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Abstract 
 
What appears to be ineffectiveness of educational interventions in the long run may actually be 
caused by statistical artefacts in the equating of tests taken at different time points or by the nature 
of the skill development in the absence of targeted interventions. We use longitudinal data on the 
full population of public school students in Denmark to estimate central parameters in the equating 
of reading test scores and in a skill formation model. We compare the model’s predictions to 
observed fade-out in a randomized controlled trial two and four years after the end of the 
intervention. Predicted and observed estimates consistently show that about half of the initial 
effect has faded out after four years. However, because of the concave nature of skill development, 
the treated students maintain more than 80 % of their time lead. 
JEL-Codes: I210, J240. 
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1 Introduction

“A tighter link between theory, econometric methods and data is essential to
compare and reconcile the mixed and sometimes conflicting empirical results across

studies, and to understand when and why the impacts of home environment and
pre-school interventions fade out.” (Duncan et al., 2023)

The long-term impacts of educational interventions are crucial for assessing the costs and

benefits of different investments in human capital development. An increasing number of

rigorously evaluated randomized controlled trials (RCTs) have demonstrated positive effects

of early educational interventions (Alan et al., 2019; Burgess et al., 2021; Rege et al., 2021).

However, few studies measure effects on skills after the end of the intervention period, and

those that do indicate considerable fade-out (Bailey et al., 2020), which might suggest that

early investments are ineffective in the long run. Yet, lack of skill measures that apply the

same scale across multiple years of child development, lack of data on the typical development

of children, and lack of combining theory and data on skill development have hindered proper

assessments of fade-out (Duncan et al., 2023).

This study combines theoretical models of test equating (Kolen and Brennan, 2014; Cunha

et al., 2021) and skill formation (Cunha and Heckman, 2007) with longitudinal data on more

than 900,000 public school students in Denmark to estimate central parameters in the models.

We compare the model’s prediction to observed fade-out in a randomized controlled trial two

and four years after the intervention (Andersen and Nielsen, 2016).

We distinguish three perspectives on fade-out. First, we consider the possibility that

apparent fade-out is partly a statistical artefact stemming from the use of different tests with

different scales for different age groups. If the skill dispersion among the tested students varies

by age, the test scores standardized to have a standard deviation of one may exaggerate or

underestimate the true fade-out (Cascio and Staiger, 2012; Agostinelli and Wiswall, 2023).

Indeed, without data to equate different test score scales, different assumptions about how

to compare the scales of two different tests may lead to conclusions ranging from complete

fade-out to no fade-out or even fade-in. The study of Wan et al. (2021) reanalyze data from

an RCT targeting mathematics skills. This RCT was characterized by a large degree of

fade-out after a two-year period. The authors consider how sensitive this finding is to various

order-preserving transformations of the data. They find that fade-out is still present under
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most considered transformations, but for some specific scaling of the data they could eliminate

or even reverse the fade-out pattern.

Secondly, actual fade-out may be a predictable consequence of the characteristics of the skill

formation technology in the population. If an intervention works by boosting some particular

skill initially, long-run treatment effects will be present to the extent that the affected skill

has a causal impact on future skill development. Thus, limited self-productivity (the effect of

skills in one period on the skills in the next period being less than one) may explain fade-out

because it means that the comparison group catches up on the treated students, whereas high

(above one) self-productivity would predict that treatment effects are increasing over time

(Cunha and Heckman, 2007; Bailey et al., 2020). The self-productivity may be limited because,

even if an intervention was effective in changing what Bailey et al. (2020) refer to as “trifecta

skills,”—i.e. skills that are (i) malleable through intervention, (ii) fundamental for success,

and (iii) would not develop eventually in the comparison group—and thereby raising treated

students to higher skill growth curves, the intervention would never change pre-treatment

factors (such as genes or parental education) that help students who are already on that higher

growth curve maintain their advantage. Self-productivity may also be limited if investments in

skill development are allocated in such a way as to reduce initial skill differences, for example if

educational resources are targeted towards children who are lagging behind. Skill development

may also be mediated by the home environment, and an additional source of fade-out may be

present if parental investments are compensating (Nicoletti and Tonei, 2020) and if public and

parental investments are substitutes (Gensowski et al., 2020).

Thirdly, and perhaps most importantly, even if the nature of the skill formation technology

predicts that intervention effects will fade out when defined (as is usual) by the difference in

skills between the treatment and control group at a given point in time (i.e., on the vertical

dimension of the skill growth curve), the same skill formation technology may predict no

fade-out if defined as the difference in time at which the control group will catch up to

the treatment group, i.e., to a given level of skills (the horizontal dimension). If the skill

growth curve is concave, i.e., if the marginal return to years of schooling is decreasing (as

suggested by Lipsey et al., 2012), the treated students may maintain their time lead, even

if the vertical skill-gap is reduced. This third distinction has received less attention in the

literature on fade-out. It is important in the educational system, though, since admission to
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further education is often based on certain skill levels at a given point in time, and even if

students in the comparison group may be close to the required skill level—some of them may

never make it in time to advance to further education.

We use data on more than 4 million test scores (from IT-based, adaptive reading tests)

from 963,646 pupils, which is the full population of public school students in Denmark. We

equate reading tests from grade levels 2, 4, 6, and 8, and thereby establish a common scale.

We exploit that a subset of students take two different tests (e.g., the 2nd and the 4th grade

test) within thirty days and that another subset of students take the same test twice in a row.

This allows us to directly measure the change in dispersion across the grade levels that is due

to changes in the variance of the underlying skill level as opposed to changes in test scales or in

measurement error. Our equating strategy is robust to different specifications and shows that

dispersion in reading skills is reduced as students become older, which actually indicates that

using test scales standardized separately at different age-levels would underestimate fade-out.

To estimate the self-productivity parameter, we use data on test-retest reliability and

detailed administrative data on the students’ socioeconomic status to adjust the raw correla-

tions between test scores at different grade levels. We find robust estimates across different

specifications in the range between 0.81 and 0.88.1 We compare the model’s predictions to

observed fade-out in, READ, an RCT of a shared book reading intervention implemented in

2nd grade (Andersen and Nielsen, 2016). The results show that the fade-out precisely followed

the catch-up pattern predicted by the skill formation model two years after the end of the

intervention (in 4th grade). Four years after the intervention, 57% of the treatment effect had

faded out, but 77% of the fade-out could be explained by the skill-formation model. When

extending our framework to include three possibly interrelated sub-dimensions of reading skills,

predicted fade-out was very close to the observed fade-out four year after the intervention for

both decoding and language comprehension, whereas observed fade-out in text comprehen-

sion followed the prediction after two years, but then dropped more than explained by the

theoretical prediction.

Finally, we find that the average speed of skill development is 1.16 standard deviations

from 2nd grade to 4th grade, but falling to 0.84 from 4th to 6th grade and only 0.61 from 6th

1We note that this is not far from estimates of self-productivity in Cunha and Heckman (2008) and
Agostinelli and Wiswall (2023) who also find it to be <1, even though estimates are not directly comparable
across these samples and model specifications.
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to 8th grade corresponding to a concave skill production function. If we convert the arbitrary

scale of test scores (the vertical dimension of the skill growth curve) to a scale of time lead

(the horizontal dimension), which is intervals with economically relevant properties (cf. Bond

and Lang, 2018), fade-out after four years is about 20% (instead of the 57% when measured

using the standardized test score scale). Importantly, when using the time lead scale, the

model predictions for the self-productivity of reading skills are consistent with no fade-out

between 2nd and 6th grade.

Our findings support a more nuanced view on fade-out of effects of early interventions. Our

results have direct implications for the literature on comparing effect sizes across interventions

at different age groups (Lipsey et al., 2012; Kraft, 2020). On the one hand, we show that fade-

out is a substantive phenomenon that needs to be accounted for in evaluations of interventions.

If two interventions implemented at two different grade levels are equally costly and equally

effective in terms of their immediate “vertical” effect, our results imply that a later reading

intervention will be relatively more valuable because its long run effect at any later age will

be larger.2 For this reason, the presence of fade-out also entails that interventions should be

particularly effective immediately before institutional gateways as suggested by Bailey et al.

(2017).

On the other hand, if the two interventions implemented at two different grade levels are

equal in terms of the time lead they generate (the horizontal dimension), conclusions are

different. The fact that we find the skill growth trajectory to be concave suggests that it is

generally more difficult to increase skills at later ages. In 2nd grade, students progress about

half a standard deviation in one year, whereas in 6th grade, students progress only about

a quarter of a standard deviation in one year. So for two interventions that both produce,

say, half a year of time lead for the treatment group, the earlier intervention may be more

effective in the long run (because it created a larger immediate “vertical” difference in skills).

Hence, early investments may generally be more cost-effective, but only to the extent that

early skills are sufficiently more malleable and effect sizes sufficiently much larger to outweigh
2Of course, depending on the specific intervention, a wider range of measurements may be needed to evaluate

the total effect, and for some aspects the relevant metric is not necessarily the long run effect. The most obvious
example is an intervention that is effective at raising well-being over some time period. To measure the value of
this intervention, ideally we would want to take the integral of the effect over time rather than the effect size at
any given point in time.
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any subsequently diminishing returns due to fade-out. A simple comparison of immediate

effects of interventions relative to their costs is too simplistic for deciding between early and

late interventions.

The remainder of the paper is organized as follows: Section 2 describes the conceptual

framework. Section 3 presents the institutional setting, the reading RCT, and the data used.

Sections 4–7 present estimation results of key parameters in the theoretical model and of

treatment effects, and distinguish the three types of fade-out. Section 8 concludes the paper.

2 Theoretical Models of Test Equating and Skill Formation

In this section, we provide a theoretical framework that allows us to study fade-out of

educational interventions from three distinct perspectives: Fade-out as a statistical artefact,

fade-out caused by the skill production function measured in the vertical dimension, and the

same fade-out translated to the horizontal dimension according to the curvature of the skill

growth curve.

2.1 Statistical Sources of Fade-Out

One theory in the context of fade-out of educational interventions is that fade-out is a statistical

artefact. In assessments of interventions it is customary to compare test scores taken at different

points in time for an intervention and a control group. As the content and the level of difficulty

naturally vary as the participants progress through school, the test scores observed at different

stages are transformed such that they share similar statistical properties. Most commonly, test

scores at a certain grade are standardized to have a mean of zero and a variance of one, which

makes it easy to express effect sizes of interventions in terms of standard deviations. However,

if the true skill dispersion among children is increasing over time, an effect of one standard

deviation at a lower grade level will translate into a smaller estimated effect in higher grades,

even if the true effect on skills was maintained. Thus, in this scenario the typical pattern of

diminishing intervention effects over time is partly a statistical artefact.

To formalize this idea, suppose that Zt represents an observed test score in time period t

for a child (to simplify the notation we omit a subscript i to index children). The raw test

score is assumed to be an imperfect measure of skills. Following Agostinelli and Wiswall (2023)
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we assume that the observed test score provides a noisy signal of the child’s stock of skills, θt,

by specifying that it is a linear function of skills contaminated by an error component, ϵt, at

the population level:

Zt = µt + λtθt + ϵt, t ≥ 1. (1)

Here µt and λt are location and scale parameters relating to the specific measure. The error ϵt

can be interpreted as a measurement error. We assume it is drawn independently of θt and

that it has a mean of zero and a variance of σ2
t . A central first assumption is the following:

Assumption 1. The skill level, θt, has a strictly positive impact on test scores, Zt, in any

time period t. That is, λt > 0 for all t ≥ 1.

In other words, the test is assumed to be a valid proxy of the underlying skill in the sense

that, on average, it assigns a higher test score to an individual with a higher skill level relative

to an individual with a lower stock of skills.

In general, for some change in average test scores, E[Zt+k] − E[Zt], we cannot identify

whether this change is due to a change in skills or a change in measurements:

E[Zt+k] − E[Zt] = (µt+k − µt) + λt+k E[θt+k] − λt E[θt].

However, for the purpose of evaluating educational interventions, we are mainly interested in

the difference of test scores between the treatment and the control group at a specific point in

time. To this end, let

∆t+k|t ≡ E[Zt+k | Dt = 1] − E[Zt+k | Dt = 0],

denote the treatment effect on test scores k ≥ 0 time periods after an intervention carried out

a time t between the treatment group (Dt = 1) and the control group (Dt = 0). We assume

the following regarding the impact of an intervention:

Assumption 2. The only component in (1) affected by an intervention is the skill level, θt.

That is, E[Zt+k | Dt = d] = µt+k + λt+k E[θt+k | Dt = d] for all t, k ≥ 0 and d ∈ {0, 1}.

Under Assumption 2, we have that the test score treatment effect reduces to ∆t+k|t =

λt+kτt+k|t, where we define the treatment effect on actual skills as τt+k|t ≡ E[θt+k | Dt =
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1] − E[θt+k | Dt = 0]. Hence, unless the scale parameters are known, the former expression for

∆t+k|t shows that we cannot infer the treatment effect on skills based on the treatment effect

on test scores for a given intervention.

As mentioned, in evaluations of educational interventions it is customary to standardize

test scores to have an unconditional mean of zero and a variance of one, such that effect

sizes can be expressed on an easily interpretable scale in terms of standard deviations. The

standardized test score in time period t is defined as

Yt = Zt − E[Zt]√
var(Zt)

.

Using the standardized test score, the treatment effect of an intervention can be expressed as

∆Y
t+k|t ≡ E[Yt+k | Dt = 1] − E[Yt+k | Dt = 0] =

λt+kτt+k|t√
var(Zt+k)

=
λt+kτt+k|t√

λ2
t+k var(θt+k) + σ2

t+k

.

If ∆Y
t+k|t/∆Y

t|t < 1 for all k ≥ 1, the effect on test scores fades out over time, since this

corresponds to a diminishing effect size k periods after the end of the intervention. The degree

of fade-out on standardized test scores is given by

∆Y
t+k|t

∆Y
t|t

=
τt+k|t
τt|t

× λt+k

λt

√√√√ λ2
t var (θt) + σ2

t

λ2
t+k var (θt+k) + σ2

t+k

= “Skill Fade-Out” × “Statistical Artefact”.

(2)

This shows that, unless we are willing to make the assumption that λt√
var(Zt)

= λt+k√
var(Zt+k)

for every k ≥ 1, the degree of fade-out measured in terms of standardized test scores is not

identical to the degree of fade-out measured in terms of skills. Thus, for a hypothetical

intervention in which the effect on skills fully persists after k periods (i.e., τt|t = τt+k|t), it is

still possible to find fade-out in test scores if e.g., the variance of skills increases over time.

As the equation also shows, fade-out in test scores can also occur due to an increase in the

variance of the measurement error or due to changes in the scale parameter over time. In these

cases, fade-out is not substantive but is a statistical artefact. In summary, standardization

does not solve the fundamental problem of identifying the treatment effects on skills based on

observable test scores.
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2.1.1 Identification of the Statistical Artefact

In this subsection, we introduce our identification strategy that allows us to quantify the

statistical artefact component of fade-out in (2).

The main difficulty stems from the fact that skills have no natural scale and location. This

means that µt and λt have no absolute values. They are only informative relative to some

other skill measure. As suggested by Agostinelli and Wiswall (2023), a possible solution to

this problem is to normalize skills relative to the the skill measure available in the first time

period:

E[θ1] = 0 and λ1 = 1.

This normalization is convenient, as it implies that µ1 = E[Z1] and that for an intervention in

the first time period the contemporaneous treatment effect measured in terms of the raw test

score is equal to the treatment effect on skills, i.e., ∆1|1 = τ1|1.

To identify the location and scale parameters in the remaining time periods, we consider

an individual who, in the same time period, takes two tests of different difficulty measuring the

same underlying skill. Assuming two tests of difficulty levels corresponding to (the individual’s

grade level at) time period t and t + 1, respectively, are taken at some time s ∈ [t, t + 1], we

then have that the outcomes of the tests are determined by the following set of equations:

Zt,s = µt + λtθs + ϵt,s

Zt+1,s = µt+1 + λt+1θs + ϵt+1,s,

where Zt,s denotes a test score of difficulty level t taken at time s. In the case where s = t, we

simplify notation by writing Zt,t = Zt and ϵt,t = ϵt as in (1).

Since, the outcomes of the two arbitrarily scaled tests both depend on the skill level at

time s, we can equate the two equations in terms of the skill level to obtain that

θs = Zt,s − µt − ϵt,s

λt
= Zt+1,s − µt+1 − ϵt+1,s

λt+1
,

8



from which the mean and the variance can be equated as follows:

µt+1 = λt+1
λt

(µt − E[Zt,s]) + E[Zt+1,s] (3)

λt+1
λt

=
√

var(Zt+1,s) − var(ϵt+1,s)
var(Zt,s) − var(ϵt,s) . (4)

In principle, if we have knowledge about the variance of the error component over time, we

could, based on (3) and (4), estimate the location and scale parameters in all time periods by

substituting the theoretical means and variances of the measurements by their sample analogs

using observed test scores in combination with the normalization that λ1 = 1 and µ1 = E[Z1].

The final ingredient in our identification scheme comes from exploiting a group of individuals

that take two (different) tests of the same difficulty at the same point in time. Importantly,

the two tests are assumed to be measuring the same underlying skill attribute. Let Z
(1)
t,s and

Z
(2)
t,s represent two such measures.3 A general specification for the outcomes of the two tests

are given by the following two equations:

Z
(1)
t,s = µ

(1)
t + λ

(1)
t θs + ϵ

(1)
t,s

Z
(2)
t,s = µ

(2)
t + λ

(2)
t θs + ϵ

(2)
t,s .

(5)

To achieve identification of the scale and location parameters, we need to impose some structure

on the relationship between the two tests in (5), which we collect in Assumption 3 below:

Assumption 3. For all t, s ≥ 1, the measurement errors ϵ
(1)
t,s and ϵ

(2)
t,s satisfy E[ϵ(j)

t,s ] = 0

and var(ϵ(j)
t,s ) = σ2

t,s for j = 1, 2, and are statistically independent of each other and with θt.

Furthermore, we impose equality of the two scale parameters, i.e., λ
(1)
t = λ

(2)
t = λt.

Under Assumption 3 we only allow for systematic differences in the two test scores due to

differences between the location parameters. Another consequence of Assumption 3, is that

the variance of the two tests coincide meaning that var(Z(1)
t,s ) = var(Z(2)

t,s ) = var(Zt,s).

We can exploit the existence of two such tests satisfying Assumption 3, by considering the

correlation between the two measures, which allows for evaluation of the so-called test-retest
3In theory, the two tests are taken at the exact same point in time, and the skill level is exactly the same

and only the realization of the test measure differs. Empirically, one test must come before the other, and
therefore, one may worry that skills are influenced by taking the test. We come back to this in the empirical
part and provide multiple robustness checks of the identifying assumptions.
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reliability ratio defined by rt,s ≡ corr(Z(1)
t,s , Z

(2)
t,s ). Under our modeling assumptions we can

express this quantity as

rt,s =
var(Zt,s) − σ2

t,s

var(Zt,s) . (6)

From (6) it follows that (4) equivalently can be expressed as

λt+1
λt

=
√

var(Zt+1,s)rt+1,s

var(Zt,s)rt,s
. (7)

The right-hand side on this equation does only depend upon quantities which can be consistently

estimated in the presence of observable data that satisfies the modeling assumptions, by using

the sample analogs of the theoretical variances and correlations. Hence, starting from t = 1,

we can iteratively estimate all the subsequent location and scale parameters using (3) and (7)

together with the initial conditions λ1 = 1 and µ1 = E[Z1].

Given we have achieved identification of the location and scale parameters, this also allows

us to characterize the first and the second moment of the skill distribution, and hence facilitates

an analysis of how skills evolve over time. In particular, we have the following expressions for

the expected value and the variance of skills as a function of time:

E[θt] = E[Zt] − µt

λt
and var(θt) = var(Zt)rt

λ2
t

, (8)

where rt = rt,t is the test-retest reliability ratio for two tests taken in the same time period of

the same difficulty.

2.2 Skill Formation Technology and Fade-Out in Skills

In the following, we provide a model framework to describe how reading skills evolve over time.

Our model of skill formation is closely related to the seminal work by Cunha and Heckman

(2007), but specifically tailored to our setting.

Let θt denote the true level of reading skills of a child. While the child may possess many

different skills, several of which may be related to reading ability, we start by assuming a

single skill dimension. We relax this assumption later.

A child’s production of reading skills at time t + 1 is determined by a time-varying

production function, ft, that takes as inputs the stock of reading skills from the previous time
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period, θt, investments in reading skills, It, a vector of background characteristics, Xt, and a

stochastic zero mean production shock, ηt:

θt+1 = ft(θt, It, Xt, ηt). (9)

Investments are distinguished from the other characteristics in that investments can respond

to the child’s stock of skills, It = It(θt). This includes parental investments, which may be

compensating or reinforcing, and school investments, which similarly may be tailored more

towards the needs of the high or low ability pupils. On the other hand, Xt captures things like

genes or the quality of the home environment at birth (typically proxied by socio-economic

status) that do not respond directly to the child’s skills. Thus, the setup is very general

because vectors It and Xt together include everything that may affect skill formation. It

simply focuses on the determinants of a particular skill, i.e., reading ability.

Different specifications of the production function in (9) have been proposed in extant

literature. Cunha and Heckman (2008) consider a skill formation model with a linear technology,

Cunha et al. (2010) use a constant elasticity of substitution production function, and the

more recent studies of Del Bono et al. (2022) and Agostinelli and Wiswall (2023) employ a

parametric translog technology. To capture all the channels that are often thought to be

relevant in our setting, we assume the following model which allows for an interaction between

skills and investments:

θt+1 = γ0,t + γ1,tθt + γ2,tIt + γ3,tθtIt + π′
tXt + ηt, (10)

where the production shock, ηt, is assumed to be independent of both θt, It, and Xt in any

time period.

Within this framework, we can understand fade-out as the extent to which an exogenous

increase in skills in one period does not persist into the next period, i.e., fade-out is given by:

1 −
τt+1|t
τt|t

.

Assumption 2 implies that the only variable that is directly affected by the treatment at

time t is θt. And since treatment is randomly assigned, anything else that is affected by the
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treatment is affected through the initial effect on θt. Thus, one can show that (for details, see

Appendix A)

τt+1|t = τt|t E
[
γ1,t + γ2,t

∂It

∂θt
+ γ3,t

(
It + ∂It

∂θt
θt

)]
,

which means that the treatment effect develops as a function of the initial effect and the effect

of skills on later skills, i.e.,

τt+1|t = τt|t E
[

∂θt+1
∂θt

]
.

Thus, we can also express the degree of fade-out as

1 −
τt+1|t
τt|t

= 1 − E
[

∂θt+1
∂θt

]
≡ 1 − δt,

where we use δt to denote the self-productivity of skills in period t, which in this model is given

by

δt = E
[
γ1,t + γ2,t

∂It

∂θt
+ γ3,t

(
It + ∂It

∂θt
θt

)]
.

An equivalent expression for the self-productivity (using that ∂θt+1
∂It

= γ2,t + γ3,tθt) is

δt = E
[
γ1,t + ∂It

∂θt

∂θt+1
∂It

+ γ3,tIt

]
.

We see that the self-productivity has three components: (1) The direct skill persistence,

(2) the effect through investments, and (3) the dynamic complementarity or substitutability.

Hence, the total degree of fade-out is determined by the combination of these three mechanisms:

1. The direct skill persistence: Fade-out may be caused by new skills not building directly

on earlier skills, or simply by forgetting. If so, skills are not perfectly persistent (i.e.,

γ1,t < 1). This may also be a result of other factors in the production function. For

example, if children with a genetic advantage are learning at a faster rate conditional

on their current skill level (Houmark et al., 2020), it may appear that skills are highly

persistent when this is actually in part due to earlier and later skills being produced by

a common factor.
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2. Compensating or reinforcing investments: Investments may respond to the stock of skills,

and if they do so negatively (E
[ ∂It

∂θt

]
< 0), investments are said to be compensating,

which will cause fade-out. For example, if parental investments are compensating, it

means that if an intervention increases a child’s reading skills, parents will respond

by lowering their investments in promoting reading skills further (e.g., by shifting to

investments in other skills or to investments in siblings’ skills). Something similar may

happen in schools if teachers tend to focus their efforts on the least skilled children.

In the absence of continuing investments in the treatment group, this will lead to a

“catch-up” effect by the control group and thereby fade-out of the intervention (Cunha

and Heckman, 2007; Bailey et al., 2020). However, the opposite is also possible, in which

case the effect of an intervention will be reinforced, possibly even leading to negative

fade-out.

3. Dynamic complementarity or substitutability: If an increase in skills increases the returns

to subsequent investments, this is known as dynamic complementarity (γ3,t > 0). In

this case, the skills learned in one period makes it easier for individuals to obtain new

skills in later periods. Conversely, dynamic substitutability entails that investments

(e.g., schooling), are most productive for the low-skilled children. If so, an intervention

may make some children more skilled at reading, but these children would then learn

relatively less in school afterwards. Thus, dynamic substitutability leads to fade-out.

Cunha and Heckman (2007) assume dynamic complementarity, whereas Agostinelli and

Wiswall (2023) find that skills and investments are substitutable and Rossin-Slater

and Wust (2020) find negative interaction effects between preschool and nurse home

visiting exposure, which also suggests some substitutability in investments during early

childhood.

We can also consider the intervention itself through this framework. Namely, an intervention

can be viewed as a particular investment. In this case, an RCT gives identification of both γ2,t

and γ3,t for that particular investment. For example, say that an intervention simply consists of

extra teaching, and we find that this is most effective for the low-skilled children (i.e., γ3,t < 0).

This would then also imply that subsequent teaching would have the highest returns for the

low-skilled (if we assume that the extra teaching is equivalent to regular teaching). This,
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in turn, would entail that part of the treatment effect would fade out over time. Of course,

interventions are typically not just an increase in regular teaching, but to the extent that it is,

it may be informative about the degree of dynamic complementarity or substitutability more

generally.

In practice, estimation of the model in (10) is not straightforward, since reading skills and

investments are inherently latent. However, we do propose an estimation scheme in Section 5

that allows us to recover an upper bound on the self-productivity parameter (δt). In other

words, this allows us to quantify a lower bound for the degree of fade-out that should be

expected.

2.3 The Skill Growth Curve and Fade-Out in Time Lead

The skill formation technology described in the previous section gives rise to skill growth

curves depicting the typical development in skills across time. Studies on fade-out usually

focus on the vertical difference in skills at a given point in time. However, the same skill

formation technology may also be analyzed in terms of the horizontal dimension of the skill

growth curve, i.e., the difference in time it takes to reach a given skill level. In this view,

fade-out occurs if the effect sizes from follow-up tests correspond to a reduced time lead in

skills compared to the initial assessment of the intervention.

To facilitate such analysis, it is a prerequisite that we can characterize certain features of

the distribution of skills over time. For example, assuming the availability of the expected

value function E[θt] (as identified in (8)), it is possible to map an effect size measured at a

given point in time into an estimate of a time lead in average skills. More formally, assume an

intervention is carried out at time t in which a treatment group is given a certain treatment,

whereas the control group does not benefit from this treatment. Moreover, we will assume for

simplicity that the control group is large, such that it holds that E[θt+k | Dt = 0] = E[θt+k] for

all k ≥ 0.

Suppose that based on follow-up test at times t, t + 1, . . . , T , we know the sequence of effect

sizes on skills {τt+k|t}T −t
k=0. For each follow-up measurement, we can then investigate what time

lead in skills a given effect size corresponds to, by finding the value of ϕt+k|t such that

E[θt+k] + τt+k|t = E[θt+k+ϕt+k|t ], k = 0, 1, . . . , T − t. (11)
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Figure 1: Intervention with constant treatment effect measured in time
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Notes: This figure illustrates a hypothetical intervention in time period 2, in which the effect on skills diminishes
over time, but where the time lead in skills for the treatment group in comparison to the control group
remains constant over time. In this example, it is assumed that E[θt | D2 = 0] = E[θt] = log(t) and E[θt |
D2 = 1] = log(t + ϕ) for t ≥ 2 with ϕ = 2.

Fade-out in time lead is then defined as a situation in which {ϕt+k|t}T −t
k=0 is a decreasing

sequence.

Depending on the curvature of the expected value function E[θt] it is possible to have a

situation with fade-out following an intervention in terms of vertical skill differences, but where

no or even reverse fade-out occurs in terms of time lead in average skills for the treatment

group (horizontal difference). If the skill curve is strictly concave (convex) then holding the

time lead in skills constant (i.e., ϕt+k|t = ϕ) does necessarily imply that the vertical treatment

effect on skills must be decreasing (increasing) over time. Conversely, if we hold the treatment

effect on skills constant (i.e., τt+k|t = τ) the time leads will increase (decrease) over time

when the skill curve is strictly concave (convex). The former is illustrated in Figure 1 in a

hypothetical setting in which the average skill curve is an increasing strictly concave function

of time. Before the intervention at time 2 the treatment and control groups have the same

average skill level. After the intervention the treatment group maintains a constant time lead

of ϕ in the expected skill level. Due to the concavity of E[θt], however, this implies that the
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effect size in terms of the skill level decreases over time, leading to a conclusion of fade-out in

the usual sense.4

3 Institutional Setting and Data

To estimate the theoretical parameters in the models of test equating and skill formation, we

use administrative register data from all public school students in Denmark. We compare the

model’s predictions to observed effects from an RCT. Below we describe the Danish education

and test system before we describe the data and samples that we use.

3.1 Compulsory Education and Testing in Denmark

For the children in our study, education was compulsory from the calendar year in which they

turned six until completing 9th grade. School starts with a one-year kindergarten class and

ends with a compulsory school exit exam (around age 16). The exit exam must be passed

with grades beyond a certain threshold in order to enroll in upper-secondary education.

Public schools are free of charge and cater for 85% of all students. Testing and grading

is not key in the public school, and systematic teacher assessed grades are only used from

8th grade as a preparation for the exit exam. However, nationwide testing was introduced

in public schools starting from the school year 2009/10. The emphasis is on reading (four

tests) and math (two tests), and the main purpose of the tests is to give feedback to teachers,

students and parents about the ability level of the individual child.

The national tests are computerized and adaptive. The tests are adaptive in the sense that

the system draws items from an item bank based on the estimated skill level of the student.

The tests have a run-in period of three items, with average difficulty level, after which point

the estimated skill level is based on the student’s responses to all previous items, as well as the

difficulty level of the items. The system continuously estimates the uncertainty (standard error

of measurement; SEM) of the skill estimate. We use both the final test score (the estimated

skill level of the student using a Rasch-scale), and the estimated SEM. For our analysis, we

standardize the final test score using the means and the standard deviations from the full set
4As a consequence, a moderate fade-out as measured in skills may correspond to a negative fade-out (i.e.,

fade-in) in the time dimension.
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of reading test scores at a certain grade level.

The reading test consists of three skill domains—language comprehension, decoding and

text comprehension—each with its own item bank. The system switches between items from

the three domains so the three reading domains are tested simultaneously. The system is, of

course, blinded to the treatment status of the students.

The national reading tests are mandatory for all public school students in the spring in

grades 2, 4, 6, and 8. Teachers can also sign up students to take additional (optional) tests

each fall. These optional tests can be taken one grade level before or after the mandatory test,

such that, for instance, the 4th grade test can be taken in the fall in grade 3, 4, and 5 (but

only twice).

The reading tests at all the grade levels (2–8) test all three domains. However, the tests at

each grade level uses different item banks, and therefore, the test score at one grade level is

not directly comparable to the test score at another grade level.

3.2 Data Samples

Equating Sample To equate the test scores from different grade levels, we exploit that

a subsample of students within a short time span have taken tests from two different grade

levels (e.g., some students will during 3rd grade have taken both the 2nd grade test and the

4th grade test). We denote this sample the “Equating Sample”. We restrict the sample to

students who took two tests of different grade (difficulty) levels no more than 30 days apart.

This leaves 1,518 students to link grade 2/4, 2,140 pupils to link grade 4/6 and 1,800 students

to link grade 6/8.

Reliability Sample To estimate the test-retest reliability, we use a “Reliability Sample” of

students who have taken the same test twice within a short period. We restrict the sample

to individuals who took the same test twice no more than five days apart. This leaves 1,943

students in grade 2, 1,354 students in grade 4, 1,594 students in grade 6 and 1,180 students in

grade 8.

Gross Sample To estimate the self-productivity parameter in the skill formation model we

use the “Gross Sample”. The Gross Sample consists of all individuals who complete a reading
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test (compulsory or optional) between 2009/10 and 2018/19. In total, we observe 4,064,380

test scores from 963,646 pupils. 2,112,500 (52.0%) of the tests are compulsory, and they are

divided between the different grade (difficulty) levels as follows: 1,060,800 (26.1%) of the 2nd

grade test, 1,078,930 (26.5%) of the 4th grade test, 1,067,946 (26.3%) of the 6th grade test and

856,704 (21.1%) of the 8th grade test. The lower number of 8th grade tests is mainly because

this test is used less for optional testing.

READ Sample Finally, we compare the model predictions of fade-out with observed fade-

out of an RCT, which tested the effect of the READ intervention (Andersen and Nielsen, 2016).

We denote this the “READ Sample”. The READ sample consists of all students who were

assigned to either the treatment or the control group in the READ trial, which we describe in

more detail below.

3.3 Socio-demographic Data on Students and Their Parents

For all four samples we are able to connect the data on test scores to socio-demographic data

on the students and their parents. All citizens in Denmark have a personal ID-number, which

is used by all public authorities. We use this number to merge information from different

administrative registers including data on their reading test scores, age, gender, and immigrant

status as well as information on their parents’ education and income. The personal ID-numbers

enable us to obtain data on the students many years after the intervention ended.

In subgroup analyses examining potential heterogeneous fade-out, we categorize students

as high/low socio-economic status (SES) according to their parents’ income and educational

level. We do so by first ranking all parents (separately for mothers and fathers) according

to their annual income and years of completed education. We then take the average of the

child’s maternal and paternal rank and rank again to obtain an overall parental education

and income rank. Finally, the SES measure is again an average rank of the education and

income ranks, and high (low) SES is defined as a rank above (below) the median. Unreported

robustness analyses show that we obtain similar results using alternative definitions, e.g. using

only parental education or using only maternal SES.

Table 1 shows descriptive statistics on the students and parents in the four samples used

for the analyses. The table shows that both the Equating Sample and the Reliability Sample
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Table 1: Descriptive statistics

Gross Sample Equating Sample Reliability Sample READ Sample

Child characteristics

Female 0.491 0.501 0.482 0.491
(0.500) (0.500) (0.500) (0.500)

Immigrant 0.103 0.170 0.097 0.207
(0.304) (0.375) (0.295) (0.405)

Family characteristics

Years of education (mother) 13.336 13.328 13.129 13.671
(2.785) (2.980) (2.728) (3.344)

Years of education (father) 12.886 12.973 12.745 13.682
(2.683) (2.892) (2.620) (3.116)

Yearly income (mother) 292,166 293,043 281,387 278,299
(215,462) (256,776) (200,988) (229,788)

Yearly income (father) 419,057 418,439 403,681 409,961
(513,588) (522,795) (359,896) (394,696)

Individuals 963,646 5,458 6,047 1,572
Observations 4,064,380 10,916 12,094 4,414

Notes: This table reports empirical means and standard deviations (in parentheses) of a set of background
variables for the different samples used in the analysis.

are very similar to the Gross Sample, although relatively more immigrants are included in the

Equating Sample (17% as opposed to 10%). This is even more so for the READ sample (21%),

because the intervention took place in the municipality of Aarhus, the second-largest city in

Denmark. But on average the READ sample is otherwise very similar socioeconomically to

both the Gross Sample and the Equating Sample.

3.4 READ: A Shared Book Reading Intervention

To compare the theoretical model prediction to observed fade-out of an intervention, we use

a shared book reading program called READ. The program is well-suited for this purpose

for two reasons. First, the intervention was directly targeted at reading skills, which makes

assumption 2 plausible. Second, previous research has shown that the intervention effect was

positive and suggested lasting effects on reading skills.

READ took place in the school year 2013/14 and it was implemented in 2nd grade. Families

received books and instructions on how the parents could support their children’s reading skill

development by asking open-ended questions about the books that the children read aloud.

The program applied a growth mindset (Dweck, 2006) approach by explaining to parents that

19



reading abilities are malleable, and that parents should reward their child’s effort rather than

performance. Details about the program, the randomized controlled trial used to evaluate

it, and the short-term effects are reported by Andersen and Nielsen (2016), so here we just

summarize the main features of the trial.

The study was a cluster-randomized trial run in collaboration with the local government

in the municipality of Aarhus. 28 schools signed up 74 classrooms. Classrooms were stratified

in groups of four based on language proficiency of the children. Within each stratum, two

classrooms were randomly assigned to treatment and two to business-as-usual control group

condition. Figure B.1 in the Appendix illustrates the design of the trial and the flow of the

1,587 students who were enrolled.5 The duration of the program was 16 weeks, and the average

costs per child approximately DKK 500 (USD 76).

3.4.1 Empirical Strategy for Evaluating the Effect of READ

We use the following regression model to test the effect of the intervention at various time

points after the beginning of the intervention:

Yi,j,t = αt + βtDi + sj,t + ϵi,j,t, (12)

where Yi,j,t denotes the standardized reading test score for child i in stratum j at time t. The

variable Di is an indicator variable that equals one if student i is in the treatment group and

zero otherwise, and ϵi,j,t is a zero mean error term. The parameter βt represents the intention

to treat effect in period t and is the parameter of interest. Finally, to increase precision of

the estimates, we include indicators of 19 strata used for randomization captured by sj,t. In

an unreported robustness analysis we also include a vector of student, parent and school

covariates. The pattern of fade-out, however, is similar with and without these covariates

included.
5The present analysis data set includes all students for whom we observe at least one test score, which is

a few more students compared to the previous analyses, where students with some missing covariates were
excluded. Furthermore, we use outcomes 7 months after the trial onwards in order to make use of the mandatory
national tests, which are available for the entire population.
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4 Fade-Out as a Statistical Artefact

As shown in Section 2.1, an intervention causing a skill increase of some percentage of a

standard deviation initially will be observed as a smaller percentage increase if measured by

a later test score, if the true reading skill variance is increasing over time. This is so even if

the skill gap remains the same in an absolute sense. To account for the potential change in

skill dispersion over time, we use the Equating Sample and the Reliability Sample to equate

reading tests designed for grade 2, 4, 6, and 8.

Ideally, to follow the theoretical framework outlined in Section 2.1.1, we would want

students to take each pair of tests at the same time. Of course, our empirical application can

only approximate this, as we need to allow for some time to pass between the two tests in

order to observe any students. Deciding on this threshold entails a bias/variance trade-off.

We discuss this in more detail in Appendix C, where we also perform a series of robustness

checks and sensitivity analyses. In our preferred specification, we allow up to 30 days between

tests for the Equating Sample and up to five days between tests for the Reliability Sample.

The empirical estimates derived from each of these samples that we need for the transfor-

mation are listed in Table 2. For the Equating Sample (students who have taken two tests

of different difficulty within 30 days), the table reports raw means and standard deviations.

Because the test scores used in this sample are standardized using the means and the standard

deviations from the full set of reading test scores at a certain grade level, sample means and

standard deviations of the test scores in this sample will generally differ from zero and one,

respectively.

For the Reliability Sample (students who have completed two tests of the same difficulty

less than five days apart), the table reports the empirical correlation between two test scores

for the set of students included in the sample at each grade level. The empirical correlations

provide us with estimates of the test-retest reliability ratios as discussed in Section 2.1.

From the means, standard deviations and reliability ratios, we can derive the µ and λ

parameters (which we set to 0 and 1 in the first period where they can be chosen arbitrarily).6

Inspecting the means and standard deviations from the Equating Sample, two things are

evident. First, we see that the mean test score gap is largest between 2nd and 4th grade and
6Appendix C shows that the results are not sensitive to the exact time lap between the first and the second

test in the two samples.
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Table 2: Adjusting for differences in location and scale

Equating

2nd grade 4th grade 4th grade 6th grade 6th grade 8th grade

Mean 0.315 -1.003 0.307 -0.728 0.293 -0.490
SD 0.977 1.163 0.932 0.962 1.014 1.041

Obs. 1518 2140 1800

Parameters

2nd grade 4th grade 6th grade 8th grade

µt 0 -1.390 -2.439 -3.388
λt 1 1.229 1.239 1.314

rt 0.789 0.840 0.802 0.856

Obs. 3886 2708 3188 2360

Notes: This table reports means and standard deviations for the Equating Sample, and the reliability ratios for
the Reliability Sample. From these, the location and scale parameters are derived in each period (normalized to
0 and 1 in 2nd grade).

smallest between 6th and 8th grade. This is indicative of the growth in absolute skill level

declining over time. Second, we see that the standard deviations are always larger for the test

designed for the higher grade level within each comparison. This is indicative of the variance

in the true skill distribution narrowing over time.

To illustrate this intuitively, Figure 2 plots the mean and the width of a one standard

deviation band around the mean for the 2nd and 4th grade tests, when taken in the respective

grades by the full population and in 3rd grade by the equating subsample. In 2nd and 4th

grade, the corresponding tests are constructed to have zero mean and a standard deviation

of one. In 3rd grade, the subsample is exposed to the tests with both a 2nd grade and a 4th

grade level difficulty. As one would expect, when the 2nd grade test is taken in 3rd grade, the

average student scores higher, while the converse is true when the 4th grade test is taken in 3rd

grade. Second, we see that the variation is also different. In particular, when the 2nd grade

test is taken in 3rd grade, the scores on average deviate less from the mean. This is not true to

the same extent for the 4th grade test taken in 3rd grade. Hence, when the two tests are taken

at the same point in time, it is evident that the easier test also has the smallest standard

deviation. But as the standardization is based on the corresponding 2nd and 4th grade results,

this implies that the skill variance is decreasing over this period. This can also be directly
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Figure 2: Equating test scores
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Notes: This figure illustrates how the 2nd and 4th grade tests are equated using the subsample of students
taking both tests in 3rd grade. In the population, both tests are standardized to have mean zero and a standard
deviation of one in their respective grade level. The scores in 3rd grade in the equating subsample are then used
to infer the average skill growth and the change in the variance between the two tests.

observed from Figure 2; the skill distribution appears to be narrowing from 2nd to 3rd grade,

and this is not followed by a corresponding widening from 3rd to 4th grade; this implies that

overall, from 2nd to 4th grade, the skill distribution is narrowing.

This method is known as linear equating. It relies on the assumption that the tests in

different periods are equally reliable measures of the underlying skill level.7 To relax this

assumption, we have to factor in the reliability ratios, which are test-retest correlations from

the Reliability Sample of students who take the same test twice in close succession. Only after

adjusting for any change in reliability do we arrive at the final location and scale parameters

in Table 2. The fact that λt is increasing in t and that µt+1 − µt is decreasing in t implies that

the initial indications hold, and the underlying skill trajectory is characterized by declining

growth and decreasing variance.

These two characteristics—declining growth curves and decreasing skill variance—are

illustrated in Figure 3, which plots the expected skill curve (see Equation (8)) implied by
7Another assumption is that the distribution of the two equated test scores have the same shape, e.g., both

being normally distributed, otherwise the linear approximation will be a poor fit. We test this assumption by
instead applying the non-parametric equipercentile equating method, which reveals that the linear fit is a good
approximation.
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Figure 3: Reading skill curve
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Notes: This figure illustrates the expected reading skill trajectory from 2nd to 8th grade based on our equating
procedure. The dots represent the equated scores corresponding to the mean and one standard deviation
above/below the mean for the respective grade levels. The means and the standard deviations are computed
using the formulas in (8) using the values of µt, λt, and rt provided in Table 2.

the parameters in Table 2. As described earlier, if the skill distribution is widening, this

could partly explain fade-out as a statistical artefact. Instead, we observe a narrowing skill

distribution. This is in contrast to Cascio and Staiger (2012), who find that a widening skill

distribution explains a minor fraction of the fade-out they observe. In our case, the implication

is, conversely, that the true fade-out is more substantial than what we might conclude at first.

4.1 Implications for Fade-Out in READ

We first report the effect of the READ intervention and its pattern of fade-out over time using

the test scores standardized at each grade level separately (as is common practise). We then

compare this to fade-out that is adjusted for the statistical artefact caused by narrowing of

the skill distribution.

The upper panel in Table 3 displays the effect sizes for the READ intervention measured

in 2nd, 4th and 6th grade, corresponding to 7, 31 and 55 months post-intervention. This shows

that the effect is statistically significant in both 2nd and 4th grade, with no apparent fade-out

between the two periods. On the other hand, when measured in 6th grade, we see that the
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Table 3: Effect size estimates of the READ intervention

Grade: 2nd 4th 6th

7 months 31 months 55 months

Treatment 0.178** 0.192** 0.105
(0.083) (0.082) (0.070)

Treatment 0.264*** 0.212*** 0.142**
(low SES) (0.095) (0.079) (0.069)

Treatment 0.007 0.018 -0.028
(high SES) (0.064) (0.081) (0.073)

Obs. 1,513 1,480 1,421

Notes: This table reports parameter estimates from regressions used to link the READ intervention to test
scores in reading over time. We regress the test outcome on the treatment indicator, controlling for indicators
of the 19 strata used for randomization. Lower panel report results by low and high SES subgroups. Standard
errors are reported in parenthesis. * p < 0.10, ** p < 0.05, *** p < 0.01.

effect estimate has shrunk by almost 50% and is no longer statistically significant. Thus, it

appears that a large fraction of the effect has faded out at this point.

The lower panel in Table 3 shows that point estimates for the high SES children are close

to zero in all periods. For the low SES children on the other hand, we see large effects in all

periods, though the effect also appears to fade out gradually.

Figure 4 compares the effect of READ on the commonly used test scores (standardized at

each grade level separately) to the effect on test scores corrected for the statistical artefact.

Results are reported for low- and high-SES students separately. We correct the point estimate

in grade t for the statistical artefact, by dividing the estimate with the corresponding scale

parameter, λt (in accordance with the theory presented in Section 2.1). We see that for the

low-SES children, fade-out is slightly stronger when we correct for the statistical artefact due

to the narrowing of the skill distribution in the population. The correction is more pronounced

for the 4th grade measure, because the equating procedure showed that the skill distribution

was narrowing the most from 2nd to 4th grade. The corrected effects show a pattern of gradual

fade-out of between 30% and 40% each period.

Because of the strong heterogeneity in treatment effects between low- and high-SES students

and the apparent lack of an effect (and hence fade-out) for high-SES students, we focus on the
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Figure 4: Treatment effect of READ by SES
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Notes: This figure compares the apparent fade-out of the READ intervention when evaluated based on the
observed standardized test scores to the fade-out once we correct the test scores for the statistical artefact due
to changes in skill variance and measurement error (separately for low and high SES students).

low-SES students in the remaining part of the paper.

5 Vertical Fade-out Caused by the Skill Formation Technology

Now that we have corrected for the part of the observed fade-out that was due to the lack

of a common scale, a significant degree of fade-out remains present. Does this mean that it

is inevitable that an intervention will be followed by some fade-out (at least in our setting)?

Answering this question is equivalent to saying something about the self-productivity of reading

skills, δt (specifically, whether δt < 1). As detailed in Section 2.2, the one-period fade-out of

an intervention is given by τt+1|t
τt|t

= δt. More generally, we have that τt+k|t
τt|t

=
∏k−1

j=0 δt+j , for the

k-period fade-out of an intervention, where δt+j = E
[

∂θt+j+1
∂θt+j

]
.

In the following, we attempt to determine the expected degree of fade-out of an intervention

by estimating δt directly. Exploiting additional data allows us to credibly put an upper bound

on this parameter by correcting for measurement error, as well as to approach the causal

effect by controlling for various confounding variables. Our estimation procedure relies on the
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following simple regression model:

θt+1 = ct + δtθt + π′
tXt + ηt, (13)

where Xt and ηt are the same quantities as defined in Section 2.2. By comparing the model

in (13) with the true skill formation model in (10), we see that the former model does not

explicitly account for investments as a determinant of skills. The reason why we may abstract

from investments in (13) is that the investment channels are included in the self-productivity,

δt, which, as explained in Section 2.2 consists the direct skill persistence as well as any

compensating or reinforcing investments and any dynamic complementarity or substitutability

(see Appendix A for additional details).

However, if we attempt to estimate (13) using only the corrected test scores, our estimate

of the self-productivity parameter will be biased for two reasons: measurement error in the

explanatory variable and omitted variables in Xt. First, because the tests measure the pupils’

true skills with some error, the estimates of the relationship between skills and subsequent skills

will be biased downwards. Second, if background characteristics such as parental resources, as

explained, predict both current and future skills, they will cause omitted variable bias if not

included in the regression model. Intuitively, when predicting expected fade-out, we need to

adjust for the fact that the intervention did not affect all factors that influence the association

between reading skills in one period and the next. The intervention changed the students’

reading skills, but not their parents’ education, let alone their genetic endowments. Although

ambiguous in theory, such variables will in practice overwhelmingly affect both current and

future skills in the same direction.8 In their absence, the relationship between skills and

subsequent skills will then be biased upwards.

We have already dealt with the measurement error issue when correcting for the statistical

artefact. To adjust for this error component, we simply need to utilize the reliability ratios

defined in Section 2.1 once more. To see this, note that our re-scaled measure of reading skills

(Z̄t), though now an unbiased measure of latent skills, will still be measured with some error,
8For example, parental cognitive and financial resources, child genetic endowments and non-cognitive skills,

neighbourhood and school quality etc. will surely have a positive effect on both initial skills, and future skill
development conditional on initial skills. It is difficult to think of characteristics for which the effects would
work in opposite directions.
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i.e.,

Z̄t ≡ Zt − µt

λt
= θt + ϵ̄t, (14)

where we have defined a new zero mean error term as ϵ̄t ≡ ϵt/λt. If we estimate (13) using

Z̄t (instead of θt), our estimate of δt will be biased towards zero due to the presence of

measurement errors in the independent variable. This attenuation bias, however, can in our

setting be expressed as the ratio between the variance of θt and the variance of Z̄t, which

can readily be shown to equal the reliability ratio given by rt = var(Zt)−σ2
t

var(Zt) . Hence, since we

are able to estimate rt, we can run an errors-in-variables (EIV) regression, which in practice

simply up-scales the estimate of δt by 1
rt

.9

In Table 4, we first run a naive regression of the corrected measure of reading skills on

the reading skills in the previous period. These associations are shown in column 1. Taken

at face-value, they suggest that we should expect fade-out approaching 30-45% per two-year

time period. However, the associations adjusted for attenuation bias are then displayed in

column 2 of Table 4. After being up-scaled to account for the uncertainty in each measure,

the estimates are much closer to unity, suggesting more limited fade-out of 15–30% per period.

We can interpret these estimates as an upper bound on the self-productivity of reading skills.

As explained, they may still be biased upwards because of omitted variables (e.g., other

skills, genes, or other family characteristics) affecting both current and future reading skills.

This means that the estimates are conservative when meaning to explain fade-out, because

overestimating the self-productivity is the same as underestimating the degree of fade-out.

Although we cannot eliminate this bias completely, we can add various control variables to Xt

to reduce the upper bound and approach the true effects.

Thus, in columns 3–5, we add a range of control variables. First, in column 3, we add

only maternal and paternal educational attainment, which we expect to be the best proxies

for the influence of the family on reading skill formation. Indeed, we see that this has some

effect on the coefficients, which shrink by 2–3 percentage points. Next, in column 4, we add a

wider range of parental controls, including income, wealth, employment history and age at

the child’s birth. We see that the coefficients on the self-productivity of reading skills are
9For more complex relationships, i.e., when there are several miss-measured skills in each period, the bias

will depend on the relative distributions of all the true skills and the measurement errors (Lockwood and
McCaffrey, 2020)
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Table 4: Estimates of the self-productivity of reading skills

(1) (2) (3) (4) (5)

4th grade reading score

δ2 0.566 0.717 0.687 0.686 0.685
(0.001) (0.001) (0.001) (0.001) (0.001)

N 817,241

6th grade reading score

δ4 0.714 0.849 0.828 0.827 0.826
(0.001) (0.001) (0.001) (0.001) (0.001)

N 806,933

ME correction ( ) (X) (X) (X) (X)
Parental education ( ) ( ) (X) (X) (X)
Full parental controls ( ) ( ) ( ) (X) (X)
Child birth controls ( ) ( ) ( ) ( ) (X)

Notes: This table reports parameter estimates from regressions of test scores in reading in 4th and 6th grade
to test scores in reading two years prior. In columns 2–5, the estimate is adjusted for measurement error. In
columns 3–5, we additionally add a set of control variables. Parental education refers to the years of education
of each parent. Full parental controls include, for each parent, their income and wealth ranks, their employment
status, and their age at the child’s birth. Child birth controls include immigrant status, birth order, birth
weight, gestational age, Apgar score, and whether the mother smoked during the pregnancy.

virtually unaffected by this, suggesting that parental education is indeed capturing almost all

observable variation in family background that matters for the self-productivity of reading

skills. Finally, in column 5, we also add a range of other characteristics capturing the child’s

birth conditions including immigrant status, birth order, birth weight, gestational age, Apgar

score, and whether the mother smoked during the pregnancy. Again, the coefficients practically

remain the same.

The reason for the minor additional difference caused by adding these controls is not

necessarily that they have no influence on skill formation. For example, parental income

significantly predicts both current and later test scores even after controlling for parental

education. But compared to the correlation between earlier and later test scores, the correlations

between income and test scores are small, meaning that the magnitude of the omitted variable

bias is very limited.10 Although we would ideally add an even broader range of controls, it
10If the correlation between the omitted variable and the test scores are one tenth of that between earlier and

later test scores, the bias is approximately 1
10 × 1

10 , i.e., one percent. After controlling for parental education,
the correlation between any of the other controls and test scores are much less than one tenth of the correlation
between earlier and later test scores.
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seems reasonable to believe, based on Table 4, that this would only cause a slight further

reduction in the point estimates. Still, we consider the estimates an upper bound on the

self-productivity of reading skills.

Comparing the upper and lower panel in Table 4, it is interesting to note that reading

skills appear to be more persistent between 4th and 6th grade (lower panel) than between 2nd

and 4th grade (upper panel). This also suggests that there is more re-shuffling happening

early in terms of students moving up or down in the skill distribution. This could happen

for various reasons. One explanation could be that other factors, such as the quality of the

home environment, is more important in the earlier grades. Another explanation could be

that investments become more reinforcing later on.

5.1 Observed and Predicted Fade-Out of READ

In Figure 5, we plot the observed fade-out (corrected for the statistical artefact) next to the

predicted fade-out for the low SES children. We see that the observed fade-out of the READ

intervention follows a pattern that, between 2nd and 4th grade, is practically identical to the

predicted fade-out. Between 4th and 6th grade, the actual degree of fade-out is higher than

the predicted fade-out, and therefore the overall fade-out is also somewhat higher than the

predicted level. This is consistent with the predictions representing an upper bound on the

extent to which the effect is expected to persist.

6 Fade-Out and Multidimensionality

So far, we have restricted our focus to a uni-dimensional measure of reading skills. This

restriction may be innocuous as long as the intervention we consider did in fact only affect

a single skill dimension. On the other hand, if several interrelated skills were affected, the

predictions from our uni-dimensional model may not accurately correspond to the skill profile

we are estimating.

As described earlier, the Danish national tests are multidimensional, with three distinct

profile areas for each subject. The profile areas in all the reading tests are: language compre-

hension (P1), decoding (P2) and text comprehension (P3). Instead of combining them into

a total reading score, we now consider these profile areas as separate dimensions of reading
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Figure 5: Predicted and observed fade-out of READ
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Notes: This figure compares the treatment effect for the READ intervention over time after correcting for the
statistical artefact to how the initial effect is predicted to develop using the skill formation model.

Table 5: Estimated reliability ratios by profile area

Grade: 2nd 4th 6th

Reliability ratio (P1) 0.6235 0.6633 0.6131
Reliability ratio (P2) 0.8123 0.8209 0.7915
Reliability ratio (P3) 0.7704 0.7583 0.7274

N 3886 2708 3188

Notes: This table reports the reliability ratios (the test-retest correlations) separately for each profile area.

skills. We thus re-do the equating and re-scaling separately for each profile area. As shown

in Table 5, there is a lot of variation in how precisely the skills are measured across areas,

making the correction even more important in the multidimensional setting.

Next, we again attempt to predict the expected fade-out by estimating the self-productivity

parameters. This becomes more complicated when allowing for the fact that skills are

multidimensional and may affect each other. We now have to estimate both an own- and a

cross-dimensional δ-parameter for each possible combination of skill dimensions.

Hence, we specify a generalization of the model in (13), in which we allow each profile area
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to affect all three profile areas in each subsequent period:

θp,t+1 = cp,t + δ1,p,tθ1,t + δ2,p,tθ2,t + δ3,p,tθ3,t + π′
p,tXt + ηp,t, (15)

where θp,t denotes the level of the pth reading skill component in time period t, and where δ1,p,t

to δ3,p,t thus capture the effect of reading skills on subsequent reading skills for all pairwise

combinations of profile areas. Thus, for associations within the same profile area, e.g. δ1,p,t, this

is equivalent to the self-productivity for this skill. Additionally, the remaining δ-parameters

capture the cross-productivity, i.e., that skills on one dimension may affect skills on the other

dimensions.11 We estimate the three equations in (15) simultaneously using a structural

equation modeling approach, in which we use the equated test scores Z̄p,t ≡ (Zp,t − µp,t)/λp,t

as proxies for the latent reading skills, θp,t. Motivated by theory, we impose the estimation

constraint that all self- and cross-productivity parameters must be non-negative, i.e., δi,p,t ≥ 0

for all i, p ∈ {1, 2, 3} and t ≥ 1.

The naive estimates of the δ-parameters in which we do not take measurement errors and

covariates into account are displayed in Table 6, columns 1 and 2. We see that the persistence

parameters with respect to the skill itself becomes smaller, only reaching 0.5 for decoding. At

the same time, there appears to be significant spillover for all profile areas. However, such a

pattern may also appear as a consequence of measurement error. We therefore again need to

adjust for this bias using the reliability ratios from Table 5. Note that profile area 1 (language

comprehension) has the lowest reliability. This may explain why this dimension appears to

have such weak persistence.

The adjusted associations are displayed in columns 3 and 4 of Table 6. As expected,

correcting for the measurement error causes all the persistence parameters to increase in

magnitude. Conversely, most of the cross-productivity parameters decrease. This is expected

because the different skill dimensions are positively correlated with each other, and because

they are all measured with error, the skill level on one dimension will be informative about

skills on the other dimensions, even though knowledge does not actually spill over. However,
11Potentially, skills that are not directly related to reading could also affect reading skills. However, the

READ intervention had no significant effects on neither conscientiousness nor math skills. This is consistent
with Aucejo and James (2021) who find that such cross-effects are not present in the production of reading
skills.
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Table 6: Estimates of the self- and cross-productivities of three dimensions of
reading skills

(1) (2) (3) (4) (5) (6)
Grade (t =): 4th 6th 4th 6th 4th 6th

P1 (language comprehension)

δ1,1,t−1 0.165 0.267 0.366 0.684 0.311 0.654
(0.001) (0.001) (0.003) (0.001) (0.003) (0.001)

δ2,1,t−1 0.181 0.126 0.233 0 0.234 0
(0.001) (0.001) (0.003) (0.002)

δ3,1,t−1 0.158 0.161 0 0 0 0
(0.002) (0.001)

P2 (decoding)

δ1,2,t−1 0.013 0.100 0 0 0 0
(0.001) (0.001)

δ2,2,t−1 0.468 0.512 0.680 0.807 0.658 0.808
(0.001) (0.001) (0.001) (0.003) (0.001) (0.001)

δ3,2,t−1 0.129 0.149 0 0.024 0 0
(0.001) (0.001) (0.003)

P3 (text comprehension)

δ1,3,t−1 0.102 0.157 0.063 0 0.003 0
(0.001) (0.001) (0.004) (0.004)

δ2,3,t−1 0.200 0.194 0 0 0 0
(0.001) (0.001)

δ3,3,t−1 0.312 0.424 0.614 0.831 0.607 0.794
(0.001) (0.001) (0.003) (0.001) (0.003) (0.001)

ME correction ( ) ( ) (X) (X) (X) (X)
All controls ( ) ( ) ( ) ( ) (X) (X)
N 817,241 806,933 817,241 806,933 817,241 806,933

Notes: This table reports parameter estimates from regressions of test scores for each profile area in reading
in 4th and 6th grade to test scores on all three profile areas two years prior. In columns 3–4, the estimate is
adjusted for measurement error. In columns 5–6, we additionally add the full set of controls. These are, for
each parent, their educational attainment, their income and wealth ranks, their employment status, and their
age at the child’s birth, as well as the child’s immigrant status, birth order, birth weight, gestational age, Apgar
score, and whether the mother smoked during the pregnancy. Non-negativity of the persistence parameters are
imposed in all estimations.

we see that a positive cross-effect remains for language comprehension (P1), which is affected

by earlier decoding (P2) ability, though only in the first period.

As in the single-dimensional case, we also proceed to add the family control variables in

order to limit the omitted variable bias. The estimates are displayed in columns 5 and 6 in

Table 6. Again, adding the controls causes most of the point estimates to decrease, albeit by

a relatively small magnitude. Although the estimates again represent upper bounds on the
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persistence parameters, it is plausible that adding further controls would only slightly weaken

the relationships, even more so now that we also account for the multidimensionality.

6.1 Observed and Predicted Fade-Out of READ by Subdimensions

Using the associations between the different profile areas and grades, after controlling for

measurement error and background characteristics, we can now predict how we should expect

the READ treatment effects to develop for each reading skill dimension. This is depicted in

Figure 6. It shows that the fade-out we observe for the intervention is largely consistent with

the predicted fade-out for each skill dimension. For language comprehension (P1), there is

very good agreement between observed and predicted fade-out throughout the period observed.

The prediction also ends up close to the actual fade-out for decoding (P2). The agreement

for text comprehension (P3) is good between 2nd and 4th grade, although the large degree of

fade-out observed for this profile area after 4th grade is not predicted.

While results for the three skill dimensions are largely consistent with the overall pattern

seen before, two additional findings appear from this sensitivity analysis. First, to the extent

that our predictions deviated from the observed fade-out for overall reading skills, this appears

to be mostly a result of a deviation for a specific profile, namely text comprehension. Secondly,

although language comprehension has the lowest self-productivity, predicted fade-out is not

much higher for this profile area because the large initial treatment effect on decoding is

predicted to have a cross-effect on language comprehension. Indeed, we see that the observed

pattern of fade-out for language comprehension closely follows this prediction.

7 Horizontal Fade-out Caused by the Skill Formation Technol-

ogy

In many educational systems, students need to attain a certain skill level in order to qualify for

the next educational level. They may, for instance, need a certain grade point average at some

qualifying exams in order to be enrolled at certain high schools or universities. If they do not

reach that skill level in time, they may need to pursue other educational trajectories. Therefore,

the time lead that some student may have over others in terms of their skill accumulation is
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Figure 6: Predicted and observed fade-out of READ by profile areas
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Notes: This figure compares the treatment effect by profile area for the READ intervention over time after
correcting for the statistical artefact to how the initial effect is predicted to develop using the multidimensional
skill formation model.

not just an economically meaningful measurement unit, it is also important for the individual

student’s educational attainment.12

As described in Section 2.3, when the average skill curve is concave—which we observe

that it is, see Figure 3—then a reduced difference in skill levels between treatment and control

group may be consistent with a maintained time lead for the treatment group over the control

group. And this is close to what we find. Figure 7 compares the standard approach—measuring

fade-out in terms of the (vertical) difference between treatment and control group in standard

deviations (the black line)—to the horizontal perspective showing the difference in the months

of time lead (the gray line). To re-express an effect size on skills (τt+k|t) to a measure of time

lead in months (ϕt+k|t), we use the following crude approach to solve (11):13

ϕt+k|t =
τt+k|t

E[θt+k+1] − E[θt+k] × 24, k = 0, . . . , T − t,

where we multiply the ratio of the effect size to the increment in expected learning by 24,

because, in our application, one time period corresponds to 24 months.

The black line in Figure 7 is identical to the black line in Figure 5 and printed here for

comparison. It indicates fade-out of the treatment effect, which is reduced from around 0.26
12Bond and Lang (2018) mitigate the arbitrariness of test score scales by tying it to an external metric: the

predicted number of years of education (see also Cunha and Heckman, 2008).
13This approach is exact only in the case when the mapping t 7→ E[θt] is a piecewise linear function on all

intervals [t, t + 1], where t is a positive integer.
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Figure 7: Fade-out on different scales
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Notes: The black lines, with values corresponding to the left y-axis, show the effect sizes on skills (solid line) and
the predicted development of the effect size (dashed line) based on the skill formation model. The gray lines,
with values corresponding to the right y-axis, show the effect sizes on skills measured in months of learning (solid
line) and the predicted learning time lead (dashed line) based on the skill formation model. The intervention
was implemented in 2nd grade, and the effect sizes are measured at the end of 2nd, 4th, and 6th grade.

at the end of 2nd grade to about 0.12 at the end of 6th grade, that is, slightly above 50%

fade-out. In contrast, the gray line shows that the treatment group has a time lead at the

end of 2nd grade of about 5.6 months. This effect decreases much more slowly, to about 5.1

months at the end of 4th grade and to 4.5 months at the end of 6th grade. In other words, the

treatment group maintains about 80 % of its time lead up to four years after the intervention.

And because the strong concavity of the skill curve outweighs the limited self-productivity,

the predicted fade-out is actually slightly negative when measured in time lead.

8 Conclusion

It is often argued that early interventions are much more effective investments in human capital

than investments in young adults. However, this view is challenged by observations that the

effects of interventions often fade out within a few years, making early interventions appear

futile. Therefore, understanding fade-out of interventions aimed at improving the skills of

young children is crucial to questions about human capital development and education policy.

Previous research has clearly demonstrated that in the absence of common metrics for
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measuring skills at different age levels, it is almost impossible to estimate fade-out validly.

Depending on the assumptions used to equate across different tests at different age levels, the

same data may support conclusions ranging from complete fade-out to fade-in (Wan et al.,

2021).

We provide a method for equating a set of reading tests taken in different school grades

such that they measure the underlying skill on the same scale. Our method accounts for

the possibly different reliability of each test as well as the potentially changing distribution

of underlying reading skills in the population. We find that the variance of reading skills is

decreasing over time, which implies that conventional estimates of fade-out that standardize

test scores to a standard deviation of 1 at each grade level will underestimate the degree of

fade-out.

We also estimate a skill formation model which predicts that some fade-out follows naturally

from the (lack of) persistence of reading skills over time. We find the self-productivity parameter

to be less than one, which implies that an initial skill difference between otherwise similar

students (such as the effect of an intervention) will tend to decrease over time. This predicted

fade-out pattern is very consistent with what we observe for the READ intervention. This is

not due to the specific intervention being ineffective, but rather is a natural result of future

reading skills being influenced by other factors beyond the current skill level of the student.

For example, an intervention may successfully raise student skill levels, but it will not raise

educational attainment of the student’s parents. In so far as parental education matters for

future skill formation, the treated students will still be at a deficit compared to other students

who arrived at a high skill level not as a result of the intervention but as a result of having

highly educated parents.

Finally, our results also demonstrate that the skill growth curve is concave. The older

students become, the longer it takes to increase their skills. Thus, although students in the

control group tend to catch up over time in terms of the vertical skill gap, treated students are

predicted to maintain their time lead four years after the intervention. In many educational

systems, time is crucial, because if students do not reach the required skill level in time (as

measured by their grade point average or some other test), they will not qualify for further

education and may never get the chance to further improve their skills. The conversion of

test scores from the arbitrary test score scale to the time scale makes the treatment effect
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economically meaningful. Whenever possible, it would be useful to convert test scores to a

scale of time progress rather than the often used standardized test scores–in order to make

meaningful comparisons of effect sizes across different studies (cf. Kraft, 2020; Lipsey et al.,

2012).

In sum, our results show that fade-out is a substantive phenomenon. In the setting we

consider here, it is present to such an extent that, all else equal, an intervention in 6th grade is

at least as good as an intervention four years earlier even if the early intervention has twice as

large an effect initially. However, all else is probably never equal for two interventions aimed

at students four years apart. In particular, the returns to one year of schooling appear higher

for younger students, which suggests that interventions will also tend to be more effective

early on. Nevertheless, our findings caution against the conclusion that earlier is better if such

conclusions are based only on effects observed shortly after an intervention.
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APPENDIX

A Additional Theory

A.1 Relationship Between Fade-out and Self-Productivity

Given the skill production function

θt+1 = γ0,t + γ1,tθt + γ2,tIt + γ3,tθtIt + π′
tXt + ηt, (A.1)

where the production shock, ηt, is assumed to be independent of both θt, It, and Xt in any

time period, the treatment effect in period t + 1 is given by:

τt+1|t = E[θt+1 | Dt = 1] − E[θt+1 | Dt = 0]

= τt|tγ1,t + τt|tγ2,t
∂It

∂θt
+ γ3,t(E[θtIt | Dt = 1] − E[θtIt | Dt = 0])

= τt|tγ1,t + τt|tγ2,t
∂It

∂θt
+ γ3,t(E[θt | Dt = 1] E[It | Dt = 1]

− E[θt | Dt = 0] E[It | Dt = 0] + cov(θt, It | Dt = 1) − cov(θt, It | Dt = 0)).

Because treatment only affects It through θt, we have that cov(θt, It | Dt = 1) = cov(θt, It |

Dt = 0), and thus

τt+1|t = τt|tγ1,t + τt|tγ2,t
∂It

∂θt
+ γ3,t(E[θt | Dt = 1] E[It | Dt = 1] − E[θt | Dt = 0] E[It | Dt = 0])

= τt|tγ1,t + τt|tγ2,t
∂It

∂θt
+ γ3,t

(
(E[θt | Dt = 0] + τt|t) E[It | Dt = 1]

− E[θt | Dt = 0]
(

E[It | Dt = 1] − τt|t
∂It

∂θt

))
= τt|t

(
γ1,t + γ2,t

∂It

∂θt
+ γ3,t

(
E[It | Dt = 1] + ∂It

∂θt
E[θt | Dt = 0]

))
.

Given that treatment is randomly assigned with P (Dt = 0) = P (Dt = 1) = 1
2 , we obtain that

τt+1|t = τt|t
(
γ1,t + γ2,t

∂It

∂θt
+ γ3,t

(
E[It] + ∂It

∂θt
E[θt]

))
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By differentiating (A.1) with respect to θt and taking the expectation, we can equivalently

express this relation as

τt+1|t = τt|t E
[

∂θt+1
∂θt

]
,

i.e., as the treatment effect that remains one period later is completely determined by how the

initial effect carries over to the next period. Thus, we can also express the degree of fade-out

as:

1 −
τt+1|t
τt|t

= 1 − E
[

∂θt+1
∂θt

]
≡ 1 − δt,

where we use δt to denote the self-productivity of skills in period t, which in this model is given

by

δt = γ1,t + γ2,t
∂It

∂θt
+ γ3,t

(
E[It] + ∂It

∂θt
E[θt]

)
.

A.2 Estimating Self-Productivity without Investments

Because investments are themselves a function of skills, we can estimate the self-productivity of

skills without accounting for investments explicitly. Measuring investments are only required in

so far as we want to break down the total self-productivity into its three components (direct skill

persistence, compensating/reinforcing investments, dynamic complementarity/substitutability).

To see this, note that the self-productivity parameter estimated by the regression

θt+1 = ct + δtθt + π′
tXt + ηt,

is given by

δt = cov(θt+1, θt)
var(θt)

,

which following the skill formation model in (10) is equivalent to

δt = cov(γ0,t + γ1,tθt + γ2,tIt + γ3,tθtIt + π′
tXt + ηt, θt)

var(θt)
.
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This can be rewritten as

δt = γ1,t + γ2,t
∂It

∂θt
+ γ3,t

(
E[It] + E[θt]

∂It

∂θt

)
,

where the last equality follows under the assumption that investments depend linearly on the

skill level, such that cov(It,θt)
var(θt) = ∂It

∂θt
. This assumption is also adopted by Cunha et al. (2010)

and Agostinelli and Wiswall (2023). Hence, we have that

δt = E
[

∂θt+1
∂θt

]
,

i.e., under correct specification the δt parameter from the regression without investments is

equivalent to the causal effect of skills on next period skills, that is, the self-productivity. Of

course, with an unbiased measure of investments, one can additionally estimate the relative

contribution of γ1,t, γ2,t and γ3,t to δt .

B Supplementary Information on the READ trial

Figure B.1 shows the flow of participants in the READ trial.

C Robustness and Sensitivity Analysis

In this section, we conduct a series of robustness and sensitivity analyses to further corroborate

the findings in the main text. First, in Section C.1, we argue for the choice we have made

regarding the maximum number of days between the two voluntary tests in the Equating- and

Reliability Sample. Second, in Section C.2 we provide a test to justify that the condition of

Assumption 3 are met in our empirical application. Third, we analyse how sensitive our main

results are to the use of the reliability ratios calculated by Rasch algorithm instead of our

own estimates in Section C.3. Finally, in Section C.4, we re-estimate the equating parameters

using weighted samples to account for the potential differences between the population and

the selected subsamples.
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Figure B.1: Participant flow diagram

Enrollment
Signed up

(N = 74; n = 1,587)

Excluded
[None]

Stratified and randomized
(N = 74; n = 1,587)

CONTROL (N = 36; n = 773)TREATMENT (N = 36; n = 814)

Allocation

No reading test
2 months (N = 0; n = 135)
7 months (N = 0; n = 41)

No reading test
2 months (N = 0; n = 178)
7 months (N = 0; n = 34)

Follow-Up

Analysed
2 months (N = 35; n = 638)
7 months (N = 35; n = 732)
31 months (N = 36; n = 732)
55 months (N = 36; n = 693)

Analysed
2 months (N = 32; n = 636)
7 months (N = 36; n = 780)
31 months (N = 36; n = 747)
55 months (N = 36; n = 728)

Analysis

N: Number of classrooms. n: Number of students
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C.1 Sensitivity Analysis of Duration Between Reading Tests

As described in Section 4, the underlying skill trajectory can be identified if each pair of tests

are taken simultaneously by the same individual. Naturally, any empirical application will

have to approximate this. In our main analysis, the Equating Sample includes children who

complete two different tests within a maximum of 30 days, and 5 days for the Reliability

Sample. The results are not sensitive to these exact thresholds, although using tests taken

many months apart does change the results, as one would expect.

There are two reasons why we use different thresholds for the two samples. First, for

any given threshold, the Reliability Sample is substantially larger than the Equating Sample.

Since we face a bias/variance-tradeoff, this difference implies that we should choose a lower

threshold for the Reliability Sample. Second, by deviating from the theoretical simultaneity,

we introduce an order in which the two tests are taken, and this may be consequential in the

case of the Reliability Sample.14 Although the tests themselves are identical, we may worry

that the second test measures something differently as a result of being taken later.

Indeed, we do observe that individuals score slightly higher on the second test. There

are two potential explanations for this: (i) either the student has become better at reading

during the time elapsed between the two tests (an increase in θt), or (ii) the student now

better “knows” how to take the test (captured by an increase in µt). Importantly, only the

former explanation is a violation of the identifying assumptions (because µt does not enter

into the covariances between the test scores). To reduce the concern that θt is changing, we

therefore choose the threshold of only five days, making it unlikely that any actual learning

happening between the two tests will be substantial. Furthermore, the next section shows a

test result that is consistent with θt being constant in this interval.

C.2 Validating Assumptions

In this section, we test for violations of the identifying Assumption 3. Our identification

strategy depends on the assumptions that λ
(1)
t = λ

(2)
t and var(ϵ(1)

t ) = var(ϵ(2)
t ). An implication

of this assumptions is that cov(Z(1)
t , Zt+1) = cov(Z(2)

t , Zt+1), where Z
(1)
t and Z

(2)
t denotes the

14The order may also matter for the Equating Sample, but here we can simply make sure that the sample
is balanced in the sense that the easier of the two tests comes last as often as it comes first. Our results are
robust to weighting the observations so that this balance is achieved.
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Table C.1: Comparison of covariances

Grade: 2nd 4th 6th

cov(Z(1)
t , Zt+1) 0.661 0.746 0.675

cov(Z(2)
t , Zt+1) 0.685 0.716 0.710

Difference (p-value) 0.492 0.391 0.273

N 1522 1085 1126

Notes: This table reports the empirical covariance between voluntary and subsequent mandatory reading tests.
The p-values are from a series of tests testing for equality between cov(Z(1)

t , Zt+1) and cov(Z(2)
t , Zt+1).

two tests of difficulty level t, and Zt+1 is another test designed for the next difficulty level.

The restriction is testable, and the failure to reject this hypotheses increases the likelihood

that this identifying assumption is satisfied.

To perform this test, we use the succeeding mandatory test as the benchmark. For example,

if Z
(1)
t and Z

(2)
t are voluntary 2nd grade tests, Zt+1 is the mandatory 4th grade test. The

empirical covariances are displayed in Table C.1 together with p-values from a test testing

the null hypotheses of equality of covariances. For all pairs of covariances, we do not find any

statistically significant differences at any conventional significance level.

C.3 Using SEM from the Rasch Algorithm

In this section, we illustrate the sensitivity of the results where we correct for differences

in measurement error using the theoretical standard errors of measurement calculated by

the Rasch algorithm during the individual reading tests instead of our own estimates of the

reliability ratios. These theoretical reliability ratios are displayed in Table C.2. Below the

ratios, we compare the fade-out correction that we make in the paper to the same correction

but based on the theoretical ratios. We see that either method arrives at practically the same

degree of fade-out. The same is true for the fade-out that we predict if we run the regressions

in Table 4, column 5, but with the measurement error correction based on the theoretical

SEM.

C.4 Weighting the Subsamples

A potential concern is that the subsamples used to identify the location and scale parameters

and the reliability ratios are selected subsamples of the full population with potentially different
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Table C.2: Reliability ratios (theoretical SEM)

Grade: 2nd 4th 6th

Reliability ratio 0.8225 0.8158 0.8385

Observed fade-out (empirical) 0.2637 0.1770 0.1142
Observed fade-out (theoretical) 0.2637 0.1835 0.1141

Predicted fade-out (empirical) 0.2637 0.1806 0.1492
Predicted fade-out (theoretical) 0.2637 0.1719 0.1472

N 311,763 305,118 283,568

Notes: This table reports the reliability ratios and observed and predicted fade-out when using the standard
error of measurement provided by the Rasch algorithm underlying the Danish national reading tests.

skill profiles. To accommodate this concern, we reproduce all the parameters where we weight

each observation based on the estimated probability that the individual is part of the subsample

in question. To calculate these probabilities, we run a probit model of a dummy for being in

the subsample on the full set of covariates that we use as controls in, e.g., Table 4.

The weighted parameters are displayed in Table C.3. As evident, none of the means and

standard deviations of the equating subsample, nor the reliability ratios of the reliability

subsample, are significantly different from their unweighted counterparts. For the equating

subsample, this comparison even overstates the difference in the implied parameters because,

to the extent that the means and standard deviations do change, they tend to do so in the

same direction for each pair of tests. Thus, the weighted and unweighted parameters are

practically identical. The weighted µt’s imply that the average reading skill level increases by

3.369 SD between grade 2 and 8, as opposed to 3.326 based on the unweighted parameters.

Similarly, the λt’s imply that a standard deviation difference in grade 8 only corresponds to

0.783 standard deviations in grade 2, as opposed to 0.792 standard deviations based on the

unweighted parameters. Hence, all of the conclusions drawn in the paper would clearly be

identical if we used the weighted versions of the parameters instead.
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Table C.3: Weighted parameters

Equating

2nd grade 4th grade 4th grade 6th grade 6th grade 8th grade

Mean 0.329 -1.000 0.322 -0.712 0.321 -0.471
p-value 0.691 0.939 0.602 0.567 0.409 0.573

SD 0.966 1.159 0.914 0.939 0.990 1.026
p-value 0.657 0.894 0.359 0.260 0.323 0.538

Obs. 1518 2140 1800

Parameters

2nd grade 4th grade 6th grade 8th grade

µt 0 -1.407 -2.442 -3.423
λt 1 1.237 1.238 1.323

rt 0.786 0.836 0.793 0.843
p-value 0.931 0.994 0.690 0.805

Obs. 3886 2708 3188 2360

Notes: This table reports means and standard deviations for the optional test scores by the equating subsample,
and the reliability ratios for the reliability subsample. In both cases, the samples are re-weighted by the
estimated probability that an individual is part of the subsamples. These probabilities are estimated using a
probit model using all the covariates that we control for in Table 4, column 5. The p-values are from a test of
equality between the weighted parameters and their unweighted counterparts.
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