γf | y, θ, τ ∼ N(γ̂f , K−1
γ )

with Kγ = V −1
γ + X ′

γKy|τ Xγ

and γ̂f = K−1
γ

(
V −1

γ aγ + (HA,βXγ)′P −1y⋆
γ

) (39)

where y⋆
γ = HA,β(y − my,γ) = HA,β(y − X̃γrγ) − (BHF + Λ)τ − γc − Bατ .

3. Sampling the free coefficients in A, B1, ..., Bp and Λ
The coefficients in the cycles and τ are connected via linear cross equation restrictions due
to the learning mechanism. Therefore, they must be sampled jointly. Since A is recursive,
the equation for in c can be written as a system of equations by bringing A to the right
hand side as follows:

ct = −(A − In)ct + B1ct−1 + ... + Bpct−p + λ0τt + ... + λqτt−q + et, et ∼ N(0, Σ). (40)

Due to the recursive structure in A, the term −(A − In)ct does not introduce dependence
of cit to itself. Next, let β collect the free elements in vectorized form. They appear in the
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vectorized equations for c in for following way

c = XcRc,ββ + e (41)

with Rc,ββ =
[
vec(−(A − In))′ vec([B1 ... Bp])′ vec([λ0 ... λq])′

]′
(42)

and with a total of nA = n(n−1)
2 parameters in the recursive A matrix and (i − 1) parameters

in the ith row. Additionally, equation i contains np parameters in the B matrices each qr

parameters in the λs. In total there are nB = n2p and nλ = nqr parameters in the B’s λs.
However, these parameters are subject to restrictions such that the number of free elements
in β in equation i is denoted ki. Let the total number of free parameters be K = ∑n

i=1 ki.
Since only the monetary policy equation is restricted and only the λs in this equation
contain non-zero elements, ki equals the total number of parameters per equation for the
first two equations. Thus, we have ki = np for i < 3. Furthermore, k3 = 1 because the
only free element on lagged variables in the third equation is the interest rate smoothing
parameter. Hence, the total number of free parameters is Kβ = nA + K and Rc,β can be
written as follows

Rc,β

n(np+ (n−1)
2 +qr)×Kβ

=


0nA×K

RA,β

n(np+ (n−1)
2 +qr)×nA

RB,β

0nλ×K

 (43)

RB,β
n2p×K

=


Inp 0np×k2 0np×k3

0np×k1 Inp 0np×k3

0np×k1 0np×k2 RB,ρ
np×1

 (44)

The only non-zero element in RB,ρ
np×1

is a one in column n. The only linear restriction concerns

the monetary policy reaction coefficient to inflation ϕπ. ϕπ appears in A as well as in the
B’s ans λ’s. Therefore

RA,β

n(np+ (n−1)
2 +qr)×nA

=


InA−1

0n2p×nA
Rϕπ ,β

0nqr×nA


with the column vector o Rϕπ ,β of size n(np + (n−1)

2 + qr) × 1. Rϕπ ,β has 0.25 at positions
nA and nA + k1 + k2 + 2 + (j − 1)n for j = 1, .., p − 1 for the contemporaneous and lagged
reaction to the inflation gap (i.e. 4-period average), at positions nA + K + iπP + (j − 1)r
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for the reaction to the 4-period average of πP and, finally, −1 at position nA + K + r for
the reaction to π⋆

t , where π⋆
t is ordered last within the trends τ).

ϕπ, which is part of the coefficient vector β, also appears in the law of motion for τ . Due

to the upper triangular structure of Ot it hold that O−1
t Ft =

1 −ϕπδt

0 1

 1 − ϕπδt ϕπδt

0 1

 =1 − ϕπδt 0
0 1

 so the law of motion can be rewritten as

O−1
t τt = τt−1 + Jtet + ut

τt = −(Ot − I)τt−1 + Jtet + ut

For deriving the posterior of β rewrite the law of motion for the trends as

τ = Xτ (Rτ,ββ + rτ,β) + (It ⊗ J)e + (IT ⊗ O)u

with Xτ = [x′
τ,1, ..., x′

τ,T ]

and xτ,t = I2 ⊗ [τ ′
t , τ ′

t−1]

The full conditional posterior density of β denoted p(β| y, τ, θ−β) is, thus, obtained by

p(β| y, τ, θ−β) ∝ p(c, τ | β, θ−β)p(β)

= p(c | τ, β, θ−β)p(τ |β, θ−β)p(β).

I proceed by first deriving the marginal distribution of τ , denoted p(τ |β, θ−β), and then
the conditional distribution of c, denoted p(c | τ, β, θ−β), from joint distribution of τ and c.
The joint distribution of c and τ is given byτ

c

 ∼ N

Xτ (Rτ,ββ + rτ,β)
XcRc,ββ

 ,

 Στ Στ,c̃

Στ,c̃ Σc̃


with Στ = OΩO′ + JΣJ ′

Σc̃ = Σ

Στ,c̃ = JΣ

Therefore, the marginal distribution of τ is

τ ∼ N (Xτ (Rτ,ββ + rτ,β), Στ ) .
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Applying the formulas for conditional normal distributions, the distribution of c conditional
on τ is found as

c | τ, θ ∼ N
(
Xββ + mc,β, K−1

c|τ

)
with Xβ = XcRc − BXτ Rτ

mc,β = B(τ − Xτ rτ,β)

B = Σ′
τ,c̃Σ−1

τ

K−1
c|τ = Σc̃ − Σ′

τ,c̃Σ−1
τ Στ,c̃

= P

Combining the densities with the with the normal prior β ∼ N(β0, Vβ) via Bayes’ rule yields
the following posterior:

β| y, τ, θ−β ∼ N(β̂, K−1
β )

with Kβ = V −1
β + X ′

βKc|τ Xβ + (Xτ Rτ,β)′Kτ Xτ Rτ,β

and β̂ = K−1
β

(
V −1

β β0 + X ′
βKc|τ (c − mc,β) + (Xτ Rτ,β)′Kτ (τ − Xτ rτ,β)

) (45)

4. Sampling δ

The learning rate δt appears only in the law of motion for the perceived target. One
complication arises because δt > 0 for each regime. To account for this inequality restriction,
the parameter can be sampled with a Griddy Gibbs step. The Griddy Gibbs step requires a
closed interval. Therefore, to apply it to the sampling of δt, I implement an upperbound
δt < δub that is large enough that it does not constrain the estimate for δ in the empirical
applcation. The Griddy Gibbs step also requires the full conditional posterior of δt. To that
end, rewrite the law of motion for πP

t

πP
t = (1 − δtϕπ)πP

t−1 + δtϕππ⋆
t − δtε

MP
t + εP

t

from (6) as πP
t = Xδ(Rδδ + rδ) + εP

t

with Xδ =
[
[πP

0 , πP
[1:T −1

′]′, π⋆, εMP
t

]
where πP

[1:T −1] are the elements of πP from t = 1 to t = T −1. The vectors Rδ = [−ϕπ, ϕπ, −1]′

and rδ = [1, 0, 0]′ account for the linear restrictions on δt. The conditional likelihood implied
by this equation is πP |τ, θ−δ ∼ N(Xδ(Rδδ + rδ), σ2

P )). The posterior is obtained by mul-
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tiplying this density with the beta prior distribution. The resulting conditional posterior
has bounded support. To generate a draw of δ from this distribution, the density is first
evaluated on a fine grid for values of δ. A draw is then generated with the inverse-transform
method.

5. Sampling the shock variances
Since the inverse Gamma priors for the variances are conjugate, it is straight forward
to sample them from their full conditional distributions. Conditional on the τ and all
parameters except for the variances, the errors are obtained via the model relations. For
simplicity denote all shocks ε = [εg, επ, εMP , εP , ε⋆]. Then, the ith for i = g, π, MP, P, ⋆

shock in regime m = 1, .., M is denoted εi,m. The corresponding prior for each σ2
i,m is

σ2
i,m ∼ IG (νi, Si). Note that the priors are not regime specific. The full conditional

posterior is obtained from standard conjugate results:

σ2
i,m|τ, θ−σ2

i,m
∼ IG

(
Tm

2 + νi, Si + 0.5ε′
i,mεi,m

)

where Tm is the number of observations in regime m. All variances are sampled individually
from their posteriors consecutively.

6. Sampling the initial values τ0

The initial values for the states τ0 appear in two places in the model: In the observation
equation and in the law of motion for the first τ at t = 1, denoted τ1. Therefore, the full
conditional posterior is given by:

p(τ0| y, τ, θ−τ0) ∝ p(y| τ, θ)p(τ1 |θ)p(τ0)

where θ−τ0 collects all model parameters except the initial states τ[0:1−q]. Note that in the
density p(y| τ, θ) up to q pre-sample values for τ will appear through via the Taylor rule. For
sampling τ0, I make a simplifying assumption that all values in further pre-sample periods
are equal to the value at t = 0, i.e. τ−s = τ0 for s ≥ 1. Derivation of p(y| τ, θ) follows from
the observation equation where c was inserted

y = γy + γτ + H−1
A,βγc + (Γ + H−1

A,βΛ)τ + H−1
A,βe. (46)
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Redefine the following expressions

γc = γc,τ0τ0 =






λ1 λ2 . . . λq−1 λq

λ2 λ3 . . . λq 0
... ...

λq 0 . . . 0




1r×r

1r×r

...
1r×r





′

0r×(T −q)n



′

τ0 (47)

γτ = γτ,τ0τ0 = [Γ′
1, 0r×n(T −1)]′τ0 (48)

ατ = [F ′, 0r×n(T −1)]′τ0 (49)

and factoring out τ0 gives

y = γy +
(
γτ,τ0 + H−1

A,βγc,τ0

)
τ0 +

(
Γ + H−1

A,βΛ
)

τ + H−1
A,βe.

Using this reformulation in the conditional distribution in Equation (??) implies following
conditional likelihood

y | τ0, τ, θ ∼ N(my,τ0 + Xy0τ0, K−1
y|τ )

with my,τ0 = γy + (Γ + H−1
A,βΛ + H−1

A,βB)τ = γy + Xyτ τ

and Xy,τ0 = γτ,τ0 + H−1
A,β(γc,τ0 − B[F ′, 0r×n(T −1)]′)

(50)

Additionally, the initial values appear in the of motion for τt at t = 1:

τ1 = F1τ0 + J1e1 + O1u1 (51)

which implies the distribution (marginal of y) τ1|θ ∼ N(F1τ0, K−1
τ1 ) with precision matrix

Kτ1 = (J1Σ1J)′
1 + O1Ω1O

′
1)−1. Combining these two densities with a normal prior τ0 ∼

N(a0, B0) yields the following conditional posterior:

τ0 | y, τ, θ−τ0 ∼ N(τ̂0, K−1
τ0 )

with Kτ0 = B−1
0 + F ′Kτ1F + (HA,βXy0)′P −1

τ HA,βXy0

and τ̂0 = P −1
τ0

(
B−1

0 a0 + F ′Kτ1τ1 + (HA,βXy0)′P −1HA,β(y − my,τ0)
)

= P −1
τ0

(
B−1

0 a0 + F ′Kτ1τ1 + (HA,βXy0)′P −1HA,β(y − γy − (Γ + H−1
A,βΛ + H−1

A,βB)τ)
)

= P −1
τ0

(
B−1

0 a0 + F ′Kτ1τ1 + (HA,βXy0)′P −1 [HA,β(y − γy − Γτ) − (Λ + B)τ ]
)

(52)
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