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1 Introduction

This paper analyzes continuous-time jump-diffusion models for single stock returns. In partic-

ular, we are interested in the question of how the dynamics for index constituents differ from

those of the index itself, and how a jump in the index interacts with jumps in the constituents.

By answering these questions, we contribute to the understanding of return dynamics in stock

markets.

The analysis of the statistical properties of stock returns is one of the main topics

of interest in empirical finance research. There is a large body of literature that focuses

on continuous-time models designed to capture essential features of stock price movements,

including time-varying variance and jumps, i.e., sudden large movements in prices. Testing

these continuous-time models has been at the center of many empirical studies. Starting

with models with stochastic volatility (see, e.g. Jacquier, Polson, and Rossi (1994, 2004)) the

literature has evolved to models with jump components in returns (see, e.g. Bakshi, Cao,

and Chen (1997) and Pan (2002)) and jumps in returns and in volatility (see, among others,

Eraker, Johannes, and Polson (2003), Eraker (2004), and Broadie, Chernov, and Johannes

(2007)). More recently, it has been shown that to further improve the ability of a model to

consistently reproduce stylized facts in the data, it seems helpful to include non-affine terms

in the variance process. The non-affine variance components in the process facilitates a faster

moving variance and picks up part of what otherwise would be captured by a jump component

in returns. Examples of papers from this strand of the literature are Christoffersen, Jacobs,

and Mimouni (2010), Chourdakis and Dotsis (2011), Mijatovic and Schneider (2014), and

Ignatieva, Rodrigues, and Seeger (2015).

In our analysis we employ several different model specifications. Starting from the

simple stochastic volatility models (denoted by SV), we then add jumps in returns (SVJ), or,

alternatively, add jumps in the return as well as in the variance process. The jumps in variance
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are either correlated (SVCJ) or independent of jumps in returns (SVIJ). In addition to affine

model structures for the variance process, we also consider a non-affine setup (SVCJ-POLY)

as well.

Empirical investigations of stochastic models for asset price dynamics have focused on

the major equity market indices like the S&P 500 or the NASDAQ 100. From the literature

one can identify certain characteristics of these models that can be regarded as stylized facts.

First, models with just a stochastic volatility component, but without jumps, appear to be

significantly mis-specified. Second, when jumps are included in the model, they turn out to

be rare, negative, and large in absolute value. Third, there is a negative correlation between

the innovations in the return and the variance process. Fourth, non-affine specifications tend

to have the best performance. Since all these findings were made exclusively for indices, it is

an important question if they also remain valid for individual stocks. Answering this question

represents the major motivation for our paper.

In the first step of our analysis we compare the parameters of the aforementioned

models for the S&P 100 index with those of the individual constituent stocks. The models

are estimated via the Markov Chain Monte Carlo (MCMC) approach used, e.g., in Eraker

et al. (2003). At the center of our study lies the analysis of index versus single stock jumps.

For this reason, we take an additional step and run a simulation study on the jump models to

gain insights on how to properly identify jump days for the different assets. The simulation

study provides us with a posterior jump probability that allows us to, given the model, cleanly

differentiate between jump and non-jump days. In the main body of our study we analyze

the relationship between index jumps and jumps in the constituent stocks.

Our first set of results shows that the jump process for the ’typical’ (i.e., average)

individual stock is significantly different from that for the S&P 100. One known stylized fact

for stock indices is that jump sizes are large and negative. Contrary to this, we find that

2

Electronic copy available at: https://ssrn.com/abstract=1361861



jumps in individual stock prices are in many cases on average positive. This result is found

across the whole set of index constituents as well as for the typical stock across several sectors,

so that it is not specific to a certain subset of stocks we consider in our analysis. Although

jumps are still somewhat rare, the frequency of jumps in prices is more than five times as

high for the representative stock as for the index.

Furthermore, the correlation between the returns on the typical individual stocks and

the associated volatility changes is estimated to be much less negative than for the index. This

last result is, of course, derived under the physical probability measure, but is nevertheless

related to empirical findings concerning the pricing of options on indices and individual stocks.

As shown by Bollen and Whaley (2004) the implied volatility curves for stock market indices

tend to be negatively sloped and much steeper than those for the component stocks. Bakshi,

Kapadia, and Madan (2003), Dennis and Mayhew (2002), and Dennis, Mayhew, and Stivers

(2006) also provide evidence for structural differences in the pricing of index and individual

stock options. In line with these results from empirical option pricing research, our findings

support the notion that one cannot simply extend the results from the analyses of major

equity indices to single stocks.

The second set of results demonstrates the considerable heterogeneity in the cross-

section of index constituents. To give a first indication, we find, e.g., jump intensities that

vary between 12 and 32 jumps per year and expected jump sizes that go from -0.6% to 2.8%

per day. To investigate the relations between model parameters and company characteristics

we regress the parameters on the four company specific factors given in Fama and French

(2015). We find large effects of, e.g., the size factor on the parameters controlling the jump

process in returns. To give one example, we see that a one standard deviation increase in size

decreases the jump intensity for the average firm by about 10%.

The main contribution of our empirical analysis concerns the behavior of the individual

3
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stocks on days when the index exhibits a jump. Surprisingly, we find index jump days where

relatively few stocks also exhibit jumps. We find days (like February 24, 1994, or January 4,

2000) where the number of jumping stocks is even just equal to one. On the other extreme,

the highest number of such contemporaneous stock jumps is 72 on October 13, 1989, and 61

observed on February 27, 2007. These findings immediately raise the question of whether the

models estimated for the index and the individual stocks are compatible. The solution to this

apparent ’puzzle’ can be found via a detailed analysis of the mechanics of the models employed

in our study. A jump is considered likely (in terms of posterior probability) if the price move of

an asset on a given day is large relative to the conditional variance. The index as a diversified

portfolio of stocks then naturally jumps on days when most of the component stocks exhibit

large returns (but not necessarily jumps) in the same direction. Since the average conditional

variance of the stocks in our sample is fairly stable around index jump days, at least some of

these jumps must be caused by a synchronous movement of the individual stocks, generating

the large and negative return in the index, which is then identified as a jump. We label these

jumps as ’synchronicity jumps’. The remaining jumps, which we call ’macro-driven jumps’, are

more interesting from an economic point of view. They are characterized by a large number

of stocks or sectors exhibiting high jump probabilities simultaneously, and we can clearly link

these jumps to important macroeconomic events.

A further surprising result of our analysis is that the models featuring jumps do not

identify an unusually large number of jumps during the time of the financial crisis in 2008.

This is indeed surprising, since 13 of the 20 largest daily absolute returns in our sample

occur during exactly that period. We show that the small number of jumps identified by the

models can be explained by the fact that during the financial crisis conditional volatility is

consistently high, and the large absolute returns during this period lie within the bounds given

by two conditional diffusive standard deviations around the mean. This implies that these

4
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large returns can basically be generated also by a pure stochastic volatility model without

jumps.

An important overall conclusion we draw from our analysis concerning the ’right’ model

for the index itself and its constituents is the following: Even if a pure stochastic volatility

model could sufficiently represent the dynamics of the index constituents (single stocks), there

would still be strong evidence for jumps in the index, so that here a jump model would appear

to be the most appropriate choice.

A study that is related to our paper in terms of analyzing the properties of individual

stock returns is Maheu and McCurdy (2004), who estimate the parameters of a discrete-

time GARCH model with jumps via maximum likelihood for a rather small set of selected

stocks. They attribute jumps to corporate news events and show that this hypothesis is

supported by the data. In contrast to their approach, we consider a richer set of models

by considering an SV, an SVJ, and an SVCJ model, and investigate these models for the

large cross-section of stocks constituting the S&P 100 index. Jiang and Yao (2013) employ a

methodology developed in Barndorff-Nielsen and Shephard (2004) and analyze a long time

series of stock returns to decompose price changes into a continuous and a jump part. Their

focus is on cross-sectional return predictability characteristics like size and book-to-market,

and their results show that a large part of this predictability is due to differences in the jump

part of returns. Şerban, Lehoczky, and Seppi (2008) propose a model where stock returns

are driven by a market factor, a ’common idiosyncratic’ component and a factor which is

truly idiosyncratic to the respective stock. Their findings indicate that the common factor

in idiosyncratic volatility is relevant for option pricing. A more recent strand of literature

examines co-jumps between stock returns. Examples can be found in Caporin, Kolokolov, and

Renò (2017) and Gilder, Shackleton, and Taylor (2014). While these papers investigate the

relationship between single stocks, our paper focuses on the relationship between the index

5
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and its constituents. Finally, Buraschi, Trojani, and Vedolin (2014) come up with findings,

which are similar to ours to a certain degree (although their result relates to the risk-neutral

and not the physical distribution), based on an equilibrium model with differences in beliefs.

The remainder of the paper is structured as follows. In Section 2 we present the model

and describe our estimation approach. The results are then discussed in Section 3. Section 4

concludes.

2 Model and Estimation Approach

2.1 Model

Our model specification follows Ignatieva et al. (2015). Their approach provides a flexible

model structure, which allows for affine and non-affine variance specifications as well as jumps

both in prices and in the conditional volatility process. The logarithm of the stock price (Y )

and the conditional variance (V ) are assumed to follow the continuous-time processes

dYt = µ dt+
√
V t dW

y
t + d

Ny
t∑

j=1
ξy

j

 (1)

dVt =
(
α0 + α1

1
Vt

+ α2Vt + α3V
2

t

)
dt+ V b

t dW
v
t + d

Nv
t∑

j=1
ξv

j

 (2)

where dW y
t and dW v

t denote Brownian increments with correlation E(dW y
t dW

v
t ) = ρ dt.

The fact that there is an (empirically mostly negative) correlation between returns and

variance innovations is often called the ’leverage effect’. The term µ represents the mean

diffusive return, and the terms ∑Nt
j=1 ξ

y
j and ∑Nt

j=1 ξ
v
j denote the jump component modeled as a

compound Poisson process. The symbols ξy and ξv denote jump sizes in returns and variance,

respectively. These jump sizes are allowed to be correlated. In more detail, the jump size in
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variance follows an exponential distribution with parameter µ−1
v , i.e., ξv

t ∼ Exp(µ−1
v ) with

expected value and standard deviation equal to µv. Conditional on ξv
t , the jump size in the

log price at time t follows a normal distribution with mean µy + ρjξ
v
t and variance σ2

y, i.e.,

ξy
t |ξv

t ∼ N
(
µy + ρjξ

v
t , σ

2
y

)
. The parameter ρj captures the sensitivity of the jumps in returns

to the jumps in variance. The terms Ny
t and N v

t denote Poisson processes with jump intensity

λy and λv, respectively.

We use multiple restricted versions of the setup in Equation (2) which were also used

in the prior literature to model equity return dynamics. We use four affine models, analyzed,

e.g. in Eraker et al. (2003), which all use the restriction α1 = α3 = 0 and b = 0.5. The

additional restriction λy = λv = 0 results in the stochastic volatility (SV) model of Heston

(1993). The stochastic volatility model with jumps in returns (SVJ) considered by Bates

(1996) is obtained by setting λv = 0. The two versions of models with jumps in returns are

given by the stochastic volatility model with correlated jumps (SVCJ) (λy = λv), and the

stochastic volatility model with independent jumps (SVIJ) (ρj = 0). Finally, to investigate

the performance of non-affine models we employ the best performing setup in Ignatieva et al.

(2015) by setting λy = λv and b = 1.5. We denote this model as “POLY-SVCJ”.

We estimate each model independently for the index and its constituents. In doing so,

we follow the procedure undertaken in practical applications when fitting asset returns to a

model. This procedure allows us to investigate differences in the return processes between the

index and its constituents without imposing structural relations. Such structural relations

are, e.g., assumed in Bégin, Dorion, and Gauthier (2020), Elkamhi and Ornthanalai (2010),

or Gourier (2016). These papers assume that the constituents are linked to the index via the

drift term, i.e., the risk premium. This allows the decomposition of both the risk premium

into a diffusive and a jump component and total risk into a systematic and an idiosyncratic

part.

7

Electronic copy available at: https://ssrn.com/abstract=1361861



We do not consider this type of specification in our analysis, since an investigation

of the different components of the risk premium is beyond the scope of our paper. Our

modeling choice can be seen as an unrestricted version of the above models, and as such,

we are unable to identify the components of the risk premium in the stock returns, but we

can uncover the relation between index and stock jumps we are interested in. In addition

to this, the identification of the different components of the risk premium would make it

necessary to combine options and stock return data, which would make the estimation problem

substantially more complex. Furthermore, we would like to point out that the notion of a

jump that we adhere to in our paper is one of jumps as large and infrequent events, in contrast

to a more microstructure-oriented interpretation of jumps, with jumps typically being much

more frequent and smaller in magnitude. These types of phenomena which would then more

appropriately modeled via Lévy processes.

To estimate the models we consider in this paper, we use an Euler discretization scheme

and set the time interval to ∆ = 1 (day). In our empirical analysis we will assume that one

year has 252 (trading) days. Denoting the log return of the asset Yt − Yt−1 by Rt, we can

write the discretized version of the system in (1) and (2) as

Rt = µ+
√
Vt−1ε

y
t + ξy

t J
y
t (3)

Vt = Vt−1 + α0 + α1
1

Vt−1
+ α2Vt−1 + α3V

2
t−1 + σvV

b
t−1ε

v
t + ξv

t J
v
t ,

where shocks to returns and volatility, εy
t = W y

t − W y
t−1 and εv

t = W v
t − W v

t−1, follow a

bivariate normal distribution with zero expectation, unit variance, and correlation ρ. In the

Euler discretization scheme, we follow Eraker et al. (2003) and assume at most one jump per

day. Jy
t and Jv

t thus represents an indicator equal to one in the case of a jump in returns

or variance and zero otherwise. In case of a model that assumes contemporaneous jumps in

returns and volatility this indicator is of course the same for R and V . The jump sizes retain
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the distributional assumptions described above.

For technical details concerning the above discretization schemes the reader is referred

to the papers by Jones (2003b), Eraker et al. (2003), Jones (2003a), Ait-Sahalia (1996), and

Conley, Hansen, Luttmer, and Scheinkman (1997).

2.2 Estimation Approach

The underlying model setup includes latent variables such as volatilities, jump times, and

jump sizes. Each of these latent states is treated as a parameter to be estimated in a Bayesian

context. This leads to a high dimensional posterior distribution, which is not equal to a known

statistical distribution. We therefore rely on Markov Chain Monte Carlo (MCMC) techniques

to compute the posterior moments.

In a nutshell, MCMC allows us to draw from a high dimensional distribution by breaking

it down into draws from a series of lower dimensional conditional distributions.1 We are thus

able to construct a Markov Chain that converges to the desired posterior distribution. After

convergence, we draw N times from that posterior to perform Monte Carlo integration.2 In

the following, we provide a brief overview of the algorithm by for the SVCJ model, since it

exhibits the most complex structure. For more details on the sampling algorithm we refer to

Ignatieva et al. (2015).

According to Bayes’ Theorem, the posterior distribution of the parameters and the
1For a detailed discussion of this algorithm in a financial econometrics context, see Johannes and Polson

(2006).
2In our analysis we use a burn-in period of 600,000 and then draw 1.4 million times from the posterior

distribution. This large number of draws is necessary to ensure convergence in the estimation of the models
with a non-affine specification of the variance process. For the standard affine models convergence is obtained
already after a much smaller number of draws.

9

Electronic copy available at: https://ssrn.com/abstract=1361861



latent states is proportional to the likelihood times the prior distribution

p(Θ,V , ξy, ξv,J |R) ∝ p(R|V , ξy, ξv,J ,Θ)p(V , ξy, ξv,J ,Θ),

where Θ = (µ, α(Vt), γ(Vt), ρ, µy, σy, ρj, µv, λ)> denotes the vector of model parameters, with

α(Vt) and γ(Vt) representing the parameters of the drift and the diffusion component of the

variance dynamics, respectively.

The time series of state variables is collected into {V , ξy, ξv,J}, and R denotes the

time series of observed returns. Note that our model specifications allow us to give the prior

a hierarchical structure. Therefore,

p(V , ξy, ξv,J ,Θ) = p(V |ξv,J ,Θ)p(ξy|ξv,Θ)p(ξv|Θ)p(J |Θ)p(Θ).

Given our model framework, the only component of this prior distribution not determined

by the model is p(Θ). We use the same set of independent conjugate priors as described in

Ignatieva et al. (2015). Given the Markov property of the model, we can rewrite the remaining

components of the posterior distribution as follows:

p(R|V , ξy, ξv,J ,Θ) =
T∏

t=1
p(Rt|Vt, Vt−1, ξ

y
t , ξ

v
t ,Θ)

p(V |ξv,J ,Θ) ∝
T∏

t=1
p(Vt|Vt−1, ξ

v
t Jt,Θ)

p(ξy|ξv,Θ) =
T∏

t=1
p(ξy

t |ξv
t ,Θ)

p(ξv|Θ) =
T∏

t=1
p(ξv

t |Θ)

p(J |Θ) =
T∏

t=1
p(Jt|Θ)
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The MCMC sampler then samples iteratively through the following complete conditional

distributions:

Parameters : p(Θi|Θ−i,J , ξ
y, ξv,V ,R), i = 1, . . . , K

Jump times : p(Jt|Θ,J−t, ξ
y, ξv,V ,R), t = 1, . . . , T

Jump sizes : p(ξy
t |Θ,J , ξy

−t, ξ
v,V ,R), t = 1, . . . , T

p(ξv
t |Θ,J , ξv

−t, ξ
y,V ,R), t = 1, . . . , T

Volatility : p(Vt|Θ, Vt+1, Vt−1,J , ξ
v, ξy, Rt+1, Rt), t = 1, . . . , T.

Here, we denote the i-th element of a vector by a subscript i, e.g., Θi. The vector consisting of

all elements except the i-th one is denoted by a a subscript −i, i.e., Θ−i is a vector containing

all elements of Θ except for element i.

By relying on conjugate priors for the model parameters, we are able to use a Gibbs step

for updating all parameters, jump times, and jump sizes. The only parameters not having a

recognizably complete conditional distribution are the variances, denoted by Vt above. The

complete conditional distribution for Vt is given by

p(Vt|Θ, Vt+1, Vt−1,J , ξ
v, ξy, Rt+1, Rt)

= p(Rt+1, Vt+1|Θ, Vt,J , ξ
y, ξv)p(Vt|Θ, Rt, Vt−1,J , ξ

y, ξv),

where the two factors of the product on the right-hand side denote a bivariate and a univariate

normal distribution, respectively. The Metropolis-Hastings step proposes a new variance

V
(g)

t in iteration g by drawing from p(Vt|Θ, Rt, Vt−1,J , ξ
y, ξv) and accepting that draw with

probability

min

 p(Rt+1, Vt+1|Θ, V
(g)

t ,J , ξy, ξv)
p(Rt+1, Vt+1|Θ, V

(g−1)
t ,J , ξy, ξv)

, 1

 . (4)
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Since the proposal distribution is conditioned on Rt we use information in the data for

the draw of the candidate. This is an important difference to the algorithm proposed in

Eraker et al. (2003), who use a random walk Metropolis step. Expression (4) shows that the

acceptance probability takes information from Rt+1 and Vt+1 into account.

3 Empirical Analysis

3.1 Data

Our stock return data for the period from 1980 to 2014 are obtained from the Center for

Research in Security Prices (CRSP) database. We use the index constituents file from Com-

pustat to identify the companies included in the S&P 100 index on any given day in the

sample. Although the launch date for the S&P 100 index is June 15, 1983, Compustat only

provides information on index constituents beginning in September 1989. Therefore, we begin

our analysis of index jump days from that date.

We find a total of 205 companies included in the S&P 100 index at at least one point

in time. We match these company names with the return information provided by CRSP via

the cusip identifier. Using this identifier we are able to unambiguously match 201 out of the

205 companies, and it is these 201 companies which we ultimately use in our analysis. On

a daily basis, we can match between 92 to 99 stocks with the 94 to 100 stocks listed in the

index by Compustat. This indicates that we are able to almost perfectly replicate the index

constituents with our sample. Table A.1 in the appendix shows the list of companies included

in our analysis, together with descriptive statistics on their returns as well as information on

the estimation period and the period they were included in the index.
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3.2 Model Choice

The first question of interest is which model best describes the return dynamics of the index

and its constituents. There are three issues of importance in this context. First, are jump

components as important for single stocks as for the index? Second, if the answer is yes, how

do jump distributions for index constituents look like in comparison to the index? Third,

which is the preferred variance specification? To answer these questions we need to rank the

models with respect to their performance.

Since we use a Bayesian estimation method, the natural metric to use would be Bayes’

factor. However, for high dimensional problems like ours, this is computationally prohibitive.3

We therefore use the Deviance Information Criterion (DIC) proposed in Spiegelhalter, Best,

Carlin, and van der Linde (2002). The main idea is, as in all information criteria, to reward

model fit and penalize complexity. It is particular suited for our purpose, since it takes the

hierarchical structure into account, i.e., the fact that not all model parameters can be chosen

freely. This method for model comparison has been used in the finance literature by, e.g.,

Berg, Meyer, and Yu (2004) and Ignatieva et al. (2015).

The estimation results can be found in Tables 1 and 2. The numbers in the panel labeled

“DIC Ranking” show the frequency with which the given model ranks first, second, and so on

up to fifth across the index and its constituents. For example, the SVIJ model is ranked first,

second, and third 114, 78, and 10 times, respectively.

A clear pattern emerges from the results in the table. First, the SV model is performing

worst by far. Its highest ranking is fourth (out of five models), and even this only happens

on five occasions. This results in an average model ranking of 4.975. We, therefore, obtain

strong evidence that the results of the prior literature, namely that jump models outperform
3Eraker et al. (2003) show how to compute the statistic for nested affine models. However, we also include

a non-affine model in our analysis and are therefore not able to use the procedure proposed in their paper.
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pure volatility models, also hold for single stocks.

The second conclusion is that non-affine model specifications do not result in a consid-

erably better model fit. We see that the POLY-SVCJ model ranks second in terms of average

model ranking. However, we see that it also ranks fifth five times, i.e., it is even beaten by

the SV model in these cases. On the other hand, none of the affine jump models are beaten

by the SV model.

The third and final conclusion from the results is that jumps in volatility play an

important role in describing the return dynamics. Turning to the performance of the SVJ

model, we see that it mainly ranks third or fourth, resulting in an average ranking of 3.351.

Models including jumps in variance clearly outperform the SVJ model. In particular, the

SVIJ model exhibits the best overall performance with an average model ranking of 1.485

and never being ranked below third. Given these results, we are going to focus on the SVIJ

model as the best performing specification in the following discussion.

3.3 Model Parameters

The parameter estimates for all models considered can be found in Tables 1 and 2. However,

in the following we will restrict the discussion to the SVIJ model for the reasons given above.

The first observation is that, basically all empirical studies show, the correlation between

diffusive price changes and diffusive volatility changes is strongly negative for the index with

a value of roughly −0.69. For the typical stock, however, ρ is much less negative with a

cross-sectional average of the estimates of around −0.4 and 95% percent of the estimates

ranging between −0.67 and −0.05. Although we do not analyze options data in this paper,

this result for ρ provides support (under the P-measure) for the finding that implied volatility

smiles for individual stocks tend to be much flatter than those for the major equity indices

around the world (see, e.g. Bollen and Whaley (2004)).
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Not surprisingly, the parameter estimates for the individual stocks vary widely. The

parameter α0 has a mean of 0.0212 for the index, whereas the central 95% of the estimates

for the single stocks range between 0.0346 to 0.132. For α1, this interval ranges from −0.0934

to −0.0035, with the value for the index being −0.0257. These parameter values imply large

differences in the long run mean and the speed of mean reversion between the index and the

single stocks. For the long run mean of volatility we have an approximate average value of 35%

annually for the single stocks versus 17.5% for the index. Finally, since even the maximum

estimate for an individual α1 is negative (not shown in the table), we have mean reverting

variance processes for all assets.

The more interesting part of the model relates to the jump component. The first of the

key parameters here is the mean jump size in returns. A stylized fact from empirical research

is that this quantity is negative and large in absolute value for the major equity indices around

the world. This is confirmed in our analysis, since µy for the S&P 100 is estimated at −0.9278

with a standard error of 0.385, i.e., it strongly significantly different from zero. In contrast

to this, the typical stock exhibits a positive expected jump size (0.748) with a very large

cross-sectional variation, as indicated by 2.5%- and 97.5%-quantiles equal to −0.601 and 2.77,

respectively.

Looking deeper into the results for the single stocks, we find examples of both significantly

positive and significantly negative jump sizes, which is again evidence for the wide variation

in the characteristics of the stochastic processes for the stocks in our sample. These findings

clearly show that the estimation results for the index cannot be generalized to individual

stocks and that there is no ’law’ that jump sizes can only be negative in the context of the

SVIJ model. As one might expect, the estimated standard deviation of the jump size σy is

much smaller for the index (1.67) than for the average stock (4.78), but also the cross-sectional

dispersion is substantial, with 95% of the estimates between rough 1.7 and 11.7.

15

Electronic copy available at: https://ssrn.com/abstract=1361861



Another key parameter of a jump process is the intensity, or loosely speaking, the

probability of a jump over the next time interval (here, one day). Since the SVIJ model

features independent jump processes for returns and variance, we have two intensities. Again,

the differences between the stocks and the index are striking. For the S&P 100, the intensity

for jumps in returns is estimated at 0.014 corresponding to an expected number of roughly

0.014 · 252 ≈ 3.5 jumps per year. For the average stock, this intensity is estimated to be

about 3.5 times higher (0.0476). Again there is pronounced cross-sectional variation across

the individual stocks with a 2.5%-quantile of 2.17 jumps per year, while the stock representing

the 97.5%-quantile would, on average, exhibit 32.6 jumps annually. For the jumps in variance

we observe a similar pattern, albeit with lower intensity levels. For the index we estimate

about 0.95 jumps per year, whereas the typical stock variance jumps about 6.2 times per year

with the quantile variation ranging from 1.05 to 17.9 annual jumps.

Finally, we find that the jump sizes in variance are slightly larger for the typical stock

than for the index with a value of 2.87 and 2.41, respectively. Also here we observe large

cross-sectional variation for the index constituents with values ranging from 0.67 to 11.97.

Another way of visualizing structural differences in the parameter estimates for index

and single stocks is to use box plots as shown in Figure 1. The plots show the estimated

jump parameters. We see in that all jump parameters exhibit a huge variation across stocks.

In particular, however, we observe that the estimated parameters for the index are always

located outside the inter-quartile range for the constituent stocks, indicating that the index

cannot simply be regarded as just the typical stock.
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3.4 Relation Between Parameters and Firm Characteristics

To gain further insight into the sources of the cross-sectional variation of the model param-

eters, we investigate their relation to firm characteristics.4 The most natural selection of

characteristics for our analysis is those which are commonly used as the basis for sorts to

create risk factor.

We therefore focus on the four firm-specific characteristics suggested by Fama and French

(2015), i.e, the market value of equity (MV), the market to book ratio (MB), profitability

represented by annual revenues minus costs (PR), and investment expressed via the growth

rate of total assets (INV). All data are taken from Compustat.

We take the time-series average of the characteristics for each firm and then cross-

sectionally standardize each characteristic to have zero mean and unit variance. We then

estimate the following regression for each parameter via OLS:

θk,i = βk,0 + βk,1MVi + βk,2MBi + βk,3PRi + βk,4INi + εi, (5)

where θk,i is the estimate of parameter k for firm i and the right-hand side variables are

defined above.

The estimation results are presented in Table 3. The results which are most interesting

for our purpose relate to the impact of firm characteristics on the jump components of the

model.

Starting with the average jump size in returns µy, we find that size, profitability, and

investment have a significant impact. Given the strongly significantly negative coefficient of

around −0.2, we see that a one standard deviation increase in firm size reduces the average

jump size by around 30% relative to the cross-sectional average of around 0.75 shown in Table
4We thank an anonymous referee for suggesting this analysis.
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1 for the SVIJ model. At the same time, more profitable firms tend to have larger average

jump sizes, with a positive and significant coefficient estimate of around 0.07. This translates

into roughly a 10% increase relative to the unconditional average from Table 1. Finally, the

more investment-intensive a firm, the lover the average jump size, and also this coefficient is

strongly significant.

Analogous to the average jump size, we also find opposing impacts for size and prof-

itability when it comes to the standard deviation σy of the jump size in returns. While the

coefficients for the other two characteristics are not significant, size again comes up with a

negative estimate, i.e., larger firms tend to have lower standard deviations in return jumps,

while for profitability we find the opposite.

Concerning the intensity λ of jumps in returns, we observe that larger companies exhibit

statistically significantly lower values for this parameter. The coefficient of -0.0003 implies

that an increase in one standard deviation of firm size by one standard deviation decreases

the intensity by about -6%, given a cross-sectional average jump intensity for the SVIJ model

of around 0.048, as shown in Table 1. This result makes sense economically, since we think

of larger firms as being better protected against sudden economic shocks, be it, e.g., due to

their more diversified business activities or their better access to funding also in bad times.

In both cases, we would expect there to be on average fewer jumps for larger firms, and this

is what we find in the data. Interestingly, size is the only significant variable here, we do not

find a significant impact of either book to market, profitability, or investment.

For the jump intensity in variance λv we find that larger companies have lower intensities,

while for more profitable firms, this parameter tends to be larger. The regression coefficients

imply that a one standard deviation in size increase lowers λv by about 20% relative to its

unconditional cross-sectional average (−0.005/0.0246 ≈ 0.2), while a one standard deviation

increase in profitability leads to an increase in λv of about 12% (−0.003/0.0246 ≈ 0.12). Also
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here, book to market and investment do not exhibit a significant impact.

Concerning the parameter µv of the exponential distribution for the size of variance

jumps, we find that here, in contrast to the other jump-related parameters, size does not play

an important role. It is rather book to market and profitability, which help to explain the

cross-sectional variation in this parameter. Both characteristics feature a negative sign, i.e.,

with a one standard deviation increase in either book to market or profitability, µv decreases.

This in turn means that both the average size of variance jumps and their dispersion decrease.

Overall, we can see that the jump-related parameters are often systematically related

to firm characteristics. Despite the lack of significance in the case of µv, size seems to be the

most important driver of the cross-sectional variation.

3.5 When (and Why) Does the Index Jump?

3.5.1 Simulation Results

We conduct a simulation study to demonstrate that our estimation method is able to correctly

identify jump days in the data, and to determine the appropriate threshold for the posterior

jump probability used to separate jump from non-jump days.

We simulate 1,000 paths based on the SVIJ model. We generate two simulation results

for each model, one based on the estimated parameters for the index and on the average

parameter estimates from the single stock estimation, respectively (see Table 1). This ensures

that we understand how sensitive the estimation procedure of posterior jump probabilities is

with respect to different parameter values. We apply the Euler discretization scheme presented

above in Equation (3) to simulate 4,000 days per path.

The setup of our simulation study is chosen on the basis of two important results

documented in the literature. First, Eraker et al. (2003) show that the MCMC estimation
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method is able to correctly recover the model parameters. Second, Jones (2003a) shows that

the Euler discretization at a daily frequency is a good approximation for the continuous time

setup. A very interesting and novel result (to the best of our knowledge) is that we show how

well the estimation setup is able to identify jump days given the underlying model.

The results of our simulation study can be found in Table 4. We see a clear difference in

the results for the posterior jump probabilities on jump and non-jump days for both the index

and the typical constituent stock. The most important lesson we learn from these results

is that the posterior jump probabilities for a jump day range from 0 to 100%, whereas on

non-jump days we observe an upper bound for the probability of around 10% for the index

and 28% for the typical single stock. Based on these results we set the threshold for the

posterior jump probabilities to 10% for the index and at 30% for the typical stock.

3.5.2 Jump Day Analysis

The issue at the core of our analysis is to study index jumps in detail. In this section we will

discuss three main results. First, jumps are identified relative to the level of return variance.

Second, we identify two distinct types of index jumps that we label ‘synchronicity jumps’ and

‘macro jumps’. Third, we show that the two types of jumps differ with respect to the economic

environment in which they occur. As stated above, all analyses refer to the SVIJ model.

The first step in this exercise is to identify the days when the index jumps. Given our

simulation results, we select those days as jump days where the posterior probability for a

jump is greater than 15%. Note that this threshold is rather conservative in the sense that

the probability of identifying false jump days is low, given the underlying model. This will

become important later on when we identify two different types of index jumps.

In our sample, we observe 53 jump days (see Table 5). Not surprisingly, on jump days,

the index return is mostly negative and large in absolute terms. We observe only three jump
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days with a positive return.

One surprising result from Table 5 is that we do not observe an increase in the frequency

of jump events during the financial crisis, since there is only one index return jump day in

2008, and these values are absolutely comparable to other years. At the same time, 13 of

the 20 largest absolute index returns shown in Table 6 occurred during the year of 2008.

Intuitively, we would of course expect these large daily returns to contain a jump component,

but Table 6 provides intuition on why this is not the case. As can be seen, most days with

large absolute returns and a low posterior jump probability also feature a high conditional

volatility. For example, the returns of about −6% on October 7 and November 19 of 2008

are within the bounds of two conditional standard deviations around the mean. This means

that also a pure stochastic volatility model would be able to generate these movements with

a sufficiently high probability.

This explanation, however, is not applicable to all observations in Table 6. For example,

we observe large positive returns on October 13 and 28 of 2008. On both days, the index

gained more than 10%, a return that is outside the bounds induced by the diffusive volatility

component, but no jump was identified. This is an example for a situation where we are not

able to rule out false negatives when identifying jump days, as discussed above.

The main takeaway from Table 6 is that, given our model framework, jump days are

not identified only by large index returns, but that the index return has to be rather seen

relative to the value of the conditional variance process. When the variance is small, even a

relatively modest index return is potentially identified as a jump.

The next question arising naturally is how individual stocks behave on index jump days.

A prior would certainly be that many individual stocks also exhibit jumps on those days. We

identify jump events for single stocks by setting the posterior jump probability to 30%, as

indicated by our simulation study. Unexpectedly, our results show that we find days when the
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index jumps, but only a very small number of stocks also jump. For example, in Table 5 we

see that on January 4, 2000, only one stock jumps where the index exhibits a posterior jump

probability of over 28%, which constitutes a very high value as indicated by our simulation

exercise. On the other hand, we observe 72 stocks jumping on October 13, 1989, were the

posterior jump probability for the index is 1.

To understand why there are such different jump patterns, Table 7 presents the five

index jump days with the largest and smallest number of stocks jumping, respectively. For

those days with only few stocks jumping, we see that is even possible that only one stock out

of roughly 100 features a discontinuous price movement.

What do these findings imply in terms of how we should interpret the occurrence of an

index jump on these days? Obviously, given the small number of stocks jumping simultaneously,

there is no additivity in the sense that an index jump is the sum of jumps in individual stock

prices. On the other hand, the index return has to be equal to the weighted sum of individual

stock returns. The hypothesis therefore is that, to a very large extent, index jumps are

generated by diffusive price movements in the individual stocks, which happen to occur in

the same direction to a very large degree.

This reasoning can be verified by the results in Table 8, which show that in all of the

five days in Panel A the overwhelming majority of stocks exhibit returns with the same signs

on index jump days. So why is it that the individual stocks do not also jump on these days?

A look at the average conditional variance of stock returns on and one day before the index

jump days in Table 9 confirms the intuition that individual stock return volatility is much

higher than index volatility, so that it is more likely for stocks to have large returns in absolute

value generated by just the diffusive component of the stochastic process.

Since the index basically represents a portfolio, the index return is given by the weighted

average of the returns of the single stocks. On ’normal’ days diversification would result in
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an index return small enough in absolute value not to be considered a jump. Put differently,

due to diversification the volatility of the index is in general lower than the weighted average

of the volatilities of the single stocks. However, in case the vast majority of individual stocks

moves in the same direction there will hardly be any diversification. Hence, a resulting large

negative return of the index ’has to be’ identified by the model as a jump.

However, synchronous movements do not give the full picture. To find out if all the

index jumps in our sample are likely to be the result of index constituents moving in the

same direction, we analyze the jump probabilities of the different industries our sample firms

belong to.5 For the sake of brevity we concentrate our following analysis on the results found

for the SVJ model. The threshold for the jumps in the single stocks is set to 25% posterior

jump probability. Table 7, showing the five respective index jump days with the smallest and

largest number of jumping stocks also contains information on the average posterior jump

probabilities across industries. Here we see a clear difference between the index jump days

listed in both panels. For the days with the largest number of stocks jumping we observe

significantly higher average jump probability across all sectors than for index jump days with

the fewest stock jumping, where we find significant average jump probabilities for at most

one sector.

The important conclusion we draw from this difference is that the index jumps on days

with few stocks jumping are generated from diffusive movements in the stocks which go largely

into the same direction. We call these jumps ‘synchronicity jumps’. In contrast to this, the

index jumps on days with a large number of stocks are actually generated by jumps in stocks

across all sectors. We therefore call these index jumps ‘macro-driven’.
5The companies are assigned to industries according to the first two digits of the SIC codes (see siccode.

com). Our sector Primary contains the firms from the SIC industries “Agriculture, Forestry, Fishing” as well as
“Mining”, while Manufacturing contains the firms from “Construction” and “Manufacturing”. Transport is short
for the the SIC sector “Transport and Public Utilities”. Trade aggregates the SIC industries “Wholesale Trade”
and “Retail Trade”. Finance is short for “Finance, Insurance and Real Estate”, Services is the industry with
the same name in the SIC classification scheme, and PA is short for the SIC industry “Public Administration”.
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At this point, it is instructive to briefly come back to our discussion concerning the

identification of jump days. Since our estimation method rules out false positives with a

probability close to one, we are very confident that the ’synchronicity jumps’ we identify are

indeed index jumps which are properly identified by the models. This is important, since one

of the central contributions of our analysis is exactly the characterization of two economically

distinct types of jump events, so that we have to make sure that the identification of either

type of jumps is not due to a false rejection of a hypothesis.

It is of interest to investigate which events took place on the days we classify as index

jump days. Table 10 shows the results of Google searches for news stories on these particular

days. For the days with a large number of stocks jumping one usually gets back stories of

stock market crashes as a first or second hit. For example, the jumps on October 13, 1989,

and on October 27, 1997, can be clearly linked to crucial market wide events. The first event

was termed a “mini-crash” relating to a drop in prices in the junk bond markets, whereas

the second relates to an economic crisis in Asia (sometimes called the ’Asian flu’). These two

days also represent the two largest negative index returns in our sample. Also, the news for

February 27, 2007, frequently mention a large price drop in the Chinese stock market as an

important reason for the big loss in the S&P 100 on that day, so the reasons for this jump

are similar to the ones described above. In summary, the reason why we refer to these jumps

as ’macro-driven jumps’ is that a large number of stocks experiences a jump on these days,

and the reasons can be traced back to macroeconomic events.

3.5.3 Sector Analysis

To investigate if the separation of jump days into synchronicity and macro-driven jumps

carries over when using directly a sector index instead of average jump probabilities of single

stocks within the index we relate the sector jumps to the index jumps. To do that, we construct
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sector returns by taking the average of the daily stock returns weighted by the market value

of equity within the sector. Second, we estimate the SVIJ model for each sector and compute

the posterior jump probability for each day. We show the posterior jump probabilities for the

different sectors on the index jump days with largest and smallest numbers of stocks jumping

in Table 11.

The results reveal that the categorization between jumps induced by synchronous move-

ments and macroeconomic events also holds when looking at sector portfolio returns. We see

a clear difference in posterior jump probabilities between Panels A and B of the table. Taking

a posterior jump probability of 10% as threshold to identify a jump day we see that in Panel

A between 1-3 sectors jump whereas in Panel B 3-5 sectors jump. In addition to counting the

instances where the posterior jump probability crosses the threshold we also observe that the

probabilities reaching 99% in Panel B of the table are much larger than the magnitudes in

Panel A, reaching 36%.

3.6 Jump Distributions Across Sectors

To gain some more insights into the jump components of the average stock across sectors, we

look in more detail at the model parameters controlling the jump component.6 To do this we

modify the setup used in Equation (5) as follows

θki =
7∑

s=1
βk,sDi,s + εi (6)

with Di,s denoting a dummy that is one if company i belongs to sector s. Given the setup,

the regression coefficients represent the average parameter values of the constituents within

the sector.
6We thank an anonymous referee and the associate editor for this suggestion.
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The result of this exercise can be found in Table 12. The table contains five blocks, one

for each parameter relating to the jump part of the SVIJ model. The first row within each

block shows the parameter estimates, i.e., the sector averages, while the remaining rows show

p-values for hypothesis tests. When the sectors in the row and in the column are the same,

the number is the p-values for the test that the average of a certain parameter in the given

sector is equal to zero. When row and column are labeled differently, the number shown is

the p-value for the test that the given parameter is on average the same for the two sectors.

The first interesting observation is that the average µy are positive for all sectors. This

shows that the result of a positive unconditional average for µy shown in Table 1 is not caused

by specific effects which we observe only for a small subset of sectors. This gives further

evidence that the jump distribution of returns of single stocks is considerably different from

that of the index. Finally, the result that the average number of jumps per year is larger for

single stocks is also not sector-specific, but obtained across most of the industries.

4 Conclusion

This paper analyzes stochastic models for the dynamics of the S&P 100 index and its con-

stituent stocks. The models allow for a jump component in the price as well as in the condi-

tional variance process and are estimated Bayesian methods building on a MCMC algorithm

to obtain the posterior distribution.

Our results indicate a pronounced heterogeneity across the different assets with respect

to the parameters governing the stochastic processes. Unsurprisingly, the long-run level of

volatility is much higher for individual stocks than for the index. Furthermore, we find a

less pronounced leverage effect in the individual stocks than for the index. Considering the

distribution of the price jumps we show that the stylized fact of negative average jump sizes
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does not in general carry over from the index to individual stocks. A novel result of our study

is that we show via simulation that our estimation is able to cleanly identify a day as a jump

day when a jump has actually taken place.

A key result of our analysis is that there are actually two types of index jumps days,

characterized by either very few (in the case of the Poly-SVCJ model even zero) or very many

stocks jumping together with the index on the given day. The first type of index jump occurs

when many stocks exhibit a diffusive (i.e, not jump-induced) movement in the same direction,

which is why we call these jumps ‘synchronicity jumps’. In contrast to this, the second type

of index jump is generated by jumps in a large number of stocks across all sectors of the

economy. These jumps are consequently labeled ‘macro-driven jumps’.

Surprisingly, we find that the models under consideration do not identify an unusually

large number of jumps during 2008 financial crisis. Intuitively, this can be explained by

the prolonged period of high levels of conditional volatility during that time, which makes it

possible that large absolute index returns can even be generated by a pure stochastic volatility

model without a jump component.
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Table 2: Parameter Estimates and Priors (POLY-SVCJ Model)

A: Parameter Estimates B: Priors
Index Individual Stocks

Mean Std. Err. Avg. 2.5% 97.5%
µ 0.0507 0.0093 0.0136 -0.1221 0.0986 N(0,1)
α0 0.0080 0.0024 -0.0613 -0.3741 0.0484 N(0,1)
α1 -0.0012 0.0003 0.0685 -0.0221 0.5374 N(0,1)
α2 -0.0130 0.0053 0.0268 -0.0314 0.1319 N(0,1)
α3 0.0041 0.0016 -0.0022 -0.0193 0.0028 N(0,1)
σv 0.1241 0.0064 0.0824 0.0541 0.1460 ω2 ∼ IG(2,200)
ρ -0.7450 0.0359 -0.3330 -0.5124 -0.1131 ψ|ω2 ∼ N(1, 1/2ω2)
µY -0.8747 0.2321 0.5873 -0.6883 2.2823 N(0,100)
σY 1.5740 0.1577 3.3410 1.5896 8.8201 IG(α, β)
λ 0.0223 0.0051 0.0685 0.0178 0.1686 U(0,0.5)
λV - - - - - U(0,0.5)
µV 0.3912 0.0682 0.2862 0.0112 0.8195 G(10,0.1)
ρj -0.0030 0.0539 -0.0057 -0.0977 0.0423 N(0,4)

DIC Ranking

1: 72 2: 35 3: 33 4: 57 5: 5

NOTE: Panel A of the table shows parameter estimates and the Deviance Information Criterion
(DIC) developed in Spiegelhalter et al. (2002) for the POLY-SVCJ model. For the index, we show
the posterior mean and standard error. For the individual stocks, we present the cross-sectional
average and the 2.5% and 97.5% quantile. For the DIC we show the number of times that the model
was ranked 1-5 for the index and each constituent. Panel B of the table shows the prior distributions
for the parameters. N(µ, σ2) denotes a normal distribution, IG(α, β) denotes an inverse gamma
distribution, G(α, β) denotes a gamma distribution, and U(l,u) denotes a uniform distribution. We
follow Jacquier et al. (2004) and parameterize the priors for ρ and σv by defining ψ = ρσv and
ω = σ2

v(1− ρ2) and setting a prior for ψ and ω2. Descriptive statistics for the stocks in our sample
are shown in Table A.1 of the appendix.
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Table 3: Regression of Parameters on Firm Characteristics

Constant MV MB PR INV

µ
0.022 0.011 0.010 0.004 -0.003
(0.000) (0.000) (0.002) (0.247) (0.253)

α0
0.035 -0.000 -0.001 -0.006 0.001
(0.000) (0.898) (0.910) (0.001) (0.426)

α1
-0.024 -0.001 0.000 0.004 -0.001
(0.000) (0.738) (0.923) (0.002) (0.394)

σV
0.175 -0.012 -0.004 0.019 -0.005
(0.000) (0.002) (0.498) (0.097) (0.455)

ρ
-0.402 -0.010 0.001 -0.044 0.010
(0.000) (0.307) (0.953) (0.000) (0.261)

µy
0.748 -0.222 0.073 0.335 -0.111
(0.000) (0.000) (0.238) (0.000) (0.017)

σy
4.777 -0.671 0.117 0.816 -0.019
(0.000) (0.000) (0.483) (0.000) (0.901)

λ
0.048 -0.003 -0.003 -0.001 0.001
(0.000) (0.021) (0.139) (0.701) (0.747)

λv
0.025 -0.005 0.002 0.003 -0.001
(0.000) (0.000) (0.316) (0.021) (0.443)

µv
2.870 0.050 -0.497 -0.290 0.038
(0.000) (0.756) (0.001) (0.008) (0.740)

NOTE: The table shows parameter estimates for the regression of model parameters on firm charac-
teristics. The firm characteristics are those which are used in Fama and French (2015) as the basis
for sorts to generate risk factors. We compute the average value for the characteristic over time for
each index constituent and normalize the factor by deducting the mean and dividing by the standard
deviation. Estimation is performed using OLS with standard errors robustified for heteroskedasticity.
The numbers in parentheses are p-values.
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Table 4: Posterior Jump Probabilities on Jump vs. Non-jump
Days (SVIJ Model)

Index Single Stocks
Non-jump days Jump days Non-jump days Jump days

Mean 0.0145 0.1630 0.0416 0.2984
Median 0.0094 0.0224 0.0278 0.0913
Q99 0.1002 1.0000 0.2952 1.0000
Q95 0.0365 0.9691 0.1112 0.9980
Q05 0.0035 0.0051 0.0119 0.0174
Q01 0.0023 0.0033 0.0079 0.0115

NOTE: The table shows descriptive statistics for the posterior jump probabilities estimated by the
MCMC algorithm for the SVIJ model for non-jump and jump days. We simulate 1,000 price paths
based on the estimated parameters for the S&P 100 index and based on the cross-sectional average
of the parameter estimates for the single stocks. A day is labeled a jump day in the simulation when
the draw from the uniform distribution over the interval [0, 1] is less than or equal to λ∆t, where λ
is the estimated intensity for the Poisson process driving jumps (see Tables 1 and 2), and ∆t is 1
day.
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Table 5: Index Jump Days (SVIJ Model)

Date Return Jump Prob. # Jum. Prim. Man. Transp. Trade Fin. Serv. PA

13/10/1989 -6.53 99.99 72.00 79.60 73.04 65.45 53.86 60.44 66.70 92.03
16/10/1989 3.20 29.92 26.00 68.39 21.47 29.20 37.19 21.30 4.54 54.20
18/12/1989 -1.85 15.54 6.00 25.47 5.05 5.27 4.31 20.99 15.97 23.24
12/01/1990 -2.53 18.12 4.00 7.22 7.19 8.51 8.92 4.82 18.43 12.47
22/01/1990 -3.00 41.22 9.00 18.54 10.57 11.81 6.27 10.66 5.24 32.10
10/05/1991 -2.22 17.29 3.00 8.09 5.28 7.72 8.34 5.95 4.21 30.17
15/11/1991 -4.32 99.70 27.00 13.57 26.60 24.16 30.38 23.93 31.25 39.90
20/04/1992 -1.49 17.09 1.00 5.98 3.81 4.22 16.22 3.50 5.08 2.49
16/02/1993 -2.29 61.01 8.00 9.75 10.98 8.98 16.75 9.72 8.88 20.26
08/03/1993 2.20 18.07 6.00 7.23 8.32 9.95 10.45 17.53 6.00 16.68
21/05/1993 -1.62 23.03 1.00 7.19 3.38 3.48 5.99 5.07 2.92 3.50
18/06/1993 -1.39 17.67 4.00 5.35 7.39 3.32 6.31 5.08 3.36 2.06
04/02/1994 -2.36 99.05 10.00 11.18 11.42 12.60 4.66 9.37 23.61 48.37
24/02/1994 -1.38 39.14 1.00 12.09 3.95 4.72 5.41 4.96 1.39 16.14
22/11/1994 -1.89 26.01 9.00 12.33 11.99 4.06 5.46 12.33 20.46 4.34
18/05/1995 -1.65 27.06 4.00 11.23 7.69 5.31 5.34 2.87 7.16 5.20
08/03/1996 -3.17 86.21 11.00 10.47 11.64 10.71 6.12 31.90 4.17 42.56
08/04/1996 -1.82 32.04 4.00 18.70 4.16 19.43 5.14 11.74 2.04 2.90
02/05/1996 -1.62 17.79 2.00 15.44 3.32 5.75 5.71 20.70 4.11 2.45
05/07/1996 -2.32 21.25 7.00 11.39 4.49 25.10 4.32 19.73 2.92 5.07
15/07/1996 -2.83 21.34 10.00 21.37 9.78 10.43 18.67 5.08 10.87 13.30
27/10/1997 -7.09 43.76 56.00 55.68 48.01 48.32 50.22 36.87 46.88 12.45
04/08/1998 -3.76 15.05 4.00 11.11 6.75 12.04 5.68 6.68 21.68 22.33
31/08/1998 -7.52 16.08 15.00 12.00 15.29 15.10 20.70 8.72 27.42 7.47
20/07/1999 -2.50 22.97 1.00 11.52 4.35 3.51 5.00 5.49 12.43 4.50
04/01/2000 -3.85 28.57 1.00 7.14 4.66 6.27 5.10 6.98 3.76 7.02
14/04/2000 -6.01 18.66 6.00 17.92 8.48 8.41 7.67 11.99 14.37 4.67
17/09/2001 -5.42 27.84 27.00 8.66 27.73 22.77 25.08 20.90 16.01 12.52
24/03/2003 -3.73 18.70 5.00 7.75 10.66 8.70 12.35 11.46 12.02 15.16
20/01/2006 -1.91 56.07 9.00 28.87 7.04 6.13 4.02 20.69 15.91 98.71
27/11/2006 -1.25 26.09 6.00 5.68 7.44 2.27 7.02 19.04 18.34 2.82
25/01/2007 -1.29 60.78 4.00 8.33 4.83 4.81 23.37 9.37 6.74 4.05
27/02/2007 -3.63 99.60 61.00 27.96 41.31 49.32 46.93 46.91 25.02 18.23
13/03/2007 -2.04 26.13 8.00 4.84 8.74 4.84 19.58 31.06 3.43 3.87

32

Electronic copy available at: https://ssrn.com/abstract=1361861



Table 5: Index Jump Days (SVIJ Model) (continued)

Date Return Jump Prob. # Jum. Prim. Man. Transp. Trade Fin. Serv. PA

10/05/2007 -1.41 22.14 5.00 8.27 6.88 3.29 1.89 14.36 1.00 6.95
09/08/2007 -3.22 15.61 10.00 7.59 13.63 8.75 5.91 14.77 5.32 16.21
19/10/2007 -2.54 17.89 5.00 43.97 9.74 5.74 4.32 6.28 2.26 6.65
06/06/2008 -3.16 25.74 6.00 5.24 12.09 11.41 6.48 7.06 4.63 11.57
30/10/2009 -2.81 15.12 5.00 14.40 6.13 5.91 3.29 15.40 5.82 8.12
04/02/2010 -3.04 43.87 15.00 22.32 15.40 14.27 14.47 21.07 7.25 31.18
11/08/2010 -2.69 31.90 7.00 10.47 14.49 11.46 4.86 14.22 2.17 11.67
19/10/2010 -1.55 25.91 1.00 7.18 5.29 3.63 3.39 5.14 27.83 4.84
04/11/2010 1.94 18.79 13.00 35.47 12.23 3.96 11.64 22.79 3.62 27.78
28/01/2011 -1.74 16.62 7.00 5.86 7.01 18.02 31.95 6.28 28.19 4.68
22/02/2011 -1.86 20.67 8.00 7.03 5.27 10.25 2.90 26.50 15.70 11.08
16/03/2011 -2.23 17.22 4.00 7.98 5.68 8.69 10.62 7.55 23.14 9.15
01/06/2011 -2.21 22.66 11.00 9.23 14.16 11.74 4.18 19.50 4.39 11.60
07/11/2012 -2.63 43.30 18.00 24.77 10.75 19.19 2.81 46.22 8.25 8.76
25/02/2013 -1.75 17.64 9.00 16.42 9.22 6.28 15.14 21.74 2.13 21.55
20/06/2013 -2.46 34.38 16.00 15.53 15.69 20.47 19.88 7.68 11.53 21.07
03/02/2014 -2.23 15.22 11.00 9.79 11.12 19.06 7.16 10.51 17.32 14.96
10/04/2014 -2.04 41.61 12.00 14.45 11.29 10.03 8.36 26.00 9.14 5.74
31/07/2014 -2.07 62.25 18.00 7.71 18.44 24.91 8.19 26.48 6.05 8.28

NOTE: The table reports the return and the jump probability for the S&P 100 index for the days

when the SVIJ model identifies an index jump. “# Jum.” denotes the number of stocks exhibiting a

jump probability of more than 30 on those days. The following columns present the average posterior

jump probabilities for the stocks belonging to the respective sector based on 2-digit SIC codes (see

siccode.com). Prim. denotes the primary sector, containing firms from the SIC industries “Agriculture,

Forestry, Fishing” as well as “Mining”. Man. denotes that manufacturing sector, containing the firms

from “Construction” and “Manufacturing”. Transp. is short for the the SIC sector “Transport and

Public Utilities”. Trade aggregates the SIC industries “Wholesale Trade” and “Retail Trade”. Fin. is

short for “Finance, Insurance and Real Estate”, Serv. is the service industry (with the same name in

the SIC classification scheme), and PA is short for the SIC industry “Public Administration”.
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Table 6: Posterior Jump Probabilities and Return Bounds Implied
by Diffusive Volatility (SVIJ Model)

Date Return Jump Prob. UB LB
13/10/1989 -6.5273 0.9999 1.7388 -1.6606
27/10/1997 -7.0927 0.4376 3.8312 -3.7530
31/08/1998 -7.5165 0.1608 4.6915 -4.6133
14/04/2000 -6.0088 0.1866 3.9368 -3.8586
29/09/2008 -9.1862 0.0281 8.0448 -7.9666
07/10/2008 -5.9769 0.0182 8.1067 -8.0285
09/10/2008 -7.9154 0.0219 8.3175 -8.2393
13/10/2008 10.6551 0.0137 8.6374 -8.5592
15/10/2008 -8.7550 0.0238 8.2877 -8.2095
22/10/2008 -5.9697 0.0187 7.9616 -7.8834
28/10/2008 10.2961 0.0137 7.9055 -7.8273
13/11/2008 6.3306 0.0118 7.2032 -7.1250
19/11/2008 -6.0350 0.0210 6.9160 -6.8378
20/11/2008 -6.6214 0.0239 7.0423 -6.9641
21/11/2008 6.0205 0.0118 7.1527 -7.0745
24/11/2008 5.8915 0.0118 6.8991 -6.8209
01/12/2008 -8.9448 0.0575 6.2871 -6.2089
10/03/2009 6.0499 0.0174 5.3066 -5.2284
23/03/2009 6.7381 0.0324 4.5939 -4.5157
08/08/2011 -6.4430 0.0506 5.2347 -5.1565

NOTE: This table shows the 20 largest daily absolute returns for the S&P 100 index in our sample
period. We show the return, the posterior jump probability (“Prob.”), and the upper and lower
bound of the interval around µ generated by the diffusive volatility, UB and LB using the results
of the SVIJ model. The bounds are computed as UB = µ+ 2

√
Vt−1 and LB = µ− 2

√
Vt−1, where

Vt is the conditional return variance on day t and µ denotes the expected return.

34

Electronic copy available at: https://ssrn.com/abstract=1361861



T
ab

le
7:

In
de

x
Ju

m
p
D
ay
s
w
it
h
L
ar
ge
st

an
d
Sm

al
le
st

N
um

be
r
of

St
oc
ks

Ju
m
pi
ng

(S
V
IJ

M
od

el
)

D
at
e

R
et
ur
n

Ju
m
p
Pr

ob
.

#
Ju

m
p.

St
oc
ks

Pr
im

.
M
an

.
Tr

an
sp
.

Tr
ad

e
Fi
n.

Se
rv
.

PA
Pa

ne
lA

:J
um

p
da

ys
w
ith

lo
we

st
nu

m
be

r
of

st
oc
ks

ju
m
pi
ng

21
/0
5/
19
93

-1
.6
2

23
.0
3

1
7.
19

3.
38

3.
48

5.
99

5.
07

2.
92

3.
50

24
/0
2/
19
94

-1
.3
8

39
.1
4

1
12
.0
9

3.
95

4.
72

5.
41

4.
96

1.
39

16
.1
4

20
/0
7/
19
99

-2
.5
0

22
.9
7

1
11
.5
2

4.
35

3.
51

5.
00

5.
49

12
.4
3

4.
50

04
/0
1/
20
00

-3
.8
5

28
.5
7

1
7.
14

4.
66

6.
27

5.
10

6.
98

3.
76

7.
02

19
/1
0/
20
10

-1
.5
5

25
.9
1

1
7.
18

5.
29

3.
63

3.
39

5.
14

27
.8
3

4.
84

Pa
ne
lB

:J
um

p
da

ys
w
ith

la
rg
es
t
nu

m
be

r
of

st
oc
ks

ju
m
pi
ng

13
/1
0/
19
89

-6
.5
3

99
.9
9

72
79
.6
0

73
.0
4

65
.4
5

53
.8
6

60
.4
4

66
.7
0

92
.0
3

27
/0
2/
20
07

-3
.6
3

99
.6
0

61
27
.9
6

41
.3
1

49
.3
2

46
.9
3

46
.9
1

25
.0
2

18
.2
3

27
/1
0/
19
97

-7
.0
9

43
.7
6

56
55
.6
8

48
.0
1

48
.3
2

50
.2
2

36
.8
7

46
.8
8

12
.4
5

15
/1
1/
19
91

-4
.3
2

99
.7
0

27
13
.5
7

26
.6
0

24
.1
6

30
.3
8

23
.9
3

31
.2
5

39
.9
0

17
/0
9/
20
01

-5
.4
2

27
.8
4

27
8.
66

27
.7
3

22
.7
7

25
.0
8

20
.9
0

16
.0
1

12
.5
2

N
O
T
E:

T
he

ta
bl
e
re
po

rt
s
th
e
re
tu
rn

an
d
th
e
ju
m
p
pr
ob

ab
ili
ty

fo
r
th
e
S&

P
10

0
in
de

x
fo
r
th
e
fiv

e
in
de

x
ju
m
p
da

ys
in

th
e
SV

IJ
m
od

el
w
ith

th
e
la
rg
es
t
an

d
th
e
sm

al
le
st

nu
m
be

r
of

sin
gl
e
st
oc
ks

ju
m
pi
ng

,r
es
pe

ct
iv
el
y.

“#
Ju

m
p.

St
oc
ks
”
de

no
te
s
th
e
nu

m
be

r
of

st
oc
ks

ex
hi
bi
tin

g
a
ju
m
p
pr
ob

ab
ili
ty

of
m
or
e
th
an

30
%

on
th
os
e
da

ys
.T

he
fo
llo

w
in
g
co
lu
m
ns

pr
es
en
t
th
e
av
er
ag

e
po

st
er
io
r

ju
m
p
pr
ob

ab
ili
tie

s
fo
r
th
e
st
oc
ks

be
lo
ng

in
g
to

th
e
re
sp
ec
tiv

e
se
ct
or

ba
se
d
on

2-
di
gi
t
SI
C

co
de

s
(s
ee

si
cc

od
e.

co
m)
.P

ri
m

.d
en

ot
es

th
e
pr
im

ar
y
se
ct
or
,c

on
ta
in
in
g
fir
m
s
fr
om

th
e
SI
C

in
du

st
rie

s
“A

gr
ic
ul
tu
re
,F

or
es
tr
y,

Fi
sh
in
g”

as
w
el
la

s
“M

in
in
g”
.M

an
.d

en
ot
es

th
at

m
an

uf
ac
tu
rin

g
se
ct
or
,c

on
ta
in
in
g
th
e
fir
m
s
fr
om

“C
on

st
ru
ct
io
n”

an
d
“M

an
uf
ac
tu
rin

g”
.T

ra
ns

p.
is
sh
or
t
fo
r
th
e
th
e
SI
C

se
ct
or

“T
ra
ns
po

rt
an

d
Pu

bl
ic

U
til
iti
es
”.

Tr
ad

e
ag

gr
eg
at
es

th
e
SI
C

in
du

st
rie

s
“W

ho
le
sa
le

Tr
ad

e”
an

d
“R

et
ai
lT

ra
de

”.
Fi

n.
is

sh
or
t
fo
r

“F
in
an

ce
,I
ns
ur
an

ce
an

d
R
ea
lE

st
at
e”
,S

er
v.

is
th
e
se
rv
ic
e
in
du

st
ry

(w
ith

th
e
sa
m
e
na

m
e
in

th
e
SI
C

cl
as
sifi

ca
tio

n
sc
he

m
e)
,a

nd
PA

is
sh
or
t
fo
r
th
e
SI
C

in
du

st
ry

“P
ub

lic
A
dm

in
ist

ra
tio

n”
.

35

Electronic copy available at: https://ssrn.com/abstract=1361861

siccode.com


Table 8: Signs of Individual Stock Returns on Index Jump Days
(SVIJ Model)

Date #R > 0 % R > 0 #R < 0 %R < 0
Panel A: Lowest number of stocks jumping

21/05/1993 6.00 0.07 84.00 0.93
24/02/1994 13.00 0.14 77.00 0.86
20/07/1999 19.00 0.20 75.00 0.80
04/01/2000 12.00 0.13 83.00 0.87
19/10/2010 9.00 0.10 82.00 0.90

Panel B: Largest number of stocks jumping
13/10/1989 0.00 0.00 92.00 1.00
27/02/2007 0.00 0.00 93.00 1.00
27/10/1997 0.00 0.00 96.00 1.00
15/11/1991 2.00 0.02 90.00 0.98
17/09/2001 14.00 0.14 85.00 0.86

NOTE: The table shows the five days in our sample where an index jump (as identified by the SVIJ
model) is accompanied by the smallest and the largest number of single stock jumps, respectively.
#(R > 0) (#(R < 0)) denotes the absolute number of stocks with positive (negative) returns on
the given days, while %(R > 0) (%(R < 0)) denotes the corresponding percentage.
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Table 12: Jump Parameters across Sectors (SVIJ Model)

Prim. Man. Transp. Trade Fin. Serv. PA

µY

Sector averages 0.614 0.707 0.605 0.992 0.666 1.179 0.821
Prim. 0.000 0.586 0.964 0.082 0.798 0.028 0.353
Man. 0.000 0.536 0.114 0.800 0.037 0.542
Transp. 0.000 0.069 0.757 0.023 0.322
Trade 0.000 0.122 0.476 0.456
Fin. 0.000 0.041 0.474
Serv. 0.000 0.180
PA 0.005

σY

Sector averages 3.214 4.754 4.266 4.810 5.521 5.778 1.721
Prim. 0.000 0.000 0.036 0.006 0.016 0.000 0.000
Man. 0.000 0.362 0.927 0.429 0.132 0.000
Transp. 0.000 0.449 0.228 0.052 0.000
Trade 0.000 0.510 0.244 0.000
Fin. 0.000 0.818 0.000
Serv. 0.000 0.000
PA 0.000

λ

Sector averages 0.075 0.040 0.050 0.049 0.056 0.044 0.050
Prim. 0.000 0.005 0.070 0.043 0.237 0.019 0.037
Man. 0.000 0.160 0.147 0.194 0.533 0.002
Transp. 0.000 0.841 0.687 0.471 0.931
Trade 0.000 0.577 0.547 0.840
Fin. 0.000 0.365 0.610
Serv. 0.000 0.330
PA 0.000

λV

Sector averages 0.022 0.023 0.025 0.025 0.022 0.035 0.012
Prim. 0.000 0.819 0.665 0.680 0.950 0.075 0.183
Man. 0.000 0.709 0.742 0.804 0.026 0.025
Transp. 0.000 0.996 0.606 0.081 0.027
Trade 0.000 0.639 0.103 0.040
Fin. 0.000 0.030 0.071
Serv. 0.000 0.000
PA 0.005
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Table 12: Jump Parameters across Sectors (SVIJ Model)
(continued)

Prim. Man. Transp. Trade Fin. Serv. PA

µV

Sector averages 3.280 2.213 2.849 3.763 4.675 1.878 3.453
Prim. 0.000 0.080 0.594 0.795 0.146 0.07 0.795
Man. 0.000 0.276 0.384 0.001 0.541 0.000
Transp. 0.000 0.623 0.054 0.204 0.349
Trade 0.034 0.636 0.308 0.863
Fin. 0.000 0.002 0.139
Serv. 0.000 0.010
PA 0.000

NOTE: The table reports the results from a regression of model parameters on a set of sector dummies.

The respective sectors are based on 2-digit SIC codes (see siccode.com). Prim. denotes the primary

sector, containing firms from the SIC industries “Agriculture, Forestry, Fishing” as well as “Mining”. Man.

denotes that manufacturing sector, containing the firms from “Construction” and “Manufacturing”.

Transp. is short for the the SIC sector “Transport and Public Utilities”. Trade aggregates the SIC

industries “Wholesale Trade” and “Retail Trade”. Fin. is short for “Finance, Insurance and Real

Estate”, Serv. is the service industry (with the same name in the SIC classification scheme), and PA is

short for the SIC industry “Public Administration”. Within each block we report the parameter averages

in the first row, followed by p-values of t-tests in the remaining rows of the block. In case the sectors

in the column and row are equal, the value shown is the p-value for the test that the corresponding

parameter is equal to zero on average. In case the sectors in the column and row are not equal, the

value shown is the p-value for the test that the corresponding parameter is on average the same in the

two sectors.
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Figure 1: Parameter Box Plots (SVIJ Model)
The figure shows the box plots for the parameters of the SVIJ model. From top to bottom, the plots show
the estimates for the jump intensity λ, the expected jump size in return µY , the standard deviation of the
jump size in return σY , and the expected jump size in variance µV for the individual stocks. The green dots
indicate the corresponding estimates for the index.
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Appendix

Table A.1: Descriptive Statistics of the Returns Data

Name Mean Vol Skew Kurt Sample Period Included in Index

S&P 100 INDEX 0.0343 1.1728 −1.1766 27.6996 1982-08-02/2014-12-31 —

ABBOTT LABORATORIES 0.0719 1.6257 −0.1041 7.2728 1980-01-02/2014-12-31 2005-08-30/2014-12-31

ABBVIE INC 0.1501 1.5597 −0.2305 3.7572 2013-01-03/2014-12-31 2013-01-02/2014-12-31

ACCENTURE LTD BERMUDA 0.0790 2.0663 0.1605 9.9740 2001-07-20/2014-12-31 2012-03-19/2014-12-31

AES CORP 0.0826 3.3378 0.0392 32.3182 1991-06-27/2014-12-31 2000-12-18/2008-12-21

ALLIED CHEMICAL CORP 0.0615 1.9843 0.2593 25.2694 1980-01-02/2014-12-31 1999-12-02/2014-12-31

ALLSTATE CORP 0.0594 2.0515 −0.0218 19.5724 1993-06-04/2014-12-31 2003-04-16/2014-12-31

ALUMINUM COMPANY AMER 0.0533 2.2701 0.1412 12.2234 1980-01-02/2014-12-31 1989-09-11/2012-03-18

AMAZON COM INC 0.1977 4.1282 0.9847 11.5115 1997-05-16/2014-12-31 2009-01-02/2014-12-31

AMERICA ONLINE INC DEL 0.1538 3.1131 0.3418 9.0893 1992-03-20/2014-12-31 2000-06-19/2014-12-31

AMERICAN ELECTRIC POWER CO 0.0511 1.3461 0.1163 26.6300 1980-01-02/2014-12-31 1989-09-11/2014-03-23

AMERICAN EXPRESS CO 0.0781 2.2427 0.1368 12.2596 1980-01-02/2014-12-31 1989-09-11/2014-12-31

AMERICAN GENERAL INS CO 0.0792 1.7044 0.6678 20.5178 1980-01-02/2001-08-28 1991-09-20/2001-08-29

AMERICAN HOME PRODUCTS CORP 0.0654 1.7628 −0.4139 16.8989 1980-01-02/2009-10-15 2008-11-19/2009-10-15

AMERICAN INFORMATION TECHS 0.0930 1.4258 −0.0882 12.3473 1984-02-17/1999-10-08 1989-09-11/1999-10-11

AMERICAN INTERNATIONAL GRP 0.0569 2.9631 1.7055 109.1684 1980-01-02/2014-12-31 1989-09-11/2008-12-21

AMERICAN TELEPHONE & TELEG 0.0458 1.8846 0.2003 15.7507 1980-01-02/2005-11-18 1989-09-11/2005-11-20

AMGEN INC 0.1108 2.5679 0.2829 8.9464 1983-06-20/2014-12-31 1999-11-08/2014-12-31

AMP INC 0.0702 1.9227 3.2582 90.9085 1980-01-02/1999-04-01 1989-09-11/1999-04-01

ANADARKO PETROLEUM CORP 0.0689 2.3675 0.0064 9.5869 1986-10-03/2014-12-31 2012-03-19/2014-12-31

ANHEUSER BUSCH COS INC 0.0797 1.5206 0.1727 12.0377 1980-01-02/2008-11-17 2001-11-30/2008-11-18

APACHE CORP 0.0595 2.4167 0.3459 6.9580 1980-01-02/2014-12-31 2011-03-21/2015-03-22

APPLE COMPUTER INC 0.1102 3.0053 −0.3784 20.0699 1980-12-15/2014-12-31 2007-06-01/2014-12-31

ATLANTIC RICHFIELD CO 0.0591 1.6313 0.5264 6.4429 1980-01-02/2000-04-17 1989-09-11/2000-04-17

AVON PRODUCTS INC 0.0450 2.0731 −0.4025 23.5689 1980-01-02/2014-12-31 1989-09-11/2012-03-18

BAKER HUGHES INC 0.0580 2.6247 −0.0569 15.5477 1987-04-27/2014-12-31 1989-09-11/2013-06-06

BANC ONE CORP 0.0788 1.8068 0.0946 12.2909 1980-01-02/2004-06-30 1998-09-16/2004-06-30

BANK NEW YORK INC 0.0760 2.1860 0.5306 17.8470 1980-01-02/2014-12-31 2007-07-02/2014-12-31

BANKAMERICA CORP 0.0688 2.1509 0.3705 16.7452 1980-01-02/1998-09-30 1989-09-11/1998-09-30

BAXTER TRAVENOL LABS INC 0.0558 1.8009 −0.8241 17.3099 1980-01-02/2014-12-31 1989-09-11/2015-06-30

BELL ATLANTIC CORP 0.0538 1.5620 0.2056 11.1753 1984-02-17/2014-12-31 1989-09-11/2014-12-31

BERKSHIRE HATHAWAY INC DEL 0.0510 1.5004 1.0250 15.0967 1996-05-10/2014-12-31 2010-02-16/2014-12-31

BETHLEHEM STEEL CORP 0.0037 3.7097 0.4113 85.6385 1980-01-02/2002-06-11 1989-09-11/2000-12-10

BLACK & DECKER MFG CO 0.0495 2.2718 0.2994 13.4094 1980-01-02/2010-03-12 1989-09-11/2007-03-22

BOEING CO 0.0649 1.9240 0.0362 8.2104 1980-01-02/2014-12-31 1989-09-11/2014-12-31

BOISE CASCADE CORP 0.0464 2.7668 0.9903 22.8418 1980-01-02/2013-11-05 1989-09-11/2006-11-30

BRISTOL MYERS CO 0.0666 1.7138 −0.3464 16.4181 1980-01-02/2014-12-31 1989-09-11/2014-12-31

BRUNSWICK CORP 0.0883 2.8465 0.6917 29.5052 1980-01-02/2014-12-31 1989-09-11/2000-12-17

BURLINGTON NORTHERN INC 0.0843 1.9329 0.2613 14.6961 1980-01-02/2010-02-12 1989-09-11/2010-02-15

BURROUGHS CORP 0.0433 3.5554 1.3325 39.7964 1980-01-02/2014-12-31 1989-09-11/2006-10-01

CAMPBELL SOUP CO 0.0606 1.5917 0.4189 9.9510 1980-01-02/2014-12-31 1998-10-01/2011-03-20
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CAPITAL CITIES COMMUNICATIONS 0.0910 1.4446 0.8221 16.6306 1980-01-02/1996-02-09 1989-09-11/1996-02-11

CAPITAL ONE FINANCIAL CORP 0.1075 3.1526 −0.1844 16.8348 1994-11-17/2014-12-31 2006-12-01/2014-12-31

CATERPILLAR TRACTOR INC 0.0588 1.9891 −0.0718 9.0190 1980-01-02/2014-12-31 2005-08-19/2014-12-31

CELGENE CORP 0.1484 3.7360 0.2958 8.3539 1987-07-29/2014-12-31 2015-03-23/2014-12-31

CHAMPION INTERNATIONAL CORP 0.0492 1.9932 0.3683 12.6571 1980-01-02/2000-06-20 1989-09-11/2000-06-18

CHEMICAL NEW YORK CORP 0.0730 2.3385 0.4510 16.6208 1980-01-02/2014-12-31 2000-12-18/2014-12-31

CHRYSLER CORP 0.1192 2.6628 0.6932 8.3257 1980-01-02/1998-11-12 1994-03-18/1998-11-12

CIGNA CORP 0.0667 2.0513 −0.7635 30.3265 1982-04-21/2014-12-31 1989-09-11/2008-12-21

CISCO SYSTEMS INC 0.1335 2.7626 0.2716 9.1528 1990-02-20/2014-12-31 1996-04-01/2014-12-31

CLEAR CHANNEL COMM.CATIONS 0.1088 2.3059 0.2779 10.1534 1984-04-23/2008-07-30 2000-12-18/2008-07-30

COASTAL CORP 0.0885 2.2246 0.2402 7.7094 1980-01-02/2001-01-29 1991-04-02/2001-01-29

COCA COLA CO 0.0690 1.5382 −0.0175 18.0170 1980-01-02/2014-12-31 1989-09-11/2014-12-31

COLGATE PALMOLIVE CO 0.0737 1.6001 0.2726 13.7735 1980-01-02/2014-12-31 1989-09-11/2014-12-31

COLUMBIA HOSPITAL CORP 0.0695 2.2850 0.2226 9.1957 1990-05-18/2006-11-17 1996-01-02/2006-11-19

COMCAST CORP NEW 0.0638 1.9496 0.4501 16.4274 2002-11-20/2014-12-31 2005-03-28/2014-12-31

COMMERCIAL CREDIT CO 0.0653 2.9103 1.2585 47.7310 1986-10-30/2014-12-31 1998-10-07/2014-12-31

COMMONWEALTH EDISON CO 0.0618 1.3330 −0.2357 9.3855 1980-01-02/2000-10-20 1989-09-11/2000-10-22

COMPUTER SCIENCES CORP 0.0614 2.2768 −0.5338 20.6186 1980-01-02/2014-12-31 1989-09-11/2007-07-01

CONSOLIDATED FOODS CORP 0.0751 1.7167 0.3055 25.7033 1980-01-02/2014-08-28 1999-12-01/2011-03-20

CONTROL DATA CORP DE 0.0499 2.4132 0.2903 9.2141 1980-01-02/2007-11-08 1989-09-11/2000-12-17

COSTCO WHOLESALE CORP 0.0883 2.2817 0.0115 9.3191 1985-11-29/2014-12-31 2009-01-02/2014-12-31

COVIDIEN LTD 0.0714 1.7210 1.0893 18.0512 2007-07-03/2014-12-31 2007-07-02/2009-06-04

DELL COMPUTER CORP 0.1254 3.0933 0.0037 7.4415 1988-06-23/2013-10-29 2004-07-01/2013-01-01

DELTA AIR LINES INC 0.0012 2.7491 −0.4874 23.8109 1980-01-02/2005-10-12 1989-09-11/2005-08-18

DEVON ENERGY CORP NEW 0.0594 2.3414 0.1143 8.6114 1999-08-19/2014-12-31 2008-12-22/2014-12-31

DIGITAL EQUIPMENT CORP 0.0394 2.3889 −0.2140 12.7653 1980-01-02/1998-06-11 1989-09-11/1998-06-11

DISNEY WALT PRODUCTIONS 0.0757 1.9467 −0.2903 16.8432 1980-01-02/2014-12-31 1989-09-11/2014-12-31

DOW CHEMICAL CO 0.0574 1.9982 −0.0364 10.3790 1980-01-02/2014-12-31 1989-09-11/2014-12-31

DU PONT E I DE NEMOURS & CO 0.0575 1.7318 −0.0720 8.1014 1980-01-02/2014-12-31 1989-09-11/2014-12-31

EASTMAN KODAK CO 0.0109 2.8249 1.8525 101.2664 1980-01-02/2012-01-18 1989-09-11/2007-04-01

EBAY INC 0.1474 3.6787 1.6611 20.3824 1998-09-25/2014-12-31 2012-03-19/2015-07-19

EL PASO NATURAL GAS CO 0.0712 2.8792 −0.2316 27.7503 1992-03-16/2012-05-24 2001-01-30/2008-12-21

EMC CORP MA 0.1250 3.3334 −0.1229 11.5252 1986-04-07/2014-12-31 2000-04-18/2014-12-31

EMERSON ELECTRIC CO 0.0598 1.6415 0.0655 10.0294 1980-01-02/2014-12-31 2011-03-21/2014-12-31

EXXON CORP 0.0649 1.4931 −0.0184 19.5141 1980-01-02/2014-12-31 1989-09-11/2005-08-28

FACEBOOK INC 0.1526 3.0153 1.7286 20.0418 2012-05-21/2014-12-31 2013-12-23/2014-12-31

FEDERAL EXPRESS CORP 0.0691 2.1041 0.1931 6.7529 1980-01-02/2014-12-31 1989-09-11/2014-12-31

FIRST ALABAMA BANCSHARES INC 0.0654 2.4806 1.5101 59.2637 1980-01-02/2014-12-31 2006-11-06/2011-03-20

FIRST BANK SYSTEM INC 0.0679 1.9883 0.1791 21.0219 1980-01-02/2014-12-31 2001-02-27/2014-12-31

FIRST NATIONAL ST BANC. 0.0882 1.6984 −0.0039 21.9818 1980-01-02/1995-12-29 1994-07-13/1996-01-01

FIRST UNION CORP 0.0705 2.7970 4.2971 321.7767 1980-01-02/2008-12-31 2006-10-02/2009-01-01

FLEET CALL INC 0.1363 4.3190 0.6717 9.8212 1992-01-29/2005-08-12 2000-12-18/2005-08-14

FLUOR CORP NEW 0.0772 2.6595 0.2407 9.3999 2000-12-26/2014-12-31 1989-09-11/2000-12-17

FORD MOTOR CO DEL 0.0705 2.3896 0.5249 16.7504 1980-01-02/2014-12-31 1989-09-11/2014-12-31

FREEPORT MCMORAN COP. & GLD. 0.0674 3.0267 0.0612 8.0146 1995-08-01/2014-12-31 2009-11-06/2015-03-22

GALEN HEALTH CARE INC 0.4542 3.2914 4.5166 38.4934 1993-03-09/1993-08-31 1989-09-11/1993-03-07
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GENERAL DYNAMICS CORP 0.0702 1.7574 0.3222 10.0093 1980-01-02/2014-12-31 1989-09-11/2014-12-31

GENERAL ELECTRIC CO 0.0632 1.7319 0.1696 12.1074 1980-01-02/2014-12-31 1989-09-11/2014-12-31

GENERAL MOTORS CO 0.0245 1.9556 0.0730 6.3680 2010-11-19/2014-12-31 2013-06-07/2014-12-31

GILEAD SCIENCES INC 0.1436 3.3830 0.3577 7.9008 1992-01-23/2014-12-31 2008-12-22/2014-12-31

GILLETTE CO 0.0946 1.8885 −0.1493 18.2620 1980-01-02/2005-09-30 2000-12-12/2005-10-02

GLOBAL CROSSING LTD −0.2070 8.0609 −0.1735 18.9322 1998-08-17/2002-01-30 2000-12-18/2001-10-09

GOLDMAN SACHS GROUP INC 0.0612 2.5330 0.8161 15.5364 1999-05-05/2014-12-31 2002-07-22/2014-12-31

GOOGLE INC −0.0332 1.3342 −0.3257 3.9544 2014-04-04/2014-12-31 2014-04-03/2014-12-31

GOOGLE INC 0.1111 2.0476 0.8505 13.2077 2004-08-20/2014-12-31 2006-11-20/2014-12-31

GREAT WESTERN FINANCIAL CORP 0.0898 2.4521 0.3476 19.7749 1980-01-02/1997-07-01 1989-09-11/1997-07-01

GULF & WESTERN INDS INC 0.0879 1.7611 0.3831 10.0506 1980-01-02/1994-07-07 1989-09-11/1993-11-23

HALLIBURTON COMPANY 0.0584 2.5840 −0.2697 17.0982 1980-01-02/2014-12-31 1989-09-11/2014-12-31

HARRIS CORP 0.0573 2.0798 0.1318 10.5475 1980-01-02/2014-12-31 1989-09-11/1999-11-07

HEINZ H J CO 0.0671 1.4860 0.4932 10.8937 1980-01-02/2013-06-07 1989-09-11/2013-06-06

HEWLETT PACKARD CO 0.0698 2.3768 0.0606 9.5706 1980-01-02/2014-12-31 1989-09-11/2014-12-31

HOLIDAY INNS INC 0.1462 2.3836 −0.5722 36.6306 1980-01-02/1990-02-07 1989-09-11/1990-02-07

HOME DEPOT INC 0.1251 2.2725 −0.2434 14.2860 1981-09-23/2014-12-31 1999-10-12/2014-12-31

HOMESTAKE MINING CO 0.0443 2.8279 0.4877 7.3386 1980-01-02/2001-12-14 1989-09-11/2000-12-17

HONEYWELL INC 0.0749 1.7748 −0.0464 8.8373 1980-01-02/1999-12-01 1989-09-11/1999-12-01

IDEC PHARMACEUTICALS CORP 0.1558 3.8988 0.3487 10.9795 1991-09-18/2014-12-31 2014-03-24/2014-12-31

INTEL CORP 0.0897 2.5912 −0.0100 8.4256 1980-01-02/2014-12-31 1993-03-08/2014-12-31

INTERNATIONAL BUSINESS MACHS 0.0503 1.7118 0.0011 13.5375 1980-01-02/2014-12-31 1989-09-11/2014-12-31

INTERNATIONAL FLAVORS & FRAG 0.0564 1.6633 0.1486 9.7585 1980-01-02/2014-12-31 1989-09-11/2000-12-17

INTL MINERALS & CHEM CO 0.0553 1.9555 1.1227 43.8950 1980-01-02/2000-10-17 1989-09-11/2000-10-17

INTERNATIONAL PAPER CO 0.0545 2.0807 0.1447 14.3673 1980-01-02/2014-12-31 1989-09-11/2008-12-21

INTERNATIONAL TEL & TELEG 0.0692 1.7419 −0.4519 22.6547 1980-01-02/2014-12-31 1989-09-11/1995-12-19

ITT HARTFORD GROUP INC 0.0832 3.6644 4.8677 161.6137 1995-12-21/2014-12-31 1995-12-20/2008-12-21

JOHNSON & JOHNSON 0.0670 1.4805 −0.1422 10.4876 1980-01-02/2014-12-31 1989-09-11/2014-12-31

K MART CORP 0.0028 2.9084 −1.4132 52.1555 1980-01-02/2002-12-18 1989-09-11/2000-12-17

KINDER MORGAN INC 0.0572 1.4405 0.2657 8.7428 2011-02-14/2014-12-31 2015-03-23/2014-12-31

KRAFT FOODS INC 0.0369 1.3281 −0.3082 10.7533 2001-06-14/2014-12-31 2007-04-02/2014-12-31

LEHMAN BROTHERS HOLDINGS INC 0.0226 3.8205 −4.8513 140.0087 1994-06-01/2008-09-17 2000-12-18/2008-09-16

LILLY ELI & CO 0.0608 1.7193 −0.6146 21.6938 1980-01-02/2014-12-31 2012-03-19/2014-12-31

LIMITED STORES INC 0.1147 2.4454 0.2591 7.4929 1980-01-02/2014-12-31 1989-09-11/2007-10-24

LITTON INDUSTRIES INC 0.0635 1.9833 2.0809 111.1357 1980-01-02/2001-05-30 1989-09-11/1994-03-17

LOCKHEED CORP 0.0729 1.9107 0.2539 13.7155 1980-01-02/2014-12-31 2008-12-22/2014-12-31

LOWES COMPANIES INC 0.0956 2.2709 0.1404 7.4377 1980-01-02/2014-12-31 2008-12-22/2014-12-31

LUCENT TECHNOLOGIES INC 0.0439 3.8410 −0.0236 11.1382 1996-04-08/2006-11-30 1999-04-02/2006-11-30

MCI COMMUNICATIONS CORP 0.1309 2.7754 0.0772 11.6370 1980-01-02/1998-09-14 1989-09-11/1998-09-15

MASTERCARD INC 0.1664 2.4505 0.7597 11.3591 2006-05-26/2014-12-31 2008-07-18/2014-12-31

MAY DEPARTMENT STORES CO 0.0740 1.8467 0.1657 9.5297 1980-01-02/2005-08-29 1993-11-24/2005-08-28

MCDONALDS CORP 0.0696 1.5808 −0.0059 8.3107 1980-01-02/2014-12-31 1989-09-11/2014-12-31

MEDIMMUNE INC 0.1693 4.1281 0.2680 12.6918 1991-05-09/2007-06-18 2000-12-18/2007-05-31

MELVILLE CORP 0.0727 1.8495 −0.2962 14.1645 1980-01-02/2014-12-31 2007-03-23/2014-12-31

MERCK & CO INC 0.0645 1.6725 −0.4963 15.7386 1980-01-02/2014-12-31 1989-09-11/2014-12-31

MERRILL LYNCH & CO INC 0.0782 2.7541 0.5784 21.2506 1980-01-02/2008-12-31 1989-09-11/2009-01-01

49

Electronic copy available at: https://ssrn.com/abstract=1361861



Name Mean Vol Skew Kurt Sample Period Included in Index

METLIFE INC 0.0804 2.8039 0.6068 23.2407 2000-04-06/2014-12-31 2009-06-05/2014-12-31

MICROSOFT CORP 0.1143 2.2217 −0.1290 13.5677 1986-03-14/2014-12-31 1997-08-18/2014-12-31

MIDDLE SOUTH UTILITIES INC 0.0556 1.5671 −0.1894 18.4182 1980-01-02/2014-12-31 1989-10-06/2012-03-18

MINNESOTA MINING & MFG CO 0.0607 1.4817 −0.4948 17.9756 1980-01-02/2014-12-31 1989-09-11/2014-12-31

MOBIL CORP 0.0751 1.6884 0.0008 16.0957 1980-01-02/1999-11-30 1989-09-11/1999-11-30

MONSANTO CO 0.0805 1.9509 −0.3507 16.5776 1980-01-02/2003-04-15 1989-09-11/2003-04-15

MONSANTO CO NEW 0.0985 2.2486 0.1318 10.3522 2000-10-19/2014-12-31 2009-03-17/2014-12-31

MORGAN STANLEY GROUP INC 0.0822 2.9231 3.8522 122.0236 1986-03-24/2014-12-31 2000-04-03/2014-12-31

NATIONAL DETROIT CORP 0.0862 1.5419 0.1807 6.4340 1980-01-02/1998-10-01 1989-09-11/1998-10-01

NATIONAL OILWELL INC 0.1131 3.2491 0.1810 9.0072 1996-10-30/2014-12-31 2008-04-22/2015-03-22

NATIONAL SEMICONDUCTOR CORP 0.0822 3.4263 1.2795 29.2925 1980-01-02/2011-09-23 1989-09-11/2007-07-01

NCNB CORP 0.0715 2.5100 0.7587 31.7124 1980-01-02/2014-12-31 1997-07-02/2014-12-31

NEWS CORP 0.0637 2.2513 0.6366 14.4908 2004-11-15/2014-12-31 2009-10-16/2014-12-31

NIKE INC 0.0950 2.2192 0.1775 8.8340 1980-12-03/2014-12-31 2008-12-22/2014-12-31

NORFOLK SOUTHERN CORP 0.0674 1.8796 0.0281 8.4887 1982-06-28/2014-12-31 1989-09-11/2014-12-31

NORTHERN NAT GAS CO 0.0438 3.2118 5.4086 441.1611 1980-01-02/2002-01-11 2000-12-11/2001-11-29

NORTHERN TELECOM LTD 0.0122 3.2614 −0.4326 26.5146 1980-01-02/2009-01-13 1989-09-11/2002-07-21

NORTHWEST BANCORPORATION 0.0829 2.2071 1.3609 30.9468 1980-01-02/2014-12-31 1999-01-04/2014-12-31

NYNEX CORP 0.0703 1.2448 0.0116 21.1318 1984-02-17/1997-08-14 1995-07-31/1997-08-17

NYSE GROUP INC 0.0331 3.1962 1.0572 17.2035 2006-03-09/2013-11-12 2007-10-25/2011-03-20

OCCIDENTAL PETROLEUM CORP 0.0606 1.9711 0.0733 11.5760 1980-01-02/2014-12-31 1989-09-11/2000-12-17

ORACLE SYSTEMS CORP 0.1424 3.2087 0.4584 15.3404 1986-03-13/2014-12-31 1996-02-12/2014-12-31

PEPSICO INC 0.0707 1.5945 0.1918 9.9154 1980-01-02/2014-12-31 1989-09-11/2014-12-31

PFIZER INC 0.0682 1.7527 −0.0580 7.1721 1980-01-02/2014-12-31 2000-12-18/2014-12-31

PHARMACIA & UPJOHN INC 0.0775 2.0571 −0.2234 7.1764 1995-11-06/2000-03-31 1989-09-11/2000-04-02

PHILADELPHIA ELECTRIC CO 0.0573 1.4983 0.1878 11.9797 1980-01-02/2014-12-31 2000-10-23/2014-12-31

PHILIP MORRIS INC 0.0890 1.6769 −0.2565 15.1802 1980-01-02/2014-12-31 2001-10-10/2014-12-31

PHILIP MORRIS INTERNATIONAL 0.0560 1.4665 0.1642 12.2630 2008-04-01/2014-12-31 2008-03-31/2014-12-31

PHILLIPS PETROLEUM CO 0.0636 1.9736 0.0286 9.4972 1980-01-02/2014-12-31 2006-12-01/2014-12-31

POLAROID CORP −0.0219 2.7873 −0.8217 20.8630 1980-01-02/2001-10-09 1989-09-11/2000-12-11

PRICELINE COM INC 0.1343 4.6438 0.2881 16.6555 1999-03-31/2014-12-31 2015-07-01/2014-12-31

PROCTER & GAMBLE CO 0.0639 1.4724 −1.3897 48.0556 1980-01-02/2014-12-31 1998-06-12/2014-12-31

PROMUS COMPANIES INC 0.0902 2.4311 0.2926 6.9420 1990-02-27/2008-01-25 1990-02-08/2008-01-28

QUALCOMM INC 0.1419 3.3219 0.9578 11.8472 1991-12-16/2014-12-31 2008-07-31/2014-12-31

RALSTON PURINA CO 0.0848 1.6452 1.0845 20.6945 1980-01-02/2001-12-12 1989-09-11/2001-12-12

RAYTHEON CO 0.0556 1.7719 −1.5036 59.1846 1980-01-02/2014-12-31 1989-09-11/2014-12-31

ROCKWELL INTERNATIONAL CORP 0.0770 2.2723 −0.1074 9.1508 1996-12-17/2014-12-31 1989-09-11/2008-04-21

SCHERING PLOUGH CORP 0.0755 2.0287 −0.2580 13.2578 1980-01-02/2009-11-03 2008-12-22/2009-11-03

SCHLUMBERGER LTD 0.0564 2.1973 −0.0622 8.0232 1980-01-02/2014-12-31 1989-09-11/2014-12-31

SEARS ROEBUCK & CO 0.0699 2.1427 −0.0957 21.4413 1980-01-02/2005-03-24 1989-09-11/2005-03-27

SIMON PROPERTY GROUP INC 0.0826 2.0631 0.9723 25.3419 1993-12-15/2014-12-31 2012-03-19/2014-12-31

SKYLINE CORP 0.0305 2.5161 0.4262 9.5888 1980-01-02/2014-12-31 1989-09-11/1995-07-30

SOUTHERN CO 0.0644 1.2359 0.1019 14.3641 1980-01-02/2014-12-31 1989-09-11/2014-12-31

SOUTHWESTERN BELL CORP 0.0563 1.6269 0.1115 15.3978 1984-02-17/2014-12-31 2001-08-30/2014-12-31

SQUIBB CORP 0.1075 1.8673 1.2111 27.8156 1980-01-02/1989-10-03 1989-09-11/1989-10-05

STANDARD OIL CO CALIFORNIA 0.0618 1.6604 0.1778 11.3158 1980-01-02/2014-12-31 2005-10-04/2014-12-31

50

Electronic copy available at: https://ssrn.com/abstract=1361861



Name Mean Vol Skew Kurt Sample Period Included in Index

STANDARD OIL CO IND 0.0689 1.6268 −0.1362 12.9094 1980-01-02/1998-12-31 1989-09-11/1999-01-03

STARBUCKS CORP 0.1195 2.5889 0.2055 9.2841 1992-06-29/2014-12-31 2012-03-19/2014-12-31

TANDY CORP 0.0311 2.9874 0.0142 18.9871 1980-01-02/2014-12-31 1989-09-11/2006-11-05

TEKTRONIX INC 0.0537 2.3927 0.4827 18.2175 1980-01-02/2007-11-21 1989-09-11/2000-12-17

TELEDYNE INC 0.0638 2.7064 0.5007 10.8077 1980-01-02/2014-12-31 1989-09-11/2008-03-30

TEXAS INSTRUMENTS INC 0.0773 2.5917 0.1542 9.8111 1980-01-02/2014-12-31 1989-09-11/2014-12-31

TOYS R US INC 0.0763 2.3302 0.3190 10.2141 1980-01-02/2005-07-21 1989-09-11/2005-07-21

TYCO LABS INC 0.0874 2.3186 0.4469 40.1974 1980-01-02/2014-12-31 2000-10-18/2009-03-16

UAL INC 0.0318 3.2699 −1.3699 56.0458 1980-01-02/2003-04-02 1989-09-11/1994-07-12

UNION PACIFIC CORP 0.0670 1.7747 −0.1085 8.4833 1980-01-02/2014-12-31 2011-03-21/2014-12-31

UNITED HEALTHCARE CORP 0.1239 2.7098 −0.0004 20.7194 1984-10-18/2014-12-31 2008-01-29/2014-12-31

UNITED PARCEL SERVICE INC 0.0325 1.4728 0.3712 10.6931 1999-11-11/2014-12-31 2005-11-21/2014-12-31

UNITED TECHNOLOGIES CORP 0.0679 1.7043 −0.4090 15.5116 1980-01-02/2014-12-31 1989-09-11/2014-12-31

UNITED TELECOMMUNICATIONS 0.0568 2.5963 0.0770 20.7018 1980-01-02/2013-07-10 2005-08-15/2012-03-18

VIACOM INC 0.0621 2.5252 0.5624 13.2874 1990-06-15/2014-12-31 2000-05-05/2008-12-21

VISA INC 0.1159 2.1614 0.3222 10.3211 2008-03-20/2014-12-31 2011-03-21/2014-12-31

WAL MART STORES INC 0.0930 1.7866 0.2376 6.6456 1980-01-02/2014-12-31 1989-09-11/2005-08-28

WALGREEN CO 0.0868 1.7948 0.1262 8.2066 1980-01-02/2014-12-31 2008-12-22/2014-12-31

WESTERN BANCORPORATION 0.0814 1.9801 1.4664 28.7596 1980-01-02/1996-03-29 1989-09-11/1996-03-31

WESTINGHOUSE ELECTRIC CORP 0.0841 2.1743 0.0871 21.1441 1980-01-02/2000-05-03 1998-11-13/2000-05-04

WEYERHAEUSER CO 0.0513 2.0307 −0.1422 9.8389 1980-01-02/2014-12-31 1989-09-11/2005-08-28

WILLIAMS COS 0.0843 2.9563 1.9961 126.7370 1980-01-02/2014-12-31 1989-09-11/2013-12-22

XEROX CORP 0.0445 2.3887 0.2469 24.6742 1980-01-02/2014-12-31 1989-09-11/2005-08-28

NOTE: This table shows the mean, volatility, skewness, and kurtosis of the returns for the index and

the single stocks. The last two columns show the time period used for the model estimation and the time

period during which the stock is included in the index. The table shows daily returns in percent.
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