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timation risk is mainly driven by the parameter uncertainty regarding the
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ate alternative to the traditional Markowitz approach since there are no

expected asset returns which have to be estimated and thus the impact

of estimation errors can be substantially reduced. But in many practical
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that case the investor has to minimize the variance of the portfolio re-

turn by satisfying some specific constraints for the portfolio weights. Such
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LINEAR STATISTICAL INFERENCE FOR GLOBAL AND

LOCAL MINIMUM VARIANCE PORTFOLIOS

GABRIEL FRAHM

Abstract. Traditional portfolio optimization has been often criticized since

it does not account for estimation risk. Theoretical considerations indicate

that estimation risk is mainly driven by the parameter uncertainty regard-

ing the expected asset returns rather than their variances and covariances.

This is also demonstrated by several numerical studies. The global minimum

variance portfolio has been advocated by many authors as an appropriate al-

ternative to the traditional Markowitz approach since there are no expected

asset returns which have to be estimated and thus the impact of estima-

tion errors can be substantially reduced. But in many practical situations

an investor is not willing to choose the global minimum variance portfolio,

especially in the context of top down portfolio optimization. In that case

the investor has to minimize the variance of the portfolio return by satisfy-

ing some specific constraints for the portfolio weights. Such a portfolio will

be called ‘local minimum variance portfolio’. Some finite sample hypothe-

sis tests for global and local minimum variance portfolios are presented as

well as the unconditional finite sample distribution of the estimated port-

folio weights and the first two moments of the estimated expected portfolio

returns.

1. Motivation

Consider a d-dimensional random vector R = (R1, . . . , Rd) of asset returns at
the end of a certain investment horizon. It is assumed that the random vector
R is multivariate normally distributed, viz R ∼ Nd(µ,Σ), where µ (d× 1) is an
unknown vector of expected asset returns and Σ (d× d) is an unknown positive
definite matrix containing the variances and covariances of the asset returns.
The so-called ‘global minimum variance portfolio’ (GMVP) is defined as

w
(d×1)

= (w1, . . . , wd) := arg min
v

Var
(
R′v
)

under the budget constraint 1′v = 1, where v (d × 1) denotes a vector of port-
folio weights and 1 symbolizes a vector of ones or the one scalar, respectively.
Any other portfolio which minimizes the variance of the portfolio return R′v
but satisfies some additional constraints will be called ‘local minimum variance
portfolio’ (LMVP). In this work only linear constraints will be considered.

During the past decades traditional portfolio optimization has been often
criticized since it does not account for estimation risk (Klein and Bawa, 1976,
Michaud, 1989). At the beginning of modern portfolio optimization it was gen-
erally agreed that the parameters of interest, i.e. the mean and (co-)variances
of asset returns can be estimated accurately so that estimation errors are negli-
gible. Although this conjecture might be true for the variances and covariances
if the sample size is large enough compared to the number of assets, it is not an
appropriate simplification for the expected asset returns in most practical sit-
uations (Chopra and Ziemba, 1993, Kempf and Memmel, 2002, Merton, 1980).

1
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Nowadays many procedures for taking the parameter uncertainty into account
can be found in the literature. A rather simple alternative to the traditional
approach is given by the GMVP. It has been advocated by many authors (e.g.
Jagannathan and Ma, 2003, Ledoit and Wolf, 2003) and indeed the GMVP
seems to be a convenient choice since on the one hand it follows the basic idea
of Markowitz (1952), i.e. searching for an efficient portfolio by diversification,
but on the other hand there are no expected asset returns which have to be
estimated for calculating the GMVP and thus the impact of estimation errors
can be substantially reduced.

However, in many practical situations an investor cannot or, say, is not willing
to choose the GMVP. For example, portfolio managers of mutual funds often
have to observe certain limits regarding the choice of portfolio weights. This
is a typical situation in top down portfolio management. That means the set
of available assets is divided into some subsets of assets, each subset is divided
into some further subsets, etc. These subsets are generally referred to as ‘asset
classes’ usually according to some industry sector, rating, or regional classifica-
tion. Now, top down investment means that the amount of capital is allocated
to the top level partition at first. Given the portfolio weights for that partition,
somebody has to choose some optimal portfolio weights for the subsequent asset
classes, etc., so that each of the succeeding decisions are limited by the preced-
ing allocations. Hence, there are a number of linear restrictions which have to
be satisfied when searching for a minimum variance portfolio and thus we may
be interested in testing linear hypotheses concerning the LMVP rather than the
GMVP. In this work I will present some finite sample hypothesis tests for global
and local minimum variance portfolios as well as the unconditional finite sample
distribution of the estimated portfolio weights and the first two moments of the
estimated expected portfolio returns.

2. Hypothesis Tests for the Global Minimum Variance Portfolio

2.1. Theoretical Foundation. Kempf and Memmel (2006) showed that min-
imizing the global variance of the portfolio return can be viewed as a linear
regression problem. Note that the return of the GMVP can be written as

(2.1.1) (1 − w2 − . . . − wd)R1 + w2R2 + . . . + wdRd = η + ε ,

where ε ∼ N (0, σ2). Now we define β1 := η, βj := wj , ∆Rj := R1 − Rj for
j = 2, . . . , d, and u := ε so that Eq. 2.1.1 becomes equivalent to

(2.1.2) R1 = β1 + β2∆R2 + . . . + βd∆Rd + u .

The following proposition is a standard result of linear regression theory. It is
crucial for understanding the basic idea of the subsequent derivations and thus
it will be recalled for convenience.

Proposition 2.1.1. Let Z = (Z1, . . . , Zd) be a d-dimensional random vector
with positive definite covariance matrix. Consider the vector

β
(d×1)

= (β1, . . . , βd) := arg min
b

IE
(
(Z1 − b1 − b2Z2 − . . . − bdZd)

2
)
,

where b = (b1, . . . , bd) and define

u := Z1 − β1 − β2Z2 − . . . − βdZd .
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The vector β exists and is uniquely defined. More precisely, the subvector βs :=
(β2, . . . , βd) is given by

βs = Var (Zs)−1
Cov (Z1, Z

s) ,

where Zs := (Z2, . . . , Zd), Var(Zs) ((d − 1) × (d − 1)) is the covariance matrix
of Zs, and Cov (Z1, Z

s) is the (d − 1) × 1 vector of covariances between Z1 and
Zj (j = 2, . . . , d). Moreover, the parameter β1 is given by

β1 = IE (Z1) − IE (Zs)′ βs

and it holds that IE(u) = 0 as well as Cov(Xj , u) = 0 for j = 2, . . . , d .

Proof. Since

IE
((

Z1 − b1 − Zs′bs
)2)

= Var
(
Z1 − b1 − Zs′bs

)
+
(
IE
(
Z1 − b1 − Zs′bs

))2

= Var
(
Z1 − Zs′bs

)
+
(
IE (Z1) − b1 − IE (Zs)′ bs

)2
,

where bs := (b2, . . . , bd), it is clear that

β1 = IE (Z1) − IE (Zs)′ βs

and thus IE(u) = 0. That means we can solve the minimization problem equiv-
alently by minimizing

(2.1.3) IE
(
(Z∗

1 − b2Z
∗

2 − . . . − bdZ
∗

d)2
)

,

where Z∗

j := Zj − IE(Zj) for j = 1, . . . , d . Now we define Z∗s := (Z∗

2 , . . . , Z∗

d )

so that (2.1.3) corresponds to

IE
((

Z∗

1 − Z∗s′bs
)2)

= Var (Z1) − 2Cov (Z1, Z
s)′ bs + bs′

Var (Zs) bs .

Due to the positive definiteness of Var(Z) also Var(Zs) is positive definite.
Hence, we have a simple quadratic minimization problem and its unique so-
lution is given by

βs = Var (Zs)−1
Cov (Z1, Z

s) .

Now we can calculate the (d − 1) × 1 vector of covariances between Zj (j =
2, . . . , d) and u, i.e.

Cov (Zs, u) = Cov
(
Zs, Z1 − β1 − Zs′βs

)

= Cov (Z1, Z
s) − Var (Zs)βs = 0 .

�

The parameters β1, . . . , βd in Eq. 2.1.2 are chosen in such a way that IE(u) = 0
and Var(u) = E(u2) is minimal, i.e. Cov(∆Rj , u) = 0 (j = 2, . . . , d). That
means Eq. 2.1.2 indeed is a proper linear regression equation satisfying the
standard assumptions of linear regression theory, especially the strict exogeneity
assumption (see e.g. Hayashi, 2000, p. 7). For that reason it is possible to
develop several exact hypothesis tests for the GMVP by standard methods of
econometrics (cf. Kempf and Memmel, 2006).

The next corollary states that the converse of Proposition 2.1.1 is true. As
we will see later on, this result implies that the standard test statistics for the
GMVP generally must not be applied for testing a LMVP.
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Corollary 2.1.2. Let Z = (Z1, . . . , Zd) be a d-dimensional random vector with
positive definite covariance matrix. Search for some numbers b1, . . . , bd such that
IE(u∗) = 0 and Cov(Zj , u

∗) = 0 for j = 2, . . . , d , where

u∗ := Z1 − b1 − b2Z2 − . . . − bdZd .

The vector b = (b1, . . . , bd) exists and is uniquely defined by b = β where β is
given by Proposition 2.1.1.

Proof. The proof follows immediately from the proof of Proposition 2.1.1 and
noting that the linear equation

0 = Cov (Zs, u∗) = Cov (Z1, Z
s) − Var (Zs) bs

has a unique solution due to the positive definiteness of Var(Zs). �

2.2. Statistical Inference. Of course, in practice the weights of the GMVP
are unknown, i.e. they have to be estimated from historical data. Let

R
(n×d)

:=




R11 R12 · · · R1d

R21 R22 · · · R2d
...

...
...

Rn1 Rn2 · · · Rnd




be a sample of n > d independent copies of R . Now we define

(2.2.1) X
(n×d)

:=




1 X12 · · · X1d

1 X22 · · · X2d
...

...
...

1 Xn2 · · · Xnd


 ,

where Xij := Ri1 − Rij (i = 1, . . . , n, j = 2, . . . , d) and

(2.2.2) Y
(n×1)

:=




Y11

Y21
...

Yn1


 ,

where Yi1 ≡ Ri1 (i = 1, . . . , n). Similarly, we will also write X := (1,X2, . . . ,Xd)
(d × 1), Xs := (X2, . . . ,Xd) ((d − 1) × 1), and Y ≡ R1 (1 × 1).

According to the standard notation of linear regression theory the sample
version of the linear model represented by Eq. 2.1.2 is given by

(2.2.3) Y = Xβ + u ,

where β = (β1, . . . , βd) (d × 1) contains the weights β2, . . . , βd as well as the
expected return β1 of the GMVP, whereas u := (u1, . . . , un) is an n × 1 vector
of unobservable residuals. Hence, the ordinary least squares (OLS) estimator
for β can be calculated by

(2.2.4) β̂OLS =
(
β̂OLS,1, . . . , β̂OLS,d

)
=
(
X

′
X
)
−1

X
′
Y .

In fact the weights of the GMVP – except for the first one – are estimated by

β̂s
OLS :=

(
β̂OLS,2, . . . , β̂OLS,d

)
= Ω̂−1ω̂ ,
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where Ω̂ is the sample covariance matrix of Xs and ω̂ is the (d − 1) × 1 vector
of the sample covariances between Y and Xj (j = 2, . . . , d). That means by the
Gauss-Markov theorem

ŵ :=
(
1 − 1′β̂s

OLS, β̂
s
OLS

)

is the best linear unbiased estimator for the GMVP in the context of normally
distributed asset returns (Kempf and Memmel, 2006).

Now consider the fundamental least squares problem

(2.2.5) (Y − Xb)′ (Y − Xb) → min
b

!

under the additional constraint Hb = h where H (q × d) is a matrix with
rk(H) = q ≤ d and h (q×1) is an arbitrary vector. From linear regression theory
(see e.g. Greene, 2003, p. 100) we know that the solution of this minimization
problem is given by the restricted least squares (RLS) estimator

(2.2.6) β̂RLS := β̂OLS −
(
X

′
X
)
−1

H ′

(
H
(
X

′
X
)
−1

H ′

)
−1 (

Hβ̂OLS − h
)

.

The relation between the OLS estimator β̂OLS and the empirical residual û

(n × 1) can be represented by

(2.2.7) Y = Xβ̂OLS + û .

In contrast, we may write

(2.2.8) Y = Xβ̂RLS + û
∗

to indicate that û
∗ (n × 1) is the empirical residual with respect to β̂RLS and

not to β̂OLS .
We consider only inhomogeneous regressions and thus both û and û

∗ possess
zero sample means. That is to say (2.2.5) indeed leads to the local minimum
variance portfolio satisfying the given restriction Hb = h . But note that – in
contrast to the unrestricted case – each column of X is correlated with û

∗ in
general. More precisely, due to the fact that X

′
û = 0 and

û
∗ = û + X

(
β̂OLS − β̂RLS

)

(Greene, 2003, p. 101) we obtain

X
′
û
∗ = H ′

(
H
(
X

′
X
)
−1

H ′

)
−1 (

Hβ̂OLS − h
)

.

So the RLS estimator corresponds to

β̂RLS = β̂OLS −
(
X

′
X
)
−1

X
′
û
∗ ,

where X
′
û
∗ 6= 0 if the linear restriction is binding. This is an empirical conse-

quence of Corollary 2.1.2.
An exact or, say, finite sample hypothesis test against H0 : Hβ = h is given

by the next proposition. For some applications of that F test to financial data
see Kempf and Memmel (2006).

Proposition 2.2.1. Consider Eq. 2.2.3, Eq. 2.2.7, and Eq. 2.2.8, a q×d matrix
H with rk(H) = q ≤ d , and an arbitrary q × 1 vector h . If Hβ = h then

(2.2.9)
û
∗′
û
∗ − û

′
û

qσ̂2
∼ Fq,n−d ,

where σ̂2 := û
′
û/(n − d).
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Proof. Due to Proposition 2.1.1 and the fact that we consider a sample of in-
dependent identically normally distributed random vectors the residual u does
not depend on the regressor matrix X . That means IE(u |X) = IE(u) = 0 as
well as Var(u |X) = Var(u) ∝ In . Hence, the standard assumptions of linear
regression theory are satisfied and since u |X ∼ u is normally distributed we
can apply the F statistic given by the proposition. �

The F statistic (2.2.9) is not convenient if we do not want to calculate the
LMVP and its empirical residual explicitly. Nevertheless, for testing against H0

we do not need to calculate the LMVP at all. This is confirmed by the next
theorem.

Theorem 2.2.2. Consider Eq. 2.2.3, Eq. 2.2.4, and Eq. 2.2.7, a q × d matrix
H with rk(H) = q ≤ d , and an arbitrary q × 1 vector h . If Hβ = h then

(2.2.10)
(Hβ̂OLS − h)′(H (X′

X)−1 H ′)−1(Hβ̂OLS − h)

qσ̂2
∼ Fq,n−d ,

where σ̂2 = û
′
û/(n − d).

Proof. The F statistic given by the theorem corresponds to the F statistic of
Proposition 2.2.1 (see e.g. Greene, 2003, p. 102). �

Another important test is given by H0 : σ2 ≥ σ2
0 (for some σ2

0 > 0) which can
be tested by the next theorem.

Theorem 2.2.3. Let σ̂2 be the OLS estimator given by Theorem 2.2.2 for the
variance σ2 > 0 of the GMVP return. It holds that

n − d

σ2
· σ̂2 ∼ χ2

n−d .

Proof. This is a standard result from linear regression theory (see e.g. Greene,
2003, p. 50) if we recognize the linear regression model given by Eq. 2.2.3. �

Eventually the investor not only wants to know if the variance of the GMVP
is bounded by some number σ2

0 but also to test against H0 : η ≤ η0 where η
represents the true expected return of the GMVP. This can be done by applying
the next theorem.

Theorem 2.2.4. Consider Eq. 2.2.4 and note that β̂OLS,1 is the OLS estimator
for the expected return η of the GMVP. It holds that

β̂OLS,1 − η√
σ̂2 · (x ′Ω̂−1x + 1)/n

∼ t (n − d) ,

where t(n − d) denotes Student’s t-distribution with n − d degrees of freedom,

σ̂2 = û
′
û/(n−d), x ((d−1)×1) is the sample mean vector, and Ω̂ ((d−1)×(d−1))

is the sample covariance matrix of Xs.

Proof. From linear regression theory (see e.g. Greene, 2003, p. 51) we know that

β̂OLS,1 − η√
σ̂2 · [(X′X)−1]11

∼ t (n − d) ,

where
[
(X′

X)−1
]
11

denotes the upper left component of (X′
X)−1. Note that

[
(X′

X)−1
]
11

=
(
n − nx

′(Xs′
X

s)−1nx
)
−1

=
1

n
·
(
1 − nx

′(Xs′
X

s)−1
x
)
−1

,
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where X
s (n × (d − 1)) symbolizes the regressor matrix X without the column

of ones. Since
X

s′
X

s = n ·
(
Ω̂ + xx

′

)
,

due to the binomial inverse theorem (Press, 2005, p. 23) we conclude that

n ·
(
X

s′
X

s
)
−1

=
(
Ω̂ + xx

′

)
−1

= Ω̂−1 − Ω̂−1
xx

′Ω̂−1

1 + x ′Ω̂−1x
.

That is

1 − nx
′(Xs′

X
s)−1

x = 1 − x
′Ω̂−1

x +
(x ′Ω̂−1

x)2

1 + x ′Ω̂−1x
=

1

1 + x ′Ω̂−1x

and thus

[
(X′

X)−1
]
11

=
1

n
·
(
1 − nx

′(Xs′
X

s)−1
x
)
−1

=
x

′Ω̂−1
x + 1

n
.

�

3. Hypothesis Tests for Local Minimum Variance Portfolios

3.1. Theoretical Foundation. Consider the LMVP

(3.1.1) w∗

(d×1)
= (w∗

1, . . . , w
∗

d) := arg min
v

Var
(
R′v
)
,

where 1′v = 1 and some additional linear constraints are fulfilled. Using the
definitions above this can be formulated as a least squares problem, i.e.

(3.1.2) β∗

(d×1)
:= arg min

b
IE
((

Y − X ′b
)2)

under a linear constraint Hb = h where only the parameters b2, . . . , bd are
affected. Note that the unrestricted linear model given by Eq. 2.1.2 can be
equivalently written as

(3.1.3) Y = X ′β + u = β1 + Xs′βs + u ,

whereas the optimal solution (3.1.2) of the restricted minimization problem is
indicated by the linear equation

(3.1.4) Y = X ′β∗ + u∗ = β∗

1 + Xs′β∗s + u∗ ,

where β∗ = (β∗

1 , . . . , β∗

d) and β∗s := (β∗

2 , . . . , β∗

d). Eq. 3.1.4 is not a proper linear
regression equation since – due to Corollary 2.1.2 – the residual u∗ generally de-
pends on the components of X. Thus we cannot apply the standard F statistics
given by Eq. 2.2.9 or Eq. 2.2.10 to test against a linear hypothesis for a LMVP.
However, Eq. 3.1.4 can be rewritten so as to obtain a proper linear regression
equation and the standard F tests become applicable.

Since we are primarily interested in restricting the portfolio weights b2, . . . , bd

rather than the expected portfolio return b1 in (3.1.2) we may substitute the
linear restriction Hb = h by Hsbs = h , where Hs is a q × (d − 1) matrix with
rk(Hs) = q ≤ d − 1. More precisely, the q × d matrix H is decomposed into

H =
[
0 Hs

]
,

where 0 is a q × 1 vector of zeros and Hs is the residual part of H.
According to Rao (1965, p. 189) any general solution of the linear equation

Hsbs = h can be written as bs = bs
0 + Tas where bs

0 := (b02, . . . , b0d) is some
particular solution of the linear equation, T ((d − 1) × (d − q − 1)) is a matrix
with rk(T ) = d − q − 1 such that HsT = 0, and as := (a2, . . . , ad−q) is an
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arbitrary (d − q − 1) × 1 vector. That means the minimization problem given
by (3.1.2) can be reformulated as

(3.1.5) α
((d−q)×1)

:= arg min
a

IE
((

Y − a1 − Xs′bs
0 − Xs′Tas

)2)
,

without any restriction for a := (a1, . . . , ad−q) ((d − q) × 1). Now, if we define
Y ∗ := Y − Xs′bs

0 (1 × 1) and X∗s := (X∗

2 , . . . ,X∗

d−q) = T ′Xs ((d − q − 1) × 1),
Eq. 3.1.5 becomes equivalent to

α = arg min
a

IE
((

Y ∗ − a1 − X∗s′as
)2)

= arg min
a

IE
((

Y ∗ − X∗′a
)2)

with X∗ := (1,X∗

2 , . . . ,X∗

d−q) ((d− q)× 1). Thus we obtain the modified linear
model

(3.1.6) Y ∗ = X∗′α + u∗ = α1 + X∗s′αs + u∗ ,

where α1 = β∗

1 and αs := (α2, . . . , αd−q), which is quite similar to (3.1.4). How-

ever, the vector α is chosen without any restriction from R
d−q so that Var(u∗)

becomes minimal and it is guaranteed that the condition Hsβ∗s = h is always
satisfied after the reparameterization

β∗s := bs
0 + Tαs .

Since there is no restriction for α, Eq. 3.1.6 represents a proper linear regres-
sion equation, i.e. IE(u∗) = 0 and Cov(X∗

j , u∗) = 0 for j = 2, . . . , d − q . Recall
that β∗

2 , . . . , β∗

d correspond to the weights of the LMVP except for the first one
and b02, . . . , b0d are some weights of an arbitrary and thus possibly inefficient
portfolio satisfying the linear restriction. Hence the LMVP is attained by trans-
lating the inefficient portfolio w0 := (1 − 1′bs

0, b
s
0) into the efficient portfolio

w∗ = (1 − 1′β∗s, β∗s) under the given linear constraints, i.e.

w∗ = w0 +

[
−1′T

T

]
αs .

So the return of the LMVP amounts to

(3.1.7) R′w∗ = R′w0 + R′

[
−1′T

T

]
αs ,

where R′w0 is the return of the inefficient portfolio. The other term on the right
hand side of Eq. 3.1.7 can be also interpreted as a portfolio return. Note that
each column of the d × (d − q − 1) matrix

[
−1′T

T

]

sums up to zero. Here we can think of d − q − 1 self-financing rebalancing
strategies which on the one hand are necessary to translate the inefficient port-
folio into the LMVP and on the other hand sufficient to satisfy the given linear
restrictions. Now, similar to the approach of Kempf and Memmel (2006) we can
find the LMVP by solving the linear regression equation

(3.1.8) R′w0 = α1 + R′

[
1′T
−T

]
αs + u∗ .
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In fact, since

[
1′T
−T

]
′

R = T ′1R1 − T ′




R2

R3
...

Rd


 = T ′




R1 − R2

R1 − R3
...

R1 − Rd


 = T ′Xs = X∗s

and

R′w0 = R1 ·
(
1 − 1′bs

0

)
+




R2

R3
...

Rd




′

bs
0 = R1 −




R1 − R2

R1 − R3
...

R1 − Rd




′

bs
0 = Y − Xs′bs

0 = Y ∗,

Eq. 3.1.8 is equivalent to Eq. 3.1.6.
An important question is how to derive the needed quantities bs

0 and T . First
of all we assume that the matrix Hs is structured in such a way that it can be
decomposed into

(3.1.9) Hs =
[
H2 H3

]
,

where H2 is a q × q matrix with rk(H2) = q and H3 is a q × (d− q − 1) matrix.
A structure like this can be always found by a permutation of the columns of
Hs since rk(Hs) = q . Now let bs

0 = (γ, 0) where γ is a q × 1 vector and 0 is a
d− q − 1 vector of zeros. That means we are searching for a vector γ such that
Hsbs

0 = h or, equivalently, γ = H−1
2 h, i.e.

(3.1.10) bs
0 :=

[
H−1

2 h
0

]
.

Furthermore, consider the matrix

T =

[
Γ

Id−q−1

]
,

where Γ is a q × (d − q − 1) matrix. Now we are searching for Γ such that

HsT = H2Γ + H3 = 0 .

This leads to the solution

Γ = −H−1
2 H3 ,

which means that

(3.1.11) T :=

[
−H−1

2 H3

Id−q−1

]
.

3.2. Statistical Inference. Due to the preceding theoretical arguments we see
that the parameter vector α can be readily estimated by the OLS estimator

(3.2.1) α̂OLS :=
(
X

∗′
X

∗
)
−1

X
∗′
Y

∗ ,

where

(3.2.2) X
∗

(n×(d−q))
:=




1 X∗

12 · · · X∗

1,d−q

1 X∗

22 · · · X∗

2,d−q
...

...
...

1 X∗

n2 · · · X∗

n,d−q



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and

Y
∗

(n×1)
:=




Y ∗

1
Y ∗

2
...

Y ∗

n


 .

The relationship between the empirical residual û∗ (n×1) and the OLS estimator
α̂OLS can be represented by

(3.2.3) Y
∗ = X

∗α̂OLS + û
∗ ,

whereas for the RLS estimator

(3.2.4) β̂RLS =
(
β̂RLS,1, . . . , β̂RLS,d

)

we possess Eq. 2.2.8. The RLS estimator for β∗s corresponds to

(3.2.5) β̂s
RLS :=

(
β̂RLS,2, . . . , β̂RLS,d

)
= bs

0 + T α̂s
OLS = bs

0 + T Ω̂∗−1ω̂∗ ,

where α̂s
OLS

:= (α̂OLS,2, . . . , α̂OLS,d−q), Ω̂∗ is the sample covariance matrix of
X∗s and ω̂∗ is the (d − q − 1) × 1 vector of the sample covariances between Y ∗

and X∗

j (j = 2, . . . , d − q). Hence, by the Gauss-Markov theorem

ŵ∗ :=
(
1 − 1′β̂s

RLS, β̂s
RLS

)

is the best linear unbiased estimator for the LMVP w∗ represented by Eq. 3.1.1.
However, note that β̂RLS,1 = α̂OLS,1 is the least squares estimator for the ex-
pected return of the LMVP.

Now consider another linear hypothesis Gβ∗ = g , where G (p×d) is a matrix
with rk(G) = p ≤ d − q such that the stacked matrix

S
((p+q)×d)

:=

[
G
H

]

has rank p + q and g is an arbitrary p × 1 vector. We can decompose G by

G =
[
G1 Gs

]
,

where G1 (p × 1) is the first column of G and its residual part is given by Gs

(p × (d − 1)). Note that Gβ∗ = g is equivalent to

G1α1 + GsTαs = g − Gsbs
0 .

Thus, by defining

G∗

(p×(d−q))
:=
[
G1 GsT

]

and g∗ := g − Gsbs
0 (p × 1) we can substitute the original restriction Gβ∗ = g

by G∗α = g∗. Further, we can decompose Gs into

Gs =
[
G2 G3

]
,

where G2 (p × q) and G3 (p × (d − q − 1)). Now the stacked matrix S – which
contains the structure of our linear restrictions – is given by

(3.2.6) S
((p+q)×d)

=

[
G
H

]
=




G1
(p×1)

G2
(p×q)

G3
(p×(d−q−1))

0
(q×1)

H2
(q×q)

H3
(q×(d−q−1))


 ,
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where rk(S) = p + q . We can also define the vector

(3.2.7) s
((p+q)×1)

:=




g
(p×1)

h
(q×1)




so as to calculate the quantities

(3.2.8) G∗ =
[
G1 G3 − G2H

−1
2 H3

]

and g∗ = g − G2H
−1
2 h simply by s and S . This leads to the next theorem.

Theorem 3.2.1. Consider Eq. 2.2.8 and Eq. 3.1.4, as well as the quantities
given by Eq. 3.1.9, Eq. 3.2.6, Eq. 3.2.7, and Eq. 3.2.8. Let β∗ = (β∗

1 , β∗s) be
the parameter vector of the LMVP satisfying the linear restriction Hsβ∗s = h .
If in addition Gβ∗ = g then

(3.2.9)
(Gβ̂RLS − g)′(G∗ (X∗′

X
∗)−1 G∗′)−1(Gβ̂RLS − g)

pσ̂∗2
∼ Fp,n−d+q ,

where σ̂∗2 := û
∗′
û
∗/(n − d + q).

Proof. Similar to the proof of Theorem 2.2.2, from linear regression theory we
know that

(G∗α̂OLS − g∗)′(G∗ (X∗′
X

∗)−1 G∗′)−1(G∗α̂OLS − g∗)

pσ̂∗2
∼ Fq,n−d+q

and note that G∗α̂OLS − g∗ = Gβ̂RLS − g . �

Of course, we could have also give the F statistic in terms of the restricted and
unrestricted sum of squared residuals as in Proposition 2.2.1. Then one would
have to estimate not only the LMVP given by the linear restriction Hsβ∗s = h
but also the LMVP characterized by the additional constraint Gβ∗ = g which
seems to be rather cumbersome in practical situations.

The next two theorems are the natural counterparts of Theorem 2.2.3 and
Theorem 2.2.4.

Theorem 3.2.2. Let σ̂∗2 be the RLS estimator given by Theorem 3.2.1 for the
variance σ∗2 > 0 of the return of a LMVP with q linear restrictions for the
portfolio weights (without the budget constraint). It holds that

n − d + q

σ∗2
· σ̂∗2 ∼ χ2

n−d+q .

Proof. As mentioned in the proof of Theorem 2.2.3 this is a standard result
of linear regression theory where we have to consider only d − q instead of d
dimensions. �

Theorem 3.2.3. Consider Eq. 3.2.4 and note that β̂RLS,1 is the RLS estimator
for the expected return η∗ of a LMVP with q linear restrictions for the portfolio
weights (without the budget constraint). It holds that

β̂RLS,1 − η∗√
σ̂∗2 · (x∗′Ω̂∗−1x∗ + 1)/n

∼ t (n − d + q) ,

where t(n − d + q) denotes Student’s t-distribution with n − d + q degrees of
freedom, σ̂∗2 = û

∗′
û
∗/(n−d+ q), x

∗ ((d− q−1)×1) is the sample mean vector,

and Ω̂∗ ((d − q − 1) × (d − q − 1)) is the sample covariance matrix of X∗s.
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Proof. Note that β̂RLS,1 = α̂OLS,1 and follow the proof of Theorem 2.2.4. �

The latter two theorems can be used for testing against H0 : σ∗2 ≥ σ2
0 > 0 or

H0 : η∗ ≤ η0 , respectively.

4. Distribution of the Estimated Portfolio Weights

As it was shown before, finding a minimum variance portfolio is equivalent to
the fundamental least squares problem of linear regression theory. We have seen
that this is true not only for the GMVP (Kempf and Memmel, 2006) but also
for any LMVP possessing some linear restrictions for the portfolio weights after
some appropriate transformation of the data. Since the parameters of interest
can be represented by a proper linear regression equation, linear statistical infer-
ence can be readily done by applying standard methods of econometrics. More
precisely, we can derive the conditional distribution of β̂OLS under each realiza-
tion of X and so we are able to conduct exact hypothesis tests, calculate exact
confidence intervals, etc. However, I will not go into the details of linear statis-
tical inference given some realization of X since suchlike results for the GMVP
can be already found in Kempf and Memmel (2006). Note that after transform-
ing the data the same instruments can be applied for any LMVP. Instead, in the
following section I will concentrate on the unconditional finite sample distribu-
tion of the estimated weights of global and local minimum variance portfolios.
Although this is only loosely connected to linear statistical inference the uncon-
ditional distribution of the estimated portfolio weights might be of interest in
its own right.

4.1. Preliminary Definitions. The subsequent statements follow from linear
regression theory and so they are not merely valid in the context of portfolio
estimation, but rather for least squares parameter estimation in general. Nev-
ertheless, I will refer only to the estimation of portfolio weights and drop the
standard notation of linear regression. That means we turn back to the initial
notation. From now on ŵ denotes the estimator for the GMVP whereas ŵ∗

is an estimator for a LMVP. Correspondingly, w symbolizes the true GMVP
and w∗ is the true LMVP. The expected return of the GMVP is denoted by
η whereas the expected return of the LMVP is given by η∗. Moreover, σ2 is
the variance of the GMVP return and σ∗2 is the variance of the LMVP return.
The corresponding unbiased least squares estimators are given by η̂, η̂∗, σ̂2,
and σ̂∗2. In the following tk(a,B, ν) (with t(·) ≡ t1(·)) stands for the k-variate
t-distribution with ν > 0 degrees of freedom, location vector a (k × 1), and
positive semi-definite dispersion matrix B (k × k), i.e.

a +
ζ√
χ2

ν/ν
∼ tk(a,B, ν),

where ζ ∼ Nk(0, B) is stochastically independent of χ2
ν . Here we suppose that

ζ ∼ B
1
2 ξ ,

where ξ ∼ Nk(0, Ik) and B
1
2 is a matrix such that B

1
2 B

1
2
′ = B. Furthermore,

the following notation will be useful for the subsequent derivations:

(4.1.1) I
((d−1)×d)

:=
[
1 −Id−1

]
,
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so that IR = Xs and thus Ω := IΣI ′ is the covariance matrix of Xs. Analo-
gously, by the definition

(4.1.2) T
((d−q−1)×d)

:= T ′I =
[
T ′1 −T ′

]
,

we obtain TR = X∗s and Ω∗ := T ΣT ′ is the covariance matrix of X∗s.

4.2. Global Minimum Variance Portfolio. The next theorem provides the
unconditional finite sample distribution of the OLS estimator for the GMVP.
Another variant of this theorem can be found in Okhrin and Schmid (2006).

Theorem 4.2.1. Let w = (w1, . . . , wd) be the GMVP of d assets and ŵ =
(ŵ1, . . . , ŵd) the corresponding OLS estimator for a sample of asset returns with
size n ≥ d . It holds that

(ŵ2, . . . , ŵd) ∼ td−1

(
(w2, . . . , wd) ,

σ2

n − d + 1
·
(
IΣI ′

)
−1

, n − d + 1

)
,

where I is given by Eq. 4.1.1, σ2 = w′Σw is the variance of the GMVP return,
and Σ is the covariance matrix of R .

Proof. From linear regression theory we know that

(η̂, ŵ2, . . . , ŵd) |X ∼ Nd

(
(η,w2, . . . , wd) , σ2

(
X

′
X
)
−1
)

.

Define ŵs := (ŵ2, . . . , ŵd) and consider the partition

(
X

′
X
)
−1

=

[
a b′

b C

]
,

where a (1 × 1), b ((d − 1) × 1), and C ((d − 1) × (d − 1)). Then

σ2C = σ2 ·
(
X

s′
X

s − 1

n
·Xs′11′Xs

)
−1

=
σ2

n
·
(

1

n
· Xs′

X
s − xx

′

)
−1

=
σ2

n
· Ω̂−1

is the covariance matrix of ŵs |X . Hence,

ŵs |X ≡ ŵs | Ω̂−1 ∼ Nd−1

(
(w2, . . . , wd) ,

σ2

n
· Ω̂−1

)

and note that Ω̂−1 is inverse Wishart distributed. More precisely, it has a density
function of the form

p
(
Ω̂−1

)
∝ |Ω̂−1|−n+d−1

2 · exp

(
−1

2
· tr Ω̂ (Ω/n)−1

)

(Press, 2005, p. 117). So the joint density function of ŵs and Ω̂−1 is given by

p
(
ŵs, Ω̂−1

)
= p

(
ŵs | Ω̂−1

)
· p
(
Ω̂−1

)

∝ |Ω̂−1|−n+d

2 ×

exp

(
−1

2
· tr Ω̂

(
(Ω/n)−1 + n/σ2 · (ŵs − ws)(ŵs − ws)′

))
,

where ws := (w2, . . . , wd). Integrating the joint density function with respect to

Ω̂−1 leads to

p (ŵs) ∝ 1

(1 + (ŵs − ws)′(Ω/σ2)(ŵs − ws))
n

2



LINEAR STATISTICAL INFERENCE FOR MINIMUM VARIANCE PORTFOLIOS 14

(Press, 2005, p. 186), which is equivalent to

p (ŵs) ∝ 1
(
1 + (ŵs

−ws)′(σ2/(n−d+1)·Ω−1)−1(ŵs
−ws)

n−d+1

) (d−1)+(n−d+1)
2

.

After substituting Ω by IΣI ′ this corresponds to the density function of the
multivariate t-distribution (Press, 2005, p. 136) given by the theorem. �

An unbiased estimator for the covariance matrix of (ŵ2, . . . , ŵd) is provided
by the next corollary.

Corollary 4.2.2. Consider a sample of asset returns with size n ≥ d+2 and let
(ŵ2, . . . , ŵd) be the OLS estimator for the GMVP except for the first portfolio
weight. Then the matrix

V̂ar ((ŵ2, . . . , ŵd)) :=
σ̂2

n
·
(
IΣ̂I ′

)
−1

is an unbiased estimator for the covariance matrix of (ŵ2, . . . , ŵd), where I is
given by Eq. 4.1.1, σ̂2 = û

′
û/(n − d) is an unbiased estimator for the variance

of the GMVP, and Σ̂ denotes the sample covariance matrix of R .

Proof. The preceding theorem implies that the covariance matrix of (ŵ2, . . . , ŵd)
is given by

Var ((ŵ2, . . . , ŵd)) =
σ2

n − d − 1
· Ω−1.

From Wishart theory we know that Ω̂−1 ∼ W−1
d−1((Ω/n)−1, n + d − 1) (Press,

2005, p. 117). Hence we obtain

IE
(
Ω̂−1

)
=

(Ω/n)−1

(n + d − 1) − 2 · (d − 1) − 2
=

n

n − d − 1
· Ω−1

(Press, 2005, p. 119). Moreover, from linear regression theory we know that σ̂2

is a conditionally unbiased estimator for σ2. That means

IE

(
σ̂2

n
· Ω̂−1

)
= IE

(
IE

(
σ̂2

n
· Ω̂−1 | Ω̂−1

))
= IE

(
σ2

n
· Ω̂−1

)

=
σ2

n − d − 1
· Ω−1 = Var ((ŵ2, . . . , ŵd))

and note that Ω̂ = IΣ̂I ′. �

The next theorem complements Theorem 4.2.1 since it provides the uncon-
ditional distribution of the first (or, after an appropriate rearrangement, any
other) portfolio weight estimate.

Theorem 4.2.3. Let w = (w1, . . . , wd) be the GMVP of d assets and ŵ =
(ŵ1, . . . , ŵd) the corresponding OLS estimator for a sample of asset returns with
size n ≥ d . Then ŵ1 = 1 − ŵ2 − . . . − ŵd and it holds that

ŵ1 ∼ t

(
w1,

σ2

n − d + 1
· 1′
(
IΣI ′

)
−1

1, n − d + 1

)
.

Proof. Note that ŵ1 = 1 − 1′ŵs and from Theorem 4.2.1 we conclude that

1′ŵs ∼ t

(
1′ws,

σ2

n − d + 1
· 1′
(
IΣI ′

)
−1

1, n − d + 1

)
,

so that ŵ1 possesses the distribution given by the theorem. �
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Corollary 4.2.2 immediately leads to the next one.

Corollary 4.2.4. Consider a sample of asset returns with size n ≥ d + 2 and
let ŵ1 be the OLS estimator for the first weight of the GMVP. Then

V̂ar (ŵ1) :=
σ̂2

n
· 1′
(
IΣ̂I ′

)
−1

1

with σ̂2 = û
′
û/(n − d) is an unbiased estimator for the variance of ŵ1.

Proof. The variance of ŵ1 is given by

Var (ŵ1) = Var
(
1 − 1′ŵs

)
= Var

(
1′ŵs

)
= 1′Var ((ŵ2, . . . , ŵd)) 1

and due to Corollary 4.2.2 the presented estimator is unbiased for Var(ŵ1). �

Principally, we can find a stochastic representation for η̂, i.e. the OLS esti-
mator for the expected return of the GMVP. However, this is not very useful
for econometrical purposes. Instead, the next theorem provides the first two
moments of the distribution of η̂ . Note that

η̂ = β̂OLS,1 = r
′ŵ ,

where r := R
′1/n (d × 1) is the sample mean vector of R .

Theorem 4.2.5. Let w = (w1, . . . , wd) be the GMVP of d assets and ŵ =
(ŵ1, . . . , ŵd) the corresponding OLS estimator for a sample of asset returns with

size n ≥ d + 2. Further, let η̂ = β̂OLS,1 be the OLS estimator for the expected
return η of the GMVP. Then

IE (η̂) = η

and

Var (η̂) =
σ2

n − d − 1
·
(
µ′I ′

(
IΣI ′

)
−1 Iµ + 1

)
− 2 · σ2/n

n − d − 1
.

Proof. We know from linear regression theory that β̂OLS,1 is conditionally unbi-
ased, i.e. IE(η̂ |X) = η so that

IE (η̂) = IE (IE (η̂ |X)) = η .

The variance of η̂ is given by

Var (η̂) = IE (Var (η̂ |X)) + Var (IE (η̂ |X)) = IE (Var (η̂ |X)) ,

where

η̂ |X ∼ N
(
η, σ2 · (x ′Ω̂−1

x + 1)/n
)

(Kempf and Memmel, 2006). Note that x
′Ω̂−1

x essentially follows a noncentral

F -distribution (Muirhead, 1982, p. 24) since (n − 1) · x ′Ω̂−1
x corresponds to

Hotelling’s T 2 statistic (Press, 2005, p. 132) and thus

n − d + 1

d − 1
· x ′Ω̂−1

x ∼ Fd−1,n−d+1 (λ)

with noncentrality parameter

(4.2.1) λ = n · IE(Xs)′Ω−1IE(Xs) = nµ′I ′
(
IΣI ′

)
−1 Iµ .



LINEAR STATISTICAL INFERENCE FOR MINIMUM VARIANCE PORTFOLIOS 16

Hence, using the expected value of a noncentral F -distribution (Muirhead, 1982,
p. 25) we obtain

IE
(
x

′Ω̂−1
x

)
= IE (Fd−1,n−d+1(λ)) · d − 1

n − d + 1

=
(n − d + 1) · (d − 1 + λ)

(d − 1) · (n − d − 1)
· d − 1

n − d + 1
=

d − 1 + λ

n − d − 1

and thus Var(η̂) corresponds to

IE

(
σ2

n
·
(
x

′Ω̂−1
x + 1

))
=

σ2

n
· n − 2 + λ

n − d − 1
.

That leads to the desired formula if we substitute λ using the expression given
by Eq. 4.2.1. �

Corollary 4.2.6. Consider a sample of asset returns with size n ≥ d + 2 and
let η̂ = β̂OLS,1 be the OLS estimator for the expected return η of the GMVP.
Then

V̂ar (η̂) :=
σ̂2

n
·
(
r
′I ′

(
IΣ̂I ′

)
−1

I r + 1

)
,

is an unbiased estimator for Var(η̂), where r (d × 1) is the sample mean vector

and Σ̂ (d × d) is the sample covariance matrix of R .

Proof. Note that

r
′I ′

(
IΣ̂I ′

)
−1

I r = x
′Ω̂−1

x

and, since σ̂2 is conditionally unbiased, the expected value of V̂ar(η̂) is given by

IE

(
IE

(
σ̂2

n
·
(
x

′Ω̂−1
x + 1

)
|X
))

= IE

(
σ2

n
·
(
x

′Ω̂−1
x + 1

))
.

By the proof of Theorem 4.2.5 this corresponds to Var(η̂). �

Note that

V̂ar (η̂) = r
′I ′

V̂ar ((ŵ2, . . . , ŵd))I r +
σ̂2

n
,

where V̂ar((ŵ2, . . . , ŵd)) is given by Corollary 4.2.2. Since

I ′ (ŵ2, . . . , ŵd) =

(
d∑

i=2

wi,−w2, . . . ,−wd

)

we can see that

I ′
V̂ar ((ŵ2, . . . , ŵd))I = V̂ar ((ŵ1, . . . , ŵd))

corresponds to the positive semi-definite covariance matrix of ŵ . Thus we obtain
the nice representation

V̂ar (η̂) = r
′
V̂ar (ŵ) r +

σ̂2

n
for the unbiased estimator. That means the estimation risk concerning the ex-
pected GMVP return can be decomposed into a part quantifying the estimation
risk of the portfolio weights and another part carrying the variance of the GMVP
return.

The next theorem provides a similar result for the out-of-sample variance of
the return of the estimated GMVP. That is the variance of the portfolio return
where the estimated GMVP weights are taken and combined with some future
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asset returns R1, . . . , Rd . This is a typical situation of an investor who estimates
the GMVP from historical data and takes these portfolio weights for a future
investment.

Theorem 4.2.7. Let w = (w1, . . . , wd) be the GMVP of d assets and ŵ =
(ŵ1, . . . , ŵd) the corresponding OLS estimator for a sample of asset returns with
size n ≥ d + 2. For the out-of-sample portfolio return R′ŵ it holds that

IE
(
R′ŵ

)
= η

and

Var
(
R′ŵ

)
= µ′

Var (ŵ) µ + σ2 · n − 2

n − d − 1
,

where

Var (ŵ) =
σ2

n − d − 1
· I ′
(
IΣI ′

)
−1 I .

Proof. The expected out-of-sample portfolio return R′ŵ corresponds to

IE
(
R′ŵ

)
= IE

(
IE
(
R′ŵ | ŵ

))
= IE

(
µ′ŵ

)
= µ′w = η .

For the out-of-sample variance we obtain

Var
(
R′ŵ

)
= IE

(
Var

(
R′ŵ | ŵ

))
+ Var

(
IE
(
R′ŵ | ŵ

))

= IE
(
ŵ′Σŵ

)
+ µ′

Var (ŵ)µ .

Note that

ŵ =

[
1
0

]
− I ′ (ŵ2, . . . , ŵd) ,

so that

Var (ŵ) = I ′
Var ((ŵ2, . . . , ŵd))I =

σ2

n − d − 1
· I ′Ω−1I

(see the proof of Corollary 4.2.2), and since Ω = IΣI ′ we obtain

Var (ŵ) =
σ2

n − d − 1
· I ′
(
IΣI ′

)
−1 I .

Further, note that due to Theorem 4.2.1

ŵ ∼ td

(
w,

σ2

n − d + 1
· I ′
(
IΣI ′

)
−1 I, n − d + 1

)
,

so that we can write ŵ ∼ w + ε, where

ε ∼ σ√
n − d + 1

· I ′
(
IΣI ′

)
−

1
2 · ξ√

χ2
n−d+1/(n − d + 1)

and ξ ∼ Nd−1(0, Id−1) is stochastically independent of χ2
n−d+1. That means

ε′Σε ∼ σ2

n − d + 1
· ξ2

χ2
n−d+1/(n − d + 1)

∼ σ2 · d − 1

n − d + 1
· Fd−1,n−d+1

and thus

IE
(
ŵ′Σŵ

)
= w′Σw + IE

(
ε′Σε

)
= σ2 + σ2 · d − 1

n − d − 1
= σ2 · n − 2

n − d − 1
.

�
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4.3. Local Minimum Variance Portfolios. From the previous discussion we
know that we can search for any LMVP in the same manner as for the GMVP
by transforming the sample X into the sample X

∗. That means we take a linear
transformation T ′Xs of Xs = (∆R2, . . . ,∆Rd) or, more precisely, TR where the
operator T defined by (4.1.2) is determined by the specific linear restrictions of
the LMVP.

According to the definitions of bs
0 and T given by Eq. 3.1.10 and Eq. 3.1.11

the RLS estimator ŵ∗ = (ŵ∗

1 , . . . , ŵ
∗

d) of a LMVP can be represented by
(
ŵ∗

q+2, . . . , ŵ
∗

d

)
= α̂s

OLS ,

(
ŵ∗

2, . . . , ŵ
∗

q+1

)
= H−1

2 (h − H3α̂
s
OLS) ,

and ŵ∗

1 = 1 − ŵ∗

2 − . . . − ŵ∗

d . For notational convenience consider once again
Eq. 3.2.5, which implies that

(ŵ∗

2, . . . , ŵ
∗

d) = bs
0 + T

(
ŵ∗

q+2, . . . , ŵ
∗

d

)

and thus

(4.3.1) ŵ∗ =

[
1
0

]
− I ′ (ŵ∗

2, . . . , ŵ
∗

d) =

[
1
0

]
− I ′bs

0 − T ′
(
ŵ∗

q+2, . . . , ŵ
∗

d

)
.

Since the entire weight estimator is a linear function of the last d− q− 1 weight
estimates, the distribution of ŵ∗ is concentrated on a (d − q − 1)-dimensional
linear subspace of R

d. For that reason the following theorem is restricted to the
distribution of (ŵ∗

q+2, . . . , ŵ
∗

d).

Theorem 4.3.1. Let w∗ = (w∗

1, . . . , w
∗

d) be a LMVP of d assets obeying q < d−1
linear restrictions for the portfolio weights (without the budget constraint) and
ŵ∗ = (ŵ∗

1, . . . , ŵ
∗

d) be the corresponding RLS estimator. For a sample of asset
returns with size n ≥ d − q it holds that

(
ŵ∗

q+2, . . . , ŵ
∗

d

)
∼ td−q−1

((
w∗

q+2, . . . , w
∗

d

)
,

σ∗2

n − d + q + 1
·
(
T ΣT ′

)
−1

, ν

)
,

where ν = n− d + q + 1, σ∗2 = w∗′Σw∗ is the variance of the LMVP return and
Σ is the covariance matrix of R .

Proof. Note that (ŵ∗

q+2, . . . , ŵ
∗

d) corresponds to the OLS estimator for αs given
by the linear regression equation 3.1.6. Since this is an unrestricted least squares
estimator we can argue as in the proof of Theorem 4.2.1 but we have to consider
d− q dimensions, the covariance matrix of the transformed data TR , i.e. T ΣT ′,
and the variance σ∗2 of the LMVP. �

Similarly, the remaining assertions follow from the theorems and corollaries
already derived for the GMVP simply by substituting d by d − q, η (or η̂) by
η∗ (or η̂∗), σ2 (or σ̂2) by σ∗2 (or σ̂∗2), and I by T . For example, following
Corollary 4.2.2 we may conclude that

V̂ar
(
(ŵ∗

q+2, . . . , ŵ
∗

d)
)

=
σ̂∗2

n
·
(
T Σ̂T ′

)
−1

is an unbiased estimator for the covariance matrix of (ŵ∗

q+2, . . . , ŵ
∗

d), where

σ̂∗2 =
û
∗′
û
∗

n − d + q
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is an unbiased estimator for σ∗2, i.e. the variance of the LMVP return, and

Σ̂ is the sample covariance matrix of R . Here we have only to assume that
n ≥ d − q + 2. Due to Eq. 4.3.1 the covariance matrix of ŵ∗ is given by

Var (ŵ∗) = T ′
Var

((
ŵ∗

q+2, . . . , ŵ
∗

d

))
T =

σ∗2

n − d + q − 1
· T ′

(
T ΣT ′

)
−1 T

and so

V̂ar (ŵ∗) =
σ̂∗2

n
· T ′

(
T Σ̂T ′

)
−1

T

is an unbiased estimator for Var(ŵ∗). From Eq. 4.1.2 and Eq. 4.3.1 we see that

ŵ∗

1 = 1 − 1′bs
0 − 1′T

(
ŵ∗

q+2, . . . , ŵ
∗

d

)

and thus – in the line of Theorem 4.2.3 – it holds that

ŵ∗

1 ∼ t

(
w∗

1,
σ∗2

n − d + q + 1
· 1′T

(
T ΣT ′

)
−1

T ′1, n − d + q + 1

)

and – similar to Corollary 4.2.4 – an unbiased estimator for Var(ŵ∗

1) is given by

V̂ar (ŵ∗

1) =
σ̂∗2

n
· 1′T

(
T Σ̂T ′

)
−1

T ′1 .

Moreover, due to Theorem 4.2.5 we know that

IE (η̂∗) = η∗

and

Var (η̂∗) =
σ∗2

n − d + q − 1
·
(
µ′T ′

(
T ΣT ′

)
−1 T µ + 1

)
− 2 · σ∗2/n

n − d + q − 1
,

where η̂∗ denotes the RLS estimator for the expected LMVP return η . Accord-
ing to Corollary 4.2.6,

V̂ar (η̂∗) :=
σ̂∗2

n
·
(
r
′T ′

(
T Σ̂T ′

)
−1

T r + 1

)

is an unbiased estimator for Var(η̂∗). Finally, for the out-of-sample return of a
LMVP we obtain

IE
(
R′ŵ∗

)
= η∗

and following the proof of Theorem 4.2.7 we can find that

Var
(
R′ŵ∗

)
= µ′

Var (ŵ∗)µ + σ∗2 · n − 2

n − d + q − 1
,

where

Var (ŵ∗) =
σ∗2

n − d + q − 1
· T ′

(
T ΣT ′

)
−1 T .
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