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Abstract. Popular approaches to building data from unstructured text come with 
limitations, such as scalability, interpretability, replicability, and real-world applicability. 
These can be overcome with Context Rule Assisted Machine Learning (CRAML), a 
method and no-code suite of software tools that builds structured, labeled datasets which 
are accurate and reproducible. CRAML enables domain experts to access uncommon 
constructs within a document corpus in a low-resource, transparent, and flexible manner. 
CRAML produces document-level datasets for quantitative research and makes qualitative 
classification schemes scalable over large volumes of text. We demonstrate that the method 
is useful for bibliographic analysis, transparent analysis of proprietary data, and expert 
classification of any documents with any scheme. To demonstrate this process for building 
data from text with Machine Learning, we publish open-source resources: the software, a 
new public document corpus, and a replicable analysis to build an interpretable classifier 
of suspected “no poach” clauses in franchise documents. 
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Creating Data from Unstructured Text with Context Rule Assisted Machine Learning (CRAML) 
 

Advances in computational methods offer new ways to gain insight from large volumes of 

unstructured text, but have significant limitations, tradeoffs, and a lack of clear guidelines 

(Pandey and Pandey 2017). Despite advanced Natural Language Processing (NLP), Machine 

Learning (ML), Deep Learning (DL), and Artificial Intelligence (AI), “the herculean task of 

finding constructs using full-text search” remains (Larsen and Bong 2016). 

Systematic research and processes are needed to create structured data from unstructured 

texts (DiMaggio 2015) that lack a schema, are not standardized, have multiple formats, and come 

from diverse sources (Adnan and Akbar 2019). Zettabytes (ZB) of new data are produced daily 

(Begum and Nausheen 2018), and 80% is unstructured (Hammoud et al. 2019). For knowledge 

professionals, just-in-time access to domain specific document repositories can unlock value 

(Subramani et al. 2021). However, structured information is a pre-requisite for researchers and 

organizations performing quantitative analysis and “as much as 80% of an organization’s data is 

‘dark”’ (Lacity and Willcocks 2021). While manual expert labor required for qualitatively 

coding novel classification schemes is hard to scale, statistical packages, many information 

systems, and quantitative social scientists expect data to be structured in a particular format: 

“tabular data – variables in columns, cases in rows” (Lazer and Radford 2017). 

To address the disjunction, we describe a methodological bridge: an expert-built set of 

context rules scaled to classify unstructured text and build training data for Machine Learning. 

Context Rule Assisted Machine Learning (CRAML) is a hybrid method for structuring textual 

data from large-scale corpora into datasets ready for training ML models. CRAML empowers 

domain experts to mine volumes of text and scale classification schemata efficiently, and returns 

tabular data that captures the occurrence of concepts within a corpus of documents. 
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This research methods paper contributes to information systems research on the design of 

intelligent systems that can generate economic and social value from unstructured data (Abbas et 

al. 2018). By clearly defining the problem, managing the training data before AI is attempted, 

and affording users the opportunity to evaluate and adjust both inputs and outputs, CRAML 

addresses major concerns identified in research on AI (Zhang et al. 2020). Such expert-built rule-

assisted Machine Learning models are described in the literature and are found to outperform 

benchmark methods and professional perception in critical cases such as detecting persons in 

states of emotional distress (Chau et al. 2020). This is the first paper to present software and 

guidelines for advanced users of an ordinary desktop computer to build Machine Learning 

classifiers and rectangular datasets from unstructured text according to any scheme.  

We first use CRAML to search for relevant literature in management that highlights current 

empirical approaches to the analysis of large text corpora. We next describe the use of CRAML 

to study characteristics of job advertisements, and set a new standard of transparency for 

research studying job advertisement text, where underlying proprietary data is obtained under 

license. We release ML classifiers, and the rules that created them, to enable other researchers 

using job advertisement text to replicate and interpret our approach. Lastly, we publish a new, 

large-scale document corpus of mandatory franchise disclosure documents and present an end-

to-end analysis to enable a full replication of our process. We detect thousands more “no poach 

clauses” that could violate state and federal antitrust law than found in earlier research relying on 

a proprietary data provider’s analysis (Krueger and Ashenfelter 2022). We release a rectangular 

dataset that represents the prevalence of suspected no poach clauses that restrict the ability of 

franchise firms to recruit employees from other companies that belong to a franchise system. We 

release ML classifiers built with CRAML, key information that any user can use to build their 



4 

own classifier from their own corpus, and provide additional replication data: the text extracted 

from franchise documents, the manually coded rules that create the structured, labeled data 

output, the training data, and a ML classifier that detects suspect no poach clauses. 

We review the well-known challenges CRAML was created to address, provide motivation 

for our solution, and elaborate on the methodological detail of CRAML with an empirical 

analysis of franchise no poach agreements. Appendix A provides additional description for 

conducting a literature search in CRAML, Appendix B describes opportunities for transparency 

with sensitive data, and technical details are described in Appendix C.  

THE STATE OF THE ART 

Across many fields of research, methods for analyzing unstructured text are crucial. We 

reviewed the literature in Management, Information Systems, Computational Social Science and 

Computer Science on Machine Learning (ML), Artificial Intelligence (AI), Natural Language 

Processing (NLP), Topic Modeling and Latent Dirichlet Allocation (LDA), Linguistic Inquiry 

and Word Counting (LIWC), Computationally Aided Text Analysis (CATA), and text or 

document corpora. In order to aid our review, we used the CRAML software to narrow our 

search for relevant literature within a corpus of 1,994 papers published from 2015-2021 in five 

top empirical management journals (Academy of Management Journal, Administrative Science 

Quarterly, Journal of International Business Studies, Organization Science, and Strategic 

Management Journal). Within the management literature corpus, we identified papers that 

demonstrate the use of a method for transforming unstructured text into data. Typical academic 

search engines would be unable to retrieve or pinpoint the relevant papers. In Appendix A, we 

provide additional detail on how CRAML can be used in bibliographic research. 

Word Counting Approaches (LIWC, CATA) 
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Computer-aided text analysis (CATA) and Linguistic Inquiry and Word Count (LIWC) are 

two techniques to classify unstructured text. Experts develop lists of words or dictionaries that 

correspond to an overall construct and measure the occurrence of keywords inside specific 

documents (Short and Palmer 2008; Short et al. 2010). Researchers use LIWC standard 

dictionaries to detect common constructs such as positive / negative sentiment in tweets 

(Bachura et al. 2022). Researchers can also develop custom dictionaries to capture previously 

unstudied phenomena: for example, to measure how actors use cultural toolkits (Weber 2005). 

Research often begins by deductive keyword selection and then interrogation of text using n-

grams (McKenny, Short, and Payne 2013). To locate papers that count words to build data from 

unstructured text, we developed keywords deductively. We used CRAML software to build 

indicators for whether each academic paper in the corpus contains keywords that fall within a 

given construct: we focused on a subset of 110 papers that refer to text data or a document 

corpus. Figure 1 shows that text corpus analysis, and word counting along with it, have grown 

over time: 88 of the 110 papers that mention a text corpus also refer to CATA. 

Figure 1: Counting Words: Management Papers with Text Data and CATA, AI, ML, LDA, NLP 
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Limitations of Keyword and Word-Counting Approaches 

Conceptual schemes that rely only on keywords are not very rich (Duriau, Reger, and Pfarrer 

2007) and may not be well-captured by word frequency approaches either. These methods 

perform less well than ML at tasks such as inferring personality (Cutler et al. 2021). Word 

counting assumes that all word occurrences equally contribute to the measurement of a construct 

- but every mention of “artificial intelligence” captures both papers that use an AI method, as 

well as those that mention AI phenomena in passing. Because the method relies on exact 

matching and correct spellings, word matching will fail to recognize concepts when faced with 

messy data. Without the context surrounding the keywords, meaning and accuracy are lost. 

When describing the frequency of terms inside a document, CATA methods do not typically 

adjust for document length, although additional steps can be taken (Guo, Sengul, and Yu 2021). 

While keywords and word-counts might start a search for relevant concepts in literature, 

qualitative researchers who seek to inductively build theory from corpora typically must also 

engage in qualitative hand coding (Li, Zhang, and Kettinger 2022). 

Unsupervised Learning (Topic Modeling and LDA) 

Text clustering aims to solve the problem of information overload by simplifying a mass of 

text into a smaller number of categories. While many text clustering methods exist (Aggarwal 

and Zhai 2012), a popular technique is topic modeling, which aims to learn “topics” from an 

unstructured collection of text documents. Data is often first pre-processed (stemmed), stripped 

of common words, and converted into a document-term matrix, which leaves only the stems of 

latent keywords for analysis. Latent Dirichlet Allocation (LDA) then assigns the words in a 

document to a topic, under the assumption that every part of every document contributes to some 

topic. LDA’s versatility is that it is not domain-specific: it can aid inductive theorizing (Shrestha 
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et al. 2021), study hacker forums (Yue, Wang, and Hui 2019), why people retweet (Geva, 

Oestreicher-Singer, and Saar-Tsechansky 2019), online communities (Bapna, Benner, and Qiu 

2019), and discourse on emerging technologies like blockchain (Miranda, Wang, and Tian 2022).  

Of the 110 text corpus papers in the management literature, 11 papers discuss topic models, 

with five of these papers appearing in 2021. This method has been used to study how firms 

interact with the legal environment based upon annual reports (Giorgi, Maoret, and Zajac 2019), 

and to arrive at text-based measures of corporate dissimilarity from corporate annual reports, 

requiring 25 crowd-sourced MTurkers to ensure themes are reliably identified for the top 25 of 

125 latent topics chosen (Choi, Menon, and Tabakovic 2021). LDA has been used to study patent 

text and recombination in breakthrough innovation (Kaplan and Vakili 2014), abstracts within a 

citation network (Sine, Cordero, and Coles 2022), and CEO speech in combination with ML 

analysis of CEO facial expressions (Choudhury, Allen, and Endres 2020). 

Limitation: Ambiguous Output 

LDA assigns all text in every document inside a text corpus to a theme, often generating 

output that is difficult to interpret without additional data. Papers reviewed here address this by 

limiting the scope of their corpus and extensively pre-processing to remove potential noise (also 

removing potentially relevant context and data) and post-hoc interpretive analysis with expert or 

crowd-sourced judgement. Topic modeling assumes that one must know the number of topics 

that exist within a collection of documents. This is non-trivial, particularly with massive corpora. 

Finally, topic modeling imposes an assumption that a researcher be interested in an “unbiased” 

representation. Experts often disagree about the interpretation of text, and a quest for unbiased 

(as opposed to transparent and replicable) analysis is misguided (Nelson 2019). Ultimately, 
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unsupervised computational methods are largely unable to produce rich results in the absence of 

human involvement (Nelson 2017). 

The Modern ML Paradigm 

Supervised Machine Learning models are widely used in industry: to evaluate candidates for 

employment (Cohen and Mahabadi 2022), support managers in giving employee feedback (Tong 

et al. 2021), moderate text content on the internet (Gorwa, Binns, and Katzenbach 2020; 

Gillespie 2020), judge the sentiment of customer-written reviews (Liu, Li, and Xu 2021), and 

build proprietary datasets for financial and academic use. However, ML models of text are often 

uninterpretable, secret, and may be perceived as too difficult for users with low computational 

resources to access. Among 10 papers in the management corpus that discuss ML, and four more 

that discuss AI, we could not locate any that describe the development of a new academic text 

classification model that is used to construct new data from unstructured text. 

While general AI and ML methods rapidly advance, there is a great need for applications in 

specific domains, such as detecting banking fraud (Abbasi et al. 2012) or fake websites (Abbasi 

et al. 2010). “Human-in-the-Loop” or hybrid systems are increasingly prominent, introduce 

responsibility into intelligent agents, and increase interpretability (Zanzotto 2019). Likewise, 

human-in-the-loop for ML and NLP is particularly promising, both for data pre-processing and 

model learning (Wu et al. 2022). Efforts to use AI and exclude domain experts are likely to fail, 

as shown in a study of AI use in hiring decisions and hybrid practices (Broek, Sergeeva, and 

Huysman 2021). AI systems cannot (and should not) be trained without human oversight, and 

thus procedures to incorporate human knowledge into these systems is vital. 

For supervised ML, challenges lie not so much with the ML methods or models themselves, 

but with the paradigm for ML. What we call “the Modern ML Paradigm” for supervised learning 
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of text data largely sees training data only as input, and holds the interpretability and 

explainability of ML model outputs as a post-hoc concern. Much of the attention around 

Explainable AI (XAI) has been placed on “the way in which models behave,” seeking meaning 

and interpretability in the outputs of models that can often be highly opaque (Adadi and Berrada 

2018). However, labeled training data is the critical input to supervised ML models to code 

future, unseen text instances. If building custom training datasets for text were easier, then 

resulting models could be interpreted – and modified – from the onset, i.e., at the input stage. 

Expert-trained ML models could be interpretable and put into action in a domain, and escape 

some of the limitations of the modern ML paradigm: black boxes, proprietary training data, and 

un-reproducible, meaningless output that exclude participation from those without computational 

power and advanced computer science knowledge. 

Limitation: The Black Box of Supervised Learning 

The “Black Box” refers to the mystery by which textual inputs are categorized by machines 

leading to certain outputs and are rooted in increasingly large model architectures and 

consequently, how computational models memorize, rather than truly learn. In turn, one is often 

hard pressed to decipher the behavior of a classifier, even with state-of-the-art models – they 

simply reflect patterns observed during training. Trust requires understanding “what the 

machines are doing” (Castelvecchi 2016). In contrast, the modern ML paradigm attempts to 

“explain the black box” after the fact. Post-hoc approaches have become the de facto way of 

achieving some level of explainability with complex DL models (Arrieta et al. 2019). 

Without understanding the data that goes into training the model, the explainability of the 

modern ML paradigm is limited. A recent survey of explainability in supervised ML methods 

calls for rethinking the problem from first principles, and encourages researchers to ask “What 
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are we actually looking for? Do we really need a black box model?” (Burkart and Huber 2021). 

For many experts, the immediate answer is no. Even a model with a high degree of predictive 

power is undesirable if it does not produce interpretable results (Nelson 2017, 2019). 

Underspecification can result from training models on massive volumes of data and selecting 

the model(s) that achieve a desired predictive power (D’Amour et al. 2022). Underspecification 

often leads to failure when those models are used outside of the context in which they were 

trained: “the process used to build most machine-learning models today cannot tell which models 

will work in the real world and which ones won’t” (Heaven 2020). Explainability when models 

are faced with new situations would be a “sign of mastery” (Gunning et al. 2019). 

Limitation: Proprietary Training Data and Methods 

Seen from a different angle, black boxes may protect trade secrets hidden behind such trained 

models (Rudin 2019). Secrecy in cases where “high-stakes” decisions are made by the models in 

question have potentially significant societal or economic implications. Academic users often 

rely on commercial data providers that give little to no insight into their proprietary process for 

data creation. In our analysis of the management literature, 13 of the 100 text analysis papers, 

and 117 papers in total indicate the use of licensed, proprietary data or models. The problem 

identified by Lazer et al. (2009) is that computational methods could become the “exclusive 

domain” of private companies and government agencies that operate contrary to the academic 

commitment to openness. The inadequacy of data-sharing paradigms for big data cast doubt 

regarding the veracity of ML models (Lazer et al. 2020). 

Private firms and academics advance the state-of-the-art by breaking new records for the 

complexity and the size and number of parameters in a model. Potential contributions from 

researchers who lack access to significant computing resources, the funds to buy proprietary 
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datasets, or access to confidential data are excluded (Card et al. 2010). When big or secret data 

becomes the criteria through which research is judged, only those with access can compete, and 

there may be less attention to “cumulative progress toward answering important questions” 

(Davis 2015). 

By reducing the need for humans to think, act, or belong (contribute, be included) in the 

public sphere, ML systems can limit opportunity (Kane et al. 2020). To deliver on the potential 

of ML, improvements needed include greater sharing of data, protections for privacy to enable 

more open data, intellectual property standards to reduce transaction costs, and approaches that 

enable genuine replication (King 2011). Pre-processing of datasets for supervised learning could 

be a core strength and contribution of social scientists (DiMaggio 2015). Calls for greater 

systematic research to develop solutions for curation challenges and guidelines for pre-analysis 

and developing training data have largely been unmet (ibid). 

Limitation: Meaningful Contributions to Knowledge 

In a statement that rings true almost a decade after it was written, there is little evidence of 

computational social science in leading social science field journals (Watts 2013), or in the 

management corpus reviewed here. Computational social science methods have advanced 

significantly, but it has yet to be demonstrated how computational scientific infrastructure can be 

applied to important social problems (Lazer et al. 2020). Disciplinary silos, privacy concerns, 

and unreliable, non-replicable, and proprietary data hamper the potential for computer science 

methods to provide meaningful insight into society’s challenges (Lazer et al. 2020). 

The emergence of a computational social science speaks to the hope that ML and AI can 

advance knowledge and be impactful within academia. However, the possibilities are lessened 

when such tools are perceived as beyond the reach of ordinary users (Faik, Barrett, and Oborn 
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2020). Initiatives such as “data science for good” have been criticized for not giving the social 

sector “the opportunity to design for what we want” (Porway 2022). Without tools that enable 

domain experts to develop their own ML models, there is a risk that new interdisciplinary centers 

might lead to yet another siloed academic discipline as ill-equipped to solve problems as others 

(Abbott 2001). Future opportunities for AI include democratization, reducing requirements for 

data, and enhancing AI explainability and transparency (Benbya, Davenport, and Pachidi 2020). 

Current ML research has lost “its connection to problems of import to the larger world of 

science and society” (Wagstaff 2012).  The (over)use of benchmark datasets, many of which are 

“synthetic”, has “glaring limitations” and still make reproducibility difficult. Only 1% of ML 

papers are applied to a specific domain and the rest use benchmark datasets (ibid).1 By way of 

contrast, 90% of research constructs are uncommon, suggesting that using pre-labeled standard 

benchmark data for training will miss entire vast areas of domain-specific knowledge (Larsen 

and Bong 2016). The focus on “abstract metrics” like F-scores to determine model quality across 

domains is a “mirage” that masks the need to focus on impact and usefulness of a model 

(Wagstaff 2012). A final issue is the “lack of follow-through” (ibid), suggesting that current 

computational research leaves little incentive for connection to sustained research agendas. 

A related concern is the rapidly depreciating relevance of data that many ML models are 

trained on (Lazer et al. 2020). In the ML training process, models are trained “in the lab” on a 

training dataset, yet the environment in which models are deployed is dynamic. “Big data” 

research may apply only to specific users of a specific portal at a specific time in which a study 

is conducted (Hargittai 2015; Pfeffer et al. 2022). For that reason, online studies and experiments 

 
1 Benchmark datasets include the Movie Review Dataset (Maas et al. 2011) or the Yelp Review 

Dataset. While use of standardized datasets may reduce the reproducibility crisis in ML (Kapoor and 
Narayanan 2022), there is a tradeoff: standardized datasets have limited application to the real world. 
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with large response rates may fail to produce reliable or general knowledge (Bradley et al. 2021). 

A static training process may simply not reflect the real-world environment or its rapid evolution 

(Babic et al. 2020). The velocity of internet-based data also creates a limitation for computational 

social scientists’ conclusions (Munger 2019). Solutions to these obstacles include forming new 

multi-disciplinary, international journals that permit rapid publication of rigorous quantitative 

descriptions of rapidly evolving phenomena (Munger, Guess, and Hargittai 2021). 

Seeking Explainable Tools for Social Science 

To sum up the issues described in this section, each method reviewed has strengths, 

limitations, and tradeoffs for experts who seek to analyze unstructured text. For researchers, the 

methods reviewed so far do not allow for expert-led, targeted extraction of niche constructs 

within corpora and guided construction of standardized data. For many qualitative researchers, 

the systematic analysis and discovery of new patterns within domain-specific digitized records 

could be a core contribution – the ability to find the diamond (a single topic) in the rough (lots of 

text). If qualitative hand-coded contributions could be easily scaled, it can address some issues 

found in the supervised ML domain. 

CONTEXT RULE ASSISTED MACHINE LEARNING (CRAML) 

Many of the problems identified with the modern ML paradigm, and the limitations of 

unsupervised classification and word counting methods, are addressable if accountable experts 

create training data for niche classifiers to detect constructs that are relevant within a specific 

domain. The CRAML method addresses each of six dimensions that explain the performance of 

AI systems: CRAML models are specific, the goals must be clear, the training and input data are 

context-specific, the output data is interpretable, and the environment is domain specific and 

expert-guided (Asatiani et al. 2020). CRAML gives qualitative and quantitative researchers new 
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capabilities to steer analysis and measurement of phenomena found in massive volumes of 

unstructured text.  

A Framework for Unstructured Text Analysis 

CRAML software gives users tools to (1) formulate keywords to extract relevant data from a 

sample of a documents in a corpus, (2) create “tags” that capture topics or constructs, and 

subsequently, (3) develop “context rule” sets that codify knowledge about “chunks” of text that 

correspond to specific tags. In other words, CRAML steps 1-3 shape training data for (4) 

building a niche Machine Learning text classification model. CRAML yields (5) tabular output 

that matches document-level metadata with a 0/1 indicator for each tag in a document. Figure 2 

provides an overview of the CRAML framework.  

CRAML begins with the full text of a corpus of documents (Step 0). While metadata is not 

required, the software is designed to combine characteristics extracted from the text with 

metadata at the document or record ID level. In step 1, the researcher chooses keywords to 

extract from the corpus, and retrieves a “chunk”: a block of text containing a user-selected 

number of words surrounding the keyword. The chunk length should contain the full “context 

window”: a span of the relevant context for a human to determine if the keyword-containing 

chunk is relevant or not for some binary classification schema. The user can extract all chunks 

from all of the documents in the corpus, or in low-resource environments, can randomly sample 

from the documents in order to perform Steps 2-4 on a smaller subset. 

In step 2, the researcher analyzes the patterns within the chunks, studying n-grams that reveal 

the most common phrasings surrounding the keyword. In step 3, the researcher writes “context 

rules” that elaborate an ever-more detailed scheme of binary classifications of the chunks. We 

refer to these binary classification schemata as “tags”: each tag represents a topic or theme that 



15 

the researcher defines by recognizing patterns in the extracted text and determining if each chunk 

is (tag=1), or is not (tag=0), illustrative of the tag. There is no limit on the number of tags a 

researcher can define. For each tag, there is no limit to the number of rules that can be defined 

using either exact text matching or regular expressions (RegEx). 

Figure 2: A Bird’s Eye View of the CRAML Process 

 

In step 4, the researcher written context rules are applied or “extrapolated” over either the full 

extracted chunks or a sample of the extracted chunks to create a training dataset for ML 

modeling. Extrapolation labels each chunk with a 0 or 1 for each “tag,” and creates a dataset that 

can be used for training ML models. In step 5, models learned on the training dataset using 

common ML algorithms tag the full extracted chunks, and the researcher identifies the best 

performing model. In the final step, the results are aggregated into a document-level database of 

structured information: for any document within the text corpus, the researcher knows if the 
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document contains a tag. Additional hand-coding by independent third-parties can validate that 

the training dataset extrapolation, and the ML results, are highly accurate. 

CRAML’s pipeline incorporates a versatile set of tools, and researchers may appreciate its 

flexibility and multiple uses: a researcher may wish to pursue analysis using only pieces of the 

CRAML process. As Pandey and Pandey (2017) note, choosing between a dictionary, rules, or 

supervised Machine Learning involves tradeoffs, and no clear guidelines. In CRAML, particular 

steps and technologies can be interchanged according to the user’s preference, skill set, and 

research challenge. With relatively low hardware requirements, CRAML seeks to eliminate 

barriers to accessing ML technology (Hedderich et al. 2021). A qualitative researcher can 

quickly sample and sift through text data and experiment with alternative classification schemes 

and definitions. For another researcher, extraction could be a pre-processing step before engaging 

in a computational grounded theory project (Nelson 2017) that uses unstructured NLP methods 

once the plausibly relevant themes are extracted based upon keywords. A third researcher may 

wish to extrapolate a full dataset without ML. A fourth researcher may wish only to sample a 

massive corpus, extract context windows around keywords, and inductively generate topics or 

themes with extracted text. 

A Bridge to Solving Real-World Problems 

By positioning context rules as the bridge between domain expert knowledge and structured 

datasets that represent embodied knowledge, CRAML provides a “traceability” from datasets 

classified by ML models back to the context rules that lead to them – and the humans who wrote 

those. ML modeling “presumes a world of already existing (divine or rationalistic) rules, which 

only need to be formalized, in order to make sense to a machine (or an analytical philosopher for 

this reason)” (Apprich 2018). By focusing on explainability at the first bridge from unstructured 
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data to structured data(sets), the second bridge from training data to trained models becomes 

easier to cross. Context rules in CRAML codify which text belongs to which topic or theme 

according to the user. To the extent such rules can be articulated consistently, they can be 

extrapolated over unstructured text to create fully structured datasets to train ML models. 

Rather than presuming unbiased training data, CRAML extends the user’s worldview to the 

realm of ML models via context rules. Rigorous manual content analysis by qualitative social 

scientists is often geared toward the induction of topics and themes, yielding new constructs, 

analytical frameworks, or mid-level theory of some phenomenon (Glaser and Strauss 1967). New 

methods for computational grounded theory (Nelson 2017) and scaling methods such as coding 

over large volumes of text can contribute to theory development (Tchalian 2019). A quantitative 

or hypothesis-driven researcher might pursue evidence of a phenomena within a text corpus, 

quantify its frequency, and then analyze it. Through the extrapolation process, CRAML requires 

manual work only in the crucial first stages, and automates the rest at scale. CRAML’s initial 

step is similar to processes used in IS research: for example, a specialized ontology of 

hypotheses built with rule-based approaches for extraction and word embeddings (Li, Larsen, 

and Abbasi 2020). The “human in the loop” contributes transparent manual codifications of text, 

which allow for the replicable and configurable construction of tabular datasets used either 

immediately for quantitative social science analysis, or to train ML models. The ML model that 

results from CRAML is interpretable as a product of a human-built and curated rule set that can 

be published, and then contested, examined, and modified by others. This mitigates concerns 

over black box ML models. Novel ML or DL approaches can be severely limited by available 

datasets, with no widely accepted approach to create novel ones as needed and in an efficient 
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manner. CRAML-built models can have real-world applicability, because training data can be 

built and deployed by domain experts.  

In response to the challenges introduced in the previous section, CRAML’s methodological 

transparency is intended to address several of the problems with proprietary data and otherwise 

unreachable methods. A user can control what information is extracted from the corpus, and this 

therefore mitigates some concerns regarding sensitive data. With a standard desktop computer 

and open-source software, CRAML enables interactive engagement with massive text corpora 

without prior programming knowledge (although users will find some programming knowledge 

helpful and advanced users may seek to customize the underlying code for niche purposes). 

CRAML and other hybrid systems do have limitations: challenges include the ability to analyze 

the impact of iterative human interventions (Xin et al. 2018). However, at each crucial step of the 

framework, CRAML saves and shows the user the underlying data in CSV format to enable the 

interactivity essential to achieving a “human in the loop.” Each step of the process is recorded 

for replication and transparency purposes. The artifacts created and used by CRAML in the 

intermediate stages enable users to see the effects of small changes to rules.  

An Application of CRAML: Proprietary Job Advertisement Text 

Search frictions harm both workers and employers by increasing the barriers to good matches 

in the labor market and reducing competition for labor (Burdett and Mortensen 1998; Manning 

2005). A suite of ML classifiers that add niche filters to job search could benefit jobseekers, 

employers, and workforce agencies. With support from the National Science Foundation, the 

National Labor Exchange created the NLx Research Hub in 2021 to “increase the amount of 

actionable labor market information in the U.S. to facilitate the recruitment, hiring, and training 

opportunities of American workers” and “deepen partnerships between industry, government, 
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and academia by enhancing the infrastructure to support the convergence of research, education, 

and talent pipelines.” 

Workers who desire more flexible, remote jobs after COVID-19, disabled workers seeking 

specific working conditions, union workers, workers with a professional license, workers on 

visas, and veterans as well as veteran’s spouses may all be underserved even while being 

preferred by specific employers. Job seekers may easily become discouraged without 

information on whether, for example: a job is located near public transit, or whether an employer 

will interview an ex-felon, a teen, or a non-resident on a visa. If some employers seek to target 

and hire underserved audiences, but job ads never reach the workers, then research should aim to 

reliably identify which jobs might be especially relevant for a particular worker. 

Research application CRAML was first developed using job advertisement text data to 

support research on the labor market. While the underlying text is confidential and licensed from 

NLX, we describe and release rules files and nine ML classifiers under a Creative Commons 

Attribution-NonCommercial-ShareAlike 4.0 International License.  These classifiers achieve a 

high accuracy in detecting job characteristics and barriers to employment. Such application could 

improve both research and contribute to reducing barriers to employment in job advertisements. 

Ultimately, better data on employment practices obtained from job advertisement text and other 

sources of text information could have a profound impact on research capabilities in this field. 

The research implications of this work are not only research papers and data, but the publication 

of custom-built ML classifiers to create open tools for real-time information systems that track 

changes in the labor market. In Appendix B, we discuss how the broader labor market research 

community can contribute to this effort and an open-source ecosystem can work. 
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A STEP-BY-STEP, REPLICABLE NO POACH CLASSIFIER 

We demonstrate the end-to-end CRAML approach by applying it to an empirical context 

where the resulting analysis might be meaningful, transparent, and replicable. Toward this end, 

we contribute a new text corpus of 151,708 franchise documents, and the cleaned and pre-

processed text we used in this analysis. We publish metadata that tracks which records a 

particular document corresponds to, and includes the effective date, company name, and unique 

ID. We also publish the rule sets that are the manual hand-coded input, enabling replication and 

scrutiny of the results. Lastly, we publish the training dataset and the ML model.2 

Empirical and Data Context 

“No poach” clauses in contracts are anti-competitive restraints on employee mobility, and 

have drawn interest from academics, regulators, and policy-makers. While anti-competitive 

language is sometimes contrary to public policy, these documents are inaccessible for many: 

available only in massive, unsearchable collections of PDF documents on state agency websites. 

With subtle variations in language and no guide about where to look for these clauses, no poach 

clauses are diamonds in the rough: a few sentences in hundreds of thousands of documents with 

millions of pages. Indeed, such clauses were largely not known to exist by the relevant academic 

and policy community of interest until the release of a 2017 working paper (Krueger and 

Ashenfelter 2022). The paper contained a limited sample and relied on a third-party data 

provider to identify no poach clauses. Following the release of the working paper, eleven state 

attorneys general issued a letter in 2018 demanding the practice end, many franchises voluntarily 

 
2 The PDFs are hosted in partnership with DocumentCloud, and will be released upon 

publication. On DocumentCloud, they can now be searched, discussed, and annotated. The 
replication materials including extracted text, rules files, and machine learning classifier are available 
at 10.5281/zenodo.7454758. 
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ended the practice, and the State of Washington in 2018 first negotiated settlements with 

franchise companies in which many removed their no poach clauses.3 

No poach clauses place downward pressure on wages (Callaci et al. 2022; Balasubramanian 

et al. 2022). Given their importance in reducing opportunities for job mobility, descriptive 

statistics regarding the prevalence of these clauses are of great interest. Overcoming the 

inaccessibility of the text within public documents is a significant challenge – a “herculean task” 

(Larsen and Bong 2016). We assembled a large collection of Franchise Disclosure Documents 

(FDDs) from the state of California by scraping PDF documents from the public web. These 

records exclude companies that may be exempt from filing and may be missing observations.4 

In addition, we make available the machine-readable text corpus we build from the 

downloaded PDFs and the metadata that ties documents to specific company filings. For pre-

processing PDFs to text, we used Python’s Tika, and for files that could not be initially read with 

this, we used ABBYY Fine Reader. For the California corpus, we assembled 151,708 documents 

in 6.99 GB of cleaned machine-readable text that can be traced back to a total of 12,992 

franchise records. We consider the record to be the unique ID that the state assigns to multiple 

documents filed by a franchise on a particular date. We trace each document back to a record 

with metadata that includes the name of the franchise, and the date of the filing. 

 
3  See Washington State Attorney General Report, Letter from State Attorneys General. As 

Ashenfelter wrote, “it is instructive that the mere revelation of collusive agreements, whether legal or 
not, has so quickly provoked a strong response from both the antitrust authorities and the franchisors 
whose agreements contained these no-poach clauses” (qtd. in Krueger and Ashenfelter (2022)) 

4 We were able to obtain and match the 151,708 documents to 12,992 records via web scraping from 
the California DFPI portal, where we identified 16,216 franchise disclosure record IDs from January 
2013-July 2022. We are investigating additional methods to acquire any missing data, which we believe 
to be randomly distributed.  
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The Construction of Training Data 

Step 1: Extract Relevant Text to Reduce Information Overload 

The extraction process encompasses taking the unstructured text files and preparing a cleaned 

dataset of only the text that is plausibly relevant and ready for hand-coding. By reducing the size 

of the text files being worked with, and delimiting the extracts to the relevant text in the corpus, 

this step addresses challenges of computational resource intensity, and assists in sifting for 

relevant information in a large corpus. This is a manual, iterative process – a loop that is exited 

when the user is satisfied that all of the relevant text is extracted from the corpus. Figure 3 

illustrates the extraction process, which corresponds to Step 1 outlined in Figure 2. Two main 

software tools (extract.py and text_ex.py) aid the user in finding and exploring the relevant text. 

Figure 3: First process in the CRAML Framework – Extract Data 
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We chose initial keywords “hire”, “recruit”, “employ”, and “solicit” to explore if franchise 

documents contain a no poach clause. The initial keywords chosen suggested additional ideas for 

tags, which in turn, suggested new ideas for keywords. To aid in this process, a repeated n-gram 

exploration helped discover the contexts in which given keywords appear the most. This 

exploration prioritizes the extract, and it suggests new ideas for keywords, tags, rules, and 

context windows. Because the full context was important to explore initially, the earliest 

exploratory extracts focused on the 2 sentences surrounding each keyword. Following all of the 

processes described below, a final context window of 13 words was selected (6 words to the left 

and right of the keyword). The goal when removing irrelevant or non-essential information is to 

reduce noise and build a highly focused ML classification model. In an iterative and flexible 

process, more keywords were subsequently added: for example, “poach”, “non compet”, 

“noncompet”, “covenant” and “not to compete” simply restarted the processes of Step 1. 

Step 2: From Rule Sets to (Training) Data via Extrapolation, Testing, and Validation 

After extraction, an expert conceptualizes and defines the desired classifications, or tags, and 

builds a rule set for each tag in a manual and iterative fashion. Figure 4 details the iterative 

process of Step 2 that involves validation, extrapolation, and the refinement of rule sets. This 

process concludes when the expert is satisfied that the extrapolated rules are valid on a random 

sample of the text. The rule set is then “extrapolated” to the entirety of the corpus, yielding a 

structured dataset of accurately classified chunks – a training dataset, in other words. The results 

of Step 2 can be used immediately for descriptive research regarding the contents of documents, 

or as a basis for training ML models.  

The cycle in Step 2 begins with the initial creation of rule sets for each tag, which can be 

done manually by an individual researcher, or team of researchers. Constructing and designing 
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accurate indicators requires researcher familiarity with ontological subtleties and appropriate 

construct validation and scale development methodology (Weber 2021; MacKenzie, Podsakoff, 

and Podsakoff 2011). Rules are written in a CSV file that contains a list of rules, the priority 

level of each rule, and the corresponding tag, assigned a 0 or 1. As earlier, the n-gram tool may 

be helpful – doing this prioritizes the creation of rules that will “cover” the largest parts of the 

entire data. Priority level determines the order in which a rule is run. Earlier rules can be over-

written by a subsequent priority rule. 

Step 2 then involves the use of rule sets and the extrapolation algorithm (extrapolate.py) to 

validate the rules. In essence, the extrapolation process converts the set of rules into an extended 

dataset, and tags each chunk according to the user’s encoding of each rule. The resulting dataset 

contains the unique document identifier, the extracted chunk matching a certain rule, and the 

defined encoding for this chunk. Note that this extrapolation is done individually for each rule set 

and tag, thus resulting in a training dataset for each rule set (file). A second software tool 

(validate.py) relates to the validation of the data that is the output of extrapolation. Once 

extrapolated, the expert tests the performance of the rules against actual chunks that are coded by 

those rules. The expert analyses a strategic sample of chunks meant to ensure each rule is valid – 

choosing a random sample of N examples per rule. This enables independent hand-coders to 

score each chunk, which can then be re-imported to assess accuracy and performance of rules. 

For the franchise document data, allowing iterative exploration of keywords and adjustments 

to rules, we ultimately developed a set of 324 rules to classify suspect no poach clauses in the 

corpus. As one rule for the no poach tag states: “you may not seek to employ or retain any 

employee or independent contractor who is at any time employed by us.”  

Figure 4: Second process in the CRAML Framework – Build Rules 
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CRAML emphasizes content validation processes at the input stage to ML. Independent 

validation in which a third researcher hand-coded 706 chunks indicates an initial 91% match 

between an independent third party and the extrapolation of rules, suggesting a high degree of 

inter-rater reliability in ability to detect characteristics of no poach clauses. While our emphasis 

is to ensure that there is strong inter-rater reliability between the CRAML user and an 

independent observer in this test example, we do not claim perfect identification of all no poach 

clauses or any legal conclusions. For a regulator or lawyer, additional scrutiny would be 

required; our goal is to identify and classify with precision the no poach language within an 

ocean of text and pinpoint its location. Step 2 yields a dataset for training a ML classification 

model, or, if the underlying corpus is small enough (as is the case here), rules can be applied to 

the entire dataset and reveal which filings contain tags according to the specified rules. 
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Step 3: Training ML Classifiers to Build Structured Datasets 

While an extrapolation of rules to all chunks in the dataset is possible, CRAML also yields 

data on which a ML classification model, or classifier, can be trained. ML has the advantage 

over exact rules of recognizing new and unseen instances, as well as overcoming messy data and 

inconsistent use of language in unique situations. Although many algorithms exist for such a 

training process, the CRAML framework trains a binary classifier for each tag. In other words, 

each training dataset is created from a rules file, which contains one or more tags. Accordingly, 

each classifier can be traced back to a rule set to perform a 0/1 classification for the tags included 

therein. The training process is described in greater detail in Appendix C. Once the classifier is 

trained, it can be deployed to classify the original data, i.e., the entire unstructured text corpus, or 

can be used on other text sources. This represents the completion of the CRAML framework, as 

one can now build a structured, labeled dataset from the unstructured text of a document corpus 

using a ML model. This entire final process is illustrated in Figure 5. 

Evaluating the Model 

In this empirical context, we train a no poach classifier built on training data from the 

franchise disclosure documents. We use the classifier to build datasets and compare the rules-

based approach and the ML approach using the same data. The “no poach” classifier is built with 

training data from a 10% sample plus all positive instances (no poach tag=1) in the full sample. 

This is done to combat class imbalance, as positive instances are very rare. Thus, when the 

occurrence of positive or negative tags is very low, manual augmentations to training data such 

as this are required to receive acceptable model performance. We obtain an accuracy score of 

0.99, precision of 0.97, recall of 0.96, and an overall F1-Score of 0.97. The harmonic mean of 
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precision and recall (or F1-score) is based upon a comparison between the ML output and the 

training dataset.  

Figure 5: Third process in the CRAML Framework – Train Classifiers 

 

Figure 6 displays the percent of all rule-detected and ML-detected no poach clauses in the 

California corpus within each year for each record filed from years 2013-2022 (with partial data 

for 2022). As seen in Figure 6, the ML classifier identifies more suspected no poach clauses than 

the rules, and this increases in 2021. Additional research using this corpus is pinpointing fine-

grained characteristics of language in these documents that restrict employee mobility. Even so, 

the ML-detected pattern is similar to the rule-based analysis. It shows that from 2015-2017, over 

60% of the records contain suspect no poach clauses, after which there was a decline until the 

percent stabilizes below 40%. This suggests that the interventions that followed Krueger and 

Ashenfelter (2022) decreased the prevalence of no poach language in franchise documents. The 
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continued prevalence of these clauses, despite interventions from authorities, requires further 

investigation: while no poach clauses continue to exist, inspection of the text chunks reveals that 

while some remain the same as before the intervention of the Washington State Attorney 

General, others now limit their applicability to more favorable jurisdictions or restrict their 

application to highly compensated employees.  

Figure 6: Analysis of Suspect No Poach Clauses in California Franchise Documents 

 

The above statistics reflect performance of the model at the “chunk” level. If an expert were 

looking to confirm that certain documents contain no poach clauses, the record is the level of 

analysis where they would want to begin their search. Given over 150,000 documents stored in 

nearly 13,000 records, this could be a daunting task. Moving to the level of the records, the no 

poach classifier closely matches the rule-generated results, with only 22 false negatives and 672 

false positives in 12,922 records. Thus, at the record level, ML model achieves a 0.95 F1-score, 

0.996 recall, 0.91 precision, and accuracy of 0.946. 
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A further inspection of chunks reveals that a significant portion of the false positives are in 

fact related to other language that accompanies no poach clauses and belong properly in the 

context of anti-competitive language in these documents: jurisdictional restrictions on no poach 

clauses, language that applies no poach clauses only to specific employees, and language that 

creates non-compete clauses. Precision at the level of the record would be 0.04 higher (0.95) if 

one concludes these clauses are relevant to a search for anti-competitive language.  

The results of CRAML are fully traceable to choices made in the construction of a rule set 

for the no poach classifier. If one were dissatisfied with the model performance, or wanted to 

adapt the specific definition of the no poach construct, it would be possible to “steer learning” 

and achieve a desired result by changing rule sets and thus re-shaping the training data. A user 

could add or remove all jurisdictional, narrow, and non-compete language from the no poach rule 

set to achieve a more discriminating classifier. A user could also combine all the rules to make a 

single classifier that memorizes a larger construct related to all types of anti-competitive 

language that appear in the documents. 

DISCUSSION 

The CRAML method enables the systematic and structured process of creating novel datasets 

from unstructured text corpora. The result harmonizes advanced, automated information 

extraction and ML techniques with the input and expertise from manual analysis performed by 

supervising researchers. The exploration and iterative process performed during the context rule 

creation stage involves work that is not only difficult to perform automatically, but also that will 

arguably never come close to matching the diversity and expertise of human experts with domain 

knowledge. As a result, this intermediate stage in the framework incorporates a human element 

lacking in modern classification frameworks. 
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Future Directions 

Technical Improvements 

Future research directions regarding the technical backbone of the CRAML framework aim 

to bolster the extrapolation stage of the pipeline. Embeddings can improve the transformation of 

context rules to datasets (Li, Larsen, and Abbasi 2020). With embeddings added to the 

extrapolation method, the need for training a ML classifier in the end may become obsolete. A 

second area of future work involves building tools to aid the domain expert in the initial, manual-

driven stages of the CRAML process. Keyword extraction, topic modeling, automatic rule 

induction, and knowledge graphs could all be useful tools in supporting the domain expert to 

express his or her worldview, as well as explore large text corpora in a richer way. Text 

generation models could also assist in augmenting and building custom training data. 

Although the focus is currently placed on ML techniques, the role of more advanced 

classifiers remains an open area of investigation. Deep Learning, in particular sequential models, 

could prove to be powerful in boosting the predictive capability of models trained on CRAML-

generated datasets. Of course, this would come with the added overhead of extra training and 

parameter tuning, which must also be considered for future endeavors. 

Computational Social Science 

CRAML is designed with flexibility and web-based sources of text in mind. A plug-in was 

created to integrate DocumentCloud (used by journalists and academics to post government 

documents) for the project related to no poach agreements. New plug-ins could draw data from 

web-based sources of text such as Twitter. To address a concern in Porway (2022), government, 

civil society, and non-governmental organizations could develop context rule sets to capture text 

relevant to their interests and publish or license ML classifiers that provide useful feeds and 
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classifications of information tracking on topics of societal concern. For academics, editors and 

reviewers could demand greater transparency when claims are made about data built from text. 

Finally, experts in many fields can hopefully develop diverse and practical applications that 

uncover constructs and patterns currently “hidden” in unstructured text. The CRAML framework 

and software tools can be used to analyze text in any language. To the extent a construct is intra-

subjectively reliable, it could be developed by a researcher into rules and scaled over vast 

amounts of unstructured text. To the extent that inter-subjective variance is high, we hope that by 

decreasing the time and effort needed to scale a framework, there will be many opportunities for 

diverse voices to produce contesting interpretative schemes that are transparent and replicable.  
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APPENDIX A: USING CRAML FOR A LITERATURE REVIEW 

Literature search often begins in an academic search engines that have difficulty retrieving 

information from deep within a paper. CRAML allowed us to mine text from methods and data 

sections of publications, identify plausibly relevant papers, and read and incorporate into the 

literature review. We assembled the corpus and PDFs in Zotero, exported the metadata, 

converted all PDFs to text, minimally cleaned the text, and used Steps 1-3 of the CRAML 

process and software to identify relevant papers with keywords, tags, and rules. We deductively 

generated tags and keywords, shown in Listing A.1. The keywords.json file is used to extract all 

keyword-containing chunks of text. After retrieving 13-word chunks, we studied n-grams and 

developed rules files for each tag to classify the chunks that were relevant. Keywords alone 

generated numerous false positives. Machine Learning was not desirable or attempted. This 

effort could be further refined, but we stopped when the results produced the relevant papers. 

Listing A.1. Management Corpus Tags and Keywords (keywords.json) 
 
{    
 "is_text": ["text", "corpus", "document", "repository", "mining" ], 
"CATA": ["computer aided text analysis", "cata", "computational text", "computationally 

aided", "dictionary", "word count"], 
"ML": ["machine learning", "deep learning", "supervised learning"], 
"AI": ["artificial intelligen", "artificially intelligen", "neural network"], 
"NLP": ["nlp", "natural language process", "embedding"], 
"topic_model": ["lda", "latent dirichlet allocation", "topic model", "unsupervised learning", "tf 

idf", "tfidf", "inverse document frequency"], 
"proprietary": ["license", "proprietary", "confidential", "secret", "sensitive"]  
} 

Rules that define the tag istext or “is text” identify papers that refer to a text corpus or text 

data. We also construct simple rule sets to identify papers that discuss ML, NLP, Topic Model, 

and AI. To make Figure 1, we focus only on observations where istext and another tag are both 

equal to 1, Literature search in CRAML is aided by use of regular expressions: keywords for 

proprietary data and models extracted many irrelevant chunks. To limit the focus to non-
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transparency in data and models, we combine our keywords with the added terms “data” or 

“model” (e.g., “REGEX:::(? = .∗\bdata\b)((? = .∗\bconfidential\b)|(? = .∗\blicense)|(? = 

.∗\bsensitive)|(? = .∗\bproprietary\b)|(? = .∗\bsecret)).∗)”. 

CRAML’s extrapolate function yields a CSV file merged with the metadata and tags 

constructed in CRAML. For each paper, CRAML provides a 0/1 indicator of whether or not the 

paper contains a chunk corresponding to the rules files above. Table A.1 aggregates the result of 

the CRAML analysis by year and theme. 

Table A.1: Total Papers by Year that Reflect Rule Sets 
 

Year Proprietary 
Data or Models 

Topic Models 
or LDA 

ML NLP AI CATA Text or Document 
Corpus 

2015 19 2 0 1 0 53 7 
2016 11 0 1 0 0 68 10 
2017 18 0 0 0 2 69 9 
2018 20 2 0 2 2 73 17 
2019 13 3 2 1 3 82 18 
2020 17 2 2 1 1 67 18 
2021 19 6 7 3 2 80 31 

Because we are interested in papers that use text corpora, we filtered the metadata for only 

the papers that equal 1 for istext. The data for Figure 1 is presented in Table A.2. 

Table A.2: Subset of Papers Where istext=1 by Year 
 

Year Proprietary 
Data or Models 

Topic Models 
or LDA 

ML NLP AI CATA Text or Document 
Corpus 

2015 1 2 0 1 0 6 7 
2016 2 0 1 0 0 8 10 
2017 0 0 0 0 0 6 9 
2018 1 1 0 1 1 11 17 
2019 3 2 1 1 1 10 18 
2020 2 1 2 0 1 13 18 
2021 4 5 6 3 1 19 31 
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APPENDIX B: USING CRAML TO BUILD CLASSIFIERS FROM SENSITIVE DATA 

Concerns with proprietary data sources and privacy can be partially addressed by the 

information extraction methods used in CRAML. While additional efforts are needed, including 

the potential development of further tools for incorporating Privacy-Enhancing Technologies 

such as Differential Privacy with text, the extraction process is a step toward efforts to protect 

individuals against identification and protect the data owner from violation of proprietary 

information and trade secrets. For example, researchers have been barred from accessing records 

due to privacy and confidentiality concerns, but with careful selection of keywords and removal 

of sensitive chunks through named entity recognition, experts could code chunks of extracted 

text and classify every document in a corpus without ever accessing the full or confidential 

information. Resulting classifiers and rules that create them can be made available to other 

academic researchers for transparency and replication while preserving underlying information. 

Once built, ML classifiers trained on de-identified or privatized chunks can be used to build 

datasets on any text corpus in the same domain.5 

We release nine ML classifiers and their corresponding rules, created from a corpus of job 

advertisement text.  Information found on https://www.petenorlander.com/research/work-with-

me/ highlights how interested members of the research community can become involved.  
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focused on Hennepin County, see https://mappingprejudice.umn.edu/. 
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APPENDIX C: THE CRAML PIPELINE 

This appendix describes the CRAML methodology in detail. In Algorithm C.1, we extract 

context windows from a set of text documents, i.e. a corpus. This represents the important first 

step for handling large-scale unstructured text corpora by first extracting the “candidate 

diamonds” from the rough, to allow for the precise analysis of a domain expert. 

Algorithm C.1: Extraction Pseudocode 
Require: Text: collection of text documents, Keywords: list of defined keywords 
Ensure: list of extracted files (location) 

1: all_contexts = {} 
2: for raw_text in documents do                                      ▷ Note: done in parallel (unordered) 
3: contexts = [] 
4: id = generate id 
5:  if any keyword in text then  
6:     cleaned = clean(text) ▷ text replace and regex cleaning 
7:     for sentence in cleaned do  
8:          if any keyword in sentence then 
9: c = get_context(sentence) 
10: contexts.append(c) 
11:     contexts = set(contexts)  
12:     all_contexts[id] = contexts  
13: df = pd.DataFrame(all_contexts) 
14: df.to_csv() 
15: return list of saved filenames 

 
 

▷ get context window 

 
As displayed in Algorithm C.1, tags and keywords are required for extraction. The extraction 

algorithm will extract any chunk of text where one of the keywords appears, and store the chunk 

and metadata about its location in the corpus inside a CSV file for human analysis. Users define a 

list of keywords for each tag, e.g.: "nopoach": ["solicit", "employ", "hire", "recruit", "covenant", 

"staff", "personnel"]. 

Table C.1 illustrates the result of extraction: a CSV formatted dataset containing chunks of 

text, with a minimum of two fields: id and text (additional fields of document metadata can be 

included or excluded). The extraction algorithm retrieves chunks where keywords are exactly 

matched to a string of text. For example, the keyword “employ” will extract all variants that 
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contain that exact match (employment, employer, employee, unemployment, etc.). The ID 

matches the identification number from the metadata, and text represents a delimited list of 

context windows around extracted keywords. In this case, a context window with a defined 

parameter n refers to an extracted chunk of text with a maximum of n words to the right and left 

of the keyword. If a punctuation mark is reached before n, then the context window will be 

shorter. Thus, with n =6, context windows are a maximum of 13-word chunks. Context windows 

can be selected as words or sentences; i.e., a user can extract all keyword-containing sentences 

and the n sentences to the left and right of a keyword.  

Table C.1: Illustrative extracted context windows with fictional company names 
 

id firm text 
10D4977B-000 Acme Inc. 1 {you shall not hire or permit ...} 
ADSPO15-0807 Acme Inc. 2 {will not hire an applicant...} 
CHR21009-CHS Acme Inc. 3 {a contractor shall not employ ....} 
99999-001 Acme Inc. 4 {non solicitation agreements with ...} 

Note that for display purposes, only outputs relatively short in length were chosen. It is often 

the case that the extracted “text” contains multiple chunks extracted per document. The output of 

the extract algorithm is an “intermediate” dataset of (ID, text) tuples, where the text is simply a 

long ‘|’ delimited string of all the extracted context windows. In the example shown, one can see 

that in each extracted chunk of text, a keyword is present, along with its extracted context. The 

first step towards building up rule sets is extracting all of the plausibly relevant text. Exploration 

of n-gram structures within the extracted data ensures that the context window is correct. This is 

accomplished with the algorithm presented in Algorithm C.2. The result with a given n is a file 

with the enumerated occurrences of each relevant n-gram, sorted in descending order. 

A researcher is now enabled to obtain a general picture of what context windows appear with 

the unstructured text data, as well as their relative occurrences. Using this, the researcher follows 
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two decision processes: (1) the creation of a tag set, and subsequently (2) the creation of a rule 

set for each tag. Both sets are defined below.  

Algorithm C.2: N-gram Exploration Pseudocode 
Require: Parent Directory: where the extracted CSVs are located, n: desired n-gram size 
Ensure: file with enumerated n-grams 
1: global_counts = {} 
2: for file in parent directory do 
3:      for row text in file do 
4:          split = text.split(‘|’)  
5:          for chunk in split do  
6:               length = len(chunk.split()) 
7:               rules = chunk.split()[max(0, length/2 - n), min(length, length/2 + n)] 
8:              global_counts.update(Counter(rules)) 
9: return global_counts.to_csv() 

A tag is a title given to a certain characteristic of a particular document. These tags can be 

easily and simply defined, and are binary in nature, i.e., 1 if true or 0 if not true. The collection of 

defined tags makes up the tag set. Each tag in the set is assigned either 1 or 0 for every unique 

document in the original data. For the franchise document example, the following tag is defined: 

• nopoach – a non-solicitation clause that prohibits one franchise from soliciting or 

employing any worker from another franchise. 

One can define an arbitrary number of tags; furthermore, exactly what these tags mean, i.e., 

what definition they take on, is entirely up to the researcher. Binary classifications can be further 

broken down by defining additional “sub-tags.” An examination of the context surrounding non-

solicitation suggested further tags for future research. At the data analysis stage, these can be 

combined to create new measurements of concepts involving multiple tags. Crucially, the 

meaning that is assumed by each tag is defined via its rule set. 

For each given tag, a researcher defines a list of rules that encompasses the definition and 

characteristics of this tag. More concretely, a rule is a chunk of any number of words. Therefore, 

a rule can be a single word, or even an entire sentence (up to the maximum length of the 
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extracted chunks, here 13). A single rule set, defined within a corresponding file, can contain one 

or more tags. If more than one tag is contained within a rule set, this means the tags that are 

bundled together are related enough such that some rules may overlap, or some rules may define 

one tag, while precluding the other. For each tag contained within a rule set, this tag is defined 

for each given rule, i.e., is assigned either 1 or 0. Finally, every rule in all rule sets must be 

assigned a priority (“prio”), which indicates its relative order of operation compared to other 

rules within the same rule set. An example excerpt from a rule file is given in Table C.2. 

Table C.2: Excerpt from the rule set of the nopoach tag in formative stages 
rule prio nopoach 
hire 0 0 
shall not hire 1 1 
will not hire 1 1 
may not hire 1 1 
you shall not hire or permit any third party or outside vendors to access 
or perform any service 

2 0 

may not hire an applicant who has a felony 2 0 
will not hire any person regardless of medical marijuana card 2 0 
shall not hire or promote anyone who may have contact with residents 2 0 
not hire offer to hire or otherwise solicit any employee 3 1 

Priority is important in the sense that it defines a hierarchy of how text chunks are assigned 

certain tags. From the above example, one starts with every chunk containing “hire” to be 

nopoach=0 at prio=0. When, however, one encounters “may not hire”, this then is a plausible 

indicator that nopoach=1, and a subsequent rule “may not hire” assigned priority prio=1 

proceeds to classify it with nopoach=1. Upon examination, that rule turns out to have exceptions. 

Moving on to a higher priority rule, prio=2 can create exceptions to prio=1 rules: for example, 

with prio=2, a rule that states “may not hire an applicant who has a felony” overwrites the 

previous tag allocation, now assigning text chunks containing the string of text in the rule to 

nopoach=0. In this way, priority is important to handling iterative coding work and possibly 

overlapping or contradicting rules. 
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The final important aspect of rule creation comes with the use of Regular Expressions, 

denoted by rules with the “REGEX:::” qualifier prepended to the regular expression itself. 

Instead of simple text matching for a rule, regex rules verify if a particular text chunk satisfies 

the regular expression or not. Their usage allows for generalization, in situations where contexts 

are variable in length and content, yet possess the same general meaning. Once the researcher 

feels that the rule set is saturated, it is important to “prune” rules and validate them through 

repeated extrapolation and adjustment. Context windows should be no longer than the longest 

rule, which should be no longer than necessary to precisely capture the tag. 

Extrapolation: Crossing the Bridge 

With this collection of rule sets (for all defined tags) in hand, a tool is now needed to 

translate the rules contained within to a workable dataset. Such a tool is useful because it takes 

the manually coded context rules as input, and it then proceeds to “extrapolate” them into a 

training dataset from either a selected subset of extracted data files or the full dataset. Thus, we 

can cross the bridge from expert-created rules to structured, annotated datasets. 

The Subset As mentioned, the extrapolation algorithm can operate on a selected subset of 

the entirety of the data, so as to create a representative training set, from which a robust, accurate 

classifier can be trained. This is accomplished by randomly and uniformly selecting documents 

from the original text files. In the case where a model will not be learned, i.e., where only the 

extrapolated dataset is desired, performing this sampling is not necessary. 

Algorithm C.3 creates a training data set for each tag. Note that this algorithm is run per tag, 

meaning that the eventual output is a training set for each tag, which will then be used to train a 

classifier for each tag.  

 
 



46 

Algorithm C.3: Extrapolation Pseudocode 
Require: Parent Directory: where the subset CSV files are located, Rules File: a rule set for 
a given tag or tags, s: sampling rate, do_neg: whether to perform negative sampling  
Ensure: training data set for given tag(s) 
  1: results = [] 
  2: for file f in subset do  
  3:      data = read_csv(f).sample(s)                                     ▷ sample desired fraction of data 
  4:      for text in data do ▷ each ’|’ delimted extracted line 
  5:           for rule r in rule set do   
  6:                match = [] 
  7:                plus = 0 ▷ for negative sampling only 
  8:                for x in text.split(‘|’) do 
  9:                     if ‘REGEX’ in r then 
10:                          if regex.search(r, x) then 
11:                               match.append((x,1)) 
12:                           plus += 1 
13:                             else if plus > 0 and do_neg == True then 
14:             if not any ru in x for ru in rule set then  
15:                 match.append((x,0)) 
16:                                    plus -= len(tags) ▷ i.e. number of tags in rule set 
17:            else  
18:            if r in x then 
19                                match.append((x,1)) 
20:                                plus += 1 
21:                          else if plus > 0 and do_neg == True then 
22:                 if not any ru in x for ru in rule set then  
23:                    match.append((x,0)) 
24:                                    plus -= len(tags) 
25:                 random.shuffle(match) 
26:                      for m in match do ▷ m[0] = text, m[1] = negative sample? 
27:                      results.append(text chunk, rule, priority-weighted length, tag encoding) 
28: training = DataFrame(results) 
29: training = training.sort(priority-weighted length).drop_duplicates(chunk) 
30: return training as CSV 

One important note about the extraction algorithm is the sampling rate. Since many files are 

included in the subset, running extrapolation on the entirety of this subset would result in quite 

large training datasets. To avoid this, only a random sampling of each subset file is taken, in 

order to ensure a manageable training dataset. Secondly, the concept of negative sampling is 

incorporated into the algorithm. Such a concept allows for “negative”, non-keyword containing 

text chunks also to be included in the training data, in the case that a classifier that can 

discriminate between keyword- and non-keyword-containing instances is desired. 
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Ultimately, the main purpose of the extrapolation algorithm is to bridge the human-centric 

rule creation phase with the ensuing model training and classification stage. Concretely, the 

manually created rule sets that are the product of the former are converted to large, yet workable 

training data sets that are vital to the functioning of the latter. Thus, this transition from defined 

rule sets to classifier training is facilitated by such an extrapolation method. 

As described above, a user may need to augment the training data produced from CRAML in 

order to improve model performance. Poorly performing models may reflect that the underlying 

tags are not well-defined, and need additional refinement, or simply that there are not enough 

positive or negative cases in the corpus to build a reliable classification model. 

After an initial extrapolation, the expert engages in iterative testing to revise the rules to 

achieve a comprehensive and accurately coded dataset. The expert does this with output from the 

extrapolation. An excerpt (shortened for readability) of the nopoach rules is provided in Table 5. 

The extrapolated training data files contain the extracted text chunks, which rule “caught” the 

particular chunk, and finally the appropriate tag value. This file can be reviewed by the user to 

determine if the rules are working as intended. A sample of chunks that oversamples positive 

tags (=1) and provides a minimum number of cases per rule can also be sent at this point for 

blind review by third-party coders to validate and ensure inter-subject reliability. 

In Table C.3, early rules such as “shall not recruit”, “shall not employ”, and “shall not hire” 

were later over-written due to the multiple exceptions to these rules. Instead, statements that 

clearly stated that employees shall not be recruited or solicited or hired were tagged nopoach=1. 
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Table C.3: Sample entries from the novel training data created for nopoach during testing 

id chunk rule nopoach 
527557 shall not recruit or hire any employee or 

former employee offranchisor or any 
shall not recruit 1 

272571 in item ahove you may not solicit customers 
from outside your territory without 

may not solicit customers 0 

487216 or our designee you will not hire third party 
or outside vendors to 

you will not hire third party 
or outside vendors 

0 

792020 franchise lyou may not recruit or hire any 
employee or former employee of 

may not recruit 1 

714298 non solicitation of employees employee 
agrees that during 

non solicitation of 
employees 

1 

Validation: Involving Third-Party Independent Coders 

Validation helps to ensure inter-rater reliability, accuracy, and precision. Involving third 

parties at the stage at which rule sets are producing seemingly reliable results tests whether the 

tags are well enough defined to be agreed to by third parties. The researcher gives an 

independent coder only a description of the desired tag, the text chunks, and deletes the rules and 

the CRAML-generated coding. The independent coder completes their review, and the 

researcher compares the results of the rule set produced coding with the independent coder’s 

coding. All discrepancies should be reconciled before proceeding further. 

Based upon the performance displayed by this last step in the process, or by an externally 

imposed requirement to repeat the process, the researcher can choose to revisit the tags and rule 

sets, once again performing an exploration to search for more representative rules. It is important 

to emphasize the necessity of judgement in this phase, as the decision to repeat this process is a 

subjective one. Incorporating hand-coding by independent research assistants can help greatly. 

Moreover, the encoding, i.e., tag values, given to each particular rule must come from 

knowledgeable, grounded reasoning, especially in cases where certain keywords serve different 

meanings in possibly very disparate contexts. Therefore, it is in this cycle where the most manual 

effort is required, but also where the crucial foundation to the rest of the framework is built. 
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Model Training and Classification: Datasets in Action 

The final stage in the proposed framework is the classification itself, i.e., the mapping of a 

particular text chunk to its corresponding tag set encoding (0/1 for each tag). In order to 

accomplish this, classification models must be learned from the rule sets discussed in the 

previous section. The presence of context rules alone is not sufficient in the sense that they 

represent high precision classification rules that will always detect exactly what is described by 

the rules. The next step of using a classifier is to learn a model that not only detects these 

“simple” cases that can be caught by string matching or regular expressions, but rather one that 

can also learn in which general contexts keywords appear which cause a certain tag to be true. 

This motivates the need for comprehensive training data. 

The final step in the testing cycle involves the training of a baseline classifier to test 

performance on an unseen test set. In this case, a simple Naive Bayes classifier was chosen. First, 

training instances are converted to TF-IDF vectors, and then a Naive Bayes classifier is trained 

for each tag. Finally, output metrics are displayed, namely Accuracy, Precision, Recall, and F1. 

Using these metrics, a researcher can (roughly) evaluate the current performance of the classifier, 

which indicates the strength (“representativeness”) of the underlying training data, i.e., rules. 

Flexibility in Machine Learning Methods 

An important step towards the building of a general-purpose classification system was to 

identify the Machine Learning method best suited for the multi-label, binary classification task at 

hand. Crucial to note is this multi-label aspect, as it is certainly possible for a single document to 

have more than one tag attribute be present. As such, multiple candidates for classification 

models were chosen, all of which could handle this multi-label binary classification task. So far, 

only “shallow” Machine Learning models were tested. The methods included: 
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• Naïve Bayes –also used as the baseline classification method. Simple probabilistic classifiers 

using Bayes’ theorem as a backbone. Relatively easy and efficient to train. 

• Logistic Regression – classification technique utilizing the logistic function (and a 

classification threshold) to predict the value of a dependent variable. 

• Stochastic Gradient Descent Classification – a misnomer in the sense that SGD does not 

actually perform the classification. Rather, SGD is used to optimize a linear model, in this case a 

Support Vector Machine. 

• Random Forest – a classifier using an ensemble of Decision Trees. 

In a test of the various methods on a sample classification task (for the nopoach tag), Table 

C.4 displays the performance of these classifiers. Precision measures the percentage of correctly 

identified positive cases, i.e. how many of the classified ‘1’s are indeed truly positive cases. 

Recall measures that percentage of correctly identified positive cases among all positive cases in 

the true labels. Together, these two metrics can be summarized in the F1-score, which is the 

harmonic mean of the two. As can be observed, the Random Forest model shows superior 

performance and was chosen to be the classification method. 

Table C.4: Performance of various ML classifiers 

 Acc. Precision Recall F1 
Naive Bayes 0.93 0.60 0.95 0.74 
Logistic Regression 0.99 0.91 0.96 0.94 
SGD SVM 0.98 0.91 0.92 0.92 
Random Forest 0.99 0.97 0.96 0.97 

With the respect to the general-purpose nature of this text classification framework, it is 

important to emphasize that the choice of classification method here will not necessarily be the 

optimal choice for other applications. In addition to this, the utilization of more advanced and 

powerful methods could certainly prove to be beneficial, and this remains a topic for future 
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research. In the end, though, the framework allows for essentially any model to be used, if it can 

be properly stored and loaded for use in the process pipeline. The task of choosing a specific 

model is left to the user. This make sense because different data, different domains, and different 

desired outcomes may require different models to be chosen. In the end, the focus of CRAML on 

the data creation process allows for a flexibility in the choice of model to train on this data.  

Outline of Model Training 

In order to adapt the use of classification models such as Random Forests for the 

classification of novel text datasets such as the one described throughout the previous sections, 

TF-IDF is utilized to convert a database of unstructured text entities into a matrix of numerically 

valued vectors. Concretely, for a dataset containing n documents and a vocabulary of m words, 

the resulting TF-IDF matrix is n x m in dimension. Through this vectorization of text, models can 

be trained and classification can now be performed. As a point for future work, the utilization of 

more advanced (and potentially meaningful) text representations could lead to richer training 

data for the proposed CRAML framework. 

Training - Grid Search With the training of ML models comes many tuneable parameters. 

In order to optimize the resulting classifier for each tag, a tuning stage is added tp determine the 

optimal parameters, e.g., for a Random Forest, given a particular dataset. Here it is important to 

emphasize the significance of this stage in the overall framework. As all potential incoming 

datasets may be different in nature, different parameter values may be needed to achieve the best 

performance possible. In order to best support the general-purpose nature of the proposed 

framework, performing fine-tuning of parameters is crucial. 

Training - Purification Prior to creating the classifiers for each tag, a purification process 

was run on the trained models, in order to reduce size, and as a result, classification time. This 
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eliminates unneeded dependencies and in the case of Random Forests, prunes the trees according 

to certain criteria. The effects of this process were quite dramatic, reducing most models to at 

least half the size. The potential complexity of Random Forests, and thus the need for the 

purification process, is visualized in Figure C.1, which display a pre-purification decision tree. 

Figure C.1: One of the decisions trees within the nopoach Random Forest 

            

Once a model for each tag is trained, it is then stored in pickle format, so that it can be later 

loaded and utilized within the framework. To do this, the user must manually enter the filename 

of each saved model into a JSON formatted file, which maps each tag to its corresponding 

classifier. Note how these tags match up with the mapping of tags to manually defined keywords. 

The naming convention used for the saved models was to specify the method used, the tag to be 

classified, the achieved F1-score, and the use of purification or not. 
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Negative sampling (optional) 

Negative sampling was left as an option in the extrapolation process (Algorithm C.3). This 

decision would most directly affect the function of the classifiers. Without negative sampling, 

the classifier for each tag would be to “classify a tag as 0 or 1, provided that the chunk to be 

classified contains a tag-defined keyword.” On the other hand, performing negative sampling 

process introduces random, non-keyword-containing text chunks into the model training process, 

thereby learning these instances into the given model. Here, the classification task becomes 

“classify any given piece of text as 0 or 1, regardless of its content”. With these two approaches 

in mind, it was ultimately decided to implement the former, thereby only advancing a text chunk 

to the classification stage if it indeed contained a keyword. If not, the classification was 

automatically made to be 0.  

This design decision was made knowing the makeup of the textual data, as well as the 

characteristics of the tags to be classified. In the end, in order for a tag to be assigned a 1, a 

necessary condition is for it to contain a tag-specific keyword. Otherwise, it is not possible to 

obtain the classification of 1. The classification process, therefore, is in place to “weed out” 

keyword-containing text chunks that do not lead to the desired tag attribute. In other domains, 

i.e., with other text datasets created via this framework, this line of reasoning may not hold, and 

an argument could be made for the use of negative sampling. In this way, it is once again 

paramount for researchers to define their tags thoroughly and explore the makeup of the 

underlying data. 

Pre-Processing (optional) 

One final component is the option of a pre-processing step for each classifier. The motivation 

is that in the text chunks, which are relatively large in length compared to the single keyword 



54 

within, there might exist much information, i.e., words, that do not play a role in a particular tag 

at hand. Particularly with tags in which the pertinent information sits close to the keyword, any 

other irrelevant information will only serve to confuse the learning of a classification model. 

With this in mind, the proposed pre-processing step will serve to “trim” the left and right ends of 

a given text chunk, thus reducing the amount of text noise within this chunk. In this process, 

though, two considerations must be made. Firstly, if certain qualifier words, such as negations, 

exists within the regions to be trimmed, this could potentially be vital information lost. Secondly, 

there may be specific known words or phrases that appear that usually appear in the proximity of 

a keyword, yet might also be trimmed away. For these reasons, two more mappings, following 

the structure of previous ones where an entry exists for each tag, are defined. Qualifiers involves 

the words that have the ability to change the meaning of a text chunk in a significant manner. 

Keep words are just that – words that should be kept, even though they exist in a region to be 

trimmed away. 

Algorithm C.4 outlines pseudocode for pre-processing steps. In the testing with this 

preprocessing stage, the TRIM parameter was chosen to be 2, resulting in chunks of length 5, not 

including possibly kept words. In the end, this stage was excluded because there was an observed 

decline in classification performance for many tags. This sheds light on the importance of 

relatively faraway context words from the main keyword for many of the tags. Again, this may 

differ with other datasets, so testing with a preprocessing stage is recommended. 

Storing 

The final process in the framework is to consolidate the classification results, merging them 

with the original data to be stored for later retrieval and analysis. The framework facilitates for 

the storing of all classification outputs to CSV or a database of choice.  
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Algorithm C.4: Preprocessing Pseudocode 

Require: Training CSV: file that contains the training data to be trimmed, Tags: tags to be 
processed, Qualifiers: for each tag, Keeps: for each tag, TRIM: target context size  
Ensure: trimmed training data 
  1: new_data = [] 
  2: for text in training data do 
  3:      index = get_index(text) ▷ get index of keyword within chunk 
  4:      for q in Qualifiers do 
  5:           found = search_for(q, text) ▷ find qualifiers in chunk 
  6:            if found then 
  7:                 text = qual_prepend(found, text)            ▷ prepend qualifiers to words in chunk 
  8:      lower = max(0, index - TRIM)  
  9:  upper = min(len(text), index + TRIM) 
10:      new_text = text.split()[lower:upper] 
11:      keep = [] 
12:      for k in Keeps do 
13:           if k in text then keep.append(k) 
14:      new_text = keep + new_text  
15:      new_data.append(new_text) 
16: return new_data 

  


