
Teng, Xuan

Working Paper

Self-Preferencing, Quality Provision, and Welfare in
Mobile Application Markets

CESifo Working Paper, No. 10042

Provided in Cooperation with:
Ifo Institute – Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Teng, Xuan (2022) : Self-Preferencing, Quality Provision, and Welfare in
Mobile Application Markets, CESifo Working Paper, No. 10042, Center for Economic Studies
and ifo Institute (CESifo), Munich

This Version is available at:
https://hdl.handle.net/10419/267275

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/267275
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

10042
2022

October 2022

Self-Preferencing, Quality
Provision, and Welfare in
Mobile Application Markets
Xuan Teng

Impressum:

CESifo Working Papers
ISSN 2364-1428 (electronic version)
Publisher and distributor: Munich Society for the Promotion of Economic Research - CESifo
GmbH
The international platform of Ludwigs-Maximilians University’s Center for Economic Studies
and the ifo Institute
Poschingerstr. 5, 81679 Munich, Germany
Telephone +49 (0)89 2180-2740, Telefax +49 (0)89 2180-17845, email office@cesifo.de
Editor: Clemens Fuest
https://www.cesifo.org/en/wp
An electronic version of the paper may be downloaded
· from the SSRN website: www.SSRN.com
· from the RePEc website: www.RePEc.org
· from the CESifo website: https://www.cesifo.org/en/wp

mailto:office@cesifo.de
https://www.cesifo.org/en/wp
http://www.ssrn.com/
http://www.repec.org/
https://www.cesifo.org/en/wp

CESifo Working Paper No. 10042

Self-Preferencing, Quality Provision, and Welfare
in Mobile Application Markets

Abstract

Platforms may give preferential treatment to their own products in search results. Whether and
how to regulate this self-preferencing behavior is an intensely debated antitrust issue. This paper
identifies self-preferencing and quantifies its equilibrium welfare effects in Apple App Store. I
start by examining the effect of a change in the platform’s search algorithm that dropped several
Apple’s apps from top positions. I find that the search algorithm change leads to significantly
higher installations and update frequencies of independent apps that compete with Apple’s apps
in the same categories. Then I develop an empirical model of consumer search and update
competition allowing for potential self-preferencing. The model is estimated with aggregate data
on consumer search and purchase, search ranking, and app characteristics. Estimation results point
to self-preferencing: Apple’s apps are more likely to be ranked higher than independent apps
conditional on app quality, price, ratings, and title match with search terms. Based on
counterfactual simulations, I find that eliminating the identified self-preferencing modestly
increases the quality of independent apps on average. Furthermore, the elimination improves
consumer surplus by $2.2 million and profits of independent developers by $1.6 million per
month.
JEL-Codes: D120, D430, D830, L130, L410, L860.
Keywords: search algorithm, consumer search, endogenous product characteristics, mobile
application.

Xuan Teng
Department of Economics

University of Munich (LMU)
Akademiestr. 1/III

Germany – 80799 Munich
xuan.teng@econ.lmu.de

September 2022
This paper was previously circulated as "Preferential Search Ranking, Quality Provision, and Welfare in
Mobile Application Markets". It is based on various chapters of my dissertation. I am indebted to my
advisors, Ying Fan, Zach Brown, Jagadeesh Sivadasan, and Justin Huang for their continual guidance,
support, and encouragement. I also thank Francine Lafontaine, Chenyu Yang, Benjamin Leyden,
Alessandra Allocca, and participants at Michigan IO Lunch and IO Seminars for helpful comments and
discussions. I gratefully acknowledge the financial support from the Department of Economics Research
Grant at the University of Michigan in obtaining the data needed for this research project. All errors are
mine.

1 Introduction

Search algorithm shapes the competition landscape on digital platforms, and is designed by the platform.

This raises up the concerns that dual-role platforms, which present third-party products as well as selling

platform-owned products, may give preferential treatment to their own products in search results. This

self-preferencing behavior can lead to dominance of platform-owned products in top positions, and disad-

vantaged accessibility of competing independent products. While the press covers multiple stories indicating

the existence of self-preferencing, platforms deny it.1 Meanwhile, self-preferencing is an intensely debated

antitrust issue.2 For example, some third-party suppliers complain that unfair search rankings discourage

them from innovation efforts and thus quality improvement.3 To shed light on the two debates, this paper

studies two research questions: i) whether there is self-preferencing in dual-role platforms; ii) what is the

equilibrium welfare effect of self-preferencing.

With self-preferencing, third-party products are less likely to get ranked high than without self-preferencing.

How the resulting lower accessibility affects the third-party suppliers’ trade-off between exploitation and

expansion determines whether self-preferencing is anti-competitive or pro-competitive. On the one hand,

lower accessibility decreases demand elasticity, and thus encourages exploitation of remaining consumers

by lower quality or higher price, which is anti-competitive. On the other hand, lower accessibility can be

compensated by higher quality or lower price from the perspective of consumers, encouraging expansion

to new consumers with quality improvement or price reduction, which is pro-competitive. Thus, given

self-preferencing, its supply-side effect and thus equilibrium welfare effect are theoretically ambiguous.

To empirically address the research questions, I compile a new dataset on Apple App Store, develop and

estimate an empirical model of consumer search and update competition with potential self-preferencing.

The model is motivated from reduced-form effects of an un-anticipated search algorithm change on con-

sumer search and purchase, as well as independent apps. Notice that the key challenge for addressing

the first question is to disentangle self-preferencing from consumer preference: platform-owned products

might deserve higher search rankings if platform users prefer platform-owned products and platforms sim-

ply present what consumers like most in the most accessible positions. To that end, the algorithm change

also helps with separate identification of search cost and consumer preference by introducing exogenous

1Among others, example stories include (1) Dougherty, Conor. 2017. “Inside Yelp’s Six-Year Grudge Against Google.” The
New York Times, July 1.https://www.nytimes.com/2017/07/01/technology/yelp-google-european-union-antitrust.html, (2) Mat-
tioli, Dana. 2019. "Amazon Changed Search Algorithm in Ways That Boost Its Own Products" The Wall Street Journal,
Sept. 16. https://www.wsj.com/articles/amazon-changed-search-algorithm-in-ways-that-boost-its-own-products-11568645345, (3)
Nicas, Jack and Collins, Keith. 2019. "How Apple’s Apps Topped Rivals in the App Store It Controls". The New York Times,
Sept. 9. https://www.nytimes.com/interactive/2019/09/09/technology/apple-app-store-competition.html. As an example of how
platforms deny the usage of self-preferencing, article (3) wrote "They (Apple’s executives) said, Apple apps generally rank higher
than competitors because of their popularity and because their generic names are often a close match to broad search terms".

2Example antitrust discussions include i) one clause (section-2-(a)-(1)) in a proposed bill in the U.S. House providing that certain
discriminatory conduct by covered platforms shall be unlawful, see 117th Congress, 2021, "H.R.3816 - American Choice and
Innovation Online Act", congress.gov, June 11. https://www.congress.gov/bill/117th-congress/house-bill/3816/text; ii) Google’s
antitrust cases, see Molla, Rani and Estes, Adam Clark. 2020. "Google’s three antitrust cases, briefly explained". Vox, Dec 17.
https://www.vox.com/recode/2020/12/16/22179085/google-antitrust-monopoly-state-lawsuit-ad-tech-search-facebook

3A quote from an app developer on Apple App Store, reported by Wall Street Journals in 2019: "We want to invest more on
that aspect (innovation), however, instead of hiring another two AI Ph.D.s, we have to use that money to just get ranked higher."
See Mickle, Tripp. 2019. "Apple Dominates App Store Search Results, Thwarting Competitors", The Wall Street Journal, July 23.
https://www.wsj.com/articles/apple-dominates-app-store-search-results-thwarting-competitors-11563897221

1

https://www.nytimes.com/2017/07/01/technology/yelp-google-european-union-antitrust.html
https://www.wsj.com/articles/amazon-changed-search-algorithm-in-ways-that-boost-its-own-products-11568645345
https://www.nytimes.com/interactive/2019/09/09/technology/apple-app-store-competition.html
https://www.congress.gov/bill/117th-congress/house-bill/3816/text
https://www.vox.com/recode/2020/12/16/22179085/google-antitrust-monopoly-state-lawsuit-ad-tech-search-facebook
https://www.wsj.com/articles/apple-dominates-app-store-search-results-thwarting-competitors-11563897221

variation in search ranking. Given the identified consumer preference, using a standard decomposition

approach, I look for evidence of larger likelihood to be ranked higher with Apple ownership, in order to

detect self-preferencing. Given the evidence, I conduct counterfactual simulations to quantify the effect of

self-preferencing on app quality and welfare.

Apple App Store provides an ideal context to study self-preferencing for three reasons. First, Apple

sells its own apps on the platform in various categories.4 Second, search is an important channel to access

apps on the platform. While consumers may discover an app by navigating the editorial contents, 65% of

all downloads on the platform happen after search during 2020.5 Third, data on historical non-personalized

search ranking is available for this platform. While some platforms’ search results are personalized, I did not

find solid evidence or report on personalized search results in Apple App Store.6 This lack of personalization

alleviates mis-specification concerns in demand estimation when individual-level data is unavailable.

For this project, I compile a new dataset on Apple App Store from multiple data sources. The main

data comes from AppTweak, a third-party App-Store-Optimization (ASO) tool company. It covers product-

month level information on downloads, revenue, search ranking, and app characteristics in various categories

between April 2018 and February 2020.7 To capture consumers’ search behavior, I augment the main dataset

with category-month level data on consumers’ conversion from search to installation for free apps and paid

apps respectively, and keyword-daily level data on how frequently a keyword is searched by consumers.

Dominance of platform-owned products may indicate self-preferencing. Thus, I start with a descriptive

analysis where I exploit an unanticipated search algorithm change on the Apple App Store to study the

effects of reduced dominance of platform-owned products on competing independent apps. Specifically,

The algorithm change dropped some Apple’s apps from top positions. It happened in July 2019 but was

very firstly reported in two months later by New York Times.8 Using a difference-in-differences (DiD)

approach, I compare independent apps competing with Apple in the same categories and independent apps in

categories without Apple’s apps, before and after July 2019. I find that the search algorithm change boosted

up affected independent apps by 3.6% in search results, leading to a 22% increase in their installations.

However, it did not significantly affect their conversion rates. The result indicates that search ranking does

not affect consumer choice conditional on search, which motivates me to assume that search ranking does

not affect consumer preference and only affect search costs.9 This is a useful assumption that enables me to

4Examples include Apple Music and GarageBand for music apps, Files and Voice Memos for utilities apps, Apple TV
and iTunes Remote for entertainment apps, among others. For a complete and up-to-date list of Apple’s apps, please see
https://apps.apple.com/us/developer/apple/id284417353?mt=12.

5Editorial contents may be "Featured App", or top charts, among others. The figure comes from Apple, 2021. "Be discovered."
https://searchads.apple.com/

6One reason for non-personalized search results maybe Apple’s claim on strong privacy protection. Meanwhile, editorial con-
tents are personalized, leaving less benefit from personalized search results.

7Specifically, the data covers all non-game app categories and 16 out of 18 game app categories. Table E.12 lists the covered
app categories. Because actual downloads and revenues are highly confidential in the industry, literature on the mobile application
industry commonly relies on estimated downloads and revenues, so does this paper. Section 2 shows that the estimated downloads
and revenues fit the actual data well.

8Nicas, Jack and Collins, Keith. 2019. "How Apple’s Apps Topped Rivals in the App Store It Controls". The New York Times,
Sept. 9. https://www.nytimes.com/interactive/2019/09/09/technology/apple-app-store-competition.html

9Similarly, Ursu (2018) exploits experimental data on an online hotel platform and finds that rankings affect what consumers
search, but conditional on search, do not affect purchases.

2

https://apps.apple.com/us/developer/apple/id284417353?mt=12
https://searchads.apple.com/
https://www.nytimes.com/interactive/2019/09/09/technology/apple-app-store-competition.html

separately identify search costs and consumer preference in the demand model.10 On the supply side, I find

that the search algorithm change increased update frequency of independent apps by 2.1%. 11 However, I

find no significant effects on price, average ratings, and file size. The result motivates me to focus on app

developers’ upgrading decisions.

On the demand side, I present a discrete-choice model in which consumers search to learn idiosyncratic

match values and purchase the most-preferred searched app in the way of optimal sequential search. This

model returns an app quality index containing utility contribution of observable non-price attributes and

unobservable shifters. To that end, I take two steps. First, to estimate the model with aggregate data, I

borrow a parametric assumption on the distribution of consumer-product specific search costs from Moraga-

González, Sándor and Wildenbeest (2022). The parametric assumption rationalizes a closed-form choice

probability in a Berry, Levinsohn and Pakes (1995) framework. Second, to identify search cost parameters on

search rankings, I leverage instruments constructed from the search algorithm change and apps’ title match

with search terms. With additional instruments based on cross-category variation in developers’ product

portfolios, demand estimation shows that iPhone users significantly prefer Apple’s apps over independent

apps, indicating an explanation for the dominance of Apple’s apps in top positions and the potential non-

existence of self-preferencing. It also shows that consumers significantly prefer apps with more and better

updates on average, indicating that app update is a positive quality shifter.

Next, I fit the search ranking data with a rank-ordered logistic regression model to detect self-preferencing.

The model captures the effects of well-accepted influential factors in flexible ways, by allowing monthly

category-specific effects of price, title match, and lagged app ratings. Then, conditional on app quality and

the influential factors, I capture dynamic self-preferencing with monthly effects of Apple ownership. Es-

timation shows that Apple’s apps have significantly higher ranking scores than independent apps between

April and August in 2019, but not in the early and late months during the sample period. This result points

to self-preferencing on the Apple App Store between April and August 2019. In other words, although con-

sumers have a preference for Apple apps as estimated from the demand model, the preference is not large

enough to justify the higher rankings of Apple apps. Furthermore, consistent with the search algorithm

change in July 2019, I also find that the self-preferencing significantly decreases after July 2019.

On the supply side, I develop and estimate an update competition model to recover information about

update costs so as to examine how self-preferencing affects update and thus quality in equilibrium. In

the model, when making upgrading decisions, developers face uncertainty about search rankings and form

beliefs on possible search rankings based on the identified search ranking model. Therefore, apart from the

direct effect of updates on installations, developers also consider the indirect effect of updates on installation

through affecting search ranking probabilities. The indirect incentive is typically missing from existing

10In principle, separate identification of search cost and indirect utility is still feasible even if I allow search ranking to have
direct effect on indirect utility, because conversion rates and downloads are affected by search costs and indirect utility in different
ways, and I observe both. However, as mentioned, conversion rates are observed at coarser level than downloads. Thus, I go with
the simplification assumption.

11To capture the idea that not every update is as valuable as each other, I weight update frequency by the length of release notes.
I assume that an update (release of a new version) is more likely to be valuable with longer release notes. Leyden (2019) classifies
updates into bug-fix updates and feature updates based on natural language processing and machine learning techniques, where he
also exploits release note information.

3

supply models, but it is essential for studying platform design.

It is challenging to capture the indirect incentives of update because the number of possible orderings

of products is the factorial of the number of products in the market. For example, an average market has 65

apps in the data, implying 65!(≈ 8.2× 1090) possible orderings of products. Thus, allowing developers to

consider all possible search rankings is infeasible for computation. To achieve tractability, I use a heuristic

algorithm to truncate the set of possible search rankings and use the estimated search ranking model to

calculate developers’ beliefs on the truncated set. The behavioral assumption for the truncation method is

that developers only consider some most likely search rankings when making update decisions. Results

from within-sample tests show that the algorithm performs well at least in markets with no more than 10

products.12

Supply-side estimation shows that marginal update costs increases in update frequency. I also obtain

bounds on fixed costs for upgrading an app to rationalize the no-update observations following the approach

taken by Fan and Yang (2020a). Specifically, I assume that an app developer’s observed set of updated

apps is profit-maximizing in a Bayesian Nash equilibrium. Therefore, upgrading or not upgrading an app

should not increase the developer’s expected profit. Based on these conditions, I obtain market-specific

upper bounds for apps that are updated and lower bounds for apps that are not updated. Estimation results

show that the bounds are positively correlated with app qualities.

Based on the estimated consumer preference, search cost, ranking probability, and update costs, I con-

duct counterfactual simulations to quantify the equilibrium welfare effects of self-preferencing. Specifically,

I eliminate the identified self-preferencing in search during June and July 2019, the two months with the

most substantial estimated self-preferencing. I find that removing the self-preferencing improves consumer

surplus by $2.2 million (0.2 percent) and the expected profit of independent developers by $1.8 million (0.7

percent) per month in equilibrium.

Zooming into app quality adjustment, the simulation results imply positive but modest average effect

of eliminating the identified self-preferencing on app quality. Specifically, I find that an average market

sees a 0.4% increase in average update frequencies and thus a 0.01% increase in average app qualities after

eliminating the identified self-preferencing. One reason for the small average effects is heterogeneity in

the direction of changes. In particular, I find that the expected update frequency of an independent app

might decrease up to 20% and might as well increase up to 25% after the elimination, which results in

a small average product-level effect of 0.3%. Similar heterogeneity shows up in the market-level effects.

The heterogeneity results are consistent with the previously mentioned theoretically ambiguous effect of

self-preferencing on quality improvement. Given the positive and modest supply-side effects, while the

improved quality contributes to the welfare gains, most of the gains come from more efficient match between

consumers and apps.

Overall, these counterfactual simulation results suggest that self-preferencing hurts both consumers and

third-party suppliers, and thus support regulation policies against self-preferencing. The surprisingly small

welfare effects are due to estimated consumer preference: iPhone users prefer Apple’s apps, which limits

12In tests with all markets with no more than 10 products, the truncated set of possible search rankings can capture 60% to 100%
of the top10 most-likely ordering of products, with an average coverage rate of 85%.

4

the extent of identified self-preferencing, and thus its welfare effects. It indicates that the benefit from regu-

lating self-preferencing might be confined by confounding consumer preference, calling for highly efficient

technology to implement regulation policies.

1.1 Related Literature

This paper contributes to four strands of literature. First and foremost, this paper is related to the broad liter-

ature on information frictions and product competition, dated back to Stigler (1961) and Diamond (1971).13

Information frictions have been theoretically and empirically shown to be able to shape the competition

landscape in a large variety of markets.14 A common focus of this literature is universal changes of informa-

tion frictions for some or all products without affecting information frictions for others.15 In contrast, this

paper, by studying self-preferencing, focuses on differential changes of information frictions that reduce

the search costs for some products but increase the search costs for others. Such differential changes of

information frictions are commonly seen in papers studying platform design. Examples include Yao and

Mela (2011), Arnosti, Johari and Kanoria (2014), Ghose, Ipeirotis and Li (2014), Nosko and Tadelis (2015),

Fradkin (2017), Santos, Hortaçsu and Wildenbeest (2017), Dinerstein et al. (2018), Huang (2018), Choi and

Mela (2019), Lam (2021), and Lee and Musolff (2021). In terms of topics, this paper is closely related

to Dinerstein et al. (2018). However, there are three differences between Dinerstein et al. (2018) and this

paper: design of search result display v.s. self-preferencing, homogeneous products v.s. differentiated prod-

ucts, pricing response v.s. product quality response. Despite this growing literature, to my knowledge, there

is no evidence on the equilibrium welfare effects of platform design with endogenous non-price product

attributes, and thus this paper complements the literature.

By studying the upgrading decisions of app developers, this paper is also related to the literature on

endogenous product choices.16 The literature has studied endogenous product choices in a variety of indus-

tries, including retail video (Seim, 2006), retail eyeglasses (Watson, 2009), ice-cream (Draganska, Mazzeo

and Seim, 2009), TV (Chu, 2010; Crawford and Yurukoglu, 2012; Crawford, Shcherbakov and Shum, 2019),

CPU (Nosko, 2010), newspapers (Fan, 2013), home PC (Eizenberg, 2014), movie (Orhun, Venkataraman

and Chintagunta, 2016), ratio (Berry, Eizenberg and Waldfogel, 2016), smartphones (Wang, 2017; Fan and

Yang, 2020a), trucks (Wollmann, 2018), vendor allowances contracts (Hristakeva, 2019), and retail craft

beer (Fan and Yang, 2020b). However, none of them has examined endogenous product choices in the mo-

bile application industry; neither is there much evidence on the effects of platform design on endogenous

product choices. Thus, this paper complements the literature.

13For related review, please see Goldfarb and Tucker (2019), Anderson and Renault (2018) and Ratchford (2009).
14Theoretical work and empirical work have studied information frictions and competition in markets for health care, airlines,

mutual funds, personal computers, automobiles, trade waste, books, and consumer electronics. Some examples include Dranove
et al. (2003), Brown (2017), Brown (2019), Orlov (2015),Hortaçsu and Syverson (2004), Goeree (2008), Tadelis and Zettelmeyer
(2015), Salz (2020), Bar-Isaac, Caruana and Cuñat (2012), Ellison and Ellison (2018), and Baye, Morgan and Scholten (2004).

15For example, Fishman and Levy (2015) theoretically examines the effects of search costs on investment in qualities. Brown
(2017) examines how price transparency affects equilibrium prices and welfare in the medical imaging services market and finds a
22 percent reduction in prices if all patients had full information. Allen, Clark and Houde (2019) quantifies the role of search costs
and brand loyalty for market power and finds that search frictions reduce consumer surplus by $12/month/consumer in mortgage
markets.

16For related review, please see Crawford (2012).

5

Finally, this paper is also related to the emerging literature on mobile applications. Examples include

Ghose and Han (2014), Bresnahan, Orsini and Yin (2014), Mendelson and Moon (2016), Mendelson and

Moon (2018), Huang (2018), Leyden (2019), Ershov (2020), Li, Bresnahan and Yin (2016), Wang, Li and

Singh (2018), Leyden (2021), Allon et al. (2021), Singh, Hosanagar and Nevo (2021) and Janssen et al.

(2021). In terms of methodology, this paper is most closely related to Leyden (2019) which also develops

an empirical model to rationalize app developers’ upgrading decisions for a different research question.

However, whereas Leyden (2019) assumes that consumers have perfect information about apps, my model

allows consumers to have imperfect information about match values with apps. While imperfect information

is not necessary for Leyden (2019) to study the effects of digitization, it is a necessary assumption to study

the effect of self-preferencing in this paper. In terms of topics, this paper is most closely related to Ershov

(2020) which studies the effect of reduced consumer discovery costs on product entry and consumer welfare

after re-categorization of game apps in the Google Play Store. However, whereas Ershov (2020) focuses on

congestion effects and does not explicitly model consumer search, this paper builds on an explicit model

of consumer search to separate search costs from utilities and thus quantifies welfare effects. Therefore,

I complement these papers by studying the equilibrium welfare effects of self-preferencing with explicit

consumer search model and endogenous upgrade decisions.

1.2 Roadmap

The remainder of the paper is organized as follows. Section 2 describes the data. Section 3 provides

background on the search algorithm change in the U.S. market on the Apple App Store and presents the

descriptive evidences. Section 4 describes the empirical model of consumer search and download, search

ranking and update competition in mobile application markets. Section 5 describes the estimation procedure

and presents the estimation results. Section 6 presents counterfactual simulations. Section 7 concludes.

2 Data

My dataset is a product-category-month panel on U.S. Apple App Store from April 2018 to February 2020.

For an app in a category in a month, I obtain the estimated number of downloads, estimated revenue, de-

veloper, app title and subtitle, installation price, ratings, released versions, as well as other app features that

are observable to consumers on the product page of the app. I use estimated downloads and revenues be-

cause data on actual downloads and revenues of apps are highly confidential and typically unavailable. For

exposition, I use "downloads" and "revenues" in referring to the estimated downloads and revenue.17 Fur-

thermore, for an app/keyword combination on a day, I obtain the position of the app in the search results for

the keyword. Lastly, to capture consumers search behavior, I obtain keyword-day level search volume and

17Each download is an installation by a unique new consumer. Thus, repeated installation by the same consumer will not
increase downloads. Revenues include installation revenue, in-app-purchase and in-app-subscription revenue before Apple tax.
The estimates are from AppTweak based on a machine learning algorithm by linking top charts rankings with actual downloads
and revenues they observe from connected app developers. AppTweak reports that 42% of the top50 grossing apps are their active
customers. Figure F.1 shows plausible fitness of the estimated downloads.

6

category-month-type level conversion rates, where type indicates whether the apps are free or paid apps.18

The data comes from AppTweak and Sensor Tower, two app store optimization service providers.19

Following the literature, to capture the most important effect, I focus on popular apps and popular

keywords.20 The popular apps are selected based on top charts ranking and annual downloads in 2019. For

example, within each category, the popular apps contain the 50 mostly downloaded apps in 2019 among

apps that ever showed up in top50 positions in top-grossing charts for the category. For each category, I

construct a set of popular keywords based on the number of popular apps that show up in the search results

for the keyword. Figure F.2 plots residual downloads against search ranking in these popular keywords,

showing a negative correlation between the two, indicating that the construction is plausible. Appendix A.1

explains the sample selection process in greater detail. In the end, the sample covers 38 categories, 3,110

apps, and 2,265 keyword/category pairs, constituting 56,570 observations at app-category-month level.21

Table 1 presents summary statistics of the app/category/month panel data. On average, an app has

60,000 unique new consumers downloading it in a month and receives $0.37 million from installation,

in-app purchase and subscription. Most apps are free: 58 percent of observations come from free apps.

Conditional on paid apps, the average installation price is $4.15. Apple only provides a small portion of apps

on the platform: one percent of observations come from Apple’s non-preinstalled apps. Because installation

of pre-installed apps is not within the choice of consumers, features of pre-installed apps are aggregated

to category-month level, and their summary statistics are provided in Appendix Table E.13. This appendix

table also provides summary statistics of other variables that are not observed at app/category/month level.22

Row (6) in Table 1 reports the summary statistics for update frequency, a variable to capture app de-

velopers’ efforts to improve quality. Specifically, I construct update frequency as the number of released

versions in a month, weighted by release note length. The weight is to give major updates (e.g. versions

with new features) higher weights than minor updates (e.g. bug-fixing versions). Row (6) shows that given

such a construction, on average, an app in a category updates 0.68 times in a month. Appendix A.2 gives

more details on the construction of update frequency as well as other variables in the table.

The data presents wide variation in app performance and characteristics. For example, the second col-

umn of Table 1 shows that the standard deviation of downloads is 3.8 times its mean, and the standard

deviation of revenues is 4.9 times its mean. Importantly, among paid apps, the standard deviation of in-

stallation price is 1.1 times its mean, providing essential variation to identify price elasticity in the mobile

application markets. Similarly useful variation shows up in other app characteristics as well: across the app

characteristics shown in rows (6) to (12), their standard deviations are about 13 percent to 1.8 times their

corresponding means.

18Search volume is an integer between 5 and 100 constructed by Apple to index the number of consumers searching for a
keyword on the app store. The conversion rate in my dataset captures the conversion from impression to installation. It is the ratio
of consumers who download an app among consumers who see the app on the app store. Note that seeing the app in search results
without clicking on the app counts as impression. These category-month-type average conversion rates are actual and not estimated,
and they are calculated based on independent apps.

19Additionally, for market size, I obtain the monthly number of U.S. iPhone users during the sample period from Comscore.
20For example, Kim, Albuquerque and Bronnenberg (2017) uses data covering 200 best-selling camcorders on Amazon.com.
21Table tab:appendix.ctglist lists the 22 non-game categories and 16 game categories in the sample.
22For example, Table E.13 presents that on average, a category has an average conversion rate of 5.2% across apps in a month,

while a within-sample keyword has a search volume of 45 out of 100 on a day.

7

Table 1: Summary Statistics

Overall Over-time Variation

Variable Mean SD Min Max Avg SDc Avg ranged

(1) Downloads (million) 0.06 0.23 10−6 7.00 0.03 0.09
(2) Revenues (million $) 0.37 1.81 0 56.51 0.07 0.22
(3) Paid Installation 0.42 0.49 0 1 0 0
(4) Paid Price 4.15 4.69 0a 99.99 0.32 0.82
(5) Apple 0.01 0.07 0 1 0 0
(6) Update Frequency 0.68 1.00 0 11 0.48 1.60
(7) Average Rating 4.40 0.55 1 5 0.08 0.23
(8) Age (month) 51.16 32.66 1 140 4.65 14.51
(9) File Size 225.70 411.00 0.73 4096 17.84 49.41
(10) #Screenshots 5.54 1.96 0 10 0.56 1.56
(11) Description Length 2.21 1.04 0 4.00 0.15 0.40
(12) Offer In-App-Purchase 0.74 0.44 0 1 0 0
(13) Top50 in Search Results 0.62 0.49 0 1 0.09 0.22
(14) Search Ranking|Top 50 23.57 11.58 1 50 4.83 14.11
(15) Apple’s appsb 16.14 12.01 1 50
(16) Independent apps 23.59 11.59 1 50
(17) Title Match (x10) 0.24 0.29 0 1.64 0.02 0.06
(18) Subtitle Match (x10) 0.22 0.28 0 1.74 0.04 0.10

Number of app/category/months 56,570
Number of apps 3,110

a9.87% paid apps have ever reduced their prices to 0 in the sample.
bInclude both pre-installed and non-pre-installed Apple’s apps, which constitutes 644
app/category/month observations. Pre-installed apps are not included when calculating the sum-
mary statistics for other row variables. Search rankings of pre-installed apps are from Sensor Tower.
The data for all the other variables come from public information and/or AppTweak.
cAverage of X j, where X j = (standard deviation of x jt across months indexed by t). For search ranking
related variables, x jt is average x jgt across categories indexed by g.
dAverage of X j, where X j = (range of x jt across months indexed by t). For search ranking related

variables, x jt is average x jgt across categories indexed by g.

Rows (13) to (16) in Table 1 report search-related variables. Many apps in the sample have shown up in

top50 search results. Specifically, given an app/category/month combination, the likelihood for the app to

appear in top50 search results of at least one popular keyword of the category on at least one day in the month

is 0.62.23 Conditional on such appearance, I calculate the average search ranking the app/category/month

combination across keywords and days, using search volume as weights for keywords.24 This conditional

weighted average search ranking is reported in row (14), with an average of 23.57, indicating that on average,

an app is ranked near the 24-th position across keywords if it shows up in the top50 search results in a

23I focus on top50 search results to capture the most relevant search ranking. Specifically, in the data, total downloads from top50
apps in search account for 60% total downloads from top500 apps in search.

24I aggregate search ranking from app-keyword-day level to app-category-month level for two reasons: i) I define a market as
a pair of category/month, ii) I would like to keep the model tractable by avoiding studying keyword-specific ranking effect. An
alternative market definition is the set of apps appearing in the search results given a pair of keyword/period, but historical records
on such information are unavailable in mobile application industry.

8

category in a month. For exposition, I use "search ranking" to refer to this conditional weighted average

search ranking. Rows (14) and (15) show that on average, the search ranking of an Apple’s app is 7.5

positions higher than an independent app. In Section 5, I examine to which extent this difference is due to

consumer preference v.s. self-preferencing.

Rows (17) and (18) report summary statistics of a source of exogenous variation in search ranking: how

much is an app’s title and subtitle matched to the corresponding keyword. By assuming that consumers

do not directly receive utility from titles and subtitles, I argue that title and subtitle only affect downloads

through affecting search ranking. On average, an app is matched with 0.24 popular keywords in title and

0.22 popular keywords in subtitle in a category in a month. In Section 3, I will illustrate the other source of

exogenous variation: an un-anticipated search algorithm on the app store.

The right panel of Table 1 explores over-time variation for each row variable, in order to distinguish

short-term strategic choices of app developers from long-term ones. The first column of the right panel

shows that the average within-app over-time standard deviation of update frequency is 48 percent of its

overall standard deviation, the same ratio for file size is just 4 percent, indicating rigidity of file size for a

given app.25 We see similar patterns when comparing comparing the average within-app over-time range to

the overall range in the second column. For example, an average app’s file size may change up to 49.4MB,

accounting for 1% of the overall range of file sizes; while an average app’s update frequency may change up

to 1.6 updates, accounting for 15% of the overall range of update frequency. We see similar stickiness price

and average rating. Overall, the results indicate greater flexibility of update frequency over time for a given

app, compared to other app characteristics.

Table 2: Summary Statistics on App Characteristic Dispersion based on Multiple-Category Developers

Average cross-category SD Average SD of developer’s cross-category SD
Variable within Developer/Montha within Category/Monthb

Update Frequency 0.73 0.52
Price ($) 0.34 0.75
Average Rating 0.09 0.13
Ever Top50 0.15 0.17

aAverage of X f t , where X f t = (standard deviation of (1/#J f gt)∑ j∈J f gt
x jgt across categories indexed by

g), where J f gt is the set of apps owned by developer f in category g/month t.
bAverage of Ygt , where Ygt = (standard deviation of X f (j)t across apps j ∈Jgt), where X f (j)t is the X f t of

the developer of app j, and Jgt is the set of apps in category g/month t.

Table 2 looks at app characteristic variation in more details. The first column looks at within-developer

dispersion of app characteristics across categories. Note that a developer may publish apps in different

categories and thus form category-specific portfolios of apps. Are these category-specific portfolios different

from each other in terms of app features within a developer/month pair? The results in the first column

indicates a positive answer. For example, on average, a developer/month pair has a standard deviation of

25By construction, update frequency may increase due to more versions released, and/or increased complexity of released ver-
sions (measured with longer release notes).

9

0.73 for update frequency across category-specific portfolios. Furthermore, within a market, are competing

developers different from each other in terms of how diversified their portfolios are across categories?26

The second column reports relevant summary statistics and provides a positive answer.27 For example,

on average, a market has a standard deviation of 0.52 across apps in terms of their developers’ standard

deviations for update frequency across category-specific portfolios.

3 Descriptive Evidence

Dominance of platform-owned products may indicate self-preferencing. This section exploits an unan-

ticipated search algorithm change on Apple App Store to find reduced-form evidence on how dominance

of platform-owned products in search results affects consumers and independent products. The findings

are also useful for motivating the empirical model of the mobile application industry with potential self-

preferencing.

3.1 Search Algorithm Change on Apple App Store

In July 2019, Apple launched a search algorithm change on Apple App Store that reduced the dominance

of Apple’s apps in search results. Specifically, the algorithm change "tweaked a feature of the app store

search engine that sometimes grouped apps by maker" so that "Apple apps would no longer look as if

they were receiving special treatment".28 There was no official report on why Apple changed the search

algorithm. Given the timing, the algorithm change is likely due to increasing antitrust challenges against

Apple; however, most of the challenges were about commission instead of self-preferencing. For example, in

May 2019, the Supreme Court voted 5 to 4 to allow a antitrust lawsuit brought by Apple App Store customers

against Apple regarding Apple using monopoly power to raise the prices of iPhone apps.29 Furthermore,

this algorithm change was firstly reported in September of 2019 by New York Times, two months later than

the launch. Therefore, I argue that the algorithm change was unanticipated by independent developers and

consumers.30

Figure 1 shows that the search ranking of Apple’s apps were lowered after the search algorithm change,

on average.31 The vertical axis is the average search ranking across a given group of apps: (1) Apple’s

pre-installed and non-preinstalled apps (solid line); or (2) other multiple-app developers’ apps (dashed line);

or (3) single-app developers’ apps (dotted line). The horizontal axis is the month. As mentioned earlier,

the new search algorithm tweaked a feature that groups apps by makers. Thus, all multiple-app developers

26In the data, an average market has 52.7 developers, 20.5 of whom are multiple-category developers.
27Specifically, I match each app with its developer’s cross-category portfolio variation that was calculated in the first column.

Then, within each market, I calculate the standard deviation of these cross-category changes of product portfolios across apps in
each market. The second column reports the average of this standard deviation across markets.

28Nicas,Jack and Collins,Keith. 2019. "How Apple’s Apps Topped Rivals in the App Store It Controls". The New York Times,
Sept. 9. https://www.nytimes.com/interactive/2019/09/09/technology/apple-app-store-competition.html

29Liptak, Adam and Nicas, Jack. 2019. "Supreme Court Allows Antitrust Lawsuit Against Apple to Proceed". The New York
Times, May. 13. https://www.nytimes.com/2019/05/13/us/politics/supreme-court-antitrust-apple.html

30Even if independent developers and consumers expect a similar search algorithm change to come; however, I argue that they
would not know when the search algorithm change would come.

31The change is even more evident among non-preinstalled Apple’s apps, as shown in Figure F.3.

10

https://www.nytimes.com/interactive/2019/09/09/technology/apple-app-store-competition.html
https://www.nytimes.com/2019/05/13/us/politics/supreme-court-antitrust-apple.html

may be affected. However, Figure 1 shows that the change of search ranking mainly happens to Apple’s

apps rather than other multiple-app developers’ apps, confirming that the algorithm change reduced the

dominance of Apple’s apps. Lastly, to focus on the effect of the search algorithm change, I examine the

sample period between June and November of 2019.

Figure 1: Average Search Ranking of Apple’s Apps around July 2019

The reduced dominance of Apple’s apps exposes Apple’s competitors to an exogenous shock on search

ranking after the search algorithm change, relative to independent apps that do not compete with Apple.

In particular, in my sample, 16 non-game categories contain Apple’s apps while 22 non-game and game

categories do not. In the next section, I will exploit such exogenous variation due to the launch of the search

algorithm change interacted with the existence of Apple’s apps in the category, in order to study the causal

effect of the dominance of platform-owned apps on independent apps.32

3.2 Difference-in-Differences Analysis

I use a difference-in-differences approach to study the causal effects of the search algorithm change on

independent apps. As explained in the last section, independent apps that compete with Apple’s apps in

the same category are exposed to the shock of reduced dominance of platform-owned products, relative to

independent apps in other categories. Therefore, I define my treatment groups as those independent apps in

32Table E.15 shows the summary statistics on observations in categories with and without Apple’s apps, before and after the
search algorithm change. For example, a simple difference-in-differences estimate using the average download reported in Table
E.15 implies that the downloads of apps in categories with Apple’s apps decrease less by 0.01 million after the algorithm change
relative to the downloads of apps in categories without Apple’s apps. However, there is a sizable deviation within each group and
period, and it is not ensured that the two groups are comparable.

11

categories that contain Apple’s apps and define my control groups as those independent apps in categories

that do not contain Apple’s apps. Following the literature, to estimate the average treatment effect of the

search algorithm change on independent apps, I use the following two-way fixed effects specification:

y jgt = β (AppleCompetitor jg×Postt)+λ jg +λt +ν jgt (1)

where AppleCompetitior jg indicates whether independent app j is in a category g with Apple’s Apps; Postt
indicates if month t is after July 2019. The coefficient on the interaction term, β , captures the average treat-

ment effect of the search algorithm change. The specification includes app-category fixed effects, λ jg, and

month-fixed effects, λt . The idiosyncratic error term ν jgt is assumed to be orthogonal to the other variables

on the right-hand side of the equation. Lastly, y jgt is a general notation of outcome variables of interests that

include search ranking, downloads, conversion rate, update frequency, price, average rating, and file size.

Because conversion rate is only available at type-category-month level, when applying Equation (1) to study

conversion effect, I interpret j as type indicating whether the conversion rate is an average conversion rate

across free apps or paid apps.

Figure 2 presents the main results by month with app-category fixed effects and month-fixed effects.33

In the period before the search algorithm change, there is no significant effect for independent apps in

categories that contain Apple’s apps relative to independent apps in categories that do not on any of the

outcome variables of interests. This provides evidence that the independent apps competing with Apple’s

apps had similar trends in the preperiod as the independent apps that do not compete with Apple’s apps,

supporting the common trends assumption. Figure F.4 shows that the results are robust to multiple preperiods

when examining half-month treatment effects.

Figure 2a and 2b show that right after the reduced dominance of Apple’s apps in search results, the

monthly downloads increased for independent apps that compete with Apple’s apps relative to independent

apps that do not. This download effect happens earlier than ranking effect: the search ranking of competing

independent apps becomes higher starting from the second month after the algorithm change and grows over

time. It indicates that the algorithm change initially leads to more rising-up of popular independent apps

than dropping-down of unpopular independent apps in search results. As the new search algorithm interacts

with new performance data on independent apps, all competing independent apps get boosted up on average,

relative to independent apps that do not compete with Apple’s apps. That said, Figure F.4b shows that the

ranking effect is robust to controlling for one-period lagged downloads, supporting the direct (though slow)

ranking effect of the search algorithm change.

Figure 2c presents zero conversion effect of the reduced dominance: the average conversion rate across

those independent apps in categories that contain Apple’s apps remains parallel to the average conversion

rate across those independent apps in categories that do not. Combined with the significant download effect

and ranking effect, the evidence implies that the boosted-up search ranking of competing independent apps

lead to as much increase in the number of consumers downloading these apps as the increase in the number

of consumers seeing these apps in search results, in proportion. Furthermore, this evidence supports an

33The specification used for Figure 2 is y jgt =∑τ βτ (AppleCompetitor jg×1{t = τ})+ λ̃ jg+ λ̃t + ν̃ jgt , where τ ∈{−1,1,2,3,4}.
The interaction with July 2019 is omitted, because the search algorithm change is launched on July 22, near the end of the month.

12

Figure 2: Effect of Reduced Dominance of Platform-owned Products on Independent Apps, by Month from
Search Algorithm Change

(a) Search Ranking (b) Downloads (c) Conversion Rate

(d) Update Frequency (e) Price

(f) Average Rating (g) File Size

Notes. The charts present point estimates for each month using the difference-in-differences specification as specified in Section
3.2. The omitted period is the month at the end of which the search algorithm change was launched. Error bars indicate 95%
confidence interval using standard errors robust to heteroscedasticity.

13

assumption on consumer search – search ranking does not affect product value, which will be applied in

the empirical model. Specifically, if increased search ranking leads consumers to view an app as better than

before, then conditional on seeing the product, consumers should be more likely to download the app. As

this conditional probability is captured by conversion rate, the evidence shown in Figure 2c does not point

to effect of search ranking on product value.

The last four panels of Figure 2 presents the supply-side effects of reduced dominance of platform-

owned products: competing independent apps significantly update more starting from the second month

after the algorithm change, relative to other independent apps; while the price, average rating and file size

of competing independent apps remain unaffected.34 This result is consistent with the over-time rigidity of

the unaffected app characteristics shown in Table 1. Furthermore, the evidence motivates me to focus on

update frequency as the primary developer response to self-preferencing in the empirical model. While my

sample focuses on popular apps and thus is lack of entry observations, Figure F.5 shows that there was not

significant effect on entry of competing independent apps due to the search algorithm change.

Table 3: Effects of Reduced Dominance of Platform-owned Products on Competitors: Difference-in-
Differences Estimates

Outcome Variable Estimated ATE SE Obs Adj. R2 FE Mean Level

log(Search Ranking) −0.036*** 0.010 11,642 0.86 A 24.17
log(Downloads) 0.221*** 0.021 20,423 0.95 A 0.055
log(Conversion Rates) 0.088 0.068 330 0.95 B 0.065
log(1+Update Frequency) 0.021** 0.009 20,423 0.62 A 0.63
log(1+Price) 0.001 0.004 20,423 0.98 A 1.91
log(Avg.Rating) 0.002 0.002 20,423 0.94 A 4.37
log(File Size) −0.007* 0.004 20,423 0.99 A 216.30

Notes: Estimated ATE is the estimate of β in Equation 1 for the outcome variable on the row. FE: (A)
app/category-fixed effects, month-fixed effects; (B) type/category-fixed effects, month-fixed effects,
where type indicates paid or free apps. Conversion rates are observed at type/category/month level, the
other row variables are observed at app/category/month level. Mean level is not in logarithms. SE is
robust standard errors. *** p<0.01, ** p<0.05, * p<0.1.

Table 3 presents the estimated average treatment effects from Equation 1. After the search algorithm

change that reduces the dominance of Apple’s apps, we see significant increases in independent app’s search

ranking (3.6%), downloads (22.1%), and update frequency (2.1%) in categories that contain Apple’s apps

relative to categories that do not; while the other outcome variables of interest remain unaffected. The lower

number of observations in the first row reflects that not all apps in the sample have ranked in top50 search

results in a given category and month. The significantly lower number of observations in the third row is

due to the more aggregate observational level of conversion rate: it is only available at type/category/month

level, while the other row variables are observed at app/category/month level.

34Within the sample period, developers may choose to reset ratings after updates. However, while we see significant positive
update effect, no significant rating effect is found. This is likely due to the fact that little rating-resets happen in my data. In
particular, on a daily base, only 1.4 percent to 2.5 percent of observations see a decrease in the number of a given star-level ratings
as time goes by. Indeed, there is a cost for developers to reset their ratings: it will cause fewer ratings and may discourage some
people from downloading the app.

14

From this exercise, we learn that while dominance of platform-owned products in search results have

impacts on independent competitors’ search ranking by design, it also has real impacts on consumer choice

and producer decisions. However, we should be careful to interpret the above effect as the effect of self-

preferencing. Under the assumption that the reduced dominance is only due to less self-preferencing, we

may interpret the average treatment effect as the effect of self-preferencing. But the algorithm change

may shift other features of the search engine to achieve the reduced dominance even if there is no self-

preferencing from the beginning, for example, by increasing the emphasis of ratings. Therefore, identifying

self-preferencing is necessary before studying its effect. To that end, in the next section, I develop an

empirical model for consumer search and competition on update frequency in the mobile application markets

with potential self-preferencing.

4 Model

This section presents an empirical model of the mobile application market that explicitly incorporates con-

sumer search and producers’ competition on update frequency in the presence of potential self-preferencing.

The model has three pieces. First, a demand model that returns an app quality index and a demand func-

tion. Second, a search ranking model that takes the constructed app quality index as an input to identify

self-preferencing and returns a ranking probability function. Third, a supply model, where developers make

update decision based on the demand function and the ranking probability function, given their heteroge-

neous update costs.

4.1 Demand

To study the effect of self-preferencing, incorporating the effect of search ranking on demand is necessary.35

To that end, I use a random-coefficient discrete choice model augmented with optimal sequential consumer

search to describe mobile application demand. In the model, before search, consumers are heterogeneous in

the tastes, knowledge, and search costs for a given app. Therefore, different consumers may search for and

thus download different apps. In the rest of this section, I first give the market definition, then specify the

indirect utility and search cost of consumers.

I define a market as a category/month pair. That is, I assume a consumer may download apps from

multiple categories in a month, but within a category, the consumer downloads no more than one app in a

month.36 The market share of an app j that operates in a category g in month t, is given by s jgt := Q jgt/Mt ,

where Q jgt is the app’s total downloads in month t and Mt is the number of iPhone users in month t.

35Moreover, the considerable number of products makes search and self-preferencing a major concern in the industry. For
example, in the year 2019, there are 3.96 million apps available on Apple App Store. The figure comes from Statista. 2021.
"Number of available apps in the Apple App Store from 2008 to 2021". https://www.statista.com/statistics/268251/number-of-
apps-in-the-itunes-app-store-since-2008/

36Choice among categories is beyond the scope of this paper. For examples of studies that consider choice among categories,
Ghose and Han (2014) uses a random-coefficients nested logit model to incorporate consumers’ choices of categories, assuming
that a consumer downloads no more than one app on an app store on a day. In addition, Fershtman, Fishman and Zhou (2018)
proposes a search model where consumers choose which categories to search, and firms respond to such more targeted search by
strategically choosing the categories in which to list their products.

15

https://www.statista.com/statistics/268251/number-of-apps-in-the-itunes-app-store-since-2008/
https://www.statista.com/statistics/268251/number-of-apps-in-the-itunes-app-store-since-2008/

Indirect Utility. By downloading app j in category g and month t, a consumer i receives the following

indirect utility:
ui jgt = α p jt +x jt ·β+ γ̃ia jgt + ξ jgt + εi jgt , j 6= 0

ui0gt = β0Ig + εi0gt

(2)

where p jt is the installation price of app j in month t, x jt is a vector of observable (to researcher and

consumer) features of app j in month t. 37 Note that (x jt ·β) includes month-fixed effects, allowing month-

specific average product values relative to the outside option of not downloading any app.38 Moreover,

a jgt is log(1 + update frequency) of app j in category g and month t, ξ jgt is a partially unobserved (to

researchers) mean-taste shifter, Ig indicates whether category g contains pre-installed apps and thus may

have a different outside-option value than categories than do not, and εi jgt is an idiosyncratic match values

independently and identically drawn from Type I extreme value distribution.39 Lastly, γ̃i is a mean-zero

random coefficient drawn from the normal distribution N (0,σ), capturing consumers’ heterogeneous tastes

over updates, while the mean effect of a jt on indirect utility lives in ξ jgt following an AR(1) process as

below.40

ξ jgt = ρξ jgt−1 + γa jt +η jgt , E[ξ jgt−1η jgt] = 0 (3)

where η jgt is unobserved (to researchers) mean-taste shifters, such as advertising, and is assumed to be or-

thogonal to the lagged partially unobserved quality ξ jgt−1, as well as other instruments that will be specified

in Section 5.1. Following Leyden (2019), the time-series process in Equation (3) intends to capture continual

contribution of update to app quality and to avoid modelling update as a one-shot shock to app quality.

Now I define app j’s mean-utility relative to the outside option, δ jgt , and app quality, δ̌ jgt , with the

following equations:
δ jgt := α p jt +x jtβ+ ξ jgt −β0Ig

δ̌ jgt := δ jgt −α p jt −β
paid paid j

(4)

where paid j indicates whether app j requires paid installation, which is included in the vector x jt in Equa-

tion 2. Thus, the constructed app quality captures mean utility of an app that is irrelevant to installation

payment. Moreover, note that x jt includes the indicator of Apple ownership. Thus, the constructed app

quality index captures consumers’ preference for Apple’s apps, i.e., Apple’s brand effect.

Last but not least, note that Equation (2) does not include search ranking, meaning that search ranking

does not affect product value. This is motivated by the insignificant effect of the search algorithm change on

37The vector of app features, x jt , includes average rating, an indicator of ownership of Apple, an indicator of paid in-
stallation, an indicator of offering in-app-purchase, the logarithm of age (in month), the logarithm of file size (in MB),
log(1+ length of description), and an indicator of game apps, and month indicators to capture month-fixed effects.

38Specifically, the outside option lumps all cases where consumers do not download any app in a given category in a month, which
consists of i) using no app; ii) using one or multiple previously downloaded apps; iii) using pre-installed apps. The likelihood of
the second case may increase overtime as a consumer develops habit of using a previously downloaded app.

39Given the large maximum update frequency relative to mean shown in Table 1, I put the logarithm function on update frequency
to avoid outliers driving estimation results. Because update frequency are normalized within categories during variable construction,
update frequency may change across categories given a pair of app/month. Observations from apps that have different update
frequencies in different categories in a given month account for 5.50% of all observations, 89 percent of which are game apps.

40The taste heterogeneity for update frequency may happen when some consumers like the availability of new features while
others dislike the inconvenience of frequent updates.

16

conversion rates of affected independent apps, as shown in Section 3.2. This assumption helps with separate

identification of consumer preference and search costs.41

Search Costs. To augment the discrete choice model with consumer search, I need to make assumptions

on what consumers search for at what cost in which way. The short answer is that consumers only search

for the idiosyncratic match value, εi jgt , at a stochastic search cost whose distribution depends on the search

ranking of the app j in the category g and month t, following an optimal sequential search model in the spirit

of Weitzman (1979). Next I give more details for each of the elements.

In my model, consumers are at a relatively late stage in search. Before search, they already know the

mean-taste shifters: price, brand, average rating, update frequency, advertising, and other app features on

the right-hand side of Equation (4) for relative mean-utility δ jgt . Consumers only search to learn their

idiosyncratic match values, εi jgt . Such match values could be how much the reviews of the app attract the

consumer to use the app, and/or whether the consumer accepts the app’s privacy practices. This information

assumption on consumers implies that they do not infer product quality from search ranking, because they

already know it, which is consistent with the assumption that search ranking does not affect perceived

values of products by consumers. To support this information assumption, Appendix B.1 shows descriptive

evidence that consumers at least know observed app features to some extent before search.

To learn about match values through search, consumers incur search costs. The search costs may include

the cost of scrolling down the iPhone screen to see the app, clicking on the app, and checking its detailed

information on the view page. Meanwhile, for a given app, some consumers might know it from friends

before search, while others do not. Therefore, search cost depends on the search ranking in a stochastic way,

which will be specified later. Now, to complete the information assumption, in the model, consumers have

rational expectation in the sense that they know the distributions of the search costs and idiosyncratic match

values.

During search, consumers behave as described in the optimal sequential search model (Weitzman, 1979).

Specifically, consumers visit apps in the order of reservation values and stop searching when the highest

realized utility so far is above the reservation value of the next product to be searched. To have a closed-

form choice probability out of this search problem, I apply a distributional assumption on search costs as in

Moraga-González, Sándor and Wildenbeest (2022). Specifically, I assume that the search cost of consumer

i to find an app j in category g in month t , ci jgt , follows the cumulative distribution function given by

Fc
jgt(c|µ jgt) =

1− exp(−exp(−H−1
0 (c)−µ jgt))

1− exp(−exp(−H−1
0 (c)))

(5)

where H0(r) = Euler Constant− r+
∫

∞

exp(−r)
exp(−t)

t dt; and µ jgt is the app-category-month specific location

parameter of the search cost distribution.42 I call the distribution parameter µ jgt as search cost parameter,

41In principal, without the assumption, consumer preference and search costs can be separately identified by matching
the observed conversion rates with model predictions. However, the conversion rates are observed at a much coarser level
(type/category/month level) compared to the main data (app/category/month level). Thus, I go with this simplification assump-
tion.

42To give some intuitions of the search cost distribution function, as noted in Moraga-González, Sándor and Wildenbeest (2022),
the function allows a mass of consumers to have zero search costs: Fj(0) = exp(−µ j). The smaller the distribution parameter µ j,

17

which is a deterministic function of search ranking. In particular, because µ jgt has to be positive to give a

well-defined distribution function, following Moraga-González, Sándor and Wildenbeest (2022), I specify

µ jgt as below

µ jgt(λ) := log [1+ exp(λ1E jgt +λ2E jgt log(ranking jgt))] (6)

where E jgt = 1{top50 in search results}, and ranking jgt is the search ranking of app j in category g in month

g conditional on appearance in top50 search results.43 Intuitively, search costs should be lower for apps that

get into top50 search results (E jgt = 1) and have higher rankings (smaller ranking jgt). Therefore, I expect

λ1 to be negative and λ2 to be positive.

Following the Proposition 1 in Moraga-González, Sándor and Wildenbeest (2022), the distributional

assumption on search costs in Equation (5) rationalizes a closed-form choice probability. Specifically, the

probability of consumer i downloading app j in category g and month g is given by

si jgt(θ
D, γ̃i) =

exp(δ jgt + γ̃iã jgt −µ jgt + Igµ0gt)

1+∑l∈Jgt exp(δlgt + γ̃iãlgt −µlgt + Igµ0gt)

where Jgt is the set of apps in category g and month t. θD denotes the vector of consumer preference

parameters, containing (α ,β,ρ ,γ ,σ ,λ). Then, I aggregate the consumer-level choice probability to market

level and obtain the market share of app j in category g and month t as below:

s jgt(θ
D,σ) =

∫
si jgt(θ

D, γ̃i)dFγ̃(γ̃i), γ̃i ∼N (0,σ).

Because the choice probability belongs to the Berry, Levinsohn and Pakes (1995) (BLP) framework,

I apply the Berry inversion to back out search-augmented relative mean-utilities, δ̃ jm, given a guess of σ .

Specifically, the search-augmented relative mean-utility is relative mean-utility, δ jgt , net of relative search

cost parameter, which is given by

δ̃ jgt(sgt ;σ) := δ jgt − (µ jgt(λ)− Igµ0gt(λ))

where sgt is the vector of market shares in category m and month t, and Igµ0gt allows consumers to incur

search costs to learn idiosyncratic match values with outside options in category g when the category con-

tains are pre-installed apps.44 Substituting Equation (4) and Equation (3) into the above equation, I obtain

the main estimation equation for the demand model as below

δ̃ jgt(sgt ;σ) = α p jt +x jtβ+ρξ jgt−1 + γa jgt −β0Ig +η jgt︸ ︷︷ ︸
relative-mean utility

− (µ jgt(λ)− Igµ0gt(λ))︸ ︷︷ ︸
relative search cost parameter

(7)

the larger the mass, and thus the more likely for consumers to perfectly know product j before search.
43The variation of search ranking across categories given an app/month pair comes from different sets of popular keywords across

categories.
44Such search costs may happen when consumers do not know which apps are pre-installed, or where are the pre-installed apps

on the smartphone, or whether they have deleted the pre-installed apps. When category g does not have pre-installed apps, the
outside option is either not using any app or using a previously-downloaded app; thus, consumers incur zero search cost to learn
ε0gt .

18

Note that (ρ ,λ) are non-linear parameters in Equation (7), since ξ jgt−1 is unobserved and µ jgt(·) is

non-linear. To speed up estimation, I get around the non-linearity by subtracting ρδ̃ jgt−1 from δ̃ jgt , which

returns

δ̃ jgt(sgt ;σ)−ρδ̃ jgt−1(sgt−1;σ) = α ṗ jt + ẋ jtβ−β0(Ig−ρIg)− µ̇ jgt(λ)+ Ig ˙µ0gt(λ)+ γa jt +η jgt

where ẏt = yt−ρyt−1 for any variable in the above equation. This equation can be estimated with linear re-

gression, given a guess of (σ ,ρ ,λ). The estimation of the demand model is based on the General-Methods-

of-Moments (GMM) with iterated guesses of (σ ,ρ ,λ). The moments are constructed based on Equation

(7) and other instruments that will be specified in Section 5.1.

4.2 Search Ranking

I interpret self-preferencing as two products that are identical except for platform ownership but the platform-

owned product shows up in top search results more frequently than the other. To isolate such effect of

platform ownership on search ranking, I develop a flexible search ranking model that explicitly controls

for partially unobserved app quality. Note that app quality is revealed by consumer demand as defined in

Equation (4).

Given that Apple’s search ranking algorithm is proprietary, I use a rank-ordered logistic regression

model (Beggs, Cardell and Hausman, 1981) to approximate the algorithm. The advantage of the rank-

ordered logistic framework is that it allows intuitive correlations between rankings of products in the same

market. To clarify, a typical regression equation with search ranking on the left-hand side and an additively

separable error term on the right assumes that the error terms are independent across observations. In

contrast, the rank-ordered logistic model assumes independent error terms for a latent variable, namely the

ranking score, and products in the same market are ranked according to the stochastic scores. Then, the

model preserves intuitive correlations between rankings of products in the same market. For example, an

increase in the probability of one product being ranked 1st is associated with a decrease in the probability of

another product being ranked 1st. Next, I give more details on the ranking score, and then the mapping from

scores to ranking probability.

The ranking score of an app j in category g and month t is given by

score jgt =
τ=23

∑
τ=1

θ1,τApple j ∗1{t = τ}+θ2δ̌ jgt +θ3δ̌
2
jgt +z

s
jgt ·ϑ+ e jgt (8)

where Apple j indicates ownership of Apple for app j, δ̌ jgt is app quality defined in Equation (4), zs
jgt is a

vector of observed search-related app features, e jgt is an idiosyncratic error term independently and identi-

cally drawn from the Type-I Extreme Value distribution.45 Some examples of unobserved score shifters may

be consumers’ usage of apps, un-installations, and retention. To increase the plausibility of the theoretical

independence of the error term, I include well-accepted search ranking shifters that are observable in zs
jgt ,

45Note that there is no constant term in the score equation because only within-market relative ranking matters for identification,
the exact values of rankings do not matter.

19

and allow their effects to be as flexible as category-specific and month-specific. Examples of such shifters

include title match, price, and ratings in the previous period.46 For a complete list of variables in vector zs
jm,

please see Appendix B.2.

The parameters of interest are {θ1,τ}, each of which governs the ranking effect of Apple-ownership

in month τ . Specifically, if on average, self-preferencing exists, in other words, if an Apple’s app that is

identical to an independent app tends to receive higher ranking, then θ1,τ will be significantly positive for

some month τ . Moreover, since app quality includes consumers’ preference for Apple’s apps relative to

independent apps, the model can directly test a typical defense for dominance of platform-owned products:

"our products are ranked higher simply because they are preferred by consumers". In particular, if consumer

preference is enough to justify Apple apps’ higher ranking, then θ2 should be significantly positive and θ1,τ

should be insignificantly different from zero in all months.

The search ranking model is estimated with Maximum-Likelihood-Estimation(MLE). To write down the

conditional log-likelihood, I firstly write down the conditional probability of an app j to be ranked 1st in

category g in month t:

pr jgt(θ|xs
gt) =

exp(xs
jgt ·θs)

∑l∈Jgt exp(xs
lgt ·θs)

where xs
jgt = (Apple j, δ̌ jgt ,zs

jgt), θ
s = (θ1,1,θ1,2, · · · ,θ1,23,θ2,θ3,ϑ), and xs

gt is a collection of xs
jgt across

the Jgt apps in category g and month t. Now, let ygt denote the ordering of the Jgt products in category g

and month t, where ygt(k) is the product that is ranked at position k. Then the conditional log-likelihood for

observing product orderings in the data is given by

L(θ|xs) = ∑
g,t

logP[ygt |xs
gt]

:= ∑
g,t

log

[
prygt (1) ·

prygt (2)

1− prygt (1)
·

prygt (3)

1− prygt (1)− prygt (2)
· · · ·

prygt (Jgt−1)

prygt (Jgt−1)+ prygt (Jgt)
·

prygt (Jgt)

prygt (Jgt)

]
(9)

where the term in the bracket in the second line is the product of the probability of the first-ranked product

being ranked in position 1, and the probability of the second-ranked product being ranked in position 2

conditional on the first-ranked product being ranked in position 1, until the probability of the last-ranked

product being ranked in the last position conditional on all other products being ranked before it (which is

equal to 1).

4.3 Supply

I develop a supply model to describe how independent developers choose update frequency, taking other

app features as exogenous. The motivation of this supply model comes from the significant update effect

and insignificant price effect, rating effect, and file size effect of the search algorithm change discussed in

46I argue these variables capture quite some important factors, since they match with what Apple says about their search algo-
rithm: "Apple has agreed that its Search results will continue to be based on objective characteristics like downloads, star ratings,
text relevance, and user behavior signals.". See Apple. 2021. "Apple, US developers agree to App Store updates that will support
businesses and maintain a great experience for users". August 26. https://www.apple.com/newsroom/2021/08/apple-us-developers-
agree-to-app-store-updates/

20

https://www.apple.com/newsroom/2021/08/apple-us-developers-agree-to-app-store-updates/
https://www.apple.com/newsroom/2021/08/apple-us-developers-agree-to-app-store-updates/

Section 3.2. Recall that reduced dominance of platform-owned products after the search algorithm may

or may not indicate previous presence of self-preferencing. But with identified self-preferencing from the

search ranking model, this supply model can then predict how update frequency and thus app quality will

change with self-preferencing.

The supply model is a static two-stage game of competition on update frequency between multiple-app

developers. In the first stage, app developers choose which apps are to be updated and incur heterogeneous

sunk costs for apps chosen to be updated. In the second stage, app developers choose how much to update

for each of the chosen apps after revolution of idiosyncratic marginal update costs. To have some concrete

ideas, for one update, one can imagine that developers first gather information from users’ comments, app

store’s new instructions, newly available technology, and new security concerns. Such efforts to gather

information are irreversible in the second stage even if the update ends up dealing with only a part of the

concerns. Then, developers work on programming the update, and might encounter some unexpected bugs

that requires extra effort to solve, and choose the final update frequency (quality). Lastly, as a caveat, the

supply model does not consider dynamic incentives of update.47 Next, I explain the game in backwards with

more details .

Stage 2 - How much to update. When choosing update frequency for apps to be updated, developers

balance the expected marginal benefit from extra updates with the resolved marginal update cost. The ex-

pectation is over possible search rankings given the vector of update frequency in equilibrium. Developers’

beliefs on search ranking is self-fulfilling in equilibrium. To formalize these ideas, I first specify developers’

profits that are variable with update frequency, then explain developers’ search ranking belief to form the

expected variable profits.

App developers receive revenues from three sources: i) installations, ii) in-app purchase and subscrip-

tion; iii) in-app advertising. For an app j in category g and month t, its installation revenue is p jtQ jgt , and

its revenue from in-app purchase and subscription, R jgt , is given by

R jgt =τ0 +(τ1 + τ2×game j)×Q jgt +(τ3 + τ4×game j)×Q2
jgt +(τ5 + τ6game j)×a jgt

+λ
R
g +λ

[0]
t + game j×λ

[1]
t + eR

jgt

(10)

where game j indicates whether app j is a game app, λ R
g are category-fixed effects, λ

[0]
t are month-fixed

effects, λ
[1]
t are month-fixed effects interacted with the game indicator, eR

jgt are conditional mean-zero id-

iosyncratic error terms. Apart from the effect of downloads on revenues, in the case of new in-app-purchase

items available along with updates, the model includes direct revenue effect of update, captured by τ5 and τ6.

To prepare for the expected variable profit function, denote the in-app-purchase-and-subscription revenues

that are variable with respect to update levels as R(Qlgt ,algt ;τ) := (τ1 + τ2× game j)×Q jgt + (τ3 + τ4×
game j)×Q2

jgt +(τ5 + τ6game j)×a jgt .

Revenue data allows me to estimate Equation (10) separately from the entire supply model. However,

the revenues and profits from in-app advertising are unavailable. Then, I estimate an in-app-advertising

47Due to the continuous effects of update on quality, developers may consider the impacts of current updates on future installa-
tions. But dynamic decisions of multiple-product firms is challenging. Future work should consider a dynamic problem.

21

profit function together with marginal update costs. Specifically, I assume that the in-app-advertising profit

that is variable with respect to update is a simple quadratic function of downloads as below.

F(Q jgt ;ψ) = ψ1Q jgt +ψ2Q2
jgt

Apple collects 30% commission from independent apps’ installation revenues and in-app-purchase-and-

subscription revenues.48. Additionally, I assume zero marginal distributional cost to serve extra consumers,

which is reasonable for digital products.49 Therefore, the variable profit of developer f in category g and

month t given a vector of search rankings (ygt) is as below.

π
I
f gt(ygt) = ∑

j∈J f gt

0.7p jtQ jgt(ygt)+ 0.7R(Q jgt(ygt),a jgt ;τ)+F(Q jgt(ygt);ψ)−g(a jgt ,ω jgt ;φ) (11)

where J f gt is the set of apps owned by the developer f in the market. The function g(a jgt ,ω jgt ;φ) describes

the variable update costs at positive update a jgt with unobserved cost shock ω jgt . Specifically, it is given by

g(a jgt ,ω jgt ;φ) = φ1 exp(a jgt)+ (zg
jgtφ+ω jgt)a jgt −φ1

where zg
jgt contains app age and month-fixed effects.50 Notice that when a jgt = 0, the variable update cost

is zero: g(0,ω jgt ;φ) = 0. One useful assumption is that ωlgt are not known by developers in the first

stage. Therefore, ωlgt is independent of the decision on which apps are updated. Apart from mitigating the

selection issue, the assumption also helps with supply-side instrument construction in Section 5.1.

Computing developers’ beliefs on search rankings is challenging in large markets because the number of

possible orderings of products increases factorial with the number of products. For example, in a market of

10 products, the number of possible orders becomes 10!(≈ 3.6×106). In the data, the number of products

is 64.7 on average and could be as large as 102. Thus, it is infeasible to allow developers to consider all

possible orders of search rankings in the model. And it is likewise infeasible to closely approximate the set

of all possible orders.51

To deal with the computational challenge, I assume that developers only consider most likely orderings

when making update decisions. Then I approximate these most likely orderings with a method detailed in

Appendix B.3. I test the method with all markets that have no more than 10 products. Out of 10 most likely

orderings, the truncated set of possible orders captures 8.5 of them on average, and captures at least 6 of

48The commission rate is not 30% for every app at all times. For example, for the subscription revenues from a consumer that
has subscribed to the app for more than one year, Apple collects 15% of the post-one-year subscription revenues instead of 30%.
However, I do not have data on the distribution of new and old consumers at app level. Therefore, I use 30% as an approximation
of the actual commission payment rate.

49It might be costly to acquire and thus serve extra consumers. For example, Li, Bresnahan and Yin (2016) studies app developers
buying downloads to get their apps on the top chart and find that the median value of one organic download is 70% the cost of buying
one download. Moreover, Armstrong and Zhou (2011) theoretically investigates multiple methods that firms can pay to become
prominent and thereby influence the order in which consumers consider options. But such supply-side efforts are out of the scope
of this paper.

50Following the literature, I assume that marginal variable update cost is convex in update a jgt (I expect φ1 to be positive) so that
the profit function is concave in update.

51I test with a market consisting of 10 products in the data. Denote the probability of an order y with P[y]. To to reach
∑y∈B P[y] ≥ 0.2, I need at least 1% of all possible orders in the set of orders B, which corresponds to 36,288 orders.

22

them, and always captures the most likely one. Note that the truncated belief space changes with update: as

one app updates more, the orderings with this app in top positions is more likely to happen and thus more

likely to be included in the truncated belief space. Denote a truncated belief space given a vector of updates

as Ba. Then, a well-defined probability measure on Ba is the probability of an ordering conditional on that

the ordering is in Ba, which is given by

P̃[y|a] := P[y|a]/

(
∑

y′∈Ba

P[y′|a]

)
, ∀y ∈Ba

where P[y|a] is the probability of an ordering y as defined in Equation (9), given the vector of updates a.

Then, the expected variable profits of a developer f in category g and month t, given a vector of updates agt ,

is as below.

π
II
f gt(agt ,ωgt) := Ey[π

I
f gt(y)|agt ,ωgt] = ∑

y∈Bagt

π
I
f gt(y)P̃[y|agt]

= ∑
y∈Bagt

{
∑

l∈J f gt

0.7plgtQlgt(agt ,y)+ 0.7R(Qlgt(agt ,y),algt ;τ)+F(Qlgt(agt ,y);ψ)

}
P̃[y|agt]

− ∑
l∈J f gt

g(algt ,ωlgt ;φ)

(12)

In equilibrium, the following necessary conditions hold true: marginal expected variable profit with

respect to update equals zero, given the updates of others. Let D jgt indicates whether app j is updated in the

market. Omitting the market index gt for exposition, the necessary conditions are given by,

MB j(a j,ψ) = φ1 exp(a j)+z
g
jφ+ω j, ∀ j s.t. D j = 1 (13)

where the left-hand marginal benefit of update, MB j(a j,ψ), is given by

MB j(a j,ψ) = MB[0]
j +MB[1]

j ψ1 +MB[2]
j ψ2,

MB[0]
j = ∑

y∈Ba

 ∑
l∈J f (j)

(0.7pl + 0.7R′l)
∂Ql

∂a j
+ 0.7(τ5 + τ6game j)

P̃[y|a]

+ ∑
y∈Ba

 ∑
l∈J f (j)

(0.7plQl + 0.7Rl)

 ∂ P̃[y|a]
∂a j

MB[1]
j = ∑

y∈Ba

 ∑
l∈J f (j)

∂Ql

∂a j

P̃[y|a]+ ∑
y∈Ba

 ∑
l∈J f (j)

Ql

 ∂ P̃[y|a]
∂a j

MB[2]
j = ∑

y∈Ba

 ∑
l∈J f (j)

2Ql
∂Ql

∂a j

P̃[y|a]+ ∑
y∈Ba

 ∑
l∈J f (j)

Q2
l

 ∂ P̃[y|a]
∂a j

where MB[0]
j is the marginal benefit of update from the sum of installation revenues and in-app-purchase-

23

and-subscription revenues, the sum of MB[1]
j ψ1 and MB[2]

j ψ2 is the marginal benefit of update from in-app-

advertising profit, and R′l denotes the first-order derivative the in-app-purchase and subscription revenue

function R(Ql ,al;τ) with respect to downloads Ql . Note that one can compute MB[0]
j , MB[1]

j , and MB[2]
j

using observed data and estimates of the demand model, search ranking model, and in-app-purchase-and-

subscription revenue equation. This makes the parameters in Equation (13) linear.

There is a technical assumption underlying the first-order-condition approach: the objective function

is locally differentiable with respect to update a j. However, update might discretely affect the expected

variable profits by changing the truncated set of possible search rankings Ba. Then, I assume that marginal

changes in update a j does not change Ba. Note that this assumption is not strong for two reasons. Firstly,

when Ba equals the set of all possible search rankings, this assumption is a fact. Secondly, because the

rank-ordered logistic regression model only requires higher ranking score to be ranked higher rather than

one-to-one mapping from score to ranking, marginal change of update a j typically changes the ranking

scores without changing the rankings (but it will change the ordering likelihood).52

Equation (13) captures direct and indirect incentives of updates. For example, the first term in MB[0]
j

captures the direct effect of update on downloads, fixing search rankings; while the second term in MB[0]
j

captures the indirect effect of updates on revenue through search ranking likelihood P̃[·].The partial deriva-

tives ∂ P̃[y|a]
∂a j

are computed based on the estimated search ranking model with step 1e-4.

The necessary conditions imply ambiguous effect of self-preferencing on update. Assuming that an

independent app j is boosted up in search results due to eliminating self-preferencing, then the demand curve

shifts up, which increases the marginal download from increasing update, i.e., higher
(

∂Q j
∂a j

(ranking j)
)

with

smaller ranking j. At the same time, the shifted-up demand curve moves the developer rightward along the

marginal revenue curve, which will decrease marginal revenue from downloads, i.e., lower (0.7p j +0.7R′j +

ψ1 + 2ψ2Q j) with smaller ranking j, if the revenue curve is concave in quantity. Appendix D discusses the

ambiguity implication in more details.

Stage 1 - Which apps to update. When choosing which apps to update, developers balance expected ad-

ditional profits from updating an app with the sunk cost to update the app. If the developer chooses to

update an app j in category g and month t, then s/he incurs a sunk cost of C jgt , and learns idiosyncratic

marginal update cost shocks ω jgt to determine a positive update frequency in the second stage. Otherwise,

the developer pays nothing and has to remain the app’s update at zero in the second stage.

The first-stage objective function is expected second-stage profits net of total sunk costs. Denote the

equilibrium second-stage update frequency as a+gt(Dgt ,ωgt), which is a vector function of first-stage update

decisions, Dgt := (D1gt , · · · ,DJgt), and second-stage marginal update cost shocks, ωgt := (ω1gt , · · · ,ωJgt),

that at least satisfies Equation (13). Partition the market-level vector of update decisionsDgt into developer

f ’s update decisions, D f
gt := (D f

1gt , · · · ,D
f
J f gt

), and other developers’ update decisions D− f
gt , where J f gt

denotes the number of apps owned by developer f in market gt. Then the objective function of developer f

52In fact, in the data, there are only 10 out of 56,570 observations violating this assumption, whose update are then treated as
exogenous.

24

in the first stage is given by,

π
III
f gt(D

f
gt ;D

− f
gt) := Eωgt [π

II
f gt(a

+
gt(D

f
gt ;D

− f
gt ,ωgt),ωgt)|D f

gt ;D
− f
gt]− ∑

j∈J f gt

C jgtD jgt (14)

In a Nash Equilibrium, each developer chooses which apps to update that maximizes the objective

function defined in Equation (14), given the update decisions of other developers. Following Fan and Yang

(2020a), this implies no profitable deviation from observed update decisions and enables researchers to back

out bounds on sunk costs. Specifically, when an app j is not updated in category g and month t, it must be

that the additional expected second-stage variable profit of its developer f (j) from updating it cannot cover

its fixed cost: ∀D jgt = 0,

C jgt := Eωgt [π
II
f (j)gt(a

+
gt (1,D− jgt ,ωgt),ωgt)|1,D− jgt]−Eωgt [π

II
f (j)gt(a

+
gt (0,D− jgt ,ωgt),ωgt)|0,D− jgt] ≤C jgt

(15)

On the other hand, when an app j is updated in category g and month t, it must be that the additional

expected second-stage variable profit of its developer f (j) from updating it can fully cover its fixed cost:

∀D jgt = 1,

C̄ jgt := Eωgt [π
II
f (j)gt(a

+
gt (1,D− jgt ,ωgt),ωgt)|1,D− jgt]−Eωgt [π

II
f (j)gt(a

+
gt (0,D− jgt ,ωgt),ωgt)|0,D− jgt] ≥C jgt

(16)

Therefore, Equation (15) obtains the lower bounds (C jgt) on the fixed costs for apps that are not updated,

and Equation (16) obtains the upper bounds (C̄ jgt) on the fixed costs for apps that are updated. I explain how

equilibrium update decisions are computationally found in Section 6.1.

5 Estimation

5.1 Estimation Procedure

Demand. The estimation of demand is similar to that in Berry, Levinsohn and Pakes (1995). I construct

moments using Equation (7) and estimate the parameters using GMM. However, there are richer endogeneity

concerns in this paper. Specifically, update (a jgt) is endogenous because developers know the unobserved

demand shocks (η jgt) when updating apps. Moreover, price, search ranking, and average ratings may also

be correlated with the unobserved demand shocks. For example, advertising is unobserved and might be

correlated with the above app characteristics and directly affects demand.

For the endogeneity concerning app characteristics, following the literature, I firstly construct basic

instruments using the characteristics of other apps owned by the same developer in the other categories in the

same month. These basic instruments follow the idea of the Hausman-type(Hausman and Bresnahan, 2008)

instrument: common unobserved cost shifters among products owned by the same firm. Then, in the case of

single-category developers, I construct instruments based on the basic instruments. In particular, I calculate

the average basic instrument values of the apps of the competing developers in the same market. These

instruments are similar to BLP instruments – they are characteristics of the apps of competing developers.

25

However, they are more indirect than BLP instruments because these characteristics are based on other apps

in other markets.53 The idea is that when a developer chooses app characteristics, s/he considers the cost

features of her/his competitors, which are partially captured by their behaviors in other markets.54

As for the endogeneity in search rankings, I construct instruments based on the title match of the app

with popular keywords in the market. The above estimation strategy relies on three assumptions: i) markets

are independent; ii) the unobserved demand shocks are realized after app entry (but before update choices);

iii) titles do not directly affect app values. The first two assumptions are commonly used in the literature.

As for the third assumption, I control for systematic time effects using month-fixed effects. Therefore it

seems reasonable that any app/category/month-specific shocks are uncorrelated with app titles. In addition

to the above instruments, I include interaction terms between the post-July-2019 indicator and i)Apple-

ownership indicator and ii)Apple-competitor indicator in the instruments.55 These instruments are based on

the exogenous search algorithm change in July 2019 that particularly affects categories with Apple’s apps.

The first-stage regression results for the above instruments are shown in Appendix B.4.

Search Ranking. The estimation of the search ranking model is based on MLE, where the log-likelihood

function is given in Equation (9). Note that the estimation sample includes pre-installed apps, while in

demand estimation, pre-installed apps are lumped into out-side option. Therefore, the number of observa-

tions for estimating the search ranking model exceeds that of demand model. Because the score equation

(8) is quite flexible with category-specific and month-specific coefficients, I argue that there is no obvious

endogeneity concern.

Update Costs. The estimation of supply has two steps. First, a reduced-form in-app-purchase and sub-

scription revenue function is estimated based on Equation (10) in OLS, where invalid observations are

dropped from the sample.56 Then, I construct moments using Equation (13) and estimate the parameters

using GMM. Notice that only positive update levels are included in the sample for estimating Equation

(13). Similar to the demand model, there are endogeneity concerns. Specifically, update levels may be

endogenous because developers know unobserved (to researchers) marginal update cost shocks(ω jgt) when

choosing the positive update levels. For example, an app might receive particularly positive and constructive

comments in a certain month, and the developer is inspired to think of a straightforward way to improve user

experiences. These unobserved comments increase the marginal benefits from the update and decrease the

marginal cost of update, leading to higher update levels. Such omitted variables will bias the coefficient on

update in Equation (13) upwards.

I construct instruments based on category-fixed effects and pre-determined characteristics, including

price, file size, and title match with popular keywords. This estimation strategy is based on the timing

53Because update levels are endogenous, I cannot use classical BLP-type(Berry, Levinsohn and Pakes, 1995) instruments (e.g.,
average update levels of apps of competing developers).

54An average multiple-category developer develops 2.3 apps in 2.5 categories. The larger average number of apps versus cate-
gories reflects that some apps operate in multiple categories simultaneously. In such cases, the characteristics of the same app in
the other categories will not be used to construct instruments.

55Because category-fixed effects are included in the excluded instruments, the Apple-competitor indicator is absorbed.
56Specifically, I drop observations that i) have negative in-app-purchase and in-app-subscription revenues; or ii) do not pro-

vide in-app-purchase or in-app-subscription services. Negative in-app-purchase-and-subscription revenues may reflect flaws in the
estimated revenues from AppTweak.

26

assumptions that i) update portfolios are determined after unobserved demand shifters(ξ) and the above

pre-determined characteristics, and ii) marginal update cost shocks are realized after update portfolios. The

first-stage regression results for these supply-side instruments are reported in Appendix B.4. During the

estimation, I apply constraints to guarantee profit maximization conditional on the positive update levels of

competing apps, which are listed in Appendix B.5.

As for fixed costs, I use the inequalities (15) and (16) to obtain bounds. Following Fan and Yang (2020a),

I calculate the bounds by calculating changes in expected second-stage variable profits from adding an un-

updated app into update portfolios or dropping an updated app from update portfolios. The expectation

is over marginal update cost shocks ωm and possible search rankings. To compute the expected variable

profits, I draw the cost shocks from their empirical distribution. Then, I compute the update equilibrium in

the second-stage game for each cost-shock draw, which returns the second-stage (expected) variable profits.

Then, I take the average of these second-stage variable profits across all cost-shock draws.

There is a computational burden when evaluating the equilibrium second-stage variable profits, mainly

due to the high dimension of possible search rankings.57 To alleviate the computational burden, I restrict the

sample for computing the fixed-cost bounds with two steps. First, I focus on relevant markets. Specifically, I

only consider apps in categories with Apple’s apps during the difference-in-differences sample period (Jun.-

Nov.,2019).58 It reduces the number of markets from 874 to 96. Second, following the literature, I focus on

the top5 developers in each category and only allow these top5 developers to change their updates.59 With

these restrictions, there are 556 fixed-cost upper bounds and 176 fixed-cost lower bounds to be estimated.

5.2 Estimates of Demand

Table 4 reports the estimates for parameters of the demand model. The demand estimation results show that

an average consumer prefers apps with higher update levels, Apple ownership, higher average ratings, more

experiences, larger file size, fewer screenshots, in-app-purchase availability, and lower installation price. For

example, an average consumer is willing to pay $5.2 more for downloading an app developed by Apple than

one developed by an independent developer. It might justify the observed high search rankings for Apple’s

apps and is taken into account by the search ranking model. In addition, the estimated standard deviation

for consumers’ taste for update levels is about 4.6 times the average taste, suggesting consumers are quite

heterogeneous in their tastes for update levels. Lastly, the results show that consumers are more likely to

incur higher search costs when searching for an app with lower (larger) search rankings in the top50 search

results or an app absent from the top50 search positions.

Table 5 shows the price semielasticities (Panel A) and search ranking semielasticities (Panel B) for

57For example, an average market with 65 products has 141 different orderings of products in the truncated set of possible search
rankings. So then, there are 9165 (= 65×141) market shares to be computed. And such computation is embedded in the evaluation
of each new vector of update levels when firms choose their best-response update levels. It is as if computing price equilibrium for
a market with 9165 products. For more details on finding the equilibrium positive update levels, please see Appendix B.6.

58The purpose of computing the bounds is to simulate counterfactual update equilibrium when shutting down the self-
preferencing. Therefore, only the categories with Apple’s apps will have different counterfactual equilibrium than status-quo
equilibrium.

59The category-specific top5 developers are found based on total downloads of owner apps during the post-change difference-in-
differences sample period.

27

Table 4: Estimation Results for Demand

Variables Parameter Standard error

Quality Coefficients
log(1+Update Frequency) 0.155 0.074
Apple 1.115 0.447
Average Rating 0.527 0.172
log(Age) (month) 0.330 0.143
log(File Size) (MB) 0.422 0.054
#Screenshots −0.039 0.015
log(1 + Description Length) 0.033 0.121
Offer In-App-Purchase 0.230 0.134
Game −0.037 0.146
Constant −13.840 1.019
One-month Lagged Unobserved Mean Relative Utility 0.921 0.004
Outside Value: Exists Pre-installed Apps −0.255 0.134

Price −0.216 0.046
Paid −1.754 0.239
Random Coefficients

Update Level 0.711 0.105
Search Cost Parameter

Ever Top50 in Search Results −5.125 2.601
log(Search Ranking)|Ever Top50 1.374 0.737

Month-FE YES
Observations 52,959

Notes: Update level is log(1+ update frequency). Description length is in the unit of 1,000 characters.

Table 5: Demand Semielasticities with respect to Price and Search Ranking

Netflix TikTok Hulu Amazon Prime Video

Panel A. Price Semielasticities
Netflix −0.205 0.008 0.004 0.003
TikTok 0.010 −0.209 0.004 0.003
Hulu 0.010 0.007 −0.212 0.003
Amazon Prime Video 0.009 0.006 0.003 −0.214

Panel B. Ranking Semielasticities
Netflix −0.174 0.007 0.004 0.002
TikTok 0.008 −0.175 0.003 0.002
Hulu 0.008 0.006 −0.173 0.002
Amazon Prime Video 0.007 0.005 0.003 −0.174

Notes. The top panel reports percentage change in market share of the column-product
with a $1 increase in the row-product’s installation price. The bottom panel reports per-
centage in market share of the column-product with a ten-position decline of the column-
product’s search ranking.

28

the top four apps in the entertainment category in July 2019. These apps are Netflix, TikTok, Hulu, and

Amazon Prime Video. Panel A shows that a $1 increase in the installation price of an app leads to about

0.2% decrease in its demand.60 Panel B shows that a ten-position decline in the search ranking of an app

leads to about 0.17% decrease in its demand. Unsurprisingly, the own price (ranking) semielasticities are

larger than the cross semielasticities in magnitude. Dividing the own ranking semielasticities by the own

price semielasticities gives an intuitive measurement for position effect: a ten-position decline in search

ranking is equivalent to increasing price by $0.85. This position effect is relatively small compared to those

found in the other industries. 61 It suggests that some consumers are likely to know their match values with

apps before searching (which is allowed by the assumed distribution of search costs), and thus the average

search costs are small across consumers. For example, it may happen when some apps advertise a lot out

of the App Store. Furthermore, Figure F.9 illustrates an inverse U-shape curve for estimated position effects

across search rankings. It indicates i) inelastic demand for apps with high search rankings and ii) high search

costs for apps with low search rankings.

Table 6: Demand Elasticities with respect to Update Level

Netflix TikTok Hulu Amazon Prime Video

Netflix 1.395 −0.073 −0.038 −0.024
TikTok −0.073 0.994 −0.026 −0.016
Hulu −0.068 −0.048 0.954 −0.015
Amazon Prime Video −0.043 −0.030 −0.016 0.601

Notes. The table reports percentage change in market share of the column-product
with a 1 percent increase in the row-product’s update level. Update level is log(1 +
update frequency).

Table 6 shows the elasticities of update level for the same top four apps in the same market. Across the

four apps, a 1 percent increase in the update level is associated with a 0.6 percent to 1.4 percent increase in

market shares. Similarly, the own update level elasticities are larger than the cross elasticities.

5.3 Estimates of self-preferencing

Table 7 reports the estimates for parameters of the search ranking model. The results are intuitive: higher-

ranked apps are associated with higher quality, lower installation price, more text relevance with popular key-

words, and more one-month lagged 5-star ratings. Furthermore, it shows that self-preferencing exists in the

search algorithm of the Apple App Store. Specifically, in June and July 2019, the ranking score of Apple’s

apps are significantly higher than independent apps by 1.5 and 1.3. To mitigate such a disadvantage in the

search algorithm, an average independent app needs to decrease installation price by $73.9(≈ 1.551/0.021)

60I do not compute price elasticity because these four apps are free. The price semielasticities for the top four paid apps in the
same market are similar.

61For example, in the online hotel industry, Ursu (2018) finds the effect of 1 position decline between $0.55 and $3.19, Chen and
Yao (2017) find it to be $0.21, Koulayev (2014) finds it ranging from $2.93 to $18.78.

29

in June 2019 or $60.0(≈ 1.261/0.021) in July 2019.62

Table 7: Estimation Results for Search Ranking

Variables Parameter Standard error

Apple×1{June 2019} 1.551 0.366
Apple×1{July 2019} 1.261 0.235
Quality 0.167 0.019
Squared Quality 0.002 0.001
Paid −0.512 0.077
Price −0.021 0.005
Title Match with Popular Keywords 12.780 1.036
Subtitle Match with Popular Keywords 2.785 1.007
One-month Lagged 5-star Ratings 5.365 0.575
Pre-Install −0.196 0.635
Full Controls YES
Observations 53,245

Notes: The other interaction terms between Apple and Month indicators are in-
cluded in the model but not shown here. Appendix B.2 lists variables included in
the full controls.

Figure 3 presents the coefficients on the Apple-ownership indicator in each month. It illustrates that

the self-preferencing evolves through four periods: i) before April 2019, it was weak if any; ii) from April

2019 to June 2019, it starts to increase and reaches the peak; iii) from July 2019 to August 2019, it starts to

decrease; iv) after August 2019, it basically disappears.

To understand the four periods of the self-preferencing, I start with the latest two periods: from July

2019 to February 2020. The results are consistent with the search algorithm change studied in Section 3. In

fact, when normalizing the self-preferencing parameter (θ1,τ) in July 2019 as zero, Figure F.7 shows that the

self-preferencing parameters in and after August 2019 are significantly lower than those in June and July

2019. Therefore, the search algorithm change in July 2019 provides good cross-validation for the structural

estimates.

The first two periods seem to be inconsistent with the presented average search rankings of Apple’s apps

in Figure 1. Specifically, it suggests that Apple’s apps deserve the observed high search rankings during the

first period, and as independent apps become stronger competitors for Apple’s apps, the self-preferencing

kicks in during the second period. This interpretation can be shown by comparing the observed rankings

to rankings of residual downloads. In particular, suppose the self-preferencing was stronger in the first

period compared to the second period, as suggested by Figure 1. In that case, the gap between the observed

rankings and rankings of residual downloads should be larger in the first period compared to the second

62Figure F.10 presents the histogram of static developer-fixed effects across all developers. To estimate the developer-fixed
effects, I replace the interaction terms between the Apple-ownership indicator and month indicators in Equation (8) with developer-
fixed effects, where the single-product developers are normalized as the reference group. Figure F.10 shows that, even when
allowing all developers to have their own advantage or disadvantage in the search ranking algorithm, Apple ownership still generates
larger advantages than most developers.

30

Figure 3: Apple self-preferencing Parameters across Months

Notes. The figure presents point estimates of the effects of Apple ownership on ranking score in each month during the sample
period.Error bars indicate 90% confidence interval using standard errors clustered at the category-month level.

period. However, Figure F.8 shows the opposite. It supports the above interpretation and explains the

seemingly inconsistent trends. This discussion suggests the importance of identifying self-preferencing

rigorously and the incompleteness of information from only observed rankings.

Figure 4 shows the fitness of the search ranking model. It plots the model-fitted most likely within-

market relative rankings against the observed within-market relative rankings.63 It shows that the model fits

the data relatively well. For example, for most of the relative rankings, the average fitted relative rankings

are close to the observed ones; and the interval between the first and the third quartiles of the fitted relative

rankings covers the observed ones. In addition, Figure F.11 particularly shows the fitness for Apple’s apps.

App developers’ beliefs on possible search rankings are constructed based on the estimated search ranking

model.

5.4 Estimates of Revenues and Update Costs

Table 8 reports the estimates for parameters of the supply model. First, the estimation results for in-app-

purchase and in-app-subscription revenues show intuitive results: i) revenues increase with downloads con-

cavely, and ii) update levels directly contribute to revenues, especially for game apps. The estimates imply

that an average app receives $4.3 from in-app-purchase and in-app-subscription with each new download

(consumer).

63For example, the search ranking of an app might be 33.5 in a market where there are nine apps whose search rankings are
strictly higher (smaller) than 33.5. Then, the within-market relative ranking of this app is 10. Ties are considered in the search
ranking model.

31

Figure 4: Rank-ordered Logistic Regression Model Fitness

Notes. The figure presents predicted most-likely within-market ranking (y-axis) against observed within-market ranking (x-axis)
across markets. Bars indicate the 25 percentile and 75 percentile of fitted within-market rankings across apps that have ranked at
the given observed within-market ranking.

Figure 5: Bounds of Fixed Costs of Updates (million $) v.s. Quality

Panel A. Upper Bound Panel B. Lower Bound

32

Table 8: Supply Model Estimates

Variables Parameter Standard error

In-App-Purchase and In-App-Subscription Revenue Parameters
Downloads (million) 5.619 0.641
Downloads × Game −2.765 0.701
Squared Downloads −0.401 0.196
Squared Downloads × Game 0.163 0.231
log(1+Update Frequency) 0.078 0.030
log(1+Update Frequency) × Game 0.400 0.040
Constant 0.052 0.188
Category-FE YES
Month-FE YES
Month-FE × Game YES

Average Marginal Revenue ($) 4.298
Observations 37,382

In-App-Advertising Profit Parameters
Downloads 0.068 0.429
Squared downloads −0.003 0.085

Marginal Update Costs Parameters
Update Frequency 1.631 0.052
Age −0.002 0.000
Constant −3.731 0.146
Month-FE YES

Average Marginal In-App-Advertising Profit ($) 0.067
Average Marginal Cost (million$) 0.323
Observations 25,325

Notes: Update level is log(1+ update frequency). Marginal revenue and marginal profit are with respect
to downloads. Marginal update cost is with respect to update levels.

33

Second, the estimation results for the update-level first-order conditions show that i) in-app-advertising

profits insignificantly increase with downloads; and ii) marginal update costs are larger for apps with higher

update levels and/or fewer experiences. The results imply that an average app earns $0.07 from in-app

advertising with each new download. The resulting average marginal update cost is $0.32 million. To give

some contexts for the magnitudes, I do the following back-of-envelope calculation. One weighted update is

equivalent to log(2) update levels, and the average salary for a computer engineer is about $97,000 per year

in California. Then, the average marginal update cost is equivalent to hiring 28 (≈ 12× log(2)×0.32/0.097)

computer engineers in a month.

As for fixed costs of updates, I obtain upper bounds for each updated app and lower bounds for each app

that is not updated in each market. Figure 5 plots the estimated upper bounds (Panel A) and lower bounds

(Panel B) on the vertical axes against app quality on the horizontal axis. The average upper bound in Panel

A is $1.34 million, and the average lower bound in Panel B is $1.23 million.

In addition, as cross-validation of the model fitness, Appendix C.1 compares structural and reduced-form

estimates of the average treatment effect of the search algorithm change in July 2019. It shows that both

methods generate the same direction and similar magnitudes of changes in updates and search rankings. The

structural estimate of the average treatment effect has the same sign as the DiD estimate but with smaller

magnitudes, which is explained in the appendix.

6 Counterfactual Simulations

This section uses the estimates from the demand, search ranking, and supply models to examine counterfac-

tual simulations. Specifically, I focus on changes in market equilibrium when shutting down the identified

self-preferencing. The changes are used to quantify the effects of self-preferencing. In particular, I first ex-

amine the effects on independent apps’ qualities, then examine the equilibrium welfare effects on consumers

and independent developers.

The counterfactual simulations cover eight markets with identified self-preferencing. The markets are

the entertainment category, health & fitness category, music category, and utilities category in June and July

in 2019. The two months are estimated to have the strongest self-preferencing, i.e., the largest significant

coefficients on the Apple-ownership indicator, during the sample period. When shutting down the self-

preferencing, the coefficients on the Apple-ownership indicator are set to be zero in the search ranking

model.

6.1 Effects of self-preferencing on Update Frequency and App Quality

App quality is positively affected by update frequency on average, as estimated in the demand model.

Changes in update frequencies then lead to changes in app qualities. I take two main steps to find coun-

terfactual update frequencies and app qualities. First, I take simulation draws of fixed costs of update from

a range that is consistent with the identified bounds. Second, for each simulation draw of fixed costs, an

equilibrium set of update portfolios across developers is computed based on best-response iterations. Given

34

each equilibrium of update portfolios, I compute the second-stage equilibrium positive update frequency

with estimated variable update cost shocks (ω̂) whenever possible. 64

In the first step, the sunk-cost draws are drawn in a way following Fan and Yang (2020a). Specifically,

for each updated app in the data, I have obtained an upper bound for the fixed cost of updating it, C jm. For

such an app, I uniformly draw five sunk-cost draws from the range [0.5C jm,C jm]. On the other hand, for

each app that is not updated in the data, I have obtained a lower bound for the fixed cost of updating it, C jm.

For such an app, I uniformly draw five sunk-cost draws from the range [C jm,5C jm].

In the second step, there are two layers of best-response iterations. The top layer is the best-response

iterations of update portfolios, which could be challenging with multiple-product firms. For example, one

affected developer has up to 12 apps, which creates a choice among 212(= 4096) update portfolios. To

alleviate the computational burden, I apply the heuristic algorithm for finding the best-response product

portfolio from Fan and Yang (2020a) to find the best-response update portfolio. The bottom layer is the

best-response iterations of positive update levels for apps chosen to be updated. 65

As explained in Section 5.1, only the fixed costs of apps owned by the category-specific top5 independent

developers are computed. Therefore, in the counterfactual simulations, only these top5 developers are active

players in the update competition game, and the updates of the other apps are holding fixed. As a result,

in an average market for the counterfactual simulations, there are ten apps whose updates are subject to

changes, while there are 90.4 independent apps in total. On average, the active apps account for 45.1% of

total downloads in a market. In Appendix C.5, I allow all independent developers to choose update levels

but holding update portfolios fixed. The results are robust.

Additionally, I fix the search costs of outside options throughout the counterfactual simulations. In the

model, outside option lumps i) not using any app, ii) using previously downloaded apps, and iii) using pre-

installed apps. In the first two cases, there is no search costs. In the last case, search costs for pre-installed

apps change with their search rankings. However, the search algorithm change in July 2019 is mainly driven

by changes of non-preinstalled Apple’s apps’ search rankings, which implies the rigidity of pre-installed

apps’ search rankings.66 Therefore, I fix the search rankings of pre-installed apps when eliminating the

identified self-preferencing. Given that the empirical model for estimation does not fix the search rankings

of pre-installed apps, for consistency, the reported status-quo market outcomes with self-preferencing are

the results from fixing pre-installed apps’ search rankings. It turns out that the changes of equilibrium due

to fixing pre-installed apps’ search rankings are small. For details on the process and effect of fixing the

pre-installed apps’ search rankings, please see Appendix C.2.

64Therefore, as a rigorous interpretation, the simulated outcomes are the expected outcomes of the simulated second-stage update
competition game, given the simulated first-stage equilibrium update portfolios and the identified variable cost shocks(ω̂). The
expectation is over draws of variable cost shocks for apps that are not updated in the data but simulated to be updated in the
counterfactual. These variable cost shocks are drawn from the empirical distribution of ω̂. This step ensures that the difference
between the simulated update levels and observed update levels is not due to different variable cost shocks. Finally, these update
levels are transformed into update frequencies using the definition equation that update level equals log(1+update frequency) and
fed into the definition Equation (??) to calculate app qualities.

65In the bottom-layer best-response iteration, the variable update cost shocks(ω) are the same as those in the computation of
bounds on fixed costs.

66Figure F.3 shows the average search ranking of non-preinstalled Apple’s apps around July 2019, which sees a more significant
change after July 2019 than the average search ranking of all Apple’s apps in Figure 1.

35

Table 9: Effects of Self-preferencing on Update Levels

Status-quo Shut-down Percentage Change(%)
mean mean mean min max std

Market-Level Results
Number of Updated Apps 6.98 7.03 0.71 0 2.86 1.26
Average Update Frequency 1.170 1.174 0.44 −0.02 1.25 0.51
Average App Quality −6.0833 −6.0829 0.01 −0.001 0.02 0.01

Product-Level Results
Probability of Updatea 0.706 0.711 0.01 −0.2 0.2 0.05
Expected Update Frequencyb 1.14 1.15 0.28 −19.97 25.14 4.35
Expected App Quality −6.270 −6.269 0.01 −0.28 0.30 0.06

Notes: Update frequencies are monthly number of updates weighted by length of release notes.
Variables are computed for apps owned by the category-specific top5 independent app develop-
ers. For the status-quo case, there is identified self-preferencing. For the shut-down case, there is
no self-preferencing. aFor probability of update, the reported values in the last four columns are
summary statistics on changes instead of percentage changes. bFor expected update frequency, the
summary statistics on percentage change are conditional on upgrading in status-quo. The expecta-
tion is over draws of sunk costs.

Table 9 shows the counterfactual simulation results for update frequencies and app qualities of inde-

pendent apps with and without the identified self-preferencing. Overall, I find small average effects of

eliminating self-preferencing. The top panel shows that, in an average market, eliminating self-preferencing

leads to a 0.7 percent increase in the number of updated independent apps and a 0.4 percent increase in aver-

age update frequencies. These changes in updates result in a 0.01 percent increase in average app qualities.

The bottom panel shows that, for an average independent app, after eliminating self-preferencing, the proba-

bility of update increases by 0.01, and the expected app quality increases by 0.01%. Conditional on updating

before eliminating self-preferencing, an average independent app increases expected update frequency by

0.3% after the elimination. 67

However, large but heterogeneous effects might be hidden behind the small average effects when updates

may increase or decrease after eliminating the self-preferencing. Recall that theory predicts ambiguous

effects of self-preferencing on product quality, which implies the possibility of heterogeneous effect of

self-preferencing on updates across products. Therefore, I examine the heterogeneous effects in the last

three columns of Table 9. Specifically, compared to the small average effects, the most astonishing result

shows up in changes of expected update frequencies, where I find that an independent app’s expected update

frequency might decrease by 20% and might as well increase by 25%.68 These effects are large relative

67Notice that these counterfactual simulations fix pre-installed apps’ search rankings, which limits the magnitude of effects.
Therefore, the reported effects here are smaller than those estimated from the difference-in-differences analysis(Table3), even
though the self-preferencing is completely shut down (which is not achieved by the search algorithm).

68Moreover, 38 percent of the estimated effects on expected update frequency are positive, and 19 percent of the estimated
effects are negative, which constitutes 57 percent of observations that see changes of expected update frequency and quality in the
counterfactual simulations. Furthermore, conditional on updating before the elimination, the average positive effect is a 1.3 percent
increase of expected update frequency, the average negative effect is a 1.4 percent decrease of expected update frequency. Both of

36

to the average effects. Moreover, the standard deviation of the effects on the expected update frequencies

is 15.5 times its mean, again indicating sizable heterogeneity in the effects on updates. Similarly, I find

both negative and positive effects on the probability of update and expected app quality. Not only does the

heterogeneity exists at the product level, but I also find both negative and positive effects on average update

frequencies and average app qualities at the market level, except that no market has a decrease in the number

of updated apps.69 Overall, there is sizable heterogeneity in the direction and magnitude of the effects of

self-preferencing on update frequency and app quality.70

6.2 Effects of self-preferencing on Welfare

Given the counterfactual update frequencies and app qualities, I calculate counterfactual search rankings,

installations, consumer surplus, and developer profits. The welfare of a consumer is defined as the utility

of the app chosen by the consumer net of the total search costs incurred by the consumer to find the app in

dollars.71 Specifically, expected consumer surplus in category g and month t is given by72,

CSgt := Mgt ·E(ε,c,σ,y)

[
−(ui j(i)gt − ∑

l∈Si

cilgt)/α

]
(17)

where Mgt is the market size of market gt, j(i) is the chosen app by consumer i, Si is the set of apps that

are searched by consumer i, and α is the identified price(income) coefficient in the demand model. The

expectation is over i) the vector of consumer-app-specific unobserved match-values (ε), ii) the vector of

consumer-app-specific search costs (c), iii) consumer-specific random coefficients over updates (σ), and

iv) the vector of app-specific search rankings (y). Changing self-preferencing potentially changes both

the chosen app (j(i)) and the set of searched apps (Ji). For more details on the computation, please see

Appendix C.3.

To measure effects on independent developers, I calculate changes in variable profits and profits. Specif-

ically, variable profit is measured as the total revenues from installation, in-app purchase and in-app sub-

scription, plus in-app-advertising profits and minus variable update costs. Profit is variable profit minus

fixed update costs.

Table 10 shows the effects of eliminating self-preferencing on search rankings, installations, and welfare.

The first row confirms that eliminating self-preferencings does not change average search rankings; it only

re-allocates the positions among apps in the same market.73 The second and third rows show that, in an

the average positive effect and the average negative effect are larger than the average effect.
69All markets see changes in average update frequencies and average app qualities. 62.5 percent of the markets see positive

changes, while 37.5 percent of the markets see negative changes. Additionally, one-quarter of the markets see changes in the
number of updated apps, and 5 percent of observations see changes in expected update-or-not choice.

70Appendix C.4 explains why some independent apps increase update frequency after eliminating the identified self-preferencing
while others decrease update frequency.

71Kim, Albuquerque and Bronnenberg (2010) and Ursu (2018) define consumer welfare in the same way.
72All expressions for expected consumer surplus are up to a constant. See Small and Rosen (1981).
73Therefore, eliminating self-preferencing is a differential change in search costs across products instead of a universal reduction

in search costs. In particular, eliminating the identified self-preferencing decreases the search costs for some independent apps
while increasing the search costs for Apple’s apps. It makes the research question different from most papers in the literature on
information frictions and product competition.

37

average market, eliminating the self-preferencing lowers down Apple’s apps by 17.5 positions and boosts

up independent apps by 0.6 positions in search. It corresponds to a 142 percent decline of search rankings

for Apple’s apps and a 1.6 percent rise of search rankings for independent apps.74

Table 10: Effects of Self-preferencing on Search Rankings, Installations and Welfare

Variable Status-quo Shut-down Mean ∆ Mean %∆

(1) Average Search Rankings 38.92 38.92 0 0
(2) - Independent appsxxxxxx 39.86 39.23 −0.63 −1.56
(3) - Apple’s appsxxxxxx 14.35 31.85 17.51 142.08
(4) Total Installations (million) 15.16 15.40 0.24 1.56
(5) - Independent appsxxxxx 15.06 15.32 0.26 1.75
(6) - Apple’s appsxxxxx 0.10 0.08 −0.03 −26.58
(7) Consumer Surplus (million $) 321.40 321.95 0.548 0.172
(8) Variable Profits (million $) 76.60 77.04 0.448 0.678
(9) Profits (million $) 69.27 69.66 0.396 0.680
(10) Total Search Costs (million $) 15.39 15.35 −0.04 −1.53
(11) Total Realized Utility (million $) 336.79 337.31 0.51 0.15

Notes: For the status-quo case, there is identified self-preferencing. For the shut-down case, there is
no self-preferencing. Variable profits and profits are calculated based on independent developers.

From the fourth row to the ninth row, Table 10 shows the effects of eliminating self-preferencing on

installations and welfare. Specifically, after the elimination, in an average market, the total installations

of independent apps increase by 1.8%, while the total installations of Apple’s apps decrease by 26.6%.

Because Apple’s apps only account for a small portion of the products in the markets, the total installation

in an average market increase by 1.6%. These changes lead to a $0.55 million increase in consumer surplus

and a $0.40 million increase in profits of independent developers in an average market.75 In each month,

four categories are identified to be affected by self-preferencing. Thus, multiplying the per-market effects

by four, it gives a per-month consumer surplus gain of $2.2 million and a per-month profit gain of $1.6

million for independent developers. To give some context of the magnitudes of the welfare effects, the

per-month total installation payments across the affected categories are $1.32 million, and the per-month

total consumer payments (installation payments plus in-app purchase and subscription payments) are $160.5

million. Therefore, the total surplus gain in a month from the elimination is equivalent to saving three-month

consumers’ installation payments or 2 percent of per-month total consumer payments.

Consumers may be better off due to reduced search costs or increased match values. To understand

which channel dominates the gains in consumer surplus, the last two rows of Table 10 decompose the

consumer welfare. It shows that most of the gains come from more efficient consumer-app matches, which

generates 92.7% (≈51/55) gains in consumer surplus. On the other hand, the reduced search costs only

74The smaller changes in the search rankings of independent apps relative to Apple’s apps are due to the large number of
independent apps compared to the number of Apple’s apps in the markets.

75Profits of Apple’s apps decrease by $0.001 million in an average market.

38

account for 7.3% (≈4/55) gains in consumer surplus.76

To understand the contribution of the increased quality to the welfare gain, I simulate the case of shutting

down self-preferencing but holding update levels fixed. The results of this non-game simulation are shown

in the third column of Table 11. The first column of Table 11 copies the corresponding values in Table

10. Comparing the two columns shows that update adjustment accounts for small welfare gains. Specifi-

cally, consumer surplus increases by $0.53 million after eliminating the self-preferencing with fixed updates.

Therefore, update adjustment accounts for 3.6% (≈0.02/0.55) gains of equilibrium consumer surplus with

update adjustment. On the supply side, with fixed updates, variable profits of independent developers in-

crease by $0.41 million after the elimination. This is $0.14 million more increase than that in the first

column due to increased update costs with update adjustment. Therefore, update adjustment accounts for

3.5% (≈0.14/0.396) gains of equilibrium variable profits for independent developers with update adjust-

ment. Overall, increased quality weakly contributes to the welfare gain from eliminating the identified

self-preferencing.

Table 11: Welfare Effects with and without Update Adjustment

With Update Portfolio and With Conditional Update Without Update
Level Adjustment Level Adjustment Adjustment

Mean ∆CS (million $) 0.548 0.551 0.531
Mean %∆CS (%) 0.172 0.173 0.167
Mean ∆Variable Profits (million $) 0.448 0.408 0.410
Mean %∆Variable Profits (%) 0.678 0.618 0.621

Notes: Update portfolio and level adjustment holds updates of non-top5 independent developers’ apps fixed. Con-
ditional update level adjustments allow all independent developers to adjust update levels of apps that are updated in
status-quo. Variable profits are calculated based on independent developers.

The second column of Table 11 reports the welfare effects of eliminating the identified self-preferencing

in a partial-game simulation. Specifically, in the partial-game simulation, I allow all independent app devel-

opers to adjust their positive update frequency but holding update portfolios fixed. Similar to the previous

results, comparing the second column to the third column shows that allowing partial update adjustments

increases the gains in consumer surplus. Moreover, comparing the second column to the first column shows

that allowing more independent apps to adjust update frequency modestly further increase the gain in con-

sumer surplus, and decrease the gains in variable profits for independent developers. I interpret such a

difference as the effect of competition between developers because there are more active developers in the

partial-game simulation than the baseline simulation in the first column. In particular, the more intensive

competition between developers increases consumer surplus gain and shrinks gains in variable profits.77

76Allen, Clark and Houde (2019) finds that 50 percent of consumer surplus gain from reduced search frictions in mortgage
markets is associated with reduced search costs, while 22 percent gain is associated with inefficient matching.

77Notice that, without update portfolio adjustment, the change in variable profits is equal to change in profits. Therefore, average
gain in profits with update portfolio adjustment ($0.396 million in Table 10) is lower than the average gain in profits without update
portfolio adjustments reported in column (2) of Table 11. One reason is the increased fixed update costs with more apps to be
updated.

39

Figure 6: Welfare Effects and Ranking Imperfection due to Apple’s Self-preferencing

All together, the results from this section show that platform’s self-preferencing decreases both consumer

surplus and independent developer profits, which is exacerbated when accounting for quality adjustments.

This conclusion is further confirmed by the heterogeneity of the welfare gains across markets. In particular,

Figure 6 compares the welfare gains across markets with different extents of ranking imperfection induced

by the identified self-preferencing.78 As a correlation relationship, Figure 6 shows that the larger the ranking

imperfection due to self-preferencing, the more the gains in consumer surplus and independent developer

profits, again suggesting that platform’s self-preferencing leads to welfare losses.

7 Conclusion

This paper identifies self-preferencing and quantifies its equilibrium welfare effects in the Apple App Store.

I contribute to the literature by developing an empirical model of consumer search and update competition in

the mobile application industry that is identifiable with rich aggregate data. To motivate the model, I exploit

an unanticipated search algorithm change on the Apple App Store that drops some of Apple’s apps from top

search results. The existence and degree of self-preferencing are identified by comparing search rankings of

78Appendix C.6 explains how the ranking imperfections are calculated.

40

Apple’s apps and independent apps, conditional on app quality, app price, ratings, and text relevance. I then

use the estimates to examine the equilibrium effects of self-preferencing on update frequency, app quality,

and welfare.

The results show that self-preferencing was present on the Apple App Store in the U.S. market from

April to August 2019. It implies that the observed high search rankings of Apple’s apps during the self-

preferencing period were not purely due to the qualities of the apps; instead, Apple ownership gave them an

advantage over independent apps in the search results.

I also find that eliminating the identified self-preferencing increases consumer surplus by $2.2 million

and independent developer profits by $1.6 million per month. The resulting total surplus gain is equivalent

to saving three-month consumers’ installation payments or 2 percent of per-month total consumer payments,

including payments for installation and in-app purchase and subscription. Additionally, as predicted by the-

ory, I find sizable heterogeneity in both the direction and the magnitude of the effects on update frequency

and app quality. For example, after eliminating the identified self-preferencing, an independent app’s update

frequency might decrease up to 20 percent and might as well increase up to 25 percent. The rich hetero-

geneity leads to small average effects on update frequency and app quality. Overall, these results imply

that self-preferencing hurt both consumers and producers while negatively but modestly affecting quality

provision on average. The approach can be applied to other settings where there might be self-preferencing

and the effect of self-preferencing may be different.

Lastly, I argue that these estimated welfare gains from eliminating self-preferencing are likely to be

lower bounds of real effects. Due to the lack of data on the number of users for pre-installed apps, the

qualities of pre-installed apps are over-estimated. Therefore, I fix pre-installed apps’ search rankings when

quantifying the effects of self-preferencing. However, there might be further improved search efficiency and

total welfare from eliminating self-preferencing when the search rankings of pre-installed apps are subject

to changes. Moreover, the paper abstracts away from dynamic incentives of update and finds modest effects

on update frequency and app quality in the short-run. However, the effects on updates are potentially larger

in the long-run given that app quality is cumulative and updates positively affects the accumulation process.

As for future research, this paper assumes that consumers know all the observable product characteristics

before search. While I find some reduced-form evidence supporting the assumption to some extent, it is

generally possible that consumers have limited information on some product characteristics before search.

Relaxing this assumption could be studied in the future.

References

Allen, Jason, Robert Clark, and Jean-François Houde. 2019. “Search frictions and market power in

negotiated-price markets.” Journal of Political Economy, 127(4): 1550–1598.

Allon, Gad, Georgios Askalidis, Randall Berry, Nicole Immorlica, Ken Moon, and Amandeep Singh.
2021. “When to be agile: Ratings and version updates in mobile apps.” Management Science.

Anderson, Simon P, and Régis Renault. 2018. “Firm pricing with consumer search.” In Handbook of

Game Theory and Industrial Organization, Volume II. Edward Elgar Publishing.

41

Armstrong, Mark, and Jidong Zhou. 2011. “Paying for prominence.” The Economic Journal,

121(556): F368–F395.

Arnosti, Nick, Ramesh Johari, and Yash Kanoria. 2014. “Managing congestion in dynamic matching

markets.” 451–451.

Bar-Isaac, Heski, Guillermo Caruana, and Vicente Cuñat. 2012. “Search, design, and market structure.”

American Economic Review, 102(2): 1140–60.

Baye, Michael R, John Morgan, and Patrick Scholten. 2004. “Price dispersion in the small and in the

large: Evidence from an internet price comparison site.” The Journal of Industrial Economics, 52(4): 463–

496.

Beggs, Steven, Scott Cardell, and Jerry Hausman. 1981. “Assessing the potential demand for electric

cars.” Journal of econometrics, 17(1): 1–19.

Berry, Steven, Alon Eizenberg, and Joel Waldfogel. 2016. “Optimal product variety in radio markets.”

The RAND Journal of Economics, 47(3): 463–497.

Berry, Steven, James Levinsohn, and Ariel Pakes. 1995. “Automobile prices in market equilibrium.”

Econometrica: Journal of the Econometric Society, 841–890.

Bresnahan, Timothy, Joe Orsini, and Pai-Ling Yin. 2014. “Platform choice by mobile app developers.”

NBER working paper.

Brown, Zach Y. 2017. “An empirical model of price transparency and markups in health care.” Manuscript.

Brown, Zach Y. 2019. “Equilibrium effects of health care price information.” Review of Economics and

Statistics, 101(4): 699–712.

Chen, Yuxin, and Song Yao. 2017. “Sequential search with refinement: Model and application with click-

stream data.” Management Science, 63(12): 4345–4365.

Choi, Hana, and Carl F Mela. 2019. “Monetizing online marketplaces.” Marketing Science, 38(6): 948–

972.

Chu, Chenghuan Sean. 2010. “The effect of satellite entry on cable television prices and product quality.”

The RAND Journal of Economics, 41(4): 730–764.

Crawford, Gregory S. 2012. “Endogenous product choice: A progress report.” International Journal of

Industrial Organization, 30(3): 315–320.

Crawford, Gregory S, and Ali Yurukoglu. 2012. “The welfare effects of bundling in multichannel televi-

sion markets.” American Economic Review, 102(2): 643–85.

Crawford, Gregory S, Oleksandr Shcherbakov, and Matthew Shum. 2019. “Quality overprovision in

cable television markets.” American Economic Review, 109(3): 956–95.

Diamond, Peter A. 1971. “A model of price adjustment.” Journal of economic theory, 3(2): 156–168.

Dinerstein, Michael, Liran Einav, Jonathan Levin, and Neel Sundaresan. 2018. “Consumer price search

42

and platform design in internet commerce.” American Economic Review, 108(7): 1820–59.

Draganska, Michaela, Michael Mazzeo, and Katja Seim. 2009. “Beyond plain vanilla: Modeling joint

product assortment and pricing decisions.” QME, 7(2): 105–146.

Dranove, David, Daniel Kessler, Mark McClellan, and Mark Satterthwaite. 2003. “Is more information

better? The effects of “report cards” on health care providers.” Journal of political Economy, 111(3): 555–

588.

Eizenberg, Alon. 2014. “Upstream innovation and product variety in the us home pc market.” Review of

Economic Studies, 81(3): 1003–1045.

Ellison, Glenn, and Sara Fisher Ellison. 2018. “Match quality, search, and the Internet market for used

books.” National Bureau of Economic Research.

Ershov, Daniel. 2020. “Consumer product discovery costs, entry, quality and congestion in online markets.”

Unpublished manuscript.

Fan, Ying. 2013. “Ownership consolidation and product characteristics: A study of the US daily newspaper

market.” American Economic Review, 103(5): 1598–1628.

Fan, Ying, and Chenyu Yang. 2020a. “Competition, product proliferation, and welfare: A study of the US

smartphone market.” American Economic Journal: Microeconomics, 12(2): 99–134.

Fan, Ying, and Chenyu Yang. 2020b. “Merger, product variety and firm entry: The retail craft beer market

in California.”

Fershtman, Chaim, Arthur Fishman, and Jidong Zhou. 2018. “Search and categorization.” International

Journal of Industrial Organization, 57: 225–254.

Fishman, Arthur, and Nadav Levy. 2015. “Search costs and investment in quality.” The Journal of Indus-

trial Economics, 63(4): 625–641.

Fradkin, Andrey. 2017. “Search, matching, and the role of digital marketplace design in enabling trade:

Evidence from airbnb.”

Ghose, Anindya, and Sang Pil Han. 2014. “Estimating demand for mobile applications in the new econ-

omy.” Management Science, 60(6): 1470–1488.

Ghose, Anindya, Panagiotis G Ipeirotis, and Beibei Li. 2014. “Examining the impact of ranking on

consumer behavior and search engine revenue.” Management Science, 60(7): 1632–1654.

Goeree, Michelle Sovinsky. 2008. “Limited information and advertising in the US personal computer in-

dustry.” Econometrica, 76(5): 1017–1074.

Goldfarb, Avi, and Catherine Tucker. 2019. “Digital economics.” Journal of Economic Literature,

57(1): 3–43.

Hausman, Jerry A, and Timothy F Bresnahan. 2008. 5. Valuation of New Goods under Perfect and

Imperfect Competition. University of Chicago Press.

43

Heiss, Florian, and Viktor Winschel. 2008. “Likelihood approximation by numerical integration on sparse

grids.” journal of Econometrics, 144(1): 62–80.

Hortaçsu, Ali, and Chad Syverson. 2004. “Product differentiation, search costs, and competition in the

mutual fund industry: A case study of S&P 500 index funds.” The Quarterly journal of economics,

119(2): 403–456.

Hristakeva, Sylvia. 2019. “Vertical contracts with endogenous product selection: An empirical analysis of

vendor-allowance contracts.” Available at SSRN 3506265.

Huang, Justin T. 2018. “Visibility Policy, Seller Incentives, and Pricing Dynamics in a Digital Goods

Marketplace.”

Janssen, Rebecca, Reinhold Kesler, Michael Kummer, and Joel Waldfogel. 2021. “GDPR and the Lost

Generation of Innovative Apps.”

Kim, Jun B, Paulo Albuquerque, and Bart J Bronnenberg. 2010. “Online demand under limited con-

sumer search.” Marketing science, 29(6): 1001–1023.

Kim, Jun B, Paulo Albuquerque, and Bart J Bronnenberg. 2017. “The probit choice model under se-

quential search with an application to online retailing.” Management Science, 63(11): 3911–3929.

Koulayev, Sergei. 2014. “Search for differentiated products: identification and estimation.” The RAND

Journal of Economics, 45(3): 553–575.

Lam, H Tai. 2021. “Platform Search Design and Market Power.”

Lee, Kwok Hao, and Leon Musolff. 2021. “Entry Into Two-Sided Markets Shaped By Platform-Guided

Search.”

Leyden, Benjamin T. 2019. “There’s an app (update) for that: Understanding product updating under

digitization.” Working paper, Cornell University.

Leyden, Benjamin T. 2021. “Platform Design and Innovation Incentives: Evidence from the Product Rat-

ings System on Apple’s App Store.”

Li, Xing, Timothy Bresnahan, and Pai-Ling Yin. 2016. “Paying incumbents and customers to enter an

industry: Buying downloads.” Available at SSRN 2834564.

Mendelson, Haim, and Ken Moon. 2016. “Growth and customer loyalty: Evidence from the app economy.”

Mendelson, Haim, and Ken Moon. 2018. “Modeling success and engagement for the app economy.” 569–

578.

Moraga-González, José Luis, Zsolt Sándor, and Matthijs R Wildenbeest. 2022. “Consumer Search and

Prices in the Automobile Market.”

Nosko, Chris. 2010. “Competition and quality choice in the cpu market.”

Nosko, Chris, and Steven Tadelis. 2015. “The limits of reputation in platform markets: An empirical

analysis and field experiment.” National Bureau of Economic Research.

44

Orhun, A Yeşim, Sriram Venkataraman, and Pradeep K Chintagunta. 2016. “Impact of competition on

product decisions: Movie choices of exhibitors.” Marketing Science, 35(1): 73–92.

Orlov, Eugene. 2015. “The effect of the internet on performance and quality: Evidence from the airline

industry.” Review of Economics and Statistics, 97(1): 180–194.

Ratchford, Brian T. 2009. “Consumer search behavior and its effect on markets.”

Salz, Tobias. 2020. “Intermediation and competition in search markets: An empirical case study.” National

Bureau of Economic Research.

Santos, Babur De Los, Ali Hortaçsu, and Matthijs R Wildenbeest. 2017. “Search with learning for differ-

entiated products: Evidence from e-commerce.” Journal of Business & Economic Statistics, 35(4): 626–

641.

Seim, Katja. 2006. “An empirical model of firm entry with endogenous product-type choices.” The RAND

Journal of Economics, 37(3): 619–640.

Singh, Amandeep, Kartik Hosanagar, and Aviv Nevo. 2021. “Network Externalities and Cross-Platform

App Development in Mobile Platforms.” Available at SSRN 3911638.

Small, Kenneth A, and Harvey S Rosen. 1981. “Applied welfare economics with discrete choice models.”

Econometrica: Journal of the Econometric Society, 105–130.

Stigler, George J. 1961. “The economics of information.” Journal of political economy, 69(3): 213–225.

Tadelis, Steven, and Florian Zettelmeyer. 2015. “Information disclosure as a matching mechanism: The-

ory and evidence from a field experiment.” American Economic Review, 105(2): 886–905.

Ursu, Raluca M. 2018. “The power of rankings: Quantifying the effect of rankings on online consumer

search and purchase decisions.” Marketing Science, 37(4): 530–552.

Wang, Peichun. 2017. “Innovation is the new competition: Product portfolio choices with product life

cycles.”

Wang, Quan, Beibei Li, and Param Vir Singh. 2018. “Copycats vs. original mobile apps: A machine

learning copycat-detection method and empirical analysis.” Information Systems Research, 29(2): 273–

291.

Watson, Randal. 2009. “Product variety and competition in the retail market for eyeglasses.” The Journal

of Industrial Economics, 57(2): 217–251.

Weitzman, Martin L. 1979. “Optimal search for the best alternative.” Econometrica: Journal of the Econo-

metric Society, 641–654.

Wollmann, Thomas G. 2018. “Trucks without bailouts: Equilibrium product characteristics for commercial

vehicles.” American Economic Review, 108(6): 1364–1406.

Yao, Song, and Carl F Mela. 2011. “A dynamic model of sponsored search advertising.” Marketing Sci-

ence, 30(3): 447–468.

45

Appendix A Details on Data

A.1 Sample Selection: Criteria and Process

Here I describe the details in sample selection. A category is in the sample if it has benchmark conversion

rates data from AppTweak. The sample selection processes for apps and keywords are listed below.

App Selection Process:
1. Find apps that have ever-ranked top50 in the top-grossing charts in the selected categories during

Apr.2019 to Sep.2019.
2. Conditional on selection into step 1, find the 50 mostly downloaded apps in 2019 in each category.
3. Repeat the above steps for top-paid charts, in order to ensure enough price variation for identifying

price elasticity.79

4. Drop an app-month observations if i) that app has zero download in that month; or ii) that app has

unobserved file size or ratings in that month.

Keyword Selection Process:
1. Find keywords that have ever entered the list of recently used keywords of a selected app, based on

AppTweak’s keyword suggestions. The "recency" on AppTweak is last 3 month, which corresponds

to March 2020 to June 2020. The suggested keywords are keywords that either i) the app has ranked

in top100 in the keyword recently; ii) the app’s title, or subtitle, or descriptions contains the keyword.
2. For each app-keyword, track the app’s historical search ranking in the keyword on each day during

2019. For each category, find the 60 keywords that have the most apps showing up in top500 search

results in the category.

A.2 Variable Construction

Update Frequency is weighted number of updates(i.e.,released versions) in a month. An update is weighted

by the length of release notes. I calculate the three quartiles of release note length for each category. If an

update of an app in a category has a release note shorter than the first quartile of release note length for the

category, the weight on this update is 0.25. If an update of an app in a category has a release note longer

than the first quartile but shorter than the second quartile of release note length for the category, the weight

on this update is 0.50. If an update of an app in a category has a release note longer than the second quartile

but shorter than the third quartile of release note length for the category, the weight on this update is 0.75.

If an update of an app in a category has a release note larger than the third quartile of release note length

for the category, the weight on this update is 1. Then, the weighted number of updates of an app in a month

is the sum of the weighted updates of the app in the month. Update level is log(1+ n jt), where n jt is the

update frequency of app j in month t.

Search Ranking of an app in a category in a month is average positions of the app in the search results

of the popular keywords in the category in the month, conditional on the position is in top50. If an app has

79Indeed, the sample does not include apps that only show up in top-free charts. For example, apps that monetize only through
in-app advertising. Their objective functions are likely to be very different from the ones in my sample, who rely on the app store
to earn profits.

46

never reached top50 in any keyword on any day in a category in a month, that app does not have a search

ranking in that category in that month. Such situation is tracked with an indicator.

Number of Star Ratings of an app/category/month combination is the average number of ratings the

given star level across days in the month. Star levels are 1 to 5 in integers.

Average Rating is the weighted average of the app/category/month’s number of star ratings, with the

weight equating the level of the star.

Title (subtitle) Match is the weighted average number of keywords that contains any word in the title

(subtitle) of the app in a given month, with the weight equating the search volume of the keywords.

Ratio of Adopted Keywords for an app in an category on a day is the number of popular keywords that

are adopted by the app on that day over the number of keywords selected for that category. Monthly level

measurement is average of that ratio across days. An app’s adoption of a keyword on a day is approximated

by the appearance of that app in the keyword’s top 500 search results on that day.

Appendix B Details on Estimation

B.1 Descriptive Evidence on Product Characteristics Known by Consumers Before Search

Here I provide descriptive test results on the assumption that consumers know all the observable app charac-

teristics before search. I test the assumption with search volumes of keywords, an integer between 5 and 100

indicating the number of consumers searching for the keyword. Different keywords have different sets and

orderings of apps in the search results. If consumers know app characteristics before search, they should

search for keywords that have more high-value apps more and search for keywords that have less high-

value apps less. In other words, the characteristics of apps in the search results of an keyword should affect

the search volume of the keyword. The above theoretical implication motivates the following regression

equation:

SearchVolumekgt =β
V
1 AllPreinstallkgt +AllPreinstallkgt ×{x̄V

kgt ·βV
2 +β

V
3 p̄kgt}

+β
V
4 Applekgt +β

V
5 Preinstallkgt +β

V
5 brandk +λ

V
gt + ε

V
kgt

(18)

where AppPreinstallkgt indicates whether all the top50 search results in keyword k month t contain no

apps in category g other than pre-installed apps. Within each category/month pair gt, in the case of there

are non-pre-installed apps showing up in the top50 search results for a keyword k, I calculate the aver-

age prices across these apps, denoted by p̄kgt . Similarly, x̄kgt denotes the vector of average levels of app

characteristics, including update levels, average rating, age, file size, number of screenshots, description

length, offer in-app-purchase or not, and paid installation or not. To capture the idea that higher-ranked

products are more considered by consumers, these characteristics are weighted by 1/log(1+ ranking jkt),

where ranking jkt is the average ranking of app j in keyword k in month t. Applekgt denotes the ratio of

observed positions that are taken by Apple’s apps in search results of keyword k. Similarly, Preinstallkgt

denotes the ratio of observed positions that are taken by pre-installed apps in search results of keyword k.

brandk indicates whether the keyword is a brand-name keyword.λgt denotes category-month fixed effects,

47

capturing unobservables that are keyword-invariant and change across markets. In the robustness check,

I use keyword-category fixed effects and month-fixed effects, omitting the brand-name keyword indicator.

The keyword-category fixed effects capture unobservables that are time-invariant and change across key-

word/category pairs. The month-fixed effects capture unobservables that are keyword/category-invariant

and change over time.

Table E.16 reports the summary statistics of the data for estimating the above equation. The left panel re-

ports the data used for the main specification: search volume and average app characteristics across observed

apps in top50 search results. The right panel reports the data used for robustness check: search volume and

app characteristic of the observed top1 app. It shows that, for an average keyword/category/month pair,

there are 2% of observed top50 positions taken by Apple’s apps. It also shows that, about 5% of observed

top1 positions are taken by Apple’s apps. It also presents that, compared to an average observed top50 app,

an average top1 app has more experiences, larger file size, more screenshots, longer descriptions and higher

installation prices. In the left panel, it shows that, among keyword/category/month combinations that have

observed top50 search results, the average search volume is 48.29 with a standard deviation of 13.88, and

34% of them are generated with brand-name keywords.

Table E.17 presents the estimation results of Equation 18. The first column reports the main specification

results. It shows that consumers are significantly more likely to search for keywords whose top50 search

results contain apps that on average update more, have more experience, smaller in file size, have more

screenshots and shorter description, offer in-app-purchase, have lower or even zero installation price. It

indicates that consumers at least know these app characteristics to some extent such that they can predict

what apps they will see in the search results and thus choose what keywords to search for. Although average

rating does not significantly affect search volume in the main specification, its coefficient is insignificantly

positive across all specifications, and becomes significantly positive when only looking at top1 search results

and controlling for keyword-category fixed effects and month-fixed effects. Overall, the descriptive evidence

indicates the that assumption that consumers know the observable app characteristics before search is not

too crazy.

B.2 Details in Estimation of Search Ranking Model

Here I list the control variables in the vector zs
jm in Equation 8.

• 1{ j is pre-installed}∗1{t(m) = τ}
• price(p jt(m))
• paid(zs

1 jt(m))
• title-match(zs

2 jt(m))
• subtitle-match(zs

3 jt(m))
• last-period number of 5-star ratings(zs

4 jt(m))
• last-period number of 3-star ratings(zs

5 jt(m))
• last-period number of 1-star ratings(zs

6 jt(m))
• ever show up in top 500 search results in any selected keyword for the category (zs

7 jt(m)).
• brand ratio: the ratio of brand keywords among the keywords where the app has an observed ranking,

interacted with z7ht . (zs
8 jt(m))

48

• z jt ∗1{g = h} for each category h 6= Business and

z jt ∈ {p jt(m),zs
1 jt(m),z

s
2 jt(m),z

s
3 jt(m),z

s
4 jt(m),z

s
5 jt(m),z

s
6 jt(m),z

s
7 jt(m),z

s
8 jt(m)}. Here, to save computation

time, all game apps are indexed into one category: Game.
• z jt ∗1{t = τ} for each t = 1,2, · · · ,23 and

z jt ∈ {p jt(m),zs
1 jt(m),z

s
2 jt(m),z

s
3 jt(m),z

s
4 jt(m),z

s
5 jt(m),z

s
6 jt(m),z

s
7 jt(m),z

s
8 jt(m)}.

B.3 Truncated Set of Possible Orders

For markets with strictly more than 5 products, I use truncated set of possible orders Ba to construct firms’

beliefs on search rankings given update levels a. Now I explain how Ba is constructed. First recall that in

Equation 9, the probability for an order y, denoted by P[y], is given by

P[y] = py(1) ·
py(2)

1− py(1)
·

py(3)
1− py(1)− py(2)

· · · · ·
py(J−1)

py(J−1)+ py(J)
·

py(J)
py(J)

Ba are constructed based on the most-likely order, y∗, predicted from the estimated rank-ordered logis-

tic model, given a vector of updates a. Notice that the numerator of P[y] is unchanged with y. Inspired by

that observation, Ba includes the following types of permutations of y∗, found by enlarging the denomina-

tor of P[y]80. For all the examples below, I use 12345 to denote the ordering of 5 products in the most-likely

ordering in a market with at least 5 products.81

1. first-layer enlargement-1: alter the positions of two nearby products. For example, 12345→ 21345.

∀ j ∈ [1,J[1]m −1].
2. first-layer enlargement-2: alter the positions of two products that only have one other product located

between them. For example, 12345→ 32145. ∀ j ∈ [1,J[1]m −2].
3. second-layer enlargement-1: alter the positions of two nearby products; then for the positioned higher

product among the two after the shift, alter its position with the product that’s right above it. For

example, 12345→ 13245 = 13245→ 31245. ∀ j ∈ [2,J[1]m −1].
4. second-layer enlargement-2: alter the positions of two nearby products; then for the positioned lower

product among the two after the shift, alter its position with the product that’s right below than it. For

example, 12345→ 21345 = 21345→ 23145. ∀ j ∈ [1,J[1]m −2].
5. second-layer enlargement-3: alter the positions of two nearby products; then alter the positions of two

nearby products that are right below them. For example, 12345→ 21345→ 21435. ∀ j ∈ [1,J[1]m −3].

Conduct the above permutations until position 30, whenever it applies. The resulting size of Ba is

5×min{J,30}−9≤ 141
80Another type of permutation that also marginally enlarges the denominator is to alter the positions of two products with closest

mean ranking scores. However, this will cause the truncation set to be sensitive to marginal changes in update levels. Therefore,
it’s not considered here.

81In rank-ordered logistic regression model, the most-likely ordering is ordering of products by the mean score, which maximizes
the P[y].

49

B.4 First-Stage Results of Instruments in the Demand Model and Supply Model

Table E.18 presents the F-statistics of first-stage IV regressions on the demand side (column 1-5) and sup-

ply side (column 6). All F-statistics for excluded instruments are larger than 40. Table E.19 reports the

coefficients and standard errors in the first-stage estimation.

B.5 Constraints on Supply Model Estimation

The following constraints are applied on estimation of Equation 10 to guarantee conditional profit maxi-

mization in Nash Equilibrium.
1. first-order increasingness: τ1 > 0, τ1 + τ2 > 0
2. concavity: τ3 < 0, τ3 + τ4 < 0

The following constraints are applied on estimation of Equation 13 to guarantee conditional profit max-

imization in Nash Equilibrium.
1. Necessary Second-order Condition (negative Hessian Diagonal) for update level of app j, a j > 0:

∂ 2π II
f (a j,a− j,ω j;φ,ψ)

∂a2
j

< 0

2. Non-negative marginal update benefits: g′(a jgt ,ω jgt ;φ) ≥ 0.
3. non-negative marginal in-app-advertising profit wrt downloads: F ′(Q jgt ;ψ) ≥ 0.
4. Constraints on signs of parameters:

(a) higher update, higher costs: φ1 > 0.

(b) increasing and concave in-app-advertising profit wrt downloads: ψ1 > 0, ψ2 < 0

B.6 Algorithm to Find Equilibrium Positive Update Levels

Given a draw of update cost slope shifters, ω, and an update portfolio D, find equilibrium update levels

(including zeros), a∗(ω;D) in the following steps:

1. Starting update levels: a0 = (0,a− j) if D j = 0; a0 = (a j,a− j) if D j = 1.
• If D j = 1 in the data, then a j takes the value in the data.
• Otherwise, a j = log(1.25).

2. Use the truncation method to construct the set of likely orders B0 following these steps:
(a) predict probabilities to be ranked first, p0 based on the rank-ordered logit model, given a0 .
(b) use the probabilities, p0, to find the set of likely rankings, B0 := Ba0 .

3. Solve for the equilibrium update levels, a∗, based on the ranking set, Ba0 .
4. Check if Ba0 = Ba∗ or ||a∗−a0||∞ < 0.001.

• If true, equilibrium found.
• If false, set Ba0 = Ba∗ , a0 = a∗, repeat steps 3 and 4.

50

Appendix C Details on Simulation

C.1 Compare with Difference-in-Differences Estimates

Here I compare the structural and difference-in-differences(DiD) estimates of the average treatment ef-

fect(ATE) of the search algorithm change in July 2019. To compute the structural estimates of the ATE,

I simulate the post-change market outcomes if there were not the algorithm change. Because only cate-

gories with Apple’s apps, i.e., the treatment group, will have different market outcomes, the simulation is

conducted in categories with Apple’s apps during the post-change periods from August to November in

2019. Because only bounds on fixed-costs of updates are identified, I follow the specification in 6.1 to

draw fixed costs and report average effects across the draws. Moreover, because there is unobserved ran-

domness in search rankings from the unobserved ranking score shocks, which feeds into randomness of

installations, when comparing no-algorithm-change search rankings(installations) to with-algorithm-change

search rankings(installations), I compare the expected values of search rankings(installations). Specifically,

I simulate no-algorithm-change expected search rankings(installations) based on simulated no-algorithm-

change update levels, and with-algorithm-change expected search rankings(installations) based on observed

post-change update levels, where the expectation is over the truncated sets of possible search rankings.

The structural estimates of average treatment effect on search rankings(installations) is difference between

expected search rankings(installations) without the search algorithm change and expected search rank-

ings(installations) with the search algorithm change.

Table E.20 reports the simulation results. It shows that the structural estimate of the average treatment

effect on update levels is 1.7% while the difference-in-differences estimate is 2.1%. They are reasonably

close. The smaller structural estimate also makes sense, because only the top5 firms are allowed to change

update levels in the simulations, which potentially restricts the magnitudes of the effect. The structural esti-

mate of the average treatment effect on search rankings is 1.5% while the difference-in-differences estimate

is 3.6%. The discrepancy can be explained by the imperfect fitness of the search ranking model and the fact

that the expectation is over the truncated set of possible search rankings instead of the complete set. The

structural estimate of the average treatment effect on installation is 3.4% while the difference-in-differences

estimate is 22.1%. They have the same signs but different magnitudes. The reasons for the discrepancy are

two-fold: i) the discrepancy in effects on updates and search rankings feeds into the discrepancy in effects on

downloads; ii) in the structural estimation, apart from update levels, all the other product characteristics and

market features are fixed; while in the difference-in-differences, when comparing pre-change outcomes to

post-change outcomes across treatment and control groups, there might be changes in other product charac-

teristics (for example, file size and average ratings) and market features (for example, number of products).

These changes lead to additional changes in installations that are not captured by the structural estimates.

Overall, the structural estimates of ATE have the same signs as the difference-in-differences estimates, and

the discrepancy have reasonable explanations.

51

C.2 Fix Pre-installed Apps’ Search Rankings

Here I explain how I fix the search rankings of pre-installed apps and present its effects on market equilib-

rium. Following the idea that, search rankings are not perfectly known by developers in the stage of update

choices, I fix the beliefs on search rankings of pre-installed apps (instead of observed search rankings of pre-

installed apps). Specifically, following the estimated search ranking model and the construction of truncated

set of possible search rankings as developers’ beliefs on search rankings, I calculate the marginal distribu-

tion of search rankings of pre-installed apps in the status-quo. Then, I fix this marginal distribution through

all simulations, with or without changes in preferential treatment on platform-owned products. Therefore,

the welfare and product competition effects presented in Section 6 are immune from the effects of fixing

pre-installed apps’ search rankings. To complete the picture, I explain and present the effects of fixing the

marginal distribution of pre-installed apps’ search rankings on market outcomes below.

Depending on the extent of update adjustment that’s allowed in the counterfactual simulation, the market

outcomes with fixed marginal distributions of the search rankings of pre-installed apps may be different.

Specifically, I calculate the market outcomes in three cases: i) no-game simulation: app developers are not

allowed to change update levels; ii) partial-game simulation: app developers are only allowed to change

positive update levels; iii) full-game simulation: only top5 app developers in each category are allowed to

change update levels, including update or not and positive update levels. It is relatively easy to understand

why the latter two cases see different market outcomes when fixing the marginal distribution of pre-installed

apps’ search rankings: equilibrium update levels could be different due to different beliefs of developers.

When pre-installed apps’ search rankings are not fixed, developers may believe that they can replace pre-

installed apps in the positions that are occupied by pre-installed apps. When pre-installed apps’ search

rankings are fixed, they won’t believe so.

In the first case (no-game simulation), the market outcome changes with fixing pre-installed apps’ search

rankings because of truncation of the set of possible search rankings. To illustrate the idea, let’s consider

an example where there are three products, 1-2-3, with the first product as the pre-installed app. As a

benchmark, let’s firstly consider the case of no truncation of the set of possible search rankings. The

goal is to compare the probability to observe product-2 ranked above product-3 with and without fix-

ing pre-installed apps’ search rankings. The complete set of possible rankings of the three products is

{123,132,213,231,312,321}. Then, based on Equation 4.2 and 9, the probability to observe product-2

ranked above product-3 is given by P[23] = P[123] + P[213] + P[231] = exp(score2)/[exp(score2) +

exp(score3)]. After fixing the rankings of the pre-installed product-1, there are only two products that will be

ranked in the search ranking model: product-2 and product-3. Therefore, the probability to observe product-

2 ranked above product-3 after fixing the pre-installed product’s ranking is also exp(score2)/[exp(score2)+

exp(score3)]. Therefore, without truncation of the set of possible search rankings, market outcome may not

change with fixing pre-installed apps’ search rankings.

Now, let’s consider the case of truncation of the set of possible search rankings. As described in Ap-

pendix B.3, one type of permutation included in the truncated set is alternating the positions of two near-by

products in the most-likely ordering of products. For simplicity, we only consider this type of permuta-

52

tion here.82 Then, let us suppose the most-likely ordering of products is {123}, which gives the following

truncation set of orderings: {123,132,213}. Notice that the order {231} is not captured by the trunca-

tion set. Then, the probability of observing product-2 ranked above product-3 within the truncation set

is P̃[23] = exp(score2)/[exp(score2) + exp(score3)(exp(score1) + exp(score3))]. When fixing the pre-

installed product-1’s position, the truncation set becomes {23,32}, which is also the complete set for the

two products. Then, the probability of observing product-2 ranked about product-3 within the truncation

set is exp(score2)/[exp(score2)+ exp(score3)], which is different from the probability without fixing pre-

installed apps’ search rankings. Therefore, with truncation of the set of possible search rankings, market

outcomes will change with fixing pre-installed apps’ search rankings.

To show the effects of fixing pre-installed apps’ search rankings on market outcomes, I compare the sim-

ulated market outcomes with fixed marginal distribution of pre-installed apps’ search rankings(denoted by

y[f ix]
jgt) to market outcomes without fixed marginal distribution of pre-installed apps’ search rankings(denoted

by y[0]jgt). The difference captures the effect of fixing marginal distribution of pre-installed apps’ search

rankings. To measure the difference, I use relative L1-Norm in percentage : 100× [∑ jgt (|y
[f ix]
jgt − y[0]jgt |)]/[∑ jgt |y

[0]
jgt |]%.

Table E.21 reports the effect of fixing marginal distribution of pre-installed apps’ search rankings. All

of the changes are smaller than 0.1%. Although the changes are small, they are taken into account during

counterfactual simulations, i.e., all reported effects in Section 6 are comparing the market outcomes without

preferential treatment effects on platform-owned products in search algorithm and market outcomes with

preferential treatment effects on platform-owned products in search algorithm, while the marginal distribu-

tion of pre-installed apps’ search rankings are fixed in both cases.

C.3 Calculation of Consumer Surplus

This appendix gives details on computing the expected consumer welfare in Equation 17. To compute

the consumer welfare, I take 10,000 draws of the idiosyncratic unobserved match values and consumer

search costs. The match values are drawn from the Type-I Extreme Value distribution. The search costs

are drawn from the app/category/month-specific distribution given in Equation 5.83 On top of these random

shocks, there are i) 4 sparse-grid nodes for the one-dimension random coefficient on update levels generated

from the sparse-integration method in Heiss and Winschel (2008) with accuracy level of 4; and ii) the

truncated set of possible search rankings. Given each draw of the random coefficients, each vector of

possible search rankings in the truncated set and each draw of match values and search costs, I simulate the

optimal sequential search problem in each market(a category/month pair) in the following steps based on

the three rules in Weitzman (1979):

1. Implement the searching rule. Sort all apps in the markets by reservation values in descending order.

This is the order of search by the consumer. The consumer-app specific reservation values, ri j, are

computed based on Lemma 1 in Moraga-González, Sándor and Wildenbeest (2022), i.e., ri j = δi j +

82Considering all five types of permutation listed in Appendix B.3 will cause the truncation set equal to the complete set for just
three products.

83A useful detail in computing the consumer-product specific search costs is that I save the search costs across consumers for
each evaluated pair of product-position. This significantly saves the computational time.

53

H−1
0 (ci j), where δi j is the known utility before search, equating ui j·− εi j· in Equation 2; ci j is the

consumer-app specific search costs; and the function H0(·) is given in Equation 5.

2. Check the stopping rule. Along the order of search, compare the highest realized utility to the reserva-

tion value of the next app to be searched. The consumer stops search when the highest realized utility

is higher than the reservation value of the next app to be searched. The search costs incurred by the

consumer is the sum of search costs for all the apps that have been searched.

3. Check the purchasing rule. The consumer downloads the app with the highest realized utility among

the apps that have been searched. This is also the realized utility of this consumer. The welfare of

this consumer is (realized utility - search costs) in the unit of util. Divide the consumer welfare by the

estimated price coefficient in Table 4 gives the consumer welfare in dollars.

Then I take average of simulated consumer welfare and multiply it with market size to get market-level

consumer surplus. Notice that, by simulating the optimal sequential search problem, I have computational

market shares derived from the discrete choices of simulated consumers. Therefore, there might be distance

between the computational market shares and analytical market shares derived from the closed-form choice

probability. This can be used to measure the accuracy of the consumer surplus measurement. Table E.24

presents the computational error during computation of consumer surplus. It shows that all computational

errors are smaller than 0.4%.

C.4 Explain Heterogeneous Effects on Update Frequency

The understand why some independent apps increase their update frequency while others decrease, I sum-

marize the patterns between the percentage change of update frequency and some explanatory variables with

the following linear regression. It is only a correlation results, instead of causal relationship. But it is helpful

for summary.

%∆update jm = −0.65 + 0.66 %∆Q jm− 0.27 nop jm− 0.17 Junem + ρ jm

(0.96) (0.36) (0.14) (1.19)

where %∆update jm is the percentage change of update frequency of app j in market m after eliminating

the identified self-preferencing, %∆Q jm is the percentage change of downloads of app j in market m after

the eliminating without update adjustment, nop jm is the number of apps owned by app j’s developer in

market m, and Junem indicates whether the market m is in June 2019 (the month with stronger identified

self-preferencing).

The regression results indicate that reduction of update frequency after the elimination is related to

reduction of downloads without update adjustment, stronger cannibalization concern (captured by larger

nop jm), and aggressive reduction in self-preferencing (captured by Junem). In particular, looking into the

simulation data, I find that apps whose downloads decrease after the elimination without update adjustment

are typically apps who are always above or below Apple’s apps with or without self-preferencing. Then,

their reduction in downloads are due to business stealing from boosted-up independent apps who replace

54

Apple’s apps. It implies that the boosted-up independent apps are stronger competitors and more attractive

for consumers than Apple’s apps.

C.5 Counterfactual Simulation Results without Update Portfolio Adjustment

Here I report the simulation results with changes in positive update level but without update portfolio ad-

justments. I call such simulation as partial-game simulation. Because all independent apps with positive

update levels are allowed to make a change, there more simulation data points than those in the case of full

update adjustment by top5 developers.84 It motivates me to use these results to discuss patterns with respect

to heterogeneous effects of self-preferencing on update levels. I firstly show the quantified effects of self-

preferencing on update levels, search rankings, installations and welfare. Then I discuss the heterogeneity

in the effects on update levels.

Table E.22 presents the effect of self-preferencing on positive update levels from the partial-game simu-

lation. The effects have the same direction as the main results reported in Table 9, with smaller magnitudes.

While we don’t see much heterogeneous effects at market-level, the heterogeneity at product-level remains

strong. The standard deviation of the percentage change of product-level positive update levels is 4.2 times

of the mean. The range of the percentage change of product-level positive update levels is from -0.2% to

4.4%.

Table E.23 presents the effects of self-preferencing on search rankings, installations and welfare in the

partial-game simulation. The effects are quite similar to the main results reported in Table 10. The smaller

increase in producer surplus compared to that in the main result can be explained by restricted adjustment:

the developers are not allowed to adjust update portfolios in the partial game.

C.6 Ranking Imperfection due to self-preferencing

Here I explain how the ranking imperfection due to self-preferencing is calculated. Ideally, the rankings

should be based on average scores equal to consumer values on the apps (relative mean-utility). However,

this is not true neither with or without the self-preferencing. Therefore, I firstly calculate i) within-market

rankings that are based on app values, ii) the within-market rankings that are based on the mean scores

with self-preferencing, and iii) the within-market rankings that are based on the mean scores without self-

preferencing. Then I calculate the gap between the first and the second within-market rankings, and the

gap between the first and the third within-market rankings. The gaps are the ranking imperfections across

products. To aggregate the product-level ranking imperfections to market-level, I firstly construct a weight.

Because higher positions are more important for welfare, I use 1/ log(1+ranking) as the weight on the gaps

across products. Then, I use the weighted average gaps in a market to measure the ranking imperfection

in the market. Lastly, I calculate the percentage change in the market-level ranking imperfection after

eliminating self-preferencing to measure the ranking imperfection due to self-preferencing.

84There are 337 app/category/month combinations whose update levels are subject to changes in counterfactual simulations
with endogenous positive update levels. That number is 79 app/category/month combinations in counterfactual simulations with
endogenous update levels of top5 developers in each category.

55

Appendix D Ambiguous Supply-side Effect of self-preferencing

Here I explain the ambiguity of supply-side responses to change in self-preferencings: it is theoretically

ambiguous that whether developers will update more or less with less self-preferencing of Apple’s apps.

The ambiguity roots in two offsetting economic forces: i) strategic complementarity of the virtual mean

relative utility (which roots in concavity of revenue curves); ii) larger marginal quantity with respect to

update with higher search rankings. I firstly illustrate the intuitions in a two-product market, then discuss

the case in more complex markets.

Imagine a market with only two apps: i) app-1, an Apple’s app; ii) app-2, an independent app. Then,

there are two possible orders of the apps: 12 or 21. Then, the marginal benefit from update for app-2 is

given by

MB2 = ∑
y∈{12,21}

(
∂π I

2(y)

∂a2
P̃[y]+π

I
2(y)

∂ P̃[y]

∂a2

)
A decrease in self-preferencing of Apple’s apps is a decrease in θApple, which only changes the function

P̃[y], but not the profit function output π I
2. In particular, denote the new probability function with lower

θApple as P̃′[y]. Then, the post-change marginal benefit from updates for app-2 is given by

MB′2 = ∑
y∈{12,21}

(
∂π I

2(y)

∂a2
P̃′[y]+π

I
2(y)

∂ P̃′[y]

∂a2

)
Denote the difference between the post-change values and pre-change values with ∆x := x′− x. Notice

that P̃[12]+P̃[21]≡ 1. Therefore, ∆P̃[12]+∆P̃[21] = 0, and ∂ P̃[12]
∂a2

=− ∂ P̃[21]
∂a2

. It is also useful to notice

that i) a decrease in θApple will cause ∆P̃[21] > 0; ii) π I
2(21) > π I

2(12) since only rankings are different,

and it’s identified and estimated that λ2 > 0 and thus Q2(21)>Q2(12), and marginal profits from quantities

are estimated as positive85. I use these observations to simplify ∆MB2 and get the following expression:

∆MB2 = ∆P̃[21]︸ ︷︷ ︸
>0

(
∂π I

2(21)

∂a2
− ∂π I

2(12)

∂a2

)
︸ ︷︷ ︸

I (unclear sign)

+ ∆
∂ P̃[21]

∂a2︸ ︷︷ ︸
II (unclear sign)

(
π

I
2(21)−π

I
2(12)

)︸ ︷︷ ︸
>0

(19)

I analyze term I first, then term II. The term I is given by:

∂π I
2(21)

∂a2
− ∂π I

2(12)

∂a2
= [0.7 (τ1 + 2τ2Q2(21))︸ ︷︷ ︸

R(q)
2

+φ1 + 2φ2Q2(21)︸ ︷︷ ︸
F (q)

2

]

︸ ︷︷ ︸
small

∂Q2(21)

∂a2︸ ︷︷ ︸
probably large

− [0.7 (τ1 + 2τ2Q2(12))︸ ︷︷ ︸
R(q)′

2

+φ1 + 2φ2Q2(12)︸ ︷︷ ︸
F (q)′

2

]

︸ ︷︷ ︸
large

∂Q2(12)

∂a2︸ ︷︷ ︸
probably small

(20)

85Marginal "revenue" from quantities is given by 0.7p j +0.7(τ1 +2τ2Q j)+ (φ1 +2φ2Q j) for each product j.It’s estimated that
τ1 > 0, τ2 < 0, φ1 > 0, φ2 < 0. Therefore, the "revenue" curve is increasing and concave with respect to quantities.

56

Because i)Q2(21)> Q2(12), ii) it’s estimated that τ2 < 0 and φ2 < 0, I have lower marginal "revenues"

wrt quantities from the order 21 than those from the order 12. This is just saying that when ranked higher,

the app-2’s downloads increase. Given the concave revenue curve, this decreases the marginal benefit from

updates. An alternative explanation is strategic complementarity of the virtual mean relative utility (product

value net of search costs): app-2’s competitor, app-1, is ranked lower, and thus has a lower virtual mean

relative utility; which decreases app-2’s marginal benefits from increasing the virtual mean relative utility

because their virtual mean relative utilities are strategic complements. The strategic complementarity roots

in the increasing and concave revenue curve wrt quantities.

Now I compare ∂Q2(21)
∂a2

and ∂Q2(12)
∂a2

, and argue that the former is likely to be larger in this paper’s

empirical context. Their difference is given by:

∂Q2(21)

∂a2
− ∂Q2(12)

∂a2
= M

∫
[(si2(21)− s2

i2(21))− (si2(12)− s2
i2(12))]︸ ︷︷ ︸

>0 if si2(21)≤0.5

(γ +σvi)dΦ(vi)

︸ ︷︷ ︸
unclear sign

The function x(1−x) is increasing and concave, reaching maximum when x = 0.5. Moreover, si2(21)>

si2(12) since λ < 0. Therefore, when si2(21) ≤ 0.5, the bracket-term is positive. And this inequality is

likely to happen in our empirical context because the largest total market share in the data is smaller than

0.25. On the other hand, vi may be negative. It turns out that the bracket-term could be increasing or decreas-

ing with vi
86. Therefore, ultimately, the difference has an unclear sign. Intuitively, this difference captures

how the marginal downloads with respect to updates change with discoverability. I conclude that, while the

model is flexible enough to allow both more and less marginal downloads with more discoverability, our

data is likely to fit the case of discoverability increasing marginal downloads with respect to updates.

Next I analyze term II and argue that it has an unclear sign. Note that ∂ P̃[21] = p2, where p2 is the

probability that app-2 is ranked first. I write out term II as the following

∆
∂ P̃[21]

∂a2
= [(p′2− p2

2)− (p2− p2
2)]︸ ︷︷ ︸

unclear sign

γ︸︷︷︸
>0

θquality︸ ︷︷ ︸
>0

I only know that p′2 > p2. In fact, p2 ∈ (0,1) with p2 + p1 = 1 while s2 + s1 < 1 since there is out-side

option for consumers to choose but all products are ranked. Therefore, I have no clue for the likely sign of

the bracket-term87. And term II has an unclear sign.

As a summary of the illustrative example. Equation 19 writes out the effect of the self-preferencing on

86I derived that ∂ si2/∂vi = (si2− s2
i2)σa2 > 0. I further derived that the partial derivative of the bracket-term with respect to vi

is given by (si2(21)(1− si2(21))(1− 2si2(21))− si2(21)(1− si2(21))(1− 2si2(21)))σa2. The value of the partial derivative
depends on the behavior of the function x(1−x)(1−2x). This function is symmetric through (0.5,0), with the points left to (0.5,0)
being positive and the points right to (0.5,0) being negative. And it is reserve U-shape before reaching (0.5,0) and U-shape after the
point (0.5,0). This behavior of the function implies that even when si2(21≤ 0.5, I could have smaller (less positive) bracket-term
with larger vi. However, to have positive difference for sure when si2(21 ≤ 0.5, we need the bracket-term to be larger with larger
vi so as to surely offset negative values of vi with positive vis.

87To fit the idea, the following table is useful:
bracket-term p2 < 0.5 p2 > 0.5
p′2 < 0.5 + n/a
p′2 > 0.5 unclear -

.

57

developers’ incentives to update apps. Equation 20 writes out the most important term in Equation 19, which

illustrates the two offsetting economic forces. On the one hand, concave revenue curve generates strategic

complementarity of product values net of search costs. This decreases independent developers’ incentive to

update apps with less self-preferencing of Apple’s apps: my competitors perform worse, why don’t I take

a good rest. On the other hand, discoverability is likely to increase the marginal downloads with respect

to updates. This increases independent developers’ incentive to update apps with less self-preferencing of

Apple’s apps: my efforts are more visible now, why don’t I take the chance.

Now I discuss the case in more complex markets. A general version of Equation 19 is given by

∆MB j = ∑
y′∈B′a

(
∂π I

f (y
′)

∂a j
P̃′[y′|a]+π

I
f (y

′)
∂ P̃′[y′|a]

∂a j

)
− ∑
y∈Ba

(
∂π I

f (y)

∂a j
P̃[y|a]+π

I
f (y)

∂ P̃[y|a]
∂a j

)

The difference between the above equation and Equation 19 are mainly two-fold. First, the permutation

set B is a truncated set of permutations, therefore, y 6= y′, or, B′a 6= Ba.In particular, independent apps are

ranked higher in every y′ ∈B′a compared to y ∈Ba, because the most likely ordering has independent apps

ranked higher, and it determines the truncation set. However, in the illustrative example, the permutation set

is not changed with θApple. This difference add complication into the analysis of ∆MB j because I cannot

take out a common term ∆P̃[y] as what I did in Equation 19. However, because independent apps are

ranked higher in every y′ ∈B′a compared to y ∈Ba, the term I in the Equation 19 still exists in the general

version. Therefore, it’s possible that the intuition still applies. The next job is to check whether we have

similar predictions on the sign of term I in the general version.

Analysing the term I in the general version introduces the second difference between Equation 19 and

the general case: firms are allowed to be multiple-product firms in the general version, while the illustrative

example just has two single-product firms. The corresponding general version of Equation 20 is given by:

∂π I
f (y
′)

∂a j
−

∂π I
f (y)

∂a j
= ∑

l∈J f

[0.7 (τ1 + 2τ2Ql(y
′))︸ ︷︷ ︸

R(q)
l

+φ1 + 2φ2Ql(y
′)︸ ︷︷ ︸

F (q)
l

]

︸ ︷︷ ︸
unclear relative size

∂Ql(y
′)

∂a j︸ ︷︷ ︸
unclear

− ∑
l∈J f

[0.7 (τ1 + 2τ2Ql(y))︸ ︷︷ ︸
R(q)′

l

+φ1 + 2φ2Ql(y)︸ ︷︷ ︸
F (q)′

l

]

︸ ︷︷ ︸
unclear relative size

∂Ql(y)

∂a j︸ ︷︷ ︸
unclear

where y′ ∈B′a and y ∈Ba. Now the bracket terms do not have unclear relative sizes, even though

independent apps’ rankings are ranked higher if not unchanged. This is because apps are competitors, one of

the apps that are ranked higher may become so much more attractive to consumers such that it steals business

from all the other apps. Similar logic applies to the analysis of relative magnitudes between ∂Ql(y
′)/∂a j

and ∂Ql(y)/∂a j: it’s unclear whether sil(y
′) will be larger or smaller than sil(y), even though the ranking

of l is in y′ is no lower than that in y. Therefore, there are more ambiguity in the general case, and I focus

58

on the illustrative example for illustrating the fundamental intuitions.

Overall, in the general case where multiple products exist in one market, who replace the platform-

owned product in the higher positions matters for the competition outcome. If the boosted-up independent

products are more competitive than the platform-owned products, then the strengthened product competi-

tion will provide additional incentive to work against the strategic complementarity and encourage quality

provision. Otherwise, the product competition is further weakened, providing additional incentive to exac-

erbate the strategic complementarity and discourage quality provision. There are three possible scenarios:

i) the platform-owned products have higher before-change net product values than all of the boosted-up

independent products; ii) the platform-owned products have higher before-change net product values than

some of the boosted-up independent products; iii) the platform-owned products have lower before-change

net product values than all of the boosted-up independent products.

In the scenario i), the product competition is weakened, and strategic complementarity discourages

quality provisions of all independent apps, boosted-up or not. In the scenario ii), the product competition

is firstly strengthened for the independent apps that were ranked above platform-owned products. However,

for the boosted-up independent apps that have lower before-change net product values than the platform-

owned products, it’s unclear whether their product competition might be strengthened or weakened. On

the one hand, the average competitiveness of products ranked before them is higher; on the other hand,

the number of products ranked before them is smaller. Lastly, for the boosted-up independent apps that

have higher before-change net product values than the platform-owned products, their product competition

is weakened due to less products ranked before them. On top of the potentially heterogeneous changes in

product competition, there is smaller marginal revenue from downloads due to increased downloads from

higher rankings. Therefore, in this scenario, it is unclear whether the combination of heterogeneous changes

in product competition and concavity in marginal revenue curves will lead to more or less quality provision.

In the scenario iii), the product competition is strengthened for independent products that were ranked

before platform-owned products; and weakened for the boosted-up independent products. This again leads

to unclear overall changes of quality provision. While the scenario i) is unlikely to happen following the idea

of self-preferencing, the other two scenarios both lead to ambiguous changes in the incentives for quality

provision.

On top of the changes in product competition and smaller marginal revenues from quantities, there is

higher marginal quantity from quality that encourages quality provision. The three forces lead to ambiguous

supply-side effects of self-preferencing in the general case.

59

Appendix E Tables

Table E.12: App Categories in the Sample

Non-Game App Category Game App Category

(1) Book Games-Action
(2) Business Games-Adventure
(3) Education Games-Arcade
(4) Entertainment Games-Board
(5) Finance Games-Card
(6) Food & Drink Games-Casino
(7) Health & Fitness Games-Family
(8) Lifestyle Games-Music
(9) Medical Games-Puzzle
(10) Music Games-Racing
(11) Navigation Games-Role Playing
(12) News Games-Simulation
(13) Newsstand Games-Sports
(14) Photo & Video Games-Strategy
(15) Productivity Games-Trivia
(16) Reference Games-Word
(17) Shopping
(18) Social Networking
(19) Sports
(20) Travel
(21) Utilities
(22) Weather

60

Table E.13: Additional Summary Statistics and Data Sources

Variable Mean SD Min Max Source

Panel A. App Data
#5-star ratings(million) 0.048 0.240 0 10.11 AppTweak
#4-star ratings(million) 0.006 0.028 0 1.03 AppTweak
#3-star ratings(million) 0.002 0.009 0 0.34 AppTweak
#2-star ratings(million) 0.001 0.003 0 0.13 AppTweak
#1-star ratings(million) 0.002 0.013 0 0.71 AppTweak
Market Size(million) 107.800 4.691 98.55 117.70 Comscore
Pre-installsc :
#Pre-installs 0.643 1.312 0 7 public infob,c

min.Ever Top50 2.756 6.985 0 50 SensorTowerc

{min.Search Ranking}×Ever Top50 0.300 0.458 0 1 SensorTowerc

Obs(app/category/month) 56,570

Panel B. Benchmark Conversion Rates Data
Type(free/paid apps) 0.35 0.48 0 1 AppTweak
Benchmark Conversion Rate 0.052 0.059 0.001 0.45 AppTweak
Obs(type/category/month) 1,337
Number of Categories 38
Number of Months 23

Panel C. Search Volume Data
Brand Keyword? 0.36 0.48 0 1 AppTweak
Search Volume 45.03 15.15 5 100 AppTweak
Obs(keyword/day) 1,246,000
Number of Keywords 1,780

aConstructed based on data on title and subtitle history from AppTweak.
bSome pre-installed apps do not have category information, and thus are not counted. For data availability of

each pre-installed app, please see Table E.14.
cEach app/category/month observation is matched with information about pre-installed apps in the cate-

gory/month.

61

Table E.14: List of Pre-installed Apps and Data Availability

App Name Data Available? Category App Name Data Available? Category

App Store 0 Measure 1 Utilities
Calculator 1 Utilities Messages 0
Calendar 0 Productivity Music 1 Music
Camera 0 News 1 News
Clock 0 Notes 0 Productivity
Compass 0 Navigation Numbers 1 Productivity
Contacts 1 Utilities Pages 1 Productivity
FaceTime 1 Social Networking Passbook 0
Files 1 Utilities Phone 0
Find My Friends 1 Social Networking Photos 0
Find My iPhone 1 Utilities Podcasts 1 Entertainment
Game Center 0 Reminders 0 Productivity
Health 0 Safari 0
Home 1 Lifestyle Settings 0
iBooks 1 Book Stocks 1 Finance
iCloud Drive 0 Tips 1 Utilities
iMovie 1 Photo & Video TV 1 Entertainment
iTunes Store 1 Entertainment Videos 0
iTunes U 1 Education Voice Memos 1 Utilities
Keynote 1 Productivity Wallet 0 Finance
Mail 0 Productivity Watch 0 Utilities
Maps 1 Navigation Weather 1 Weather

Notes: For apps without data availability, there is category information if it shows up on the Apple App Store.

62

Table E.15: Summary Statistics Before and After the Search Algorithm Change

Categories with Apple Categories without Apple

Before Jul.2019 After Jul.2019 Before Jul.2019 After Jul.2019

Variable Mean SD Mean SD Mean SD Mean SD

Panel A. App Data
Downloads 0.07 0.22 0.06 0.26 0.06 0.23 0.04 0.14
Price 1.95 3.74 2.00 3.67 1.75 3.77 1.90 3.89
log(1+Update Freq.) 0.40 0.48 0.39 0.49 0.36 0.45 0.33 0.45
Average Rating 4.32 0.62 4.30 0.63 4.43 0.52 4.40 0.58
File Size 98.49 143.90 93.01 139.30 302.80 503.80 302.60 512.50
#Screenshots 5.60 1.94 5.68 1.96 5.72 1.81 5.83 1.87
Description Length 2.40 1.05 2.38 1.06 2.06 1.00 2.03 1.00
Search Ranking |Top 50 24.08 11.71 23.95 11.82 24.07 11.73 24.20 11.67

Obs |Top 50 1,552 3,103 2,266 4,651
Obs(app/category/month) 2,709 5,784 3,729 8,219

Panel B. Conversion Rates Data
Rates 0.06 0.05 0.09 0.09 0.04 0.03 0.06 0.06
Type 0.35 0.48 0.39 0.49 0.21 0.41 0.28 0.45

Obs(type/category/month) 46 99 58 127

Notes. "Type" indicates whether the average conversion rate is average across paid apps, given a cate-
gory/month pair. Alternatively, the average conversion rate is average across free apps.

Table E.16: Summary Statistics: Search Volume and Characteristics of Apps in the Search Results of Key-
words

Top50 Search Results Top1 Search Results
Variable Obs Mean SD Obs Mean SD

Search Volume 41,974 48.29 13.88 18,789 48.90 14.07
Brand-name Keywords? 41,974 0.34 0.47 18,789 0.42 0.49
Pre-installed 41,974 0.02 0.08 18,789 0.05 0.22
Apple 41,974 0.02 0.09 18,789 0.06 0.24
Update Level 41,908 0.60 0.33 17,858 0.60 0.50
Average Rating 41,908 4.55 0.22 17,858 4.55 0.34
Age(month) 41,908 50.27 19.32 17,858 53.72 28.03
File Size (GB) 41,908 0.24 0.29 17,858 0.27 0.47
#Screenshots 41,908 5.78 1.29 17,858 5.86 1.94
Description Length(1,000 characters) 41,908 2.44 0.63 17,858 2.46 0.98
Offer In-app-purchase 41,908 0.93 0.19 17,858 0.92 0.27
Paid Installation 41,908 0.11 0.23 17,858 0.13 0.33
Price 41,908 0.53 1.57 17,858 0.73 2.68

Notes. App characteristics are reported as average levels across the observed apps in the top50 or top1
search results for a given keyword/category/month combination.

63

Table E.17: Estimation Results: Known App Characteristics before Search

Top50 Search Results Top1 Search Results
Search Volume

Variable (1) (2) (1) (2)

All Pre-install? 1.176 -1.997*** 5.861** -3.135***
(1.974) (0.741) (2.292) (1.037)

Update Level 1.391*** 0.464*** 1.131*** 0.161**
(0.275) (0.0758) (0.217) (0.0659)

Average Rating 0.328 0.0593 0.241 0.296*
(0.333) (0.114) (0.286) (0.169)

Age(month) 0.0120*** -0.0138*** 0.0179*** -0.0208***
(0.00438) (0.00212) (0.00370) (0.00442)

File Size(GB) -0.949*** 0.215 -0.344 0.0588
(0.367) (0.165) (0.262) (0.199)

#Screenshots 0.785*** 0.0492** 0.395*** 0.00915
(0.0692) (0.0230) (0.0527) (0.0301)

Description Length(1,000 characters) -1.112*** -0.0921* -0.496*** 0.135
(0.143) (0.0522) (0.105) (0.0865)

Offer In-app-purchase 3.141*** -1.748*** 3.659*** -3.002***
(0.625) (0.347) (0.514) (0.658)

Paid Installation -12.61*** -0.711** -8.762*** -2.683***
(0.572) (0.344) (0.456) (0.845)

Price -0.209*** 0.000665 -0.0887* 0.154***
(0.0774) (0.0369) (0.0457) (0.0430)

Apple 10.99*** -1.611*** 12.31*** -2.347***
(1.521) (0.508) (1.081) (0.838)

Pre-install -2.582 1.485** -10.23*** 3.212***
(1.728) (0.595) (2.060) (0.979)

Brand-name Keywords? 5.327*** 5.737***
(0.127) (0.181)

Constant 40.32*** 50.05*** 40.36*** 51.22***
(1.666) (0.671) (1.380) (0.911)

Observations 41,974 41,964 18,787 18,708
R-squared 0.262 0.963 0.347 0.965
Category-Month FE YES YES
Keyword-Category FE YES YES
Month FE YES YES
Mean level 48.29 48.90

Notes. Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

64

Table E.18: First-stage IV Regression Results: F statistics

Demand Supply
(1) (2) (3) (4) (5) (6)

Variables Price Average Update Search Ranking Ever Top50 Update
Rating Level ×Ever Top50 Level

Fa 545.5 86.53 372.1 1759 2702 1645
Excluded Fb 43.73 58.46 113.7 66.52 239.8 40.47

aOn the demand side, the reported F is F(93,52865). On the supply side, the reported F is
F(73,25252)
bOn the demand side, the reported excluded F is F(57,52865). On the supply side, the reported

excluded F is F(50,25252).

65

Table E.19: First-stage IV Regression Results

Demand Supply
(1) (2) (3) (4) (5) (6)

Variables Price Average Update Search Ranking Ever Top50 Update
Rating Level ×Ever Top50 Level

Price 0.00280*** 0.00159*** 0.0358*** -0.000258 0.00176**
(0.000683) (0.000492) (0.0102) (0.000315) (0.000899)

Average Rating 0.0990*** 0.0514*** -0.313*** 0.0473***
(0.0261) (0.00292) (0.0670) (0.00203)

Update Level 0.0908*** 0.0830*** -0.756*** 0.0334***
(0.0302) (0.00465) (0.102) (0.00270)

Search Ranking × Ever Top50 0.00399*** -0.000987*** -0.00147*** 0.0200***
(0.00109) (0.000210) (0.000198) (8.80e-05)

Ever Top50 -0.0373 0.193*** 0.0842*** 25.90***
(0.0464) (0.00819) (0.00684) (0.119)

Pre-installs:Search Ranking × Ever Top50 -0.00234 0.00155* -5.78e-05 -0.00497 9.25e-05
(0.00464) (0.000928) (0.000720) (0.0152) (0.000419)

Pre-installs: Ever Top50 0.0633 -0.0499* 0.0176 -0.167 0.0130
(0.138) (0.0269) (0.0220) (0.455) (0.0127)

Apple -0.505*** -0.182*** -0.0731** -5.336*** 0.232***
(0.137) (0.0611) (0.0286) (0.918) (0.0264)

Paid Installation? 4.285*** -0.0290*** -0.228*** -0.0655 -0.188*** -0.0739***
(0.0542) (0.00795) (0.00579) (0.136) (0.00387) (0.00994)

Offer In-app-purchase? -0.572*** 0.0267*** 0.0902*** 0.367*** 0.00522 0.103***
(0.0557) (0.00758) (0.00450) (0.110) (0.00344) (0.0110)

log(Age)a(month) 0.133*** 0.00574 -0.0185*** -0.821*** 0.0263*** -9.56e-05
(0.0197) (0.00463) (0.00345) (0.0745) (0.00208) (0.000126)

log(FileSize)(MB) 0.487*** 0.0135*** 0.0361*** -0.347*** 0.0165*** 0.0503***
(0.0175) (0.00232) (0.00152) (0.0358) (0.00106) (0.00294)

#Screenshots -0.0620*** 0.0185*** 0.0245*** 0.0576*** -0.00255***
(0.0119) (0.00122) (0.00104) (0.0214) (0.000587)

log(1+DescriptionLength)(1,000 characters) 0.290*** 0.0308*** 0.0112*** -0.0865 0.0175***
(0.0266) (0.00463) (0.00311) (0.0574) (0.00160)

#Pre-installs -0.0639*** -0.00305 -0.00528 -0.680*** 0.0182***
(0.0213) (0.00425) (0.00327) (0.0685) (0.00194)

Game Apps? -1.721*** -0.0182 0.0304 3.448*** -0.168***
(0.146) (0.0343) (0.0257) (0.540) (0.0148)

PromotionTextLength 0.000355* -2.00e-05 -6.22e-05* 0.000556 -5.25e-05**
(0.000195) (3.89e-05) (3.31e-05) (0.000748) (2.08e-05)

#Icon Changes 0.0270 0.00475 0.292*** 0.803*** -0.00684**
(0.0198) (0.00481) (0.00570) (0.131) (0.00336)

Title Match 1.556*** -0.310*** -0.175** -73.53*** 3.568*** 0.197**
(0.519) (0.0886) (0.0822) (1.900) (0.0451) (0.0930)

Subtitle Match 0.421 1.128*** 0.727*** -11.86*** 1.289*** 0.531***
(0.474) (0.0850) (0.0811) (1.853) (0.0459) (0.0952)

Apple×Post 0.323** 0.0340 0.00912 7.077*** -0.0952***
(0.137) (0.0925) (0.0354) (1.012) (0.0298)

AppleCompetitor×Post 0.182*** -0.0101 -0.00491 0.134 -0.00692
(0.0560) (0.00964) (0.00750) (0.167) (0.00462)

#Category 0.0663*** -0.00828*** -0.00361*** -0.0240 -0.000430
(0.00513) (0.00135) (0.000916) (0.0221) (0.000651)

Multiple-Category Developer? 0.268 -2.070*** -0.0105 8.622*** -0.281*** 0.0434
(0.238) (0.0850) (0.0409) (1.064) (0.0344) (0.0658)

Other-Category Same-Developer Average:
Price 0.187*** 0.00943*** -0.00265** 0.0505* -0.00192** -0.0141***

(0.0176) (0.00131) (0.00107) (0.0285) (0.000895) (0.00234)
Update Level 0.103*** -0.0332*** 0.144*** 0.427*** -0.0192***

(0.0175) (0.00361) (0.00551) (0.104) (0.00280)
Average Rating 0.0919* 0.453*** -0.0486*** -2.196*** 0.0714*** -0.0204

(0.0499) (0.0181) (0.00729) (0.199) (0.00648) (0.0145)
Ever Top50 0.0624 0.0101 0.0628*** 3.433*** -0.110***

(0.177) (0.0356) (0.0202) (0.557) (0.0173)
Keyword Un-adoption Ratio -1.581*** 0.115*** 0.0334 -4.461*** 0.174***

(0.0993) (0.0185) (0.0228) (0.491) (0.0135)
Days without Search Results Ratio -0.552*** 0.0115 0.0420** 3.240*** -0.124***

(0.153) (0.0310) (0.0197) (0.549) (0.0167)
Average of Competing Apps’ Other-Category Same-Developer Average:

Price -0.486*** 0.0166 0.0372* -0.0674 0.0160 0.0493***
(0.0882) (0.0203) (0.0193) (0.416) (0.0110) (0.0190)

Update Level -1.154*** 0.0222 -0.0819* -0.0213 0.0130
(0.226) (0.0485) (0.0461) (1.052) (0.0288)

Average Rating 0.976*** 0.185*** -0.275*** 0.582 -0.0747** -0.0449***
(0.372) (0.0697) (0.0588) (1.347) (0.0367) (0.00916)

Ever Top50 -2.911* -0.464 0.514** -11.07* 0.850***
(1.637) (0.301) (0.256) (5.950) (0.161)

Ratio.Keyword Un-adoption 1.808*** -0.436*** 0.911*** 12.17*** -0.708***
(0.677) (0.163) (0.155) (3.190) (0.0834)

Ratio.Days without Search Results -2.487* -0.690*** 0.0483 -7.261 0.590***
(1.455) (0.253) (0.233) (5.335) (0.146)

Ratio.Paid Apps -0.0392 0.00181 -0.104** -3.164*** 0.0176 0.123*
(0.425) (0.0668) (0.0522) (1.181) (0.0327) (0.0653)

Ratio.Multiple-Category Developers 0.772** 0.101* -0.0293 0.660 -0.000627 0.144**
(0.309) (0.0593) (0.0521) (1.139) (0.0319) (0.0663)

Constant -4.360*** 3.723*** -0.00568 7.490*** -0.247*** 0.437***
(0.325) (0.0564) (0.0427) (0.880) (0.0247) (0.0428)

Observations 52,959 52,959 52,959 52,959 52,959 25,325
Adjusted R-squared 0.372 0.177 0.335 0.644 0.751 0.072

Notes. Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. All columns include category-fixed effects and month-fixed effects.
aOn the supply side, age is an included IV, thus I use age instead of log(age).

66

Table E.20: Compare Structural Estimates with Difference-in-Differences Estimates of Average Treatment
Effects of the Search Algorithm Change

ATE log(1+Update Level) log(Search Ranking) log(Downloads)

Structural Estimates 0.0166 −0.0150 0.0342
DiD Estimates 0.0212 −0.0355 0.2210

Notes. Difference-in-Differences (DiD) estimates are taken from Table 3. Structural estimates are
computed from difference between market outcomes with and without the search algorithm change
in categories with Apple’s apps during the same post-change period as the DiD specification. The
market outcomes are computed without fixing pre-installed apps’ search rankings.

Table E.21: Effects of Fixing Pre-installed Apps’ Search Rankings

Variable Update Search Rankings Downloads

No-game Simulation(%) 0.0064 0.0210
Partial-game Simulation(%) 0.0002 0.0064 0.0207
Full-game Simulation(%) 0.0606 0.0055 0.0205

Notes. Figures are relative L1-Norm of each column variable y jgt in percentage:

100× [∑ jgt(|y
[f ix]
jgt −y[0]jgt |)]/[∑ jgt y[0]jgt]%, where y[f ix] denotes the market outcome with

fixing pre-installed apps’ search rankings, y[0] denotes the market outcome with flex-
ible pre-installed apps’ search rankings as assumed in supply-side estimation. The
sample covers affected markets with pre-installed apps: Entertainment category, Mu-
sic category and Utilities category in the months of June and July in 2019. Search
rankings and downloads are evaluated with expectation over the truncated set of pos-
sible search rankings. No-game simulation hold update levels fixed. Partial-game
simulation endogenizes positive update levels but hold update portfolios fixed. Full-
game simulation endogenize both positive update levels and update portfolios of top5
developers in each category.

Table E.22: Effects of Self-preferencing on Positive Update Levels

Status-quo Shut-down Percentage Change(%)
Positive Update Level mean mean mean min max std

Market-level Average 0.7951 0.7956 0.06 0.01 0.09 0.03
Product-level 0.8060 0.8064 0.07 −0.19 4.37 0.31

Notes. Update level is log(1+ n jt), where n jt is weighted number of updates, and the weights are
based on the length of release notes. Update portfolios are holding fixed. Figures reported are among
independent apps with positive update levels and valid profit functions in the data. For the status-quo
case, there is estimated preferential treatment of Apple’s apps in the search ranking algorithm. For
the shut-down case, there is no self-preferencing. Product-level percentage change of update levels
are relative to the product’s status-quo update level.

67

Table E.23: Partial-Game Counterfactual Simulation: Effects of Self-preferencing on Search Rankings,
Installations and Welfare

Variable Status-quo Shut-down Mean ∆ Mean %∆

(1) Average Search Rankings 38.92 38.92 0 0
(2) - Independent appsxxxxxx 39.86 39.23 −0.63 −1.56
(3) - Apple’s appsxxxxxx 14.35 31.85 17.51 142.07
(4) Total Installations (million) 15.16 15.40 0.24 1.58
(5) - Independent appsxxxxx 15.06 15.33 0.27 1.78
(6) - Apple’s appsxxxxx 0.10 0.08 −0.03 −26.59
(7) Consumer Surplus (million $) 321.41 321.96 0.55 0.17
(8) Total Search Costs (million $) 15.39 15.35 −0.04 −1.52
(9) Total Realized Utility (million $) 336.79 337.31 0.52 0.15
(10) Producer Surplus (million $) 76.60 77.01 0.41 0.62

Notes. In the partial game, all independent apps with valid profit functions and positive update levels
are allowed to change their positive update levels, but update portfolios are fixed. For the status-quo
case, there is estimated preferential treatment of Apple’s apps in the search ranking algorithm. For the
shut-down case, there is no self-preferencing. Producer surplus are total revenues net of variable update
costs across all independent apps with valid profit functions.

Table E.24: Computational Error in Consumer Surplus

Max Relative L2 Norm Max Relative L-infinity Norm
Status-quo Shut down Status-quo Shut down

No Game 0.33 0.37 0.26 0.30
Partial Game 0.33 0.36 0.26 0.30
Full Game 0.33 0.37 0.26 0.30

Notes. Figures are percentage of computational errors with respect to analytical mar-
ket shares. The computational error is the distance between the computational market
shares from the simulated optimal sequential search model for computing consumer
surplus and analytical market shares. The distance are measured by maximum relative
L2 norm in the left panel, and maximum relative L-infinity norm in the right panel,
across all simulated observations.

68

Appendix F Figures

Figure F.1: From AppTweak: Fitness of Estimated Downloads for Actual Downloads of Apps in All-
Categories Top Charts in the US Market

Notes: The figure is from AppTweak, source: https://www.apptweak.com/en/aso-blog/introducing-worldwide-ios-download-and-
revenue-estimates.

69

https://www.apptweak.com/en/aso-blog/introducing-worldwide-ios-download-and-revenue-estimates
https://www.apptweak.com/en/aso-blog/introducing-worldwide-ios-download-and-revenue-estimates

Figure F.2: Weighted Average Residual Downloads across App/Day/Keyword Given the Search Ranking

Notes. The figure plots weighted average residual daily downloads against search ranking. The average is across app/keyword
pairs where the app shows up on the given position in the search results of the keyword. The residuals are from installation price,
installation payment type, category-fixed effects, and daily fixed effects. The weights are based on search volume, which is an
integer between 5 and 100, constructed by Apple to index how many consumers search for the keyword on a day.

Figure F.3: Average Search Rankings of Non-preinstalled Apple’s Apps around the Search Algorithm
Change in July 2019.

70

Figure F.4: Effect of Reduced Dominance of Platform-owned Products on Independent Apps, by Half-month
from Search Algorithm Change

(a) Search Ranking (b) Search Ranking (lag downloads)

(c) Downloads (d) Conversion Rate

(e) Update Frequency (f) Price

(g) Average Rating (h) File Size

Notes. The charts present point estimates for each half-month using the difference-in-differences specification as specified in
Section 3.2. The omitted period is the half-month prior to launch of the search algorithm change. Error bars indicate 95% confidence
interval using standard errors robust to heteroscedasticity. Panel (b) include controls for lag downloads.

71

Figure F.5: Entry Around the Search Algorithm Change

Panel A. Number of New Apps Panel B. DiD Estimates

Notes. The sample to draw the figures include independent apps that were ever ranked top50 in category-specific top grossing
charts during April - September 2019. Panel A shows the number of new apps in categories with Apple’s apps and categories
without Apple’s apps. To generate Panel B, I regress the logarithm of category-month specific number of new apps as an outcome
variable on the interaction terms of monthly indicator and whether the category contains Apple’s apps (taking July 2019 as the
reference point), as well as category-fixed effects and month-fixed effects. Panel B reports the coefficients on the interaction terms
for each month. The results indicate that entry of competing independent apps did not significantly change due to the search
algorithm change.

Figure F.6: Independent Apps v.s. Apple’s Apps: Residual Downloads at Each Search Ranking, Before and
After the Search Algorithm Change

Panel A. Before Panel B. After

Notes. The figure compares the average residual downloads of independent apps and Apple’s apps on the same position in the
search results for the same keyword across different days.The residual downloads are residuals from price, installation payment
type,category-fixed effects and daily fixed effects. Panel A presents the comparison result before the search algorithm change(July
2019). Panel B presents the comparison result after the search algorithm change(July 2019). While Apple’s apps always need lower
residual downloads to achieve the same position than independent apps, the gap is smaller after the search algorithm change.

72

Figure F.7: Dynamic Preferential Treatment Parameters on Apple Relative to July 2019

Notes. The figure presents the estimated coefficients on Apple-ownership indicator in each month, while taking the month of the
search algorithm change (July 2019) as the reference point. It shows that the degree of self-preferencing significantly decreased
after the search algorithm change.

Figure F.8: Observed Rankings Relative to Rankings by Residual Downloads of Apple’s Apps

Notes. The figure presents the gap between average observed within-market search rankings of Apple’s apps to average within-
market rankings of residual downloads of Apple’s apps in each month. The residual downloads are residuals from price, installation
payment type, category-fixed effects, and daily fixed effects. It shows that an average Apple’s apps would be ranked lower according
to residual downloads in each of the month. More importantly, it shows that the gap were flat before April 2019, and reached peak
during April and July 2019, then significantly dropped after July 2019. Such pattern is consistent with identified self-preferencing
across months.

73

Figure F.9: Residual Position Effects across Search Rankings

Notes. The points report average residual position effects at each integer search ranking. The residuals are from market-fixed
effects. The shaded area covers the 5-th percentile and 95-th percentile of residual position effects. The U-shape curve indicates
inelastic demand for apps ranked top in search results and high search costs for apps ranked low in search results.

Figure F.10: Histogram of Static Developer-fixed Effects in Search Ranking

Notes. This figure presents the histogram of static developer-fixed effects across all developers. To estimate the developer-fixed
effects, I replace the interaction terms between the Apple-ownership indicator and month indicators in Equation 8 with developer-
fixed effects, where the single-product developers are normalized as the reference group. It shows that, even when allowing all
developers to have their own advantage or disadvantage in the search ranking algorithm, Apple ownership still generates larger
advantages than most developers.

74

Figure F.11: Rank-ordered Logistic Regression Model Fitness for Apple’s Apps

Notes. The figure presents predicted most-likely within-market ranking (y-axis) against observed within-market ranking (x-axis)
across markets for Apple’s apps. Bars indicate the 25 percentile and 75 percentile of fitted within-market rankings across Apple’s
apps that have ranked at the given observed within-market ranking.

75

	Teng self-preferencing.pdf
	Introduction
	Related Literature
	Roadmap

	Data
	Descriptive Evidence
	Search Algorithm Change on Apple App Store
	Difference-in-Differences Analysis

	Model
	Demand
	Search Ranking
	Supply

	Estimation
	Estimation Procedure
	Estimates of Demand
	Estimates of self-preferencing
	Estimates of Revenues and Update Costs

	Counterfactual Simulations
	Effects of self-preferencing on Update Frequency and App Quality
	Effects of self-preferencing on Welfare

	Conclusion
	Appendix Details on Data
	Sample Selection: Criteria and Process
	Variable Construction

	Appendix Details on Estimation
	Descriptive Evidence on Product Characteristics Known by Consumers Before Search
	Details in Estimation of Search Ranking Model
	Truncated Set of Possible Orders
	First-Stage Results of Instruments in the Demand Model and Supply Model
	Constraints on Supply Model Estimation
	Algorithm to Find Equilibrium Positive Update Levels

	Appendix Details on Simulation
	Compare with Difference-in-Differences Estimates
	Fix Pre-installed Apps' Search Rankings
	Calculation of Consumer Surplus
	Explain Heterogeneous Effects on Update Frequency
	Counterfactual Simulation Results without Update Portfolio Adjustment
	Ranking Imperfection due to self-preferencing

	Appendix Ambiguous Supply-side Effect of self-preferencing
	Appendix Tables
	Appendix Figures

	10042abstract.pdf
	Abstract

