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Abstract

The paper applies the synthetic control method to examine the effects of California’s Cap-
and-Trade Program on environmental innovation. The analysis exploits the International
Patent Classification system to identify patents relating to environmentally sound technolo-
gies. This enables the study to focus on the effects of the policy intervention on green patent
filings. A counterfactual is constructed by the combination of other states in the US which
allows the comparison of patent applications in California to the estimated counterfactual
situation in the absence of a Cap-and-Trade program. The study finds that the number
of patents related to green technologies increased by approximately 22.5% after the passing
of the Cap-and-Trade regulation. This result is robust to alternative specifications of the
synthetic control method.
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1 Introduction

Humanity is increasingly affecting the climate through the use of fossil fuels, deforestation and
farming. The IPCC’s Sixth Assessment Report 2021 highlights that increasing emission levels in
the atmosphere and rising global surface temperature call for urgent action to limit warming to
1.5°C above pre-industrial levels. Effectively mitigating climate change requires a technological
shift from current fossil and resource-intensive production to climate-friendly alternatives. Con-
sequently, creating incentives to encourage the development of new energy-efficient technologies
comes into focus for environmental policy makers. The impact of environmental policy on the
development and diffusion of alternative technologies may be a critical determinant in environ-
mental protection (Kneese & Schultze, 1975). Thus, understanding technological developments
and assessing the incentive mechanisms of different policy instruments is essential to policy makers
in designing policies that foster environmental sustainability in the long-run.

In The Theory of Wages, published in 1932, Hicks established the idea that "[a] change in
the relative prices of the factors of production is itself a spur to invention, and to invention of
a particular kind — directed to economizing the use of a factor which has become relatively
expensive”. In other words, it is argued that making a production factor more costly will reduce
its use and associated technological innovations will be developed. In 1991, Porter introduced the
notion of regulation-induced innovation which states that stringent environmental regulation may
spur innovation as firms seek to achieve competitive advantage through technological advances.
Against this background, the inducement effect of environmental policy has received considerable
attention in the recent environmental economics literature. Various quantitative applications of
this hypothesis examining the linkage between innovation and varying policy instruments can be
found in the relevant literature.

The present paper contributes to the existing literature by evaluating the linkage between
regional climate policy and innovation activity at a narrower level. This contrasts with much of
the previous literature which focuses on country-specific or cross-border regulations. An in-depth
understanding of this relationship is particularly important for regions that are severely at risk
from future climate change such as California. The coastal state is anticipated to be largely
affected by environmental threats stemming from climate change. Sea level rise, coastal flooding,
erosion as well as droughts and wild fires call for urgent action to reduce greenhouse gas emissions.

Over the past few decades, California has passed some of the strongest environmental policies
among the states to tackle these challenges, taking a climate leadership role at the subnational
level. In 2006, the California legislature passed the California Global Warming Solutions Act, also
known as the Assembly Bill 32 (AB 32), which marked the beginning of an comprehensive climate
change plan. The law requires the California Air Resource Board (CARB) to develop regulations
and market-based instruments to reduce the state’s total GHG emissions to 40 percent below 1990
levels by 2030. A core component of the state’s climate plan is the California Cap-and-Trade
Program that was approved by the CARB in October 2011 (CARB, 2011). The compliance



obligation took effect on January 1, 2013 scheduled after the first quarterly auction of allowances
in the preceding calendar year (CARB, 2013).! Proceeds from the state’s allowance auctions fund
the California Climate Investments program as reported by the (CARB, 2019). The state’s overall
emission cap set under the program decreased on average by 3% per year from 2015 through 2020
and is set to decline further by 5% up until 2030.2

California’s program is the first multi-sector Cap-and-Trade system in North America, offering
a new opportunity to analyse the effects of regional policies. In light of this, the present study
empirically evaluates the impact of emission trading systems on innovation in environmentally-
friendly technologies by analyzing the effect of the introduction of the Cap-and-Trade program in
California.? The aim is to bring new insights into the effectiveness of policy-induced incentives in
encouraging business and institutions to develop new and green technologies. On a broader level,
the paper seeks to reflect on the policy implications of environmental regulations. As there are
different policy approaches and various policy instruments available to policy makers, the design
of interventions to achieve certain goals is critical. The type of approach and instrument retained
has the potential to impact both the direction and the speed of technological development. With
innovation being a key element to reaching environmental objectives, it is indispensable to further
our understanding of the role of the regulatory framework in encouraging the development of green
technology.

Only a small number of papers have empirically assessed the inducement effect of emissions
trading policies. One of the few studies that make a direct link between emissions trading schemes
and innovation performance is provided by Popp (2003). Alike the present study, Popp analyzes
the level of innovation measured by the annual number of successful patent applications before
and after the introduction of the Acid Rain Program — a major Cap-and-Trade program for SO-
emissions created by the Clean Air Act (CAA) of 1990. Despite the decrease in the level of overall
innovative activity after the passage of the CAA, the study finds that the implementation of the
market-based policy in 1990 did lead to more environmentally-friendly innovation in the form of

increased patenting for higher-efficiency scrubbers.* Taylor (2012), however, shows that patenting

!The system consists of emission allowances that are distributed via both free allocation and quarterly auctions
and is structured into multi-year compliance periods. The first compliance period from 2013-2014 covered large
industrial facilities (e.g. cement, glass, iron and steel, etc.) as well as industries involved with the generation
and importation of electricity. Hence, upon implementation, the emissions cap addressed only emissions in the
energy and industrial sectors — accounting for approximately 36% of total emissions. Beginning with the second
compliance period in 2015, the scheme expanded to include natural gas suppliers and the transport sector (ICAP,
2020). As of 2015, the coverage expanded to approximately 87% of California’s GHG emissions and 360 businesses
representing 600 facilities, respectively. Initially, the program started with a cap of 162.8 Mt COze in 2013. With
additional emitters subject to the system in the second and third compliance period, the cap rose to 394.5 Mt
COse (ICAP, 2020).

2The legislation covers carbon dioxide (COz), methane (CHy), nitrous oxide (N2O), sulfur hexafluoride (SFg),
and hydrofluorocarbons (HFCs).

3Innovation in environmentally-friendly technologies refers to the development of products and processes that
will aid the sustainable development such as low-carbon solutions. Throughout the paper, the terms eco-innovation,
environmentally-friendly innovation and green innovation will be used interchangeably.

4A scrubber is a flue-gas desulfurization technology to remove SO, from flue gases.



for low-sulfur technologies in the US declined after traditional regulation was replaced by the
Cap-and-Trade. Thus, the findings suggest that the Acid Rain Program failed to create long-
term incentives for technological advancement. Taylor finds a similar pattern for the Southern
California NOy Budget Trading Program, demonstrating falling patent activities for NOy-control
technologies after the implementation of emission trading program.

More recently, Calel & Dechezleprétre (2016) investigated the European Union Emissions
Trading System (EU ETS). The EU ETS constitutes the largest Cap-and-Trade program in
the world, regulating nearly half of the European greenhouse gas (GHG) emissions. Exploiting
patents filed with the European Patent Office (EPO), the authors of the study estimate that the
EU ETS is responsible for a 10% increase in low-carbon innovation among regulated firms.

In conclusion, the empirical evidence reveals ambiguous results with respect to the inducement
effect of emissions trading schemes. Thus, there is a need to undertake additional examination
to determine the link between allowance trading and innovative output.

Following previous induced innovation research (Brunnermeier & Cohen 2003; Calel & Deche-
zleprétre 2016; Carrién-Flores & Innes 2010; Lanjouw & Mody 1996; Noailly 2012; Popp 2002),
I rely on patents as proxy to measure innovation. To estimate the impact of the policy interven-
tion, I employ the synthetic control method (SCM) exposed in Abadie & Gardeazabal (2003) and
expanded in Abadie et al. (2010). The idea behind this econometric technique is to construct a
counterfactual — a "synthetic California" — with a weighted combination of selected US states to
obtain a comparable unit. The counterfactual allows the assessment of how green patent activity
would have evolved in the absence of the treatment. The empirical findings of this paper imply
that the implementation of the Cap-and-Trade program spurred innovation of green technologies
in the chosen post-treatment period. Thus, the findings indicate that the policy intervention
incentivized the private sector to develop alternative and renewable energy technologies. This
result bears important implications for regional governments in climate policy discussions.

The study makes two new contributions to the empirical literature on the effects of environ-
mental policy on innovative activity. On the one hand, to the best of my knowledge, the analysis
provides the first empirical assessment of the impact of California’s emissions trading program on
the state’s innovative output, thereby granting insights on the effects of regional environmental
policies. On the other hand, the present study offers additional empirical evidence on the positive
impact of government regulation on the direction and rate of technology. Insights on the driving
forces of innovation can support the development of government policies that effectively address
environmental problems, provide incentives for firms to mitigate pollution activities and help
meet environmental goals.

The remainder of this paper is organized as follows. Section 2 describes the empirical design
and data used to estimate the impact of the policy on innovation. Subsequently, Section 3 presents

the results of the analysis. Section 4 discusses the obtained results and Section 5 concludes.



2 Empirical Analysis

2.1 Method

The analysis makes use of the synthetic control approach originally devised by Abadie & Gardeaz-
abal (2003) and Abadie et al. (2010). This method is chosen because the case setting is not suitable
for traditional techniques such as the commonly used randomized control trial (RCT) which relies
on randomly selecting a subset of people or entities in which the intervention being assessed is
introduced. In evaluating regional policy, it is generally impossible to randomize states, making
non-randomised approaches more suited for analyzing the effect of the emissions trading pro-
gram. Moreover, the SCM improves on the standard difference-in-differences (DiD) approach by
accounting for unobserved determinants with potentially time-varying effects.

On account of this, a growing number of studies evaluating policy interventions apply the
synthetic control method (Andersson 2019; Bretscher & Grieg 2020; Bueno & Valente 2019; Kreif
et al. 2016; Leroutier 2019). The basic idea of this method is to estimate an unobserved coun-
terfactual of the treated unit. This involves constructing a synthetic control unit as a weighted
average of untreated states that is comparable with California before the policy intervention.
This approach allows to compare trends in green patent filings between California and a syn-
thetic counterfactual over time. The notation and proceeding of the paper follows the approach
of Abadie et al. (2010).

Let t = 1,...,T be the observed time period. The year 2000 is selected as the starting point
of the study because a large part of the collected state-level data is only available from this
point onwards. The length of the sample period is further constrained by the duration of the
patent examination process. It may take several years from filing a patent application until
patent approval. Moreover, patent filings are made public only when the patent is granted.
Therefore, data on recent years deliver an incomplete and inaccurate picture due to pending
patent applications awaiting a final decision by the USPTO. In light of this, the method is
applied for the sample period 2000 through 2015.

Let Ty denote the number of pre-intervention periods with 1 < Ty < T. Whilst the Cap-and-
Trade program enters into force in January 2013, the treatment period begins with the passing
of the bill in 2011. The treatment is defined to start in the said prescribed year in consideration
of previous findings by Barbieri (2015) and Taylor et al. (2003) that indicate a rise in patent
applications even before regulations were implemented, implying that anticipated regulations can
encourage firms and organizations to invest in R&D upon implementation. Due to regulations
being published before the effective implementation, inventions are developed beforehand to en-
sure that the requirements can be met. In such a case where forward looking economic agents
react in advance of the policy intervention and there are signs of anticipation, Abadie (2021)
recommends to "[...] backdate the intervention in the data set to a period before any anticipation

effect can be expected, so the full extent of the effect of the intervention can be estimated".



Let J+1 be the states observed over the time period ¢ and let J = 1 be the state of California.
The remaining J states will be referred to as the "donor pool". The donor pool is not affected
by the implementation of the policy under investigation for any period ¢t. The observed outcome
variable of interest for a state i = 1, ..., J + 1 at time ¢ is given by Yj;. Correspondingly, Y7
and Y{, constitute the weighted number of successful environmental patent filings granted by the
USPTO for California under no treatment and under treatment, respectively. Subsequently, the

treatment effect can be denoted as:
I N
ap =Yy — Yy (1)

While the outcome with treatment Yj, can be observed, the counterfactual Y7} has to be esti-
mated. The estimation of the counterfactual is derived from the weighted average of control units
Yji (j =2,...,J + 1) in the donor pool. Therefore:

~ J+1
Vi =3 wYj, (2)
=2

where 23]221 wj =1land 0 <w; <1

Further following the approach by Abadie et al. (2010), Zji% wj is defined as a (J x 1) vector
W of weights, such that each value of W represents a potential synthetic California. The vector
W is obtained by minimizing the discrepancy of the pre-treatment characteristics of California

and the donor pool. Formally, W is derived such that:

11— XoW o = /(X1 — XoW)'V (X1 — XoW) (3)

where X1 = (Zy,Y11,..., Vi) denotes a (k x 1) vector of pre-treatment characteristics for Cal-
ifornia and Xy = (ZJ/-,le, . Yj1,) is a (k x J) matrix for the untreated states. Z; denotes the
vector of predictors of Yj;. Analogous to Abadie & Gardeazabal (2003), let V' be some (k X k)
symmetric and positive semi definite matrix that assigns weights to pre-treatment variables in
such a way as to minimize the mean square error for the pre-treatment periods.

There are numerous advantages associated with the chosen statistical framework. For one
thing, it offers a feasible method to assess the effects of an intervention or policy change that
is unique to a single region. Unlike traditional regression methods that require variation in key
variables across multiple observational units, synthetic control allows for the identification of
policy impacts on an outcome of interest over time for a single or a small number of treated
units. Moreover, in contrast to the DiD approach, SCM makes less restrictive assumptions by
relaxing the parallel trends assumption and allowing for the effects of unobserved variables to
change over time (Kreif et al., 2016). Another advantage of the method as pointed out in Abadie

et al. (2015) lies in the transparency of the weights assigned to each unit of the control group.



This enables a comprehensible and transparent construction of the estimated counterfactual of
interest.

There are, however, a number of difficulties and drawbacks that arise with the synthetic
control methodology as a tool for policy evaluation, as it relies on significant restrictions. First
of all, the SCM approach presupposes the availability of potential controls for the donor pool
that did not adopt similar interventions. Thus, control units affected by similar policy changes in
either the pre-intervention or post-intervention period are excluded from the donor pool. Another
requirement necessary for the success of the method is that pre-intervention characteristics of the
treated and synthetic unit are similar. Additionally, the outcome trajectory of the synthetic
control must approximate that of the treated state during the pre-treatment period (Abadie,
2021). On account of this, other US states are more appropriate potential control units than
European countries in this setting. Further, Abadie notes that the method does not allow for the
existence of spillovers. As this is a severe restriction, it should be account for in the analysis of
the results. Lastly, if the unit affected by the intervention shows extreme values in the outcome
variable during the pre-treatment period, there may not be a weighted average of the untreated
units that can approximate the trajectory of the outcome variable. In such a case, the method
cannot be applied. As a result, I measure the outcome variable per 100’000 population to increase
the comparability of units.’

In summary, the SCM offers various advantages for the estimation of the effects of policy
interventions. Despite the challenges listed above, the SCM is a valuable, beneficial method for
policy evaluation. The credibility of the results relies on achieving a good pre-intervention fit and
on the fulfilment of the requirements. The closeness of pre-intervention outcomes can either be
assessed graphically or by computing the Mean Squared Prediction Error (MSPE).6 A good fit
allows to interpret the discrepancy in the outcome variable during the post-treatment period as
an intervention effect.

The results of the synthetic control method provide empirical evidence on the impact of the
policy intervention on the innovation trend in California measured in terms of patent activity. In
order to test the validity of the findings, a series of robustness checks are performed. Inference
can be derived by running "in-time", "in-space" and "leave-one-out" placebo tests (Abadie et al.,
2010). The in-time placebo consists of assigning the treatment to another date prior to 2011.
For the in-space placebo, the intervention is iteratively reassigned to each of the states in the
donor pool. For the leave-one-out test, the analysis is done by iteratively leaving out one of the
states in the donor pool to examine whether the results are highly sensitive to the exclusion of
one control unit. These methods of inference are based on the premise that the credibility of the

synthetic control estimator would be severely undermined if effects of similar magnitudes could

5California is extreme in the values of green patent counts compared to the states in the donor pool as can be
seen in Figure 3a.

5The MSPE is defined as the average of the squared discrepancies between the outcome of the treated unit and
the outcome of the synthetic counterpart.



be obtained from the placebo runs. Thus, the placebo tests are used to rule out the possibility

that the effects of the treatment do not depend on the treatment itself.

2.2 Data

A. Patent Data

This paper makes use of the number of patent applications to measure innovative activities. This
metric is a common approach in the relevant literature, which is attributable to patents being
"[...] a means of protecting inventions developed by firms, institutions or individuals, and as
such they may be interpreted as indicators of invention" OECD (1994). In the survey Patent
Statistics as Economic Indicators, Griliches (1990) puts forth benefits of patents as indicator for
inventive output. These include the availability of data over a long period of time as well as the
fact that patents are only granted by a patent office if they pass an objective standard. The
latter implies that a technology protected by a patent does constitute as an invention, as there is
a standard of novelty and utility imposed on the granting of such a right. Moreover, Archibugi
(1992) argues that due to the lengthy and costly process of obtaining the grant of a patent, only
innovations which are expected to provide future benefits to compensate for these costs are being
filed for application. These are key features in the frequently applied distinction between the
terms "innovation" and "invention" by Schumpeter (1939).” A further major advantage of patent
indicators is the accessibility of detailed information on the inventive activity and the respective
inventor. In addition, the patent description specifies the technical field to which the invention
relates, thus providing information not only on the rate but also on the direction of technological
innovation (Archibugi, 1992).

Despite the many positive aspects, there are also a number of drawbacks associated with
patents as a measure of innovation. First of all, not all inventions are patentable and not all
inventions are patented as it is only one out of several ways to protect successful research results.
However, concerning this point Dernis et al. (2001) note that there are very few examples of
significant inventions that have not been patented. Secondly, the propensity to file patents varies
between sectors, industries and type of inventions (Archibugi 1992; Desrochers 1998). Certain
fields in the industry experience more patent registrations than others, which may lead to a
skewed view of the rate of innovation. Lastly, the skewed distribution of patent value presents a
further disadvantage. Patents differ significantly in regards to their economic value (Archibugi
1992; Griliches 1990; Lanjouw et al. 1998). Aggregation of patents with heterogeneous values
implies that highly valuable innovations and innovations of minor value are placed under the
same umbrella. Thus, when applying an indicator derived by merely counting the number of

patents, all innovations are weighted equally, regardless of their economic value.

"Schumpeter defines invention as the act of “intellectual creativity” with no economic significance, whereas an
innovation refers to the introduction of a novel technical idea with commercial purpose. By this definition, granted
patent applications are an appropriate indicator to capture technological innovation.



In sum, irrespective of the above mentioned limitations, the OECD’s manual on the measure-
ment of scientific and technological activities (1994) considers patent-based indicators as useful
means for studying the innovation process, as they provide more detailed information compared
to other indicators and are available at a highly disaggregated technological level. To this end,
the analysis makes use of US patent data, drawing upon detailed information on published patent
filings directly relevant to clean technologies.

The patent data is collected from the U.S. Patent and Trademark Office (USPTO) online
database. The USPTO provides a publicly available data set, consisting of a complete history

6.8 The present analysis restricts the data to

of patent applications for all states as of 197
successful patent applications (i.e. granted patents). Only including granted patents ensures
that the applications meet the requirements of novelty and marketability.

To account for differences in importance and value of inventions, the patents are weighted
using a logarithmic transformation of the number of forward citations.!® This citation-weighted
indicator overcomes the issue of the skewed distribution of patent values (OECD, 2009).!! Fur-
ther, I compute the patent count per 100’000 inhabitants to make it comparable across states.
Consequently, the outcome variable is given by the citation-weighted annual count of granted
green patent applications per 100’000 inhabitants per state.

Since the core of this analysis rests on environmentally-friendly technology, a specific search
for relevant patents is required. For this, I rely on the International Patent Classification (IPC).
This classification system was developed at the World Intellectual Property Organisation (WIPO),
classifying inventions into over 70’000 classification groups and subgroups. In order to identify
the relevant patents, I adopt the "IPC Green Inventory".'? The tool was developed to facilitate
searches for patents relating to Environmentally Sound Technologies (ESTs) and contains 200
topics organized into seven major areas: a) administrative, regulatory or design aspects; b)
alternative energy production; c) agriculture/ forestry; d) energy conservation; e) transportation;
f) nuclear power generation; and g) waste management. Further details are given in Appendix
A.3, Table A.3.

8Documentation updated on March 30, 2021.

9All patents originating outside the US are eliminated from the data set along with incorporated and unincor-
porated territories as well as military states. Additionally, I remove all patent documents with faulty or incomplete
information.

0Fach patent application is multiplied by In(2 + #forward citations). Because the number of citations increases
over time as older patents have had more time to accumulate citations, only citations within the first five years of
publication are counted to avoid bias (OECD, 2009). Studies have found that a citation window of the first five
years following publication is a reasonable indicator for the number of citations received for each patent application
as the majority of all citations occur during this period (Narin & Olivastro 1993; Breschi et al. 2006).

1 Several studies provide evidence that the number of citations a patent receives is a valid measure of the tech-
nological importance and value of an invention (Carpenter et al. 1981; Lanjouw & Schankerman 1999; Trajtenberg
1990).

12The Green Inventory is one of several green patent classification systems. It is adopted in this paper due to
being the most widely used classification in academic literature (Tanner et al. 2019).



For each relevant patent, I retrieve several bibliographic data including filing date, grant date,
IPC code as well as details of the inventor and assignee.'® The patent origin is determined by the
residence of the inventor and the assignee. In the case of two or more entities residing in different
states, analysts suggest "sharing" the patent among the respective states (fractional counting),
avoiding double counting (OECD, 1994).'* It has to be noted, however, that this approach can
result in over- or underestimation of some states, as the different contributions to the inventive
output of several inventors may not have equal weight.

Further, to capture the point of emergence of innovation, the present analysis follows previous
research that has found that the date of application is a good indicator of R&D activity (Griliches,
1990).%5 Accordingly, I determine the weighted number of patents per year for each US state and
calculate the corresponding rates per 100’000 population.

Figure la depicts the evolution of patent filings from 1976 until 2015 distributed by year
of application in the US. During the observed period, the US exhibits a strong increase in the
number of both total and green patent filings. Figure 1b graphs the development of patent filings

for California. The state shows similar trends in patent filings to the US.

Figure 1: Patent Filing Trends, 1976-2015

Green Patents

Green Patents

Aggregate Patent Applications

100000 150000 200000

50000

Aggregate Patents

Introduction Cap-and-Trade —»

1980

1985

T T
1990 1995

T T T
2000 2005 2010 2015

Year

(a) US Patent Trends

4000 6000 8000 10000

2000

o

Green Patent Applications

Aggregate Patent Applications

10000 20000 30000 40000 50000

0

Aggregate Patents

Introduction Gap-and-Trade —»

T
1980

T
1985

T T T T
1990 1995 2000 2005 2010

Year

(b) California Patent Trends

2015

1500 2000

1000

500

o

Green Patent Applications

BTnventorship is independent of the assignment of a patent. The person(s) listed as an inventor on a patent
application is determined by who conceived of the invention. In contrast, the assignee is defined as the entity that
holds the property rights to the patent. By United States patent law, a patent application is required to be in the
name of the inventor, a company cannot be the inventive entity. Thus, in the case of an independent inventor, the
inventor and the assignee is one and the same. In the case where an employee of a firm or organization produces
an innovation, typically, that inventor’s patent rights are assigned to the company.

1 This case can occur if either (i) there are two or more inventors; (ii) inventor and assignee differ; or (iii) there
are multiple partial assignees of the patent property. For example, when two inventors residing in the same state
have assigned the property right to a third party of a different state, two-thirds of the patent is credited to the
resident state of the inventors and one-third is ascribed to the assignee’s state of residency.

15 As Griliches notes, the date of application is a more accurate approximation than the date of grant due to the
duration of the patent grant procedure.



At the beginning of the century, both the US and California experience an increase in green
patent applications. Towards the end of the observed period, however, the number of green patent
application declines. A comparison of the development in the USA and California shows that
this downward trend sets in earlier in the USA.

This decreasing trend in environment-related patent applications is in line with previous
published results on the development of environmental who recorded a decline in the number of
patent applications (Ledén et al. 2018; OECD 2021; Urbaniec et al. 2021). The studies report
that patent filings in the field have declined for some technologies, notably patenting activity in
alternative energy technologies. This development is not exclusive to the US but can also be
observed in countries such as Germany, Japan and China. The reasons for this development are

not entirely clear.

B. Other Data

Beyond the patent data provided by the USPTO, I include data on variables predicting green
patent activity into the research framework to build the synthetic counterfactual.'® The values of
the chosen predictor variables are included in the pre-intervention characteristics of the treated
unit X; and the untreated unit Xy, respectively. For each predictor, annual US state-level data
from several federal bureaus was collected. The data are described below and summarized in
Appendix A.4, Table A.4.

As mentioned in the introduction, Hicks (1963) put forward the notion that changes of relative
factor prices impact the direction of technological progress. From this it follows that rising energy
prices may induce energy-saving innovation. This underscores the importance of energy prices on
technological change. As a consequence, total energy average prices published by the US Energy
Information Administration are included. State energy prices are available since 1970 and are
measured in 2020 USD per million Btus.

In view of the importance of science and engineering (S&E) in creating innovation, the analysis
includes three state-level S&E indicators. As an indicator for higher educational attainment in
the field of S&E, the number of bachelor’s degrees awarded in S&E fields conferred per 1’000
individuals 18 to 24 years old is included.!” The variable is lagged by three years, as I expect
that its effects on patent activity take a few years to unfold. The data is drawn from the US
Department of Education and indicates educational attainment in S&E fields. Similarly, a state
indicator of business establishments in high science, engineering, and technology (SET) is used as
a predictor of S&E in the economy.'® The indicator is measured in percentage of total business

establishments. In addition, to account for the concentration of scientific and technical jobs,

Macroeconomic variables and crude oil prices affecting the entire national economy can be disregarded due to
the empirical framework.

17S&E fields include the physical, life, earth, ocean, atmospheric, computer, and social sciences; mathematics;
engineering; and psychology.

8High SET employment industries are defined as industries in which the proportion of employees in technology-
oriented occupations is at least twice the average proportion for all industries.
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a predictor measuring the employment in High SET establishments as a percentage of total
employment is also included. The predictor captures the extent to which a state’s workforce is
employed in these industries. Data is provided by the US Census Bureau.

Considering that technological innovations may have a positive effect on a firm’s exports, a
predictor representing the state exports measured in total global merchandise exports in millions
of 2020 USD is included. Further, R&D expenditures are likely to be a significant driver of in-
novative, environmentally-friendly output. Thus, to account for investments in R&D, I include
a one-year lagged indicator using data collected from the National Center for Science and Engi-
neering Statistics. The variable is measured in total state-level performed R&D as a percentage
of GDP. Finally, annual state-level GDP per capita measured in 2020 USD and one-year lagged
real GDP growth are included as predictor variables. GDP data and population estimates are
drawn from the US Bureau of Economic Analysis and the US Census Bureau, respectively.

Descriptive statistics for all predictor variables based on the estimation sample are presented
in Table 1.

Table 1: Descriptive Statistics

Variable N  Mean Std. Max Min
Dev.
(In) GDP per Capita 544  3.78 0.32 5.22 3.14
Real GDP Growth (1-year lag) 544  1.94 2.83 22.30 -8.80
Total Energy Average Price 544  16.39 5.10 40.15 6.69
R&D expenditure (% of GDP, 1-year lag) 510 1.70 1.03 5.98 0.27
Exports (% of GDP) 544  6.97 3.88 27.66 0.75
SEE Indicators:
High SET Establishments 442 8.03 2.16 17.77 4.68
Employment in High SET (% of Total) 442 10.58 2.69 18.21 5.42
S&E BA Degrees (3-year lag) 442 15.73 7.93 62.65 5.13

Notes: Differences in the number of observations are due to heterogenous time periods. The variable
R&D expenditures and the S&E Indicators are only available as of 2001 and 2003, respectively.

2.3 The Donor Pool

In the selection of the control units it is essential to choose regions of high comparability to
California in terms of green innovation activity in the pre-treatment period so as to create a
counterfactual that closely resembles the state. Thus, the resulting set of control units ought to
consist of regions with pre-treatment predictor variables Xy comparable to those of the treated

state X;. In addition, care must be taken to ensure that the states in the donor pool did not
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adopt any statewide interventions similar to the Cap-and-Trade during the period of the study.'?

The present research restricts the donor pool to states in the US. Ten states (Connecticut,
Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Rhode
Island and Vermont) are excluded from the sample due to being members of the mandatory Cap-
and-Trade program Regional Greenhouse Gas Initiative (RGGI) established in the year 2009.2°
Further discarded are states that initially joined the Western Climate Initiative (WCI) (Arizona,
Montana, New Mexico, Oregon, Utah and Washington), a non-profit cooperation established
in 2007 with the goal to collectively evaluate and implement emission policies to reduce GHG
emissions to 15% below 2005 levels by 2020 (Warren & Tomashefsky, 2009). To achieve this
reduction goal, the WCI jurisdictions developed design recommendations for the WCI Regional
Cap-and-Trade Program which were released in July 2010, calling for implementation of the
program by January 1, 2012. With the passage of AB 32, which authorized the creation of
California’s Cap-and-Trade, California implemented its Cap-and-Trade program under guidelines
of the WCI. The other US jurisdictions, however, withdrew in November 2011. Although the WCI
is limited to California and several Canadian provinces at the present moment, the aforementioned
states are excluded from the donor pool on the grounds that the anticipated implementation of
the WCI Cap-and-Trade Program prior to the official withdrawal by the states may bias the
estimation.

I further drop the state of Missouri due to incomplete data on R&D expenditures. Con-
sequently, the final donor pool consists of the remaining 33 states (including the District of
Columbia).

19The SCM allows to disregard nationwide policy interventions in this setting as the outcome path of each state
is uniformly affected.

20The state of Virginia effectively joined the RRGI on January, 2021. As the state was not yet a member of the
initiative during the observation period and a possible anticipation effect does not reach back to the observed time
period, Virginia is not eliminated from the donor pool.
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3 Results

3.1 The Synthetic Counterfactual

As a first step, Figure 2 depicts the trends in green patent filings in California compared to a
naive counterfactual, which is constructed using the simple average of the donor pool. The figure
shows that California and the donor pool average experience different paths throughout the entire
sample period. In contrast to the naive counterfactual, California exhibits a significantly higher
level of environmental patent activity before as well as after the policy implementation and records

stronger growth beyond 2004, whereby the gap becomes larger each year.

Figure 2: Trends in Green Patent Filings: California vs. Donor Pool Average

——  California — — — - Donor Pool Average

Green Patent Applications
3
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These differing trends demonstrate that the state’s average does not provide a suitable com-
parison unit for evaluating the intervention effects on patent activity. Hence, to recreate the
pre-intervention path of California, a synthetic control is constructed as the weighted combina-
tion of US states in the donor pool to match the pre-treatment outcome. The weights w; are
estimated according to the algorithm developed by Abadie et al. (2010) and reported in Table 2.
The displayed values represent the vector of weights W of each control state in the donor pool
and indicate that the synthetic California is best reproduced by a combination of the District of
Columbia, Hawaii, Idaho, Michigan, Texas and Virginia. The remaining states in the donor pool

are assigned a weight of zero.
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Figure 3 provides insight into state-level trends in green patent activity. The figure includes
trajectories for California and the six states that make up the synthetic counterfactual. For
the pre-treatment period, the figure shows that California’s patent application trend features a
similar pattern as the trends in Michigan and Texas, albeit at a higher level. That is, at the end
of the observation period, the USPTO granted nearly three times as many patents to California
than to Michigan and Texas. For the other four states, the figure depicts a consistently low level
of green patent activity and hardly any increase throughout the entire period.

Considering that the US states differ wildly in terms of population size, the number of patents
granted in absolute terms as presented in Figure 3a do not provide an accurate comparison.
Thus, population size is taken into account. The results are depicted in Figure 3b, which plots
the trajectories of green patent applications per 100’000 population for the sample period. The
generally increasing trend during the pre-treatment period as seen in the previous graph remains.
Yet, the differences between California and the six donor states are less pronounced, as the
consideration of population size narrows the differences between the states. Michigan, the state
with the highest relative patent count, undergoes a significant rise from 2000 until 2013. Moreover,
the District of Columbia and Idaho stand out with volatile movements. In contrast, the remaining
three states in the donor pool, Hawaii, Texas and Virginia, show a fairly low overall increase in
patent activity. It is also striking to see that all depicted states except for Idaho experience a

decline in green patent activity towards the end of the observation period.?!

Table 2: State Weights in Synthetic California

Weight State Weight State

0.000 Alabama 0.000 Mississippi
0.000 Alaska 0.000 Nebraska
0.000 Arkansas 0.000 Nevada

0.000 Colorado 0.000 North Carolina
0.074 District of Columbia 0.000 North Dakota
0.000 Florida 0.000 Ohio

0.000 Georgia 0.000 Oklahoma
0.086 Hawaii 0.000 Pennsylvania
0.058 Idaho 0.000 South Carolina
0.000 Hlinois 0.000 South Dakota
0.000 Towa 0.000 Tennessee
0.000 Indiana 0.146 Texas

0.000 Kansas 0.335 Virginia

0.000 Kentucky 0.000 West Virginia
0.000 Louisiana 0.000 Wisconsin
0.300 Michigan 0.000 Wyoming
0.000 Minnesota

21gee Section 2.2
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Annual Green Patent Filings

Figure 3: State-level Trends in Green Patent Activity, 2000-2015
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Lastly, Table 3 displays the relative weights corresponding to each of the key predictor in
the V' matrix and compares the mean values of key predictors for California (X;), the synthetic
California (X() and the sample average for the control units in the donor pool in the pre-treatment
period. The predictor with the highest weight is exports, followed by the three S&E indicators and
(In) GDP per capita. This highlights the importance of including predictors related to science and
engineering education, workforce and knowledge-intensive industries. In contrast, GDP growth,
R&D expenditure and total energy average price do not have substantial power in predicting the

number of green patent applications.

Table 3: Predictor Means for Green Patent Filings

Variables Weights Treated  Synth. Sample
Mean
(In) GDP per Capita 0.128 3.86 3.82 3.70
GDP Growth (1-year lag) 0.035 2.46 1.66 1.95
Total Energy Average Price 0.057 16.93 15.38 14.43
R&D expenditure (% of GDP, 1-year lag) 0.047 4.22 2.82 1.62
Exports (% of GDP) 0.246 6.99 6.92 6.23
SEE Indicators:
High SET Establishments 0.124 10.02 9.77 7.97
Employment in High SET (% of Total) 0.205 13.56 13.51 10.48
S&E BA Degrees (3-year lag) 0.159 15.78 18.77 15.73

Notes: The predictor variable R&D expenditure is averaged over the period 2001-2015. High SET
Establishments, Employment in Hgh SET, and S&E BA degrees are averaged for the period 2003-2015.
All remaining predictors are averaged for the 2000-2015 period. Data measurements are presented
in Appendix A.4, Table A.4. The values of the sample mean are simple averages with equal weights
assigned to each donor pool unit.

The predictor values prior to the treatment illustrated in Table 3 further confirm that the state
average does not provide a suitable control group due to large differences in pre-treatment char-
acteristics. In contrast, the table indicates that the synthetic counterfactual provides a better

approximation of the factual situation and a good fit.

3.2 California vs. Synthetic California

The preceding visualizations give a descriptive indication of the evolution of patenting activity
from 2000 onwards. However, it is unfeasible to derive any conclusions on the relation between
environmental policy and patenting activity based on the descriptive statistics above. To obtain
an accurate policy evaluation, the synthetic control method is used to analyze the effects of the
Cap-and-Trade.

Figure 4 plots the trajectories of patent applications relating to environmentally-friendly tech-

nologies for both California and its synthetic counterfactual during the period 2000-2015. As
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noted in Section 2.1, the credibility of the synthetic control estimator depends on the mean
squared prediction error and how closely the outcome path of the counterfactual follows that of
the treated state. As can be seen from the picture, the treated and synthetic California have
a similar trajectory of the outcome variable before the treatment in 2011, with a pre-treatment
MSPE of 0.005. These findings suggest that the synthetic state provides a good approximation to
the number of filed green patents applications in California. Further, the figure shows that while
the synthetic California tracks the trajectory of California closely for the entire pre-treatment
period, the trends begin to diverge noticeably after 2011. The discrepancy between the two tra-
jectories right after the passage of the law indicates a positive effect of the Cap-and-Trade on
patenting activity relating to environmentally-friendly technology in California.

Though both California and its counterfactual display a decline in green patent filings towards
the end of the post-treatment period, the decline occurs later for California. This suggests
that the introduction of the emission trading system counteracted the decline in green patent
activity in early years by incentivizing businesses under the cap to develop environmentally sound
technologies.

The estimated effect of the intervention is given by the difference between the number of
patent filings in California and its synthetic version in the post-treatment period which can be
interpreted as the annual increase in successful green patent filings resulting from the passing of
the bill. Figure 5 visualizes this gap between the synthetic and treated California. The findings
suggest that in the post-treatment period, the green patent filings in California increased by

about 22.5% on average relative to the synthetic control.

Figure 4: Trends in Green Patent Filings: California vs. Synthetic California
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Figure 5: Green Patent Filings Gap between California and Synthetic California
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3.3 Inference

As previously mentioned, inference is conducted by running a series of placebo tests. For the
in-time placebo test, the year of treatment is shifted to a date prior to the intervention. If
assigning the treatment to a date before the introduction of the Cap-and-Trade resulted in a
large difference between the synthetic and observed California, this would cast doubt on the
claim that the effect found in the main analysis results from the policy intervention. To verify
that the observed results are not caused by the passage of AB 32, the treatment is assigned
to 2006. Figure 6 shows the resulting synthetic California and the new patent filings gap. As
can be seen in the figure, the resulting synthetic counterfactual closely reproduces the synthetic
counterpart obtained in the main analysis. Most importantly, the green patent filings trajectories
of California and its synthetic counterfactual do not diverge after 2006. That is, in contrast to
the actual implementation of the intervention in 2011, randomly assigning the intervention to
2006 has no perceivable effect. Thus, this suggests that the gap estimated in Figure 5 reflects the
impact of the Cap-and-Trade, ruling out the possibility that the effect arises for reasons other
than the treatment.

For the in-space placebo test, the synthetic control method is iteratively applied to every
control unit in the sample and compared to the main specification. The gaps associated with
each of the 33 runs of the test determine whether the gap associated with the actual synthetic

control unit differentiates itself from the other estimated gaps. Thus, the conception is to test
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Figure 6: Green Patent Filings: In-Time Placebo Test
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whether any control unit experiences similar or even larger increases in patent applications relative
to its respective synthetic version. If this were the case, inspite of the fact that no intervention
took place, such an outcome would indicate that the results illustrated in Figure 4 and 5 may
be driven by other factors than the introduction of the emissions trading system. The results of
the in-space placebo are displayed in Figure 7. The grey lines denote the estimated gaps between
the control units in the donor pool and the corresponding counterfactual. The bold black line
represents the gap between the treated and synthetic California. Figure 7a depicts the gaps for
California and all 34 control states. The grey lines indicate that for some states in the donor pool
the synthetic control method is unable to accurately replicate the path of green patent filings in
the period before 2011. The states with the worst fit in the pre-intervention period are Michigan
and Washington with a MSPE of 2.237 and 2.268, respectively. The two states exhibit a very
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large MSPE relative to the median MSPE among the 33 control states in the pre-intervention
period with a value of 0.02. This demonstrates that for those states there is no combination of
control units in the sample that will accurately replicate the path of patent filings before the
treatment period.

Abadie et al. (2010) recommend the exclusion of control units with a high MSPE due to poor
pre-treatment fit to achieve a meaningful comparison. In consequence, Figure 7b discards states
with a MSPE equal or higher than four times the MSPE of California. Among the eighteen
states remaining, the solid line from the main specification clearly stands out, depicting the
largest increase in patent applications from 2011 onwards.

Further, the ratios of post/pre-2011 MSPE for California and all states in the donor pool
are computed to evaluate the estimated gap in the main specification relative to the gaps of the
states in the donor pool. The underlying assumption is that a large ratio is indicative of a casual
effect from treatment. The ratios serve to illustrate the differences in the magnitude of the pre-
and post-intervention gap for California relative to the gaps obtained in the placebo tests. This
juxtaposition allows to calculate the probability of obtaining results of the magnitude of those
obtained for California by measuring the fraction of control states with MSPE ratios larger than
(or as large) as California (Abadie et al., 2010). Figure 8 shows that California differentiates
itself notably from most of the 33 control states and exhibits the largest MSPE ratio among the
observed states. That is, if one were to assign treatment at random, the probability of attaining

a post/pre-intervention ratio this large is 1/34 = 2.94%. Thus, this ratio can be interpreted as

Figure 8: Post-/Pre-Intervention Ratios of the MSPE
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the p-value at which the null hypothesis can be rejected.

For the leave-one-out placebo test, the six control states with a positive weight w; are itera-
tively eliminated from the donor pool to examine whether the main results are sensitive to the
exclusion of one donor pool state. The objective is to assess the extent to which the results in
Section 3.2 are driven by any particular control unit. Thus, I re-estimate the model excluding
at each iteration one of the six states used to construct the synthetic counterfactual, namely
Washington, Hawaii, Idaho, Michigan, Texas and Virginia. Figure 9 displays the results of the
placebo test.

As can be seen from the figure, eliminating Michigan deteriorates the pre-treatment fit. A
potential explanation for this outcome can be found in Table 4 which presents the detailed
results of the placebo test. When omitting Michigan, the synthetic control assigns a high weight
to the state of Minnesota which is not present in the baseline estimation. This impairs the
predictive ability of the model (MSPE of 0.034) and the magnitude of the estimated effect is
likely overestimated (29%). The remaining leave-one-out estimations yield good fits. Further,
the obtained state weights assigned to the donor pool are comparable to those in the main
specification. This suggests that the leave-one-out estimates are robust to changes in the synthetic
control state weights. The elimination of Washington, Idaho, Hawaii, Texas and Virginia provides
us with a range for the estimated treatment effect, from an average increase in green patent filings
of 17.1% (for the elimination of Washington) to 24.7% (for the elimination of Idaho).

Figure 9: Green Patent Filings: Leave-One-Out Placebo Test
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Table 4: State Weights from the Leave-One-Out Placebo Test

Washington Hawaii Idaho Michigan  Texas Virginia

Alabama 0.000 0.000 0.000 0.000 0.000 0.000
Alaska 0.000 0.000 0.000 0.000 0.000 0.000
Arkansas 0.000 0.000 0.000 0.000 0.000 0.000
Colorado 0.000 0.000 0.000 0.000 0.000 0.349
Washington — 0.067 0.100 0.090 0.075 0.052
Florida 0.000 0.000 0.000 0.000 0.000 0.000
Georgia 0.000 0.000 0.000 0.000 0.000 0.000
Hawaii 0.000 — 0.000 0.000 0.032 0.071
Idaho 0.126 0.047 — 0.179 0.035 0.001
Illinois 0.000 0.000 0.000 0.000 0.000 0.000
Towa 0.000 0.000 0.000 0.000 0.000 0.000
Indiana 0.146 0.000 0.000 0.000 0.000 0.000
Kansas 0.335 0.000 0.000 0.000 0.000 0.000
Kentucky 0.000 0.000 0.000 0.000 0.000 0.000
Louisiana 0.000 0.000 0.000 0.000 0.000 0.000
Michigan 0.317 0.316 0.302 — 0.327 0.241
Minnesota 0.103 0.000 0.001 0.600 0.000 0.045
Mississippi 0.000 0.000 0.000 0.000 0.000 0.000
Nebraska 0.000 0.000 0.000 0.000 0.000 0.000
Nevada 0.000 0.241 0.000 0.000 0.242 0.000
North Carolina 0.000 0.000 0.000 0.000 0.000 0.000
North Dakota 0.000 0.000 0.143 0.000 0.000 0.000
Ohio 0.000 0.000 0.000 0.000 0.000 0.000
Oklahoma 0.000 0.000 0.000 0.000 0.000 0.000
Pennsylvania 0.000 0.000 0.000 0.000 0.000 0.000
South Carolina 0.000 0.000 0.000 0.000 0.000 0.000
South Dakota 0.000 0.000 0.000 0.000 0.000 0.000
Tennessee 0.000 0.000 0.000 0.000 0.000 0.000
Texas 0.000 0.127 0.115 0.131 — 0.241
Virginia 0.455 0.201 0.337 0.000 0.288 —

West Virginia 0.000 0.000 0.000 0.000 0.000 0.000
Wisconsin 0.000 0.000 0.000 0.000 0.000 0.000
Wyoming 0.000 0.000 0.000 0.000 0.000 0.000
Estimated Effect 17.1% 18.6% 24.7% 29.0% 22.2% 18.5%
MSPE 0.009 0.004 0.006 0.034 0.005 0.003
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I undertake several further sensitivity checks to examine the validity of the synthetic control
estimates. In a first step, I extend the donor pool to include all US states. The resulting synthetic
control estimates presented in Figure A.1 produce a fairly similar outcome. As can be seen in the
figure, the path and gap plot are comparable to those obtained in the baseline specification. Note
that the inclusion of the full sample changes the assigned weights considerably. Nevertheless, the
treatment effect is not significantly affected.

In a second step, I assess the initial donor pool selection. The main criterion for dropping
WCI and RRGI states is to avoid the inclusion of units that adopted similar policy changes
during the sample period. To reproduce the estimation with changes to the donor pool, I re-run
the estimation by including the six states initially discarded due to the WCI membership when
constructing the counterfactual. Subsequently, I re-run the estimation by expanding the initial
donor pool to include the the member states of the RGGI. The results are presented in Figure
A.2 and A.3, respectively.

The inclusion of the WCI leads to a poor pre-treatment match indicating that there is no
weighted average of untreated units in the donor pool that can approximate the pre-treatment
trajectory of the outcome variable for the treated unit due to the high value assigned to the
state of Washington. In contrast, the re-estimation with the RGGI produces a very similar
outcome as the baseline results despite a notable change in the distribution of state weights. This
suggests that in the case of a good pre-treatment fit, the main results are fairly robust to the
undertaken modifications in the donor pool which is an encouraging finding, as it indicates that
the counterfactual outcome trajectory is not dependent on a particular combination of states.

As a final robustness check, I re-run the baseline model using a data set constructed by em-
ploying a different green patent classification system to ensure that the results do not depend
on the chosen classification system. The reason for this lies in the fact that the identification of
patents related to environmentally-sound technologies is not flawless. Filter-approaches for iden-
tifying green patent documents on the basis of classification systems such as WIPO’s IPC Green
Inventory present certain challenges. Veefkind et al. (2012) characterize the main disadvantages
related to the usage of patent filters by two categories: Type I and Type II errors. The former
refers to the erroneous inclusion of patent applications that are not related to green technologies.
The latter refers to the failure of capturing all relevant patents, which leads to incomplete results.

Due to the susceptibility to Type I and Type II errors, data sets can differ greatly depending
on the patent classification systems used for the identification of relevant patents. To evaluate
whether the results are robust to other classification systems, the analysis is repeated using green
patent applications as identified by the Cooperative Patent Classification (CPC).2? The results
of the robustness check can be found in Appendix A.1.2, Figure A.4 illustrating a similar gap in

green patent filings as shown in Figure 5.

22The CPC is an extension of the IPC, a jointly developed system by the European Patent Office (EPO) and
the USPTO. The classification system contains 250’000 classification symbols including a Y02 tagging scheme
corresponding to “technologies or applications for mitigation or adaptation against climate change” (EPO, 2003).
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In any case, the placebo tests and the sensitivity analysis to the choice of donor pool states
and classification system provide evidence that the main results are not driven by the selection

of specific control units.

4 Discussion

The empirical analysis of this paper sheds light on the relationship between environmental innova-
tion and regional climate policy. Overall, I find that the introduction of the Cap-and-Trade system
resulted in an increase in the annual number of successful patent filings related to environmentally-
friendly technologies over the 2011-2015 period. On the basis of these results, it can be concluded
that the introduction of the program spurred eco-innovation in California. Further, I find that
the anticipation of the regional Cap-and-Trade program has triggered environmental patent pro-
duction before the implementation in 2013. The increase in patent filings from 2011 onwards
corresponds to the idea that an enhancement in innovative activities precede the compliance obli-
gation due to the anticipation of legislation. This result is consistent with previous studies which
drew a similar conclusion in regards to the anticipation of policy interventions (Barbieri 2015;
Taylor et al. 2003). Consequently, this finding indicates that even anticipated environmental
regulations can affect the nature of technological progress.

There are a few key limitations that need to be addressed. First, as the program was only
recently introduced, it is not feasible to take a long-term perspective. Data constraints further
restrict the observation period. Thus, a longer temporal perspective is needed considering that
previous research on the effects of emissions trading schemes unearths evidence that the innovation
inducement effect is confined to early years of the trading scheme Taylor (2012). Second, as
mentioned in Section 1, patents are imperfect measure of innovative output. Thus, while a
patent analysis provides an adequate approximation of innovative output, it is important to be
aware of the drawbacks of patent counts as indicators of innovative activity. Along with this,
there is the probability of incurring Type I or Type II errors when using patent filters such as the
IPC or CPC for the retrieval of green patent documents. Therefore, one should be careful when
interpreting the estimated magnitude of the effect on innovative activity found in this paper. In
a similar vain, one must bear in mind that the validity of the synthetic control estimator depends
on whether the contextual and data requirements are met. A specific concern is that the synthetic
control method precludes the possibility of spillover effects. In cases where spillovers are present,
i.e. the outcomes of control units are affected by the treatment, the estimate of the counterfactual
outcome may be biased. In the present case, however, it may be assumed that the introduction
of the policy intervention did not lead to spillovers as the cap only covers industries located in
California. Given that businesses which are not affected by the regulation are not incentivised to
undertake innovative activity, the assumption is met in the empirical application at hand. Last,

the isolation of the Cap-and-Trade effect is hampered by the large number of climate mitigation
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policies implemented in California. Nevertheless, the analysis on a sectorial level indicates that
the treatment effect can be attributed to the implementation of the Cap-and-Trade program (see
Appendix A.2).

While this study explores the policy-inducement effect on innovation, it falls short in address-
ing further advantages and disadvantages associated with the program. Other variables must be
taken into consideration when choosing among valid policy instruments. This includes, inter alia,
administrative costs and complexity, total abatement costs as well as government revenues. The
key advantage of the Cap-and-Trade lies in the ability of setting specific emission targets that
provide a persistent incentive to reduce carbon levels over time through a declining cap. However,
even though a Cap-and-Trade system can generate revenue (assuming allowances are auctioned),
the implementation is associated with high cost. Additionally, the system is more complex and
the implementation process takes longer than other policy instruments such as the carbon tax. In
brief, governments have various instruments at their disposal to achieve emission reductions. The
policy instrument choice involves weighing the advantages and disadvantages of each instrument.
Ultimately, identifying the most suitable instrument depends on the characteristics of the region

concerned and the actors involved.
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5 Conclusion

Due to the ability to induce innovative activity, environmental policy not only affects the quality
of the environment today, but also impacts the nature of technological progress. In consideration
of the upcoming challenges posed by climate change, many states implement policies to promote
the investment in greener technological development. Understanding the potential of policy
instruments to influence the rate and direction with which knowledge is produced is crucial to
guide policy makers towards instruments that induce advances in environmental or energy-efficient
technologies.

California‘s Cap-and-Trade program adopted in 2011 is aimed at reducing GHG emissions
throughout the state as well as creating an economic incentive for investments in cleaner, more
efficient technologies. The present paper empirically investigated the program’s effect on the
development of environmentally-friendly technologies during the four years subsequent to its
passage. The results of the synthetic control approach imply that, at least in the short-term,
the introduction of the emissions trading system increased the number of green patent filings
originating from California. This result is robust to alternative specifications of the synthetic
control method.

Thus, this paper provides evidence that the Cap-and-Trade program has had an impact on
the environmental innovation activity in California, thereby bringing new insights into the re-
lationship between regional climate policies and environmental innovation. It shows empirically
that among the available options, the emissions trading instrument can serve as a framework for
reducing emissions and be successful in significantly increasing environmentally-friendly technol-
ogy.

From the mere point of view of environmentally-friendly innovation, the Cap-and-Trade pro-
gram implemented by the state of California can be regarded as an effective climate change
mitigation policy. Future research should further develop and validate these initial findings.
Long-term effects of the emissions trading scheme need to be evaluated taking into account de-
clines in the annual cap on the region’s emissions. One feasible extension of the present analysis
would be to include Canadian provinces seeing that California has formally linked its system
with Québec and Ontario in 2014 and 2018, respectively. In addition, further efforts should
be undertaken to separate the effect of the Cap-and-Trade on patent activity from other policy

enactments.
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A Appendix

A.1 Further Robustness Checks
A.1.1 Choice of Donor Pool

For further robustness checks, modifications are made in terms of the donor pool from
which the synthetic California is constructed. Predictor variables are chosen as for the
main specification discussed in Section 2.2.22 The corresponding weights of control units
can be found in Table A.1.

Figure A.1: Robustness Check: Including All US States

—— CA ---  Synthetic CA — -~  Synthetic CA (incl. All States)
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(a) Trends in Green Patent Filings (b) Green Patent Filings Gap

23There is no data on R&D for the state of Minnesota in the year 2010. The NA value is ignored in the
estimation.
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Green Patent Filings (per 100'000 Population)

Green Patent Filings (per 100'000 Population)

Figure A.2: Robustness Check: Including Former Members of the WCI in the Donor Pool
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Figure A.3: Robustness Check: Including Members of the RGGI in the Donor Pool
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Table A.1: State Weights in Synthetic California (Robustness Checks)

Weights

State Incl. All US States Incl. WCI Incl. RGGI
Alabama, 0.001 0.000 0.000
Alaska 0.002 0.000 0.000
Arizona 0.001 0.000 —
Arkansas 0.001 0.000 0.000
Colorado 0.001 0.000 0.000
Connecticut 0.006 — 0.001
Delaware 0.061 — 0.000
District of Columbia 0.012 0.337 0.000
Florida 0.001 0.000 0.000
Georgia 0.001 0.000 0.000
Hawaii 0.00 0.117 0.000
Idaho 0.001 0.000 0.000
Illinois 0.001 0.000 0.000
Indiana 0.001 0.000 0.000
Towa 0.001 0.000 0.000
Kansas 0.001 0.000 0.000
Kentucky 0.000 0.000 0.000
Louisiana 0.001 0.000 0.000
Maine 0.000 — 0.000
Maryland 0.099 — 0.279
Massachusetts 0.363 — 0.311
Michigan 0.001 0.000 0.155
Minnesota 0.001 0.000 0.000
Mississippi 0.000 0.000 0.000
Missouri 0.001 0.000 0.000
Montana 0.001 0.000 —
Nebraska 0.001 0.000 0.000
Nevada 0.056 0.000 0.107
New Hampshire 0.001 — 0.000
New Jersey 0.001 — 0.000
New Mexico 0.142 0.013 —
New York 0.001 — 0.000
North Carolina 0.001 0.000 0.000
North Dakota 0.001 0.109 0.000
Ohio 0.001 0.000 0.000
Oklahoma, 0.001 0.000 0.000
Oregon 0.001 0.000 —
Pennsylvania 0.001 0.000 0.000
Rhode Island 0.001 — 0.000
South Carolina 0.001 0.000 0.000
South Dakota 0.001 0.001 0.000
Tennessee 0.001 0.000 0.000
Texas 0.231 33 0.000 0.146
Utah 0.001 0.000 —
Vermont 0.000 — 0.000
Virginia 0.001 0.000 0.000
Washington 0.000 0.422 —
West Virginia 0.000 0.000 0.000
Wisconsin 0.001 0.000 0.000
Wyomning 0.001 0.000 0.000




A.1.2 Choice of Patent Classification System

For the robustness check, I select all patents issued between 2000 and 2015 that pertain
to the Y02 class and re-estimate the synthetic control model using the resulting data set.
Figure A.4 reports the results of the estimation. It is evident that the CPC Y02-tags schema
returns significantly more results than the Green Inventory. Nevertheless, the illustrations
show that the number of green patent filings of California and its synthetic counterpart

show a similar progression as those in the main specification.

Figure A.4: Robustness Check: Identifying Green Patents Using the CPC
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A.2 Disentangling the Effect of the Cap-and-Trade

The main critical issue in evaluating the impact of the Cap-and-Trade scheme is to isolate
the effects of the program from other policy interventions. The isolation of the Cap-and-
Trade effect is hampered by the large number of climate mitigation policies implemented
in California. Thus, it has to be assessed whether the estimated differences in the outcome
variable are mainly due to the intervention of interest. The previously conducted in-time

placebo test where the treatment is shifted to 2006 resulted in no significant divergence in
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the trajectories. This placebo test provided evidence that the mere passing of the legislation
had no perceivable effect on the number of green patent filings. There is a risk, however,
that the results are biased because of GHG reduction measures in the AB 32 Scoping Plan
approved in the years following its enactment. Pursuant to AB 32, the CARB has made
endeavours to clean the air and curb the worst effects of climate change by implementing
the Low Carbon Fuel Standard (LCFS) and the Advanced Clean Cars program taking
effect in 2011 and 2012, respectively.?* The programs were designed to reduce emissions
stemming from transportation with an ultimate goal to improve vehicle technology and
increase alternative transportation mobility options.

To assess whether the observed changes in outcomes can be attributed to the intro-
duction of the Cap-and-Trade rather than to the closely coinciding fuel standards, the
policy intervention is re-evaluated on a disaggregated sectorial level. For this purpose,
I draw on the seven technological categories as presented in Appendix A.3, Table A.3.
The organization of relevant patents into different subject areas permits the distinction of
patents in EST related to transportation from those related to other technological fields.
This, in turn, permits the individual categories to be analyzed separately. This approach
is similar to empirical work by Barbieri (2015) who relies on patenting at the EPO in the
YO02T category to analyse the impact of environmental regulation on environmental road
transport technologies. The study finds that instruments such as post-tax fuel prices and
environmental vehicle taxes positively influence technological development in this field.

The sectorial disaggregation starts on the premise that the confidence that the increase
in green patent activity as estimated by the synthetic control reflects the effect of the
Cap-and-Trade intervention would disappear if the increase is mostly concentrated in the
transportation sector. Similar or larger estimates arising in other sectors would confirm
the validity of the empirical results. For patents from industries not covered by the Cap-
and-Trade, on the other hand, one would expect no treatment effect.

Figure A.5 depicts the distribution of patenting activity in California across the seven

technology categories for the period 2000-2015 as captured by the Green Inventory.?® No-

2The dominant theory of environmental policy states that general command-and-control instruments
(e.g. emission standards) do not set innovation incentives given their nature (Downing & White, 1986; Jaffe
& Stavins 1995; Milliman & Prince 1989). Based on this presumption, it would be reasonable to assume
that businesses to which the two standards set by the CARB are applicable are not incentivized to pursue
innovation. This in turn would suggest that the treatment effect can be fully ascribed to the introduction
of the Cap-and-Trade. Despite this presumption, the issue merits further examination.

2’Nuclear Energy Generation is not represented in the graph, as no patents were found for this category
in the data set.
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tably, over the whole period 2000-2015 patents related to alternative energy production
represent the largest share of patent filings. This can most likely be explained by the grow-
ing interest in technological advancements in this field such as solar, wind and hydro power
since the late 1990s (WIPO, 2009). By contrast, the category in which the fewest patents
have been filed is related to administrative, regulatory or design aspects and represented
by the thin outer line of the color scheme. As illustrated in the figure, patent activity

across all categories grew over the observed period, albeit at different rates.

Figure A.5: Green Patent Filings in California by Technological Area, 2000-2015

Admin., Regulagory / Design Aspects Bl Alternative Energ Transportation
00 Energy Conservation Waste Management

| Y
B Agricultur / Forestry

Green Patent Filings (per 100’000 Population)

2000 2002 2004 2008 2008 2010 2012 2014

For the disaggregated analysis, I decompose the data set according to this classification

and set up the following model:
yir = Bo + B1Treated; + o Posty + BsTreated; x Posty + B4 Xt + €it (4)

where y;; is the dependent variable indicating the number of green patent filings per 100’000

population for state i at time ¢t. Treated; is a dummy variable indicating the exposed
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state. The variable is equal to one if state 7 is exposed to the treatment and equal to zero
otherwise. Similarly, Post; is an indicator variable for time t after the policy change and
is equal to one if the observation occurs after the policy change and equal to zero in the
previous periods. Thus, the interaction term Treated; x Post; equals one for observations
that are in the exposed state after the policy intervention. The corresponding estimated
coefficient B3 represents the net effect of the emissions trading policy on green patent filings
for the exposed state in the post-intervention period. X;; represents the control variables
as specified in the main analysis and €;; is the error term. The number of observations N
is given by the number of states i = 1, ..., J + 1 times the number of observed time periods.

For each subset, I analyze the effects of the treatment separately. Consequently, the
DiD is applied to each subset to evaluate the effect of the policy on each technological
area.?8 The regression results are presented in Table A.2.

For patents relating to the technological area administrative, regulatory or design as-
pects as well as agriculture/forestry, the interaction term is insignificant at a 5% level.
This suggests that patent activity in those areas is not affected by the policy change and
therefore exhibits no treatment effect. Further, although for patents relating to waste man-
agement the coefficient is significant at a 10% level, the sign of the coefficient is negative,
indicating no increase in patents relating to waste management after the introduction of
the emission trading system. This is in line with the statistical expectation, as the initial
cap does not directly cover agricultural and forestry nor waste management sources of
emissions (ICAP, 2020).

The third and fourth columns in Table A.2 the coefficients of the interaction term are
significantly positive, which suggests that the policy intervention stimulated innovation in
these technological areas. These results indicate that the treatment effect found in Figure
4 is at least partially driven by an increase in patent filings relating to alternative energy
technologies and energy conservation. For patents relating to transportation, however,
the interaction coefficient is not significant. In other words, patent activity related to
transportation is not significantly affected by the policy change, which is consistent with
the presumption that the results of the main specification are not related to the the vehicle
emission standards. As mentioned above, the cap coverage expanded to transportation fuels
only at the beginning of the second compliance period in 2015. This may have delayed

the incentive to improve transportation technologies, whereby the anticipatory effects on

26Disaggregated analysis on patents related to nuclear power generation is unfeasible due to lack of
patents in this area.
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innovation set in later for the particular technological area.

In the last column, I run the same regression model for the entire data set. The obtained

DiD estimates of the average treatment effect are positive and statistically significant at a
5% level. According to the model estimates, the policy change leads to an estimated average
increase in environmentally-friendly patent filings of 0.849 (per 100’000 population).
The treatment effect as estimated using the synthetic control method corresponds the an
average annual increase in patent filings by approximately 0.74 patent filings per 100’000
population.?” Thus, the estimated average treatment effects obtained by the DiD present
plausible magnitudes. Note, however, that the estimates obtained by DiD are larger than
the SCM estimate. This difference in the estimated treatment effects may be attributable
to the violation of the parallel trends assumption.

In a nutshell, the results of the DiD are consistent with the theoretical impact of the
Cap-and-Trade on California’s green patent output. Although additional positive impacts
from the LCFS and the Advanced Clean Cars program can not be fully ruled out, the results
suggest that the standards are not the driving forces in the increase of environmentally-

friendly patents in California.

2"The average treatment effect is computed as ﬁ = Z =T Y — VY
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A.3 TIPC Green Inventory

Table A.3: Topics of WIPO’s Green Inventory (WIPO, 2020)

Topic

Sub-Topic

Administrative,
Regulatory or
Design Aspects

Alternative
Energy
Production

Agriculture/
Forestry

Energy
Conservation

Nuclear Power
Generation

Transportation

Waste
Management

Commuting (e.g. High-occupancy vehicle lanes, telework-
ing, etc.); Carbon / emissions trading (e.g. pollution cred-
its); Static structure design

Bio-fuels; Integrated gasification combined cycle; Fuel cells;
Pyrolysis or gasification of biomass; Harnessing energy from
manmade waste; Hydro energy; Ocean thermal energy con-
version; Wind energy; Solar energy; Geothermal energy;
Other production or use of heat, not derived from com-
bustion (e.g. natural heat); Using waste heat; Devices for
producing mechanical power from muscle energy

Forestry techniques; Alternative irrigation techniques; Pes-
ticide alternatives; Soil improvement

Storage of electrical energy; Power supply circuitry; Mea-
surement of electricity consumption; Storage of thermal en-
ergy; Low energy lighting; Thermal building insulation, in
general; Recovering mechanical energy

Nuclear engineering; Gas turbine power plants using heat
source of nuclear origin

Vehicles in general; Vehicles other than rail vehicles; Rail
vehicles; Marine vessel propulsion; Cosmonautic vehicles
using solar energy

Waste disposal; Treatment of waste; Consuming waste by
combustion; Reuse of waste materials; Pollution control
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A.4 Data Sources
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