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Abstract

We study business cycles with cyclical returns to scale. Contrary to tightly parameterized production
functions (Cobb-Douglas and Constant Elasticity of Substitution), we empirically identify strong
input complementarity that leads to procyclical returns to scale. We therefore propose a flexible
translog production function that allows complementarity-induced procyclical returns to scale, and
we integrate this function into a standard medium-scale dynamic stochastic general equilibrium
(DSGE) model. The estimated model with the procyclical returns to scale (i) features procyclical
price markups, (ii) better matches the cyclicality of factor shares, and (iii) decreases by nearly half
the contribution of markup shocks to output fluctuations.
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1 Introduction

Standard business cycle models make strong a priori structural assumptions on the shape of the

production function. The most widely used production function in macroeconomics is the Cobb-

Douglas production function. Despite its convenient tractable features, this production function

imposes an excessively restrictive structure on how firms substitute their inputs (elasticity of

substitution), the productivity of each input (marginal product of input), and the productivity of all

inputs together (returns to scale). This production function was often justified by the Kaldor (1957)

growth facts, but the recent decline in the labor share (e.g., Karabarbounis and Neiman 2014) calls

this justification into question. Many researchers acknowledge this limitation and have started to

adopt a more general constant elasticity of substitution (CES) production function, but even this

production function has important restrictions: one single constant parameter governs the elasticity

of substitution among inputs, and returns to scale is typically assumed to be constant and fixed over

time.

We empirically assess the plausibility of these restrictions by imposing and estimating a flexible

translog production function (Christensen et al. 1973, 1975). Compared to a CES, the translog is

another generalization of a Cobb-Douglas production function that allows more flexibility in input

substitution, the marginal product of input, and returns to scale. Similar to the non-parametric

production function estimation technique developed in the industrial organization literature (Gandhi

et al. 2020), we utilize the first-order condition of firms to estimate the marginal product of input

and to assess the variability in returns to scale. We employ standard panel data techniques with

detailed industry-level panel data for the estimation.

Through our estimation, we find strong complementarity between labor and energy that leads

to time-varying procyclical returns to scale. The idea of time-varying returns to scale is striking

yet simple. It reflects the idea that when firms employ more factors during boom periods, there

are synergies among these factors that lead to the larger aggregate marginal product of inputs and

returns to scale compared to periods of recession. The procyclical movement in returns to scale also

induces a procyclical wedge between the marginal product of input and the real input price, which is

the price markup in standard macroeconomic models.

Motivated by our empirical evidence, we estimate a medium-scale dynamic stochastic general

equilibrium (DSGE) model as in Smets and Wouters (2007), incorporating a flexible translog

production function. Given the empirical importance of complementarity between labor and energy

in generating procyclical returns to scale, we include energy input and allow a translog substitution

parameter between labor and energy. Alongside the model with the translog production function, we

estimate two other models with nested production functions: (i) a standard two-factor Cobb-Douglas

production function with labor and capital which was originally used by Smets and Wouters (2007)

and (ii) a three-factor Cobb-Douglas production function that additionally includes energy input.
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The estimated model with the translog production function generates procyclical returns to

scale and procyclical price markups, consistent with our empirical findings. We confirm significant

complementarity between labor and energy, which induces procyclical returns to scale. In turn, the

procyclical returns to scale leads to procyclical price markups in the otherwise standard DSGE model;

the larger returns to scale in expansion decreases marginal costs and allows price markups to rise.

To the contrary, the models with the Cobb-Douglas production functions—regardless of including or

excluding energy input—generate countercyclical returns to scale and acyclical price markups, which

are inconsistent with our empirical findings.1

Furthermore, we document that the model with a translog structure better matches the empirical

cyclicality of input shares compared to other models with Cobb-Douglas production functions. In

the data, labor shares are countercyclical, and energy shares are procyclical. However, under the

Cobb-Douglas production function with fixed costs, all input shares are perfectly positively correlated

and cannot match different cyclicality of input shares. We break this tight link between input shares

and generate data-consistent labor and energy share cyclicality with the flexible translog production

function. At the same time, our model generates procyclical profit shares, as in Smets and Wouters

(2007) but for a different reason; our model relies on the procyclical price markups, whereas the their

model relies on the countercyclical returns to scale.

Finally, in our model with the procyclical returns to scale, the contributions of price and wage

markup shocks to output fluctuations are substantially smaller than those in the models with the

Cobb-Douglas production function. As in Smets and Wouters (2007), we conduct the forecast

error variance decomposition exercise for each of the three different models with the corresponding

production functions. Although integrating the energy input into the conventional Cobb-Douglas

production function has a negligible effect on the decomposition results, adding the translog structure

with the procyclical returns to scale reduces nearly half of the contribution of the markup shocks on

output. The comparisons of the Bayesian estimation results and the impulse responses to price and

wage markup shocks across the different models reveal the importance of procyclical returns to scale

in suppressing the markup shocks. The procyclical returns to scale changes Calvo parameters and

amplifies responses of real variables, which in turn reduce the residual variations that are previously

attributed to the price and wage markup shocks.

To the best of our knowledge, this paper is the first to investigate the role of procyclical returns

to scale in a business cycle framework. Our paper is closely related to previous studies that go beyond

constant returns to scale in business cycle analysis (Benhabib and Farmer 1994, 1996; Schmitt-Grohé

1We focus on the unconditional returns to scale and markup cyclicality when comparing the model predictions with
the data. Although the Smets and Wouters (2007) model generates countercyclical markups conditional on demand
shocks, it features acyclical markups unconditionally. In addition, the conventional model features countercyclical
returns to scale because of the fixed cost of production. In our model with translog production, however, the
countercyclical effects of the fixed costs on returns to scale are dominated by the procyclical effects of the input
complementarity. See Section 3.3.1 for details.
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2000), and a growing literature that generalizes an aggregate Cobb-Douglas production function (e.g.,

Antras (2004); Chrinko (2008); Karabarbounis and Neiman (2014); Cantore et al. (2015)).2 Most

previous studies reject a Cobb-Douglas production function and find complementarity among inputs

beyond what Cobb-Douglas technology implies, similar to our analysis.3 To integrate the general

production function into the DSGE framework, we normalize the translog production function so that

it preserves dimensionless parameters, as pioneered by De Jong (1967) and first incorporated in the

DSGE framework by Cantore and Levine (2012) and Cantore et al. (2014). Regarding time-varying

parameters, Koh and Santaeulàlia-Llopis (2017) propose a CES production function that features

the time-varying elasticity of substitution. We complement previous studies by proposing a translog

production function with the time-varying returns to scale.

The procyclical returns to scale speaks to the considerable literature that studies the countercycli-

cality of the price markup, which is a first-order building block in many sub-fields of macroeconomics.4

Despite its importance, existing empirical evidence on price markup cyclicality is mixed.5 This

paper finds that integrating procyclical returns to scale leads to unconditional procyclical price

markups in the standard medium-scale DSGE model. Our emphasis on the procyclical returns to

scale differs from previous papers that emphasize other sources of procyclical price markup, such as

wage rigidity (Nekarda and Ramey 2020), time-varying demand elasticity (Stroebel and Vavra 2019),

and endogenous assortment (Anderson et al. 2020). The resulting procyclical price markup, in turn,

decreases the contributions of markup shocks to output fluctuations compared to what is reported

in Smets and Wouters (2007). These results imply that using a translog production function may

alleviate the concerns raised in previous studies about the excessive importance of the markup shocks

in new Keynesian models (see, e.g., Chari et al., 2009; Justiniano et al., 2010).

The remainder of this paper is structured as follows. Section 2 presents the industry-level data

2There are important studies that micro-found the aggregate production function with heterogeneous industry or
firm models (e.g., Atalay 2017; Raval 2019; Oberfield and Raval 2021). In particular, Baqaee and Farhi (2021) show
that the aggregate returns to scale can vary across time due to the change in allocative efficiency. Our paper instead
extends the production function itself with the translog structure and infers the aggregate implications of using this
more flexible production function.

3One notable exception is Karabarbounis and Neiman (2014), who find that labor and capital are substitutes;
however, in estimating their parameters, they study long-term trends rather than business cycle movements. See, e.g.,
Hassler et al. (2019) for a discussion of different substitution patterns across short-run and long-run horizons among
energy and other inputs.

4In the context of models of nominal rigidity, countercyclical markups conditional on demand changes are necessary
to explain both procyclical wages and countercyclical unemployment (Rotemberg and Woodford 1991, Rotemberg 2013).
In the study of monetary policy, many New Keynesian models suggest that central banks should target constant average
markup for price stability (Goodfriend and King 1997). In the scholarship on price dynamics, countercyclical markups
conditional on financial distortion explain missing disinflation during the Great Recession (Gilchrist et al. 2017). Ravn
et al. (2006) find that introduction of deep habit formation substantially affects cyclicality of price-markups. Finally,
Bils et al. (2018) find that unconditional countercyclical markups explain at least half of the cyclicality in the labor
wedge.

5Some studies find that price markups are countercyclical, and other studies find that price markups are procyclical
or acyclical. See, e.g., Bils (1987), Rotemberg and Woodford (1991), Rotemberg and Woodford (1999), Gali et al.
(2007), Bils et al. (2013), Bils et al. (2018) for countercyclicality and Hall (2013), Nekarda and Ramey (2020), Stroebel
and Vavra (2019), and Anderson et al. (2020) for procyclicality.
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and the estimation results with a translog production function. Section 3 presents and estimates a

medium-scale DSGE model with the translog production function and discusses the business cycle

implications. Section 4 concludes.

2 Empirical Analysis

This section estimates production function coefficients under the translog production functional form

assumption. We present the data used in this analysis and our empirical framework, which allows us

to recover the marginal product of input, along with the estimation results. Then, we discuss the

variability in returns to scale.

2.1 Data

This paper uses annual six-digit North American Industry Classification System (NAICS) industry-

level data from the NBER-CES Manufacturing Industries Database. This database records detailed

information on 473 manufacturing industries from 1958 to 2009. The information is compiled from

the Annual Survey of Manufacturers and the Census of Manufacturers. The variables in this database

include gross output (value of shipment), value added, and 5-factor inputs (production worker,

non-production worker, capital, material, and energy) for each industry over time. These data

also include industry-specific deflators for output, material, energy, investment, and wage bills for

production workers and total employees. We report our summary statistics in Appendix A, and a

more detailed explanation of this database can be found in Bartelsman et al. (2000).

The greatest advantage of the NBER-CES data over aggregate data is that they allow us to

exploit both time-series and cross-sectional variations and corresponding panel data techniques to

estimate production function parameters. A large variation in the data is especially important for

our analysis, which seeks to relax strong functional form assumptions. The advantage comes with the

cost, as our estimates come from the manufacturing sectors. In Appendix B.8, we use the Integrated

Industry-Level Production Account (KLEMS) data that cover all sectors in the US economy for a

shorter time period as a robustness check and confirm the strong complementarity between labor

and energy input. The complementarity results are similar when we re-estimate the complementarity

parameter with our DSGE model by using aggregate data that cover the entire US economy in

Section 3.2.
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2.2 Empirical Framework and Estimation Results

Estimaing a translog production function is challenging because it has an excessive number of

parameters.6 For example, for the five inputs available in the NBER-CES data, we must estimate

twenty parameters with a translog production function, many more than the five parameters in a

Cobb-Douglas production function and the six parameters in a CES production function. Even with

the detailed industry-level data for many years, it is difficult to estimate all twenty parameters in the

translog production function because of multicollinearity.7

To overcome the challenge of estimating many parameters, we exploit a firm’s first-order

condition in the spirit of the non-parametric identification method developed in the IO literature

(Gandhi et al. 2020).8 Firms’ optimization conditions generate a relationship between the marginal

product of each input and its price. Using this relationship and a panel data estimation technique,

we recover the production part associated with the marginal product of input, which has significantly

fewer parameters.

In estimating the first-order condition, we address potential estimation concerns by choosing

the following three specifications. First, we use energy input to tightly link the marginal product

of input (energy) from the real input (energy) price in the first-order condition. Second, we apply

log-linearization and demean the variables to make the equations linear and to address potential

endogeneity concerns. Third, we use lagged input prices as instrumental variables to address non-

classical measurement errors and to rule out other remaining endogeneity issues. We conduct various

robustness checks to address other potential concerns and report the results in Appendix B.

Estimation Framework For simplicity, consider the following translog production function with

only two inputs, labor and capital:

ln(Y ) = εa + βl ln(L) + βk ln(K)︸ ︷︷ ︸
Cobb-Douglas

+βlk ln(L) ln(K) +
βll
2

ln(L) ln(L) +
βkk
2

ln(K) ln(K)︸ ︷︷ ︸
second-order terms

, (2.1)

where Y is output, L is labor, K is capital, and εa is the log of total factor productivity. The

first part of the production function is a conventional Cobb-Douglas function, which is a first-

order approximation of a general production function. A translog production function extends this

6For example, Syverson (2011) wrote that “many researchers also use the translog form... is more flexible, though
more demanding of the data”. It is also difficult to calibrate parameters given that there is no previous work that
integrates a translog production function into the business cycle model.

7For example, running an OLS regression of log output on 20 inputs with industry and time fixed effects makes
more than half of the parameters statistically insignificant at the conventional level, including the labor input. Aside
from other issues related to the estimation, such as the conditional mean independence assumption, the multicollinearity
of inputs is likely to make the estimates statistically insignificant.

8The other way to proceed is to impose more structure in the estimation. In Section 3.2, we utilize the full structure
of the business cycle model, estimate the key parameters, and confirm the industry-level empirical results.
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approximation of a general production function to the second order. Assuming βlk = 0, βll = 0, and

βkk = 0 recovers a Cobb-Douglas production function.

By generalizing Equation (2.1) to five different inputs available in the NBER-CES data, we

have:

ln(Y ) = εa +
∑
i

βi ln(V i)︸ ︷︷ ︸
Cobb-Douglas

+
∑
i

∑
k

βik
2

ln(V i) ln(V k)︸ ︷︷ ︸
second-order terms

with βik = βki,
(2.2)

where V denotes one of five different inputs indexed by i and k, namely, energy (e), production

worker, non-production worker, capital, and material. Here, we allow for a flexible substitution

structure among the five inputs. In contrast, conventional macroeconomic models use either two

inputs (labor and capital) or three inputs (labor, capital, and material) with implicitly imposed

restrictions on the substitution pattern among these inputs.

The simplest method to recover the parameters in Equation (2.2) is to regress log output on log

inputs and treat the residual as the unobserved productivity. This approach has two key problems for

our purpose. First, as we have already emphasized, it is extremely challenging to estimate all twenty

parameters in this specification even with the rich variation available in the panel data. Second, as

widely documented in the productivity estimation literature (e.g., Hall 1988; Evans 1992; Fernald

2014), flexible inputs are likely to be correlated with productivity, which generates inconsistent

estimates of the parameters. For example, with the industry-level data, productive industries are

likely to use more inputs relative to other industries.

To avoid these two concerns, we exploit a firm’s first-order condition. Consider a firm’s first-order

condition with respect to an input V i:

P i

P︸︷︷︸
real input price

= τ i

[
βi +

∑
k

βik ln(V k)

]
Y

V i︸ ︷︷ ︸
marginal product of input

, (2.3)

where P i is the nominal price of the input V i, and τ i is the wedge or gap between the real input

price P i/P and the marginal product of input V i. The input-specific wedge τ i allows Equation (2.3)

to be consistent with a large class of models that deviates from the frictionless economy. Without

frictions, the marginal product of input equals the real input price, and τ i could be treated as a

classical measurement error or the ex-post productivity shock as in Gandhi et al. (2020). Once

researchers allow frictions, such as input adjustment cost (Hall 2004), imperfect competition in the

output (Rotemberg and Woodford 1999) and input (Berger et al. 2019) markets, and financial friction

(Jermann and Quadrini 2012; Arellano et al. 2019; Bigio and La’O 2020), such frictions generate a

wedge between the marginal product of input and the real input price. This wedge is part of the
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labor wedge, which is the difference between the marginal product of labor and the marginal rate of

substitution (see, e.g., Chari et al. 2007; Karabarbounis 2014; Bils et al. 2018). Note that assuming

βik = 0 for all i = 1, ..., 5 recovers the conventional first-order condition under the Cobb-Douglas

production function: P i

P = τ iβi
Y
V i

.

To avoid the extra structural assumptions required to measure real output and the output price

index (see, e.g., Hottman et al. 2016), we rewrite Equation (2.3) as follows:

si = τ i

[
βi +

∑
k

βik ln(V k)

]
, (2.4)

where si = P iV i

PY is the input expenditure share out of total sales for the input V i. The right-hand

side is the wedge τ i multiplied by an output elasticity with respect to the input V i, which is a

unit-free measure of the marginal product of input. The special cases of Equation (2.4) are used

to calibrate parameters or inform price markup cyclicality in the previous macroeconomics models.

Under the frictionless economy with Cobb-Douglas technology, an exponent of each input in the

production function equals the corresponding input share: si = βi. This restriction is often used

to recover the Cobb-Douglas production function parameters from the observed income shares. In

models of imperfect competition with the Cobb-Douglas production function, the wedge is interpreted

as the inverse of the price-cost markup, and the inverse of input share identifies the markup up to a

constant: si = βi
1

markup . This restriction allows researchers to inform on markup behavior with the

input share.

To input the data into Equation (2.4), we log-linearize the equation around the steady state

and allow the input share, wedge, and all inputs to vary across industry and time, which are indexed

by industry j and time t, respectively:

ŝijt =
∑
k

δikV̂
k
jt + τ̂ ijt, (2.5)

where δik ≡ βik

(
τ̄ i

s̄i

)
, x̂ denotes the log-deviation from the steady state value, and x̄ denotes the

steady state value for any variable x. The log-linearization eases the estimation by making the

equation linear in parameters and is consistent with the DSGE analysis in Section 3.1.

We estimate Equation (2.5) in the panel data by double-demeaning across industry and time,

which eliminates both the industry-specific and time-specific components. The empirical counterpart

of Equation (2.5) is:
ˆ̂sijt =

∑
k

δek
ˆ̂V k
jt + ˆ̂τ ijt, (2.6)

where ˆ̂xjt = lnxjt− 1
J

∑J
j=1 lnxjt−

[
1
T

∑T
t=1

(
lnxjt − 1

J

∑J
j=1 lnxjt

)]
for any variable x. Technically,

the double-demeaning is identical to allowing the industry and time fixed effects; this method
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eliminates both the industry-specific and time-specific components, including the aggregate trend.

Note that although we demean the variables and remove the aggregate components from all variables,

our parameters of interest, δik, match the aggregate parameters. Our benchmark estimation does

not weight observations, but weighting different industries to improve the match with the aggregate

moments does not change the main empirical results, as shown in Appendix B.6.

Since the input share sijt and all five inputs V k
jt are observed in the data, Equation (2.6) can be

estimated by regressing the input share on all five inputs and treating the wedge ˆ̂τ ijt as a residual.

However, there are two major problems in estimating Equation (2.5) directly for every input i. First,

the wedge term τ ijt may contain industry-time-varying components, such as an adjustment cost,

that are correlated with inputs and generate a confounding relationship. For example, consider

any positive aggregate shock that raises inputs in the production. If an industry j faces higher

input adjustment costs relative to other industries, then industry j is likely to utilize fewer inputs

relative to other industries.9 Second, since the input share si contains the input V i, there is a

positive mechanical correlation between the input share si ≡ V i × P i

PY and the input V i when V i

has a measurement error. See, for example, Berman et al. (2015) for the formal derivation of such a

mechanical correlation.

To ease the first estimation concern, we choose an energy input as a choice variable and focus

on estimating the energy efficiency (output elasticity with respect to energy). As a result of using

energy input, there are fewer components in the wedge that can be correlated with V k, particularly

related to the adjustment cost. The energy input and the intermediates in general are known to

have smaller adjustment costs relative to other inputs and are typically assumed away (e.g., Basu

1995; Bils et al. 2018). In addition, other potential concerns related to the monopsony power or

heterogeneous input quality are mitigated when we focus on the energy shares.10

In addition to using the energy input, we utilize lagged double-demeaned input prices as

instrumental variables to avoid the mechanical correlation and to relax concerns related to the

remaining wedge term. As previously discussed, the input share and the input usage generate a

positive mechanical correlation when the variables are measured with error. Unless a researcher has

unusually detailed micro-level data, the input variables in any data have measurement error problems.

For example, it is difficult to allow for bulk discounts or quality differences in material inputs or to

9Note that this problem resembles the issue in estimating Equation (2.2), which arises from the correlation between
productivity and inputs.

10Regarding the monopsony power, there are fewer concerns on how firms exercise market power in the markets for
energy inputs, and such friction would not appear as a wedge term. Previous studies have documented such frictions in
labor input (e.g., Berger et al. 2019). In contrast, energy production in the U.S. has faced heavy regulation and other
restrictions by Congress, such as tax preferences, spending subsidies, and environmental regulations. As a result, it is
very unlikely that firms exert market power in their energy inputs. Regarding the heterogeneous input quality, energy
input is likely to have homogeneous quality across industries relative to other inputs. Since input prices partially
reflect the quality of input, higher input prices and input shares might reflect a higher quality of inputs, which will
appear as a wedge in Equation (2.5). See, for example, De Loecker et al. (2016) for the structural treatment of input
quality differences in the IO literature.
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control education, experience, and specific skills of the labor input. Capital input is known to have

a large measurement error even at the firm level (Collard-Wexler and De Loecker 2020), and the

perpetual inventory method in the NBER-CES data requires an assumption on initial capital stock.

Instrumenting inputs with the lagged input prices, which does not involve input usage, solves the

mechanical correlation problem that arises from these measurement errors.

Regarding the remaining energy wedge ˆ̂τ ejt, even after eliminating time- and industry-specific

terms, there might be industry-time-varying wedge components that are correlated with inputs. By

using the lagged input prices as instruments, we assume that the idiosyncratic ˆ̂τ ejt is not correlated

with the idiosyncratic component of the predetermined input prices. If the idiosyncratic ˆ̂τ ejt is serially

uncorrelated, then the lagged double-demeaned input prices satisfy the exogeneity assumption since

they do not affect the current energy wedge. At the same time, the instrumental variables satisfy the

relevance condition if they are autocorrelated and are correlated with input usage; Appendix A shows

that these instruments are highly correlated with ˆ̂V i
jt for all i. In Appendix B.1, we also use two- and

three-year lagged double-demeaned input prices and allow the correlation of ˆ̂τ ejt with idiosyncratic

lagged input prices up to one year and find that the main empirical results remain robust.

In Appendices B.2 and B.4, we additionally conduct robustness exercises by putting specific

interpretations in ˆ̂τ ejt based on previous macroeconomic models and find that controlling such elements

in ˆ̂τ ejt has limited effects on the estimation results. For example, consider a multi-industry business

cycle model with heterogeneous price rigidity across industries (e.g., Nakamura and Steinsson 2010).

In this case, the energy wedge is price markup and can vary across time and industry. Moreover, if

industries that face larger price rigidity alter their future markups (inverse wedge) and affect their

input prices by changing the input usage relative to other industries, the exogeneity assumption

of instruments could be violated. To address such a concern, we control the industry-time-varying

measures of market power following previous studies, such as the price-cost markups (De Loecker

et al. 2020) and the Lerner index (Gutierrez and Philippon 2017). We also include the measures

of price rigidity and the inventory-to-sales ratio, which are known to be closely related to price

markup, and measures of financial friction, adjustment costs, and fixed costs in production. Our main

empirical results do not change with these alternative specifications, likely because double-demeaning

at the detailed industry-time-level already eliminates most of the variations in the energy wedge that

originates from the predictions of previous models.

Equation (2.6) clearly illustrates which variation in the data identifies the substitution pattern

among energy and other inputs. Suppose that the coefficient of labor in Equation (2.6) is positive;

the energy share increases with an increase in labor input, holding other inputs constant. Under

the translog technology, such an increase in the share of energy is interpreted to be a result of an

increase in energy efficiency that arises from an increase in labor input. In this case, the energy and

labor inputs are complements, and the coefficient δek captures the strength of the complementarity.
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Note that a large magnitude of δek translates to a much smaller magnitude of βek = δek
s̄e

τ̄e due to the

small energy share s̄e in the data.

Since our empirical strategy is heavily motivated by the productivity estimation literature on

industrial organizations, it is useful to compare our estimation technique with those in the literature.

One key difference in our approach is that we rely on the representative production function, as in a

typical DSGE model. Since the goal of our exercise is to discuss the aggregate parameters, we do not

think that this assumption is particularly worrisome. Besides, in Section 3.1, we show that a model

counterpart of the industry-level energy share (2.5) can be derived by aggregating the corresponding

firm-level first-order condition with an assumption of the firm-level translog production function.

Similarly, Appendix C.2 illustrates the representative translog production function by explicitly

aggregating the firm-level translog production functions. Within the structure of our model, the

interpretations of the production parameters are the same and the estimation assumptions are similar

across different levels of aggregations.

Taking the industry-level production function as a given, our use of the first-order condition

follows Gandhi et al. (2020), who estimate the first-order condition to allow a flexible substitution

pattern in a production function. One advantage of using the industry-level data is the availability

of the entity-level input price measures, which are rarely available in more micro-level data. We

use input price deflators as instrumental variables to alleviate the mechanical correlation problems

and the endogeneity concerns. In addition, we use them to measure the quantity of inputs at the

entity-level and therefore avoid input price bias in using the product- or firm-level data (see, e.g.,

De Loecker and Goldberg 2014). Double-demeaning, instrumenting, and controlling variables to

address the potential endogeneity of the energy wedge in estimating the first-order condition is

similar to the methods that address the endogeneity of the total factor productivity in estimating

the production function. Our use of instrumental variables is similar to the method of Doraszelski

and Jaumandreu (2013), who use the first-order conditions and the lagged input prices to address

the issue of simultaneity. The double-demeaning with instrumental variable approach resembles the

dynamic panel data method (e.g., Arellano and Bond 1991; Blundell and Bond 1998), and controlling

the potential energy wedge in our robustness exercise is similar to the control function approach (e.g.,

Olley and Pakes 1996; Levinsohn and Petrin 2003; Ackerberg et al. 2015). Note that for our DSGE

analyses, we separately estimate the key complementarity parameter with the Bayesian method,

which aligns with the estimate from this industry-level analysis.

Estimation Results Table 1 presents the estimated parameters in Equation (2.6). Column (1) is

based on the baseline instrumental variable estimation with all five inputs. The most economically

and statistically significant estimate is the coefficient in front of production workers, which measures

the complementarity between production workers and energy input. The estimated parameter shows
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Table 1: Estimation of Equation (2.6)

Dependent Variable: Energy Share
IV (Lagged Input Prices) OLS

(1) (2) (3) (4) (5) (6)

Energy -0.557** -0.399** -0.603*** 0.847*** 0.842*** 0.822***
(0.230) (0.161) (0.229) (0.029) (0.029) (0.032)

Production worker 1.694*** 1.411*** 1.775*** -0.328*** -0.326*** -0.467***
(0.446) (0.312) (0.457) (0.029) (0.030) (0.032)

Non-production worker -0.593* -0.454* -0.560* -0.119*** -0.124*** -0.224***
(0.325) (0.264) (0.335) (0.022) (0.023) (0.025)

Material 0.167 0.321** -0.411*** -0.421***
(0.218) (0.152) (0.025) (0.026)

Capital 0.507 0.774** -0.031 -0.243***
(0.436) (0.339) (0.021) (0.027)

J-test 6.04 6.76 5.8
(p-value) .3 .34 .45
Observations 23220 23220 23220 23220 23220 23220

Note. Columns (1), (2) and (3) show the regression result with instrumental variables, and (4), (5), and (6) show the
ordinary least square (OLS) result. For the instrumental variable analyses, we use both one-year lagged and two-year
lagged input prices. For the implementation, we use the GMM specification with the weighting matrix that accounts
for the arbitrary correlation among observations within sectors. Five different inputs are used in this regression,
specifically, energy, material excluding energy, non-production workers, production workers, and capital. All inputs,
lagged input prices, and the energy input share are logged and double-demeaned across industries and time. The
standard errors in parentheses are clustered at the NAICS industry level. J-test and the p-value refer to Hansen’s
J-statistics and p-value for overidentifying restriction, respectively. *, **, and *** indicate significance at the 0.1, 0.05,
and 0.01 levels, respectively.

that an increase in production workers of one percent leads to an increase in the energy share of

approximately 1.7 percent. The coefficient in front of energy is negative, which shows that the

energy input becomes less efficient as an economy uses more energy, thereby capturing the law

of diminishing returns for energy. Non-production workers are a substitute, but the coefficient is

marginally statistically significant. The J-test of Hansen (1982) does not statistically reject the

validity of our instruments at the conventional level.

Since the coefficients of capital and material are not statistically significant in the baseline

specification of column (1), we exclude each input and re-do the analysis in columns (2) and (3). We

find that including these inputs separately leads to positive and statistically significant estimates,

indicating that material and capital may be a complement to the energy input, like production
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workers. Given that the industry-level material and capital are highly correlated once they are

double-demeaned, it is not surprising to observe that putting both variables together does not

generate statistically significant estimates at the conventional level. Columns (4)-(6) show the OLS

results. As expected, due to the mechanical correlation that arises from the measurement errors, the

coefficient of energy input is positive, and it is difficult to make a meaningful inference.

Our results suggest a need for a more flexible production function with respect to energy

input for macroeconomic models. Many of the coefficients in Equation (2.6) are economically and

statistically different from zero, formally rejecting the Cobb-Douglas production function that requires

the energy input share to be invariant with respect to any factor input. Appendix B.5 considers a

CES production function, but the empirical results do not support this specification. In addition,

for the robustness checks, Appendix B revisits the main empirical results by considering various

other specifications, such as adjusting for the fixed costs in production, controlling more variables,

allowing the regression weights, using a smaller number of inputs, and using KLEMS data. The key

complementary between labor and energy, δel > 0, is both economically and statistically significant at

the conventional level in all the specifications; it ranges from 1.1 to 2.2 depending on the specifications,

which are largely consistent with the Bayesian estimation results in Section 3.2.

2.3 The Returns to Scale Cyclicality

This section formally defines the returns to scale of the translog production function and accesses its

cyclicality. Conceptually, returns to scale measures how much the percentage of output increases

when all inputs increase by one percent. More precisely, by deriving the local elasticity of scale

(Hanoch 1975; Epifani and Gancia 2006) for the translog production function F ({V i}; εa) in Equation

(2.2), the industry-time-specific returns to scale is expressed as follows:

rtsjt =
∑
i

[
βi +

∑
k

βik ln(V k
jt)

]
, (2.7)

where rtsjt ≡
∂ log[F ({λV ijt};εat )]

∂ log(λ) |λ=1 denotes the returns to scale, and λ reflects the proportional

changes in all inputs. Under the conventional Cobb-Douglas production function, the returns to scale

does not depend on inputs: rtsjt =
∑

i βi. Under the translog production function, however, the

returns to scale changes with the input usage. The degree of change depends on the parameter βik,

which governs the substitution pattern among inputs. If inputs are complements (substitutes), an

increase in one input raises (lowers) both the efficiency of other inputs and the returns to scale. The

returns to scale in Equation (2.7) nests the constant returns to scale (rts = 1) embedded in the CES

and the standard Cobb-Douglas production functions.

To examine the returns to scale with the estimated parameters, we follow the previous studies

on returns to scale (Hall 1990; Basu and Fernald 1997) and additionally assume that the wedge does
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not differ across different inputs: τ ijt = τjt. This assumption still allows the common components of

the wedge across different inputs, such as the price markup and fixed cost of production, and it is

consistent with the standard DSGE models presented in Section 3. Despite its consistency with the

previous work and the DSGE model, one potential concern about this assumption is the presence of

an input-specific adjustment cost that is likely to differ across different inputs. In Appendix B.3, we

explicitly integrate the input-specific adjustment cost and show that the returns to scale cyclicality

results are robust to this concern.

With the common wedge assumption, we can rewrite the returns to scale by combining Equation

(2.7) with the sum of Equation (2.4) across all input shares:

rtsjt = τ−1
jt × s

all
jt , (2.8)

where salljt ≡
∑

i s
i
jt denotes the sum of all five input expenditure shares of total sales for industry j

at time t. With an additional assumption that the wedge is the inverse price markup, one can link

the returns to scale, price markup, and profit share, as in the previous studies of Hall (1990) and

Basu and Fernald (1997): rtsjt = Markupjt × (1− Profit Sharejt).

We log-linearize Equation (2.8) to assess the cyclicality of the returns to scale:

r̂tsjt = −τ̂jt + ŝalljt , (2.9)

where ŝalljt is observed in the data and τ̂jt can be recovered as a residual of Equation (2.6) with

the estimated parameters reported in Column (1) of Table 1; we use double-demeaned variables to

recover the log-linearized variables. Due to the demeaning, our estimation strategy only identifies

the wedge up to a constant and does not shed light on the level of returns to scale. However, we can

still analyze the association between the returns to scale and the value added and infer the cyclicality

of the returns to scale.

Figure 1 presents empirical evidence that the returns to scale is procyclical, and it arises from

the procyclicality of the inverse wedge. Figure 1a shows a strong positive relationship between the

returns to scale and the value added. We interpret this result as empirical evidence that supports the

notion of the procyclical returns to scale; when industries experience larger (smaller) value added,

they preserve larger (smaller) returns to scale. Correlating each component of the returns to scale

and the value added reveals the importance of the inverse wedge in generating the procyclical returns

to scale. The scatter plot of the inverse wedge and value added in Figure 1b closely replicates the

scatter plot of the returns to scale and value added in Figure 1a, whereas the scatter plot of the

sum of input shares (1 - profit share) and value added shows the negative relationship and does not

contribute to the positive relationship plotted in Figure 1a.

The economic intuition behind Figure 1 is straightforward once we specify a structural assumption
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Figure 1: Returns to scale and its components

(a) Returns to Scale

(b) Inverse Wedge (c) Sum of Input Shares

Note. Figure 1a assesses the variability in the returns to scale, and Figures 1c and 1b show the variability in the two
components of the returns to scale, the inverse wedge and the sum of input shares. The y-axis is returns to scale, and
it decomposes into the inverse wedge and the sum of input shares; the x-axis is value added. The returns to scale is
recovered based on Equation (2.9). All the variables are in double-demeaned logged values, which shows how a 1%
change in value added affects approximately x% of the returns to scale, inverse wedge, and sum of input shares. The
slopes of the linear lines in Figures 1a, 1c, and 1b are 1, 1.05, and -.05, respectively.

that the wedge is the inverse price markup, which is consistent with the previous literature. Under this

assumption, the strong input complementarity between energy and other inputs, such as production

workers, leads to a larger increase in the marginal product of energy in expansion. As a result, the

difference between the marginal product of energy and the real energy price—the price markup or

the inverse marginal cost—becomes larger. The resulting decrease in the real marginal cost makes

the production more efficient and increases the returns to scale. The rise in profit share decreases

the economic efficiency in the expansion, but this effect is not strong enough to overturn the returns

to scale procyclicality. Our results imply that there is a tight connection between the returns to

scale cyclicality and price markup cyclicality, which we explore carefully in a standard medium-scale

DSGE model in Section 3.
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3 Macroeconomic Implications

Motivated by our empirical results, we explore the macroeconomic implications of the complementarity-

induced procyclical returns to scale. We integrate the flexible translog production function into

a standard medium-scale DSGE model (Smets and Wouters 2007). We re-estimate the model by

using a Bayesian method with aggregate time-series data and confirm the procyclical returns to

scale that arises from the complementarity between labor and energy. By comparing our benchmark

model with the standard models of Cobb-Douglas production functions, we find that the model with

the procyclical returns to scale (i) generates procyclical price markups, (ii) matches the different

cyclicality of input shares, and (iii) decreases nearly half of the contribution of price and wage markup

shocks to output fluctuation.

3.1 Model

This section describes how our model extends the DSGE model of Smets and Wouters (2007), which

is nested in our model. Our discussion in this section focuses on illustrating the key differences from

the standard model and the relationship with the empirical framework in Section 2. In particular, we

characterize the translog production function with an energy input, the corresponding changes in

the first-order conditions, and the modeling of the energy market. The other structure of the model

follows Smets and Wouters (2007) closely. There are households, labor unions, final good producers,

intermediate goods producers, the government and central bank, and global energy consumers and

suppliers in the model. The model features sticky prices, sticky wages, utilization adjustment costs,

investment adjustment costs, and consumption habits. The details of the model are relegated to

Online Appendix A.

Production function Consider the following translog production function for intermediate good

i at time t:

yt(i) = exp(εat )[k
s
t (i)]

βk [lt(i)]
βl [et(i)]

βe︸ ︷︷ ︸
Cobb-Douglas

(
lt(i)

l̄

)βel log(et/ē)(et(i)
ē

)βel log(lt/l̄)

︸ ︷︷ ︸
second-order terms

− υ︸︷︷︸
fixed costs

with βk + βl + βe = 1,

(3.1)

where kst (i) is capital services used in production, lt(i) is labor, and et(i) is energy. lt and et are

aggregate labor and energy, respectively, which individual firms take as a given when maximizing

their profit, and ē and l̄ are steady-state values of et and lt, respectively. Aggregate productivity

exp(εat ) follows an exogenous process, and υ is the fixed costs in production. The first part of the

production function has a conventional Cobb-Douglas form with constant returns to scale, and the
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second part captures the second-order terms. All variables in Equation (3.1) are expressed with

lowercase letters, which denote the detrended variables around the balanced growth path.11

We extend the standard two-factor Cobb-Douglas function with labor and capital to integrate

the core of the empirical findings. Given the economically and statistically significant estimate, which

indicates complementarity between labor and energy, we introduce an energy input et(i) and allow

the translog substitution structure between labor and energy via the substitution parameter βel in the

second-order terms. It is straightforward to see that our production function nests the three-factor

Cobb-Douglas with βel = 0 and the two-factor Cobb-Douglas used in Smets and Wouters (2007) with

βel = 0 and βe = 0. We utilize these two special cases of our general translog production functions to

emphasize how our new production function changes the traditional business cycle results.

By comparing the model’s production function (3.1) with the empirical production function

(2.2), we make two major changes to parsimoniously adapt the translog structure to the business

cycle framework. First, we propose the three-factor translog production function with labor, capital,

and energy; we neither additionally include material input with the input-output structure nor divide

labor input into production worker and non-production worker. Although adding more inputs is a

potentially interesting margin to explore, this is not necessary for the procyclical returns to scale

results and could massively complicate the already complex analyses of the medium-scale DSGE model.

Instead of adding more inputs to the model, in Appendix B.7, we redo our empirical analyses with a

smaller number of factors by excluding materials and aggregating non-production and production

workers into a single labor input. In all cases, we observe strong complementarity between labor and

energy.12 Because the empirical estimates are neither significant nor robust for the parameters other

than the labor-energy complementarity, we focus on βel and the corresponding translog structure in

the model.13 This minimal adjustment from the conventional framework highlights the role of the

translog structure while avoiding overcomplications in the theoretical investigation.

Second, we normalize the production function. We introduce the inputs into second-order

terms as a deviation from the steady-state values. This formulation carefully follows the previous

studies that integrate the generalized production function into business cycle models to make the

production function parameters dimensionless or unit-free (see, e.g., Cantore and Levine 2012;

Koh and Santaeulàlia-Llopis 2017). By expressing the production function (3.1) as log yt(i)+υ
ȳ+υ ,

it is straightforward to see that the production function parameters are dimensionless with our

normalization. Appendix C explicitly shows that the production parameters depend on units of

11Specifically, yt(i) = Yt(i)
γt

, et(i) = Et(i)
γt

, lt(i) = Lt(i), and kst (i) =
Ks

t (i)

γt
, where γ denotes the steady-state gross

growth rate.
12In Appendix B.8, we consider the KLEMS data with three inputs. The strong complementarity between labor

and energy remains robust.
13For example, the substitution parameter between energy and capital is not statistically significant based on

the three-factor specification (Appendix B.7). The parameter for the energy square term is negative based on the
NBER-CES data but positive based on the KLEMS data (Appendix B.8).
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variables without making such a normalization. The normalization also makes the second-order term

disappear at the steady-state and makes our production function directly comparable to the standard

Cobb-Douglas specifications without changing the long-run balanced growth path.

When compared to the empirical specification (2.2), there are other minor changes in the

normalized translog production function (3.1) that closely follows the specifications in Smets and

Wouters (2007). We allow individual firm i’s translog production function in the economy and

introduce the second-order terms related to the returns to scale, lt and et, as an aggregate externality

for individual firms so that they do not choose their own returns to scale.14 In addition, we incorporate

the fixed costs in production υ as in the previous study. Given that our main empirical analyses

in Section 2 do not allow these costs, Appendix B.4 revisits the empirical analyses and finds that

the input complementarity and procyclical returns to scale and markup results are robust to the

existence of the fixed costs. Finally, we include the labor-augmenting deterministic growth rate in the

economy so that we can compare the model’s outcome to the time-series data with trend. Appendix

C presents the other general properties of the normalized translog production function (3.1).

First-order conditions Given real wage wt, the real price of capital service rkt , and the real price

of energy pet , firm i solves its cost-minimization problem subject to the translog production function

(3.1). The first-order conditions with respect to energy, labor, and capital are given by

pet = mct(i)
yt(i) + υ

yt(i)

(
βe + βel l̂t

) yt(i)
et(i)

, (3.2)

wt = mct(i)
yt(i) + υ

yt(i)
(βl + βelêt)

yt(i)

lt(i)
, (3.3)

rkt = mct(i)
yt(i) + υ

yt(i)
βk
yt(i)

kst (i)
, (3.4)

where mct(i) is the real marginal cost of production or the inverse price markup that arises from

monopolistic competition, and x̂ is the log deviation from the steady state value x̄ for any variable x.

As in our empirical analyses (Equation (2.3)), Equation (3.2) shows that the real energy price equals

the marginal product of energy multiplied by the wedge that includes the real marginal costs and

the term related to the fixed cost. Although we evaluate Equation (3.2) at the aggregate level in

this model, evaluating the same equation at the industry-level recovers the industry-time-varying

first-order condition used in Section 2.15

14This specification is similar to the externality assumption in the increasing returns to scale literature (e.g., Baxter
and King 1991) or the redistributive shock introduced in Rios-Rull and Santaeulalia-Llopis (2010).

15Specifically, consider a continuum of firms, which is indexed by i and operates in industry j. yt(i, j) is given
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Compared to the model with a Cobb-Douglas specification with an energy input, the only

extensions with the translog are βel l̂t and βelêt in the first-order conditions (3.2) and (3.3), up to

log-linearization. Clearly, βel has a first-order effect on factor demand. Assuming the complementarity

between labor and energy (βel > 0), an increase in labor or energy input in expansion raises the

marginal product of the other input more than the standard case. In contrast, there is a smaller

increase in the marginal product of input if labor and energy are substitutes (βel < 0). Note that

changing βel has no direct first-order effect in the production function (3.1). Our production function

is identical to the Cobb-Douglas specification with log-linearization, as explicitly shown in Appendix

C. This feature of the model is desirable given that our empirical framework in Section 2 relies solely

on the first-order conditions to identify the complementarities between labor and energy inputs,

which is consistent with our model. Within the structure of the standard model, we reassess our

empirical results by re-estimating the key parameter βel with the aggregate data.

Energy market Given that we introduce an energy input into the production function, we need to

specify the energy market. We introduce a global energy market into our model where the real energy

price pet is determined subject to energy demand and supply shocks. We impose a parsimonious

structure on the energy market to focus on the general production function and minimize deviations

from the benchmark Smets and Wouters (2007) model.

Denote the global energy demand, excluding the US industrial usage et, as edt . The energy

market clearing condition is given by

et + edt = est , (3.5)

where est is the global energy supply. The global energy supply is determined by the energy price and

exogenous disturbances:

est
ēs

=

(
pet
p̄e

)κs
exp(εest ), (3.6)

where κs denotes the price elasticity of est , and the exogenous supply disturbances εest follow the

AR(1) process of εest = ρesε
es
t−1 +ηst , where ηst ∼ (0, σ2

es). We assume that φe fraction of est is produced

domestically. Thus, the US net energy import is given by et − φeest , which implies that the gross

by f(kst (i, j), lt(i, j), et(i, j); lt(j), et(j), ε
a
t ), where lt(j) and et(j) are aggregated labor and energy at the industry

level, respectively, and f(kst (i), lt(i), et(i); lt, et, ε
a
t ) denotes the production function yt(i) in Equation (3.1). Each firm

(i, j) takes lt(j) and et(j) as a given. Under this condition, the firm-level cost minimization problem implies that
set (i, j) = τt(i, j)

(
βe + βel l̂t(j)

)
, where set (i, j) and τt(i, j) are the energy share and the wedge at the firm-industry-

time-level, respectively. When firms in the same industry j are exposed to the same industry-level realization of
Calvo shocks, these firms become symmetric, and we obtain set (j) = τt(j)

(
βe + βel l̂t(j)

)
, which features industry-level

labor in the marginal product of energy. Furthermore, cross-sectional aggregation implies that, up to log-linearization,
set = τt

(
βe + βel l̂t

)
, which is the same aggregate equation that we can derive from Equation (3.2).
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domestic product (GDP) is yGDPt = yt − (et − φeest ).
The global energy demand, excluding US industrial usage, depends on the energy price pet ,

exogenous disturbances to the demand εedt , US GDP yGDPt−1 , and real interest rates Et−1[Rt−1/Πt],

where Rt and Πt represent gross nominal interest rates and gross inflation, respectively:

edt
ēd

=

(
yGDPt−1

ȳGDP

)ρey (
Et−1[Rt−1/Πt]

R̄/Π̄

)ρerr (pet
p̄e

)−κd
exp(εedt ), (3.7)

where κd denotes the price elasticity of the global energy demand. The exogenous demand disturbances

εedt follow the AR(1) process of εedt = ρedε
ed
t−1 + ηdt , where ηdt ∼ (0, σ2

ed). Clearly, global economic

activity positively affects energy demand (Balke and Brown, 2018; Kilian, 2009). We include lagged

US GDP and real interest rates on the right-hand side as proxies for global economic activity.

Furthermore, real interest rates capture the states of financial markets that might affect energy prices,

as discussed in Basak and Pavlova (2016) and Kilian (2014).

The remaining parts of the model are identical to those in the Smets and Wouters (2007) model.

See Online Appendix A for the full structure of the model.

3.2 Bayesian Estimation

This section discusses the Bayesian estimation by illustrating the construction of the likelihood

function and by presenting the prior and the posterior. For the objective comparisons across models,

we apply the Bayesian techniques, prior, and data identical to those in Smets and Wouters (2007)

to both our benchmark model with the three-factor translog function and the model with the

three-factor Cobb-Douglas function (βel = 0). We also bring in the energy data and make relevant

prior assumptions to estimate the new parameters introduced with the energy market in both models.

The corresponding estimation results not only confirm the input complementarity (βel > 0) we find

in Section 2 but also reveal more rigid prices and wages and less persistent markup shocks. These

changes are important in understanding the sources of the business cycle, which we analyze in Section

3.3.3.

We use a Kalman filter to compute the likelihood of a state-space system. For the state equation,

we employ the algorithm suggested in Sims (2002). Our observation equation consists of nine variables,

including the growth rate of the global energy supply ∆ log(Est ) ≡ log(Est )− log(Est−1), the logarithm

of the real energy price log pet , and the seven major macroeconomic variables used in Smets and

Wouters (2007, Equation (15)):
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
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dlPRICEt
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dlENERGYt
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=



γ̄

γ̄

γ̄

γ̄

l̄

π̄

r̄

p̄e

γ̄



+



ŷGDPt − ŷGDPt−1

ĉt − ĉt−1

ît − ît−1

ŵt − ŵt−1

l̂t

π̂t

r̂t

p̂et

êst − êst−1



+



0

0

0

0

0

0

0

0

νt



, (3.8)

where ĉt, ît, π̂t, and r̂t denote the log deviations of (detrended) consumption, investment, gross price

inflation, and gross nominal risk-free return, respectively.

We obtain the global energy quantity data {Est } from BP Energy (2020). The real energy

price is computed by the ratio of the producer price index for total energy to the GDP deflator.

Because it is an index, we demean the logarithm of the energy price in Equation (3.8). For the other

macroeconomic variables, we use the dataset constructed by Smets and Wouters (2007). Our sample

period is from 1966:q1 to 2004:q4, which is identical to that in Smets and Wouters (2007). Because

Est data are available only at an annual frequency, we interpolate the annual series to construct a

quarterly measure and introduce a measurement error νt in the observation equation. The standard

deviation of νt is denoted by σν . In total, we have nine observable variables, nine structural shocks

(global energy supply and demand shocks and seven macroeconomic shocks in Smets and Wouters

(2007)), and one measurement error. See Online Appendix B for further details of the data.

Table 2 presents the prior and the posterior of the parameters that arise from the integration of

the translog structure and the energy market; we assume the same prior in Smets and Wouters (2007)

for the common parameters used in the other two models. Among the new parameters, se = ē
ēs

cannot be separately identified from the other parameters that characterize the dynamics of the

energy market. Thus, we set se at the average value of Et
Est

in the data during our sample period,

which is 0.08. Based on previous studies on the energy shares of value added, we assume that βe has

a Gamma distribution with a 5% mean and 2% standard deviation.16

For the prior of the substitution parameter βel, we utilize our empirical estimate. By log-

linearizing Equation (3.2) and taking cross-sectional average, we can relate βel to δel in Equation

16The energy shares of value added are assumed to be 10% in Backus and Crucini (2000), 5.17% in Dhawan and
Jeske (2008), 4.3% in Finn (2000), and 4% in Rotemberg and Woodford (1996).
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Table 2: The prior and the posterior of the new parameters

Parameter Prior HKL HKL-CD

Mean St.
Dev

Family Posterior
Mode

Credible Set
(5%, 95%)

Posterior
Mode

Credible Set
(5%, 95%)

βe 0.05 0.02 Gamma 0.023 (0.017, 0.033) 0.019 (0.013, 0.028)

βel 0.1 0.025 Gamma 0.042 (0.031, 0.057) - -

ρey 1 0.8 Normal 0.08 (0.02, 0.21) 0.12 (0.03, 0.26)

ρerr 1 0.8 Normal 0.37 (0.16, 0.90) 0.37 (0.16, 0.91)

κd 0.1 0.08 Gamma 0.014 (0.0005, 0.167) 0.017 (0.005, 0.154)

κs 0.1 0.08 Gamma 0.12 (0.04, 0.16) 0.11 (0.04, 0.14)

σed 0.8 2 Inv. Gamma 0.74 (0.66, 1.40) 0.77 (0.70, 1.37)

σes 0.8 2 Inv. Gamma 0.82 (0.56, 1.02) 0.78 (0.55, 0.91)

ρed 0.9 0.05 Beta 0.9993 (0.9989, 0.9994) 0.9994 (0.9991, 0.9995)

ρes 0.9 0.05 Beta 0.9972 (0.9961, 0.9978) 0.9983 (0.9981, 0.9985)

p̄e 0 2 Normal -0.31 (-3.51, 3.03) -0.10 (-3.28, 3.30)

σν 0.1 0.1 Inv. Gamma 0.05 (0.04, 0.24) 0.05 (0.04, 0.26)

φe 0.0337 0.0147 Gamma 0.033 (0.016, 0.075) 0.029 (0.015, 0.065)

Notes: HKL denotes our benchmark model with the translog production function. HKL-CD refers to the Cobb-Douglas
specification with energy but without complementarity (βel = 0).

(2.6) within the structure of this model by using the following equation:

βel = [δel + (Φ− 1)βl]
βe

1− βe
, (3.9)

where Φ is the gross price markup at the steady state.17 When δel = 1.694, which is our benchmark

estimate in Table 1, and Φ, βl, and βe equal their prior means of 1.25, 0.65, and 0.05, respectively,

Equation (3.9) implies that βel = 0.098. When we multiply the standard error of δ̂el in Table 1 by
βe

1−βe , which is evaluated at the prior mean of βe = 0.05, we obtain 0.024. Thus, we assume that βel
has a Gamma distribution with a mean of 0.1 and standard deviation of 0.025; our posterior estimate

and the corresponding theoretical results are nearly identical when we consider the alternative values

of δel estimated in Appendix B.

For the rest of the parameters, we use the following priors. We demean log pet in our observation

equation and thus assume that p̄e has a normal distribution with a zero mean and standard deviation

of two. This choice is similar to the prior of l̄ in Smets and Wouters (2007). For the standard deviation

of the measurement error, we choose mean and standard deviation of 0.1. We decide the prior of the

global share of the US energy production φe given the following considerations. The US net import

of energy, Enit , is given by Et − Est φe. Then, φe =
(
Et
Est

)
−
(
Enit
Est

)
= se −

(
Enit
Est

)
. By subtracting the

sample average of Enit /Est from se, we obtain the prior mean of φe, which is 0.0337. The sample

17Equations (A.70) and (A.80) in Online Appendix A are also used in the derivation.
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Table 3: The Calvo and the markup shock parameters in the three models

Parameter Prior Posterior Mode

Mean St. Dev Family HKL HKL-CD S&W

ξp Calvo sticky price 0.5 0.1 Beta 0.75 0.69 0.67

ξw Calvo sticky wage 0.5 0.1 Beta 0.84 0.78 0.76

ρp Price markup shocks: 0.5 0.2 Beta 0.83 0.91 0.89

µp λ̂pt = ρpλ̂
p
t−1 + ηpt − µpη

p
t−1, 0.5 0.2 Beta 0.69 0.77 0.73

σp where ηpt ∼ N(0, σ2
p) 0.1 2 Inv. Gamma 0.15 0.14 0.14

ρw Wage markup shocks: 0.5 0.2 Beta 0.92 0.96 0.97

µw λ̂wt = ρwλ̂
w
t−1 +ηwt −µwηwt−1, 0.5 0.2 Beta 0.85 0.90 0.91

σw where ηwt ∼ N(0, σ2
w) 0.1 2 Inv. Gamma 0.23 0.24 0.25

Notes: HKL denotes our benchmark model with the translog production function. HKL-CD refers to the Cobb-
Douglas specification with energy but without complementarity (βel = 0). S&W is the Smets and Wouters (2007)
model.

standard deviation of Enit /Est in the data is 0.0147, which is used as a prior standard deviation.

For the shock processes, we rely on a preliminary regression analysis. Specifically, we estimate

logEst = c+ dt+κs log pet + εest and a similar equation for logEdt by using the lagged values of Romer

and Romer (2004) monetary policy shocks as instrumental variables. Based on the point estimates

and standard errors, we set the prior mean and standard deviations of ρey, ρerr, κd, κs, σed, σes, ρed,

and ρes. See Online Appendix B.2 for these regression results.

The posterior is computed by using a random walk Metropolis-Hastings algorithm with a chain

length of 500,000. We consider three different models: our benchmark model (HKL), the model

without input complementarity in production (βel = 0; HKL-CD), and the Smets and Wouters

(2007) model (βel = 0, βe = 0; S&W). The acceptance rates of the chains are 29%, 35%, and 23%,

respectively.

As shown in Table 2, the following parameters are newly introduced and estimated compared

to Smets and Wouters (2007). The energy share in the steady-state βe is estimated to be 2.3%.

The posterior mode of βel is 0.042. If we use Equation (3.9) to compute the value of δel that

corresponds to the posterior mode of βel, Φ, βl, and βe, we obtain 1.36, which is within the range of

one standard error of δ̂el in Table 1. The price elasticities of global energy demand and supply, κd
and κs, respectively, are small at the posterior mode, which is consistent with the results in Hamilton

(2009), Kilian (2009), and Kilian and Murphy (2012). Both energy supply and demand shocks are

highly persistent. Furthermore, the sizes of these shocks are estimated to be larger than the other

structural shocks because energy prices substantially fluctuated during the sample period. Finally,

the measurement errors induced by the interpolation are estimated to be relatively small.

Among the other parameters common to the Smets and Wouters (2007) model, Table 3 reports
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the parameters that show the most noticeable changes across the three models: the parameters

associated with the Calvo stickiness and the markup shocks. The estimation results show that our

benchmark model features larger price and wage rigidity and less persistent markup shocks compared

to the two other models with Cobb-Douglas production functions.18 More rigid prices are intuitive,

given the input complementarity (βel > 0) reported in Table 2. As will be shown explicitly in Section

3.3.1, the input complementarity generates large countercyclical fluctuations in the marginal costs. As

a result, the Bayesian estimator in our benchmark model prefers the stickier prices or the flatter price

Philips curve to match the correlation of inflation and GDP observed in the data. Given the stickier

prices, the stickier wages in our benchmark model are also intuitive. As the Bayesian estimator

matches the real wage fluctuation in the data (Equation (3.8)), it changes the wage Philips curve

parallel to the flatter price Philips curve and makes nominal wages more rigid.19 Corresponding to

the flatter Philips curves, the real variables’ responses to structural shocks are amplified, yielding

smaller residual variations previously explained by the markup shocks. Consistent with this intuition,

the contribution of price and wage markup shocks to output fluctuations is substantially smaller in

the benchmark model than in the other two models, as will be shown in Section 3.3.3.

For the rest of the parameters, the estimation results are similar across three models. See Online

Appendix B.3.

3.3 Business Cycle Implications

This section illustrates the business cycle implications of the normalized translog production function.

Despite its parsimonious structure, our benchmark model features procyclical returns to scale and

procyclical price markups that are consistent with the empirical findings in Section 2. Moreover,

our benchmark model generates countercyclical labor shares and procyclical energy shares, which

are consistent with the data, and maintains the countercyclical capital shares and procyclical profit

shares, similar to the previous studies. Finally, we show that our framework leads to a considerable

decrease in the importance of markup shocks on output fluctuations compared to the models with

Cobb-Douglas production functions.

3.3.1 Returns to Scale and Price Markups

Armed with the estimated model using aggregate data, we revisit the returns to scale and price

markup procyclicality results in Section 2. Given the normalized translog production function in

Equation (3.1), which is denoted by yt(i) = f(kst (i), lt(i), et(i); lt, et, ε
a
t ), the returns to scale that firm

i faces is given by rtst(i) ≡ ∂ log[f(λkst (i),λlt(i),λet(i);lt,et,εat )]
∂ log(λ) |λ=1 = [1 + βel(l̂t + êt)]

yt(i)+υ
yt(i)

. Note that

18Despite the differences in the Calvo parameters across the three models, they are all broadly consistent with the
empirical estimates in Nakamura and Steinsson (2008) and Barattieri et al. (2014) and the model-based estimates in
Justiniano et al. (2010, 2011).

19See Equations (A.88) and (A.92) in Online Appendix A for the price and wage Phillips curves.
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firms take the aggregate labor lt and energy et as given when they change their scales proportionally.

Since the cross-sectional dispersion of log(yt(i)) is of the second order, the average returns to scale

across firms, up to the first order, is given by

rtst = rtstranst × rtsfixt

≡
[
1 + βel

(
l̂t + êt

)]
×
(
yt + υ

yt

)
, (3.10)

where rtstranst ≡ 1 +βel

(
l̂t + êt

)
denotes the part of the returns to scale that arises from the translog

structure, and rtsfixt ≡ yt+υ
yt

denotes the part of the returns to scale that emerges because of the

presence of the fixed costs in production. Note that the rtst is conceptually the same as our empirical

measure of returns to scale rtsjt in Section 2.3 since both of them are based on the cross-sectional

average of the firm-level returns to scale. As a result of the adjustment in the production function,

compared to Equation (2.7), Equation (3.10) has only one production parameter βel and additionally

features the term relevant to the fixed costs in production rtsfixt .

Clearly, the returns to scale varies over the business cycle with the translog structure and fixed

costs. In the simplest case with Cobb-Douglas specification (βel = 0) without the fixed costs (υ = 0),

the returns to scale is time-invariant: rtst = βk + βl + βe = 1. Allowing fixed costs in production

recovers the returns to scale in Smets and Wouters (2007), rtsfixt = yt+υ
yt

, which is countercyclical.

The reason is because in a recession, firms face relatively higher fixed costs and thus larger returns to

scale compared to the expansion. Additionally, allowing the translog structure makes the returns to

scale more procyclical if inputs are complements (βel > 0) and more countercyclical if inputs are

substitutes (βel < 0). Depending on the degree of input complementarity, the returns to scale can be

procyclical with the presence of fixed costs.

For completeness, we define the aggregate returns to scale, which endogenizes the changes in

aggregate labor and energy. Using the fact that yt is obtained by aggregating yt(i) is the same as

f(kst , lt, et; lt, et, ε
a
t ) up to the first-order, the aggregate returns to scale is given by

RTSt =
[
1 + 2βel

(
l̂t + êt

)]
×
(
yt + υ

yt

)
, (3.11)

where RTSt ≡ ∂ log[f(λkst ,λlt,λet;λlt,λet,ε
a
t )]

∂ log(λ) |λ=1. The aggregate returns to scale is derived under the

assumption that all firms change their inputs proportionally such that the aggregate inputs change

by the same proportion. The difference between RTSt and rtst(i) is that for RTSt, the exponents

of the second-order term in Equation (3.1) endogenously vary with aggregate inputs when all firms

adjust their inputs. In contrast, rtst(i) treats the exponents of the second-order term as constant

because only firm i changes its inputs. This difference yields an additional term βel(l̂t + êt) to the

aggregate returns to scale in Equation (3.11). Note that RTSt = rtst without the translog structure
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Table 4: Cyclicality of returns to scales and price markups

(1) (2) (3) (4) (5)

Correlation with log(yGDPt ) log(rtstranst ) log(rtsfixt ) log(rtst) log(RTSt) log(Φt)

HKL 0.74 -1 0.20 0.55 0.19

(0.63, 0.85) (-1, -1) (-0.25, 0.54) (0.30, 0.74) (0.03, 0.26)

HKL-CD (βel = 0) - -1 -1 -1 0.01

- (-1, -1) (-1, -1) (-1, -1) (-0.14, 0.18)

Smets and Wouters (2007) - -1 -1 -1 0.00

- (-1, -1) (-1, -1) (-1, -1) (-0.17, 0.18)

Notes: rtstranst ≡ 1 +βel(l̂t + êt) and rtsfixt ≡ yt+υ
yt

are the returns to scales that arise from the translog production
function and fixed costs, respectively. rtst ≡ rtstranst × rtsfixt is the average returns to scale that each firm faces,
RTSt ≡ [1 + 2βel(l̂t + êt)]

yt+υ
yt

is the aggregate returns to scale, and Φt is the gross price markup. All variables
are log-linearized. For each of the three models, we report the correlations of each variable with yGDPt at the
posterior mode and 90% credible intervals. HKL denotes our benchmark model with the translog production function,
HKL-CD refers to the Cobb-Douglas specification with energy (βel = 0), and Smets and Wouters (2007) is the
Cobb-Douglas specification without energy (βel = 0, βe = 0).

(βel = 0).

Given the structure of our model, it is straightforward to recover the price markup. The changes

in price markups can be most easily understood from the following expression of real marginal costs.

By rearranging and combining the first-order conditions (3.2), (3.3), and (3.4) and the production

function (3.1), we have:

Φ̂t = −m̂ct = βel(l̂t + êt)− βkr̂kt − βlŵt − βep̂et + εat , (3.12)

where Φt is the aggregate price markup, which depends on the translog part of the returns to scale,

r̂ts
trans
t = βel(l̂t + êt), real input prices (r̂kt , ŵt, p̂et ), and productivity shocks (εat ). The price markup

rises when firms employ more complementary inputs, face a decrease in input prices, or experience

positive productivity shocks. Equation (3.12) clarifies how traditional models link price markup

cyclicality to price and wage rigidity. Previous studies have focused on the relative rigidities of

prices and wages, which affect the cyclicality of ŵt. Consider the simple case of a Cobb-Douglas

specification with only labor input; the price markup then becomes Φ̂t = −βlŵt + εat . In this case,

conditional on any shocks other than productivity shock, price markup cyclicality is governed by

the cyclicality of real wage ŵt, which is tightly related to the relative rigidities of prices and wages.

More generally, in previous studies, the cyclicality of real input prices affects price markup cyclicality.

In our setup, we identify a new term that additionally changes the price markup, βel(l̂t + êt), by

adopting a more general production function that allows a flexible input substitution pattern.

Columns (1)-(4) in Table 4 show that the returns to scale is procyclical in our benchmark model

(HKL), which is consistent with the results in Section 2, but it is countercyclical in the other models.
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Column (1) shows the cyclicality of the new returns to scale term that arises from the translog

structure rtstranst ≡ 1 + βel(l̂t + êt). Given the posterior mode of βel = 0.042, the correlation of

rtstranst and GDP is 0.74; in boom periods, the larger use of each input generates synergies and makes

the economy produce more. In contrast, as shown in column (2), rtsfixt features perfect or nearly

perfect countercyclical returns to scale in all three models as the fixed costs become relatively larger

in recession.20 Column (3) indicates that the total average returns to scale rtst is mildly procyclical

in our benchmark model, which shows that the procyclical effect of the translog structure dominates

the countercyclical effect of the fixed costs. The aggregate returns to scale RTSt features stronger

procyclicality due to the endogenous movement in aggregate labor and energy, as appears in column

(4). In the other models with Cobb-Douglas production functions, the returns to scale equals rtsfixt
and is countercyclical.

Column (5) shows that the price markup is procyclical in our benchmark model (HKL), as we

hinted in Section 2. This procyclicality works through the new part of the returns to scale, r̂ts
trans

.

In expansion, when firms utilize more labor and energy, the complementarity between these inputs

leads to an increase in the marginal product of inputs, which in turn decreases the real marginal

costs and increases the price markup. Without this mechanism, price markups are acyclical in our

model, as in the models with Cobb-Douglas specification, because the net effect of real input price

cyclicality on price markup cyclicality is negligible.

3.3.2 Factor and Profit Shares

Our translog production function has a novel implication on the income distribution across factors

and profits through its effects on the first-order conditions. By rewriting Equations (3.2)-(3.4) in

terms of factor shares, to the first-order approximation, we have:

set ≡
petet

yGDPt

=
1

Φt

yt + υ

yGDPt

(βe + βel l̂t), (3.13)

slt ≡
wtlt

yGDPt

=
1

Φt

yt + υ

yGDPt

(βl + βelêt), (3.14)

skt ≡
rtkt

yGDPt

=
1

Φt

yt + υ

yGDPt

βk, (3.15)

20In the Smets and Wouters (2007) model, log(yGDPt ) and log
(
yt+υ
yt

)
are perfectly negatively correlated because

yGDPt = yt. In models with energy input, although yGDPt = yt− (et−φsest ), we still observe the nearly perfect negative
correlation between log(yGDPt ) and log

(
yt+υ
yt

)
. This is because the difference between yt and yGDPt , the net energy

import et − φee
s
t , is negligible relative to yt.

26



Table 5: Cyclicality of factor and profit shares

(1) (2) (3) (4)

Correlation with log(yGDPt ) Energy Shares Labor Shares Capital Shares Profit Shares

HKL 0.46 -0.41 -0.47 0.42

(0.26, 0.61) (-0.50, -0.25) (-0.55, -0.33) (0.25, 0.50)

HKL-CD (βel = 0) -0.39 -0.39 -0.39 0.39

(-0.48, -0.21) (-0.48, -0.21) (-0.48, -0.21) (0.21, 0.48)

Smets and Wouters - -0.41 -0.41 0.41

- (-0.51, -0.22) (-0.51, -0.22) (0.22, 0.51)

Data 0.50 -0.38 - -

Notes: For each of the three models, we report both the correlations of the logarithm of each variable with log(yGDPt )
at the posterior mode and the 90% credible intervals. We compute the empirical energy and labor shares based on the
data used for the Bayesian estimation in Section 3.2 and employ the Baxter and King (1999) filter with a periodicity of
cycles between 6 and 32 quarters. Following Gorodnichenko and Ng (2010), we apply the same filter to the model
variables and calculate the correlation coefficients by using the representation in Croux et al. (2001, Equation (8)).
HKL denotes our benchmark model with the translog production function, HKL-CD refers to the Cobb-Douglas
specification with energy (βel = 0), and Smets and Wouters (2007) is the Cobb-Douglas specification without energy
(βel = 0, βe = 0).

where set , slt, and skt are energy, labor, and capital shares, respectively. Clearly, the translog structure

and energy imports generate two changes in the factor share equations from those in Smets and

Wouters (2007). First, the translog production function induces the extra terms in the energy and labor

shares, βel l̂t and βelêt, which constitute the cyclical components of rtstrans. Second, the imported

energy used in production allows us to consider the energy shares and makes yGDPt marginally

different from yt by net energy imports. The smaller inverse input wedge—the multiplication of

the price markup (Φt) and the inverse of the fixed-cost relevant term (1/
(
yt+υ
yGDPt

)
)—and the larger

complementarity (βel > 0) leads to a greater factor demand and factor shares in expansions.

By combining the input share expressions (3.13)-(3.15) with the definition of the returns to

scale (3.10), the profit share becomes:

sΠt =

(
1− rtst

Φt

)
yt

yGDPt

, (3.16)

where sΠt ≡ Πt
yGDPt

with the aggregate profit Πt ≡ yt−wtlt− rkt kst − petet. Thus, our model generates a

relationship among the profit share, price markup, and returns to scale, consistent with the previous

studies of the returns to scale and the empirical expression (2.8). Holding everything else constant,

larger price markup or smaller returns to scale leads to smaller total input shares and larger profit

shares. Note that the returns to scale cyclicality can substitute for the price markup cyclicality in

explaining the same profit share dynamics.

Our benchmark model better matches the energy input share in the data than the model with the

Cobb-Douglas production function. As shown in column (1) of Table 5, our benchmark model features
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procyclical energy shares with a correlation of 0.46, which is both qualitatively and quantitatively

consistent with the data.21 The procyclical energy shares arise from the complementarity between

labor and energy (βel > 0), where a positive βel is motivated by the empirical analyses (Section 2)

and is estimated by the Bayesian method (Section 3.2). This procyclical effect of complementarity

dominates the countercyclical effects of the inverse price markup (1/Φt) and the fixed costs ( yt+υ
yGDPt

)

on energy shares. In contrast, given the Cobb-Douglas production function, the energy share is

identically countercyclical to the other factor shares. Its simple assumption on the functional form

does not allow us to generate different input share cyclicality as in the data.

At the same time, our benchmark model maintains countercyclical labor and capital shares,

which are consistent with the models with Cobb-Douglas specifications. As presented in columns

(2) and (3), the cyclicality of labor and capital shares is similar across the three different models.

In particular, the labor share cyclicality is comparable to the data and to what are reported in

Karabarbounis (2014, Table 7) and Rios-Rull and Santaeulalia-Llopis (2010, Table 2). Both the

labor and capital shares are countercyclical in all models because of the fixed costs in production,

which generate a countercyclical wedge and depress the labor and capital demand in expansions.

For the labor share, although our benchmark model has an additional procyclical complementarity

term (βl + βelêt), it is canceled out by the procyclical price markup effect (Φt), which results in

countercyclical labor shares.22 The capital share is slightly more countercyclical in our benchmark

model relative to the capital share in the two other models due to procyclical price markups.

Finally, the profit share is procyclical in all three models, as shown in column (4), but the

underlying mechanism is largely different depending on the production function specification. The

profit share procyclicality in our benchmark model arises from the procyclical price markups. Since

firms generate more price markups in expansion as a result of the depressed marginal costs with

input complementarity, their profit shares rise at the same time. The returns to scale is procyclical in

this model and mitigates the profit procyclicality, but this effect is not strong enough to make profit

shares countercyclical. In contrast, in the models with a Cobb-Douglas production function, the

profit share procyclicality relies on the countercyclical returns to scale. Without the complementarity,

in expansion, the fixed costs depress the returns to scale, which in turn decrease all input shares and

increase the profit shares. The price markup is acyclical in these models and does not contribute

to the procyclical profit. Note that the difference between yt and yGDPt is negligible and does not

contribute to the cyclicality of profit shares in any model.

21For US ENERGYt, we use monthly US industrial energy usage data from U.S. Energy Information Administration
(2021). We seasonally adjust this series by using X-13 ARIMA-SEATS and aggregate it to a quarterly measure.
Because this monthly measure is available from 1973, our sample for Table 5 spans from 1973:q1 to 2004:q4.

22Note that the magnitude of procyclical variation in the complementarity term in the labor share (βl + βelêt) is
smaller than that in the energy share, which results in a procyclical energy share but a countercyclical labor share.
This is because the energy share βe is small, and with log-linearization, βe + βel l̂t becomes βel

βe
l̂t, which generates a

large procyclical component in the energy share.
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In addition to assessing the unconditional moments, we further verify our benchmark model by

assessing the conditional moments in Online Appendix B.4. Given that our theoretical mechanism is

centered around the complementarity between labor and energy, we compare the model responses

of labor and energy to monetary and fiscal policy shocks with the corresponding empirical impulse

responses, which are estimated by using the identified structural shocks in Romer and Romer (2004)

and Auerbach and Gorodnichenko (2012). We find that the model responses are largely consistent

with the empirical responses in our benchmark model. Note that this consistency holds without

directly matching the dynamics of US industrial energy usage et in the Bayesian estimation in Section

3.2.

3.3.3 Contribution of Markup Shocks

After observing the changes in the returns to scale, price markup, and factor share cyclicality,

which are induced by the translog production function, this section seeks to understand the relative

importance of different driving forces of business cycles. For this purpose, we compute forecast

variance decompositions (FEVDs) and impulse responses of the three models with different production

functions.

The translog specification substantially decreases the contribution of price and wage markup

shocks to business cycles. Table 6 presents the FEVDs of output and labor at ten quarter horizon

based on all three models. While introducing the energy input into a Cobb-Douglas technology

(HKL-CD) does not meaningfully change the FEVD from that of the Smets and Wouters (2007)

model, additionally introducing the translog specification (HKL) alters the results substantially. The

most notable change is the contribution of markup shocks. Price and wage markup shocks explain

28% and 26% of output fluctuations in the Smets and Wouters (2007) model and the model without

complementarity (HKL-CD), respectively. In contrast, the corresponding FEVD decreases to 15% in

our benchmark model. The results for labor are similar. The FEVD of labor with respect to markup

shocks slightly decreases from 45% to 44% when we introduce an energy input, but it becomes 31%

when we incorporate the input complementarity between labor and energy. At alternative horizons,

we still observe that markup shocks are less important determinants of output and labor in our

benchmark model than in the two other models. As a result, the other structural shocks, such as

shocks to productivity, demand, and energy, become more important drivers of business cycles in our

benchmark model than in the other models. See Online Appendix B.5 for additional results.

Given the substantial changes in the contribution of markup shocks, Figure 2 presents the

impulse responses of output to price and wage markup shocks of all three models to investigate

the underlying mechanism behind the FEVDs. The top (bottom) panels show the responses to a

one-standard-deviation contractionary price (wage) markup shock, and the solid, dash-dotted, and

dashed lines represent the results based on our benchmark model (HKL), the model without input
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Table 6: Forecast error variance decomposition of output and labor (10 quarters)

Output (log yGDPt ) Labor (log lt)

HKL HKL-CD S&W HKL HKL-CD S&W

Panel A

Productivity (neutral) 0.36 0.34 0.32 0.05 0.04 0.04

Risk premium 0.05 0.04 0.04 0.09 0.07 0.06

Government spending 0.09 0.08 0.08 0.17 0.15 0.15

Investment-specific productivity 0.22 0.21 0.22 0.24 0.21 0.21

Monetary policy 0.08 0.06 0.06 0.13 0.09 0.09

Price markup 0.07 0.11 0.11 0.08 0.13 0.12

Wage markup 0.08 0.15 0.17 0.22 0.31 0.33

Energy demand 0.02 0.01 - 0.01 0.00 -

Energy supply 0.03 0.01 - 0.01 0.00 -

Panel B

Productivity shocks 0.58 0.54 0.54 0.29 0.25 0.25

Demand shocks 0.21 0.19 0.19 0.39 0.31 0.30

Markup shocks 0.15 0.26 0.28 0.31 0.44 0.45

Energy shocks 0.06 0.01 - 0.01 0.01 -

Notes: Panel A decomposes the forecast error variances into the contributions of the 9 structural shocks in
the model. Panel B summarizes the FEVDs of different types of shocks. The productivity shocks include the
neutral and investment-specific productivity shocks, the demand shocks include the risk premium, government
spending, and monetary policy shocks, the markups shocks include the price and wage markup shocks, and
the energy shocks include the energy demand and supply shocks. HKL denotes our benchmark model with the
translog production function, HKL-CD refers to the Cobb-Douglas specification with energy (βel = 0), and
Smets and Wouters (2007) features the Cobb-Douglas production function without energy (βel = 0, βe = 0).

complementarity (HKL-CD), and the Smets and Wouters (2007) model (S&W), respectively. Column

(a) presents the impulse responses at the posterior mode of the three models. Columns (b)-(d) set

different subsets of parameters at the posterior mode of HKL to investigate why the price markup

shocks have smaller effects in our benchmark model. We fix two categories of parameters reported in

Table 3, which have noticeably different posterior modes across the models: (i) Calvo price and wage

stickiness parameters and (ii) persistence of markup shocks. For all three models, column (b) uses the

Calvo parameters, column (c) uses the markup shock parameters, and column (d) uses both the Calvo

parameters and markup shock parameters in our benchmark model. In Online Appendix B.6, we

separately test whether the positive input complementarity parameter (βel > 0) can depress the roles

of markup shocks but do not find the supporting evidence. It mostly substitutes the countercyclical

variations in price markups in the previous models, as discussed with the profit share cyclicality

result in Section 3.3.2.

Consistent with Table 6, Figure 2 column (a) clearly shows that the markup shocks have
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Figure 2: Impulse responses of output to price and wage markup shocks
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Notes. The two panels in column (a) show the responses of output to a one-standard-deviation contractionary price
and wage markup shock, respectively. The solid, dashdotted, and dashed lines represent the results based on our
benchmark model (HKL), the model without input complementarity (HKL-CD), and the Smets and Wouters (2007)
model (S&W), respectively. We use the posterior modes of each model. For column (b), we replace the Calvo sticky
price and wage parameters of HKL-CD and S&W to the posterior mode of the HKL model. Column (c) is based on
the estimated price and wage markup shock processes of HKL in Table 3. Finally, column (d) uses HKL posterior
modes for both Calvo parameters and markup shock processes.

substantially smaller effects on output in our benchmark model than that in the two other models.

The peak effects of a one-standard-deviation price markup shock on output are 0.32% (HKL), 0.42%

(HKL-CD) and 0.42% (S&W) in absolute value. Similarly, for wage markup shocks, the peak effects

are 0.48% (HKL), 0.62% (HKL-CD) and 0.70% (S&W). The smaller effects of both price and wage

markup shocks with the translog production function are similar for investment, consumption, and

labor, as shown in Appendix D.

By comparing Figure 2 columns (b)-(d), we find that less persistent price markup shocks are

mostly responsible for the depressed role of markup shocks in our benchmark model. As shown in

column (b), fixing the price and wage rigidity across the three models makes the impulse response

generated from HKL-CD and Smets and Wouters (2007) to deviate even more from that of our

benchmark model, highlighting that the larger rigidity in our benchmark model does not decrease

the importance of the markup shocks. However, the impulse responses of output are nearly identical

across the three models when we use the same markup shock parameters, as shown in column (c).

These results show that the decrease in markup shock parameters (i.e., lower persistence of markup
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shock processes) is essential for generating the smaller contribution of markup shocks. Column (d)

fixes both Calvo and markup shock parameters, and the impulse responses are analogous to those in

column (a).

Allowing the procyclical returns to scale leads to the less persistent markup shocks through

the flatter price and wage Philips curves. As shown in Table 4, our benchmark model features the

procyclical price markup or the countercyclical real marginal costs because of the input comple-

mentarity. The large countercyclical fluctuations in the marginal costs per se do not amplify the

dynamics of aggregate variables. However, it makes our Bayesian estimator select stickier prices and

less responsive inflation to the real marginal costs to match the empirical correlation of inflation and

GDP. Correspondingly, nominal wages become stickier to match the real wage cyclicality in the data.

The larger price and wage rigidity, in turn, makes real variables respond more to structural shocks,

as shown in Figure 2 column (b), and absorb previously unexplained variations that were attributed

to price and markup shocks.

4 Conclusion

This paper studies business cycles with a translog production function. Our empirical analyses

suggest that there is complementarity between labor and energy, which leads to procyclical returns to

scale. Our empirical evidence is not compatible with the tightly parameterized production functions

commonly used in the literature. Thus, we introduce the normalized translog production function

into a standard medium-scale DSGE model and re-estimate the substitution parameters within the

structure of our model. Our model rationalizes procyclical returns to scale, procyclical price markups,

countercyclical labor shares, procyclical energy shares, and procyclical profit shares. Furthermore,

we document that the contribution of price and wage markup shocks to output fluctuations in our

model is substantially smaller than that in the standard Smets and Wouters (2007) model. The

complementarity between labor and energy and the corresponding procyclical returns to scale are

central to the theoretical mechanism behind the results.

Our work underscores the need to employ more general forms of production functions in business

cycle research. Further efforts to utilize a general functional form will extend the understanding of

business cycles.
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Appendix A NBER-CES: Summary Statistics

Table A.1 reports the basic summary statistics for the main dataset we use in the paper (NBER-CES

manufacturing database). The data covers 473 6-digit NAICS manufacturing industry in 1958-2009.

The quantity index of five inputs are measured with the energy (energy/pien), material excluding

energy ((matcost/pimat) - (energy/pien), since the units in the value and price of material and

energy are identical), production workers (prode), non-production workers (emp - prode), and capital

(cap). The energy share is measured as the share of the value of shipment (energy/vship). We

use the input prices for the instrumental variables, and they are the energy price deflator (pien),

material price deflator (pimat), production worker wage (prodw/prode), worker wage (pay/emp),

and investment deflator (piinv). Note that we do not construct the price indexes separately for

the material excluding the energy input and the non-production worker, as they are not given in

the original dataset and requires more subtraction and addition, which would like to exacerbate

the measurement error problems in such variables. For example, we find that if we measure the

non-production worker wage by ourselves ((pay-prodw)/(emp-prode)), we observe that this variable

has large negative values. Table A.2 reports the first-stage regression results for the instrumental

variables used in this paper.
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Table A.1: Summary statistics

Variable Mean Std. Dev. Min. Max. N
NAICS 6-digit Codes 327009.662 8889.717 311111 339999 24596
Year ranges from 58 to 09 1983.5 15.009 1958 2009 24596
Total employment in 1000s 34.814 45.053 0.2 559.9 24167
Total payroll in $1m 735.896 1252.867 2.9 16162.9 24167
Production workers in 1000s 25.423 33.651 0.2 459.9 24167
Production worker hours in 1m 50.64 66.823 0.3 904.1 24167
Production worker wages in $1m 443.796 736.828 1.8 10475.2 24167
Total value of shipments in $1m 4799.495 13196.309 19.3 732728.4 24167
Total cost of materials in $1m 2620.97 9721.219 8.800 648048.4 24167
Total value added in $1m 2190.409 4710.187 9.700 111187.9 24167
Total capital expendture in $1m 156.655 462.108 0.1 17601.6 24167
End-of-year inventories in $1m 585.429 1433.618 1.3 40084.9 24162
Cost of electric & fuels in $1m 97.69 360.53 0.1 14201.5 24167
Total real capital stock in $1m 2757.95 6388.03 4.1 120110.3 24167
Real capital: equipment in $1m 1664.517 4145.339 1.9 88454.600 24167
Real capital: structures in $1m 1093.433 2418.355 2.2 38874.4 24167
Deflator for VSHIP 1997=1.000 0.799 1.552 0.044 47.409 24167
Deflator for MATCOST 1997=1.000 0.718 0.357 0.127 2.777 24167
Deflator for INVEST 1997=1.000 0.694 0.309 0.183 1.581 24167
Deflator for ENERGY 1997=1.000 0.695 0.402 0.087 2.233 24167
5-factor TFP annual growth rate 0.003 0.066 -0.642 1.387 23694
5-factor TFP index 1997=1.000 0.937 0.257 0.012 13.192 24167
4-factor TFP annual growth rate 0.003 0.066 -0.642 1.387 23694
4-factor TFP index 1997=1.000 0.936 0.257 0.011 13.193 24167
production worker hours per worker in 1000s 2.004 0.119 1.28 3.228 24167
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Table A.2: Regressing Inputs on Input Prices

(1) (2) (3) (4) (5)
Energy Material Capital Workerp Workernp

energy price(t-1) -0.523∗∗∗ 0.158∗∗ -0.166∗∗∗ -0.054 -0.126∗∗

(0.091) (0.071) (0.049) (0.064) (0.058)

energy price(t-2) -0.542∗∗∗ -0.202∗∗∗ -0.224∗∗∗ -0.292∗∗∗ -0.240∗∗∗

(0.090) (0.068) (0.048) (0.062) (0.056)

material price(t-1) 0.156∗∗ -0.696∗∗∗ -0.338∗∗∗ 0.085 -0.026
(0.071) (0.071) (0.048) (0.057) (0.059)

material price(t-2) -0.183∗∗∗ -0.033 0.015 0.081 0.111∗

(0.069) (0.068) (0.047) (0.055) (0.058)

investment price(t-1) -1.899∗∗∗ -2.003∗∗∗ -1.573∗∗∗ -0.621∗∗ -2.130∗∗∗

(0.313) (0.349) (0.216) (0.286) (0.294)

investment price(t-2) 2.327∗∗∗ 1.601∗∗∗ 1.263∗∗∗ 1.094∗∗∗ 2.263∗∗∗

(0.317) (0.350) (0.216) (0.287) (0.296)

production worker wage(t-1) 0.577∗∗∗ 0.380∗∗∗ 0.117 0.378∗∗∗ 0.047
(0.134) (0.135) (0.078) (0.123) (0.107)

production worker wage(t-2) 0.308∗∗ 0.028 0.067 0.104 -0.443∗∗∗

(0.141) (0.139) (0.080) (0.125) (0.109)

payroll per worker(t-1) -0.069 0.445∗∗∗ 0.265∗∗∗ -0.529∗∗∗ 0.219∗

(0.158) (0.158) (0.091) (0.149) (0.129)

payroll per worker(t-2) -0.059 0.114 0.424∗∗∗ -0.193 0.422∗∗∗

(0.166) (0.161) (0.092) (0.148) (0.128)

Constant 0.000 0.000 0.000 -0.000 -0.000
(0.003) (0.003) (0.002) (0.002) (0.002)

F-stat 135.29 135.12 159.30 57.06 27.53
Observations 23221 23221 23221 23221 23220

Note. Each double-demeaned input is regressed on all 10 double-demeaned lagged input prices used
in Equation (2.6). “Energy” (energy/pien) is the quantity of energy, “Material” ((matcost/pimat) -
(energy/pien)) is the quantity index of material that excludes the energy, “Capital” (cap) is the real
capital, “Workerp” (prode) is the number of production workers, and “Workernp” (emp - prode) is the
number of non-production workers. The “energy price” is the energy deflator (pien), the “material
price” is the material deflator (pimat), the “investment price” is the investment deflator (piinv), the
“production worker wage” is the production worker wage (prodw/prode), and the “payroll per worker”
is the average wage of all workers (pay/emp).
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Appendix B Empirical Results: Robustness

B.1 Using Two-year and Three-year Lagged Input Prices

As a robustness exercise, we use two- and three-year lagged input prices as instrumental variables

instead of one-year and two-year lagged input prices. Table B.1 presents the results. The key

complementarity parameter between energy and production workers is still positive and statistically

significant.

Table B.1: Estimation of Equation (2.6)

IV (Lagged Input Prices) OLS

(1) (2) (3) (4) (5) (6)
energy -0.286 -0.330** -0.351** 0.843*** 0.838*** 0.816***

(0.188) (0.163) (0.165) (0.028) (0.029) (0.031)

production worker 1.255*** 1.341*** 1.272*** -0.326*** -0.323*** -0.464***
(0.356) (0.310) (0.310) (0.029) (0.030) (0.032)

non-production worker -0.472* -0.510** -0.425* -0.119*** -0.125*** -0.219***
(0.246) (0.244) (0.221) (0.022) (0.022) (0.025)

material 0.403* 0.386** -0.409*** -0.420***
(0.235) (0.175) (0.025) (0.026)

capital -0.070 0.449* -0.032 -0.247***
(0.403) (0.239) (0.021) (0.026)

Observations 22747 22747 22747 22747 22747 22747

Note. The regression specifications are identical to those in Table 1. *, **, and *** indicate significance at the 0.1,
0.05, and 0.01 levels, respectively.

B.2 Allowing Additional Control Variables

This section explicitly considers the potential omitted variables that might be correlated with our

instrumental variables in estimating Equation (2.6). For our baseline approach, we assume that

the instrumental variables—the double-demeaned lagged input prices—are not correlated with the

double-demeaned wedge term τ . This assumption is consistent in a model that does not have an

industry-time-varying energy wedge and the non-parametric estimation strategy employed in Gandhi

et al. (2020). However, in a more general class of models, our assumption could be violated. For

example, in a dynamic model that allows the heterogeneity of output price rigidity and variation in

input prices across sectors, the industry-time-varying lagged input prices could be correlated with

the industry-time-varying contemporaneous price-cost markups, which is a part of the industry-time-
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varying contemporaneous wedge τ e.

Given such a concern, we control the potential omitted variables directly and re-estimate the

first-order conditions. First, we measure the industry-level market power and directly control it

to address such potential omitted variables. We carefully follow previous studies to measure the

industry-time-varying price-cost markups (De Loecker et al. 2020) and the Lerner index (Gutierrez

and Philippon 2017) with Compustat data. Since previous studies discuss the methodology in detail,

we briefly state how we measure these two variables.

In estimating the price-cost markups, we first use two measures of inputs available in Compustat

data, specifically, the cost of goods sold (COGS) and capital, to estimate the output elasticity with

respect to the COGS. With the assumption of the firm-level Cobb-Douglas technology, elasticity is

the coefficient of the COGS input. We follow Olley and Pakes (1996) for our estimation and allow

the elasticity to vary across NACIS 2-digit industries. We leverage the firm-level first-order condition

to recover the price-cost markups, which is the estimated elasticity divided by the COGS input

share. Then, we aggregate the markups across firms within each 6-digit NAICS industry by using

the weight of a sale to recover the industry-level markups. Using a cost-based weight does not make

much difference in the results. We measure the Lerner index as the operating income to sales ratio in

the 6-digit NAICS industries.

In addition to the two measures of market power, we consider four other control variables to

address the industry-time-varying contemporaneous wedge term. Given that standard macroeconomic

models predict markup heterogeneity based on price rigidity, we introduce the price rigidity measure

from Bils et al. (2013). In light of the literature that links price markup to inventory, we include

the inventory-to-sales ratio. We also measure the external financial dependent index of Rajan and

Zingales (1998) to control the financial friction that potentially prevents the optimal use of the energy

input.

Finally, although the adjustment costs for the energy input are typically assumed away in

previous studies, as a robustness check, we integrate the adjustment cost term explicitly. By assuming

a quadratic adjustment cost Φ(V i
jt) = ηi

2

P ijt
Pjt
V i
jt

(
V ijt

V ij,t−1
− 1

)2

and solving for the first-order condition

(2.5) again, we have

ŝi =

[∑
k

δikV̂
k

]
− φ̂i + τ̂ i, (B.1)

where we have a new term in our equation, φ̂ijt ≡ ηi
(
V̂ i
jt − V̂ i

j,t−1 −
Et[V̂ ij,t+1]−V̂ ijt

1+r̄

)
with the real

interest rate r. Given a small r̄ and the (scaled) forecast error εj,t+1 ≡ ηi

1+r̄ (V̂ i
j,t+1 −Et[V̂ i

j,t+1]), we

have φ̂ijt = ηi
(
V̂ i
jt − V̂ i

j,t−1 −
V̂ ij,t+1−V̂ ijt

1+r̄

)
+ εj,t+1 ≈ −ηi∆2V̂ i

j,t+1 + εj,t+1. We include the double-

differences and double-demeaned energy input (∆2V̂ e
j,t+1) and estimate ηe by instrumenting it with

the corresponding lagged input price (∆2P̂ ej,t−1) to address the measurement error problem arises
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Table B.2: Estimation of Equation (2.6) with Additional Controls

IV (Lagged Input Prices)

(1) (2) (3) (4) (5) (6)
production worker 1.261*** 1.268*** 1.401*** 1.517*** 1.697*** 1.387***

(0.359) (0.369) (0.397) (0.381) (0.449) (0.346)

Markup -0.158
(0.113)

Lerner index -69.206**
(35.152)

Frequency of price changes -0.011**
(0.005)

Inventory 0.497***
(0.111)

RZ measure -0.006***
(0.002)

Adj. cost -0.096
(0.905)

Observations 14591 14591 18198 23217 23220 22275

Note. All columns show the regression result with the instrumental variables. For the instrumental variable analyses,
we use both one- and two-year lagged input prices. Five different inputs are used in this regression, specifically,
energy, material excluding energy, non-production worker, production worker, and capital. The Markup, Lerner index,
Frequency of price changes, RZ measure, and Inventory are controlled directly, and the Adj. cost is instrumented with
the corresponding lagged input price. All variables are logged and double-demeaned across industries and time. The
standard errors in parentheses are clustered at the NAICS industry level. *, **, and *** indicate significance at the
0.1, 0.05, and 0.01 levels, respectively.

from the forecast error. Because Et[εj,t+1] = 0, εj,t+1 is orthogonal to the instruments and do not

violate the exclusion restriction.

Table B.2 shows the empirical results. Regardless of the additional measures of market power,

price rigidity, inventory, financial friction, and adjustment costs, our main empirical results of com-

plementarity between production workers and energy input stay positive and statistically significant

at the conventional level. Columns (1) and (2) utilize the double-demeaned markup and Lerner

index. The coefficients of the measure of market power are intuitive since the market power lowers

the input share in a large class of models. Columns (3)-(6) control the measures of price rigidity,

inventory-to-sales, financial friction, and adjustment to ease the concerns related to these measures.

Consistent with the previous studies, we do not find empirical evidence on the existence of the energy
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adjustment costs.

We assess the cyclicality of returns to scale conditional on each of these six control variables. We

measure the double-demeaned returns to scale by subtracting the double-demeaned wedge term from

the double-demeaned energy share, which is a double-demeaned version of Equation (2.9). Figure

B.1 shows that the estimated returns to scale still preserves a larger positive correlation with the

value added in each industry.

B.3 Returns to Scale: Allowing an Input-Specific Adjustment Cost

In recovering the returns to scale in Section 2.3, we assume that τ i = τ . Although this specification is

conventional in the previous studies and consistent with the DSGE model presented in Section 3, one

concern is that the input-specific adjustment cost is likely to be different across different inputs. This

section allows the input-specific adjustment cost and shows that the returns to scale procyclicality is

robust to this concern.

Consider the firm’s cost minimization problem with the translog production function (2.2):

minC =
∑
i

[
P i

P
V i + Φ(V i)

]

s.t.

ln(Y ) = ln(z) +
∑
i

βi ln(V i) +
∑
i

∑
k

βik
2

ln(V i) ln(V k) with βik = βki

where P i

P ≡ p
i is the real input price and Φ(V i) is the input-specific adjustment cost for input V i.

We consider two different functional form assumptions on the adjustment cost Φ(V i). First,

consider a convex adjustment cost with the following functional form, Φ(V i) ≡ ηi

2
P i

P V
i
(
V i

V iss
− 1
)2

.

In this specification, we make adjustment costs depend on the current variables and steady state

values, similar to the specification in Rotemberg and Woodford (1999). Solving the cost-minimization

problem with respect to V i yields

si

[
1 +

ηi

2

(
V i

V̄ i
− 1

)2

+ ηi
(
V i

V̄ i
− 1

)(
V i

V̄ i

)]
= mc

[
βi +

∑
k

βik ln(V k)

]
, (B.2)

where mc is the Lagrangian multiplier of the production technology, which is the firm’s real marginal

cost or the inverse price markup. Rearranging and log-linearizing (B.2) leads to

ŝi =

[∑
k

δikV̂
k

]
+ m̂c− φ̂i, (B.3)

where δik ≡ βik
(
mc
s̄i

)
and φ̂i ≡ ηiV̂ i. Equation (B.3) is a special case of Equation (2.5) with
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Figure B.1: Returns to Scale and Value-Added

(a) Control Markup (b) Control Lerner Index

(c) Control Frequency of Price Changes (d) Control RZ Measure

(e) Control the Adjustment Costs (f) Control Inventory-to-Sales

Note. The y-axis is returns to scale, and the x-axis is value added. All variables are double-demeaned across industries
within each year and across years within each industry. The slopes of the linear lines in Figures B.1a, B.1b, B.1c, B.1d,
B.1e, and B.1f are .64, .63, .91, 1.02, .87, and .86 respectively.
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τ̂ i = m̂c− φ̂i; the input-specific wedge τ i is the linear combination of the input-specific term arising

from the adjustment costs and the inverse price markup in this setup.

By adding Equation (B.2) across all input shares and combining the resulting equation with the

returns to scale Equation (2.7), we have

rts =
1

mc

∑
i

si

[
1 +

ηi

2

(
V i

V̄ i
− 1

)2

+ ηi
(
V i

V̄ i
− 1

)(
V i

V̄ i

)]
. (B.4)

The log-linearization of (B.4) leads to

r̂ts = ŝall − m̂c+ φ̂all, (B.5)

where sall =
∑

i s
i and φ̂all ≡

∑
i

(
s̄i

s̄all

)
φ̂i =

∑
i

(
s̄i

s̄all

)
ηiV̂ i.

Equation (B.5) makes it clear that the returns to scale procyclicality results do not likely change

with the presence of the input-specific adjustment cost. The key difference between Equation (2.9)

and Equation (B.5) is φ̂all, which captures the effects of the input-specific adjustment cost. Equation

(2.9) allows the common wedge τ , such as the real marginal cost mc. However, because the input V̂ i

is procyclical in the data, regardless of the degree of input-specific adjustment cost η, the adjustment

cost term φ̂all tends to be procyclical. Thus, if adjustment costs exist in any input, then they would

strengthen the procyclicality of the returns to scale.

Second, we assume an alternative adjustment cost functional form that depends on lagged

inputs, as is the case for the energy input in Appendix B.2: Φ(V i) = ηi

2
Pi
P V

i
(

V it
V it−1
− 1
)2

. Under

this assumption, one can also derive Equation (B.5) with φ̂allt =
∑

i
s̄i

s̄all
φ̂i with

φ̂it = ηi

(
V̂ i
t − V̂ i

t−1 −
Et[V̂

i
t+1]− V̂ i

t

1 + r̄

)
,

where r is the real interest rate. Since
(
V̂ i
t − V̂ i

t−1 −
Et[V̂ it+1]−V̂ it

1+r̄

)
≈ −Et[∆2V̂ i

t+1] with a small r̄,

the procyclicality of returns to scale might change if −∆2V̂ i
t+1 is strongly countercyclical. We assess

the cyclcality of −∆2V̂ i
t+1 by correlating this measure with the value added for all inputs. We

find that −∆2V̂ i
t+1 is either procyclical or acyclical and is not likely to weaken the returns to scale

procyclicality. The correlation of −∆2V̂ i
t+1 with Ŷt is 0.14, 0.08, 0.0001, 0.12, and 0.07 for production

worker, non-production worker, capital, material, and energy, respectively.

B.4 Fixed Costs in Production

This section extends the empirical analyses in Section 2 by allowing the fixed cost of production

along with the structural assumptions to be consistent with the DSGE model presented in Section 3.
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In the translog production function Equation (2.2), we allow the fixed cost as in Equation (3.1):

ln(Y ) = ln(z) +
∑
i

βi ln(V i)︸ ︷︷ ︸
Cobb-Douglas

+
∑
i

∑
k

βik
2

ln(V i) ln(V k)︸ ︷︷ ︸
second-order terms

− υ︸︷︷︸
fixed costs

with βik = βki
(B.6)

where υ is the fixed cost of production.

As in the DSGE model, we assume that firms face monopolistic competition and earn zero profit

at the steady state. Under these assumptions, we derive the first-order condition with respect to

input V i and rearrange the terms to obtain

si = mc
Y + υ

Y

[
βi +

∑
k

βik ln(V k)

]
(B.7)

where mc is the real marginal cost. Equation (B.7) is a special case of Equation (2.4) with

τ i = τ = mcY+υ
Y .

As in our main analyses, we choose an energy input as a choice variable (V i = E), allow the

variables to change across industry and time, and log-linearize and double-demean Equation (B.7) so

that we can implement the estimation. To recover the fixed cost of production in the data, we use

the zero-profit condition at the steady state. This condition makes firms use their profit to recover

their fixed cost of production at the steady state: υ = (Φ− 1)Ȳ , where Φ is the gross price markup

at the steady state. Replacing the fixed cost of production, log-linearizing, double-demeaning, and

rearranging Equation (B.7) with V i = E leads to

ˆ̂sejt +
Φj − 1

Φj

ˆ̂Yjt =
∑
k

δek
ˆ̂V k
jt + ̂̂mcjt (B.8)

where Equation (B.8) is a special case of Equation (2.6) with ˆ̂τ ejt = ̂̂mcjt − Φj−1
Φj

ˆ̂Yjt. The steady state

industry-specific value of price markup is recovered from the simple average of markup across years

(1958-2009) within the industry, where the industry-time-varying price-cost markup is measured

based on De Loecker et al. (2020) methodology from Compustat data as described in Appendix B.2.

With the industry-specific price markup measure, Equation (B.8) can be estimated by either treating

the double-demeaned marginal cost as a residual or controlling the double-demeaned real marginal

cost directly as in Appendix B.2.

Table B.3 reports the results. Regardless of adjusting for the fixed cost of production, we still

observe that the coefficient of the production worker, which governs the complementarity between

energy and the production worker, is positive and statistically significant. Additionally adjusting

for the price markup decreases the coefficient of the production worker but still features large

complementarity. The OLS results are largely consistent with the results in Table 1.

48



Table B.3: Adjusting the Fixed Cost of Production

IV (Lagged Input Prices) OLS

(1) (2) (3) (4) (5) (6) (7) (8)
energy -0.849∗∗ -0.449∗∗ -0.861∗∗∗ -0.176 -0.137 -0.256 0.875∗∗∗ 0.907∗∗∗

(0.344) (0.196) (0.324) (0.237) (0.180) (0.215) (0.034) (0.031)

production worker 2.136∗∗∗ 1.409∗∗∗ 2.106∗∗∗ 1.139∗∗∗ 1.135∗∗∗ 1.248∗∗∗ -0.394∗∗∗ -0.420∗∗∗

(0.610) (0.365) (0.602) (0.364) (0.289) (0.357) (0.049) (0.050)

non-production worker -0.738∗ -0.458 -0.689∗ -0.691∗∗∗ -0.653∗∗ -0.591∗∗ -0.115∗∗∗ -0.136∗∗∗

(0.411) (0.296) (0.398) (0.262) (0.259) (0.253) (0.032) (0.034)

material 0.231 0.639∗∗∗ 0.489∗∗∗ 0.496∗∗∗ -0.191∗∗∗ -0.188∗∗∗

(0.288) (0.162) (0.159) (0.110) (0.051) (0.054)

capital 1.113∗ 1.402∗∗∗ 0.071 0.733∗∗∗ 0.029 0.060∗

(0.576) (0.395) (0.325) (0.213) (0.029) (0.034)

Markup -0.038 -0.024 -0.069 -0.059
(0.096) (0.073) (0.105) (0.051)

Observations 20048 20048 20048 14591 14591 14591 20864 14840

Note: Columns (1)-(3) replicate the regression results in Table 1 columns (1)-(3) by redefining the left hand side
variable by subtracting the term relevant to the fixed cost of production (Φj−1

Φj

ˆ̂Yjt) from the energy share. Columns
(4)-(6) additionally control the double-demeaned price markup. *, **, and *** indicate significance at the 0.1, 0.05,
and 0.01 levels, respectively.

Figure B.2 shows that the procyclicality of returns to scale results remain robust after adjusting

for the fixed cost of production. The returns to scale expression (2.9) does not change with the

presence of the fixed cost of production except that the wedge term τ becomes the real marginal cost,

and there are changes in the estimated production function coefficients used in recovering the returns

to scale. Figure B.2a and B.2b are based on Table B.3 columns (1) and (4), respectively. Regardless

of the use of alternative specifications, the measure of returns to scale is positively correlated with

the value added.

As in our main analyses, separately correlating the components of the returns to scale, which

are the price markup and the sum of input shares, still shows the importance of price markup

procyclicality in generating the returns to scale procyclicality. Based on Figures B.2a and B.2b, the

correlations of value added with returns to scale are 0.64 and 0.5, respectively. The correlations

of value added with the price markup are very close to these values—specifically, 0.67 and 0.56.

However, the correlation of the sum of input shares and value added is -0.28 and does not correspond

to the returns to scale procyclicality.
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Figure B.2: Returns to Scale and Value-Added

(a) Adjust Fixed Cost (b) Adjust Fixed Cost and Control Markup

Note. The y-axis is returns to scale, and the x-axis is value added. All variables are double-demeaned across industries
and year. The slopes of the linear lines in Figures B.2a and B.2b are 1.21 and .59, respectively.

B.5 CES Assumption

This section considers two different methods to test the CES production functional form assumption

conditioned on including energy input in the production function. The first method tests the CES

assumption with respect to energy input only. The second method tests the CES functional form

assumption on any input with a second-order approximation of the production function.

B.5.1 CES Assumption on Energy Input

First, consider the following CES production functional form assumption on the energy input:

Q =
(
c(E) + g(V i;A)

) 1
ρ (B.9)

where g(.) is an arbitrary function of other inputs and productivity components. c is an arbitrary

constant, and A is productivity. i represents the other four inputs. Rearranging the first-order

condition leads to the following equation, similar to Equation (2.4):

log(sejt) = log(c)− ρ log(Qjt) + ρ log(V e
jt) + τjt (B.10)

Note that the CES assumption leads to a testable prediction: the coefficient of output must

equal the negative coefficient of energy input. Double-demeaning leads to an equation similar to

Equation (2.6):
ˆ̂sejt = −ρ ˆ̂Qjt + ρ ˆ̂V e

jt + ˆ̂τjt (B.11)
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Table B.4 estimates Equation (B.11) and rejects the CES assumption on the energy input.

Columns (1) and (2) conduct the regression analysis without imposing any constraint. Regardless

of the use of instrumental variables or not, the coefficient of output significantly differs from the

coefficient of energy input. An instrumental variable (IV) regression result rejects the equality of

the absolute value of the coefficients on output and energy with χ2 = 7.82 (p-value = 0.0052).

The OLS results similarly reject the functional form assumption with a near 0 p-value. Columns

(3) and (4) re-estimate the coefficients while requiring that the coefficients of output and energy

are equal in absolute value. The IV result produces a near-zero coefficient, which supports the

Cobb-Douglas functional form assumption with respect to the energy input, which is rejected in our

main analysis. The OLS results show that ρ is positive, which does not align with the studies that

assume complementarity between energy and other inputs.

Table B.4: Estimation of Equation (2.6) with Additional Controls

IV OLS IV OLS
(1) (2) (3) (4)

Output -0.368*** -0.451*** 0.009 -0.497***
(0.102) (0.069) (0.007) (0.073)

Energy 0.060 0.577*** -0.009 0.497***
(0.119) (0.054) (0.007) (0.073)

J-test .1
(p-value) .75
Observations 23694 24167 23221 24167

Note. Columns (1) and (2) present the result based on an unconstrained regression, and columns (3) and (4) present
the result based on a constrained regression such that the coefficient of energy input is equal to the negative coefficient
of output. Columns (1) and (3) show the regression result with instrumental variables, and columns (2) and (4) show
the OLS result. Output, energy, and lagged input prices are logged and double-demeaned across industries and across
time. The energy price deflator, total payroll, and price of investment are used to instrument the endogenous variables.
Standard errors in parentheses are clustered on the NAICS industry code. J-test refers to Hansen’s J-statistics for the
overidentifying restriction. *, **, and *** indicate significance at the 0.1, 0.05, and 0.01 levels, respectively.

B.5.2 CES Assumption on Any Input

Second, consider the CES assumption on any input in the production function that explicitly

integrates the energy input. We show that assuming the CES assumption requires that
∑

k δik = 0

in Equation (2.5). After testing the null hypothesis of
∑

k δik = 0 for columns (1), (2), and (3) in

Table 1, we strongly reject the null hypothesis with χ2 of 8.51, 11.55, and 11.89, respectively; the

p-values are effectively 0 for all three cases.

Without a loss of generality, we consider below the special cases of a two-factor and three-factor
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translog production function with energy input for the exposition. It is straightforward to generalize

them to five-factor nested CES production functions.

Two-input CES production functions. We begin with a two-factor CES production function.

Suppose that

y = exp(εa) (βll
ρ + βee

ρ)1/ρ , (B.12)

where βl + βe = 1. Two inputs are complementary when ρ < 0. A positive ρ implies that two inputs

are substitutable. When ρ = 0, Equation (B.12) simplifies to a conventional Cobb-Douglas function

exp(εa)lβleβe . In a neighborhood of this Cobb-Douglas function, we approximate Equation (B.12) to

the second order as follows.

log y = εa + βl log l + βe log e︸ ︷︷ ︸
Cobb-Douglas

+
1

2
ρβlβe (log l)2 − ρβlβe log l · log e+

1

2
ρβlβe (log e)2︸ ︷︷ ︸

second-order terms

+O(ρ2). (B.13)

Thus, the CES production function in Equation (B.12) includes the second-order terms with tightly

parametrized coefficients by ρ, βl, and βe. By comparing Equation (B.13) to Equation (2.2), we

obtain βll = ρβlβe, βel = −ρβlβe, and βee = ρβlβe. As a result, βel + βee = 0, which further implies

that δel + δee = 0 because δek = βek
(
τ̄e

s̄e

)
for all k (see discussion following Equation (2.5)). We

conclude that the above CES production function is compatible with a null hypothesis δel + δee = 0

that can be tested by using the estimated delta coefficients in Section 2.

Derivation of Equation (B.13). Let f(ρ; l, e, εa) be log y = εa + log(βll
ρ+βeeρ)
ρ . A Taylor approxi-

mation of log y with respect to ρ around ρ = 0 implies log y = f(ρ) = f(0) + f ′(0)ρ+O(ρ2). Because

it is well-known that f(0) = εa + βl log l + βe log e, we focus on f ′(0) here. Note that

f ′(ρ) =

βll
ρ log l+βeeρ log e
βllρ+βeeρ

ρ− log (βll
ρ + βee

ρ)

ρ2
=

βll
ρ log l+βeeρ log e
βllρ+βeeρ

− [f(ρ)− εa]
ρ

.
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By L’Hospital’s rule, we obtain f ′(0) =
{
βll

ρ log l+βeeρ log e
βllρ+βeeρ

− [f(ρ)− εa]
}′
|ρ=0. As a result, f ′(0) =

1
2

{
βll

ρ log l+βeeρ log e
βllρ+βeeρ

}′
|ρ=0. Algebraically, we can show that

f ′(0) = lim
ρ→0

1

2

[βll
ρ(log l)2 + βee

ρ(log e)2](βll
ρ + βee

ρ)− (βll
ρ log l + βee

ρ log e)2

(βllρ + βeeρ)2

=
1

2

[
βl(log l)2 + βe(log e)2 − (βl log l + βe log e)2

]
=

1

2

[
βl(1− βl)(log l)2 − 2βlβe log l · log e+ βe(1− βe)(log e)2

]
=

1

2
βlβe(log l − log e)2.

Finally, we obtain the desired result:

log y = f(0) + f ′(0)ρ+O(ρ2) = εa + βl log l + βe log e+
1

2
ρβlβe(log l − log e)2 +O(ρ2).

Nested CES production functions. Next, we derive similar results for nested CES production

functions. We concentrate on nested CES functions with three inputs for exposition. First, we begin

with a case where capital is combined with a composite input of labor and energy as follows:

y = exp(εa)
[
βkk

φ + (βl + βe)g(ρ; l, e)φ
]1/φ

, (B.14)

where g(ρ; l, e) = (ξll
ρ + ξee

ρ)1/ρ, βk + βl + βe = 1, ξl = βl
βl+βe

and ξe = 1 − ξl. Clearly, Equation

(B.14) features constant returns to scale. By repeatedly applying the above result for two-input CES

functions, we obtain

log y = εa + βk log k + (βl + βe) log g(ρ) +
1

2
φβk(βl + βe)(log k − log g(ρ))2 +O(φ2),

log g(ρ) = ξl log l + ξe log e+
1

2
ρξlξe(log l − log e)2 +O(ρ2).

With some algebra, we can show that

(βl + βe) log g(ρ) = βl log l + βe log e+
1

2

ρβlβe
βl + βe

(log l − log e)2 +O(ρ2),

φ(log k − log g(ρ))2 = φ [log k − ξl log l − ξe log e+O(ρ)]2 = φ(log k − ξl log l − ξe log e)2 +O(φρ) +O(φρ2).

Thus, we have the following translog approximation of Equation (B.14):

log y = εa + βk log k + βl log l + βe log e

+
1

2

ρβlβe
βl + βe

(log l − log e)2 +
1

2
φβk(βl + βe)(log k − ξl log l − ξe log e)2 +O(||φ, ρ||2),

(B.15)
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which implies that βek = −φβk(βl+βe)ξe, βel = −ρ βlβe
βl+βe

+φβk(βl+βe)ξlξe and βee = ρ βlβe
βl+βe

+φβk(βl+

βe)ξ
2
e . We conclude that βek + βel + βee = 0, and therefore, δek + δel + δee = (βek + βel + βee)

τ̄e

s̄e = 0.

We can obtain a similar result for the case where labor is combined with a composite input

of capital and energy, y = exp(εa)
[
βll

φ + (βk + βe)g(ρ; k, e)φ
]1/φ, by switching the roles between

k and l above. Finally, we investigate the case where energy is combined with a composite input

of capital and labor: y = exp(εa)
[
βee

φ + (βk + βl)h(ρ; k, l)φ
]1/φ, where h(ρ; k, l) = (ζkk

ρ + ζll
ρ)1/ρ,

ζk = βk
βk+βl

and ζl = 1− ζk. In this case, we have

log y = εa + βe log e+ (βk + βl) log h(ρ) +
1

2
φβe(βk + βl)(log e− log h(ρ))2 +O(φ2),

log h(ρ) = ζk log k + ζl log l +
1

2
ρζkζl(log k − log l)2 +O(ρ2),

(βk + βl) log h(ρ) = βk log k + βl log l +
1

2

ρβkβl
βk + βl

(log k − log l)2 +O(ρ2),

φ(log e− log h(ρ))2 = φ [log e− ζk log k − ζl log l +O(ρ)]2 = φ(log e− ζk log k − ζl log l)2 +O(φρ) +O(φρ2).

Thus, we have the following translog approximation of this nested CES production function:

log y = εa + βk log k + βl log l + βe log e

+
1

2

ρβkβl
βk + βl

(log k − log l)2 +
1

2
φβe(βk + βl)(log e− ζk log k − ζl log l)2 +O(||φ, ρ||2).

Here, βek = −φβe(βk + βl)ζk, βel = −φβe(βk + βl)ζl and βee = φβe(βk + βl). Again, we have

βek + βel + βee = 0.

Accordingly, for any three-input nested CES production function, we have βek + βel + βee =

δek + δel + δee = 0.

B.6 Regression Weights

This section revisits the main empirical analyses reported in Table 1 by weighting different industries so

that the estimated parameter better matches the aggregate parameter. We consider both the industry-

time-varying weight and industry-specific weights. As shown in Table B.5, the complementarity

between labor and energy is preserved with the weighting; the corresponding parameter ranges from

1.26 to 1.51 depending on the weights.

B.7 Smaller Number of Inputs

The empirical analyses in Section 2 utilize five inputs (energy, capital, production worker, non-

production worker, and material) available in the NBER-CES data, whereas the DSGE model

presented in Section 3 allows for only three inputs (energy, capital, and labor), which generates a
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Table B.5: Weighted Regression

IV (Lagged Input Prices) OLS

(1) (2) (3) (4) (5) (6) (7) (8)
energy -0.195 -0.212 -0.288 -0.635∗∗∗ -0.454∗∗∗ -0.630∗∗∗ 0.792∗∗∗ 0.885∗∗∗

(0.200) (0.250) (0.231) (0.214) (0.172) (0.209) (0.067) (0.043)

production worker 1.259∗∗∗ 1.302∗∗∗ 1.533∗∗∗ 1.515∗∗∗ 1.157∗∗∗ 1.565∗∗∗ -0.272∗∗∗ -0.334∗∗∗

(0.419) (0.383) (0.475) (0.382) (0.225) (0.358) (0.098) (0.080)

non-production worker -0.496 -0.496∗ -0.670 -0.488 -0.137 -0.525 -0.081 -0.077
(0.382) (0.267) (0.444) (0.324) (0.190) (0.356) (0.071) (0.064)

material -0.126 -0.114 -0.227 -0.133 -0.438∗∗∗ -0.438∗∗∗

(0.102) (0.099) (0.150) (0.091) (0.054) (0.053)

capital 0.011 0.008 0.534 0.301 -0.033 -0.044
(0.242) (0.271) (0.372) (0.300) (0.072) (0.055)

J-test 11.77 11.85 14.78 12.02 14.76 14.8
(p-value) .04 .07 .02 .03 .02 .02
Observations 23220 23220 23220 23220 23220 23220 23220 23220

Note: To inform on the aggregate parameters, we weight the observations by either industry-time-specific output
(“industry-time-weight”) or industry-specific output (“industry weight”). Other regression specifications are identical to
those in Table 1. *, **, and *** indicate significance at the 0.1, 0.05, and 0.01 levels, respectively.

discrepancy between the model and the data. This section revisits the empirical analyses and allows

a smaller number of inputs in the estimation, consistent with the DSGE model.

Table B.6 shows that the strong complementary between labor and energy remains regardless

of combining production and non-production workers or using a value-added production function

that excludes material input. Column (1) combines both production worker and non-production into

all workers, column (2) excludes material input, thereby considering the value-added production

function, and column (3) considers both the combined worker input and the value-added production

function. Regardless of using different specifications, we still estimate the complementarity between

labor and energy that is within a range of the Bayesian estimate in Section 3. The OLS results also

show a similar empirical pattern as in Table 1; the estimated coefficient of energy input is positive,

and the other coefficients are negative.

B.8 Using the KLEMS Data

One potential concern in using the NBER-CES database is that it only covers the manufacturing

sectors, which does not represent the entire US economy. Thus, in introducing the complementarity

parameter into the DSGE model to understand the macroeconomic implications, we use the estimated

parameter from the NBER-CES database as a prior and re-estimate the parameter with the aggregate

data.

As an additional robustness exercise, this section analyzes the KLEMS database. Unlike the
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Table B.6: Estimation with a Smaller Number of Inputs

IV (Lagged Input Prices) OLS

(1) (2) (3) (4) (5) (6)
energy -0.347 -0.854∗∗ -0.929∗∗ 0.852∗∗∗ 0.789∗∗∗ 0.794∗∗∗

(0.231) (0.392) (0.437) (0.029) (0.034) (0.034)

all workers 1.347∗∗∗ 1.858∗∗∗ -0.458∗∗∗ -0.692∗∗∗

(0.395) (0.639) (0.033) (0.032)

production worker 1.848∗∗∗ -0.458∗∗∗

(0.626) (0.035)

non-production worker -0.450 -0.228∗∗∗

(0.355) (0.028)

material 0.257 -0.400∗∗∗

(0.227) (0.027)

capital -0.190 0.854∗ 0.376 -0.024 -0.203∗∗∗ -0.187∗∗∗

(0.370) (0.497) (0.348) (0.021) (0.024) (0.024)
value-added share X X X X
Observations 23221 23220 23221 24167 24166 24167

Note: The “all workers” add the production worker and non-production worker. When material input is excluded
in the regression, we use the value added for the energy share instead of the value of shipment. The energy share
is defined as the energy expenditure over the value added, which subtracts material expenditure from the value of
shipment. In using the instruments, only the input prices that correspond to included inputs are used. *, **, and ***
indicate significance at the 0.1, 0.05, and 0.01 levels, respectively.
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NBER-CES database, the KLEMS database covers the entire sector of the US economy. It includes

key inputs that we use in this paper, such as energy, labor, capital, and material inputs, as well

as its price indexes. It is balanced industry panel data that cover 60 industries over 26 years from

1987 to 2012. This database is available on the Bureau of Economic Analysis (BEA) website and

is used by influential papers, such as Bils et al. (2018). Although the data cover aggregate sectors

over a short period relative to the NBER-CES database, to the best of our knowledge, it is the only

industry-level panel data that have all the relevant information for our estimation technique and

cover the entire US economy.

Table B.7: Using the KLEMS Data

IV (Lagged Input Prices) OLS

(1) (2) (3) (4) (5) (6) (7) (8)
energy 1.369∗∗∗ 1.245∗∗∗ 1.214∗∗∗ 1.439∗∗∗ 1.182∗∗∗ 1.314∗∗∗ 0.906∗∗∗ 0.898∗∗∗

(0.307) (0.318) (0.232) (0.301) (0.278) (0.218) (0.111) (0.090)

all workers 1.578∗∗ 1.674∗∗∗ 1.489∗∗∗ 1.574∗∗ 1.253∗∗ 1.164∗∗ -0.090 -0.210∗

(0.658) (0.618) (0.506) (0.667) (0.525) (0.521) (0.130) (0.110)

material -0.064 0.048 -0.071 0.112 -0.181∗∗ -0.181∗∗∗

(0.292) (0.278) (0.269) (0.244) (0.069) (0.060)

capital 0.165 0.215 0.254 0.338 0.043 0.025
(0.302) (0.276) (0.306) (0.277) (0.074) (0.066)

Industry-time weight X X X X
Industry weight X X X X
Observations 1020 1020 1020 1020 1020 1020 1140 1140

Note: The “all workers” is the labor input available in the KLEMS data. To be consistent with the exercise that uses
the NBER-CES data, we define the energy share after subtracting the service input from the output. To inform on the
aggregate parameters, we weight the observations by either industry-time-specific output (“industry-time-weight”) or
industry-specific output (“industry weight”). As in Table 1, both the one- and two-year lagged input prices are used as
instrumental variables. *, **, and *** indicate significance at the 0.1, 0.05, and 0.01 levels, respectively.

We re-estimate the parameters based on Equation (2.6) with the KLEMS data and replicate

Table 1. Table B.7 presents the results. Given that the motivation of this exercise is to inform

on the aggregate representative parameters, we weight the sample either by industry-time-specific

output (columns 1-3 and 7) or industry-specific output (columns 4-6 and 8). Regardless of the use

of different specifications, we still find a strong complementarity between labor and energy similar

to our main empirical analysis in Table 1. In addition, the complementarity parameter between

labor and energy is in the range with the Bayesian estimation results in Section 3.2. One difference

from Table 1 is that the energy input no longer features the strong diminishing returns, potentially

because industries outside of the manufacturing sectors do not utilize the energy input the same as

in the manufacturing sectors. The OLS results show a similar empirical pattern.
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Appendix C Translog Production Function in the DSGE Model

C.1 Properties of the Translog Production Function

In this section, we discuss in more detail the properties of the translog production function that we

propose. For the clarity of exposition, we abstract away fixed cost (i.e., v = 0) from Equation (3.1):

yt(i) = exp(εat )[k
s
t (i)]

βk [lt(i)]
βl [et(i)]

βe ×

[(
lt(i)

l̄

)βel log(et/ē)(et(i)
ē

)βel log(lt/l)
]
. (C.1)

Equation (C.1) can be broken down into the short-run and long-run components, in which the

short-run component is expressed as the deviation from the long-run component (i.e., the steady

state):

yt(i) = fSR
(
kst (i)

k̄
,
lt(i)

l̄
,
et(i)

ē
; Ωt

)
· fLR

(
k̄, l̄, ē; Ω

)
, (C.2)

where

fSR
(
kt(i)

k̄
,
lt(i)

l̄
,
et(i)

ē
; Ωt

)
≡ exp(εat )

(
kst (i)

k̄s

)βk ( lt(i)
l̄

)βl+βel log(et/ē)(et(i)
ē

)βe+βel log(lt/l̄)

(
=
yt(i)

ȳ

)
,

fLR(k̄s, l̄, ē; Ω) ≡
(
k̄s
)βk (l̄)βl (ē)βe (= ȳ)

(C.3)

with

Ωt ≡ [βk, βl + βel log(et/ē), βe + βel log(lt/l̄)]
′,

Ω ≡ [βk, βl, βe]
′.

(C.4)

A similar decomposition can be found in Cantore et al. (2015) and Koh and Santaeulàlia-Llopis

(2017) in the context of the CES production function in an attempt to resolve dimensionality issues

Cantore and Levine (2012).23 Here, lt and et indicate the cross-sectional average of lt(i) and et(i),

respectively, which individual firms take as a given.

In the above expression, Ωt is a vector of endogenous parameters that govern potentially time-

23As discussed in De Jong (1967), Cantore and Levine (2012) and Cantore et al. (2014), such a distinction
between short- and long-run production functions (or normalization) was implemented to address what is called
the dimensionality issue: under CES technology, factor share parameters no longer directly measure the “share” but
depend on the underlying “dimensions”. This makes such parameters depend on the choice of units, which creates
measurement problems in calibration and estimation. Expressing the production function in deviation from the
steady-state eliminates the dimensional parameters and resolves the issue. As discussed below, our normalization also
makes the translog parameters under our production function no longer depend on the choice of units.
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varying short-run returns to scale of the economy. We write “endogenous” parameters because the

time-varying components are endogenously determined in equilibrium, although individual firms take

these values as a given.24 Ω is a vector of strictly exogenous parameters that govern the time-invariant

and constant long-run returns to scale of the economy. If we evaluate Ωt at the steady-state or on

the long-run horizon, we have Ω = Ω.

The proposed translog production function has the following properties.

1. The bracketed term on the right-hand side of (C.1),
[(

lt(i)

l̄

)βel log(et/ē) ( et(i)
ē

)βel log(lt/l)
]
consists

of the variables normalized by their steady state values. This makes the production function

collapse into the conventional Cobb-Douglas at the steady state.

There are three advantages of the normalization. First, it resolves the dimensionality issue

discussed in De Jong (1967), Cantore and Levine (2012) and Cantore et al. (2014); that is, the

normalization makes βel independent of the choice of units. To illustrate this point, note that un-

der the normalization, the labor and energy input shares are given by wtlt
yt

= λ [βl + βel log (et/ē)]

and petet
yt

= λ
[
βe + βel log

(
lt/l̄
)]
, respectively, where λ is the wedge between the marginal prod-

uct of inputs and real input prices. From this expression, we can see that the parameter βel
is dimensionless because the inputs that appear on the right-hand sides are normalized by

their steady state counterparts (i.e., etē and lt
l̄
), which do not depend on the choice of units.

In contrast, if we do not normalize the production function, then the labor and energy input

shares become wtlt
yt

= λ [βl + βel log et] and
petet
yt

= λ [βe + βel log lt], respectively. In this case,

since the input shares are dimensionless, βel depends on the unit of inputs (et and lt).

Second, it makes the model compatible with the balanced-growth path.25 In this way, the

input complementarity that we introduce (and the resulting procyclical returns to scale) is a

short-run characteristic, which does not affect the long-run growth of the economy.

Finally, the normalization facilitates a comparison with the model without complementarity-

induced procyclical returns to scale because the steady-state is identical across the two models.

2. At the aggregate level, the short-run component fSR has the translog expression:

log

(
yt
ȳ

)
= εat + βk log

(
kst
k̄s

)
+ βl log

(
lt
l̄

)
+ βe log

(et
ē

)
+ 2βel log

(
lt
l̄

)
log
(et
ē

)
3. The complementarity between energy and labor is reflected by a single parameter βel. If βel > 0,

our model features complementarity-induced procyclical returns to scale in the short-run,
24Because the time-varying components in Ωt are endogenously determined in equilibrium, the terminology

“parameter” can be somewhat misleading. Still, we call it an endogenous parameter because it characterizes the returns
to scale of the economy that individual firms take as exogenous. The long-run value of Ωt, Ω, is a vector of strictly
exogenous parameters in the sense that it consists only of deep structural parameters.

25Our medium-scale DSGE model features the balanced-growth path.
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provided that the dynamics of log(et/ē) and log(lt/l̄) are procyclical.

4. Despite procyclical returns to scale, the production function becomes scale-free up to the

first order because log-linearizing the production function yields a form exactly identical to

the log-linearized Cobb-Douglas production function. To see this, consider the first-order

approximation of the production function at the aggregate level:

ŷt = εat + βkk̂
s
t + βl l̂t + βeêt,

where x̂t ≡ log xt
x̄ for an arbitrary variable x.

Therefore, the procyclicality of returns to scale does not generate any additional fluctuation

of output by itself and behaves exactly the same as the conventional Cobb-Douglas up to the

first order. All interesting dynamics arise through the first-order condition of the firm. This

scale-free characteristic up to the first order is one feature that distinguishes our model from the

conventional increasing returns to scale model. In the increasing returns to scale model, both

the production function and the first-order conditions are affected by the increasing returns up

to the first order, while only the first-order conditions are affected by the procyclical returns to

scale in our model.

5. The short- and long-run returns to scale at the individual firm level are given by

Short-Run Returns to Scale (rtst) = βk + βl + βe + βel
[
log(et/ē) + log(lt/l̄)

]
Long-Run Returns to Scale (rts) = βk + βl + βe

(C.5)

Since individual firms take the cross-sectional average variables et and lt as given and do not

internalize their changes, each individual firm takes the returns to scale as a given.

This assumption guarantees that firms’ optimizing behavior is well-characterized by the first-

order conditions. If an individual firm can internalize the change in returns to scale of the

economy, then by choosing a larger amount of labor and energy inputs, each firm can make

their returns to scale arbitrarily large. This would induce firms to choose an infinite amount of

labor and energy inputs. By assuming that individual firms do not internalize the change in

returns to scale, this issue no longer arises.26

26This assumption makes our model similar to the internal increasing returns to scale (IRS) model. In contrast to
an external IRS model in which individual firms take the production externalities as a given and therefore effectively
face constant returns to scale, firms in the internal IRS model take the returns to scale parameter (which is larger than
one) as a given and therefore face increasing returns to scale. In our model, individual firms do not internalize the
change in returns to scale, and firms take as a given the returns to scale evaluated at the aggregate inputs.
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C.2 Aggregation of the Firm-level Production Function

Suppose that Xt is an aggregate quantity of firm-level variable Xt(i) such that Xt =
∫
Xt(i)di. We

denote the logarithm of Xt and Xt(i) by xt and xt(i), respectively.

Lemma. xt =
∫
xt(i) di up to the first order.

Proof. We closely follow the discussion in Galí (2015, Appendix 3.4).

Let Ei{xt(i)} be
∫
xt(i) di. Similarly, we define vari{xt(i)} as

∫
(xt(i)− Ei{xt(i)})2 di.

From the definition of Xt,

1 =

∫
Xt(i)

Xt
di =

∫
exp(xt(i)− xt) di

≈ 1 +

∫
(xt(i)− xt) di+

1

2

∫
(xt(i)− xt)2 di,

where the last line is based on the second-order Taylor expansion. Thus, we have

xt ≈ Ei{xt(i)}+
1

2

∫
(xt(i)− xt)2 di

up to the second order.

It remains to show that At ≡
∫

(xt(i) − xt)2 di is of the second-order. The above equation

implies that Ei{xt(i)} − xt ≈ −1
2At up to the second order. Thus,

At =

∫
(xt(i)− Ei{xt(i)}+ Ei{xt(i)} − xt)2 di

=

∫
(xt(i)− Ei{xt(i)})2 di+ 2

∫
(xt(i)− Ei{xt(i)})(Ei{xt(i)} − xt) di+ (Ei{xt(i)} − xt)2

≈ vari{xt(i)} −At
∫

(xt(i)− Et{xt(i)}) di+

(
1

2
At

)2

= vari{xt(i)}+

(
1

2
At

)2

up to the second order. This result implies that

At ≈ 2± 2
√

1− vari{xt(i)}

up to the second order. Because
√

1− vari{xt(i)} ≈ 1− vari{xt(i)}
2 − [vari{xt(i)}]2

8 up to the second
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order,

At ≈ 2± 2
√

1− vari{xt(i)}

≈ 2± 2

(
1− vari{xt(i)}

2
− [vari{xt(i)}]2

8

)
.

We know that At > 0. Thus, we obtain

At ≈ 2− 2

(
1− vari{xt(i)}

2
− [vari{xt(i)}]2

8

)
≈ vari{xt(i)}

up to the second order. Because vari{xt(i)} is of the second order, the proof is complete.

Consider the firm-level production function (3.1). This implies that

log(yt(i) + υ) = εat + βk log(kst (i)) + βl log(lt(i)) + βe log(et(i)) + βelêt l̂t(i) + βelêt(i)l̂t.

For the Kimball aggregator, it is well-known that yt ≈
∫
yt(i) di up to the first order (Smets and

Wouters, 2007). Thus, by repeatedly applying the above lemma, we have

log(yt + υ) ≈ log

(∫
yt(i) di+ υ

)
≈
∫

log(yt(i) + υ) di

≈ εat + βk log kst + βl log lt + βe log et + βelêt

[∫
log(lt(i)) di− log l̄

]
+ βel

[∫
log et(i) di− log ē

]
l̂t

≈ εat + βk log kst + βl log lt + βe log et + βelêt log

(
lt
l̄

)
+ βel log

(et
ē

)
l̂t

= εat + βk log kst + βl log lt + βe log et + 2βel l̂têt,

where all the approximation is up to the first order. By taking the exponential, we recover the

aggregate translog production function that mirrors the firm-level production function up to the first

order.

yt ≈ exp(εat )[k
s
t ]
βk [lt]

βl [et]
βe

(
lt
l̄

)βel log(et/ē) (et
ē

)βel log(lt/l̄)
− υ.
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Appendix D Additional Impulse Responses

Figure D.1: Impulse responses to price and wage markup shocks
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Notes. The top panels show the responses of output, consumption, investment, and labor to a one-standard-deviation
contractionary price markup shock. The solid, dashdotted, and dashed lines represent the results based on our
benchmark model (HKL), the model without input complementarity (HKL-CD), and the Smets and Wouters (2007)
model (S&W), respectively. Similar responses to a one-standard-deviation contractionary wage markup shock are
illustrated in the bottom panels.

Figure D.1 shows the impulse responses of major macroeconomic variables in response to

price and wage markup shocks at the posterior mode of each of the three models. The top panels

illustrate the responses of output, consumption, investment, and labor to a one-standard-deviation

contractionary price markup shock. The solid, dashdotted, and dashed lines represent the results

based on our benchmark model (HKL), the model without input complementarity (HKL-CD), and the

Smets and Wouters (2007) model (S&W), respectively. Similar responses to a one-standard-deviation

contractionary wage markup shock are illustrated in the bottom panels.

Clearly, HKL features the smallest responses of major aggregate variables to price and wage

markup shocks. For instance, the peak effects on output of a one-standard-deviation price markup

shock is 0.32%, 0.42%, and 0.42% at quarterly frequencies based on HKL, HKL-CD, and S&W,

respectively. For wage markup shocks, the peak effects on output are 0.48%, 0.62%, and 0.70% at

quarterly frequencies. The results for consumption, investment, and labor are similar.
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