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Abstract 

We challenge the dichotomy of network effects and highlight that they are not an exogenous 
characteristic of networks, but endogenous to the decisions of network users. When users choose 
which activities to perform in a network, multi-activity users transform indirect into direct 
network effects and a network effectively becomes one-sided if merely multi-activity users 
frequent it. Our work contributes to theory by determining the underlying micro-foundations that 
produce what the literature calls a two-sided market and by highlighting how the standard two-
sided pricing results arises only under very specific conditions. We also contribute to estimation 
by illustrating how the presence of multi-active users can challenge identification in network 
industries. 
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“(...) in a technical sense, the literature on two-sided markets could be seen as a

subset of the literature on network effects.”

– Rysman (2009, p. 127)

1 Introduction

Networks are characterized by demand interdependencies between users, usually referred

to as network effects. Depending on the number of activities a user can perform in the

network, the literature distinguishes two types of network effects: direct and indirect. Direct

network effects describe the effect a user has on other users performing the same activity.

Instead, indirect network effects capture the effect a user performing one activity has on

users performing another activity. To date, these network effects have been largely regarded

as distinct concepts.

We challenge this dichotomy and illustrate that network effects become versatile once

individuals are allowed to perform multiple activities. In that sense, the literature on two-

sided networks should not just be seen as a subset of the literature on network effects as

Rysman (2009) suggested, but rather as one and the same. The reason is that a network, in

which users can perform several complementary activities, such as selling and buying, treats

multi-activity users as if they were on the same side because the sum of the indirect network

effects is the same across multi-activity users. Hence, their presence implies a paling need

to skew prices between users performing unlike activities.

There are several examples that highlight the pervasiveness of multi-activity users. In

the peer-to-peer sharing industry, large events might attract downtown residents to host at

a high price and then use a suburb home as a rental. In the ride-sharing market, users might

work as drivers during the work week and take a ride during the weekend, while dog owners

can use dog sitting platforms to find a host for their dogs but often act as sitters by hosting

other dogs. In addition, platforms serving niche markets often observe considerable amounts
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of multi-activity. For example, parents at local clothing swaps with multiple children are

frequently buyers (of new cloths) and sellers (of cloths that are now too small) and trading

or sports card owners regularly trade or trade-in cards and are therefore buying and selling

simultaneously.

In our model, a user’s decision which of two activities to perform is based on idiosyncratic

preferences between activities as well as potential economies of activity, that is utility gains

or losses when performing both activities. Network effects are by assumption only indirect,

and thus between users performing unlike activities. We show that users’ possibility to

perform both activities transforms indirect into direct network effects whenever economies

of activity are non-zero. In the extreme case, when the network is only frequented by multi-

activity users, the network is transformed into a one-sided network featuring direct network

effects because multi-activity users only care about the total price, as opposed to the price

structure, and the overall participation in the network.

Our generalized model allows us to determine the conditions under which the network is

converted into a (quasi-) pure two-sided platform that features the classical two-sided pricing

found in Armstrong (2006). We first find that a pure two-sided platform with two distinct

sides arises if user preferences are negatively correlated and bimodally distributed between

activities and economies of activity are not too positive. These two conditions ensure that

individuals have a strong preference for performing only one activity and thus no incentive

to become a multi-activity user. Second, classical two-sided pricing can also arise with multi-

activity users, but only if economies of activity are absent. In this case, the network treats

multi-activity users as if they were two separate users performing unlike activities resulting

in a quasi-pure two-sided platform. Hence, our results suggest that the previous literature

on two-sided networks implicitly assumes one of the aforementioned conditions.

The results of our study have important practical and empirical implications. First,

under joint distributions of agents’ tastes that are marginal distribution equivalent,1 the

1Marginal distribution equivalence occurs when the marginal distributions from two different joint density
functions are equivalent.
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network’s pricing strategy and its profits are unaffected by the correlation between activity

preferences, because the total participation in each activity is unaffected. However, the total

number of users performing an activity, as opposed to the participation in the activity, may

still be affected by the correlation between activity preferences. This means that the number

of active users as a performance metric should be treated with caution in industries with

negligible economies of activity such as advertising-financed media and credit cards.

Second, the presence of multi-activity users can possibly bias any estimation related to

network users’ behavior, such as strength of network effects or demand price elasticities.

Concerning the quantification of network effects, Rysman (2019) argues that the reflection

problem impedes identification of direct, but not indirect, network effects. Our results sug-

gest that even in the absence of direct network effects in the traditional sense, consistent

estimation of indirect networks remains challenging because multi-activity users transform

indirect into direct network effects. We argue that richer and more fine-grained data, which

are more frequently used in recent studies, allow to investigate to which extent multi-activity

may be relevant. The reason is that the likelihood of multi-activity decreases the narrower

the observational unit, both in time and space. However, a bias may still arise in markets

where users frequently switch roles, which necessitates to consider the endogenous decision

by individuals of which activities to perform. Given the observability of detailed user infor-

mation, the complex user behavior can be incorporated by means of a discrete choice model

as done recently by Affeldt et al. (2022) in the context of multi-homing.

Our study relates to the early literature on network effects, which has exclusively focused

on direct network effects (Katz and Shapiro (1985)). Starting with Rochet and Tirole (2003),

Parker and Van Alstyne (2005), and Armstrong (2006), a separate strand has focused on

indirect network effects. Although a few studies have analyzed platform decisions when

direct and indirect network effects co-occur (Belleflamme and Toulemonde (2009), Weyl

(2010), and Belleflamme and Peitz (2019)), the two types of network effects have so far

been treated as distinct concepts. A recent exception is Belleflamme and Peitz (2020) who
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illustrate that a provider can transform a one-sided network into a two-sided network through

price discrimination. Their analysis provides a complementary reason for the versatility of

network effects that is based on the network’s pricing decisions, while the mechanism of our

analysis is rooted in users’ participation decisions, precisely the decision to perform several

activities in the network.

Two other studies have investigated the implications of users’ ability to choose which

activity to perform. Gao (2018) explores the incentives of a monopolist platform to bundle

the services it provides to its two sides and compares the optimal pricing strategies to those

in a context of single-siding individuals, but does not focus on the implications of multi-

activity users for the nature of network effects nor the practical and empirical implications

of multi-activity users. Choi and Zennyo (2019) analyze platform price competition when

users’ decide which side to join, but essentially abstract from multi-activity users as their

model allows users to join only one side.

2 The Model

2.1 Users

Suppose that a single network connects a unit mass of users that are interested in interacting

with each other. In order to accomplish an interaction, two activities need to be performed

by two different users. Let θi ∈ [θi, θi], i = {1, 2}, denote a user’s type for activity i,

which is drawn from a joint density function g(θ1, θ2). This implies that the distribution

of agents is given by G(θ1, θ2) =
∫ θ1
θ1

∫ θ2
θ2
g(θ′1, θ

′
2)dθ′2dθ

′
1, with marginal distributions given

by Gi(θi) =
∫ θi
θi

∫ θj
θj
g(θ′i, θ

′
j)dθ

′
jdθ
′
i. We assume there are network benefits across activities

such that a user that participates in activity i benefits from greater participation in activity
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j 6= i.2 More formally, let the utility from participating exclusively in activity i be given by

ui(θi) = αinj − pi − θi. (1)

The indirect network benefit of performing activity i in a single interaction is given by αi.

Hence, the user’s overall network benefit will be determined by how often she performs

activity i, which is directly proportional to the number of users performing activity j, nj.

In addition, a user’s utility of performing activity i is negatively affected by the price she

has to pay to the network to perform activity i, pi, and the idiosyncratic cost term related

to participating in activity i, θi. The latter generates an extensive margin for activity i

participation. Because users only differ in their idiosyncratic costs of participating in activity

i, there exists a threshold (denoted by θSi ) such that all users with type θi ≤ θSi will perform

activity i. Equation (1) implies that θSi is given by

θSi = αinj − pi. (2)

Instead of performing only one activity, a user may decide to perform both activities,

which generates a utility of

uM(θ1, θ2) = u1(θ1) + u2(θ2) + γ, (3)

where γ ∈ (−∞,∞) captures various aspects of the network or its available activities that

affect individuals incentives to perform both activities. When activities are clearly distinct,

as for example in the gaming industry where activities can be categorized broadly as playing

and developing games, this amounts to the case of γ = 0. In other industries, activities

or their functionality may be more similar, which means that multi-activity users can enjoy

efficiency gains due to saving of time or maintaining larger relevance in the network implying

2For convenience, we abstract from direct network effects in the analysis to highlight the versatile role
indirect network effects play in our setting.
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γ > 0. For instance, networks frequently give consideration to allow multi-activity users to

exist under a single account.3 Examples for γ < 0 can be linked to networks’ rules and policies

that regulate user behavior. For example, eBay reserves the right to suspend a user’s account

in case of possible misbehavior. Importantly, although a user can have multiple accounts,

eBay’s policies apply equally to all accounts meaning that users need to meet buyer and

seller standards across all accounts.4 This implies that a user may be confronted with a

suspension of both the seller and the buyer account although she may have only violated

seller standards. We will refer to these various aspects, captured by the γ parameter, as

economies of activity.

2.1.1 Positive Economies of Activity (γ > 0)

If γ > 0, then all users which receive a positive utility from performing each activity in

isolation will also perform both activities at the same time (the agents with θi ≤ θSi , ∀i).

However, there are two other groups of users that can have an incentive to perform both

activities.

First, there are users that derive positive utility only from one activity. Whether these

users are also willing to perform both activities will depend on whether their utility is higher

when performing both activities, which is only possible because γ > 0. More specifically, a

user deriving a positive utility only from activity j but a negative utility from activity i, so

that uj = max{u1, u2, 0}, will still perform both activities if

uM > uj ⇔ αinj − pi − θi + γ > 0, ∀j 6= i. (4)

More specifically, Equation (4) illustrates that a user with θj ∈ [0, θSj ] and θi ∈ (θSi , θ
S
i + γ]

3Airbnb allows a user to manage hosting and booking on one account and eBay maintains user reviews
as both a buyer and a seller. Moreover, prior to collecting taxes, Amazon allowed users to buy and sell
through the same account.

4See https://www.ebay.com/help/policies/identity-policies/multiple-accounts-policy?id=

4232&mkevt=1&mkcid=1&mkrid=711-53200-19255-0&campid=5336728181&customid=&toolid=10001 for
more details on eBay’s multiple accounts policy.
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will perform both activities because the additional benefit of performing both activities

compensates for the utility loss of performing activity i.

Second, there are users that perform both activities although they derive a negative

utility from performing any activity in isolation. More specifically, users with θ1 > θS1 and

θ2 > θS2 , will perform both activities if

uM > 0 ⇔ α1n2 − p1 − θ1 + α2n1 − p2 − θ2 + γ > 0. (5)

Denoting by θ̂1(θ2) the combinations of θ1 and θ2 for which the utility of performing both

activities is exactly zero, users with (θ1, θ2) ∈ [θS1 , θ̂1(θ2)]× [θS2 , θ
S
2 +γ] perform both activities

although they are not willing to perform any activity in isolation.

We illustrate in Figure 1 how the various trade-offs partition the set of users into the

four groups: users not joining the network (white area), users performing activity 1 exclu-

sively (light gray area), users performing activity 2 exclusively (dark gray area), and users

performing both activities (gray area). In the figure, utilities of users increase in the south-

west direction. The lines ui = 0 indicate that all users with θi < θSi will at least perform

one activity. The lines uM = ui partition these two groups into user that perform only one

activity (θi > θSi + γ) and those that perform two activities (θi < θSi + γ). Finally, there is

a set of users confined by the lines ui = 0 and uM = 0 that derive negative utility from each

single activity, but still join the network and performs both activities because γ > 0.

Recall that ni denotes the total number of users performing activity i. This can be

decomposed into the number of users performing only activity i, denoted by nSi , and the

number of users that perform both activities, denoted by nM , so that ni = nSi + nM . Based

on our previous discussion, the number of single- and multi-activity users crucially depends

on the level of γ. Single-activity users for activity i only exist if the additional utility of

performing both activities is not too high (θ̄i − θSi ≡ γ̄i > γ > 0). Instead, if γ ≥ γ̄i,

activity i will never be performed as a single activity, as every user performing activity j
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Figure 1: User classification for γ̄i > γ > 0

will also perform activity i and therefore act as a multi-activity user. While it depends

on the relative magnitudes of γ̄i and γ̄j whether activity i or activity j will be first to

feature no single-activity users, the network will be frequented only by multi-activity users

if
∑

i γ̄i ≡ γ̄M > γ > γ̄i, where γ̄M constitutes the threshold above which the universe of

individuals join as multi-activity users.

In order to determine the networks optimal pricing strategy, it is necessary to investigate

how users’ participation choices are impacted by the network’s decisions when γ > 0. The

effects are given by5

∂nSi
∂θSi
≥ 0,

∂nSi
∂θSj
≤ 0,

∂nM
∂θSi

≥ 0.6 (6)

Obviously, whenever nSi > 0, a rise in the threshold of participating in activity i increases

the number of users performing only activity i. This corresponds to a right-ward, respec-

5We will analyze how changes in participation thresholds (θSi and θSj ) affect participation and provide
more detail on why we follow this approach in Section 2.2.

6Details about users’ participation and their reaction to the network’s decisions for the case γ > 0 can
be found in Appendix A.1.
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tively up-ward, shift of the ui = 0 lines in Figure 1. Instead, a more lenient threshold for

participating in activity j decreases the number of users performing only activity i because

some users that have been performing only activity i start to perform both activities. This

corresponds to a right-ward, respectively up-ward, shift of the uM = uj lines in Figure 1.

Moreover, a relaxation of the participation threshold for any activity increases the number

of multi-activity users as long as there are individuals that do not connect to the network

(γ̄M > γ > 0). The reason is that either some single-activity users become multi-activity

users or individuals that have not joined the network before become multi-activity users.

Our analysis also shows that a more lenient participation threshold for activity i increases

total participation in any activity
(
∂ni
∂θSi

,
∂nj
∂θSi
≥ 0
)

even though the number of single-activity

users for activity j decreases
(
∂nSj
∂θSi

< 0
)

. The reason is that shifts in the uM = uj lines

do not have quantitative effects on the number of users performing activity i, but merely

determine the partitioning into single-activity and multi-activity users. The overall effect is

therefore only driven by newcomers to the network.

2.1.2 Non-Positive Economies of Activity (γ ≤ 0)

The analysis of the case when γ ≤ 0 differs slightly from the previous one, as some trade-offs

change. First, any user that derives a negative utility from performing activity i (θi > θSi )

won’t perform that activity. This also implies that only users that derive a non-negative

utility from performing either activity (θi ≤ θSi , ∀i) may perform both activities. However,

performing both activities comes with an additional disutility, which means that some users

will perform only one activity although each single activity exhibits a positive utility. Thus,

if uj = max{u1, u2, 0}, then performing both activities is beneficial when

uM ≥ uj ⇔ αinj − pi − θi + γ ≥ 0, ∀j 6= i. (7)
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Since this trade-off is equivalent to Equation (4), performing both activities is only beneficial

for users with θi ≤ θSi + γ, ∀i.

All other users that derive a positive utility from performing each activity in isolation do

not have an incentive to perform both activities. Hence, these users have to decide, which

of the two activities they want to perform. Specifically, users with θi ∈ (θSi + γ, θSi ] ∀i, will

prefer activity i over activity j if

ui ≥ uj ⇔ αinj − pi − θi > αjni − pj − θj, i 6= j. (8)

Denoting by θ̃1(θ2) the combinations of θ1 and θ2 for which the utility of performing either

activity is the same (ui = uj), users with (θ1, θ2) ∈ [θ̃1(θ2), θS1 ]× [θS2 + γ, θS2 ] perform activity

1, while the other users, i.e. users with (θ1, θ2) ∈ [θS1 +γ, θ̃1(θ2)]× [θS2 +γ, θS2 ] perform activity

2.

In Figure 2, we illustrate the case of γ ≤ 0 and show the trade-offs that partition users into

the four groups: users not joining the network (white area), users performing activity 1 (light

gray area), users performing activity 2 (dark gray area), and users performing both activities

(gray area). The lines ui = 0 indicate that all users with θi < θSi will at least perform one

activity, the lines uM = ui confine the users performing two activities (θi < θSi + γ), and the

line u1 = u2 separates users into those performing either activity 1 or activity 2.

Similar to before, the level of γ affects the number of single- and multi-activity users. If

economies of activity are sufficiently negative, i.e. γ ≤ max{γ
1
, γ

2
}, with γ

i
≡ θi − θSi < 0,

no user has an incentive to perform both activities so that the network is frequented only

by single-activity users. Instead, some individuals decide to become multi-activity users as

long as max{γ
1
, γ

2
} < γ ≤ 0.

Again, to determine the networks optimal pricing strategy, we investigate how users’

participation choices are impacted by the network’s decisions for the case γ ≤ 0. Irrespective
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Figure 2: User classification for γ < 0

of how negative γ is, we can establish the following effects on participations:7

∂nSi
∂θSi

> 0,
∂nSi
∂θSj

< 0,
∂nM
∂θSi

≥ 0. (9)

The intuition for the effects is similar to before. A rise in the threshold of participating in

activity i increases the number of users performing only activity i (right-ward, respectively

up-ward, shift of the ui = 0 lines in Figure 2), but decreases the number of users performing

only activity j because some users that have been performing only activity j start to perform

activity i (shift of the u1 = u2 line). Furthermore, as long as some users perform both

activities, a relaxation of the participation threshold for any activity increases the number

of multi-activity users as some single-activity users become multi-activity users.

Moreover, and in contrast to before, a more lenient participation threshold for activity

i decreases total participation for activity j
(
∂nj
∂θSi

< 0
)

even though the number of multi-

7Details about users’ participation and their reaction to the network’s decisions for the case γ ≤ 0 can
be found in Appendix A.2.
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activity users for activity j increases
(
∂nMj
∂θSi

> 0
)

. Again, shifts in the uM = uj lines do not

have quantitative effects on the number of users performing activity j, but merely determine

the partitioning into single-activity and multi-activity users. Thus, the overall effect is only

driven by single-activity users that switch activities, which are determined by shifts in the

u1 = u2 line.

2.2 The Network’s Problem

In this section, we analyze the network’s maximization problem.8 Profits of the network are

given by

Π = (p1 − c1) (nS1 + nM) + (p2 − c2) (nS2 + nM), (10)

where ci is the marginal cost the network incurs when a user participates in activity i.

While the natural decision of the network to maximize profits would be to set the prices,

p1 and p2, related to the two activities, it is analytically equivalent, but more convenient, if

the network maximizes profits by optimally setting the participation thresholds θS1 and θS2

(see Weyl (2010) for details). Deriving the network’s profits with respect to θSi yields

∂Π

∂θSi
= (pi − ci)

(
∂nSi
∂θSi

+
∂nM
∂θSi

)
+ (pj − cj)

(
∂nSj
∂θSi

+
∂nM
∂θSi

)
− (nSi + nM)

+ αi

(
∂nSj
∂θSi

+
∂nM
∂θSi

)
(nSi + nM) + αj

(
∂nSi
∂θSi

+
∂nM
∂θSi

)
(nSj + nM) = 0. (11)

Using ni = nSi + nM to solve the network’s pricing problem, we derive the following general

result:

8Naturally, for two variable maximization problems like this where implicit functions are used, second-
order conditions that ensure profit maximization provide little insight toward restrictions on the underlying
microfoundations (the distributions of θ1 and θ2 relative to γ in this case). However, we can state that the
second-order conditions mirror traditional two-sided networks under linear distributions for θ1 and θ2 and
with γ sufficiently close to zero.
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Proposition 1. The network’s optimal prices are given by

p∗i = ci − αjn∗j + ∆∗ij,
9

where ∆∗ij :=
ni
∂nj

∂θS
j

−nj
∂nj

∂θS
i

∂ni
∂θS
i

∂nj

∂θS
j

− ∂ni
∂θS
j

∂nj

∂θS
i

> 0 as
∣∣∣ ∂ni∂θSi

∣∣∣ ≥ ∣∣∣ ∂ni∂θSj

∣∣∣ ∀i 6= j captures the markup term.

Proof. See Appendix A.3.1.

Proposition 1 shows that the network’s pricing strategy is given by three terms: (i) the

marginal cost ci, (ii) the markdown due to indirect network effects αjn
∗
j , and (iii) a markup

∆∗ij related to the sensitivity of users’ participation in the activity. As the total number of

users performing a specific activity is composed of single-activity and multi-activity users,

i.e. ni = nSi + nM , multi-activity users affect pricing via both the indirect network effect

and the markup. For example, note that users are exogenously assigned to a specific side

resulting in
∂nj
∂θSi

= 0 in Armstrong (2006). This case implies that ∆ij = ni/∂ni
∂θS
i

, which mirrors

the term φi(ui)/φ′i(ui) in Armstrong (2006). However,
∂nj
∂θSi

= 0 can only arise in our model

if economies of activity are not too positive (γ < γ̄i,∀i) in combination with a bimodal

distribution where users’ cost parameters are negatively correlated. Hence, multi-activity

will naturally impact pricing in the majority of cases and we explore this topic explicitly in

the next section.

3 The Transformability of Network Effects

In this section, we dive into the two extremes that are often considered in the literature: Two-

sided platforms with indirect network effects and traditional networks with direct network

effects. In the following subsections, we consider how each of these extremes can arise with

9We use the ∗ superscript to denote the equilibrium. As we show in the proof (see Appendix A.3.1),
the platform chooses θS1 and θS2 when solving the maximization problem so that, technically, the equilibrium
pricing solutions should be written as pi(θ

S∗
1 , θS∗2 ) = ci − αjnj(θS∗1 , θS∗2 ) + ∆ij(θ

S∗
1 , θS∗2 ). However, we drop

the θS∗i terms to simplify the exposition.
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multi-activity users and discuss the resulting implications for estimating indirect network

effects.

3.1 Two-Sided Networks

Our model allows us to analyze under which conditions traditional two-sided pricing as found

in the two-sided platform literature can arise. The most natural way to establish two-sided

pricing arises if users are truly distinct so that no multi-activity exists. A second way to

attain two-sided pricing is when the presence of multi-activity users is immaterial to the

network’s pricing decision. We summarize the conditions under which traditional two-sided

pricing arises in:

Proposition 2. Traditional two-sided pricing will only arise if either

(i) economies of activity are sufficiently negative (γ < γ
i
,∀i), or preferences across activ-

ities are bimodally distributed and negatively correlated while economies of activity are

not too positive (γ < γ̄i ∀i) — pure two-sided networks (with nM = 0),

(ii) or economies of activity are absent (γ = 0) — quasi-pure two-sided networks (with

nM > 0).

Proof. See Appendix A.3.2

Proposition 2 effectively captures the implicit assumptions of the two-sided platform

literature. To better understand these two settings, we consider each in more detail.

3.1.1 Pure Two-Sided Networks

To understand how multi-activity users affect two-sided network pricing, we first relate our

model to the traditional studies on platform pricing presented by literature in which users

decide to perform only one activity (nM = 0) and we call this setting pure two-sided networks.

This allows us to interpret network activities as sides, and our results from Proposition 2(i)
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imply that a pure two-sided network occurs either if economies of activity are sufficiently

negative or users’ activity preferences are bimodal and negatively correlated in combination

with economies of activity that are not too positive.

The first case in Proposition 2(i) under which a pure two-sided network can arise is if

γ < γ
i
, ∀i. The only relevant decision for users will be which activity to perform if they

decide to join the network. In Figure 2, active users will only be partitioned by the u1 = u2

line, as the trade-offs uM = ui,∀i, become irrelevant when γ is sufficiently negative. This

structure matches the framework analyzed in Choi and Zennyo (2019) who extend Armstrong

(2006) by allowing users to endogenously choose one (and only one) side of a platform to

join.

For the second case in Proposition 2(i), note that users’ ability to choose which activity

to perform is the reason why the optimal pricing in Proposition 1 marginally differs from the

optimal pricing of a monopolist platform in Armstrong (2006). In Armstrong (2006) users

are exogenously assigned to a specific side resulting in
∂nj
∂θSi

= 0. Applied to the network’s

optimal pricing simplifies the last term to ∆∗ij = ni/∂ni
∂θS
i

, which mirrors the term φi(ui)/φ′i(ui)

in Armstrong (2006). In our model,
∂nj
∂θSi

= 0 can only arise if economies of activity are

not too positive (γ < γ̄i,∀i) in combination with a bimodal distribution where users’ cost

parameters are negatively correlated. Graphically, this means that the set of multi-activity

users is empty and that users are located either in the upper left or the lower right corner

in the figures.

3.1.2 Quasi-Pure Two-Sided Networks

Proposition 2 also reveals another scenario in which the network’s optimal pricing resembles

the pricing in Armstrong (2006) despite the presence of multi-activity users (nM > 0). This

is the case when γ = 0, which implies that the set of multi-activity users joining the network

only to perform both activities (the triangle under uM = 0 in Figure 1) no longer exists.

From Figure 3, it becomes clear that for any given number of users performing activity i, the
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network’s decision about θSj has no effect on the number of users performing activity i, but

merely determines the partitioning into single- and multi-activity users. As a consequence,

a user’s decision whether to perform an activity is an isolated choice (cf. Equation (3)).

Figure 3: User classification for γ = 0

The independence of users’ decisions about performing activities implies that the network

treats multi-activity users as if they were two separate single-activity users performing unlike

activities. From an analytical point of view, it can be easily seen from Figure 3 that ∂nM
∂θSi

=

−∂nSj
∂θSi

if γ = 0. When we use this relationship in the first-order condition (Equation (11)) in

conjunction with nSi + nM = ni, and solve for the optimal price, we get

p∗i = ci − αjnj +
ni
∂ni
∂θSi

, (12)

which again resembles the optimal pricing of a monopolist platform in (Armstrong, 2006).

Hence, if γ = 0, the network is a quasi-pure two-sided network as the presence of multi-

activity users has no important implication for the pricing policy. It is important to note
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that Proposition 2(ii) has already been highlighted by Gao (2018) Corollary 1. While this

specific result is not new per se, we develop important practical implications relating to the

case where γ = 0 that only arise because of multi-activity users.

3.2 One-Sided Networks

In this section, we illustrate how the presence of multi-activity users can effectively generate

a network with direct network effects akin to the traditional one-sided network. Consider

the case in which economies of activity are so large that all users which decide to join the

network are interested in performing both activities (γ̄M > γ ≥ γ̄i, ∀i). If the network

is merely frequented by multi-activity users, that is nSi = 0,∀i, and thus ni = nj = nM ,

Equation (11) reduces to

∂Π

∂θSi
= (pi − ci + pj − cj + nM(αi + αj))

∂nM
∂θSi

− nM = 0. (13)

The qualitative difference of the network’s pricing if there are only multi-activity users

emerges because, in this case, ∂nM
∂θSi

= ∂nM
∂θSj

. The reason is that multi-activity users only

decide whether or not to join the network taking into account the total price level (cf. Equa-

tion (5)). This user behavior implies that the first-order conditions for θS1 and θS2 become

identical with infinite possibilities for the network to satisfy Equation (13).

The relevance of the total price level as opposed to the price structure highlights that

a network frequented only by multi-activity users faces the same trade-off as a network

featuring direct network effects even though our model only exhibits indirect network effects.

However, as multi-activity users benefit from both indirect network effects, the sum of the

indirect network effects is the same across multi-activity users. This implies that indirect

network effects are transformed into direct network effects, at least as long as γ 6= 0 as

illustrated in the previous section. Hence, we summarize in:

Proposition 3. The presence of multi-activity users creates direct network effects if γ 6= 0.
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If economies of activity are large (γ̄M > γ ≥ γ̄i,∀i), all active users perform both activities

transforming a potentially two-sided network into a one-sided network.

Proof. See Appendix A.3.3

Proposition 3 illustrates that the dichotomy of direct and indirect network effects tradi-

tionally used in the literature needs to be seen in a more nuanced light as network effects

become versatile in the presence of multi-activity users. The transformability of indirect net-

work effects can be most saliently illustrated by telecommunication systems like telephony

or instant messaging. While telecommunication systems are frequently used in the literature

to describe direct network effects, they can be characterized as networks with two activities,

sending and receiving. Hence, in principle, the network can price each of these activities

separately. Indeed, in the early years of cellular markets, network operators traditionally

priced either the party that made the call (calling party pays) or the party that received

the call (receiving party pays) — a two-sided pricing strategy.10 However, in many coun-

tries nowadays, virtually all cellphone users are frequent performers of both activities and

therefore conclude postpaid contracts that typically specify a limit or “allowance” of minutes

or text messages that disregard what kind of activities a user performs. Effectively, such

contracts resemble a one-sided network pricing strategy.

4 Practical and Empirical Implications of Multi-activity

Users

4.1 Practical Implications

In this section, we focus on how the correlation between θ1 and θ2 impact the extent of

multi-activity and the resulting equilibrium outcome. To simplify our analysis we assume

that γ = 0 in everything that follows and this implies that uM = u1 + u2. While we draw

10Similarly, early texting contracts charged different prices for sending and receiving text messages.
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our attention to the practical implications in this section, we show that following results

also generate novel caveats to empirical settings considered in the platform literature. We

elaborate on the empirical implications in the next section.

In the following, we illustrate that there are preference distributions that generate iden-

tical equilibria except for the number of multi-activity users. This occurs when the marginal

distributions of two different joint density functions are equivalent, which we refer to in the

following as marginal distribution equivalence. In contrast to the conditional distribution,

which informs about the density of θi conditional on the values of θj, the marginal distribution

of θi is the distribution of θi without taking into account the values of θj (that is, by integrat-

ing over all values of θj). More formally, two joint density functions, ĝ(θi, θj) and g̃(θi, θj),

are marginal distribution equivalent (denoted by ĝ ∼ g̃) if Ĝi(θi) =
∫ θi
θi

∫ θj
θj
ĝ(θ′i, θ

′
j)dθ

′
jdθ
′
i =∫ θi

θi

∫ θj
θj
g̃(θ′i, θ

′
j)dθ

′
jdθ
′
i = G̃i(θi) for all θi and for i = 1, 2.11 We summarize the implications

of marginal distribution equivalence as follows:

Proposition 4. In the absence of economies of activity (γ = 0), if the marginal distributions

of their users’ preferences are equivalent, then two networks only differ in the number of

multi-activity users and thus feature the same prices and participation levels on each side of

the market.

Proof. See Appendix A.3.4

There are two points of note regarding Proposition 4. First, relating this result to optimal

pricing given in Proposition 1 we see that marginal distribution equivalence ensures that both

the ∆ij and the ni are constant so that pricing strategies will be quantitatively equivalent.

Second, the proposition implies that networks whose users have vastly different preferences

11There is a longstanding mathematical literature on the optimization over these marginal equivalent
joint densities. In transportation theory, joint distribution g(θ1, θ2) with marginal distributions G1(θ1) and
G2(θ2) corresponds to a “transport plan” in [θ1, θ1]× [θ2, θ2] between two “marginals” in [θ1, θ1] and [θ2, θ2]
respectively. And in the commonly studied Monge-Kantorovich problem, one determines the transportation
cost minimizing transport plan, g, from the set of transport plans between G1 and G2. Page 119 in Ambrosio
et al. (2008) provides more information on transport plans (i.e., distributions that are marginal distribution
equivalent).
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may produce similar outcomes in terms of pricing and participation in each activity, but not

in terms of multi-activity.12

The second point pertains to how “number of users” is defined as this will impact whether

or not it serves as a reliable performance measure. Specifically, if the number of users is

defined by the number of users performing activity 1 plus the number of users performing

activity 2 (that is, the total number of users), then N = n1 +n2. Instead, if each user profile

is considered individually, regardless of which activities are pursued through a user’s profile,

then the total number of active users is given by N = n1 + n2 − nM (that is, the unique

number of users in the network). To elaborate on the practical implications, consider the

following example.

Let gX(θ1, θ2), X = {+,−, 0} denote the case of perfect positive, perfect negative, and

zero correlation between cost parameters, respectively. More specifically, let g+(θ1, θ2) be

captured by θ ∼ U [0, 1] with θi = θi + (θi− θi) · θ, for i = 1, 2, g−(θ1, θ2) by θ ∼ U [0, 1] with

θ1 = θ1 + (θ1 − θ1) · θ and θ2 = θ2 − (θ2 − θ2) · θ, and g0(θ1, θ2) by θi ∼ U [θi, θi] for i = 1, 2.

Although all three distributions imply uniform marginal distributions, the underlying joint

distributions differ.13 From Figure 3, it can be easily seen that ni =
∫ θi
θi

∫ θj
θj
g(θ′i, θ

′
j)dθ

′
jdθ
′
i,

which is simply the marginal distribution Gi(θi). It is then straightforward to show that the

g+, g−, and g0 are marginal distribution equivalent as GX
i (θi) = U [θi, θi] for i = 1, 2 and

for all X = {+,−, 0}. Because marginal distribution equivalence implies that participation

in activity i, ni, is equivalent across the three distributions, network pricing must also be

equivalent by Equation (12).14 However, it is important to note that the three distributions

cause different numbers of multi-activity users, which implies that the total number of active

12That is, if γ = 0 and ĝ ∼ g̃, then p∗i (ĝ) = p∗i (g̃) and n∗i (ĝ) = n∗i (g̃) for i = 1, 2 with n∗M (ĝ) 6= n∗M (g̃)
except by chance.

13While g0 occupies the entire [θ1, θ1]× [θ2, θ2] space, g+ only occupies the 45 degree line between (θ1, θ2)
and (θ1, θ2) uniformly, whereas g− only occupies the 45 degree line between (θ1, θ2) and (θ1, θ2) uniformly.

14Maximizing Equation (10) under any of the three specifications results in first-order conditions given
by: 0 = −θi + αinj − 2(θi − θi)ni − ci + αjnj . The second-order conditions of profit maximization require
that 4(θ1 − θ1)(θ2 − θ2) > (α1 + α2)2. Solving the two equations for n1 and n2, we have that n∗i =
(α1+α2)(−θi−ci)+2(θi−θi)(−θj−cj)

4(θ1−θ1)(θ2−θ2)−(α1+α2)2
.
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users, given by N = n1 + n2 − nM , can differ drastically across networks that maintain the

same prices, in this example, N∗(g−) > N∗(g0) > N∗(g+) despite p∗(g−) = p∗(g0) = p∗(g+).

To illustrate this point, if for example θ1 = θ2 = 0 and θ1 = θ2 = 1, then n∗M(g+) =

min{n∗1, n∗2}, n∗M(g−) = max{n∗1 + n∗2 − 1, 0}, and n∗M(g0) = n∗1 · n∗2.15

This result has important practical implications, especially for those interested in invest-

ing in platforms. The number of active users is not only a key performance indicator, but

frequently used as the benchmark indicator to inform investors about a platform’s profit and

growth potential. While the number of active users as a performance indicator has been

widely criticized mainly due to missing industry standards for measurement and thus a lack

of its comparability across firms, our findings suggest that the measure should be taken with

caution even if measurement is standardized. Specifically, Proposition 4 illustrates that the

number of active users may not contain any informational content to evaluate two platforms’

potential profitability, especially in industries with negligible economies of activity, as is ar-

guably the case for credit cards, video gaming and advertising-financed media, such as, social

media platforms.

4.2 Empirical Implications

4.2.1 The Reflection Problem and Indirect Network Effects

To highlight the empirical implications on estimating network effects, we revisit the empirical

identification of network effects in light of the reflection problem. The reflection problem

described by Manski (1993) characterizes a setting in which a researcher tries to predict

whether the behavior of an individual within a group is affected by the average behavior in

the group. According to Manski (1993), identification is impossible in the context of local

15Under g+, the first agent to engage in activity i for i = 1, 2 is the agent identified by θi = 0. Hence,
the activity with fewer agents is comprised entirely of multi-activity users, i.e., n∗M (g+) = min{n∗1, n∗2}.
Under g−, the first agent to engage in activity 1, respectively activity 2, is the agent identified by θ1 = 0,
respectively θ1 = 1. Hence, if at all, the only agents that are multi-activity users are those that overlap in
the middle of the interval, i.e., n∗M (g−) = max{n∗1 + n∗2 − 1, 0}. Lastly under g0, the only agents that are
multi-activity users are those that draw sufficiently low θi, for each activity, i.e., n∗M (g0) = n∗1 · n∗2.
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spillovers between individuals because causal neighborhood spillovers cannot be separated

from local correlation driven by unobserved neighborhood effects.

Recently, Rysman (2019) stated that the identification of direct network effects suffers

from the same problem as the set-up of a standard model of direct network effects resembles

the set-up in the reflection problem. Specifically, an individual’s valuation of a product

depends on how many other individuals use the product meaning that individuals’ base

their product choice on the product choices made by other individuals in their market.

However, Rysman (2019) argues that, while the reflection problem exists when estimating

direct network effects, indirect network effects offer a natural way of addressing the reflection

problem. The reason is that indirect network effects correspond to the unobserved correlated

effect and can be identified under the typical assumption in the platform literature that direct

network effects are absent.

However, as we show in Proposition 3, abstracting from direct network effects in the tradi-

tional sense is a necessary, but not a sufficient condition to ensure identification, because the

presence of multi-activity users also generates direct network effects whenever economies of

activity exist. Hence, identification requires the additional restriction that either economies

of activity are absent or multi-activity users play a negligible role in the overall activity on

the platform.

The early literature on quantifying indirect network effects often focused on industries in

which the provision of physical goods or services played a prominent role, such as banking

(Ackerberg and Gowrisankaran (2006)), video gaming (Clements and Ohashi (2005)) and

advertising-financed media (Rysman (2004); Kaiser and Wright (2006); Wilbur (2008)).

These industries are usually characterized by a quite substantial dissimilarity of activities

and a necessity for significant investments to scale for at least one activity, which likely

implies that either economies of activity are absent or multi-activity users play a negligible

role in the overall activity in the network. Hence, the quantification of indirect network

effects that rely on such industries is arguably not affected by a potential bias caused by
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multi-activity users.

However, nowadays, many parts of the economy, such as e-commerce, ride-hailing or

accommodation, are no longer characterized by a sharp distinction between consumers and

producers. This is not exclusively, but especially the case in niche markets and early stage

platforms where multi-active users, so-called prosumers, might make up a considerable mass

of the platform’s users. For example, many parents with children are simultaneously buying

new cloths that fit and selling old ones that are too small at local clothing swaps. In its

early years, Amazon was an online book store that specialized in selling rare books. At that

time, buying and selling occurred under a single account (much like eBay today) which likely

encouraged greater amounts of multi-activity. For example, rare book collectors buying and

selling and students buying new textbooks while selling old ones. Trading card platforms is

another example where the means of being a buyer and being a seller occurs simultaneously

when users exchange cards.

When analyzing the magnitude of network effects in these markets, the presence of multi-

activity users becomes an important concern for identification. For example, Chu and Man-

chanda (2016) estimate the strength of direct and indirect network effects on Taobao.com,

a consumer-to-consumer online shopping platform, and how they contribute to platform

growth over the life cycle. While they find large and positive contributions of indirect net-

work effects on both sides to platform growth, direct network effects do not seem to play

an important role. However, their analysis is based on the assumption that the decision of

a buyer (seller) to join the platform is independent from the decision of a seller (buyer) to

join. This assumption is only plausible in a situation where either γ = 0 and θ draws are

independent, which implies independence of the decision to join any side, or multi-activity

is negligible. Since their data begins from the platform’s inception, these assumptions are

unlikely to hold which means that, at least in the early years of Taobao.com, the magnitude

of indirect network effects may be overstated because part of it may actually be a direct

network effect according to our model.
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4.2.2 Identification and the Granularity of Observations

The potential identification problem arises because the strength of indirect network effects

is often quantified by analyzing how adoption of one user group is affected by changes in

the participation of another user group. While such an approach allows to conclude whether

indirect network effects exist, it may fail to provide reliable estimates on the strength when-

ever economies of activity are non-zero (γ 6= 0) because it abstracts from user’s endogenous

decision to perform more than one activity.

However, more recent studies draw on much richer and more fine-grained data that

allow to observe transactions at the user level. In the following, we discuss to which extent

multi-activity may be relevant and elaborate on the potential empirical implications by

highlighting the importance of the granularity of observations. To be more specific, there

are two important dimensions: (1) the size of an observation’s location and (2) the time

length of an observation. These two factors, in addition to the industries characteristics,

provide the context by which multi-activity can exist.

There is a growing empirical literature on Airbnb that utilizes data from InsideAirbnb,

AirDNA, or Airbnb (e.g., Li and Srinivasan (2019), Barron et al. (2021), Bibler et al. (2021)

and Farronato and Fradkin (2022)), and considers both reduced form and structural tech-

niques. In most cases, observations are defined within a metro-month. Such a defined obser-

vation may include multi-active users when there are major local events within a metro. For

example, Oxford, Ohio (where Miami University is located) lies within the Cincinnati metro

so that the majority of Oxford hosts stay as guests in downtown Cincinnati during grad-

uation weekend at Miami University and are therefore multi-active users at the metro-day

level.16 This implies that the welfare effects during major events that generate large amounts

of multi-active users might be underestimated, since the marginal cost of some hosts (hosts

in Oxford) depends on the price of others (hosts in Cincinnati). For example, the welfare

16Similar arguments could be made for downtown areas that host festivals, concerts, and other large
events. Locals are hosts within the downtown area but also guests in the suburbs so that they would be
considered multi-active users within the metro-day.
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benefits are likely underestimated in Farronato and Fradkin (2022) who consider periods of

significant demand where hotels reach capacity. A similar issue arises in Yao et al. (2022),

who analyze owners’ acceptance decisions on a car sharing platform, but abstract from the

possibility that owners themselves have the opportunity to rent a car in order to accept an

incoming request.

The magnitude of multi-activity users can also be an issue in the literature on ride-

hailing. While there is considerable variation in the length of time the observational unit

is often defined at the week level.17 Many drivers on ride-sharing platforms may also be

riders within their city for a given week, for example, when driving during the work week

and riding during the weekend. Angrist et al. (2021) consider driver-city observations to

investigate Uber drivers’ willingness to lease a virtual taxi medallion that eliminates the

Uber fee. Hence, a driver’s decision is based on their expected earnings opportunity. A

reason why multi-activity could influence their result is that multi-activity users may have

access to more information about market conditions because they are active on both sides

and hence may find it easier to make predictions about their earnings opportunities. As

Angrist et al. (2021) only consider drivers with average weekly driving hours between 5 and

25 hours, this sample is the most likely to be influenced by multi-activity users as these

drivers are the most likely to have time to also be active as a rider.

Hall et al. (2021) consider weekly-city observations and find that, following fare increases

set by Uber, ride demand decreases and drivers work more hours as they earn more per ride.

Multi-activity users can play an important role because they affect both sides simultaneously.

For example, instead of going out and using Uber’s services as a rider, they could drive on

Friday nights due to higher earnings opportunities following a fare increase. In this case,

the substitutability between the two sides of the market by multi-activity users may blur

the effects of how an increase in the fare affects demand and supply. More specifically, an

17An exception is Cohen et al. (2016), who use session level observations. Unless a rider observes surge
pricing, decides to stop searching for a ride, and immediately become a driver, the appearance of multi-
activity users is unlikely at this level.
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increase of the fare increases drivers’ incentives to participate on Uber, while it decreases the

incentives of riders to use Uber. Users active merely as riders only have the option to opt

out of Uber, while multi-activity users can decide to become a driver instead of opting out

and the incentive becomes stronger the more the fare increases. Hence, the price elasticity

of demand is a function of the composition of riders, with a higher share of multi-activity

users leading to a more elastic demand.

While the mass of multi-activity users certainly decreases the narrower the observational

unit, both in time and space, the potential of bias may still be prevalent in markets where

users can frequently and easily switch roles. In order to address the potential bias, empirical

studies have to take into account the endogenous decision of individuals which activities to

perform, which is, in principle, possible given the observability of detailed user information.

This decision can be incorporated by means of a discrete choice model as done recently by

Affeldt et al. (2022) who investigate the bias in price elasticities and indirect network effects

that arises when neglecting users decision of multi-homing.

5 Conclusion

We develop a model in which users decide which of two activities to perform in a network

based on idiosyncratic preferences and economies of activity. While the network features only

indirect network effects between users performing unlike activities, we show that the presence

of multi-activity users transforms indirect into direct network effects whenever economies of

activity are non-zero. Thus, our analysis suggests that the dichotomy of network effects

emerges from an incomplete understanding of network user behavior.

Traditional two-sided network pricing only arises if user preferences across activities are

negatively correlated and bimodally distributed and economies of activity are not too pos-

itive, which implies that individuals perform at most one activity. However, we highlight

that traditional two-sided network pricing also arises in the presence of multi-activity users
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if economies of activity are absent. In this case, the network treats multi-activity users as

if they were two separate users performing unlike activities. Moreover, in the extreme case

where the network is frequented only by multi-activity users, the network effectively becomes

one-sided.

We show that multi-activity users have important practical implications especially for

those interested in investing in platforms that feature negligible economies of activity. Specif-

ically, while the network’s pricing strategy and its profits are unaffected by the correlation

between activities under marginal distribution equivalence, multi-activity users have an ef-

fect on the total number of users performing an activity, as opposed to the participation in

the activity. Thus, despite the practical importance of the number of active users as a per-

formance metric, we highlight that it may not contain any informational content to evaluate

a platform’s potential profitability.

In addition to our contribution to the theoretical literature on network effects, we also

highlight meaningful implications to the corresponding empirical literature which largely ig-

nores the existence of multi-activity users. We highlight how the reflection problem, thought

to be an issue only when estimating direct network effects, can remain an issue when esti-

mating indirect network effects whenever economies of activity are non-zero as multi-activity

users turn indirect into direct network effects. Our work also reveals how the granularity of

observation impacts the emergence of multi-activity and the underlying identification strat-

egy using reduced form techniques. These findings suggest that multi-activity will be an

important feature of network markets moving forward.

Our analysis provides interesting avenues for future research. For example, a particu-

lar challenge for entrepreneurs of platform-based start-ups is the so-called chicken-and-egg

problem, that is, a specific group of users will only join a platform, if it expects users of

other groups to also join. This coordination problem forces entrepreneurs to secure enough

users and in the right proportion in order to thrive. Evans and Schmalensee (2010) have

carved out conditions under which a platform clears the hurdle of reaching critical user mass
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absent users’ possibility to join both sides. However, a start-up platform can reduce or in

the extreme case eliminate the coordination problem if it is able to incentivize users to join

more than one side. This is because such a user generates a network benefit to the platform

ecosystem that is equivalent to two individual users joining different sides. Whether elimi-

nating the chicken-and-egg problem by transforming into a one-sided network is economically

viable and how to best incentive users when they are heterogeneous both in their willingness

to participate and to transact is an interesting issue for further study.
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A Appendix

A.1 Participation and responses for γ > 0

The number of single- and multi-activity users critically depends on the level of γ. For the

case γ > 0, the number of users performing only activity i is given by

nSi =


∫ θSi
θi

∫ θ̄j
θSj +γ

dG(θi, θj), i 6= j if γ̄j ≥ γ > 0,

0 if γ > γ̄j,

(A.1)

where γ̄i = θ̄i − θSi ≥ 0. Equation (A.1) shows that the number of single-activity users

crucially depends on both the level of γ and the distribution of users’ activity types.

In a similar manner, we can determine the number of multi-activity agents for the case

γ > 0, which reads

nM =



∫ θS2
θ2

∫ θS1 +γ

θ1
dG(θ1, θ2) +

∫ θS2 +γ

θS2

∫ θ̂1(θ2)

θ1
dG(θ1, θ2) if γ̄i ≥ γ > 0 ∀i∫ θS2

θ2

∫ θS1 +γ

θ1
dG(θ1, θ2) +

∫ θ̄2
θS2

∫ θ̂1(θ2)

θ1
dG(θ1, θ2) if γ̄1 > γ ≥ γ̄2∫ θS2

θ2

∫ θ̄1
θ1
dG(θ1, θ2) +

∫ θS2 +γ

θS2

∫ θ̂1(θ2)

θ1
dG(θ1, θ2) if γ̄2 > γ ≥ γ̄1∫ θS2

θ2

∫ θ̄1
θ1
dG(θ1, θ2) +

∫ θ̄2
θS2

∫ θ̂1(θ2)

θ1
dG(θ1, θ2) if γ̄M > γ ≥ γ̄i ∀i∫ θ̄2

θ2

∫ θ̄1
θ1
dG(θ1, θ2) if γ ≥ γ̄M ,

(A.2)

where γ̄M =
∑

i θ̄i−θSi ≥ 0 indicating the threshold, for which the highest type (θ̄1, θ̄2) derives

a zero utility from performing both activities. Equation (A.2) shows that the number of

multi-activity users depends on whether there are (i) single-activity users for both activities

(first line), (ii) single-activity users only for activity 1 (second line), (iii) single-activity users

only for activity 2 (line three), (iv) no single-activity users, where only a subset of users

connects to the network (line four), or (v) no single-activity users, where all users connect

to the network (line five).
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To arrive at the results of our propositions, we need to determine how the network’s

decision impact single-activity, multi-activity, and gross participation levels. From Equation

(A.1), the effect on single-activity users are given by

∂nSi
∂θSi

=


∫ θ̄j
θSj +γ

g(θSi , θj)dθj, i 6= j if γ̄j ≥ γ > 0

0 if γ > γ̄j

(A.3)

∂nSi
∂θSj

=


−
∫ θSi
θi
g(θi, θ

S
j + γ)dθi, i 6= j if γ̄j ≥ γ > 0

0 if γ > γ̄j

(A.4)

From Equation (A.2), the effect of changes in θS1 and θS2 on the number of multi-activity

users is respectively given by

∂nM
∂θS1

=



∫ θS2
θ2
g(θS1 + γ, θ2)dθ2 +

∫ θS2 +γ

θS2
g(θ̂1(θ2), θ2)dθ2 if γ̄i ≥ γ > 0 ∀i∫ θS2

θ2
g(θS1 + γ, θ2)dθ2 +

∫ θ̄2
θS2
g(θ̂1(θ2), θ2)dθ2 if γ̄1 > γ ≥ γ̄2∫ θS2 +γ

θS2
g(θ̂1(θ2), θ2)dθ2 if γ̄2 > γ ≥ γ̄1∫ θ̄2

θS2
g(θ̂1(θ2), θ2)dθ2 if γ̄M ≥ γ ≥ γ̄i ∀i

0 if γ ≥ γ̄M ,

(A.5)

∂nM
∂θS2

=



∫ θS1
θ1
g(θ1, θ

S
2 + γ)dθ1 +

∫ θS2 +γ

θS2
g(θ̂1(θ2), θ2)dθ2 if γ̄i ≥ γ ≥ 0 ∀i∫ θ̄2

θS2
g(θ̂1(θ2), θ2)dθ2 if γ̄1 > γ ≥ γ̄2∫ θS1

θ1
g(θ1, θ

S
2 + γ)dθ1 +

∫ θS2 +γ

θS2
g(θ̂1(θ2), θ2)dθ2 if γ̄2 > γ ≥ γ̄1∫ θ̄2

θS2
g(θ̂1(θ2), θ2)dθ2 if γ̄M ≥ γ ≥ γ̄i ∀i

0 if γ ≥ γ̄M .

(A.6)

Equations (A.5) and (A.6) show that a relaxation of the participation threshold for any
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activity weakly increases the number of users that perform both activities. In combination

with Equation (A.4), it follows that ∂ni
∂θSj

=
∂nSi
∂θSj

+ ∂nM
∂θSj
≥ 0, which means that the total

participation for activity i increases when the network raises θSj . Finally, because ∂ni
∂θSi
≥ 0 ≥

∂ni
∂θSj

, it also follows that
∣∣∣ ∂ni∂θSi

∣∣∣ ≥ ∣∣∣ ∂ni∂θSj

∣∣∣.
A.2 Participation and responses for γ ≤ 0

For the case γ ≤ 0, the number of users performing only activity 1 or activity 2 is respectively

given by

nS1 =



∫ θS2
θS2 +γ

∫ θ̃1(θ2)

θ1
dG(θ1, θ2) +

∫ θ̄2
θS2

∫ θS1
θ1
dG(θ1, θ2), if 0 ≥ γ > γ

i
, ∀i∫ θS2

θ2

∫ θ̃1(θ2)

θ1
dG(θ1, θ2) +

∫ θ̄2
θS2

∫ θS1
θ1
dG(θ1, θ2), if γ

2
> γ > γ

1
,∫ θS2

θ̃−1
1 (θ1)

∫ θ̃1(θ2)

θ1
dG(θ1, θ2) +

∫ θ̄2
θS2

∫ θS1
θ1
dG(θ1, θ2), if γ

1
> γ > γ

2∫ θS2
θ2

∫ θ̃1(θ2)

θ1
dG(θ1, θ2) +

∫ θ̄2
θS2

∫ θS1
θ1
dG(θ1, θ2), if γ

2
> γ

1
> γ,∫ θS2

θ̃−1
1 (θ1)

∫ θ̃1(θ2)

θ1
dG(θ1, θ2) +

∫ θ̄2
θS2

∫ θS1
θ1
dG(θ1, θ2), if γ

1
> γ

2
> γ,

(A.7)

nS2 =



∫ θS2 +γ

θ2

∫ θ̄1
θS1 +γ

dG(θ1, θ2) +
∫ θS2
θS2 +γ

∫ θ̄1
θ̃1(θ2)

dG(θ1, θ2), if 0 ≥ γ > γ
i
,∀i∫ θS2

θ2

∫ θ̄1
θ̃1(θ2)

dG(θ1, θ2), if γ
2
> γ > γ

1∫ θ̃−1
1 (θ1)

θ2

∫ θ̄1
θ1
dG(θ1, θ2) +

∫ θS2
θ̃−1
1 (θ1)

∫ θ̄1
θ̃1(θ2)

dG(θ1, θ2), if γ
1
> γ > γ

2
,∫ θS2

θ2

∫ θ̄1
θ̃1(θ2)

dG(θ1, θ2), if γ
2
> γ

1
> γ∫ θ̃−1

1 (θ1)

θ2

∫ θ̄1
θ1
dG(θ1, θ2) +

∫ θS2
θ̃−1
1 (θ1)

∫ θ̄1
θ̃1(θ2)

dG(θ1, θ2), if γ
1
> γ

2
> γ.

(A.8)

Equations (A.7) and (A.8) show that the number of single-activity users depends on whether

there are some multi-activity users (first lines), or no multi-activity users (second to fifth

lines). The four cases without multi-activity users just differ depending on whether the

u1 = u2 line crosses the θ2-axis to the left of θ1 (second and fourth lines in (A.7) and (A.8))

or to the right (third and fifth lines).
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The number of users performing both activities, nM , reads

nM =


∫ θSi +γ

θi

∫ θSj +γ

θj
dG(θi, θj), if γ ≥ γ

i
,∀i

0, if γ
i
> γ, ∀i,

(A.9)

where γ
i

= θi−θSi ≤ 0 indicates the threshold for γ at which not even the lowest type would

perform both activities.

From equations (A.7), (A.8) and (A.9), we can derive how users’ participation decisions

are affected by the network’s pricing strategies. The effects on single-activity users for

activity 1 read

∂nS1
∂θS1

=



∫ θS2
θS2 +γ

g(θ̃1(θ2), θ2)dθ2 +
∫ θ̄2
θS2
g(θS1 , θ2)dθ2, if 0 ≥ γ > γ

i
, ∀i∫ θS2

θ2
g(θ̃1(θ2), θ2)dθ2 +

∫ θ̄2
θS2
g(θS1 , θ2)dθ2, if γ

2
> γ > γ

1
,∫ θS2

θ̃−1
1 (θ1)

g(θ̃1(θ2), θ2)dθ2 +
∫ θ̄2
θS2
g(θS1 , θ2)dθ2, if γ

1
> γ > γ

2∫ θS2
θ2
g(θ̃1(θ2), θ2)dθ2 +

∫ θ̄2
θS2
g(θS1 , θ2)dθ2, if γ

2
> γ

1
> γ,∫ θS2

θ̃−1
1 (θ1)

g(θ̃1(θ2), θ2)dθ2 +
∫ θ̄2
θS2
g(θS1 , θ2)dθ2, if γ

1
> γ

2
> γ,

(A.10)

∂nS1
∂θS2

=



−
∫ θS1 +γ

θ1
g(θ1, θ

S
2 + γ)dθ1 −

∫ θS2
θS2 +γ

g(θ̃1(θ2), θ2)dθ2, if 0 ≥ γ > γ
i
, ∀i

−
∫ θS2
θ2
g(θ̃1(θ2), θ2)dθ2, if γ

2
> γ > γ

1
,

−
∫ θS2
θ̃−1
1 (θ1)

g(θ̃1(θ2), θ2)dθ2, if γ
1
> γ > γ

2

−
∫ θS2
θ2
g(θ̃1(θ2), θ2)dθ2, if γ

2
> γ

1
> γ,

−
∫ θS2
θ̃−1
1 (θ1)

g(θ̃1(θ2), θ2)dθ2, if γ
1
> γ

2
> γ,

(A.11)
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In a similar manner, we can determine the effects on single-activity users for activity 2

∂nS2
∂θS1

=



−
∫ θS2 +γ

θ2
g(θS1 + γ, θ2)dθ2 −

∫ θS2
θS2 +γ

g(θ̃1(θ2), θ2)dθ2, if 0 ≥ γ > γ
i
,∀i

−
∫ θS2
θ2
g(θ̃1(θ2), θ2)dθ2, if γ

2
> γ > γ

1

−
∫ θS2
θ̃−1
1 (θ1)

g(θ̃1(θ2), θ2)dθ2, if γ
1
> γ > γ

2
,

−
∫ θS2
θ2
g(θ̃1(θ2), θ2)dθ2, if γ

2
> γ

1
> γ

−
∫ θS2
θ̃−1
1 (θ1)

g(θ̃1(θ2), θ2)dθ2, if γ
1
> γ

2
> γ.

(A.12)

∂nS2
∂θS2

=



∫ θ̄1
θS1
g(θ1, θ

S
2 )dθ1 +

∫ θS2
θS2 +γ

g(θ̃1(θ2), θ2)dθ2, if 0 ≥ γ > γ
i
,∀i∫ θ̄1

θS1
g(θ1, θ

S
2 )dθ1 +

∫ θS2
θ2
g(θ̃1(θ2), θ2)dθ2, if γ

2
> γ > γ

1∫ θ̄1
θS1
g(θ1, θ

S
2 )dθ1 +

∫ θS2
θ̃−1
1 (θ1)

g(θ̃1(θ2), θ2)dθ2, if γ
1
> γ > γ

2
,∫ θ̄1

θS1
g(θ1, θ

S
2 )dθ1 +

∫ θS2
θ2
g(θ̃1(θ2), θ2)dθ2, if γ

2
> γ

1
> γ∫ θ̄1

θS1
g(θ1, θ

S
2 )dθ1 +

∫ θS2
θ̃−1
1 (θ1)

g(θ̃1(θ2), θ2)dθ2, if γ
1
> γ

2
> γ.

(A.13)

Finally, the effects on multi-activity users are given by

∂nM
∂θSi

=


∫ θSj +γ

θj
g(θSi + γ, θj)dθj, if γ ≥ γ

i
,∀i

0, if γ
i
> γ, ∀i,

(A.14)

which shows that a rise in any threshold θS1 and θS2 increases the number of multi-activity

users conditional on a non-empty set. In combination with equations (A.11) and (A.12),

it becomes clear that ∂ni
∂θSj

=
∂nSi
∂θSj

+ ∂nM
∂θSj

< 0, which means that the total participation for

activity i decreases when the network raises θSj . Finally, it is straightforward to see that∣∣∣ ∂ni∂θSi

∣∣∣ > ∣∣∣ ∂ni∂θSj

∣∣∣.
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A.3 Appendix of Proofs

A.3.1 Proof of Proposition 1

From the analysis above, it is obvious that a more lenient participation threshold for activity

i leads to an unambiguously rise in total participation in activity i, that is, ∂ni
∂θSi

=
∂nSi
∂θSi

+ ∂nM
∂θSi

>

0. Using this result, we are now able to maximize the network’s profit by deriving Equation

(10) with respect to θSi . Using pi = αinj − θSi , this yields

∂Π

∂θSi
= (pi − ci + αjnj)

∂ni
∂θSi

+ (pj − cj + αini)
∂nj
∂θSi
− ni = 0. (A.15)

This implies that, from ∂Π
∂θSj

, we have that

(pj − cj + αini) = −
[
(pi − ci + αjnj)

∂ni
∂θSj
− nj

](
∂nj
∂θSj

)−1

.

Substituting for (pj − cj + αini) in Equation (11) implies that

(pi − ci + αjnj) ·
[
∂ni
∂θSi
· ∂nj
∂θSj
− ∂ni
∂θSj
· ∂nj
∂θSi

]
+ nj ·

∂nj
∂θSi
− ni ·

∂nj
∂θSj

= 0.

Solving for pi implies that

pi = ci − αjnj + ∆,

where ∆ :=
ni
∂nj

∂θS
j

−nj
∂nj

∂θS
i

∂ni
∂θS
i

∂nj

∂θS
j

− ∂ni
∂θS
j

∂nj

∂θS
i

> 0, as
∣∣∣ ∂ni∂θSi

∣∣∣ ≥ ∣∣∣ ∂ni∂θSj

∣∣∣ ,∀i 6= j. �

A.3.2 Proof of Proposition 2

Optimal pricing in Proposition 1 matches traditional two-sided pricing whenever ∆ij :=
ni
∂nj

∂θS
j

−nj
∂nj

∂θS
i

∂ni
∂θS
i

∂nj

∂θS
j

− ∂ni
∂θS
j

∂nj

∂θS
i

equals ni/∂ni
∂θS
i

to mirror the term φi(ui)/φ′i(ui) in Armstrong (2006). For state-

ment (i), this occurs whenever
∂nj
∂θSi

= 0. First consider the case where γ > 0. In this case,

Equation (A.4) implies that
∂nSi
∂θSj

equal zero only when g(θi, θ
S
j + γ) = 0 for all θi ∈ [θi, θ

S
i ].
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Similarly, equations (A.5) and (A.6) imply that ∂nM
∂θS1

and ∂nM
∂θS2

both equal zero only when

g(θSi + γ, θj) = 0 for θj ∈ [θj, θ
S
j ]. Combined, these conditions all require (θ1, θ2) to be

bimodal with a sufficiently high degree of negative correlation, and together they imply that

∂nj
∂θSi

= 0 so that traditional pricing occurs. For the case where γ ≤ 0, similar arguments

follow using equations (A.11), (A.12), and (A.14).

Statement (ii) arises because for γ = 0, we see from equations (A.11), (A.12), and (A.14)

that ∂nM
∂θSi

= −∂nSj
∂θSi

so that
∂nj
∂θSi

equals zero. Statement (ii) then directly follows from the

first-order condition (11). �

A.3.3 Proof of Proposition 3

If γ 6= 0, then equations (A.3), (A.4), (A.5), and (A.6), and equations (A.11), (A.12), and

(A.14) imply that ∂nM
∂θSi
6= −∂nSj

∂θSi
across all (θ1, θ2). Because it is also true that

∂nj
∂θSi
6= 0 across

all (θ1, θ2), the presence of multi-activity users creates direct network effects if γ 6= 0.

In addition, if (γ̄M > γ ≥ γ̄i,∀i), then equations (A.3), (A.4), (A.5), and (A.6), imply

that ∂nM
∂θSi
6= 0 and

∂nSj
∂θSi

,
∂nSi
∂θSi

= 0 so that all active users perform both activities. In this case,

Equation (13) implies that the combination of prices must satisfy the following:

p1 + p2 = c1 + c2 − nM(α1 + α2) + nM/∂nM
∂θS1

.18

Thus, a continuum of activity specific prices must satisfy the unique one-sided single price

that is given by p1 + p2. �

A.3.4 Proof of Proposition 4

It is important to note that γ = 0 implies that ni =
∫ θi
θi

∫ θj
θj
g(θ′i, θ

′
j)dθ

′
jdθ
′
i which is simply

the marginal distribution Gi(θi) by combining the first line of Equation (A.9) with the first

line of Equation (A.7), respectively Equation (A.8). Then, Equation (10) and pi = αinj−θSi
18Note that Equations (A.5) and (A.6) with γ̄M > γ ≥ γ̄i,∀i imply that ∂nM

∂θS1
= ∂nM

∂θS2
.
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imply that

Π = (αiGj(θ
S
j )− θSi − ci)Gi(θ

S
i ) + (αjGi(θ

S
i )− θSj − cj)Gj(θ

S
j ).

This generates first-order conditions given by

0 =
dΠ

dθSi
= (αiGj(θ

S
j )− θSi − ci)

dGi(θ
S
i )

dθSi
−Gi(θ

S
i ) + αj

dGi(θ
S
i )

dθSi
Gj(θ

S
j ). (A.16)

Thus if ĝ, g̃ ∈ G we have that Ĝi(θ
S
i ) = G̃i(θ

S
i ) and

dĜi(θ
S
i )

dθSi
=

dG̃i(θ
S
i )

dθSi
for i = 1, 2 so that

the first-order conditions (Equation (A.16)) under ĝ are identical to those under g̃. This

implies that θ̂Si = θ̃Si for i = 1, 2 so that n∗i (ĝ) = Ĝi(θ
S
i ) = G̃i(θ

S
i ) = n∗i (g̃) and p∗i (ĝ) =

αiĜj(θ
S
j )− θSi = αiG̃j(θ

S
j )− θSi = p∗i (g̃) for i = 1, 2 for all ĝ, g̃ ∈ G. �
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