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ABSTRACT 
 

Linear rational-expectations models (LREMs) are conventionally 

"forwardly" estimated as follows. Structural coefficients are restricted 

by economic restrictions in terms of deep parameters. For given deep 

parameters, structural equations are solved for "rational-expectations 

solution" (RES) equations that determine endogenous variables. For given 

vector autoregressive (VAR) equations that determine exogenous 

variables, RES equations reduce to reduced-form VAR equations for  

endogenous variables with exogenous variables (VARX). The combined 

endogenous-VARX and exogenous-VAR equations comprise the reduced-form 

overall VAR (OVAR) equations of all variables in a LREM. The sequence of 

specified, solved, and combined equations defines a mapping from deep 

parameters to OVAR coefficients that is used to forwardly estimate a 

LREM in terms of deep parameters. Forwardly-estimated deep parameters 

determine forwardly-estimated RES equations that Lucas (1976) advocated 

for making policy predictions in his critique of policy predictions made 

with reduced-form equations. 

 

Sims (1980) called economic identifying restrictions on deep parameters 

of forwardly-estimated LREMs "incredible", because he considered in-

sample fits of forwardly-estimated OVAR equations inadequate and out-of-

sample policy predictions of forwardly-estimated RES equations 

inaccurate. Sims (1980, 1986) instead advocated directly estimating OVAR 

equations restricted by statistical shrinkage restrictions and directly 

using the directly-estimated OVAR equations to make policy predictions. 

However, if assumed or predicted out-of-sample policy variables in 

directly-made policy predictions differ significantly from in-sample 

values, then, the out-of-sample policy predictions won't satisfy Lucas's 

critique. 

 

If directly-estimated OVAR equations are reduced-form equations of 

underlying RES and LREM-structural equations, then, identification 2 

derived in the paper can linearly "inversely" estimate the underlying 

RES equations from the directly-estimated OVAR equations and the 

inversely-estimated RES equations can be used to make policy predictions 

that satisfy Lucas's critique. If Sims considered directly-estimated 

OVAR equations to fit in-sample data adequately (credibly) and their 

inversely-estimated RES equations to make accurate (credible) out-of-

sample policy predictions, then, he should consider the inversely-

estimated RES equations to be credible. Thus, inversely-estimated RES 

equations by identification 2 can reconcile Lucas's advocacy for making 

policy predictions with RES equations and Sims's advocacy for directly 

estimating OVAR equations. 

 

The paper also derives identification 1 of structural coefficients from 

RES coefficients that contributes mainly by showing that directly 

estimated reduced-form OVAR equations can have underlying LREM-

structural equations. 
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1. INTRODUCTION. 
 

Linear rational-expectations models (LREMs; Lucas and Sargent, 

1981) are now standard multivariate macroeconomic structural models used 

in macroeconomic analysis by academics, central banks, and others. LREMs 

were the first macroeconomic models in which average realizations of 

endogenous variables generated by a model equal expected-future values 

of endogenous variables according to the model, which is a statistical-

consistency condition of a random process akin to stationarity. Initial 

LREMs were criticized for unrealistically omitting frictions and 

assuming that economic agents in the LREMs immediately and always have 

rational expectations. However, it was shown that LREMs can include 

frictions (Taylor, 1979, 1980) and staggered learning about rational 

expectations (Sargent, 1993; Zadrozny, 1997). LREMs are now mostly 

called dynamic stochastic general equilibrium models (DSGEMs; Smets and 

Wouters, 2003, 2007), because the models can be nonlinear in variables 

and disturbances and generalize original LREMs, although most REMs in 

macroeconomic applications are still either mostly or entirely linear in 

variables and disturbances. The models are here called LREMs because 

only models linear in variables and disturbances are considered.   

Endogenous variables in LREMs are determined by rational-

expectations solution (RES) equations of structural equations. (The 

paper often refers to vector or matrix equations in plural terms as 

scalar "equations", but this shouldn't cause any confusion.) Evaluating 

expected-future exogenous variables in RES equations according to vector 

autoregressive equations that determine the exogenous variables (XVAR) 

reduces the RES equations to reduced-form VAR equations for endogenous 

variables (ERF) with exogenous variables. The combined ERF and XVAR 

equations comprise the reduced-form overall VAR (OVAR) equations of all 

variables in a LREM. 

LREM-structural equations such as equation (3.1) are usually 

specified by their coefficients being mapped nonlinearly from deep 

parameters. Part of specifying LREM-structural and XVAR equations 

involves specifying moments that determine probability distributions of 

unobserved disturbances, hence, of observed variables (data). LREMs have 
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5 levels of quantities: deep parameters in 1 at the lowest level, 

structural coefficients in 2  such as { 
2

i i 0{A } ,
0B ,

0C } of LREM-structural 

equation (3.1) at the next higher level, RES coefficients in 3  such as 

{1
,0

,  
i i 0{ } } of RES equation (3.3), reduced-form ERF and XVAR 

coefficients and disturbance covariances in 4  such as {1
,0

,  

k 1

i i 0{ } , 


k

i i 1{D } ,  } of reduced-form ERF and XVAR (OVAR) equations (5.2) and (3.2), 

and data moments in 5  at the highest level. 1
 and 0

 are both RES and 

reduced-form ERF coefficient matrices that are listed in both 3  and 4  

and 
k

i i 1{D }  and   are both structural and reduced-form XVAR coefficient 

and disturbance-covariance matrices but are listed only in 4 . 

Specification of structural coefficients and determination of RES 

and ERF coefficients and data moments proceeds in a sequence of forward 

mappings, from lower-level to higher-level quantities,  i 1 = i if( ), for 

i = 1,…,4, that combine as the complete composite-forward mapping 5  = 

4 3 2 1 1f(f(f(f( )))). If each forward mapping has an inverse mapping, i  = 




1

i i 1f ( ), for i = 4,…,1, then, the individual inverse mappings combine as 

the complete composite-inverse mapping 1 =    1 1 1 1

1 2 3 4 5f (f (f (f ( )))). 

An identification is a unique determination of a lower-level i  = 

 


1 1

i j 1 jf ( f ( ) ) from a higher-level j, for i < j, according to an 

individual-inverse or composite-inverse mapping, so that an 

identification may map down from highest-level data moments or from 

lower-level quantities. Following Slutzky's theorem (Schmidt, 1976, p. 

250), an identification is a consistent estimation when it maps down 

from consistently-estimated higher-level quantities with a continuous 

inverse mapping. Because all inverse mappings in identifications 1 and 2 

derived in the paper are differentiable, hence, continuous, 

identifications 1 and 2 deliver consistently estimated structural and 

RES coefficients down from consistently estimated data moments. 

Under assumptions A.1.i-iii, A.3, and A.4.i-ii, the paper derives 

identification 1 that linearly identifies structural coefficients from 

RES coefficients and, under assumptions A.1.i-iii to A.4.i-ii, the paper 
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derives identification 2 that linearly identifies RES coefficients from 

ERF and XVAR coefficients. Assumptions A.5 to A.7 are added so that 

identifications 1 and 2 together are complete as identifications and 

consistent estimations of structural and RES coefficients down from 

assumed or consistently estimated data moments. 

Recent macroeconomic literature discussed in section 2 emphasizes 

that identification of deep parameters of a LREM is a nonlinear problem. 

The present paper doesn't discuss identification of deep parameters, 

because it aims for general results and nonlinear identification of deep 

parameters depends on a particular mapping from deep parameters to 

structural coefficients of a particular model. Otherwise, nonlinearities 

in identification of LREM coefficients can occur only from the way data 

are generated and observed. For example, if data are subsampled or have 

mixed frequencies (Tank et al., 2019), then, identification can be 

nonlinear due to aliasing (Hansen and Sargent, 1983; Anderson et al., 

2012, p. 188-189; Zadrozny, 2016, p. 439). Although combined 

identifications 2 and 1, in that order, strictly comprise a nonlinear 

composite-inverse mapping, we consider the composite identification to 

be linear because its individual-inverse mappings, hence, all of their 

computations are linear. 

An identification holds if and only if its identifying equations 

have a unique solution. If there are too few, just enough, or more than 

enough scalar-level identifying equations, then, an identification is, 

respectively, an under- (un-), just-, or over-identification. Sections 4 

and 5, respectively, derive identifications 1 and 2 and discuss their 

under-, just-, and over-identification. Section 5 discusses how 

identifying equations of identification 2 and their rank and order 

conditions differ according to three cases of how exogenous variables 

enter a structural equation in past, current, and expected-future 

values. Section 5 also discusses tradeoffs in identification 2 among the 

number of endogenous variables (n ), the number of exogenous variables 

(m ), and the number of lags of exogenous variables (k ). 

 The paper continues as follows. Section 2 reviews some recent 

macroeconomic literature on identification of LREMs. Section 3 states 

the LREM-structural equation in the usual first-order form, a 3rd-order 
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XVAR(3) equation, the resulting RES equation, and assumptions A.1.i to 

A.7 on coefficients. Sections 4 and 5, respectively, derive 

identifications 1 and 2 and discuss their under-, just-, and over-

identifications. Identification 1 doesn't depend on how exogenous 

variables are generated. Section 5 first derives identification 2 for a 

3rd-order XVAR(3) equation and, then, extends the identification for any 

k th-order XVAR(k ) equation, for any finite k    4. Concluding section 6 

explains the contributions of identifications 1 and 2. Identification 1 

contributes mainly by showing that OVAR equations can be reduced-form 

equations of underlying RES and LREM-structural equations. 

Identification 2 makes the main contribution of the paper by showing 

that inversely-estimated RES equations can reconcile Lucas's advocacy 

for making policy predictions with RES equations and Sims's advocacy for 

directly estimating OVAR equations. 

 

2. REVIEW OF SOME RECENT MACROECONOMIC LITERATURE. 

 

If a quantity in a set of observationally-equivalent quantities is 

isolated, then, it's locally identified (LI); if a quantity in a set of 

observationally-equivalent quantities is a singleton (unique), then, 

it's globally identified (GI). If observationally-equivalent quantities 

are linearly related, then, LI and GI are equivalent. In the present 

discussion of identification down to structural coefficients, non-GI can 

occur only from the way data are generated and observed, such as 

aliasing due to subsampling or mixed frequencies. 

Identification of LREMs has received insufficient attention in the 

literature possibly because LREMs have been estimated mostly by Bayesian 

methods (Smets & Wouters, 2004, 2007; An & Schorfheide, 2007). LI is 

crucial in sampling-theoretic estimation, because the estimation 

optimizes a criterion function over a parameter region. If the criterion 

function is twice differentiable and 2nd-order conditions of the 

optimization hold at parameter estimates, then, the estimates are 

locally unique and can be LI, GI, and consistently estimated 

(Rothenberg, 1971). In practice, Bayesian estimation doesn’t need LI or 
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GI, because it doesn't optimize a criterion function, but instead 

pseudo-randomly generates a numerical histogram over a parameter region 

and computes the histogram's statistics of central tendency and 

dispersion. 

Identification of LREMs began being addressed at a general level 

more than a decade ago (Iskrev, 2010; Komunjer & Ng, 2011). Forward and 

inverse mappings between deep parameters and structural coefficients, 

specified according to economic reasoning, have usually been at least 

partly nonlinear. Forward mappings from structural to RES coefficients 

have also usually been nonlinear, because they involve solving a matrix 

polynomial equation. Exceptionally, the usual most-stable forward 

solution of the matrix polynomial equation is obtained linearly. For 

example, in structural equation (3.1), if 
0A  = 

nxn0 , then, the most-

stable forward solution of the endogenous-feedback matrix is 1
 = 

nxn0  

(Taylor, 1977). 

Apparently for these reasons, Komunjer & Ng (2011), Qu & Tkachenko 

(2012, 2017, 2018), Kociecki & Kolasa (2018, 2020), and others 

considered identification of a LREM to be a nonlinear problem. However, 

sections 4 and 5 in the paper show that identification 1 of structural 

coefficients from RES coefficients and identification 2 of RES 

coefficients from ERF and XVAR coefficients are always linear problems. 

Qu & Tkachenko (2012, 2017, 2018) and Kociecki & Kolasa (2018, 

2020) contributed to numerically checking nonlinear GI of deep 

parameters. Komunjer & Ng (2011) stated propositions about necessary and 

sufficient conditions for LI of deep parameters of a LREM (or linear 

approximation of an nonlinear REM), but didn't and couldn't obtain the 

the present identifications 1 and 2, because, unlike in the present 

paper, they didn't exploit the cross-equation restrictions of rational 

expectations (CERRE) that are the central quantitative implication of 

rational expectations. 

Let S  denote a nonsingular similarity-transformation matrix of the 

state-transition matrix in a state-space representation of ERF and XVAR 

(OVAR) equations of a LREM. Kociecki & Kolasa (2018, 2020) used one of 

Komunjer & Ng's results, that if 1 and 1 are observationally-equivalent 
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values of deep parameters with nonsingular similarity-transformation 

matrices 1S( ) and 1S( ), then, 1 = 1 and GI holds if and only if 1S( ) = 

1S( ). Kociecki & Kolasa developed and illustrated numerical methods for 

checking 1S( ) = 1S( ), hence, 1 = 1. 

Komunjer & Ng, Qu & Tkachenko, and Kociecki & Kolasa included 

observation errors in a state-space representation of ERF and XVAR 

equations of a LREM, which here means inserting another mapping between 

4  and 5 . Observation errors are rarely a useful addition in 

macroeconomic modelling, because separately identifying observation-

error covariances and disturbance covariances requires either having 

observation-error covariances given by a data producer or estimating 

them using data with multiple observations per variable per period, both 

rare in macroeconomics. Exceptionally, Zadrozny (1990a,b) used 

observation-error variances of GNP published by the Bureau of Economic 

Analysis. Also, observation errors are a data problem that has nothing 

to do with CERRE equations (3.4) to (3.7) that are central to deriving 

identifications 1 and 2. For these reasons, the present paper doesn't 

consider observation errors in its discussion. 

Part of the recent literature on identification of a LREM arises 

from Sims's (2001) paper: in the present notation, identifying 

structural, RES, and ERF disturbance-coefficient matrices 
0B  and 0

 in 

structural, RES, and ERF equations like (3.1), (3.3), and (5.2) from RES 

and ERF disturbance-covariance matrix   =  T

0 o  when more disturbances 

than endogenous variables are classified as "shocks" versus "sunspots". 

See, e.g., Lubik & Schorfheide (2003), Farmer et al. (2015), Funovits 

(2017), and references therein. The present paper doesn't consider this 

identification problem because it can be resolved only by imposing exact 

theoretical (non-data-based) restrictions in a particular application 

and the paper aims to derive general results that don't depend on 

particular restrictions in a particular application.   

 

3. STRUCTURAL, RES, CERRE EQUATIONS AND ASSUMPTIONS. 
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3.1. STRUCTURAL, RES, AND CERRE EQUATIONS. 

 

LREMs can include expected-future variables in multiple future 

periods and realized variables and disturbances in multiple past 

periods, with expectations conditioned on both current and past 

information (Taylor, 1979; Zadrozny, 1998). Various ways have been 

proposed for expressing such higher-order LREMs in the most commonly 

used first-order form with one future period, one past period, no past 

disturbances, and expectations conditioned only on current information 

(e.g., Binder & Pesaran, 1995). The paper's results on first-order LREM-

structural equations can be extended using the same reasoning to higher-

order LREM-structural equations, with additional terms in expected-

future and past variables, but only with more and more complicated 

algebraic details. 

Consider an n 1 LREM-structural equation in first-order form, 

 

(3.1)     2 t t 1A E y  + 1 tA y  + 0 t 1A y  = 0 tB  + 0 tC z , 

 

where { 
2

i i 0{A } , 0B , 0C } denote constant (unchanging over time periods t), 

real-valued, n n and n m , structural coefficient matrices; ty  and tz  

denote time-varying, real-valued, n 1 and m 1 vectors of endogenous and 

exogenous variables generated in and observed for period t and 

remembered; 
tE  denotes expectations conditioned on information in period 

t; t  denotes a time-varying, real-valued, n 1 vector of disturbances 

generated in period t and never observed. 

Disturbance vector t  is assumed to be generated stochastically, 

identically, and independently over periods t, with zero mean vector and 

identity covariance matrix, t  ~ nx1 nIID(0 ,I ), where ixj0  denotes the i j 

zero vector (if i = 1 or j = 1) or matrix (if i > 1 and j > 1) and jI  

denotes the j j identity matrix. 

To simplify algebraic details in the discussion, exogenous vector 

tz  is first stated as generated by XVAR(3) equation 
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(3.2)     
tz  = 1 t 1D z  + 2 t 2D z  + 3 t 3D z  + t, 

 

where 
3

i i 1{D }  denote constant, real-valued, m m coefficient matrices, t 

denotes a time-varying, real-valued, m 1 vector of disturbances 

generated in period t, never observed, and distributed mx1IID(0 , ), with 

real-valued, m m, symmetric positive-definite, covariance matrix  . In 

section 5, XVAR(3) equation (3.2) is extended to an XVAR(k ) equation 

with coefficient matrices 
k

i i 0{D } , for any finite k    4. 

 Vector 
tz  is exogenous in structural equation (3.1) if and only if 

disturbance vectors in structural and RES equations (3.1) and (3.2) are 

uncorrelated in and across all periods,  Ts tE  = 
nxm0 , for all s and t, 

where superscript T  denotes vector or matrix transposition. 

 Under assumptions A.1.i-iii and A.2, structural equation (3.1) is 

solved uniquely for RES equation 

 

(3.3)     
ty  =  1 t 1y  +  0 t

 + 


 i t t ii 0
E z , 

 

where 1, 0 , and  
i i 0{ }  denote real-valued, n n and n m , RES 

coefficient matrices and t tE z  = tz . The only difference between t  and tz  

used in deriving RES equation (3.3) from structural equation (3.1) is 

that  
 t t i i 1{E }  are zero but 


 t t i i 1{E z }  are generally nonzero. It follows 

along the lines of the proof in section 5, that row rank( 0) = full = 

n , that if tz  is limited nonstationary (defined below equation (4.3)), 

then, 


 i t t ii 0
E z  exists (converges). 

If ty  and t t 1E y  are replaced in structural equation (3.1) using 

RES equation (3.3) and the resulting equation holds for all values of 

t 1y , t , and 


 t t i i 0{E z } , then, the resulting equation implies the cross-

equation restrictions of rational expectations (CERRE) between 

structural and RES coefficients, 
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(3.4)      2

2 1A  + 1 1A  + 
0A  = n n0 , 

 

(3.5)      2 1 1 0(A A )  = 
0B , 

 

(3.6)      2 1 1 0(A A )  = 
0C , 

 

(3.7)      2 1 1 i(A A )  +  2 i 1A  = n m0 , 

 

for i = 1,2,3,…, where equations (3.4) and (3.5) are n n and equations 

(3.6) and (3.7) are n m . The term "CERRE" comes from Hansen and Sargent 

(1980). 

RES coefficients in {1,0 ,  
i i 0{ } } are rational-expectations 

solution coefficients if and only if they solve CERRE equations (3.4) to 

(3.7) forwardly, exactly, but not necessarily uniquely, for given values 

of structural coefficients in { 
2

i i 0{A } , 0B , 0C }. Conversely, structural 

coefficients are identified from RES coefficients by CERRE equations 

(3.4) to (3.7) if and only if they solve the CERRE equations inversely, 

exactly, and uniquely for given values of RES coefficients. On various 

methods for computing RES coefficients for given values of structural 

coefficients, see Blanchard and Kahn (1980), Hansen and Sargent (1980), 

Zadrozny (1998), Klein (2000), and Sims (2001). 

 

3.2. ASSUMPTIONS ON COEFFICIENTS, DISTURBANCE 

COVARIANCES, AND DATA MOMENTS. 

 

 This subsection states and discusses assumptions A.1.i to A.7 that 

restrict coefficients, disturbance covariances, and data moments. The 

restrictions are classified as normalizing, generic, exact, 

combinatorial, specific, and nonspecific in order to clarify their 

possible stringencies. 

 "Normalizing" restrictions restrict coefficients to exact numerical 

values, but only to eliminate redundant (unidentifiable) coefficients, 

don't restrict the ability of ERF and XVAR (OVAR) equations to fit in-
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sample data or the ability of RES equations to predict out-of-sample 

data, and, therefore, aren't stringent. "Generic" restrictions restrict 

coefficients to be elements of supersets of open and dense subsets 

(Anderson et al., 2012, p. 185), usually hold in practice and usually 

aren't considered stringent. "Exact" restrictions restrict coefficients 

to exact numerical values, restrict the ability of ERF and XVAR 

equations to fit data, and restrict the ability of RES equations to 

predict data, but, depending on the application, may or may not be 

considered stringent. "Specific" restrictions are specified in the 

present paper and would also be in an application. "Nonspecific" 

restrictions aren't specified in the paper but would be in an 

application. All restrictions also implicitly restrict deep parameters, 

but, because the paper considers identifications only down to structural 

coefficients, the restrictions aren't also stated explicitly as 

restricting deep parameters. 

 Assumptions A.1.i-iii imply that RES coefficients solve CERRE 

equations (3.4) to (3.7) forwardly and uniquely for given values of 

structural coefficients. Assumptions A.1.i-iii, A.3, and A.4.i-ii imply 

that structural coefficients solve the CERRE equations inversely and 

uniquely for given values of RES coefficients, so that identification 1 

holds. Assumptions A.1.i-iii to A.4.i imply, in cases I and II and 

possibly also in case III of the way exogenous variables enter 

structural equations, that RES coefficients solve identifying equations 

(5.8) and (5.16) and possibly equation (5.25) inversely and uniquely for 

given values of ERF and XVAR coefficients, so that identification 2 

holds. Assumption A.1.ii is the only combinatorial assumption and 

chooses RES coefficients from a finite set of choices, such that 

endogenous-feedback matrix 1 in RES and ERF equations (3.3) and (5.2) 

has the smallest possible absolute eigenvalues, usually less than one. 

Assumptions A.5 to A.7 are added so that identifications 1 and 2 are 

complete as identifications or as consistent estimations of structural 

and RES coefficients down from assumed or consistently estimated data 

moments. 
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 Let A( ) = 22A  + 1A  + 
0A , K( ) = 1K  + 

0K , and  ( ) = nI  - 1
 

be n n lambda matrices, where 
0K , 

1K , and 1
 are real-valued n n 

matrices and   is a complex-valued scalar. A latent root of A( ) is a 

value of   that satisfies |A( )| = 0, where || denotes the determinant of 

a square matrix, and similarly for K( ) and  ( ). The latent roots of 

 ( ) are exactly the eigenvalues of 1
. See Dennis et al. (1976) for a 

review of lambda matrices. 

 

ASSUMPTION A.1.i: The n n structural coefficient matrices 
2

i i 0{A }  of 

endogenous variables in LREM-structural equation (3.1) are sufficiently 

restricted so that A( ) has a unique factorization A( ) = K( ) ( ) in a 

forward rational-expectations solution. 

 

 Assumption A.1.i imposes nonspecific generic restrictions on 

structural coefficients in 
2

i i 0{A } . 

 

ASSUMPTION A.1.ii: In the factorization A( ) = K( ) ( ), the n  latent 

roots of A( ) with the smallest absolute values and their associated 

latent vectors are assigned "right" to  ( ) and the remaining latent 

roots of A( ) and their associated latent vectors are assigned "left" to 

K( ). 

 

 Assumption A.1.ii imposes a specific combinatorial restriction on 

RES coefficients in {1,0 ,  
i i 0{ } }. 

 

ASSUMPTION A.1.iii: At most n  latent roots of A( ) are zero. 

 

 Assumption A.1.iii imposes a specific generic restriction on 

structural coefficients in 
2

i i 0{A } . 

 In macroeconomic applications, the n  latent roots of A( ) with the 

smallest absolute values are always assigned to  ( ) and usually have 

absolute values less than one. Neighboring left and right latent roots 
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could have the same value (be repeated), in which case some additional 

rule would have to assign any distinct associated latent vectors left 

and right. Although it's not clear what economic or other reasoning 

could be used to make such an assignment, this case has apparently not 

occurred in a macroeconomic application. 

 No general, direct, generic or exact restrictions on 
2

i i 0{A }  are 

known that imply or are implied by unique factorization A( ) = K( ) ( ) 

for any particular left-right latent root assignment, only indirect 

restrictions in terms of latent roots and latent vectors of A( ) 

obtained while computing the factorization (Dennis et al., 1976; 

Zadrozny, 1998). For example, Dennis et al. (1976, pp. 837-838) proved 

that if latent roots of A( ) are distinct, then, A( ) has a complete set 

of solvents and a factorization A( ) = K( ) ( ), but their proof could 

contradict a particular desired left-right latent root assignment. 

Onatski (2006) determined that for the usual left-right latent root 

assignment of assumption A.1.ii a unique factorization A( ) = K( ) ( ) 

is equivalent to a unique Wiener-Hopf factorization that satisfies a 

certain winding number criterion or, equivalently, certain values of 

partial indices. Al-Sadoon (2018) extended Onatski's partial-index 

results to include latent roots of  ( ) on the unit circle. 

 

ASSUMPTION A.2: The m 1 exogenous vector tz  is generated by an XVAR(k ) 

equation, for some finite k    1, that is controllable and halfway 

limited nonstationary. 

 

 Equation (3.2) is the XVAR(k ) equation for k  = 3, which in section 

5 is extended for any finite k    4. Assumption A.2 imposes specific 

generic restrictions on XVAR(k ) coefficients in 
k

i i 1{D } . 

 A XVAR(k ) equation is controllable if and only if its highest-lag 

coefficient matrix kD  is nonsingular or k|D |   0. Controllability of an 

XVAR(k ) equation means that for given past exogenous variables, 

 

t 1

s s t k{z } , 

and any given target, 
*
z , there's a finite sequence of current and 

future disturbances,  


* t

s s t{ } , such that tz  = 
*
z . Controllability is a 
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basic concept in dynamic system theory. See Hannan & Deistler (1988) and 

Zadrozny (2016, pp. 440-441). 

 Halfway limited nonstationarity of an XVAR equation is defined 

below equation (4.3). 

 

ASSUMPTION A.3: The n m  structural coefficient matrix 0C  of exogenous 

vector 
tz  in LREM-structural equation (3.1) has full row rank of n . 

 

 Assumption A.3 imposes a specific generic restriction on structural 

coefficients in 
0C . 

 Assumption A.3 implies that m    n  and that there's an order of 

columns of 
0C  (and corresponding order of elements of 

tz ) and partitions 

0C  = [
01C ,

02C ] = [ n p ,  n (m p)] and 01C  = [
011C ,

012C ] = [ n n,  n (p n)], 

for n    p    m , such that row rank( 01C ) = full = n  and 011C  is 

nonsingular. If p  = m , then, 02C  is null and 
0C  = 

01C ; and, if p  = n , 

then, 012C  is null and 
01C  = 

011C . 

 

ASSUMPTION A.4.i: There's an order of columns of 0C  and a maximal p  = 

p , for n    p    m , such that 01C  = n p  is known and 011C  = n n is 

nonsingular. 

 

 The part of assumption A.4.i that 
01C  is known imposes a 

nonspecific normalizing restriction and the part that 
011C  is nonsingular 

imposes a specific generic restriction. 

 

ASSUMPTION A.4.ii: The n n structural coefficient matrix 0B  of 

disturbance vector t  in structural equation (3.1) is known and 

nonsingular. 

 

 The part of assumption A.4.ii that 0B  is known imposes a 

nonspecific normalizing restriction and the part that 0B  is nonsingular 

imposes a specific generic restriction. 
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 Identification 1 is derived in section 4 for two cases: (a) 

assumptions A.1.i-iii, A.3, and A.4.i hold or (b) assumptions A.1.i-iii, 

A.3, and A.4.ii hold (this inclusive "or" could be replaced by "and"). 

For identification 1 to hold in case (a), 
01C  must have full row rank and 

be known; for identification 1 to hold in case (b), 
01C  and 

0B  must have 

full row rank but only 
0B  needs to be known. 

Depending on the application, the parts of assumptions A.4.i-ii 

that 
01C  and 

0B  are known may or may not be considered stringent. 

Generally, assuming that 
01C  is known may be considered more stringent 

than assuming that 
0B  is known, because 

01C  is the coefficient matrix of 

observed variables but 
0B  is the coefficient matrix of unobserved 

disturbances. 

 

ASSUMPTION A.5: The n n disturbance-coefficient matrix 0
 in RES and 

ERF equations (3.3) and (5.2) is just-identified from the n n symmetric 

positive-definite disturbance-covariance matrix  T

0 0  in the RES and ERF 

equations by the n(n 1)/2  restrictions implied by the symmetry of  T

0 0  

and n(n 1)/2  additional restrictions on 0 , such that the 
2
n  

restrictions are mutually independent (nonredundant). 

 

 Assumption A.5 imposes n(n 1)/2  specific normalizing symmetry 

restrictions on 0  and n(n 1)/2  nonspecific normalizing additional 

restrictions on 0 . Cholesky factorization (Golub & Van Loan, 1983, p. 

89) of  T

0 0  in terms of lower-triangular 0  is one source of the 
2
n  

symmetry and additional restrictions on 0 . 

 

 

ASSUMPTION A.6: ERF and XVAR coefficients and disturbance covariances in 

{1,  

k 1

i i 0{ } , 
k

i i 1{D } , T

0 0 ,  } of ERF and XVAR(k ) equations are identified 

and consistently estimated from assumed or consistently estimated data 

moments, for some finite k    1. 

Electronic copy available at: https://ssrn.com/abstract=4271731



, 17 

 

 Assumption A.6 imposes nonspecific generic restrictions on data 

moments. For example, ERF and XVAR coefficients and disturbance 

covariances could be identified and consistently estimated by applying 

linear least-squares estimation to ERF and XVAR equations (5.2) and 

(3.2) under standard linear least-squares assumptions on data moments 

(Theil, 1971; Schmidt, 1976). 

 

ASSUMPTION A.7: Higher-level coefficients in j  from which lower-level 

coefficients in i , for i < j, are identified, derive from or have 

underlying lower-level coefficients. 

 

 Assumption A.7 is nonspecific and in any particular application 

would be a combination of normalizing, generic, and exact restrictions 

on coefficients, disturbance covariances, and data moments in  
5

i i 2{ } . 

Whereas none of the assumptions explicitly impose any exact 

restrictions, assumption A.7 implicitly allows exact restrictions to be 

imposed. 

 Assumptions A.5 to A.7 are added so that identifications 1 and 2 

are complete as identifications and consistent estimations of structural 

and RES coefficients down from assumed and consistently estimated data 

moments. Even if identifications 1 and 2 can be computed in practice as 

estimations, strictly, they aren't consistent estimations without this 

underpinning. Assumptions A.1.i to A.7 overlap to varying degrees, 

because they're considered only as sufficient conditions for 

identifications 1 and 2 and not also as necessary conditions for the 

identifications. 

 

4. IDENTIFICATION 1 OF STRUCTURAL COEFFICIENTS FROM RES 

COEFFICIENTS. 

 

 This section derives linear identification 1 of structural 

coefficients in { 
2

i i 0{A } , 0B , 0C } from RES coefficients in {1,0 ,  
i i 0{ } } by 
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CERRE equations (3.4) to (3.7). To minimize notation, we reuse   =   

as the key identifying equation in each case (a) and (b) in 

identification 1 in this section 4 and in each case I to III in 

identification 2 in next section 5. This shouldn't cause confusion, 

because  ,  , and   are defined separately for each use. 

 In identification 1, because 
0A  appears only in equation (3.4), the 

equation is reserved for identifying 
0A .   = [

2 1A , A ] is identified from 

  and   in cases (a) and (b) by solving   =  . In case (a),   = 

  is formed by combining equations (3.6) and (3.7), for i = 1; and, in 

case (b),   =   is formed by combining equations (3.5) and (3.7), 

for i = 1.   = [
2 1A , A ] can't be identified using only equations (3.7), 

because for any number of combined equations (3.7) the resulting   has 

less than full row rank. In both cases (a) and (b), for identified   = 

[
2 1A , A ], remaining structural coefficients in {

0A ,
0B ,

0C } are identified 

by equations (3.4) to (3.6).  

The derivations of both identifications 1 and 2 require  2 1 1A A  to 

be nonsingular, which is now proved. Assumption A.1.i implies that A( ) 

= 22A  + 1A  + 0A  factors as K( ) ( ), where K( ) = 1K  + 0K ,  ( ) = 

nI  - 1
, 

0K , 
1K , and 1

 are n n real-valued matrices, and   is a 

complex-valued scalar. Assumptions A.1.ii-iii imply that the latent 

roots of K( ) are nonzero, so that 
0K  is nonsingular. Multiplying out 

K( ) ( ) and equating coefficients of powers of   with those in A( ), 

implies that  2 1 1A A  = 
0K , so that  2 1 1A A  is nonsingular. 

Although the state representation of an XVAR equation is needed 

only in identification 2 in section 5, it's convenient now to introduce 

the state representation of XVAR(3) equation (3.2). The state 

representation has observation equation 

 

(4.1)     tz  = tHx , 

 

observation matrix H  = [ mI , mx2m0 ] = mx3m, state vector tx  = 

 
T T T T

t t 1 t 2(z ,z ,z )  = 3mx1, state equation 
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(4.2)     
tx  = t 1Fx  + tG , 

 

state-transition matrix F  = 

 
 
 
  

1 2 3

m mxm mxm

mxm m mxm

D D D

I 0 0

0 I 0

 = 3m 3m, disturbance-

coefficient matrix G  = 
T

m mx2m[I ,0 ]  = 3mxm , and the same mx1 disturbance 

vector t as in XVAR(3) equation (3.2). State representation (4.1) and 

(4.2) extends in the obvious way for an XVAR(k ) equation, for any finite 

k    4. Section 5 first uses state representation (4.1) and (4.2) to 

derive identification 2 and, then, extends the identification for an 

XVAR(k ) equation, for any finite k    4. 

 Nonsingular  2 1 1A A  implies that equations (3.7) can be written 

equivalently as 

 

(4.3)     i  =  i 1, 

 

for i = 1,2,3,…, where   = -  



1

2 1 1 2A A A . 

 An XVAR(k ) equation, for any finite k    1, like XVAR(3) equation 

(3.2), is stationary, nonstationary, limited nonstationary (LN), and 

halfway limited nonstationary (HLN), respectively, if and only if (F) < 

1, (F)   1, (F)  ( ) < 1, and (F)  ( ) < 1/2, where  () denotes the 

largest absolute eigenvalue of a square matrix. 

 In practice, sufficiently differenced data are stationary, so that 

(F) < 1, and usual economic restrictions on a LREM imply that  ( ) < 

1, which together imply LN. If (F) =  ( ), then, HLN implies that 

(F) and  ( )   1/2    .71, which suggests that HLN can hold for many 

applications with differenced data. 

In case (a), for an order of columns and partitions of 0C  for which 

assumptions A.3 and A.4.i imply that 01C  has full row rank and is known, 

let columns of  
1

i i 0{ }  be ordered conformably and partitioned as i  = 
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[i1
,i2

] = [ n p ,  n (m p)]. Then, because only the p  leftmost columns 

of 
0C  in 

01C  are known and can be used in equation (3.6) to identify 


2

i i 1{A } , we temporarily ignore any m p rightmost columns of equations 

(3.6) and (3.7), for i = 1, and combine the equations as n 2p  linear 

equation 

 

(4.4)       =  , 

 

where   = [ 2 1A , A ] = n 2n,   = 
    

 

 
 
 

1 01 1 11 01

01 11

 = 2n 2p , and   = 

  01 nxpC , 0  = n 2p . 

 Four conditions must hold to identify   by equation   =  : (i) 

  and   must exist; (ii)   and   must be known; (iii)   must solve 

the equation; and, (iv) the solution   must be unique. Strictly, a 

solution   is either exact or inexact, i.e., exists or doesn't exist, 

but, in practice, in an identification as estimation, an inexact 

solution   may be an acceptable approximation if it's not too 

inaccurate. 

   and   in equation (4.4) exist and are known because they're 

given inputs to the identification.   solves equation (4.4) exactly if 

and only if rows( )   row span( ) and uniquely as   =   T T 1
( )  if 

and only if row rank( ) = full = 2n. Assumption A.7 implies that 

rows( )   row span( ) and, except in some applications, there's 

nothing more to say about when this condition holds. Even if   = 

  T T 1
( )  doesn't solve equation (4.4) exactly, it solves it 

approximately with error equal to least-squares residual  -

  T T 1
( )  (Golub & Van Loan, 1983, ch. 6, pp. 162-169). If n  = m  = 

p ,   is square, and row rank( ) = full = 2n, then,   is nonsingular 

and   =  1
 solves equation (4.4) exactly and uniquely. 

We now abstract from existence of a solution   of equation (4.4) 

and look more closely at conditions under which a solution   of 
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equation (4.4) is unique. Postmultiplying equation (4.4) by 

diag[   T T 1

01 01 01( ) ,   T T 1

01 01 01( ) ] = 2p 2n  implies nx2n equation 

 

(4.5)       =  , 

 

where   = [
2 1A , A ] = n 2n,   = 

 
 
 

n 1

nxn n

I

0 I 

 
 
 

nxn n

n

0 I

I
 = 2n 2n ,   = 

    T T 1

11 01 01 01( )  = n n, and   =     
 

T T 1

01 01 01 01 nxnC ( ) , 0  = n 2n. 

  ,  , and   in equation (4.5) exist because   T 1

01 01( )  exists, 

because row rank(01
) = full = n , because in equation (3.6)  2 1 1A A  is 

nonsingular and row rank(
0C ) = full = n  by assumptions A.3 and A.4.i. 

  and   are known because they're given inputs to the identification. 

  is nonsingular because 
 

 
 

n 1

nxn n

I

0 I
 and 



 
 
 

nxn n

n

0 I

I
 are always nonsingular. 

Therefore,   =  1
 is the exact, unique, and computable solution of 

equation (4.5) that identifies 
2

i i 1{A }  from {
01C ,1

,  
1

i1 i 0{ } } by equation 

(4.4), exactly or approximately depending on how closely   and   in 

equation (4.4) satisfy rows( )   row span( ). 

 For exactly or approximately identified 
2

i i 1{A }  by equation (4.4), 

0A  is identified exactly from { 
2

i i 1{A } ,1} by equation (3.4), 0B  is 

identified exactly from { 
2

i i 1{A } ,1,0 } by equation (3.5), and, if it's 

non-null, 02C  is identified exactly from { 
2

i i 1{A } ,1,02 } by the m p  

rightmost columns of equation (3.6). Thus, in case (a), all structural 

coefficients in { 
2

i i 0{A } , 0B , 02C } are identified exactly or approximately 

from normalized structural coefficients in 01C  and RES coefficients in 

{1,0 ,  
i i 0{ } } by CERRE equations (3.4) to (3.7). 

 In case (b), in which assumption A.4.i and equation (3.6) of case 

(a) are replaced by assumption A.4.ii and equation (3.5), the equation 

that corresponds to equation (4.4) is  n (n p) equation  

 

(4.6)       =  , 
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where   = [
2 1A , A ] = n 2n,   = 

    

 

 
 
 

1 0 1 11 01

0 11

 =  2n (n p), and   = 

  0 nxpB ,0  =  n (n p). Postmultiplying equation (4.6) by 

diag[
nI ,   T T 1

01 01 01( ) ] = (n p)x2n implies nx2n equation 

 

(4.7)       =  , 

 

where   = [
2 1A , A ] = n 2n,   = 

 
 
 

n 1

nxn n

I

0 I 

 
 
 

nxn n

n

0 I

I

 
 
 

0 nxn

nxn n

0

0 I
 = 2n 2n ,   

=     T T 1

11 01 01 01( )  = n n, and   =  0 nxnB , 0  = n 2n. 

  ,  , and   in equation (4.7) exist for the same reason that 

  T 1

01 01( )  exists in equation (4.5).   and   are known because they're 

given inputs to the identification.   is nonsingular because 
 

 
 

n 1

nxn n

I

0 I
 

and 


 
 
 

nxn n

n

0 I

I
 are always nonsingular and because 0

 is nonsingular, 

because in equation (3.5)  2 1 1A A  is nonsingular and 
0B  is nonsingular 

by assumption A.4.ii. Therefore,   =  1
 is the exact, unique, and 

computable solution of equation (4.7) that identifies 
2

i i 1{A }  from 

{ 0B ,1,0 ,  
1

i1 i 0{ } } by equation (4.6), exactly or approximately depending 

on how closely   and   in equation (4.6) satisfy rows( )   row 

span( ). 

 For exactly or approximately identified 
2

i i 1{A }  by equation (4.6), 

0A  is identified exactly from { 
2

i i 1{A } ,1} by equation (3.4) and all of 

0C  is identified exactly from { 
2

i i 1{A } ,1,0 } by all of equation (3.6). 

Thus, in case (b), all structural coefficients in { 
2

i i 0{A } , 0C } are 

identified exactly or approximately from normalized structural 

coefficients in 0B  and RES coefficients in {1,0 ,  
i i 0{ } } by CERRE 

equations (3.4) to (3.7). 
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 In both cases (a) and (b), there are up to 


 
 
 


p

q n

p

q
 possible values 

of   and   that can be used to identify   = [
2 1A , A ] by equations 

(4.4) to (4.7), where 
 
 
 

p

q
 denotes the binomial coefficient. If p  > n , 

then, 
2

i i 1{A }  are over-identified by equations (4.4) to (4.7), because   

is over-identified by     T T 1

11 01 01 01( ) . Schmidt's (1976, pp. 145-149) 

discussion suggests that over-identified estimated 
2

i i 1{A }  are 

inconsistently estimated, but assumption A.7 overrules this conclusion, 

so that both just- and over-identified estimated 
2

i i 1{A }  can be considered 

consistently estimated. Of course, in practice, in identification 2 as 

estimation, different combinations of   and   will result in 

different identified values of  . 

 In both cases (a) and (b), if p  > n , then, p -n  columns of 0
 

needn't be used in the identifications. However, if the identifications 

are estimations, then, it's better to use all p  columns of 0  that 

correspond to known columns of 
0C , because then   =     T T 1

11 01 01 01( )  

averages the maximum number of outer products of columns of estimated 

 
1

i1 i 0{ } , so that, according to a law of large numbers,   and 
2

i i 1{A }  

should have lower sampling covariances. 

 In both cases (a) and (b), if   has less than full row rank, 

then,   = [ 2 1A , A ] could still be identified by equations (4.4) to (4.7) 

as   =   T T 1
( )  if enough exact, independent, and linear 

restrictions are added as columns of   and   that raise the row rank 

of   to full rank 2n (Al-Sadoon & Zwiernik, 2019). Al-Sadoon & 

Zwiernik emphasized affine (linear nonhomogeneous) restrictions, but, 

because     nxn0 , equations (4.4) to (4.7) are affine and remain affine 

for any added linear homogeneous or nonhomogeneous restrictions. 

 In both cases  (a) and (b), because row rank( 0C ) = full = n  is the 

necessary rank condition for solving identifying equations (4.4) to 

(4.7) uniquely, the necessary order condition for identification 1 is 
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(4.8)     m    n , 

 

for m  exogenous variables and n  endogenous variables. 

 In both cases (a) and (b), if, for given RES coefficients, 

structural-coefficient matrices that satisfy CERRE equations (3.4) to 

(3.7) are premultiplied by any and the same nonsingular n n matrix, 

then, the resulting premultiplied structural-coefficient matrices also 

satisfy the CERRE equations and are observationally equivalent to the 

unpremultiplied structural-coefficient matrices. Therefore, because 

assumptions A.3 and A.4.i restrict 
011C  to be nonsingular for a suitable 

order of columns of 0C  and assumption A.4.ii restricts 0B  to be 

nonsingular, either 
011C  or 

0B , but not both, can be normalized to any 

nonsingular nxn matrix, including the nxn identity matrix. 

 Identification 1 can be set up alternatively and similarly to cases 

(a) and (b) by instead normalizing any sufficient combination of 

structural coefficients in { 
2

i i 0{A } ,
0B ,

0C }. 

 

5. IDENTIFICATION 2 OF RES COEFFICIENTS FROM ERF AND XVAR 

COEFFICIENTS. 

 

 This section derives linear identification 2 of RES coefficients in 

 
i i 0{ }  from ERF and XVAR coefficients in {  


k 1

i i 0{ } , 
k

i i 1{D } } for three cases 

in the way exogenous variables enter the structural equation: case I in 

current (period t) values in LREM-structural equation (3.1); case II in 

current and previous-period values in modified equation (3.1); and, case 

III in current and expected-next-period values in modified equation 

(3.1). See Martinez-Garcia (2020) for case III. 

 Because 1 and 0  are both RES and ERF coefficients, it suffices 

to identify  
i i 0{ }  from {  


k 1

i i 0{ } , 
k

i i 1{D } }. In each case I to III, 

identification 2 is first derived for an XVAR(3) equation and is, then, 

extended to an XVAR(k ) equation, for any finite k    4. 
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5.1. CASE I: CURRENT EXOGENOUS VARIABLES. 

 

In case I of identification 2, exogenous variables are in 

structural equation (3.1) in current values, 
tz , are first considered to 

be generated by XVAR(3) equation (3.2), and are predicted as 

 

(5.1)     t t iE z  =   

T
i T T T

t t 1 t 2HF z ,z ,z , 

 

for i = 1,2,3,…, according to state representation (4.1) and (4.2). 

 Inserting predictions (5.1) into RES equation (3.3) implies ERF 

equation 

 

(5.2)     
ty  =  1 t 1y  +  0 t

 + 0 tz  +  1 t 1z  +  2 t 2z , 

 

where   = [  0 1 2, , ] = [ n m , n m , n m ] = nx3m  is defined by 

 

(5.3)       =  



i i

0 nx2mi 0
[ ,0 ]F . 

 

If the XVAR equation is limited nonstationary (LN), then,   exists and 

is the unique solution of the asymmetric Stein equation (Lancaster and 

Rodman, 1995, p. 100) 

 

(5.4)       = F  + 0 nx2m[ ,0 ]. 

 

 In identification 1,   satisfies equation (4.3) for given  
1

i1 i 0{ } . 

Now, in all cases I to III of identification 2,   is identified jointly 

with 0  from ERF and XVAR coefficients in {  

k 1

i i 0{ } , 
k

i i 1{D } }. 

Using the details of F  to multiply out F , Stein equation (5.4) 

implies equations 

 

(5.5)     0 =   0 1 1( D ) + 0 , 
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(5.6)     1
 =   0 2 2( D ), 

 

(5.7)     2
 = 0 3D . 

 

 Equations (5.5) to (5.7) combine as n 3m  equation 

 

(5.8)       =  , 

 

where   = [ 0, ] = nx(n m),   = 
      
 
 

0 1 1 0 2 2 0 3

m mxm mxm

D D D

I 0 0
 = (n m)x3m, 

and   = [  0 1 2, , ] = nx3m . 

 In all cases I to III of identification 2 by equations (5.8), 

(5.16), (5.25), and their extensions to any finite k    4,   and   

exist and are known because {  

k 1

i i 0{ } , 
k

i i 1{D } } are given inputs to the 

identifications. For   and   in equation (5.8),   = [ 0, ] is 

identified exactly from {  
2

i i 0{ } , 
3

i i 1{D } } if and only if   =   T T 1
( )  

solves equation (5.8) exactly and uniquely, which occurs, respectively, 

if and only if rows( )   row span( ) and row rank( ) = full = n m . 

 If   is square and row rank( ) = n m , then, rows( )   row 

span( ),   is nonsingular, and   =  1
 solves equation (5.8) 

exactly and uniquely. If   isn't square, rows( )   row span( ) and 

row rank( ) = n m , then,   =   T T 1
( )  solves equation (5.8) 

exactly and uniquely. If   isn't square, rows( )   row span( ), and 

row rank( ) = n m , then,   =   T T 1
( )  solves equation (5.8) 

uniquely, but only approximately in a least-squares sense (Golub & Van 

Loan, 1983, ch. 6, pp. 162-169). Like in identification 1, assumption 

A.7 implies that rows( )   row span( ) and, except in some 

applications, there's nothing more to say about when rows( )   row 

span( ). 

   =   T T 1
( )  solves equation (5.8) uniquely if and only if row 

rank( ) = full = n m , which occurs if and only if row rank(12 ) = 
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n , where 12
 =  [ 0 2 2D ,0 3D ] = nx2m, which holds if but not only if 

row rank( 0 2 2D ) = n  or row rank(0 3D ) = n , which holds if but not 

only if row rank(0
) = n  and 

3|D |   0. Controllability of XVAR(3) 

equation (3.2) implies that 
3|D |   0. 

 Unlike in identification 1, where 
2

i i 1{A }  can be identified using 

fewer than p  columns of  
1

i i 0{ } , in all cases I to III of identification 

2, all m  columns of  
2

i i 0{ }  must be used because otherwise the   =   

identifying equations will be distorted. 

 We now prove that halfway limited nonstationarity (HLN) of an 

XVAR(k ) equation, for any finite k    1, implies that row rank(0
) = n . 

The proof is important because it shows that there are values of LREM-

structural coefficients that imply that identifying equations (5.8), 

(5.16), possibly (5.25), and their extensions for k    4 can have unique 

solutions, so that identification 2 can hold in cases I and II and 

possibly in case III. 

 Row rank(0
) = n  if and only if x   nx10  implies that T 0x    1xm0 . 

Infinite sum (5.3) implies that T 0x  = 



T

ii 0
v , where 

T

iv  = 

    
TiT i

0 nx2m m mx2mx ,0 F I ,0  = 1xm . Because HLN of an XVAR(k ) equation 

implies that     
TiT i

0 nx2m m mx2mx ,0 F I ,0  declines to zero at a geometric 

rate less than 1/2 as i increases, i 1v  = i iv , for i = 0,1,2,…, where 

0 < i     =   ( ) (F) < 1/2 and   denotes the Frobenius norm of a 

vector (Golub & Van Loan, 1983, p. 14). Because equation (3.6), row 

rank( 0C ) = full = n  by assumptions A.3 and A.4.i, and nonsingularity of 

 2 1 1A A  imply that row rank(0
) = full = n , x   nx10  implies that 

T

0v  = 

T 0x    1xm0 . Without loss of generality, we assume that 0v  is normalized 

as 0v  = 1.  

 Because 1- 0  > 0, the triangle inequality implies that 0 1v v    

0 1v v  = 1- 0  > 0. Because 1- 0 -  0 1   1-  - 2
 and HLN implies that 

1-  - 2
 > 0, the triangle inequality and 2v  =  0 1 imply that 
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 0 1 2v v v     0 1 2v v v    1- 0 -  0 1
   1-  - 2

 > 0. Continuing 

like this, T 0x  = 


 ii 0
v    




 

i

i 1
1  =   (1 2 )/(1 ) > 0, so that 

HLN implies that T 0x    1xm0 , hence, that row rank(0
) = n . 

The above result appears to hold under some weakening of HLN, so 

that HLN apparently isn't necessary for row rank(0
) = n , but exactly by 

how much weakening hasn't been determined or found. Of course, row 

rank(0
) = n  could just be assumed, but we prefer to restrict only 

structural coefficients. 

 Extending   and   in equation (5.8) for 
tz  ~ XVAR(k ), for any 

finite k    4, 

 

(5.9)       = 
          
 
 

0 1 1 0 2 2 0 k 1 k 1 0 k

m mxm mxm mxm

D D D D

I 0 0 0
 = (n m)xkm  

 

and   = [  0 k 1, , ] = nxkm. 

 For extended   and   given by and below equation (5.9),   = 

[ 0, ] is identified from {  

k 1

i i 0{ } , 
k

i i 1{D } } if and only if   = 

  T T 1
( )  solves extended equation (5.8) exactly and uniquely.   = 

  T T 1
( )  solves extended equation (5.8) uniquely, but not necessarily 

exactly, if and only if row rank( ) = full = n m , which holds if and 

only if row rank(12 ) = n , where 12  = [ 0 2 2D , ,  0 k 1 k 1D ,0 kD ] = 

nx(k 1)m , which holds if but not only if row rank( 0 i iD ) = n , for one 

or more i = 2, , k 1, or row rank(0 kD ) = n , which holds if but not 

only if row rank(0
) = n  and k|D |   0. Controllability and HLN of an 

XVAR(k ) equation imply that k|D |   0 and row rank(0) = n , for any 

finite k    1. 

 For identified { ,0 }, remaining RES coefficients in  
i i 1{ }  are 

identified by iterating on equation (4.3). 

 In case I of identification 2, for tz  ~ XVAR(k ) and any finite k  

  2, because row rank( ) = full = n m  is the necessary rank 
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condition for solving identifying equation (5.8) or its extension 

uniquely, the necessary order condition for identification is 

 

(5.10)    m    n/(k 1), 

 

for finite and positive n/(k 1), where n/(k 1) denotes the smallest 

integer   n/(k 1). Consider the following three cases. 

 1. If k  = 1, then, row rank( ) < n m  for any m  and n ,   = 

[ 0, ] is unidentified by equation (5.8), and order condition (5.10) 

doesn't hold because n/(k 1) isn't finite and positive. 

 2. If k  = 2, then, row rank( ) = n m  if and only if row 

rank(0 2D ) = n ; and, if so, then,   = [ 0, ] is, respectively, just- 

or over-identified by solving equation (5.8) uniquely as   =  1
 or 

as   =   T T 1
( )  and order condition (5.10) holds as m  = n  or as m  

> n . 

 3. If k    3, then, row rank( ) = n m  if but not only if row 

rank(0 kD ) = n ; and, if so, then,   = [ 0, ] is, respectively, just- 

or over-identified by solving equation (5.8) or its extension uniquely 

as   =  1
 or as   =   T T 1

( )  and order condition (5.10) holds as 

m  = n/(k 1) or as m  > n/(k 1). 

 Order condition (5.10) suggests that identification 2 could hold 

for any m  and n  if k  is large enough, in fact, for any n  even if m  = 

1. However, in practice, the highest-lag XVAR(k ) coefficients at lag k  

are unlikely to be significantly nonzero for k  greater than about 16, 

even for undifferenced and seasonally-varying monthly data, so that 

order condition (5.10) limits n  to about 15m. 

 However, k  could be much larger if the XVAR(k ) equation is 

considered an approximation of the true tz -generating equation. For 

example, if tz  is generated by an invertible vector autoregressive 

moving-average (VARMA) equation with a VAR( ) representation whose 

coefficients decline geometrically by 10% per increased lag, then, an 
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approximate XVAR(k ) equation that's within 1% accuracy of the 

invertible-VARMA equation needs k  greater than about 44, so that order 

condition (5.10) limits n  to about 43m . 

 

5.2. CASE II: CURRENT AND LAGGED EXOGENOUS VARIABLES. 

 

In case II of identification 2, exogenous variables are in the 

structural equation in current and one-period-lagged values, 
tz  and t 1z , 

so that the exogenous term in structural equation (3.1) becomes 

 

(5.11)    


 
 
 

t

0

t 1

z
C

z
 = 

01 tC z  + 02 t 1C z , 

 

where 
0C  = [

01C ,
02C ] = [nxm,nxm] = nx2m, and RES equation (3.3) becomes 

 

(5.12)    
ty  =  1 t 1y  +  0 t

 +  


  
 i1 t t i i2 t t i 1i 0

[ E z E z ], 

 

where i
 = [i1

,i2
] = [nxm,nxm] = nx2m. 

 Exogenous tz  is again first assumed to be generated by XVAR(3) 

equation (3.2), again has state equation (4.2), but now has observation 

equation 


 
 
 

t

t 1

z

z
 = tHx , where H  = 

 
 
 

m mxm mxm

mxm m mxm

I 0 0

0 I 0
 = 2m 3m , so that tz  is 

predicted as 

 

(5.13)    


 

 
 
 

t t i

t t i 1

E z

E z
 = 

i

tHF x , 

 

for i = 1,2,3, . 

 Inserting predictions (5.13) into RES equation (5.12) continues to 

imply ERF equation (5.2), 2  continues to satisfy equation (5.7), but 

now 0 and 1 satisfy 
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(5.14)    0
 =   0 1 1( D ) + 01

, 

 

(5.15)    1
 =   0 2 2( D ) + 02

. 

 

 Equations (5.7), (5.14), and (5.15) combine as n 3m  equation 

 

(5.16)      =  , 

where   = [ ,01
,02

] = nx(n 2m),   = 

      
 
 
  

0 1 1 0 2 2 0 3

m mxm mxm

mxm m mxm

D D D

I 0 0

0 I 0

 = 

(n 2m)x3m , and   = [  0 1 2, , ] = nx3m . 

 For   and   in equation (5.16),   = [ ,01
,02

] is identified 

from {  
2

i i 0{ } , 
3

i i 1{D } } if and only if    =   T T 1
( )  solves equation 

(5.16) exactly and uniquely.   =   T T 1
( )  solves equation (5.16) 

uniquely, but not necessarily exactly, if and only if row rank( ) = 

full = n 2m, which holds if and only if row rank(0 3D ) = n , which 

holds if but not only if row rank(0
) = n  and 3|D |   0. 

 Extending   and   in equation (5.16) for 
tz  ~ XVAR(k ), for any 

finite k    4, 

 

(5.17)      = 

             
 
 
  

0 1 1 0 2 2 0 3 3 0 k 1 k 1 0 k

m mxm mxm mxm mxm

mxm m mxm mxm mxm

D D D D D

I 0 0 0 0

0 I 0 0 0

 = (n 2m)xkm 

 

and   = [  0 k 1, , ] = nxkm. 

 For extended   and   given by and below equation (5.17),   = 

[ ,01 ,02 ] is identified from {  

k 1

i i 0{ } , 
k

i i 1{D } } if and only    = 

  T T 1
( )  solves extended equation (5.16) exactly and uniquely.   = 

  T T 1
( )  solves extended equation (5.16) uniquely, but not 

necessarily exactly, if and only if row rank( ) = full = n 2m, which 

holds if and only if row rank(12 ) = n , where 12  = 
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[ 0 3 3D , ,  0 k 1 k 1D ,0 kD ] = nx(k 2)m, which holds if but not only if 

row rank( 0 i iD ) = n , for one or more i = 3, , k 1, or row rank(0 kD ) 

= n , which holds if but not only if row rank(0
) = n  and k|D |   0. 

Controllability and HLN of an XVAR(k ) equation imply that k|D |   0 and 

row rank(0
) = n , for any finite k    1. 

 As in case I of identification 2, for identified { ,0
}, 

remaining RES coefficients in  
i i 1{ }  are identified by iterating on 

equation (4.3). 

 In case II of identification 2, for 
tz  ~ XVAR(k ) and any finite k  

  3, because row rank( ) = full = n 2m is the necessary rank 

condition for solving identifying equation (5.16) or its extension 

uniquely, the necessary order condition for identification is  

 

(5.18)     m    n/(k 2), 

 

for finite and positive n/(k 2), which has implications analogous to 

those discussed in case I below order condition (5.10). Consider the 

following three cases. 

 1. If k  = 1 or 2, then, row rank( ) < n 2m for any m  and n , 

  = [ 0, ] is unidentified by equation (5.16), and order condition 

(5.18) doesn't hold because n/(k 2) isn't finite and positive. 

 2. If k  = 3, then, row rank( ) = n 2m if and only if row 

rank(0 3D ) = n ; and, if so, then,   = [ ,01 ,02 ] is, respectively, 

just- or over-identified by solving equation (5.16) uniquely as   = 

 1
 or as   =   T T 1

( )  and order condition (5.18) holds as m  = n  

or as m  > n . 

 3. If k    4, then, row rank( ) = n 2m if but not only if row 

rank(0 kD ) = n ; and, if so, then,   = [ ,01 ,02 ] is, respectively, 

just- or over-identified by solving equation (5.16) or its extension 
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uniquely as   =  1
 or as   =   T T 1

( )  and order condition (5.18) 

holds as m  = n/(k 2) or as m  > n/(k 2). 

 

5.3. CASE III: EXPECTED-FUTURE AND CURRENT EXOGENOUS 

VARIABLES. 

 

In case III, exogenous variables are in the structural equation in 

expected-next-period and current values, t t 1E z  and 
tz , so that the 

exogenous term in structural equation (3.1) becomes 

 

(5.19)     
 

 
 

t t 1

0

t

E z
C

z
 = 01 t t 1C E z  + 

02 tC z , 

 

where 
0C  = [

01C ,
02C ] = [nxm,nxm] = nx2m, and RES equation (3.3) becomes 

 

(5.20)     ty  =  1 t 1y  +  0 t  +  


  
 i1 t t 1 i i2 t t ii 0

[ E z E z ], 

 

where i  = [i1,i2 ] = [nxm,nxm] = nx2m. 

 Exogenous 
tz  is again first assumed to be generated by XVAR(3) 

equation (3.2), again has state equation (4.2), but now has observation 

equation 
 

 
 

t 1

t

z

z
 = tHx , where H  = 

 
 
 

1 2 3

m mxm mxm

D D D

I 0 0
 = 2m 3m , so that tz  is 

predicted as 

 

(5.21)     
 



 
 
 

t t i 1

t t i

E z

E z
 = 

i

tHF x , 

 

for i = 1,2,3, . 

 Inserting predictions (5.21) into RES equation (5.20) continues to 

imply ERF equation (5.2), but now 0, 1, and 2  satisfy 

 

(5.22)     0 =   0 1 1( D ) + 01 1D  + 02 , 
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(5.23)     1
 =   0 2 2( D ) + 01 2D , 

 

(5.24)     2
 = 0 3D  + 01 3D . 

 

 Equations (5.22) to (5.24) combine as n 3m  equation 

 

(5.25)       =  , 

 

where   = [ ,01
,02

] = nx(n 2m),   = 

      
 
 
  

0 1 1 0 2 2 0 3

1 2 3

m mxm mxm

D D D

D D D

I 0 0

 = 

(n 2m)x3m , and   = [  0 1 2, , ] = nx3m . 

 For   and   in equation (5.25),   = [ ,01
,02

] is identified 

from {  
2

i i 0{ } , 
3

i i 1{D } } if and only if   =   T T 1
( )  solves equation 

(5.25) exactly and uniquely.   =   T T 1
( )  solves equation (5.25) 

uniquely, but not necessarily exactly, if and only if rank( ) = full = 

n 2m, which holds if and only if row rank(12
) = n m , where 12

 = 

   
 
 

0 2 2 0 3

2 3

D D

D D
 = (n m)x2m . 

 Extending   and   in equation (5.25) for 
tz  ~ VAR(k ), for any 

finite k    4, 

 

(5.26)       = 

       



   
 
 
  

0 1 1 0 2 2 0 k 1 k 1 0 k

1 2 k 1 k

m mxm mxm mxm

D D D D

D D D D

I 0 0 0

 = (n 2m)xkm 

 

and   = [  0 k 1, , ] = nxkm. 

 For extended   and   given by and below equation (5.26),   = 

[ ,01 ,02 ] is identified from {  

k 1

i i 0{ } , 
k

i i 1{D } } if and only if   = 

  T T 1
( )  solves extended equation (5.25) exactly and uniquely.   = 
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  T T 1
( )  solves extended equation (5.25) uniquely, but not 

necessarily exactly, if and only if row rank( ) = full = n 2m, which 

holds if and only if row rank(12
) = n m , where 12

 = 

     



  
 
 

0 2 2 0 k 1 k 1 0 k

2 k 1 k

D D D

D D D
 =  (n m)x(k 1)m. 

 Controllability and HLN of an XVAR(k ) equation imply that k|D |   0 

and row rank(0
) = n , for any finite k    1, but now in case III 

controllability and HLN are insufficient to imply that row rank(12
) = 

n m. k|D |   0 is now a necessary condition for row rank(12
) = n m  

if m  = n , k  = 3, and   = 2nx2n  is square. Without further analysis, 

it's unclear what restrictions on structural, ERF, and XVAR coefficients 

imply or are implied by row rank(12
) = n m . 

 As in cases I and II of identification 2, for identified { ,0 }, 

remaining RES coefficients in  
i i 1{ }  are identified by iterating on 

equation (4.3). 

 In case III of identification 2, for 
tz  ~ VAR(k ) and any finite k  

  3, row rank( ) = full = n 2m implies that inequality (5.18) 

continues to be the necessary order condition for identification, with 

implications analogous to those discussed in case I below order 

condition (5.10). 

 Order condition (4.7) of identification 1 always implies order 

conditions (5.10) or (5.18) of identification 2 but the reverse isn't 

the case. Does this mean that if identification 2 holds but 

identification 1 doesn't hold, then, there's a contradiction? Not 

necessarily, because, first, even if LREM-structural coefficients solve 

their identifying equations exactly, they may not solve them uniquely, 

so that the LREM-structural coefficients aren't identified and order 

condition (4.7) doesn't hold; and, second, if only RES coefficients are 

needed to make policy predictions and LREM-structural coefficients 

aren't needed for anything else, then, LREM-structural equations can be 

disregarded and RES equations and their coefficients can be considered 
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structural. Therefore, if identification 2 holds but identification 1 

doesn't hold, then, there's not necessarily a contradiction.  

 

6. CONCLUSION: RECONCILIATION OF LUCAS AND SIMS. 

 

 Linear rational-expectations models (LREMs) are conventionally 

"forwardly" estimated as follows. Structural coefficients are restricted 

by economic restrictions in terms of deep parameters. For given deep 

parameters, LREM-structural equations are solved for rational-

expectations solution (RES) equations that determine endogenous 

variables. For given exogenous vector autoregressive (XVAR) equations 

that determine exogenous variables, RES equations are reduced to 

reduced-form VAR equations for endogenous variables (ERF) with exogenous 

variables. The combined ERF and XVAR equations are the reduced-form 

overall VAR (OVAR) equations of all variables in a LREM. The sequence of 

specified, solved, and combined equations defines a mapping from deep 

parameters to OVAR coefficients that is used to forwardly estimate a 

LREM in terms of deep parameters. Forwardly-estimated deep parameters 

determine forwardly-estimated RES equations that Lucas (1976) advocated 

for making policy predictions in his critique of policy predictions made 

with reduced-form equations. 

 Sims (1980) called economic identifying restrictions on deep 

parameters of forwardly-estimated LREMs "incredible", because he 

considered in-sample fits of forwardly-estimated OVAR equations 

inadequate and out-of-sample policy predictions of forwardly-estimated 

RES equations inaccurate. Sims (1980, 1986) instead advocated directly 

estimating OVAR equations restricted by statistical shrinkage 

restrictions and directly using the directly-estimated OVAR equations to 

make policy predictions. However, if assumed or predicted out-of-sample 

policy variables in the directly made policy predictions differ 

significantly from in-sample values, then, the out-of-sample policy 

predictions won't satisfy Lucas's (1976) critique. 

If directly-estimated OVAR equations are reduced-form equations of 

underlying RES equations and further underlying LREM-structural 
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equations, then, identification 2 derived in the paper linearly 

"inversely" estimates underlying RES equations from the directly-

estimated OVAR equations and the inversely-estimated RES equations can 

be used to make policy predictions that satisfy Lucas's critique. 

Inversely-estimated RES equations satisfy Lucas's critique if they have 

underlying LREM-structural equations, because then they have policy-

invariant distributed-lead coefficients inherited from policy-invariant 

underlying LREM-structural coefficients. 

If Sims considered directly-estimated OVAR equations to fit in-

sample data adequately (credibly) and their inversely-estimated RES 

equations to make accurate (credible) out-of-sample policy predictions, 

then, he should consider the RES equations and their underlying LREM-

structural equations to be credible. Thus, inversely-estimated RES 

equations by identification 2 can reconcile Lucas's (1976) advocacy for 

making policy predictions with RES equations of underlying LREM-

structural equations and Sims's (1980, 1986) advocacy for directly 

estimating OVAR equations. However, identification 2 doesn't reconcile 

Lucas's advocacy for making policy predictions with RES equations and 

Sims's advocacy for making policy predictions directly with directly-

estimated OVAR equations. 

 Sims (1980, 1986) proposed two methods for making policy 

predictions directly with directly-estimated OVAR equations: (a) for 

assumed or predicted out-of-sample current and expected-future policy 

variables, setting out-of-sample disturbances of nonpolicy variables to 

zero and out-of-sample disturbances of policy variables and nonpolicy 

variables according to the estimated OVAR equations; (b) setting all 

out-of-sample variables to impulse responses of uncorrelated 

disturbances, considered structural disturbances, in the estimated OVAR 

equations. 

 Policy predictions (a) and (b) and policy predictions of RES 

equations have the following relative advantages: 

 1. Policy predictions (a) and policy predictions of RES equations 

can be strictly correct only if policy variables are exogenous in 

reduced-form OVAR equations. Policy variables needn't be exogenous in 

policy predictions (b), but policy predictions (b) are much more limited 
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than possible policy predictions (a) or policy predictions of RES 

equations. 

 2. If out-of-sample current and expected-future (exogenous) policy 

variables differ significantly from in-sample values, then, Lucas's 

(1976) critique says that out-of-sample policy predictions should be 

made only with RES or RES-like equations and not with policy predictions 

(a) and (b) of reduced-form equations. 

 Lucas (1976) discussed examples in which LREM-structural equations 

are or include first-order conditions of dynamic-optimization problems, 

so that their implied RES equations are or include forward-looking 

dynamic-optimal decision rules for endogenous variables. Even the most 

ordinary daily decisions such as whether to go and buy food and how much 

to buy are forward-looking dynamic-optimal decisions, because they are 

subject to frictions such as adjustment costs and delays. Both 

forwardly- and inversely-estimated RES equations have these same 

forward-looking properties that reflect through distributed-lead 

coefficients how economic agents use information on current and 

expected-future exogenous variables to make current forward-looking 

dynamic-optimal decisions on endogenous variables. By contrast, although 

directly-estimated backward-looking OVAR equations may correctly account 

for in-sample forward-looking decisions on endogenous variables, by not 

having any explicit connections to forward-looking decisions, they and 

their policy predictions generally won't satisfy -- and can't be 

modified to satisfy -- Lucas's critique. 

 Forwardly estimating RES equations requires knowing and using the 

composite forward mapping from deep parameters to overall OVAR 

coefficients, but inversely estimating RES equations doesn't require 

this knowledge. Inversely estimating RES equations by identification 2 

requires only knowing or assuming the number of endogenous variables 

(n ), the number of exogenous variables (m ), and the number of lags of 

exogenous variables (k ). More generally, inverse estimation requires 

knowing or assuming the number of leads of expected-future endogenous 

variables in LREM-structural equations and the numbers of lags of 

endogenous variables and disturbances in LREM-structural, RES, and ERF 
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equations, respectively, r , p , and q  in Zadrozny (1998). However, 

strictly, in order for policy predictions of inversely-estimated RES 

equations to satisfy Lucas's critique, the inversely-estimated RES 

equations should either have underlying policy-invariant LREM-structural 

equations or themselves be considered the structural starting point of 

analysis.   

 So far, no general statistically-consistent alternative to rational 

expectations has been proposed for economic modelling. The empirical 

scientific principle says that a model and its assumptions should 

together be accepted or rejected according to the accuracy of the 

model's out-of-sample predictions (Friedman, 1953, chapter 1). Out-of-

sample prediction accuracies of forwardly- or inversely-estimated RES 

equations and of predictions (a) and (b) can and should be compared 

accordingly. Although impulse responses (b) are often made only for 

purposes of analysis, being de facto predictions, they can be compared 

as such with any other predictions of the same variables. 

 Identification 1 of LREM-structural coefficients from RES 

coefficients has no direct role in making policy predictions with RES 

equations, contributes mainly by showing that directly-estimated OVAR 

equations can be reduced-form equations of underlying LREM-structural 

equations, and could also possibly be used to guide specification of 

restrictions on LREM-structural coefficients in terms of deep 

parameters. 

 The paper has derived linear identifications 1 and 2 that in the 

order 2 and 1 can be used to consistently, easily, and quickly estimate 

RES and structural equations of a LREM. If the goal is to estimate a 

LREM only to make policy predictions, then, only RES equations need to 

be inversely estimated by identification 2, LREM-structural equations 

can be disregarded, and conventional, generally nonlinear, more arduous, 

and much slower forward estimation of a LREM in terms of deep parameters 

can be avoided. 
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