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Abstract

In this paper, we propose a new method to forecast macroeconomic variables that

combines two existing approaches to mixed-frequency data in DSGE models. The

first existing approach estimates the DSGE model in a quarterly frequency and

uses higher frequency auxiliary data only for forecasting (see Giannone, Monti and

Reichlin (2016)). The second method transforms a quarterly state space into a monthly

frequency and applies, e.g., the Kalman filter when faced missing observations (see

Foroni and Marcellino (2014)). Our algorithm combines the advantages of these two

existing approaches, using the information from monthly auxiliary variables to inform

in-between quarter DSGE estimates and forecasts. We compare our new method

with the existing methods using simulated data from the textbook 3-equation New

Keynesian model (see, e.g., Galí (2008)) and real-world data with the Smets and

Wouters (2007) model. With the simulated data, our new method outperforms all other

methods, including forecasts from the standard quarterly model. With real world data,

incorporating auxiliary variables as in our method substantially decreases forecasting

errors for recessions, but casting the model in a monthly frequency delivers better

forecasts in normal times.

JEL: E12, E17, E37, E44, C61, C68

Keywords: Mixed-frequency data, DSGE models, Forecasting, Estimation, Temporal

aggregation
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1. Introduction

In this paper, we blend two mixed frequency approaches, higher frequency auxiliary variables

and estimating missing intermediate observations, to estimate and forecast from higher

frequency DSGE models with lower frequency primary and higher frequency auxiliary

observables. This allows us to consistently model, estimate, and forecast GDP within a

DSGE model at a monthly frequency. We show analytically that our approach improves

the estimation and forecasting of the DSGE models and outperforms alternative mixed-

frequency methods for monthly and quarterly forecasts in simulated data. In a medium scale

application to real world data, the picture is less clear cut, however, we show that information

from auxiliary variables substantially improves forecasts during the Great Recession.

Many new data sources with different observation frequencies have emerged over the past

few decades. Giannone et al. (2016) show that an introduction of auxiliary variables1 into

DSGE models to capture data at different frequencies can significantly improve the now-

casting of DSGE models. This result is supported by other studies such as Boneva, Fawcett,

Masolo and Waldron (2019) who find improvements in forecasting when augmenting DSGE

models with survey expectations, Červená and Schneider (2014), who find improvements

in both nowcasts and short-term forecasts for DSGE models when auxiliary variables are

included, and by VAR studies, e.g., Kohns and Bhattacharjee (2019), who supplement tra-

ditional macro variables with internet search data, thereby improving GDP nowcasts. The

idea of bringing more data/information to bear on a model goes back to Geweke (1977) and

the influential work of Sargent and Sims (1977) who showed that additional information

could be incredibly useful in explaining the dynamics of macro variables. 2

From Christiano and Eichenbaum (1987) onwards, we also know that if the data is sampled

at a lower frequency than the frequency of the decisions of economic agents, a temporal

aggregation bias is present in the parameter estimates. Foroni and Marcellino (2014) show

analytically and in simulations that using mixed-frequency data can improve identification,

1 Auxiliary variables would be higher frequency variables that are not directly modelled but likely contain
information regarding lower frequency variables included in the model, such as monthly industrial produc-
tion, which contains information about quarterly GDP, and also many different financial variables, survey
variables and so on.

2 Although in this paper we are agnostic about whether this information should be introduced necessarily via
factors.
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reduce this temporal aggregation bias, and provide estimates closer to the data generating

process. Improved estimates using a mixed-frequency approach were also obtained in Kim

(2010) and Christensen, Posch and van der Wel (2016). Yau and Hueng (2019) found that a

mixed-frequency method delivers more accurate nowcasts.3

Building on the work of Giannone et al. (2016), we introduce an additional equation into

the traditional state space representation of DSGE models to enable our blending of the

mixed-frequency approach and auxiliary variables to estimate and forecast from the DSGE

models. This additional equation allows us to use information from auxiliary variables (that

are not part of model equations) observed at a monthly frequency. However, and differently

from Giannone et al.’s (2016) quarterly estimation, we use this information not only in

forecasting but also in the estimation of the DSGE model itself. Hence, we estimate the

quarterly DSGE model at a monthly frequency and employ approaches developed in Kim

(2010) and Foroni and Marcellino (2014) to utilize the monthly auxiliary observables for the

monthly DSGE model with quarterly primary observables.

This mixture of the two ideas (mixed-frequency and auxiliary variables) is necessary if

one wants to fully exploit the information from both model variables observed at a monthly

frequency and auxiliary variables observed at a monthly frequency. Note that omitting either

of these two ingredients would make it either not possible to use information from variables

that are not part of the model equations or not possible to exploit monthly information from

the propagation of the model variables in the estimation of DSGE models. We show ana-

lytically and in the simulations that our approach improves the estimation and forecasting

of the DSGE models. To evaluate the contribution of the introduction of mixed-frequency

and the introduction of auxiliary variables, we compare results from our approach with the

results from Giannone et al. (2016) and Foroni and Marcellino (2014) / Kim (2010) using

both a simple 3-equation textbook DSGE model from Ch.3 Galí (2008) and the medium scale,

policy relevant Smets and Wouters (2007) model.

Comparing the estimation results for the 3-equation DSGE model with simulated data

shows that mixed-frequency estimation delivers better estimates, especially for monetary

3 For the results of mixed-frequency VAR models see, for example, Cimadomo, Giannone, Lenza, Monti and
Sokol (2020) or Schorfheide and Song (2015) among the others who found that mixed-frequency approaches
improve forecasts relative to lower frequency counterparts.
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policy parameters and the standard deviations of the shocks. Kim’s (2010) method outper-

forms Giannone et al.’s (2016) method in estimation and in forecasting. Our new method

outperforms both the alternative mixed-frequency methods and quarterly forecasts.

As noted in Chauvet and Potter (2013) and Siliverstov (2020), monthly information im-

proves forecasting power differently in expansions and recessions. While in expansions,

the more frequently observed information contributes little to forecasts, in fast moving

recessions, however, there is a significant difference between methods that use more timely

information and those that do not, with the latter producing much worse forecasts than the

former. Therefore, we compare our method’s performance to the alternatives with Smets

and Wouters’s (2007) model and evaluate forecasts separately for the Great Recession and

surrounding expansion periods. Our estimation and forecasts show that information from

auxiliary variables substantially improves forecasts for the Great Recession. In contrast

to conventional wisdom, estimating the model at a monthly frequency is important and

delivers marginally better forecasts in expansions. Our new method produces forecasts that

compromise between the forecasts of the two existing methods for both the expansion and

Great Recession periods. In all estimations and forecasts for the Smets and Wouters (2007)

model, we use vintages of data to make the forecasting exercise as close to the real-time

situation as possible.

The rest of the paper proceeds as follows. First, in Section 2 we describe our new method

for estimation and forecasting procedures and the two existing methods that it combines.

In Section 3 we apply the methods to a 3-equation New Keynesian model in a Monte Carlo

experiment. Then we turn to estimating and forecasting the Smets and Wouters (2007)

model in Section 4. Before we conclude, Section 5 applies the methods and their estimates of

the Smets and Wouters (2007) model to the Great Recession. 4

4 Our focus is mainly on GDP nowcasts and forecasts - inflation and the interest rate could be found in the
Appendix C.
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2. Methods for Mixed-Frequency DSGE Models

In this section we present our new method that combines the two main existing approaches

to the mixed-frequency estimation and forecasting of DSGE models. In presenting existing

approaches, we focus on those introduced in Giannone et al. (2016), Kim (2010) and Foroni

and Marcellino (2014) as other methods that use mixed-frequency data in DSGE estimation

involve at most small modifications of the latter two and the former is a parameter frequency

transformation of quarterly estimation that offers a technically different but related ap-

proach. We show analytically that our method is an improvement in terms of information

extracted from the data. This improvement stems from the equivalence between Foroni and

Marcellino’s (2014) and Kim’s (2010) methods in the absence of measurement errors, which

our auxiliary variables minimizes in a mean square sense when the state is imperfectly, i.e.

infrequently, observed.

2.1. Forecasting with Auxiliary Variables Using Parameter

Frequency Transformation

In Giannone et al. (2016), the authors concentrate on the state space representation of

the DSGE models, estimating at a quarterly frequency, then transforming the parameters

to a monthly frequency to enable the use of monthly auxilliary observables in forecasting.

After estimating the state space model at a quarterly frequency, they transform the state

and observer equations into a monthly frequency. They complete their representation by

adding equations that connect higher frequency auxiliary variables to the lower frequency

observables. The Kalman filter provides optimal linear estimates of the unobserved variables

when producing forecasts from the model. The additional equations are used in the Kalman

procedure only for variables that are not observed at a monthly frequency. Specifically, when

a variable is not observed, the filter operates as if it were to observe its estimate from the

additional equations (estimated by OLS regression). The method also takes into account the

noise with which estimates from these additional equations were obtained.
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Precisely, the authors firstly transform the estimated standard state space at a quarterly

frequency


stq = Tqstq−1 +Bqεtq

Ytq = Mqstq

(1)

into the monthly state-space


stm = Tmstm−1 +Bmεm,tm

Ytm = Mmstm

(2)

with Tm = T
1
3
q =V D

1
3 V−1 and Mm = Mq,

vec(BmB′
m)= (I +Tm ⊗Tm +T2

m ⊗T2
m)−1vec(BqB′

q)

where stm and stq are monthly and quarterly state vectors accordingly, Ytm and Ytq are

monthly and quarterly observables. Note that Ytm is constructed in such a way that it

corresponds directly to its quarterly counterpart, i.e., for example, monthly unemployment in

Yt,m is u∗
tm

= 1
3 (utm +utm−1 +utm−2), or one-third (one month’s contribution) of the quarterly

value and not ut,m the month’s unemployment directly. To derive5 this correspondence

between state spaces they assume invertability of V , equality of shocks εm,tm = εm,tm−1 =
εm,tm−2 = εtq and that

stm = Tmstm−1 +Bmεm,tm (3)

i.e., stm follows an AR(1).

Secondly, they estimate the relation X tq =µ+ΛYtq +εtq at a quarterly frequency, where X tq

are auxiliary variables that are observable at a monthly frequency and contain information

about the variables that are observed only at the quarterly frequency. They assume that this

5 For the detailed derivation see Giannone et al. (2016)
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quarterly relation between observables and auxiliary variables also holds at the monthly

frequency and, therefore, add it to the monthly frequency state-space.



stm = Tmstm−1 +Bmεm,tm

Ytm = Mmstm +Vtm

X tm =µ+ΛYtm +εtm

(4)

where Vtm = (v1,tm , ...,vk,tm) is such that var(vi,tm)= 0 if yi,tm is observable at a monthly fre-

quency and var(vi,tm)=∞ otherwise. The auxiliary variables are transformed to correspond

to their quarterly counterparts. The variance of the shocks in the auxiliary monthly equation

is assumed to be the same as their variance in the estimated quarterly counterpart. Lastly,

they run the Kalman filter with these three equations using Ytm as observables if available

at a monthly frequency and taking their predicted values from the auxiliary equation if not

(taking the associated observation noise into account).

Note that this method uses monthly observations of observables and auxiliary variables

only while forecasting, neglecting the additional information available for estimation. We

now turn to methods that make use of this information and estimate models at a monthly

frequency.

2.2. Mixed Frequencies: Optimal Filtering for Missing Observations

Kim (2010) assumes that the true data generating process is at a monthly frequency and can

be represented by a state space model


stm = Tmstm−1 +Bmεm,tm

Ytm = Mmstm

(5)

The problem is that not all variables in Ytm are observed at the monthly frequency and

variables only observed only at a quarterly frequency are some function of their monthly

9



counterparts. For example, let Ytm =
(
wtm , ztm

)
′

where wtm is observed at a monthly

frequency and ztm is observed at a quarterly frequency. What we actually observe is Ỹtm =(
wtm , 1

3 (ztm + ztm−1 + ztm−2)

)
′
where for t = 2,3,5,6,8,9... observations of (ztm +ztm−1+ztm−2)

are missed. Therefore, we need to transform the state-space model to include ztm−1 and ztm−2

as observables. With the example of the 3-month averages as observables at a quarterly

frequency, the monthly state-space form transforms into




stm

stm−1

stm−2

=


Tm 0 0

I 0 0

0 I 0




stm−1

stm−2

stm−3

+


Bm 0 0

0 0 0

0 0 0




εm,tm

0

0



[
B A A

]


Ytm

Ytm−1

Ytm−2

=
[
BMm AMm AMm

]


stm

stm−1

stm−2



(6)

where B =

I 0

0 1
3 I

 and A =

0 0

0 1
3 I


By transforming the state-space, we have solved the issue of including ztm−1 and ztm−2

as observables, but for t = 2,3,5,6,8,9... their observations are still missed. This means

that for these periods, we do not know the state variable and are missing data for some of

the observables. This problem could be overcome with the help of data augmentation and

optimal filtering. Specifically, for each period t, as in the standard Kalman filter, the value

of the state variable is predicted from the transition equation. If all variables are observed

in this period, the error from the observation equation is calculated and the prediction is

updated. If not all of the variables are observed, first, missing observables are predicted

using the predicted state variable and available observations (see eq. 7), then, the prediction
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of the state is updated given the available observations and the predictions of the missing

observations as in standard Kalman filtering.

stm

ztm

 |


ztm−1

wtm−1

wtm

∼ N(µsz +Σsz,wΣ
−1
w (wtm −µw),Σsz −Σsz,wΣ

−1
w Σ

′
sz,w) (7)

where Ytm =
(
wtm , z̃tm

)′
= M̃m s̃tm =

M̃m,w

M̃m,z

 s̃tm ,

µsz =
(
s̃tm|tm−1, M̃m,z s̃tm|tm−1

)′
, and µw = M̃m,w s̃tm|tm−1

Σsz,w =

 P̃tm|tm−1M̃
′
m,w

M̃m,zP̃tm|tm−1M̃
′
m,w

 and Σw = M̃m,wP̃tm|tm−1M̃
′
m,w,

Σsz =

 P̃tm|tm−1 P̃tm|tm−1M̃
′
m,z

M̃m,zP̃tm|tm−1 M̃m,zP̃tm|tm−1M̃
′
m,z


The time subscripts follow standard Kalman filter notation and denote, first, the timing

of the variable and, second, the conditioning set. Ptm|tm−1 stands for the predicted variance

of the shocks in the transition equation and tildes emphasize that we use matrices and

state vectors from the transformed steady state Equation (6), i.e., s̃tm =
(
stm , stm−1, stm−2

)′
.

Mm,w is nw × ns and Mm,z is nz × ns, where nw,nz,ns are the number of observed at a

monthly frequency variables, the number of variables with missing observations at a monthly

frequency and the length of the state vector accordingly.

Kim (2010) model and estimate at a monthly frequency and use the Kalman filter to

estimate the missing observables for variables observed only at the quarterly frequency.

While this allows for the joint modelling, estimation and forecasting with mixed frequency, it
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does not permit the use of auxiliary variables. This lack of flexibility forces all the variables

to be jointly modelled at the highest frequency in the observables.

2.3. Mixed Frequencies: State Space Transformation for Missing

Observations

In Foroni and Marcellino (2014), the authors construct an expanded state vector consisting

of the state variables and lags of measurement errors in the observables. The inclusion of

these errors allows lower-frequency observables to be correctly linked through their monthly

counterparts to the state vector. This follows Kim (2010), but allows for measurement errors

and generalizes the link between quarterly and monthly observations beyond the 3-month

averages explained above. Specifically, we start again with the monthly state space model.


stm = Tmstm−1 +Bmεm,tm

Ytm = Mmstm +utm

(8)

where the additional term is utm , and therefore the transformed state-space is


f tm = T̃m f tm−1 + B̃mξm,tm

Ỹtm = M̃m f tm

(9)

f tm = (stm , stm−1, stm−2,utm ,utm−1,utm−2)′, and ξtm = (εm,tm ,0,0,utm ,0,0)′,

Ỹtm = (H(0)Ytm +H(1)Ytm−1 +H(2)Ytm−2)′ and

M̃m =
[
H(0)Mm H(1)Mm H(2)Mm H(0) H(1) H(2)

]

12



T̃m =



Tm 0 0 0 0 0

I 0 0 0 0 0

0 I 0 0 0 0

0 0 0 0 0 0

0 0 0 0 I 0

0 0 0 0 0 I



B̃m =



Bm 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 I 0 0

0 0 0 0 0 0

0 0 0 0 0 0


where H(0),H(1),H(2),H(l) here replace the matrices A and B in Kim’s (2010) notation

and allow for arbitrary linear dependencies between quarterly and monthly variables (e.g.,

the sum of all three monthly values, their average, the value in the last month of the quarter,

etc.). Moreover, in principle, we allow for more than three relevant lags (which could be

relevant for growth rate variables) but discard them for the simplicity of the notation and

connection to the Kim (2010) algorithm.6

After transforming the steady state into this form, we still have missing observables

as does Kim (2010) and again appeal to optimal filtering to fill in the gaps. Foroni and

Marcellino (2014) appeal to the Kalman filter with missing observations (in periods with

missing observations, the missed data is “skipped”, or, alternatively, a value with infinite

measurement error is observed) and an expectations-maximization algorithm is used to

obtain maximum likelihood estimates. As one might suspect, as both Kim (2010) and Foroni

and Marcellino (2014) use linear transformations and optimal filtering, their approaches can

be connected analytically:

Proposition 1 (Equivalence between Kim (2010) and Foroni and Marcellino (2014) under

perfect observation.)

Let there be no measurement errors (utm = 0 ∀t), the methods of Kim (2010) and Foroni and

Marcellino (2014) deliver the same predictions of the state vector and its variance.

Proof. See Appendix A.

6 Following this, the simplified vector of shocks in the transition equation could be (εm,tm ,utm )′ and then the
matrix in front of them would consist only of the first and fourth columns, but we keep this notation for
parsimony with Kim’s (2010) method.
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Proposition 1 shows that filtered states, as in Kim (2010), can be replaced with missing

observations without any alteration of the results. The intuition behind this result is the

following. The filtering in Kim (2010) uses the joint normal distribution of the state vector

and the observables to augment the data. However, the distribution of the state vector

conditional on the augmented data (with the variance properly accounting for) is the same as

when taken directly from the joint distribution. In other words, using filtered states does not

bring new information to the Kalman filter but instead uses the information that the filter

already has. Therefore, in our simulations we refer to Kim (2010) and Foroni and Marcellino

(2014) methods as the same approach.

Note that if there are measurement errors, then the Foroni and Marcellino (2014) trans-

formation which expands the state vector to include the errors can be used to eliminate

measurement errors in the observation equation which casts the model as an expanded state

without measurement errors.7

2.4. Mixed Frequencies: Auxiliary Variables and State Space

Transformation Method

In this subsection, we present our novel method that combines Kim’s (2010) and Giannone et

al.’s (2016) methods. By fully exploiting the mixed frequency of the data in both estimation

and forecasting, our method produces minimum variance estimates and forecasts.

As in Kim (2010), we assume that the data generating process is at a monthly frequency.

We transform monthly state space as in eq. 9 and then use observed and auxiliary variables

as information from two “sources" in the update step of the Kalman filter.

We start from the system of equations

7 For example, in the case of one state variable st and one measurement error ut the new state vector is
two-dimensional and equal to f t = (st,ut)′. After the transition and measurement matrix are adjusted the
problem has no measurement errors any more and we can apply solution methods that do not allow for
measurement errors. The disadvantage is that the state vector is larger and the computation time is thus
longer. Kim (2010) does not allow for measurement errors.
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

stm = Tmstm−1 +Bmεm,tm

Ytm = Mmstm +utm

X̃ tm =µ+Λ(L)Ỹtm +Rmζtm

(10)

where Λ(L) is a set of VAR(p) coefficients, εm,tm ∼ N(0, I), ζtm ∼ N(0, I), utm ∼ N(0,Ω) and,

as in the previous methods, stm stands for the state vector, Ytm stands for the for the vector

of the observables, X tm is the vector of auxiliary variables, utm are measurement errors,

εm,tm and ζtm represent noise, Tm is the transition matrix, Mm is the measurement matrix,

µ is a vector of constants in the OLS equation. The first two equations correspond to the

monthly state space model (e.g., a standard DSGE model at a monthly frequency) and the last

equation is a VAR(p) model which links observables (such as quarterly DSGE observables) to

the auxiliary variables. Tildes in this last equation for X t,m and Yt,m explicitly show that the

auxiliary variables are transformed to correspond to quarterly aggregation (like in Foroni

and Marcellino (2014) method, i.e. Ỹtm = H1(L)Ytm and X̃ tm = H2(L)X tm).8

We transform the system according to the transformation from Equation (8) to Equa-

tion (9) in Foroni and Marcellino’s (2014) method by stacking lags of the state vector and

measurement errors into the state vector



f tm = T̃m f tm−1 + B̃mξm,tm

Ỹtm = M̃m f tm

X̃ tm =µ+ΛỸtm +Rmζtm =µ+ΛM̃m f tm +Rmζtm

(11)

where the matrices and variables with tildes are the same as in eq. 9. The equality in

the third equation follows from substituting Ỹtm from the second equation in Equation (11)

into the third equation in Equation (11). We now have a system that we can estimate with a

8 H1(L) and H2(L) are determined according to the nature of quarterly aggregation, for example, it could be
three month averages as is the case for the interest rates or the sum of three monthly observations which is
the case for GDP.
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standard Kalman filter, keeping two considerations in mind. Firstly, we have two “signals”,

the two last equations in the obtained system. In a standard Kalman filter at the core

of the update step, two Gaussian curves are combined which, in a simple example with

one-dimensional variables, gives the following result,9

N(x,µ0,σ0) ·N(x,µ1,σ1)= N(x,µ′,σ′)

where µ′ =µ0 +
σ2

0(µ1 −µ0)

σ2
0 +σ2

1
=µ0 +k(µ1 −µ0)

and σ′2 =σ2
0 −

σ4
0

σ2
0 +σ2

1
=σ2

0 −kσ2
0

and k = σ2
0

σ2
0 +σ2

1
is the Kalman gain

With two signals, we have to combine three Gaussian curves, and due to the associative

property we can apply the mixing in any order

N(x,µ0,σ0) ·N(x,µ1,σ1) ·N(x,µ2,σ2)= N(x,µ′,σ′)

where µ′ =µ0 +
σ2

0(µ1 +k1(µ2 −µ1)−µ0)

σ2
0 +σ2

1(1−k1)
=µ0 +k0(µ1 +k1(µ2 −µ1)−µ0)

and σ′2 =σ2
0 −

σ4
0

σ2
0 +σ2

1(1−k1)
=σ2

0 −k0σ
2
0

and k1 =
σ2

1

σ2
1 +σ2

2
and k0 =

σ2
0

σ2
0 +σ2

1(1−k1)

Giving the obvious hierarchical extensions to the two curve case.

The second consideration is that we still have missing observations. Therefore, we will

“skip” the entries where we have missing observations and, in these periods, use only one

“signal” from the auxiliary variables in the update step of the Kalman filter.

9 For a detailed derivation of combining the three Gaussian curves in a vector case, see chapter 13.6 of Kay
(1993).
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Accordingly, the implementation of the algorithm is as follows. We rewrite the state space

system of the new method (Equation (11)) as


f tm = T̃m f tm−1 + B̃mξm,tm

Ztm = µ̃+Γm f tm +Ωmζtm

(12)

where Ztm =

Ỹtm

X̃ tm

, µ̃=

0

µ

, Γm =

 M̃m

ΛM̃m

, and Ωm =

 0

Rm

, which is then estimated using

the Kalman filter with missing observations.

Table 1: Differences and commonalities of the methods.

Difference/commonality Kim (2010) Giannone et al. (2016) New method

Frequency used in the model estimation Monthly Quarterly Monthly
Usage of monthly information of model variables in estimation Yes No Yes

Usage of auxiliary variables in forecasting No Yes Yes
Usage of the auxiliary variables in the estimation No No Yes

The three differences to the Giannone et al. (2016) method are the estimation of the

model at a monthly frequency, the usage of the information from auxiliary variables in the

estimation, and the usage of information from the auxiliary variables in the forecasting even

when the quarterly variables (variables with missing observations at a monthly frequency)

are observed. The difference to the Kim (2010) method is that auxiliary variables are used

to estimate the model and to perform the forecasts (see the summary in Table 1). We

demonstrate the efficiency of our new method formally in the following proposition.

Proposition 2 (The efficiency of the methods.)

Our combined method produces minimum variance linear unbiased estimates whereas the

methods of Giannone et al. (2016) and Kim (2010) / Foroni and Marcellino (2014) result in

an excess variance of the estimated state vector.

Proof. See Appendix A.

Proposition 2 highlights the intuitive result that minimum variance linear unbiased

estimates require the use of all available information. Ignoring any information available

17



leads to a larger variance of the state vector, and the more information is ignored, the higher

the variance. Therefore, Giannone et al.’s (2016) and Kim’s (2010) / Foroni and Marcellino’s

(2014) estimates are inefficient as long as the additional variables used in our new method

improve the estimation and forecasts of the model variables (i.e., if they contain additional

information that is useful for estimation or forecasting).

This proposition does not reveal the quantitative difference between estimation and

forecasting results when employing the different methods. Therefore, the rest of the paper

is devoted to assessing this quantitative difference via estimation and forecasting results

using the different methods in three experiments. We compare Giannone et al. (2016)

method, Foroni and Marcellino (2014)/Kim (2010) method and the new method first using

simulated data on a 3-equation New Keynesian model and secondly using US vintage data

on the medium scale Smets and Wouters (2007) model. Finally, we apply the methods to the

Great Recession to examine how well they perform in phases of the business cycle that are

notoriously challenging.

3. Mixed Frequencies and a 3-Equation DSGE Model

We begin by comparing the methods in Monte Carlo experiments using the textbook 3-

equation New Keynesian model (see, e.g., Galí (2008)). The model features a New Keynesian

Phillips curve, a dynamic IS equation obtained from the Euler condition of the representative

household, and a monetary policy rule which we take as a Taylor rule.

πt =βE tπt+1 +κ ỹt +επt (13)

ỹt =−1
σ

(i t −E tπt+1 − r∗t )+E t ỹt+1 +εy
t (14)

i t =φππt +φy ỹt +εi
t (15)

where π, ỹ, i, r∗ are inflation, the output gap, the central bank’s interest rate, and the

natural rate in the economy respectively. The production function has a form Y = AN1−α,
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where N denotes labor hours, A is a technological process that follows an AR(1) process,

and Y is GDP.10 We parameterize the model for the Monte Carlo experiment following Galí

(2008). These values, alongside the estimation results, which we explain in detail in the next

section, are summarized in Table 2.

3.1. Mixed-Frequency Estimation of the 3-Equation Model

The estimation proceeds as follows. First, we simulate data from the model using the

parameter values denoted in the column “DGP” in Table 2. We simulate 333 periods of

monthly data, which corresponds to roughly 28 years of data.11 Then we chose Y , i,π (GDP,

annual interest rate, and annual inflation rate) as observables. For the Giannone et al.

(2016) method, the model needs to be estimated at a quarterly frequency. Therefore, we also

construct aggregated data using 3-month averages.12 For the mixed-frequency estimation, we

assume that GDP is observed quarterly (i.e., has missing observations) and that inflation and

the interest rate are observed monthly (i.e., no missing observations). We also note that the

parameters θ,β,ρa,ρ i (Calvo parameter, households’ discount factor, persistence parameter

for the technological process and persistence parameter for the monetary policy shock

respectively) differ with the data frequency, i.e., θquarterl y = 1−3(1−θmonthl y), βquarterl y =
1

(1+3( 1
βmonthl y

−1))
, ρa,quarterl y = ρ3

a,monthl y,ρ i,quarterl y = ρ3
i,monthl y.

As an auxiliary variable, we mimic Industrial Production (IP) via an estimated OLS

regression for the growth rates of GDP and Industrial Production (IP as the dependent

variable, no constant was included) with data from the St. Louis Fed database from 1947Q1

to 2020Q1.13 From the estimated regression coefficient, variance of the errors, and simulated

data of GDP, we constructed our IP variable as a sum of the Monte Carlo simulated GDP

series multiplied by the regression coefficient from OLS regression and draws from the

estimated normally distributed error term distributions.14

10 For additional details of the model see Galí (2008). The code for the model was taken from Pfeifer (2022).
11 To check for robustness to longer data series, we also rerun the procedure for 1000 months (roughly 83

years), the results are shown in Appendix D.
12 Yq = 1

3 (Ym,t +Ym,t−1 +Ym,t−2)
13 When a constant was included, the estimated value of the constant was negligible and, therefore, we chose

not to include it - also that the constant is hard to interpret in this regression.
14 ˆIP = β̂GDP + σ̂ε, ε∼ N(0,1), β̂= 1.352, σ̂= 0.06
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For the priors, we follow standard DSGE estimation procedure and choose the normal

distribution for the policy parameters in the Taylor rule, the beta distribution for parameters

distributed between 0 and 1, the gamma distribution for preference parameters, and inverse

gamma distribution for the standard deviations.15 Prior means were set at the true values of

the parameters. The complete table of the priors can be found in the Appendix B.

Table 2: The 3-equation Model from Ch. 3 Galí (2008): Estimation of the Parameters Using Quar-
terly and Mixed-frequency Methods. Each row presents parameter estimates using the Quarterly estima-
tion, the Kim (2010) / Foroni and Marcellino (2014) estimation method, or the new estimation method (see
Section 2 for methods’ details). Standard deviations of the estimated parameters are presented in parentheses.
The estimates of the quarterly estimation are transformed into their monthly counterparts.16 The column DGP
shows parameter values used to generate the simulated data (the true parameter values).

Parameter DGP Quarterly Mixed Kim (2010) Mixed new algorithm

θ 0.8889 0.9032 (0.0166) 0.8902 (0.0215) 0.8894 (0.0224)
ρ i 0.7937 0.7606 (0.0020) 0.7931 (0.0007) 0.7935 (0.0004)
ρa 0.9655 0.9655 (0.0179) 0.9649 (0.0295) 0.9654 (0.0297)
β 0.9966 0.9966 (0.0017) 0.9967 (0.0028) 0.9965 (0.0029)
α 0.3333 0.3376 (0.1186) 0.3328 (0.1189) 0.3350 (0.1233)
η 4 3.9930 (2.0036) 3.9648 (1.9984) 4.1501 (2.0336)
ε 6 6.2237 (2.8789) 6.0392 (3.0019) 6.0683 (2.9546)
φπ 1.5 3.2882 (0.2188) 1.5446 (0.0868) 1.5464 (0.0782)
φy 0.1250 0.0721 (0.0588) 0.1249 (0.0566) 0.1241 (0.0560)
σπ 0.0208 0.0189 (0.0013) 0.0206 (0.0008) 0.0209 (0.0005)
σy 0.0208 0.0101 (0.0008) 0.0218 (0.0030) 0.0206 (0.0026)
σi 0.0208 0.3072 (0.0323) 0.1475 (0.0246) 0.1434 (0.0234)

The estimates are presented in Table 2. The results show that monetary policy parameters

(Taylor rule coefficients, persistence, and variance of the monetary policy shocks) together

with demand elasticity and all standard deviations of the shocks are estimated closer

to the data generating process in the mixed-frequency estimation than in the quarterly

estimation. For the standard deviations of the estimates, there is no clear-cut winner among

the quarterly and mixed-frequency approaches. Between Kim (2010) / Foroni and Marcellino

(2014) approach and our combined method, we see that more parameters (all except capital

15 The standard deviations were also adjusted with the data frequency, with quarterly standard deviations
being

p
3 times larger than the monthly standard deviations.

16 θ was estimated in a quarterly model at 0.7096, ρ i at 0.44, ρa at 0.8999, β at 0.99, σπ at 0.0327, σy at 0.0175,
σi at 0.5320. Standard deviations were transformed using the approximation Var(g(x))= (g′(x))2Var(x) with
evaluation of the derivative at the estimated value of the parameters.
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Table 3: The 3-equation Model from Ch. 3 Galí (2008): RMSE of the Filtered GDP series, obtained
Using Mixed-frequency Methods. The Kalman filter generates monthly GDP series, values of which are
missed in the first and the second months of each quarter. The obtained series is compared to the simulated
series. Each row presents an out-of-sample (sample different from the one on which the model was estimated)
RMSE for the filtered monthly GDP series, values of which are based on the information at time t, or the
information available at the end of the sample. The columns present RMSE for the filtered values, obtained
using the Kalman filter of the Giannone et al. (2016), the Kim (2010) / Foroni and Marcellino (2014), or the new
method, suggested in the Section 2. The errors are averaged over 1000 simulated sample points.

Filtered statistic RMSE Giannone et al. (2016) RMSE Kim (2010) RMSE new method

E(yt|t) 0.18195 0.02622 0.02616
E(yt|T) 0.18195 0.02312 0.02307

share, semi elasticity of money demand, demand elasticity, and Taylor rule coefficients) are

estimated closer to the DGP with our method. However, the overall estimates from these two

methods are close to each other. Regarding the standard deviations, the estimates do not

appear to favor one method over the other.

Thus, the estimation results clearly show that mixed-frequency approaches deliver better

estimates than the quarterly estimation. The reason for the minimal difference between the

two mixed-frequency approaches, Kim’s (2010) / Foroni and Marcellino’s (2014) method and

our combined method, is likely that one auxiliary variable for only one variable unobserved

at a monthly frequency variable is used to improve estimates - using more variables will

likely increase the estimation improvements.

Another way to compare the model estimates for the different methods is to compare

their filtered and smoothed unobserved (at a monthly frequency) GDP series. Table 3 gives

the RMSE statistics of the filtered and smoothed series and Figure 10 shows these GDP

estimates on out-of-sample data. Both in-sample and out-of-sample estimates of unobserved

GDP show that Kim (2010) / Foroni and Marcellino (2014) and our new approach are closer

to the true DGP than Giannone et al.’s (2016) method with roughly one order of magnitude

smaller RSMEs. As expected, the model estimated at a quarterly frequency with Giannone

et al.’s (2016) method misses higher frequency spikes. Our new (combined) approach delivers

closer estimates in terms of RMSFE, but the improvements are modest relative to Kim’s

(2010) / Foroni and Marcellino’s (2014) method.17

In sum, the mixed-frequency approach improves the estimation of the model parameters

17 The same graph but with a difference of the filtered variables to the data is shown in Figure 8 of Appendix C.
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Figure 1: The 3-equation Model from Ch. 3 Galí (2008): Smoothed Out-of-Sample GDP. The Kalman
smoother generates monthly GDP series, values of which are missed in the first and the second months of each
quarter. The figure shows these smoothed GDP series (E(yt|T )) for the out-of-sample data. The smoothed series
are obtained using the Kalman smoother of the new method (in blue), the Kim (2010) / Foroni and Marcellino
(2014) method (in yellow), and the Giannone et al. (2016) method (in green). The simulated data is shown in
red. X-axis shows time in months.

and can better assess the current state of the economy relative to the standard quarterly pro-

cedure. Furthermore, our introduction of auxiliary variables into mixed-frequency estimation

further improves the estimation and filtering of unobserved variables.

3.2. Mixed-Frequency Now/Forecasting with the 3-Equation Model

We now assess the now and forecasting performance of the different methods for GDP with

1000 out-of-sample simulated data points. In terms of nowcasting, our method that combines

Kim’s (2010) state space transformation and auxiliary variables improves forecasts and

delivers RMSFE substantially smaller than the quarterly 1-step ahead RMSFE, which is

0.7846 (the entries are expressed for all methods relative to the RMSE of our method). All

forecasts are statistically different from each other at a 1% significance level. The results also

imply that using mixed-frequency methods improves nowcasting more than using additional

variables (as the relative RMSE in the first row are substantially higher than in the second),

however, we used only one auxiliary variable and, for more complicated models with many
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Table 4: The 3-equation Model from Ch. 3 Galí (2008): Relative RMSFE of the GDP Nowcasts,
Obtained Using Mixed-frequency Methods. Each row presents RMSFE nowcasts obtained using the
Giannone et al. (2016), the Kim (2010) / Foroni and Marcellino (2014), and the new method, suggested in the
Section 2. The RMSFE are shown as a ratio to the RMSFE of the new method. The RMSFE of the new method
are 0.5012, 0.2710, 0.0108. The columns present months in which nowcasts are made. The nowcast errors are
averaged over 1000 simulated sample points. *** indicates the forecasts that are statistically significantly
different from the other forecasts with a 1% significance level based on the Diebold and Mariano (1991) test,
where Newey–West standard errors are used to deal with the autocorrelation. Quarterly 1-step ahead RMSFE
is 0.7846.

Method Month 1 Month 2 Month 3

Giannone et al. (2016) 1.3540*** 1.3833*** 9.7469***

Kim (2010) 1.0006*** 1.0018*** 1.0084***

new method 1*** 1*** 1***

auxiliary variables, this ranking can reverse (as indeed is the case for the Smets and Wouters

(2007) model when forecasting in the Great Recession).

Figure 2 and Table 5 show the forecasting results. As with estimation and nowcasting,

mixed-frequency methods produce better forecasts than the standard quarterly approach.

Auxiliary variables also improve forecasts, but for some quarters, we obtained even worse

results for the Giannone et al. (2016) method than the standard quarterly forecasts. The

largest difference between the Kim (2010) / Foroni and Marcellino (2014) method and our

combined method is for one quarter ahead forecasts, with our combined method delivering

lower RMSFE. The forecasts are statistically significantly different between these two

methods for the two and three quarters ahead forecasts, with the Kim (2010) RMSFE being

smaller. However, the difference of the RMSFE for two and three quarters ahead is smaller

than the difference for one quarter ahead forecast by order of magnitude. The forecasts from

the three methods are statistically significantly different from each other for one, two, three,

and seven quarters ahead forecasts. The statistical difference with the quarterly forecasts is

shown in the Table 5.

The reason for the rather poor performance of Giannone et al.’s (2016) method in forecasting

is the transformation of the parameters from quarterly to monthly frequency values. When
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Table 5: The 3-equation Model from Ch. 3 Galí (2008): Relative RMSFE of the GDP Forecasts,
Obtained Using Quarterly and Mixed-frequency Methods. Each row presents RMSFE forecasts obtained
using the Giannone et al. (2016), the Kim (2010) / Foroni and Marcellino (2014), and the new method, suggested
in the Section 2. The RMSFE are shown as a ratio to the RMSFE of the new method. The RMSFE of the new
method are 0.7045, 0.6119, 0.5899, 0.5857, 0.5841, 0.5852, 0.5857, 0.5862, 0.5869, 0.5878, 0.5887, 0.5892. The
columns present quarters ahead for which forecasts are made. The forecast errors are averaged over 1000
simulated sample points. *** (**) indicates the forecasts that are statistically significantly different from
quarterly forecasts with a 1% (5%) significance level based on the Diebold and Mariano (1991) test, where
Newey–West standard errors are used to deal with the autocorrelation.

Method 1 2 3 4 5 6 7 8 9 10 11 12

Quarterly 1.1137 1.0215 1.0098 1.0094 1.0108 1.0086 1.0072 1.0058 1.0045 1.0029 1.0015 1.0006
Giannone et al. (2016) 1.3100*** 1.0754*** 1.0132*** 1.0026 1.0007 1.0003 1.0002** 1.0000 1.0000 1.0000 1.0000 1.0000

Kim (2010) 1.0002*** 1.0000*** 1.0000 1.0000 1.0000*** 1.0000*** 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
New Method 1*** 1*** 1 1 1*** 1*** 1 1 1 1 1 1

the transformation of the parameters estimated at a quarterly frequency is done according

to their true link18 to the monthly counterparts (and not by the powering of the transition

matrix to the power 1
3 ) the forecasts produced by Giannone et al. (2016) method are better

than the quarterly forecasts. These forecasts even outperform Kim (2010) and our new

method for the forecasts two and three quarters ahead. The nowcasting RMSFE with this

parameter transformation of the parameters also decreases but remain larger than those

from Kim (2010) and our combined method.

To disentangle the contribution of potentially better estimation from potentially better

forecasting for the mixed-frequency algorithms, we also assess the performance of all methods

when the parameters are set to their pseudo-true values and not to the posteriors from their

respective estimations. The results remain roughly unchanged except that the difference

between our new method and Kim’s (2010) method becomes statistically insignificant for all

quarters in the forecasting exercise.

The results for monthly forecasts for GDP, inflation, and the interest rate are presented

in the Appendix C. The forecasts for GDP and inflation are improved when using mixed-

frequency approaches (Kim (2010) / Foroni and Marcellino (2014) or our new approach), but

for the interest rate is forecasted best by Giannone et al.’s (2016) method. This supports the

findings that both the introduction of the mixed-frequency approach and the introduction of

18 For example, the capital share should be the same for quarterly and monthly frequency, the Calvo parameter
should be transformed according to θmonthl y = 1− 1

3 (1−θquarterl y)
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Figure 2: The 3-equation Model from Ch. 3 Galí (2008): RMSFE of the GDP Forecasts, Obtained
Using Quarterly and Mixed-frequency Methods. The figure shows GDP RMSFE, obtained using the new
method (in blue), the Kim (2010) / Foroni and Marcellino (2014) method (in red), the Giannone et al. (2016)
method (in yellow), and the standard quarterly forecasting (in purple). The RMSFE are presented for the
3-equation DSGE model from Ch.3 Galí (2008) and are averaged over 1000 simulated sample points. X-axis
shows forecasting horizon in quarters and Y-axis shows RMSFE for each method.

auxiliary variables can improve forecasts and the decision, perhaps, ought to be to combine

the two as in our method and not choose one over the other.

Before we conclude the Monte Carlo exercise and turn to real-world data, it is informative

to note the robustness of the results. Appendix D provides one such check estimating with

more data points. The results from this section remain essentially unchanged, except for

the forecasting exercise where the difference between Kim (2010) and our combined method

becomes insignificant for all quarters, consistent with known effectiveness of the Kalman

filter with large samples specifically here relative to the additional information provided by

the auxiliary data in smaller samples.
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4. Mixed Frequencies and the Smets and Wouters (2007)

Model

In this section we turn to real-world data and a medium scale, policy relevant model, namely

the Smets and Wouters (2007) model. This exercise aims to take the insights from the Monte

Carlo experiment in the textbook model from the previous section and apply them to assess

quantitative differences between the methods in a setting with actual data. It also serves as

an example of the robustness of the results across models, which exploiting information from

many auxiliary variables in contrast to the previous section a priori should benefit Giannone

et al.’s (2016) method.

4.1. Description of the Data

We follow Smets and Wouters (2007) in choosing data series for the observed model variables;

thus, we use seven observables (GDP, consumption, investments, labor hours, wages, inflation,

and the interest rate). To make the exercise as close to real-time forecasting as possible, we

use data vintages of the model variables from the ALFRED database. For GDP, consumption,

investments, inflation, and the interest rate, the same series were taken as in Smets and

Wouters (2007). For the population series, the seasonally unadjusted series instead of the

seasonally adjusted one is used due to the availability of vintages - the two series are

almost indistinguishable.19 For wages, the FRED counterpart of the BLS wage series is

used. For hours, "AWHNONAG" (FRED code name) is chosen over the original hours series

"PRS85006023" (FRED code name) as vintages are available for the latter only beginning in

2011.20 Also, in Appendix B all FRED codes for the series used are listed.

In transforming variables, we also follow Smets and Wouters (2007). In a monthly model,

the Federal Funds Rate and labor hours are observed every period while GDP, investments,

wages, inflation, and consumption are observed only every third month. Data from FRED-MD

provided by Michael W. McCracken from St. Louis Fed was used for the auxiliary variables.21

19 For the sample that was used in Smets and Wouters (2007) they differ in eight observations, three of which
are larger than 1, but they all are smaller than 107. The average observation for the sample is 155673.

20 See Appendix C for a plot of both series.
21 https://research.stlouisfed.org/econ/mccracken/fred-databases/
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It is a compiled dataset from the FRED database, which is updated in real-time, and contains

vintages of data for more than one hundred variables related to the state of the economy. We

use nearly all the variables from this dataset.22 Thus, we are left with 114 variables that

correspond broadly to the categories output and income; labor market; housing; consumption,

orders, and inventories; money and credit; prices, interest and exchange rates; and the stock

market.23 The variables are transformed according to the suggestions of the FRED-MD. Note

that while the FRED-MD also contains vintages of the main macro variables used as model

observables, these vintages are available only from 2015 and, thus, we use the corresponding

ALFRED series as explained above.

To obtain quarterly counterparts of the auxiliary variables that were used in the regression

for the Giannone et al. (2016) method and the combined algorithm, we use the state-space

correspondence between monthly and quarterly series from Section 2.2 for the GDP series

(the same correspondence is valid for the investments, consumption, and wages as well - only

labor hours are transformed differently). 24

For this section of the paper we used the 1966Q1:2010Q1 time span as a sample for

estimation, which comprises 80% of the dataset. This cut of the sample into training and test

subsamples is widely used in the data science literature (see Hyndman and Athanasopoulos

(2018), Ch. 5.8). In forecasting using DSGE models there is no standard approach as

to how to split the sample (see, for example Elliott and Timmermann (2013) Ch.2 Table

A-2 for a summary). Moreover, 2010Q1 is a very convenient point to stop as it includes

the Great Recession and the three quarters subsequent, thus forecasting on a span from

2010Q2:2020Q1 is an evaluation of the forecasting performance of the methods in expansions.

25 In Section 5, we apply all methods to the Great Recession to assess the performance of the

22 The exceptions were: the Federal Funds Rate as it is contained as an observable in our dataset of model
variables and thirteen variables with many missing observations: Moody’s Aaa Corporate Bond Minus
FEDFUNDS, New Orders for Consumer Goods, New Orders for Nondefense Capital Goods, Moody’s Baa
Corporate Bond Minus FEDFUNDS, Consumer Motor Vehicle Loans Outstanding, Total Consumer Loans
and Leases Outstanding, Help-Wanted Index for the United States, Ratio of Help Wanted/No. Unemployed,
10-Year Treasury C Minus FEDFUNDS, 5-Year Treasury C Minus FEDFUNDS, Trade Weighted US Dollar
Index, Consumer Sentiment Index, VXO.

23 Due to the large number of variables and the associated prohibitive computation time, we use eight factors
constructed from these variables.

24 d yq
t = 1

3 (dym
t +2d ym

t−1+3d ym
t−2+2d ym

t−3+d ym
t−4) for y ∈ {GDP, Investments, Wages, Consumption, Inflation}.

25 In 2010Q1, the GDP growth rate was near its sample average for the first time since the onset of the
financial crisis.

27



methods during busts. For the quarterly estimation, our priors match those of Smets and

Wouters (2007); for the monthly estimation, parameters were transformed according to their

relation to monthly counterparts (see Appendix B for details).

4.2. Mixed-Frequency Estimation of the Smets and Wouters (2007)

Model

Table 6 and Table 7 present the results of the estimation of the Smets and Wouters (2007)

model using different datasets. The first column refers to the original dataset, and the

second column shows results for the estimation using the "AWHNONAG" instead of the

"PRS85006023" series for the labor hours (see Section 4.1 for explanation). The next column

presents results for the estimation using the 2005/02 vintage instead of the 2005/04 vintage

used in Smets and Wouters (2007) to see how real-time data changes the results compared to

the later vintages. The columns "Till 2010" and "Till 2010, all data" show estimations using

data until 2010 from the 2010/05 vintage and the 2021/08 vintage (the last available vintage

when the estimation was performed), to evaluate how the posteriors change with more data

and, again, to evaluate differences between real-time / not real-time estimation. Finally, the

last two columns present estimations using Kim’s (2010) and our new method, both using

the 2010/05 vintage of the data.
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Table 6: The Smets and Wouters (2007) Model: Estimation of the Parameters Using Quarterly and
Mixed-frequency Methods. Each row presents parameter estimates from the original estimation, using the
Quarterly estimation and a sample 1966Q1:2010Q1, using the estimation method from Kim (2010) / Foroni
and Marcellino (2014) or the new method suggested in the Section 2. Standard deviations of the estimated
parameters are presented in parentheses. The estimates of the mixed-frequency estimation are transformed
into their quarterly counterparts.26

Parameter Original Other Hours Vintage data Till 2010 Till 2010, all data Mixed Kim (2010) Mixed new algorithm

ϕ 5.77 (1.04) 5.69 (1.03) 5.69 (1.04) 4.82 (1.03) 4.47 (0.99) 6.17 (0.71) 6.34 (0.68)
σc 1.38 (0.13) 1.35 (0.14) 1.35 (0.13) 1.26 (0.16) 1.34 (0.17) 0.86 (0.07) 0.81 (0.12)
h 0.71 (0.04) 0.71 (0.04) 0.71 (0.05) 0.64 (0.06) 0.60 (0.06) 1.35 (0.10) 1.12 (0.04)
ξw 0.70 (0.07) 0.72 (0.06) 0.72 (0.06) 0.81 (0.05) 0.78 (0.06) 0.71 (0.08) 0.69 (0.06)
σl 1.84 (0.57) 2.04 (0.58) 2.05 (0.58) 2.03 (0.58) 1.97 (0.57) 0.43 (0.15) 0.37 (0.19)
ξp 0.65 (0.05) 0.70 (0.05) 0.70 (0.05) 0.79 (0.04) 0.77 (0.04) 0.85 (0.03) 0.85 (0.02)
iw 0.58 (0.12) 0.55 (0.13) 0.54 (0.13) 0.58 (0.12) 0.56 (0.13) 0.64 (0.06) 0.54 (0.05)
i p 0.24 (0.09) 0.24 (0.09) 0.24 (0.09) 0.25 (0.09) 0.32 (0.10) 0.42 (0.07) 0.59 (0.11)
ψ 0.55 (0.11) 0.56 (0.11) 0.56 (0.11) 0.68 (0.10) 0.72 (0.09) 0.57 (0.07) 0.76 (0.16)
Φ 1.61 (0.08) 1.62 (0.08) 1.62 (0.08) 1.53 (0.08) 1.56 (0.08) 1.86 (0.04) 1.63 (0.08)
rπ 2.04 (0.18) 2.01 (0.18) 2.01 (0.17) 1.79 (0.17) 1.76 (0.17) 1.54 (0.08) 1.46 (0.20)
ρ 0.81 (0.02) 0.82 (0.02) 0.82 (0.02) 0.82 (0.03) 0.80 (0.03) 0.97 (0.003) 0.91 (0.01)
r y 0.09 (0.02) 0.09 (0.03) 0.09 (0.03) 0.07 (0.03) 0.06 (0.03) 0.19 (0.01) 0.22 (0.02)
r∆y 0.22 (0.03) 0.24 (0.03) 0.24 (0.03) 0.25 (0.03) 0.25 (0.03) 0.07 (0.01) 0.10 (0.02)
π̄ 0.79 (0.10) 0.80 (0.10) 0.80 (0.10) 0.78 (0.10) 0.80 (0.10) 0.62 (0.13) 0.88 (0.11)

100( 1
β
−1) 0.17 (0.06) 0.17 (0.06) 0.17 (0.06) 0.16 (0.06) 0.16 (0.06) 0.19 (0.09) 0.01 (0.04)

l̄ 0.51 (1.08) 0.98 (1.05) 1.01 (1.06) 0.25 (1.09) 0.96 (1.14) 3.05 (0.52) 2.64 (0.49)
γ̄ 0.43 (0.01) 0.43 (0.01) 0.43 (0.01) 0.42 (0.02) 0.41 (0.02) 1.08 (0.05) 1.02 (0.06)
α 0.19 (0.02) 0.19 (0.02) 0.19 (0.02) 0.17 (0.02) 0.19 (0.02) 0.09 (0.01) 0.09 (0.02)

Table 7: The Smets and Wouters (2007) Model: Estimation of the Shock Processes Using Quarterly
and Mixed-frequency Methods. Each row presents parameter estimates from the original estimation, using
the Quarterly estimation and a sample 1966Q1:2010Q1, using the estimation method from Kim (2010) / Foroni
and Marcellino (2014) or the new method suggested in the Section 2. Standard deviations of the estimated
parameters are presented in parentheses. The estimates of the mixed-frequency estimation are transformed
into their quarterly counterparts.

Parameter Original Other Hours Vintage data Till 2010 Till 2010, all data Mixed Kim (2010) Mixed new algorithm

ρa 0.96 (0.01) 0.95 (0.02) 0.95 (0.02) 0.96 (0.01) 0.96 (0.01) 0.89 (0.01) 0.94 (0.01)
ρb 0.22 (0.09) 0.25 (0.10) 0.25 (0.10) 0.58 (0.12) 0.57 (0.13) 0.97 (0.01) 0.97 (0.01)
ρg 0.98 (0.01) 0.98 (0.01) 0.98 (0.01) 0.98 (0.01) 0.97 (0.01) 0.73 (0.12) 0.62 (0.09)
ρI 0.71 (0.06) 0.73 (0.06) 0.73 (0.06) 0.79 (0.05) 0.82 (0.05) 0.13 (0.08) 0.76 (0.07)
ρr 0.15 (0.06) 0.15 (0.06) 0.15 (0.06) 0.18 (0.06) 0.21 (0.07) 0.05 (0.01) 0.05 (0.05)
ρp 0.89 (0.05) 0.86 (0.06) 0.86 (0.06) 0.84 (0.06) 0.85 (0.06) 0.73 (0.06) 0.98 (0.004)
ρw 0.97 (0.02) 0.96 (0.02) 0.96 (0.02) 0.96 (0.02) 0.95 (0.03) 0.98 (0.01) 0.53 (0.05)
µp 0.70 (0.10) 0.69 (0.11) 0.68 (0.11) 0.72 (0.09) 0.69 (0.10) 0.94 (0.01) 1.00 (0.003)
µw 0.84 (0.06) 0.85 (0.06) 0.85 (0.06) 0.91 (0.04) 0.90 (0.05) 0.99 (0.003) 0.85 (0.09)
σa 0.46 (0.03) 0.46 (0.03) 0.46 (0.03) 0.49 (0.03) 0.47 (0.03) 0.87 (0.05) 0.94 (0.05)
σb 0.24 (0.02) 0.24 (0.03) 0.24 (0.03) 0.17 (0.03) 0.17 (0.03) 0.06 (0.01) 0.07 (0.01)
σg 0.53 (0.03) 0.52 (0.03) 0.52 (0.03) 0.50 (0.03) 0.49 (0.03) 0.84 (0.05) 0.80 (0.05)
σI 0.45 (0.05) 0.44 (0.05) 0.44 (0.05) 0.42 (0.04) 0.36 (0.04) 0.63 (0.15) 0.22 (0.03)
σr 0.24 (0.02) 0.24 (0.02) 0.24 (0.02) 0.24 (0.01) 0.24 (0.01) 0.10 (0.01) 0.11 (0.01)
σp 0.14 (0.02) 0.14 (0.02) 0.14 (0.02) 0.15 (0.02) 0.12 (0.01) 0.29 (0.03) 0.24 (0.02)
σw 0.24 (0.02) 0.24 (0.02) 0.24 (0.02) 0.27 (0.02) 0.31 (0.02) 0.51 (0.03) 0.51 (0.06)
ρga 0.52 (0.09) 0.54 (0.09) 0.54 (0.09) 0.53 (0.08) 0.55 (0.08) 0.59 (0.05) 0.52 (0.13)

The only substantial difference between the first two columns in the Table 6 and Table 7

is the steady state value of labor hours, all other parameters were unaffected by the usage
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of a different labor hours series. Moving to the real-time data does not significantly change

the posteriors,27 showing that the final data points do not contain a significant amount of

different information.

Adding more data (until 2010) delivers different estimates of many parameters, however -

although the standard deviations do not change. The most significant differences are in the

persistence of the risk premium shock and the steady state level of hours. The risk premium

becomes more persistent (with innovations a bit less volatile), and steady state labor hours

are even smaller than the original estimation. Apart from that, prices are estimated to be

stickier, and it is costlier to change capital utilization.

With more months between vintages, the posteriors change more significantly (compare

"Other hours" and "Vintage data" vs. "Till 2010" and "Till 2010, all data"). Using the most

recent data vintage delivers posterior estimates of the parameters different from 2010/05

vintage whereas the posterior standard deviations of the parameters are quite robust to

this modification. Capacity utilization costs increase even more, indexation to past prices

increases, and monetary policy is estimated to put less weight on the output gap.

Mixed-frequency estimation delivers substantially different results. The persistence of

the risk premium is much larger and the steady state level of labor hours is greater. Trend

growth is twice as large as in the quarterly estimation, and capital share is minor. Habits

are estimated to be more intense, and the Frisch elasticity of labor is smaller. The price

indexation parameter increases even more, and price and wage markups, together with the

productivity shocks, are more volatile. Monetary policy puts more weight on the output

gap rather than its growth. Kim’s (2010) and our new combined method provide similar

estimations with our method estimating a larger volatility of investment shocks and a larger

time discount factor. These differences may stem from observation errors or differences in

the priors when changing frequency, but in either case, we will use the quarterly estimates

in the forecasting exercises to maintain comparability between the different methods.28

In sum, all estimations find a highly persistent risk premium. The most volatile estimates

27 Only steady state labor hours, Frisch elasticity of labor hours, indexation parameter of wages, and the
coefficient on MA term in price markup insignificantly differ from the second column, which indicates some
uncertainty of steady state labor hours parameter

28 Forecasting results using the estimates from the monthly mixed methods can be found in the appendix.
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are obtained for the steady state level of the labor hours. Prices are estimated to be stickier

and more volatile than the original estimation, and the price indexation parameter is also

larger. Monetary policy’s reaction to inflation is weaker and closer to the original estimates

from Taylor (1993).

4.3. Mixed-Frequency Now/Forecasting with the Smets and

Wouters (2007) Model

We begin with the performance of the different methods during the expansion following

the Financial Crisis. This allows us to assess the different methods during a period of

more standard macroeconomic developments before we then turn in the next section to the

performance of the different methods during the Financial Crisis itself.

The nowcasting performace for 2010Q2:2019Q4 can be found in Table 8, where we calcu-

lated rolling 1-3 month nowcasts and measure them against the one quarter ahead forecasts.

In line with the controlled Monte Carlo results with simulated data, our new combined

method produces the smallest root mean squared errors among all mixed-frequency methods.

Kim’s (2010) method delivers smaller forecasting errors than Giannone et al.’s (2016) method,

showing the importance again of using a monthly model, which the auxiliary variables alone

are unable to fully compensate for. Additionally, when using mixed-frequency estimates

instead of estimates from quarterly estimation Kim’s (2010) method outperforms quarterly

one-step ahead forecast in the third month (see Appendix D.5). Our combined method takes

the monthly frequency and further adds the information from the auxiliary variables and,

accordingly, improves on both.
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Table 8: The Smets and Wouters (2007) Model, Expansion: Relative RMSFE of the GDP Nowcasts,
Obtained Using Mixed-frequency Methods. Each row presents RMSFE nowcasts obtained using the
Giannone et al. (2016), the Kim (2010) / Foroni and Marcellino (2014), and the new method, suggested in the
Section 2. Nowcasts for the mixed-frequency methods are obtained using quarterly estimates of the parameters
(which are transformed into the monthly frequency using Table 14). The RMSFE are shown as a ratio to the
RMSFE of the new method. The RMSFE of the new method are 1.24, 0.76, 0.64. The columns present months
in which nowcasts are made. The forecast errors are averaged over a sample 2010Q2:2019Q4. ***/**/* indicates
the forecasts that are statistically significantly different from the one-step ahead quarterly forecast with a
1%/5%/10% significance level based on the Diebold and Mariano (1991) test, where Newey–West standard
errors are used to deal with the autocorrelation. Quarterly 1-step ahead RMSFE is 0.59.

Method Month 1 Month 2 Month 3

Giannone et al. (2016) 1.5933*** 2.2234*** 2.3991***
Kim (2010) 1.0929*** 1.4739*** 1.6264***

New Method 1*** 1 1

The forecasting results are summarized in Table 9 and Figure 3. Here we give the RSMFE

for GDP forecasts 1 to 12 quarters ahead. The quarterly model performs best in predicting

quarterly GDP, however our new combined method produces forecasts that differ statistically

from those of the quarterly model only at intermediate horizons. While at higher horizons,

all forecasts are statistically indistinguishable, our new method is clearly superior to the

other mixed-frequency methods for one-quarter ahead forecasts, successfully leveraging the

two other mixed-frequency approaches’ different introduction of higher frequency (monthly)

noise.

Table 9: The Smets and Wouters (2007) Model, Expansion: Relative RMSFE of the GDP Forecasts
Obtained Using Quarterly and Mixed-frequency Methods. Each row presents RMSFE forecasts obtained
using the Giannone et al. (2016), the Kim (2010) / Foroni and Marcellino (2014), and the new method, suggested
in the Section 2. Forecasts for the mixed-frequency methods are obtained using quarterly estimates of the
parameters (which are transformed into the monthly frequency using Table 14). The RMSFE are shown as a
ratio to the RMSFE of the new method. The RMSFE of the new method are 0.7388, 0.9106, 0.7282, 0.6535,
0.5669, 0.5010, 0.4515, 0.4377, 0.4748, 0.4577, 0.4305, 0.4320. The columns present quarters ahead for which
forecasts are made. The forecast errors are averaged over a sample 2010Q2:2019Q4. ***/**/* indicates the
forecasts that are statistically significantly different from the quarterly forecasts with a 1%/5%/10% significance
level based on the Diebold and Mariano (1991) test, where Newey–West standard errors are used to deal with
the autocorrelation.

Method 1 2 3 4 5 6 7 8 9 10 11 12

Quarterly 0.7938 0.4747 0.5878 0.6186 0.7306 0.7392 0.7911 0.7464 0.6988 0.7278 0.7300 0.7456
Giannone et al. (2016) 3.4846*** 3.3361*** 3.5186*** 3.2665** 3.1285** 3.0140* 2.8508 2.6514 2.1911 2.1297 2.1272 2.0116

Kim (2010) 1.8739*** 1.6796*** 1.8951*** 1.9303** 2.0486* 2.1708* 2.2415 2.1452 1.8978 1.8829 1.9407 1.8692
New Method 1 1*** 1** 1** 1** 1 1 1 1 1 1 1
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Figure 3: The Smets and Wouters (2007) Model, Expansion: RMSFE of the GDP Forecasts, Ob-
tained Using Quarterly and Mixed-frequency Methods. The figure shows GDP RMSFE, obtained using
the new method (in blue), the Kim (2010) / Foroni and Marcellino (2014) method (in red), the Giannone et al.
(2016) method (in yellow), and the standard quarterly forecasting (in purple). Forecasts for the mixed-frequency
methods are obtained using quarterly estimates of the parameters (which are transformed into the monthly
frequency using Table 14). The RMSFE are presented for the Smets and Wouters (2007) model and are averaged
over a sample 2010Q2:2019Q4. X-axis shows forecasting horizon in quarters and Y-axis shows RMSFE for each
method.

Figure 4 depicts an out-of-sample exercise, where the different methods estimate monthly

GDP. These estimates are plotted against the observed quarterly GDP in the figure. Giannone

et al.’s (2016) method misses the first moment, predicting a far higher growth of GDP that

was then actually observed, though these estimates are so imprecise as they roughly contain

quarterly observed GDP within one standard deviation bounds. Comparatively, both our

method and the method of Kim (2010) do much better, yet Kim’s (2010) method produces

much larger and persistent deviations from the quarterly data series, particularly in, e.g.,

2016 onward.

Using mixed frequency methods brings potential gains, as additional information in

the form of higher frequency data is included in forecasting, but also potential losses, as

this data introduces additional noise. Both effects also play out with the backdrop of

temporal aggregation bias when the frequency of data sampling and agents’ decision making

differ. We find that our new method that combines higher frequency decision making and
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Figure 4: The Smets and Wouters (2007) Model, Expansion: Smoothed Out-of-Sample GDP. The
Kalman smoother generates monthly GDP series, values of which are missed in the first and the second months
of each quarter. The figure shows these smoothed GDP series (E(yt|T )). The smoothed series are obtained using
the Kalman smoother of the new method (in blue), the Kim (2010) / Foroni and Marcellino (2014) method (in
yellow), and the Giannone et al. (2016) method (in green), and the actual data is shown in burgundy dots.
Forecasts for the mixed-frequency methods are obtained using quarterly estimates of the parameters (which
are transformed into the monthly frequency using Table 14). Shaded areas correspond to the one standard
deviation around the mean. X-axis shows time in months.

auxiliary variables improves on existing methods that do only one of the two, both in terms

of nowcasting within a quarter and forecasting on a quarterly basis.

5. Mixed-Frequency DSGE Forecasting in the Great

Recession

Of particular interest is the performance of forecasting methods during particularly turbulent

times, such as the Great Recession (the period 2008Q1:2009Q2),29 as these times are marked

by sequences of less probable shocks that strain the abilities of linear forecasting methods.

Yet precisely in such rapidly changing environments does the inclusion of higher frequency

data - intermediate observations or auxiliary variables - hold great promise. By drawing on

a larger body of data at higher frequencies, the forecasting models might be better informed

and caught less off guard by the rapidly changing economic environment. To this end, we

29 Recessions and expansions were identified using the NBER recession index.
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Table 10: The Smets and Wouters (2007) Model, the Great Recession: Relative RMSFE of the GDP
Nowcasts, Obtained Using Mixed-frequency Methods. Each row presents RMSFE nowcasts obtained
using the Giannone et al. (2016), the Kim (2010) / Foroni and Marcellino (2014), and the new method, suggested
in the Section 2. Nowcasts for the mixed-frequency methods are obtained using quarterly estimates of the
parameters (which are transformed into the monthly frequency using Table 14). The RMSFE are shown as
a ratio to the RMSFE of the new method. The RMSFE of the new method are 1.47, 0.85, 0.85. The columns
present months in which nowcasts are made. The forecast errors are averaged over a sample 2008Q1:2009Q2.
***/**/* indicates the forecasts that are statistically significantly different from the one-step ahead quarterly
forecast with a 1%/5%/10% significance level based on the Diebold and Mariano (1991) test, where Newey–West
standard errors are used to deal with the autocorrelation. Quarterly 1-step ahead RMSFE is 1.30.

Method Month 1 Month 2 Month 3

Giannone et al. (2016) 0.8148 1.1997 1.0100
Kim (2010) 1.1777 1.9622 1.6709

New Method 1 1 1*

keep our focus on forecasting real economic activity as measured by GDP using the same

set of methods within the context of the Smets and Wouters (2007) model as in the previous

section.

The RMSFE are contained in Table 10 and the first observation is that during the Great

Recession all RMSFE are larger in comparison with the expansionary period. Contrary to

normal times, however using auxiliary variables substantially decreases forecasting errors,

leading to the Giannone et al. (2016) method to demonstrate much smaller errors relative to

the other methods in comparison to the previous section, even providing superior forecasting

power compared with our combined method one month out. Interestingly, Kim’s (2010)

method now delivers worse nowcasts than the quarterly one-quarter ahead forecast, whereas

Giannone et al. (2016) and our combined method deliver better nowcasts starting from the

second and third month accordingly. Our combined method, as in the expansionary period

that followed (the period 2010Q2:2019Q4, see the previous section), delivers arguably better

results than the two methods alone by combining their approaches.

We now turn to the forecasted path of GDP during the Great Recession. In Figure 5, the

estimates of quarterly GDP from the different mixed frequency and the standard quarterly

method are depicted. For the standard quarterly method, the one-quarter ahead forecasts are

plotted and it is clear that the strong mean-reversion and low frequency of the data causes the
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method to miss the recession in its forecasts almost entirely. The different mixed-frequency

methods are given different conditioning sets, data from the first month of the quarter (m1),

then, additionally the second month (m2), and so on. Both Kim’s (2010) and Giannone et

al.’s (2016) methods do forecast the recession, but miss the trough and identify it one quarter

too late. Giannone et al.’s (2016) method, but importantly not Kim’s (2010) method, profits

from having data from additional months within the quarter. This is precisely the expected

advantage of auxiliary variables. Our new, combined method succeeds in forecasting both

the magnitude and timing of the trough more accurately than the other methods.

Figure 5: The Smets and Wouters (2007) Model, the Great Recession: GDP Forecasts, Obtained
Using Quarterly and Mixed-frequency Methods. The figure shows GDP forecasts, obtained using the
new method (in blue), the Kim (2010) / Foroni and Marcellino (2014) method (in red), the Giannone et al.
(2016) method (in green), and the standard quarterly forecasting (in magenta). The data is shown in purple.
Forecasts for the mixed-frequency methods are obtained using quarterly estimates of the parameters (which
are transformed into the monthly frequency using Table 14). The forecasts are presented for the Smets and
Wouters (2007) model. “m1”, “m2”, and “m3” correspond to the first, the second and the third months from
which the nowcasts are made. X-axis shows time in quarters (January stands for the first quarter).

Comparing the smoothed GDP estimates from the different methods in Figure 6, where

the first and second months of GDP in the quarter are not observed, again our new, combined

method provides the best estimate. Our method can be seen as a weighted average between

the Giannone et al. (2016) and Kim (2010) methods and tracks the trajectory of GDP more

closely than either of the other methods over the whole period.

The RMSFE of forecasts during the Great Recession are contained in Table 11 and Fig-
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Figure 6: The Smets and Wouters (2007) Model, the Great Recession: Smoothed Out-of-Sample
GDP. The Kalman smoother generates monthly GDP series, values of which are missed in the first and the
second months of each quarter. The figure shows these smoothed GDP series (E(yt|T )). The smoothed series
are obtained using the Kalman smoother of the new method (in blue), the Kim (2010) / Foroni and Marcellino
(2014) method (in yellow), and the Giannone et al. (2016) method (in green), and the actual data is shown
in burgundy dots. Forecasts for the mixed-frequency methods are obtained using quarterly estimates of the
parameters (which are transformed into the monthly frequency using Table 14). Shaded areas correspond to
the one standard deviation around the mean. X-axis shows time in months.
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ure 7 for forecasting horizons of one through six quarters. As in expansion that followed -

see Table 9, the standard quarterly linear times series model generally provides the best

quarterly forecasts of GDP during the Great Recession. At higher forecasting horizons, Kim’s

(2010) method shows smaller average forecasting errors, but the differences in the forecasts

are statistically insignificantly different from the standard quarterly method at all horizons

for all methods. The exception being at the one quarter horizon where our new methods

provides better average forecasts than Giannone et al.’s (2016) and Kim’s (2010) methods,

but statistically significantly worse forecasts than the standard linear quarterly model.

Table 11: The Smets and Wouters (2007) Model, the Great Recession: Relative RMSFE of the
GDP Forecasts Obtained Using Quarterly and Mixed-frequency Methods. Each row presents RMSFE
forecasts obtained using the Giannone et al. (2016), the Kim (2010) / Foroni and Marcellino (2014), and the new
method, suggested in the Section 2. Forecasts for the mixed-frequency methods are obtained using quarterly
estimates of the parameters (which are transformed into the monthly frequency using Table 14). The RMSFE
are shown as a ratio to the RMSFE of the new method. The RMSFE of the new method are 2.0824, 1.3559,
1.3390, 1.2513, 0.6773, 0.1139. The columns present quarters ahead for which forecasts are made. The forecast
errors are averaged over a sample 2008Q1:2009Q2. ***/**/* indicates the forecasts that are statistically
significantly different from the quarterly forecasts with a 1%/5%/10% significance level based on the Diebold
and Mariano (1991) test, where Newey–West standard errors are used to deal with the autocorrelation.

Method 1 2 3 4 5 6

Quarterly 0.6225 1.0743 1.1897 1.3454 1.3576 3.1904
Giannone et al. (2016) 0.8188 1.9380 1.9826 2.1317 2.8385 12.6333

Kim (2010) 0.9805 1.3623 0.8889 0.6480 0.6576 5.8290
New Method 1* 1 1 1 1 1
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Figure 7: The Smets and Wouters (2007) Model, the Great Recession: RMSFE of the GDP Forecasts,
Obtained Using Quarterly and Mixed-frequency Methods. The figure shows GDP RMSFE, obtained
using the new method (in blue), the Kim (2010) / Foroni and Marcellino (2014) method (in red), the Giannone
et al. (2016) method (in yellow), and the standard quarterly forecasting (in purple). Forecasts for the mixed-
frequency methods are obtained using quarterly estimates of the parameters (which are transformed into the
monthly frequency using Table 14). The RMSFE are presented for the Smets and Wouters (2007) model and
are averaged over a sample 2008Q1:2009Q2. X-axis shows forecasting horizon in quarters and Y-axis shows
RMSFE for each method.

The more mixed nature of our results can be clearly seen in Figure 7. For one quarter

predictions, a standard quarterly state-observer (linear hidden Markov) model is clearly

superior. Our new method along with the method of Kim (2010) then overtake the standard

quarterly model, though the difference is not significant.

6. Conclusion

We have shown that including higher frequency information improves the forecasting perfor-

mance of DSGE models, specifically with our new method that combines existing methods

to consistently model, estimate and forecast within a DSGE model with mixed frequencies.

We find that during expansions in our real world experiment and with the simulated data

from our Monte Carlo exercise that using monthly data of model variables and casting the

model in a monthly frequency generally decreases forecasting errors. On the other hand,

incorporating information from auxiliary variables is crucial in obtaining better forecasts
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during recessions. Our combined method, which blends the approaches of incorporating 

higher frequency auxiliary variables and using monthly data of the model variables, improves 

forecasts in all Monte Carlo exercises with the 3-equation New Keynesian DSGE model. 

With real data and the medium scale policy relevant model of Smets and Wouters (2007) 

model, our combined method produces more mixed results but definitively tracks the timing 

and the depth of the Great Recession better than existing mixed-frequency DSGE methods.
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A. Derivations of the Analytical Results

Proposition 1

Proof. First of all, notice that the state space transformations done in the two algorithms

are the same if there are no measurement errors (utm = 0 ∀tm). To see this in Foroni and

Marcellino (2014) algorithm we substitute f tm with f tm = (stm , stm−1, stm−2)′ and ignore the

corresponding equations for the utm ,utm−1,utm−2 terms in the transition equation (as they

all deliver equations like 0= 0 in the transition equation; in the observation equation these

terms add only zeros). The system becomes identical to the one in Kim (2010).

Next, we need to prove that the Kalman filter with missing observations and Kim (2010)

algorithm with data augmentation deliver the same results. The prediction step in both

methods is the same as it is based on the transition equation that is the same for both

methods (due to the same state space formulation). Thus the difference in methods could

only come from the update step of the Kalman filter.

In Kim (2010) the prediction value of missing observations is

ẑtm = M̃m,z s̃tm|tm−1 + M̃m,zP̃tm|tm−1M̃
′
m,w(M̃m,wP̃tm|tm−1M̃

′
m,w)−1(wtm − M̃m,w s̃tm|tm−1) (A.1)

and the variance of the prediction is

Vẑ = M̃m,zP̃tm|tm−1(I − M̃′
m,w(M̃m,wP̃tm|tm−1M̃′

m,w)−1M̃m,wP̃tm|tm−1)M̃′
m,z (A.2)

where I is the identity matrix (see Equation (7)).

Therefore, the error in the update state of the Kalman filter with data augmentation reads

as following
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vtm = (Ỹtm − M̃m s̃tm|tm−1)=

wtm

ẑtm

−

M̃m,w

M̃m,z

 s̃tm|tm−1

=

 I

M̃m,zP̃tm|tm−1M̃
′
m,w(M̃m,wP̃tm|tm−1M̃

′
m,w)−1

 (wtm − M̃m,w s̃tm|tm−1)

= M̃mP̃tm|tm−1M̃
′
m,w(M̃m,wP̃tm|tm−1M̃

′
m,w)−1(wtm − M̃m,w s̃tm|tm−1)

(A.3)

where in the second equation we used Equation (A.1) for ẑtm and in the last equation we

represented I = M̃m,wP̃tm|tm−1M̃
′
m,w(M̃m,wP̃tm|tm−1M̃

′
m,w)−1. The predicted value of the state

variable is30

s̃tm|tm = T̃m s̃tm|tm−1 + T̃m[Cov(s̃tm|tm−1,vtm)][Var(vtm)]−1vtm (A.4)

The covariance and the variance are equal to

Cov(s̃tm|tm−1,vtm)= P̃tm|tm−1(M̃mP̃tm|tm−1M̃
′
m,w(M̃m,wP̃tm|tm−1M̃

′
m,w)−1M̃m,w)

′
(A.5)

Var(vtm)= M̃mP̃tm|tm−1M̃
′
m,w(M̃m,wP̃tm|tm−1M̃

′
m,w)−1M̃m,wP̃tm|tm−1·

· (M̃mP̃tm|tm−1M̃
′
m,w(M̃m,wP̃tm|tm−1M̃

′
m,w)−1M̃m,w)

′

= M̃mP̃tm|tm−1M̃
′
m,w(M̃m,wP̃tm|tm−1M̃

′
m,w)−1M̃m,wP̃tm|tm−1M̃

′
m (A.6)

and the error term is given in Equation (A.3). When we plug in the covariance, the variance

and the error term into the predicted value of the state vector (Equation (A.4)) we obtain

30 Formula (4.14) in Durbin and Koopman (2012).
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s̃tm|tm = T̃m s̃tm|tm−1 + T̃mP̃tm|tm−1(M̃mP̃tm|tm−1M̃
′
m,w(M̃m,wP̃tm|tm−1M̃

′
m,w)−1M̃m,w)

′ ·

(M̃mP̃tm|tm−1M̃
′
m,w(M̃m,wP̃tm|tm−1M̃

′
m,w)−1M̃m,wP̃tm|tm−1M̃

′
m)−1·

M̃mP̃tm|tm−1M̃
′
m,w(M̃m,wP̃tm|tm−1M̃

′
m,w)−1(wtm − M̃m,w s̃tm|tm−1) (A.7)

Notice that

(M̃m,wP̃tm|tm−1M̃
′
m,w)−1M̃m,wP̃tm|tm−1M̃

′
m·

· (M̃mP̃tm|tm−1M̃
′
m,w(M̃m,wP̃tm|tm−1M̃

′
m,w)−1M̃m,wP̃tm|tm−1M̃

′
m)−1M̃mP̃tm|tm−1M̃

′
m,w

= B(AB)−1A = B(AB)−1ABB′(BB′)−1 = I (A.8)

where B = (M̃m,wP̃tm|tm−1M̃
′
m,w)−1M̃m,wP̃tm|tm−1M̃

′
m, A = M̃mP̃tm|tm−1M̃

′
m,w and I is an

identity matrix. Thus the predicted vector could be simplified to

s̃tm|tm = T̃m s̃tm|tm−1 + T̃mP̃tm|tm−1M̃
′
m,w(M̃m,wP̃tm|tm−1M̃

′
m,w)−1(wtm − M̃m,w s̃tm|tm−1) (A.9)

and the predicted variance is31

P̃tm|tm = T̃m(P̃tm|tm−1 − [Cov(s̃tm|tm−1,vtm)][Var(vtm)]−1[Cov(s̃tm|tm−1,vtm)]
′
)T̃

′
m + B̃mQ̃mB̃′

m

= T̃mP̃tm|tm−1T̃
′
m − T̃mP̃tm|tm−1M̃

′
m,w(M̃m,wP̃tm|tm−1M̃

′
m,w)−1M̃m,wP̃tm|tm−1T̃

′
m + B̃mQ̃mB̃′

m

(A.10)

where Q̃m is the variance of the errors in the transition equation and for

[Cov(s̃tm|tm−1,vtm)][Var(vtm)]−1[Cov(s̃tm|tm−1,vtm)]
′

we plugged in the formulas from Equa-

tion (A.6) and again used the Equation (A.8) to simplify the terms (see Equation (A.11)

below).

31 Formula (4.18) and (4.23) in Durbin and Koopman (2012).
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[Cov(s̃tm|tm−1,vtm)][Var(vtm)]−1[Cov(s̃tm|tm−1,vtm)]
′ = P̃tm|tm−1(M̃mP̃tm|tm−1M̃

′
m,w·

· (M̃m,wP̃tm|tm−1M̃
′
m,w)−1M̃m,w)

′
(M̃mP̃tm|tm−1M̃

′
m,w(M̃m,wP̃tm|tm−1M̃

′
m,w)−1M̃m,wP̃tm|tm−1M̃

′
m)−1·

· (P̃tm|tm−1(M̃mP̃tm|tm−1M̃
′
m,w(M̃m,wP̃tm|tm−1M̃

′
m,w)−1M̃m,w)

′
)
′

= P̃tm|tm−1M̃
′
m,w(M̃m,wP̃tm|tm−1M̃

′
m,w)−1M̃m,wP̃tm|tm−1 (A.11)

The missing observations Kalman filter can be represented as a standard Kalman filter

with the observation equation like32

WỸtm =WM̃m s̃tm (A.12)

in the time periods with missing observations where W selects only observed variables, i.e.

W =
(
I 0

)
, W is nw × (nw +nz), I is nw ×nw.

The predicted value in the periods with missing observations is thus

s̃tm|tm = T̃m s̃tm|tm−1 + T̃mP̃tm|tm−1(WM̃m)′(WM̃mP̃tm|tm−1(WM̃m)′)−1W(Ỹtm −Mm s̃tm|tm−1)=

T̃m s̃tm|tm−1 + T̃mP̃tm|tm−1M̃
′
m,w(M̃m,wP̃tm|tm−1M̃

′
m,w)−1(wtm − M̃m,w s̃tm|tm−1) (A.13)

where in the last equation we used the fact that WM̃m = M̃m,w. The predicted variance is

P̃tm|tm = T̃mP̃tm|tm−1(T̃m − T̃mP̃tm|tm−1(WM̃m)
′
(WM̃mP̃tm|tm−1(WM̃m)

′
)−1WM̃m)′+ B̃mQ̃mB̃′

m

= T̃mP̃tm|tm−1(T̃m − T̃mP̃tm|tm−1M̃
′
m,w(M̃m,wP̃tm|tm−1M̃

′
m,w)−1M̃m,w)′+ B̃mQ̃mB̃′

m

(A.14)

The expressions of the predicted state vector (Equation (A.9) and Equation (A.13)) and

32 See Section 4.10 in Durbin and Koopman (2012) for details.
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the predicted variance of the state vector (Equation (A.10) and Equation (A.14)) in the two

methods are the same.

Proposition 2

Proof. Firstly, the state space system of the new method (Equation (11)) could be rewritten

as



f tm = T̃m f tm−1 + B̃mξm,tmỸtm

X̃ tm

=

0

µ

+

 M̃m

ΛM̃m

 f tm +

 0

Rm

ζtm

(A.15)

or simply


f tm = T̃m f tm−1 + B̃mξm,tm

Ztm = µ̃+Γm f tm +Ωmζtm

(A.16)

From Lemma 2 in Durbin and Koopman (2012) we know that the estimates of this system

obtained using the Kalman filter are minimum variance linear unbiased estimates (MVLUE).

In the new method exactly this system is estimated using Kalman filter with missing

observations. Therefore, its estimates are MVLUE.

The Giannone et al. (2016) method does not use the information from the auxiliary

variables when estimating the model and the model is estimated at a quarterly frequency.

Abstracting from the difference that could arise due to the estimation at quarterly frequency

instead of monthly frequency with missing observations, in their method for the estimation

they use only part of the observations available (use only Ỹtm and not X̃ tm when updating

the guesses). That is equivalent to using Kalman filter with missing observations where all

X̃ tm are missing.

47



The Kim (2010) / Foroni and Marcellino (2014) method also uses only Ỹtm and not X̃ tm in

their estimation (because they do not use auxiliary variables in their method).

The forecasting is done only in Giannone et al. (2016) and even for the forecasting the

method uses only part of the observations available. It disregards X̃ tm when Ỹtm is available.

Therefore, all other methods (apart from the new method) estimate the system Equa-

tion (A.16) and produce forecasts from it but as if some observations are missing. This leads

to larger variance of the state vector

P̃tm|tm = T̃mP̃tm|tm−1(T̃m − T̃mP̃tm|tm−1(WΓ̃m)
′
(WΓ̃mP̃tm|tm−1(WΓ̃m)

′
)−1WΓ̃m)′+ B̃mQ̃mB̃′

m

(A.17)

where for the new method W is an identity matrix and for all other methods W has rows

equal to zero for the variables that are treated as missing. In case all rows in W are zero the

term in the round brackets is equal to T̃m and the more rows in W are non-zero, the smaller

is the term in the round brackets and thus the smaller is the variance of the state vector.
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B. Appendix Tables

Table 12: Priors of the Parameters in the 3-equation Model from Ch. 3 Galí (2008). Each row
presents a parameter, its mean, standard deviation and the functional form of the prior. All parameters are
presented in quarterly and monthly frequencies. For the parameters that change with a change in a frequency
the values in the "Monthly" and "Quarterly" columns differ. For the parameters that are independent of
frequencies (i.e. preference parameters) the values in the "Monthly" and "Quarterly" columns are the same.

Parameter Description Distribution Monthly
Prior mean

Monthly
Prior std

Quarterly
Prior mean

Quarterly
Prior std

θ Calvo parameter Beta 8 / 9 0.15p
(3)

2 / 3 0.15

ρν Persistence of monetary policy shock Beta 0.5
1
3 0.12p

(3)
0.5 0.12

ρa Persistence of TFP Beta 0.9
1
3 0.05p

(3)
0.9 0.05

β Households’ discount factor Beta 1
(1+ 1

3 ( 1
0.99−1))

0.005p
(3)

0.99 0.005

α Capital share Beta 1
3 0.12 1

3 0.12
η Semi-elasticity of money demand Gamma 4 2 4 2
ε Demand elasticity Gamma 6 3 6 3
φπ Taylor coefficient in front of inflation Normal 1.5 0.75 1.5 0.75
φy Taylor coefficient in front of output gap Normal 0.5 / 4 0.06 0.5 / 4 0.06
σπ Std cost-push shock Inverse Gamma 0.252

3
0.12p

(3)
0.252 0.12

σy Std demand shock Inverse Gamma 0.252

3
0.12p

(3)
0.252 0.12

σi Std monetary policy shock Inverse Gamma 0.252

3
0.12p

(3)
0.252 0.12

Table 13: Code names from FRED of the variables used in the Smets and Wouters (2007) model.
Variable Code Description

GDP GDPC1 Real Gross Domestic Product, Billions of Chained 2012 Dollars, Quarterly, Seasonally Adjusted Annual Rate
Population CNP16OV Population Level, Persons, Quarterly, Not Seasonally Adjusted
Investments FPI Fixed Private Investment, Billions of Dollars, Quarterly, Seasonally Adjusted Annual Rate
GDP deflator GDPDEF Gross Domestic Product: Implicit Price Deflator, Index 2012=100, Quarterly, Seasonally Adjusted
Hours AWHNONAG Average Weekly Hours of Production and Nonsupervisory Employees, Total Private, Monthly, Seasonally Adjusted
Employment CE16OV Employment Level, Thousands of Persons, Quarterly, Seasonally Adjusted
Wages COMPNFB Nonfarm Business Sector: Compensation Per Hour, Index 2012=100, Quarterly, Seasonally Adjusted
Fed Funds Rate FEDFUNDS Effective Federal Funds Rate, Percent, Monthly, Not Seasonally Adjusted
Consumption PCE Personal Consumption Expenditures, Billions of Dollars, Quarterly, Seasonally Adjusted Annual Rate
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Table 14: Transformation of the parameters from quarterly to monthly frequency for the Smets
and Wouters (2007) model. All standard deviations were divided by

p
3, all persistence parameters were

powered to the power of 1
3 . Transformations for other parameters (that needed transformation) are presented

in the table below.

Variable Transformation
formula

Description

cτ cm
τ = cq

τ

3 Depreciation rate
cβ cm

β
= 1

1
3 ( 1

cq
β

−1)+1
Discount factor

cγ cm
γ = cm

100 +1= cq

300 +1 cq is a quarterly trend growth rate to GDP

cπe cm
πe

= cm
π

100 +1= cq
π

300 +1 cq
π is a quarterly steady state inflation rate

chabbit cm
habbit =

cq
habbit

3 Habit formation parameter

cprobp cm
probp

= 1− 1−cq
probp
3 Calvo parameter for prices

cprobw cm
probw

= 1− 1−cq
probw
3 Calvo parameter for wages

C. Appendix Graphs
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Figure 8: The 3-equation Model from Ch. 3 Galí (2008): Updated Out-of-Sample GDP. The Kalman
smoother generates monthly GDP series, values of which are missed in the first and the second months of each
quarter. The figure shows these smoothed GDP series (E(yt|t)) for the out-of-sample data. The smoothed series
are obtained using the Kalman smoother of the new method (in red), the Kim (2010) / Foroni and Marcellino
(2014) method (in yellow), and the Giannone et al. (2016) method (in green). X-axis shows time in months and
Y-axis shows filtered GDP.
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Figure 9: The 3-equation Model from Ch. 3 Galí (2008): RMSFE of the Monthly GDP Forecasts,
Obtained Using Quarterly and Mixed-frequency Methods.. The figure shows monthly GDP RMSFE,
obtained using the new method (in blue), the Kim (2010) / Foroni and Marcellino (2014) method (in red), the
Giannone et al. (2016) method (in yellow). The RMSFE are presented for the 3-equation DSGE model from
Ch.3 Galí (2008) and are averaged over 1000 simulated sample points. X-axis shows forecasting horizon in
months and Y-axis shows RMSFE for each method.
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Figure 10: The 3-equation Model from Ch. 3 Galí (2008): Smoothed Out-of-Sample GDP, Difference
to the Data. The Kalman smoother generates monthly GDP series, values of which are missed in the first and
the second months of each quarter. The figure shows these smoothed GDP series (E(yt|T )) for the out-of-sample
data. The smoothed series are obtained using the Kalman smoother of the new method (in red), the Kim (2010)
/ Foroni and Marcellino (2014) method (in yellow), and the Giannone et al. (2016) method (in green). All series
are presented as deviations from the data. X-axis shows time in months.
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Figure 11: The 3-equation Model from Ch. 3 Galí (2008): RMSFE of the Interest Rate Forecasts,
Obtained Using Quarterly and Mixed-frequency Methods.. The figure shows Interest Rate RMSFE,
obtained using the new method (in blue), the Kim (2010) / Foroni and Marcellino (2014) method (in red), the
Giannone et al. (2016) method (in yellow). The RMSFE are presented for the 3-equation DSGE model from
Ch.3 Galí (2008) and are averaged over 1000 simulated sample points. X-axis shows forecasting horizon in
months and Y-axis shows RMSFE for each method.
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Figure 12: The 3-equation Model from Ch. 3 Galí (2008): RMSFE of the Inflation Forecasts, Ob-
tained Using Quarterly and Mixed-frequency Methods.. The figure shows Inflation RMSFE, obtained
using the new method (in blue), the Kim (2010) / Foroni and Marcellino (2014) method (in red), the Giannone et
al. (2016) method (in yellow). The RMSFE are presented for the 3-equation DSGE model from Ch.3 Galí (2008)
and are averaged over 1000 simulated sample points. X-axis shows forecasting horizon in months and Y-axis
shows RMSFE for each method.

Figure 13: Labor hours data. The figure shows demeaned series of labor hours. Available series refers to
AWHNONAG series, SW hours refer to the series used in the Smets and Wouters (2007) paper. X-axis shows
time in years.
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Figure 14: The Smets and Wouters (2007) Model, Expansion: Updated Out-of-Sample GDP. The
Kalman smoother generates monthly GDP series, values of which are missed in the first and the second months
of each quarter. The figure shows these smoothed GDP series (E(yt|t)). The smoothed series are obtained using
the Kalman smoother of the new method (in blue), the Kim (2010) / Foroni and Marcellino (2014) method (in
yellow), and the Giannone et al. (2016) method (in green), and the actual data is shown in purple dots. X-axis
shows time in months and Y-axis shows smoothed GDP.
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Figure 15: The Smets and Wouters (2007) Model, the Great Recession: Updated Out-of-Sample
GDP. The Kalman smoother generates monthly GDP series, values of which are missed in the first and the
second months of each quarter. The figure shows these smoothed GDP series (E(yt|t)). The smoothed series
are obtained using the Kalman smoother of the new method (in blue), the Kim (2010) / Foroni and Marcellino
(2014) method (in yellow), and the Giannone et al. (2016) method (in green), and the actual data is shown in
purple dots. X-axis shows time in months and Y-axis shows smoothed GDP.
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D. Robustness Checks

D.1. Larger sample size for a 3-equation DSGE model

Table 15: The 3-equation Model from Ch. 3 Galí (2008): Estimation of the Parameters Using
Quarterly and Mixed-frequency Methods. Each row presents parameter estimates using the Quarterly
estimation, the Kim (2010) / Foroni and Marcellino (2014) estimation method, or the new estimation method (see
Section 2 for methods’ details). Standard deviations of the estimated parameters are presented in parentheses.
The estimates of the quarterly estimation are transformed into their monthly counterparts.33 The column DGP
shows parameter values used to generate the simulated data (the true parameter values).

Parameter DGP Quarterly Mixed Kim (2010) Mixed new algorithm

θ 0.8889 0.9060 (0.0152) 0.8903 (0.0216) 0.8903 (0.0218)
ρ i 0.7937 0.7611 (0.0013) 0.7935 (0.0004) 0.7935 (0.0005)
ρa 0.9655 0.9655 (0.0177) 0.9659 (0.0282) 0.9688 (0.0252)
β 0.9966 0.9966 (0.0017) 0.9967 (0.0029) 0.9968 (0.0027)
α 0.3333 0.3475 (0.1197) 0.3352 (0.1160) 0.3508 (0.1235)
η 4 3.9593 (1.9678) 3.9600 (1.9871) 4.2016 (2.1196)
ε 6 5.3966 (2.2140) 5.9440 (3.0260) 5.8319 (3.1064)
φπ 1.5 3.3430 (0.1932) 1.5354 (0.0799) 1.5408 (0.0818)
φy 0.1250 0.0665 (0.0585) 0.1164 (0.0571) 0.1191 (0.0584)
σπ 0.0208 0.0191 (0.0008) 0.0209 (0.0005) 0.0209 (0.0005)
σy 0.0208 0.0095 (0.0004) 0.0215 (0.0029) 0.0213 (0.0029)
σi 0.0208 0.2936 (0.0262) 0.1401 (0.0237) 0.1416 (0.0243)

D.2. Giannone with other transformation to monthly frequency

DSGE for a 3-equation DSGE model

Below are presented results when the parameters from quarterly estimation are transformed

into their monthly counterparts not by powering the transition matrix into the power 1
3 ,

but by doing different transformations for each parameter according to its specific nature

(for example, the capital share parameter is not transformed, but the Calvo parameter is

transformed according to θmonthl y = 1− 1
3 (1−θquarterl y)).

For the nowcasts the new method outperforms the other methods. For the forecasts the

33 θ was estimated in a quarterly model at 0.7096, ρ i at 0.44, ρa at 0.8999, β at 0.99, σπ at 0.0327, σy at 0.0175,
σi at 0.5320. Standard deviations were transformed using the approximation Var(g(x))= (g′(x))2Var(x) with
evaluation of the derivative at the estimated value of the parameters.
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Table 16: The 3-equation Model from Ch. 3 Galí (2008): Relative RMSFE of the GDP Nowcasts,
Obtained Using Mixed-frequency Methods. Each row presents RMSFE nowcasts obtained using the
Giannone et al. (2016), the Kim (2010) / Foroni and Marcellino (2014), and the new method, suggested in the
Section 2. The RMSFE are shown as a ratio to the RMSFE of the new method. The RMSFE of the new method
are 0.5010, 0.2706, 0.0108. The columns present months in which nowcasts are made. The nowcast errors are
averaged over 10000 simulated sample points. *** indicates the forecasts that are statistically significantly
different from the other forecasts with a 1% significance level based on the Diebold and Mariano (1991) test,
where Newey–West standard errors are used to deal with the autocorrelation.

Method Month 1 Month 2 Month 3

Giannone et al. (2016) 1.3549*** 1.3868*** 9.7494***

Kim (2010) 1.0005*** 1.0014*** 1.0056***

New Method 1*** 1*** 1***

Table 17: The 3-equation Model from Ch. 3 Galí (2008): RMSE of the Filtered GDP series, obtained
Using Mixed-frequency Methods. The Kalman filter generates monthly GDP series, values of which are
missed in the first and the second months of each quarter. The obtained series is compared to the simulated
series. Each row presents an out-of-sample (sample different from the one on which the model was estimated)
RMSE for the filtered monthly GDP series, values of which are based on the information at time t, or the
information available at the end of the sample. The columns present RMSE for the filtered values, obtained
using the Kalman filter of the Giannone et al. (2016), the Kim (2010) / Foroni and Marcellino (2014), or the new
method, suggested in the Section 2. The errors are averaged over 10000 simulated sample points.

Filtered statistic RMSE Giannone et al. (2016) RMSE Kim (2010) RMSE new method

E(yt|t) 0.18196 0.02622 0.02618
E(yt|T) 0.18196 0.02316 0.02310

Table 18: The 3-equation Model from Ch. 3 Galí (2008): Relative RMSFE of the GDP Forecasts,
Obtained Using Quarterly and Mixed-frequency Methods. Each row presents RMSFE forecasts obtained
using the Giannone et al. (2016), the Kim (2010) / Foroni and Marcellino (2014), and the new method, suggested
in the Section 2. The RMSFE are shown as a ratio to the RMSFE of the new method. The RMSFE of the new
method are 0.7045, 0.6119, 0.5899, 0.5857, 0.5841, 0.5852, 0.5857, 0.5862, 0.5869, 0.5878, 0.5887, 0.5892. The
columns present quarters ahead for which forecasts are made. The forecast errors are averaged over 10000
simulated sample points. *** (**) indicates the forecasts that are statistically significantly different from
quarterly forecasts with a 1% (5%) significance level based on the Diebold and Mariano (1991) test, where
Newey–West standard errors are used to deal with the autocorrelation.

Method 1 2 3 4 5 6 7 8 9 10 11 12

Quarterly 1.1137 1.0215 1.0098 1.0094 1.0108 1.0086 1.0072 1.0058 1.0045 1.0029 1.0015 1.0006
Giannone et al. (2016) 1.3100*** 1.0754*** 1.0132*** 1.0026 1.0007 1.0003 1.0002** 1.0000 1.0000 1.0000 1.0000 1.0000

Kim (2010) 1.0002*** 1.0000*** 1.0000 1.0000 1.0000*** 1.0000*** 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
New Method 1*** 1*** 1 1 1*** 1*** 1 1 1 1 1 1
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Table 19: The 3-equation Model from Ch. 3 Galí (2008): Relative RMSFE of the GDP Nowcasts,
Obtained Using Mixed-frequency Methods. Each row presents RMSFE nowcasts obtained using the
Giannone et al. (2016), the Kim (2010) / Foroni and Marcellino (2014), and the new method, suggested in the
Section 2. The RMSFE are shown as a ratio to the RMSFE of the new method. The RMSFE of the new method
are 0.5012, 0.2710, 0.0108. The columns present months in which nowcasts are made. The nowcast errors are
averaged over 1000 simulated sample points. *** indicates the forecasts that are statistically significantly
different from the other forecasts with a 1% significance level based on the Diebold and Mariano (1991) test,
where Newey–West standard errors are used to deal with the autocorrelation.

Method Month 1 Month 2 Month 3

Giannone et al. (2016) 1.0152*** 1.0490*** 10.2028***

Kim (2010) 1.0006*** 1.0018*** 1.0084***

New Method 1*** 1*** 1***

Table 20: The 3-equation Model from Ch. 3 Galí (2008): Relative RMSFE of the GDP Forecasts,
Obtained Using Quarterly and Mixed-frequency Methods. Each row presents RMSFE forecasts obtained
using the Giannone et al. (2016), the Kim (2010) / Foroni and Marcellino (2014), and the new method, suggested
in the Section 2. The RMSFE are shown as a ratio to the RMSFE of the new method. The RMSFE of the new
method are 0.7045, 0.6119, 0.5899, 0.5857, 0.5841, 0.5852, 0.5857, 0.5862, 0.5869, 0.5878, 0.5887, 0.5892. The
columns present quarters ahead for which forecasts are made. The forecast errors are averaged over 1000
simulated sample points. *** (**) indicates the forecasts that are statistically significantly different from
quarterly forecasts with a 1% (5%) significance level based on the Diebold and Mariano (1991) test, where
Newey–West standard errors are used to deal with the autocorrelation.

Method 1 2 3 4 5 6 7 8 9 10 11 12

Quarterly 1.1137 1.0215 1.0098 1.0094 1.0108 1.0086 1.0072 1.0058 1.0045 1.0029 1.0015 1.0006
Giannone et al. (2016) 0.9968*** 0.9938*** 0.9976 0.9996 1.0000 0.9996** 0.9996** 0.9999 1.0000 1.0000 1.0000 1.0000

Kim (2010) 1.0002*** 1.0000*** 1.0000 1.0000 1.0000** 1.0000** 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
New Method 1*** 1*** 1 1 1** 1** 1 1 1 1 1 1

new method has statistically significantly different forecasts from Kim (2010) in the first

three quarters (one, two and three quarters ahead forecasts). In the first quarter the forecast

is better using the new method and in the other two quarters forecasts are worse for the new

method. Both methods are statistically significantly different from Giannone et al. (2016)

forecasts in the second and the third quarter. They are worse than Giannone et al. (2016) in

these quarters.
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D.3. Forecasts with all methods and with parameters set to the true

values for a 3-equation DSGE model

Figure 16: The 3-equation Model from Ch. 3 Galí (2008): Smoothed Out-of-Sample GDP. The
Kalman smoother generates monthly GDP series, values of which are missed in the first and the second months
of each quarter. The figure shows these smoothed GDP series (E(yt|T )) for the out-of-sample data. The smoothed
series are obtained using the Kalman smoother of the new method (in blue), the Kim (2010) / Foroni and
Marcellino (2014) method (in yellow), and the Giannone et al. (2016) method (in green). The simulated data is
shown in red. Forecasts are obtained using DGP estimates. X-axis shows time in months.

The new method outperforms other methods in nowcasting for all months. For the forecasting

the new method and Kim (2010) are not statistically significantly different from each other.

But they are both statistically significantly different from Giannone et al. (2016) in the first

three quarters. They are better in these quarters.
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Table 21: The 3-equation Model from Ch. 3 Galí (2008): Relative RMSFE of the GDP Nowcasts,
Obtained Using Mixed-frequency Methods. Each row presents RMSFE nowcasts obtained using the
Giannone et al. (2016), the Kim (2010) / Foroni and Marcellino (2014), and the new method, suggested in the
Section 2. Nowcasts are obtained using DGP estimates. The RMSFE are shown as a ratio to the RMSFE of
the new method. The RMSFE of the new method are 0.5058, 0.2815, 0.0206. The columns present months in
which nowcasts are made. The nowcast errors are averaged over 1000 simulated sample points. *** indicates
the forecasts that are statistically significantly different from the other forecasts with a 1% significance level
based on the Diebold and Mariano (1991) test, where Newey–West standard errors are used to deal with the
autocorrelation.

Method Month 1 Month 2 Month 3

Giannone et al. (2016) 1.3101*** 1.4699*** 7.7376***

Kim (2010) 1.0000*** 1.0002*** 1.0032***

New Method 1*** 1*** 1***

Table 22: The 3-equation Model from Ch. 3 Galí (2008): Relative RMSFE of the GDP Forecasts,
Obtained Using Quarterly and Mixed-frequency Methods. Each row presents RMSFE forecasts obtained
using the Giannone et al. (2016), the Kim (2010) / Foroni and Marcellino (2014), and the new method, suggested
in the Section 2. Forecasts are obtained using DGP estimates. The RMSFE are shown as a ratio to the RMSFE
of the new method. The RMSFE of the new method are 0.7031, 0.6116, 0.5898, 0.5857, 0.5841, 0.5852, 0.5857,
0.5862, 0.5869, 0.5878, 0.5887, 0.5892. The columns present quarters ahead for which forecasts are made.
The forecast errors are averaged over 1000 simulated sample points. *** (**) indicates the forecasts that are
statistically significantly different from quarterly forecasts with a 1% (5%) significance level based on the
Diebold and Mariano (1991) test, where Newey–West standard errors are used to deal with the autocorrelation.

Method 1 2 3 4 5 6 7 8 9 10 11 12

Quarterly 1.0834 1.0242 1.0119 1.0102 1.0116 1.0094 1.0077 1.0060 1.0045 1.0030 1.0015 1.0006
Giannone et al. (2016) 1.2284*** 1.0680*** 1.0156*** 1.0036 1.0012 1.0012 1.0010 1.0003 1.0001 1.0000 1.0000 1.0000

Kim (2010) 1.0000*** 1.0000*** 1.0000 1.0000 1.0000 1.0000** 1.0000** 1.0000 1.0000 1.0000 1.0000 1.0000
New Method 1*** 1*** 1 1 1 1** 1** 1 1 1 1 1
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Figure 17: The 3-equation Model from Ch. 3 Galí (2008): RMSFE of the GDP Forecasts, Obtained
Using Quarterly and Mixed-frequency Methods.. The figure shows GDP RMSFE, obtained using the new
method (in blue), the Kim (2010) / Foroni and Marcellino (2014) method (in red), the Giannone et al. (2016)
method (in yellow), and the standard quarterly forecasting (in purple). Forecasts are obtained using DGP
estimates. The RMSFE are presented for the 3-equation DSGE model from Ch.3 Galí (2008) and are averaged
over 1000 simulated sample points. X-axis shows forecasting horizon in quarters and Y-axis shows RMSFE for
each method.
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D.4. Forecasts with all methods and with parameters set to the

estimates from quarterly estimation of a 3-equation DSGE

model

Figure 18: The 3-equation Model from Ch. 3 Galí (2008): Smoothed Out-of-Sample GDP. The
Kalman smoother generates monthly GDP series, values of which are missed in the first and the second
months of each quarter. The figure shows these smoothed GDP series (E(yt|T )) for the out-of-sample data. The
smoothed series are obtained using the Kalman smoother of the new method (in blue), the Kim (2010) / Foroni
and Marcellino (2014) method (in yellow), and the Giannone et al. (2016) method (in green). Forecasts of the
mixed-frequency methods are obtained using quarterly estimates for the parameters (which are transformed
into the monthly frequency using transformation in Section 3.1). X-axis shows time in months and Y-axis shows
smoothed GDP.
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Table 23: The 3-equation Model from Ch. 3 Galí (2008): Relative RMSFE of the GDP Nowcasts,
Obtained Using Mixed-frequency Methods. Each row presents RMSFE nowcasts obtained using the
Giannone et al. (2016), the Kim (2010) / Foroni and Marcellino (2014), and the new method, suggested in the
Section 2. Nowcasts of the mixed-frequency methods are obtained using quarterly estimates for the parameters
(which are transformed into the monthly frequency using transformation in Section 3.1). The RMSFE are
shown as a ratio to the RMSFE of the new method. The RMSFE of the new method are 0.5087, 0.2840,
0.0373. The columns present months in which nowcasts are made. The nowcast errors are averaged over
1000 simulated sample points. *** indicates the forecasts that are statistically significantly different from the
other forecasts with a 1% significance level based on the Diebold and Mariano (1991) test, where Newey–West
standard errors are used to deal with the autocorrelation.

Method Month 1 Month 2 Month 3

Giannone et al. (2016) 1.3340*** 1.3199*** 2.8341***

Kim (2010) 1.0000*** 1.0002*** 1.0007***

New Method 1*** 1*** 1***

Table 24: The 3-equation Model from Ch. 3 Galí (2008): Relative RMSFE of the GDP Forecasts,
Obtained Using Quarterly and Mixed-frequency Methods. Each row presents RMSFE forecasts obtained
using the Giannone et al. (2016), the Kim (2010) / Foroni and Marcellino (2014), and the new method, suggested
in the Section 2. Forecasts of the mixed-frequency methods are obtained using quarterly estimates for the
parameters (which are transformed into the monthly frequency using transformation in Section 3.1). The
RMSFE are shown as a ratio to the RMSFE of the New Method. The RMSFE are shown as a ratio to the
RMSFE of the new method. The RMSFE of the new method are 0.7073, 0.6093, 0.5887, 0.5854, 0.5840, 0.5849,
0.5855, 0.5862, 0.5869, 0.5878, 0.5887, 0.5892. The columns present quarters ahead for which forecasts are
made. The forecast errors are averaged over 1000 simulated sample points. *** (**) indicates the forecasts that
are statistically significantly different from quarterly forecasts with a 1% (5%) significance level based on the
Diebold and Mariano (1991) test, where Newey–West standard errors are used to deal with the autocorrelation.

Method 1 2 3 4 5 6 7 8 9 10 11 12

Quarterly 1.1093 1.0260 1.0118 1.0099 1.0110 1.0090 1.0076 1.0059 1.0045 1.0030 1.0015 1.0006
Giannone et al. (2016) 1.3049*** 1.0801*** 1.0152 1.0030 1.0009 1.0007** 1.0006** 1.0002 1.0000 1.0000 1.0000 1.0000

Kim (2010) 1.0000*** 1.0000*** 1.0000 1.0000 1.0000 1.0000** 1.0000** 1.0000 1.0000 1.0000 1.0000 1.0000
New Method 1*** 1*** 1 1 1 1** 1** 1 1 1 1 1
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Figure 19: The 3-equation Model from Ch. 3 Galí (2008): RMSFE of the GDP Forecasts, Obtained
Using Quarterly and Mixed-frequency Methods.. The figure shows GDP RMSFE, obtained using the new
method (in blue), the Kim (2010) / Foroni and Marcellino (2014) method (in red), the Giannone et al. (2016)
method (in yellow), and the standard quarterly forecasting (in purple). Forecasts for the mixed-frequency
methods are obtained using quarterly estimates for the parameters (which are transformed into a monthly
frequency using transformation in Section 3.1). The RMSFE are presented for the 3-equation DSGE model
from Ch.3 Galí (2008) and are averaged over 1000 simulated sample points. X-axis shows forecasting horizon
in quarters and Y-axis shows RMSFE for each method.
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D.5. Forecasting results with parameters set to the

mixed-frequency estimates of the Smets and Wouters model:

expansion

Table 25: The Smets and Wouters (2007) Model, Expansion: Relative RMSFE of the GDP Nowcasts,
Obtained Using Mixed-frequency Methods. Each row presents RMSFE nowcasts obtained using the
Giannone et al. (2016), the Kim (2010) / Foroni and Marcellino (2014), and the new method, suggested in the
Section 2. The RMSFE are shown as a ratio to the RMSFE of the new method. The RMSFE of the new method
are 0.92, 0.86, 0.94. The columns present months in which nowcasts are made. The forecast errors are averaged
over a sample 2010Q2:2019Q4. ***/**/* indicates the forecasts that are statistically significantly different from
the one-step ahead quarterly forecast with a 1%/5%/10% significance level based on the Diebold and Mariano
(1991) test, where Newey–West standard errors are used to deal with the autocorrelation. Quarterly 1-step
ahead RMSFE is 0.59.

Method Month 1 Month 2 Month 3

Giannone et al. (2016) 2.1443*** 1.9493*** 1.6293***
Kim (2010) 0.9620* 0.7667 0.6303

New Method 1** 1* 1**

Table 26: The Smets and Wouters (2007) Model, Expansion: Relative RMSFE of the GDP Forecasts
Obtained Using Quarterly and Mixed-frequency Methods. Each row presents RMSFE forecasts obtained
using the Giannone et al. (2016), the Kim (2010) / Foroni and Marcellino (2014), and the new method, suggested
in the Section 2. The RMSFE are shown as a ratio to the RMSFE of the new method. The RMSFE of the
new method are 0.7443, 2.5841, 2.8309, 2.5389, 2.1733, 1.8701, 1.5974, 1.4002, 1.2054, 1.0596, 0.9287, 0.8153.
The columns present quarters ahead for which forecasts are made. The forecast errors are averaged over a
sample 2010Q2:2019Q4. ***/**/* indicates the forecasts that are statistically significantly different from the
quarterly forecasts with a 1%/5%/10% significance level based on the Diebold and Mariano (1991) test, where
Newey–West standard errors are used to deal with the autocorrelation.

Method 1 2 3 4 5 6 7 8 9 10 11 12

Quarterly 0.7879 0.1673 0.1512 0.1592 0.1906 0.1980 0.2236 0.2333 0.2753 0.3144 0.3384 0.3951
Giannone et al. (2016) 3.4586*** 1.1756*** 0.9052*** 0.8407** 0.8161** 0.8075* 0.8057 0.8288 0.8631 0.9199 0.9861 1.0659

Kim (2010) 1.4042*** 0.5521*** 0.4493*** 0.4361** 0.4380** 0.4557* 0.4821* 0.5232* 0.5720 0.6391 0.7109 0.7874
New Method 1 1*** 1*** 1** 1** 1* 1* 1 1 1 1 1
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Figure 21: The Smets and Wouters (2007) Model, Expansion: Smoothed Out-of-Sample GDP. The
Kalman smoother generates monthly GDP series, values of which are missed in the first and the second months
of each quarter. The figure shows these smoothed GDP series (E(yt|T )). The smoothed series are obtained using
the Kalman smoother of the new method (in blue), the Kim (2010) / Foroni and Marcellino (2014) method (in
yellow), and the Giannone et al. (2016) method (in green), and the actual data is shown in burgundy dots.
Shaded areas correspond to the one standard deviation around the mean. X-axis shows time in months.
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Figure 20: The Smets and Wouters (2007) Model, Expansion: RMSFE of the GDP Forecasts, Ob-
tained Using Quarterly and Mixed-frequency Methods.. The figure shows GDP RMSFE, obtained using
the new method (in blue), the Kim (2010) / Foroni and Marcellino (2014) method (in red), the Giannone et al.
(2016) method (in yellow), and the standard quarterly forecasting (in purple). The RMSFE are presented for
the Smets and Wouters (2007) model and are averaged over a sample 2010Q2:2019Q4. X-axis shows forecasting
horizon in quarters and Y-axis shows RMSFE for each method.
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D.6. Forecasting results with parameters set to the

mixed-frequency estimates of the Smets and Wouters model:

the Great Recession

Table 27: The Smets and Wouters (2007) Model, the Great Recession: Relative RMSFE of the GDP
Nowcasts, Obtained Using Mixed-frequency Methods. Each row presents RMSFE nowcasts obtained
using the Giannone et al. (2016), the Kim (2010) / Foroni and Marcellino (2014), and the new method, suggested
in the Section 2. The RMSFE are shown as a ratio to the RMSFE of the new method. The RMSFE of the new
method are 3.64, 1.45, 0.98. The columns present months in which nowcasts are made. The forecast errors
are averaged over a sample 2008Q1:2009Q2. ***/**/* indicates the forecasts that are statistically significantly
different from the one-step ahead quarterly forecast with a 1%/5%/10% significance level based on the Diebold
and Mariano (1991) test, where Newey–West standard errors are used to deal with the autocorrelation.
Quarterly 1-step ahead RMSFE is 1.30.

Method Month 1 Month 2 Month 3

Giannone et al. (2016) 0.3296 0.7075 0.8838*

Kim (2010) 0.3565 0.6164* 0.7870*

New Method 1** 1 1
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Figure 22: The Smets and Wouters (2007) Model, the Great Recession: GDP Forecasts, Obtained
Using Quarterly and Mixed-frequency Methods.. The figure shows GDP RMSFE, obtained using the new
method (in blue), the Kim (2010) / Foroni and Marcellino (2014) method (in red), the Giannone et al. (2016)
method (in green), and the standard quarterly forecasting (in magenta). The data is shown in purple. The
forecasts are presented for the Smets and Wouters (2007) model. “m1”, “m2”, and “m3” correspond to the first,
the second and the third months from which the nowcasts are made. X-axis shows time in quarters (January
stands for the first quarter).

Table 28: The Smets and Wouters (2007) Model, the Great Recession: Relative RMSFE of the
GDP Forecasts Obtained Using Quarterly and Mixed-frequency Methods. Each row presents RMSFE
forecasts obtained using the Giannone et al. (2016), the Kim (2010) / Foroni and Marcellino (2014), and the
new method, suggested in the Section 2. The RMSFE are shown as a ratio to the RMSFE of the new method.
The RMSFE of the new method are 1.5566, 3.5307, 3.9524, 3.8064, 2.9431, 2.2300. The columns present
quarters ahead for which forecasts are made. The forecast errors are averaged over a sample 2008Q1:2009Q2.
***/**/* indicates the forecasts that are statistically significantly different from the quarterly forecasts with
a 1%/5%/10% significance level based on the Diebold and Mariano (1991) test, where Newey–West standard
errors are used to deal with the autocorrelation.

Method 1 2 3 4 5 6

Quarterly 0.8328 0.4126 0.4031 0.4423 0.3124 0.1630
Giannone et al. (2016) 1.0954 0.7443 0.6717 0.7008 0.6532 0.6453

Kim (2010) 1.0243 0.7292 0.6412 0.6383 0.5382 0.4605
New Method 1* 1 1 1 1 1
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Figure 23: The Smets and Wouters (2007) Model, the Great Recession: Smoothed Out-of-Sample
GDP. The Kalman smoother generates monthly GDP series, values of which are missed in the first and the
second months of each quarter. The figure shows these smoothed GDP series (E(yt|T )). The smoothed series are
obtained using the Kalman smoother of the new method (in blue), the Kim (2010) / Foroni and Marcellino (2014)
method (in yellow), and the Giannone et al. (2016) method (in green), and the actual data is shown in burgundy
dots. Shaded areas correspond to the one standard deviation around the mean. X-axis shows time in months.
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Figure 24: The Smets and Wouters (2007) Model, the Great Recession: RMSFE of the GDP Fore-
casts, Obtained Using Quarterly and Mixed-frequency Methods.. The figure shows GDP RMSFE,
obtained using the new method (in blue), the Kim (2010) / Foroni and Marcellino (2014) method (in red), the
Giannone et al. (2016) method (in yellow), and the standard quarterly forecasting (in purple). The RMSFE are
presented for the Smets and Wouters (2007) model and are averaged over a sample 2008Q1:2009Q2. X-axis
shows forecasting horizon in quarters and Y-axis shows RMSFE for each method.
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