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Abstract 
 
Social media are at the center of countless debates on polarization, misinformation, and even the 
state of democracy in various parts of the world. An essential feature of social media is the ranking 
algorithm that determines how content is presented to the users. This paper studies the dynamic 
feedback between a ranking algorithm and user behavior, and develops a theoretical framework 
to evaluate the effect of popularity and personalization parameters on measures of platform and 
user welfare. The model shows the presence of a fundamental trade-off between platform 
engagement and user welfare. A higher weight assigned to online social interactions such as likes 
and shares and to personalized content, increases engagement while having a detrimental effect 
in terms of misinformation—crowding-out the truth—and polarization. Besides increasing actual 
polarization, an increase in the weight assigned to social interactions may also increase perceived 
polarization, as it makes it more likely for individuals to see more extreme content—both like-
minded and not—in higher-ranked positions. Finally, we provide empirical evidence in support 
of the main predictions of our model. By leveraging a rich survey dataset from Italy and exploiting 
Facebook’s 2018 “Meaningful Social Interactions” update—which significantly boosted the 
weight given to social interaction in its ranking algorithm—we find an increase in political 
polarization and ideological extremism in Italy following the change in Facebook’s algorithm. 
JEL-Codes: D720, D830, L820, L860. 
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ranking, personalization, algorithmic gatekeepers. 
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1 Introduction

Recent revelations by whistleblowers at Facebook have once again brought to the attention of the public

the risks and dangers associated with the algorithms of digital platforms to manage their informational

content.1 The algorithms used by social media like Facebook, Twitter or Instagram, or by search engines

like Google and Bing decide what information to show to users and, importantly, also in what order to

show it. Indirectly, they determine what information is more or less relevant for any given user. A rapidly

growing body of empirical research has documented how social media platforms may foster polarization

and misinformation (Allcott et al., 2020; Di Tella et al., 2021; Levy, 2021) sometimes associated with

a tangible impact (Bursztyn et al., 2019; Müller and Schwarz, 2020, 2021; Amnesty International, 2022;

Ananthakrishnan and Tucker, 2022). There are journalistic and academic claims suggesting that such

adverse effects may be a consequence of the way profit-maximizing social media platforms design their

algorithms (CNN, 2021; Lauer, 2021), namely with the objective of ensuring a high level of engagement

(Liao et al., 2017).

This paper contributes to the above discussion by providing a theoretical framework—and related

empirical evidence— showing that algorithmic rules that tend to be desirable from the perspective of

social media platforms may be detrimental to their users and, more broadly, to the health of democracy.

We build on and extend the work of Germano et al. (2019) and Germano and Sobbrio (2020) to develop a

model where a platform ranks news items (e.g., posts, tweets, etc.), while individuals sequentially access

the platform to decide which news items to click on and possibly “highlight” (e.g., like, share, retweet). At

the center of our model, there is a ranking algorithm that decides the order of news items to be displayed

to any given user. The ranking evolves according to the popularity of news items, which is a weighted

combination of the clicks and highlights received by a given news item. Simply put, the more people click

on and the more people highlight a news item, the higher the probability that the news item will go up

in the ranking and will be displayed in a higher-order position. The model also allows assessing the role

of personalization, that is, when the platform provides different rankings to different individuals. The

objective is to study the dynamic feedback between ranking algorithms and individual behavior.

To preserve tractability, individuals’ choices over which news items to click on and highlight are modeled

as driven by behavioral traits that are rooted in ample empirical evidence. For the clicking choices, we

assume that individuals have a preference for choosing news items that are higher ranked (Pan et al., 2007;

Novarese and Wilson, 2013; Glick et al., 2014; Epstein and Robertson, 2015) and with positive probability,

they also have a preference for choosing news confirming their prior beliefs (Gentzkow and Shapiro, 2010;

Yom-Tov et al., 2013; White and Horvitz, 2015; Flaxman et al., 2016). For the highlighting choices, we

1See, for example, https://www.wsj.com/articles/the-facebook-files-11631713039
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assume that individuals highlight news items with some probability, provided they are sufficiently close to

their prior beliefs (An et al., 2014; Pogorelskiy and Shum, 2019; Garz et al., 2020) and are more likely to

do so when they hold more extreme prior beliefs (Bakshy et al., 2015; Grinberg et al., 2019; Pew, 2019;

Hopp et al., 2020).

Armed with this theoretical framework, we assess the impact of popularity-driven and personalized

rankings on platform engagement, misinformation, and polarization. We show that, when optimizing with

respect to the ranking algorithm, social media platforms face a trade-off between platform profitability

and user welfare: increasing the weight given to highlights in the popularity ranking increases engagement,

which is desirable from the platform’s perspective, yet may be detrimental from a public policy perspective,

as it leads to higher levels of misinformation—crowding-out the truth—and polarization. Accordingly, our

results suggest that ranking algorithms may have contributed to generating the “missing middle” (Bartels,

2016) and affective polarization (Iyengar et al., 2019) in the political realm. We also point out the presence

of a related insight. Besides increasing actual polarization, a boost in the highlighting weight may also

increase perceived polarization, since it makes it more likely that an individual will see more extreme

content—both like-minded and not like-minded—in higher-ranked positions. This is very much in line with

Bail (2021) who argues that social media act as a “prism” that conveys a distorted image of others and

ends up muting moderates, while fueling actual and perceived polarization (see also Yang et al. 2016). The

trade-off between social media engagement and user welfare also speaks directly to the empirical evidence

by Beknazar-Yuzbashev et al. (2022) who show that curbing toxic content on social media platforms leads

to a reduction in content consumption. Concerning personalization, the results also show the presence of

a trade-off between engagement and polarization. That is, increasing the degree of personalization in the

ranking algorithm is conducive to both a higher level of engagement and a higher degree of polarization.

This is consistent with the empirical literature on the link between personalization and polarization (Levy,

2021; Dujeancourt and Garz, 2022; Huszár et al., 2022).

We further provide direct empirical evidence in support of our main theoretical insights. We leverage a

rich survey dataset from Italy and exploit Facebook’s “Meaningful Social Interaction” (MSI) algorithmic

ranking update implemented in January 2018, which significantly increased the weights given to likes and

shares in order to boost engagement.2 We estimate a Differences-in-Differences empirical model comparing

the ideological extremism and affective polarization of people interviewed after the Meaningful Social

Interaction (MSI) algorithm was introduced (i.e., January-June 2018) and that use internet to form an

opinion, relative to those of people also using internet to form an opinion who were interviewed before

such a change (i.e., June-December 2017) and at the same time relative to people interviewed after such

2See https://www.facebook.com/business/news/news-feed-fyi-bringing-people-closer-together and https://

edition.cnn.com/2021/10/27/tech/facebook-papers-meaningful-social-interaction-news-feed-math.
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change in the algorithm who were not using internet as one of the main sources to form an opinion.3 As

predicted by our theoretical model, the results show that Facebook’s 2018 MSI update led to an increase

in ideological extremism and affective polarization in Italy.4

To the best of our knowledge, this is the first paper to explore both theoretically and empirically how

an algorithmic boost given to highlighted content may affect platform engagement and social welfare. The

model generalizes and extends Germano et al. (2019); Germano and Sobbrio (2020) essentially by giving

individuals the option to highlight content, thereby affecting the ranking, besides allowing for a broader

set of individual clicking behavior and also larger signal spaces. The model is complementary to the one

of Acemoglu et al. (2022) who focus on endogenous social networks and fact-checking.5 As in our model,

Acemoglu et al. (2022) show that platforms have an incentive to increase personalization (more homophilic

communication patterns) as this increases platform engagement. In their setting, this is detrimental in

terms of social welfare as it increases the level of misinformation. Instead, in our case, more personalization

increases polarization yet it does not affect the overall level of misinformation, since our model does not

embed the issue of fact-checking and cannot, therefore, capture such an effect. At the same time, because

we explicitly model the endogenous dynamic ranking used by social media platforms, we are instead able

to provide insights on the incentives—and possible perverse effects on social welfare—of such platforms to

boost the weight given to content highlighting in their ranking algorithm.

2 The Model

At the center of the model is a digital platform characterized by its ranking algorithm, which ranks and

directs individuals to different news items (e.g., websites, Facebook posts, tweets), based on the popularity

of individuals’ choices. Such news items may be used by individuals to obtain information on an unknown,

cardinal state of the world θ ∈ R (e.g., net benefit of a vaccine, consequences of inaction on global warming,

adequacy of a presidential candidate, etc.).

The ranking of each news item is inversely related to its popularity, where the popularity is determined

by the number of clicks and the number of “highlights” received by a given item (e.g., likes received by

a Facebook post/number of shares, like/retweets of a tweet, etc.). Each click has a weight of one, and

each “highlight” has an additional weight of η ≥ 0. We briefly illustrate the working of the model before

3Around the time of the MSI update, Facebook was by far the first social network in Italy with 34 million active users per
month and a penetration rate of almost 80% with respect to the population of Italian internet users (We Are Social, 2018).
As such, the use of internet to form a political opinion provides, in the context of Italy between 2017 and 2018, a meaningful
proxy for exposure to Facebook content.

4The theoretical predictions of the model pointing out the role of social media algorithms in fostering misinformation,
are also consistent with Vosoughi et al. (2018) providing evidence that false stories spread faster than true ones on Twitter.
Similarly, Mosleh et al. (2020) points out the presence of a negative correlation between the veracity of a news item and its
probability of being shared on Twitter.

5See also Azzimonti and Fernandes (2022) for a model of diffusion of misinformation on social media via internet bots.
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entering into some more details regarding the ranking algorithm.

2.1 Individual Clicking and Highlighting Choices

There areN individuals, each of which receives a private informative signal on the state of the world, xn ∈ R,

which is drawn randomly and independently from N(θ, σ2x) (we use f(x;σ2x) to denote the corresponding

density function). There are also M > 2 news items that individuals can click on, each of which carries an

informative signal on the state of the world ym ∈ R, also drawn randomly and independently from N(θ, σ2y)

(we use f(y;σ2y) to denote the corresponding density function).

2.1.1 Individual clicking choices absent ranking

To model individuals’ clicking choices, we assume there is a benchmark θ̂ ∈ R—non-informative with

respect to θ—which allows individuals to sort news items into “like-minded” or not. Specifically, we

assume that, leaving aside the order of news items provided by the ranking algorithm, individuals are able

to see whether a news item is reporting a “like-minded” information or not. Yet they need to click on

the news item in order to see the actual signal ym. This assumption is meant to capture a rather typical

situation, where individuals observe the “coarse” information provided in the landing page by the platform

(e.g., infer the basic stance of a news item, whether Left or Right, pro or anti something, from the website

title, Facebook post intro, first tweet in a thread, etc.), yet, in order to learn the actual content of the news

(i.e., the cardinal signal ym) and update her beliefs, the individual has to click on the news item.

We formally translate this setting into assuming that an individual is able to observe whether her own

signal xn and the news items’ signals ym are above or below θ̂. Accordingly, for each individual, the signal

xn has an associated binary signal indicating whether xn is above or below θ̂: sgn(xn) ∈ {−1, 1}, where

sgn(xn) = −1 if xn < θ̂ and sgn(xn) = 1 if xn ≥ θ̂. Similarly, for each news item, the signal ym has an

associated binary signal sgn(ym) ∈ {−1, 1}, where sgn(ym) = −1 if ym < θ̂ and sgn(ym) = 1 if ym ≥ θ̂. Let

M− and M+ denote the sets of news items with binary signal respectively −1 and 1 (by slight abuse of

notation, we use #M− and #M+ or sometimes directly M− and M+ to denote the number of news items

inM− andM+ respectively). Thus, given the individual’s signal xn, the benchmark θ̂ allows the individual

to sort news items into “like-minded” or not, before actually clicking or reading. For most of the paper,

we focus on the case where the benchmark separates signals in roughly symmetric groups: θ̂ ≈ θ.6

At the same time, as mentioned, individuals have to actually click on news item m in order to learn

its cardinal signal ym. In particular, we assume that, absent ranking effects, the individual’s choice about

6Say, |θ̂ − θ| < min
{
σx
4
,
σy
4

}
. In Appendix.2.1 we discuss the case where individuals have heterogeneous benchmarks θ̂n;

Appendix.2.2 discusses the case, where θ̂ and θ are far apart.
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which news item to click on depends on her clicking type (k ∈ {C,E, I}). To encompass all possible clicking

behaviors, we consider three clicking types:

• confirmatory type (k = C): clicks with propensity γC on a news item with the same sign as her own

signal sgn(xn) and with propensity 1− γC on one of opposite sign (where 1/2 < γC < 1);

• exploratory type (k = E): clicks with propensity γE on a news item with the same sign as her own

signal sgn(xn) and with propensity 1− γE on one of opposite sign (where 0 < γE < 1/2);

• indifferent (purely ranking-driven) type (k = I): clicks with equal propensity γI = 1/2 = 1 − γI on

an item of either sign.

These three types occur with probabilities, respectively, pC , pE , pI ≥ 0, such that pC+pE+pI = 1.7 While

we allow for all three types, all the key results of the model hold even if we were to focus on only one or

two of the types.8

The binary signal sgn(xn) together with the individual’s clicking type k determine the propensity with

which individual n of clicking type k will click on an item m, absent ranking:

φn,m(k) =

 γk/[m] if sgn(xn) = sgn(ym)

(1− γk)/[m] if sgn(xn) ̸= sgn(ym),
(1)

for k ∈ {C,E, I}, and where [m] = #M− if sgn(ym) = −1 and [m] = #M+ if sgn(ym) = 1.

2.1.2 Individual clicking choices with ranking

So far, the ranking of the items did not enter the clicking and highlighting choices. We now allow the

individual choice function to take into account that individuals see the news items ordered by the ranking

rn = (rn,m)m∈M , where rn,m is the rank of news item m as seen by individual n. We assume individuals

have an attention bias calibrated by the parameter β > 1, with the interpretation that, a news item of

equal sign but placed one position higher in the ranking, has a likelihood β times larger to be clicked

on than the one in the lower position (Pan et al., 2007; Glick et al., 2014; Novarese and Wilson, 2013).

Together with the propensity to click, absent ranking, these jointly determine the probability with which

7Similar to the literature on political economy that parametrizes the fraction of different types of voters (Krasa and
Polborn, 2009; Krishna and Morgan, 2011; Galasso and Nannicini, 2011), the model does not micro-found the individuals’
clicking choices. At the same time, it is easy to see that the confirmatory type might be driven by a preference for like-minded
news (Mullainathan and Shleifer, 2005; Bernhardt et al., 2008; Gentzkow and Shapiro, 2010; Sobbrio, 2014; Gentzkow et al.,
2015). Yom-Tov et al. (2013); Flaxman et al. (2016); White and Horvitz (2015) provide empirical evidence on confirmation
bias by users of digital platforms. Similarly, the exploratory type might be the by-product of incentives to cross-check different
information sources (Rudiger, 2013; Athey et al., 2018). Finally, the indifferent type allows us to consider the role of individuals
with a high attention bias or search cost (Pan et al., 2007; Glick et al., 2014; Novarese and Wilson, 2013).

8Note that we assume clicking types to be independent of individuals’ priors xn, but when formalizing the “highlighting”
behavior, we allow highlighting types to be correlated with the priors.
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individuals click on news items. Define the probability of individual n of clicking type k to click on news

item m as:

ρn,m(k) =
β(M−rn,m)φn,m∑

m′∈M β(M−rn,m′ )φn,m′
. (2)

2.1.3 Individual highlighting choices

After clicking on a given news item m, the individual sees the actual signal ym ∈ R and then decides

whether or not to highlight such a news item (e.g, like, share, retweet, etc.). This depends on the individual’s

highlighting type (h ∈ {A,P}). We consider two highlighting types:

• passive type (h = P ): never highlights a news item regardless of her signal;

• active type (h = A): highlights a news item if and only if the news item’s signal is sufficiently close

to her own signal, ym ∈ H(xn),

where H(xn) ≡ [xn − σx/2, xn + σx/2] and σx is the standard deviation of the individual’s signal xn. We

assume the active and passive highlighting types occur with probabilities pA, pP ≥ 0, respectively, where

pA + pP = 1.

Importantly, we consider two alternative cases for the probability of being an active type (pA):

• flat case: pA is a constant in (0, 1);

• non-flat case: pA is a function of the signal received by the individual given by:

pA(xn) = 1− e
− 1

2α

(
xn−θ̂
σx

)2α

, α ≥ 1 . (3)

Thus, both in the flat and in the non-flat case, we always assume that an individual highlights only if the

news item reports a signal sufficiently close to her prior (ym ∈ H(xn)) (An et al., 2014; Pogorelskiy and

Shum, 2019; Garz et al., 2020). Moreover, in the flat case, the probability of highlighting a news item (pA)

is independent of the individual’s signal xn (again, provided that the news item reports a signal sufficiently

close to individual’s prior). By contrast, in the non-flat case, the highlighting probability is correlated

with the individual’s signal. Specifically, pA increases with the (square of the) deviation of xn from the

benchmark θ̂, normalized by σx. And, while the specific functional form assumed in Eq. (3) is not crucial

for our results, what does matter is that individuals with more extreme priors are more likely to be active

and hence to highlight a given news item ym.
9

Figure 1 shows the assumed signal distributions of individuals (black dashed line) and of news items

(gray dashed line). It also shows, for the non-flat case, the probability of being an active type (orange

dashed line) and the resulting highlighting propensity (red solid line).

9Results are also clearly robust to replacing θ for θ̂ in Eq. (3).
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Figure 1: Individuals’ signal distribution and highlighting propensity in the non-flat case, and items’ signal
distribution for θ̂ = θ = 0 and σ2x < σ2y ; −x∗, x∗ denote the values of xn where the highlighting propensity
is locally maximal.

As with the clicking choice, individuals’ highlighting choice is not derived from a maximization problem.

Nevertheless, the correlation between extreme beliefs and propensity to highlight in the non-flat case

is reminiscent of the link between overconfidence and ideological extremism modeled by Ortoleva and

Snowberg (2015). Importantly, the non-flat case—which is our main focus—is rooted in observed empirical

regularities on how individuals with more extreme ideological beliefs tend to be more actively engaged and

also more likely to highlight political news items on social media platforms (Bakshy et al., 2015; Grinberg

et al., 2019; Pew, 2019; Hopp et al., 2020). In particular, by using data on over 10 million Facebook

users in the US, Bakshy et al. (2015) provide evidence on the ideological distribution of shared political

news.10 The data clearly show a bimodal distribution with large mass on the tails of the distribution, i.e.,

individuals with more extreme preferences account for a larger proportion of the overall shared content

on Facebook. Remarkably, such a bimodal distribution is present only when looking at the distribution

of shares related to contents defined by Bakshy et al. (2015) as “hard” information (e.g., national news,

politics, world affairs). By contrast, no such bimodality is present when looking at “soft” information (e.g.,

sport, entertainment, travel). This suggests that the bimodal distribution observed in the shares of “hard”

information is unlikely to be driven by large tails in the ideological distribution of Facebook’s users (i.e.,

a bimodal distribution of Facebook users’ ideology) or by a larger density of the network in such tails.

Rather, such a bimodal distribution of shares is likely to be driven by users with more extreme ideological

preferences having a higher propensity of sharing political contents.11

10More specifically, they measure the ideological alignment of content shared on Facebook as the average affiliation of sharers
weighted by the total number of shares. Similar evidence is presented by the authors when weighting by the total number of
distinct URL shared.

11See also Grinberg et al. (2019); Pew (2019); Hopp et al. (2020) for additional empirical evidence on the positive correlation
between extremist political preferences and the propensity to share political news in social media.
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2.2 Platform and Ranking Algorithm

We consider popularity-based rankings that evolve as a function of the clicking and highlighting behavior

of the individuals, as well as personalized rankings that may depend on the identity of the individuals.

2.2.1 Popularity ranking

After each individual makes her choices, the algorithm updates the popularity of each news item such that

a click has a weight of 1 and a highlight has a weight of η ∈ R+. That is, starting from κ0,m ∈ R+, the

popularity of each news m, κn,m, for n ≥ 1, is updated according to:

κn,m = κn−1,m +


0 if m is not clicked on by n

1 if m is clicked on and not highlighted by n

1 + η if m is clicked on and highlighted by n.

(4)

The ranking of the news that individual n sees (rn,m)m∈M is inversely related to the popularity before she

clicks:

rn,m < rn,m′ ⇐⇒ κn−1,m < κn−1,m′ . (5)

We also keep track of the traffic a news item receives without counting the highlights. Hence, starting from

κ̂0,m = κ0,m ∈ R+, the number of clicks on news item m, κ̂n,m, for n ≥ 1, is updated according to:

κ̂n,m = κ̂n−1,m +

 0 if m is not clicked on by n

1 if m is clicked on by n.
(6)

Similarly, we track keep of the number of highlights a news item receives, without counting the clicks.

Thus again, defining κ̃0,m = κ0,m ∈ R+, the number of highlights of news item m, κ̃n,m, for n ≥ 1, are

updated accordingly.

2.2.2 Popularity ranking with personalization

Suppose now the ranking, while still being based on popularity, weights differently the clicks from different

groups. Because in this simple model individuals only enter once in the platform, the model does not

allow the personalization to be based strictly speaking on previous clicks and highlights. Nevertheless, we

assume the algorithm can somehow infer the sign of the individuals’ signals (e.g., using the location of her

IP address, cookies from past browsing history, etc.) so that individuals are naturally divided into two

groups, xn ∈ L if their signal satisfies sgn(xn) = −1, and xn ∈ R if sgn(xn) = 1. Choices and highlights

are determined as above, but the difference is that now there are two rankings, rLn,m and rRn,m, whereby

9



individuals in L see rLn,m when doing their search, while individuals in R see rRn,m. Moreover, the ranking of

group g ∈ {L,R} depends only in part on the clicks and highlights of individuals from the opposite group.

Specifically, starting from κg0,m ∈ R+, the popularity for group g of each news item m, κgn,m, for n ≥ 1, is

updated according to:

κgn,m = κgn−1,m +


0 if m is not clicked on by n

λ(n) if m is clicked on and not highlighted by n,

λ(n) · (1 + η) if m is clicked on and highlighted by n,

(7)

where λ(n) = 1 if n ∈ g and λ(n) = λ if n /∈ g, and where λ, 0 ≤ λ ≤ 1, is a parameter of the personalized

ranking algorithm and determines how much clicks and highlights from the opposite group g′ ̸= g count

for the ranking seen by group g. When λ = 0 each group sees a fully personalized ranking, independent of

the clicks and highlights of the other group. When λ = 1 clicks from both groups count the same, so that

the two rankings are identical, and we get back the case of a single ranking as in the previous subsection.

As before, the ranking of news item m that individual n ∈ g sees (rgn,m)m∈M is inversely related to the

popularity of m before n clicks:

rgn,m < rgn,m′ ⇐⇒ κgn−1,m < κgn−1,m′ , g ∈ {L,R}. (8)

We also keep track of traffic and engagement of news items separately for each group. Starting again from

κ̂g0,m = κ0,m ∈ R+, the number of clicks by group g on website m, κ̂gn,m, for n ≥ 1 and g ∈ {L,R}, is

updated according to:

κ̂gn,m = κ̂gn−1,m +


0 if m is not clicked on by n

1 if m is clicked on by n, n ∈ g

0 if m is clicked on by n, n /∈ g,

(9)

The same can be done by counting the highlights of group g without counting the clicks, κ̃gn,m, for g ∈

{L,R}.

2.3 Evaluation Indices

To evaluate the effect of the highlighting and personalization parameters of the ranking algorithm on various

aspects of social welfare, we formally define a few indices. Let y(n) ∈ M denote the signal of the news

item clicked on by individual n, and let L (R) denote the individuals with signals xn with sign(xn) = −1

(= +1). Then we can define the following indices:
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• Engagement on item m by group g: ENGgm = κ̂gN,m + κ̃gN,m (clicking and highlighting by grop g);

• Total Engagement: ENG =
∑

m∈M
(
ENGLm + ENGRm

)
(total clicking and highlighting);

• Misinformation: MIS = 1
N

∑
n∈N |y(n)− θ|;

• Polarization: POL = 1
N

∣∣∑
n∈R y(n)−

∑
n′∈L y(n

′)
∣∣;

The first two indices are meant to capture one the key dimension digital platforms care about: user

engagement, or the expected amount of activity generated by the individuals.12 The third index is a

straightforward measure of misinformation capturing the average distance between the information carried

by the news items chosen by individuals and the true state of the world. The fourth index measures polar-

ization as the average distance between the information provided by the news items chosen by individuals

in group R with the respect to the one provided by the news items chosen by individuals in group L.13

Finally, we aim to asses the impact of highlighting and personalization weights on the overall social

welfare. In principle, such weights might have opposite effects on the welfare of the platform versus the one

of the individuals. Accordingly, we consider two sources of social welfare, namely, one based on what the

platform mainly cares about: generating high levels of engagement (ENG); and another based on what

may concern the users of the platform: guaranteeing low levels of misinformation (MIS) and polarization

(POL). For convenience, we capture all these aspects in a single measure of welfare of the form:

Wψ(η, λ) = ψ · ENG(η, λ)− (1− ψ) ·MIS(η, λ) · POL(η, λ), (10)

where 0 ≤ ψ ≤ 1 is a weight for the relative importance of the platform’s likely goal (high ENG) relative

to the users’ welfare (low MIS and POL).

3 Engagement, Misinformation, Polarization and Social Welfare

In this section, we study the dynamic interplay between individuals’ clicking and highlighting behavior

and the platform’s ranking algorithm, based on popularity and personalization. To simplify the discussion,

throughout this section we assume that θ̂ = θ. That is, we focus on the symmetric case where signals

are symmetrically distributed around the benchmark.14 We first present a preliminary discussion of the

12In particular, the willingness to increase engagement was behind the boost in η implemented in 2018 by Facebook with
the stated objective of increasing meaningful social interactions (see Section 4 for a related discussion).

13Notice that we abstract from the specific belief updating of each individual. Our focus is on the comparative static effect of
changes in the algorithm parameters (η and λ) on misinformation and polarization. Accordingly, the proposed misinformation
and polarization indices will be informative on such effects as long as individuals update their beliefs in the direction of the
signal carried by the news item they click on, y(n).

14Allowing for heterogeneous benchmarks across individuals θ̂n does not qualitatively affect the results; see Appendix.2.1.
Similarly, allowing for small asymmetries in the distribution of signals with respect to the benchmark θ̂ also does not affect the

11



Clicks, = 0

-10 -5 0 5 10
0

0.1

0.2

0.3

0.4
D

e
n
si

ty

Total
Left
Right

Highlights, = 0

-10 -5 0 5 10

y

0

0.1

0.2

0.3

0.4

D
e
n
si

ty

Total
Left
Right

A

C

Clicks, = 100

-10 -5 0 5 10
0

0.1

0.2

0.3

0.4

D
e
n
s
ity

Total
Left
Right

Highlights, = 100

-10 -5 0 5 10

y

0

0.1

0.2

0.3

0.4

D
e
n
si

ty

Total
Left
Right

B

D

Figure 2: Users’ clicking (top) and highlighting (bottom) behavior for η = 0 (left) and for η = 100 (right)
in the constant (flat) highlighting case. For increasing values of η, both polarization and misinformation
decrease. Polarization decreases from an average value of 1.8 (stev 0.5) to 1.3 (stdev 0.3), and the misin-
formation also decreases from an average value of 2.4 (stev 0.6) to 1.7 (stdev 0.3). See Section 3.5 for more
details.

mechanism linking η and the dynamics of clicking and highlighting in the flat and non-flat cases. We then

provide analytical results characterizing limit clicking and highlighting distributions and the impact of η

and λ on the key indices introduced in Section 2.3.

3.1 Increasing Meaningful Social Interactions in the Flat and Non-Flat Cases

A key objective of our model is to understand the effect of the weight of a highlight (η) on engagement,

misinformation, and polarization. The effect, especially for misinformation and polarization, crucially

depends on the propensity with which individuals decide to highlight news items. In particular, it matters

greatly whether individuals’ highlighting behavior is what we call flat or non-flat. The reason is that,

as the weight of a highlight increases, more items close to the truth (y’s ≈ θ) are highlighted in the flat

case and consequently also clicked on, whereas, in the non-flat case, it is items farther from the truth (y’s

≈ −x∗, x∗; see Fig. 1) that are highlighted and consequently also clicked on more frequently.

3.1.1 Flat case

Consider what we referred to as the flat case for the active types in the previous section, then increasing

the weight on highlighting (η) can be shown to have some nice properties for both the platform and users

welfare, namely, it increases engagement, while also reducing both polarization and misinformation. To

results qualitatively (|θ̂− θ| < min
{
σx
4
,
σy
4

}
) . However, allowing for large asymmetries may change the results; Appendix.2.2

discusses the case where θ̂ and θ are far apart.
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see this, suppose then that a constant share (pA ∈ (0, 1)) of individuals who read a given article are

also willing to highlight it, provided the news item’s signal is sufficiently close to the individual’s signal

(ym ∈ H(xn)). Then as η increases, articles that get highlighted increase in total popularity and hence

go up higher in the ranking, meaning that they are in turn also more likely to get clicked on. Since both

the news items’ and the individuals’ signals are normally distributed, there is a relatively higher mass of

individuals with signals around the truth (θ) and so, such individuals are more likely to read and highlight

articles closer to the truth. This pushes them further up in the ranking. Hence, higher values of η will tend

to concentrate clicking around the truth. This decreases polarization and misinformation, and, because

there are relatively more individuals with signals around the truth, due to their normal distribution, it also

increases engagement.

Thus increasing η in the flat case directly increases what Facebook calls meaningful social interactions,

and at the same time concentrates clicking around the truth, thereby decreasing misinformation and

polarization. This is illustrated by Figure 2, where Panel B shows the (simulated) clicking distribution for

large η more concentrated around the truth than the corresponding Panel A with small η. Panels C and D

show the highlighting distribution, which is a key part of engagement, and which is also more concentrated

around the truth for large η (Panel D) than for small η (Panel C). Moreover, it can be checked that the

overall number of highlights is greater for large η (Panel D) than for small η (Panel C).

3.1.2 Non-flat case: Crowding out the truth

Consider now our leading case, which is the non-flat case. Then increasing the weight on highlighting (η)

can have desirable properties for the platform, namely, higher engagement, but not necessarily for users

since it can result in higher misinformation and higher polarization. To see this, notice first that the

combination of normally distributed priors and a propensity to highlight that increases in the extremeness

of the prior leads to highlighting behavior that is bimodal (see Section 2.1.3, Figure 1). An important

intermediary result shows that, as η becomes large and highlighting becomes relatively more important,

the clicking distribution inherits the basic shape of the highlighting distribution. The reason is that, due

to the ranking algorithm, when η is large, items that have a high propensity of being highlighted go higher

up in the ranking, and highlighting behavior becomes more important as a driver of what individuals see

as being ranked prominently and ultimately end up clicking on.

As a result, as η increases, the clicking distribution goes from being roughly unimodal and centered

around the true state θ when η is small to being increasingly bimodal as η gets large. Since the clicking

distribution reflects what people read, this shows that a higher η increases both misinformation and po-

larization. It can be checked that it also leads to higher engagement (measured as the sum of clicks and
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Figure 3: Polarization and misinformation increase for increasing values of η in the non-flat highlighting
case. Panels (A) and (B) show users’ clicking behavior for η = 0 and η = 100, respectively. Panels (C)
and (D) show users’ highlighting behavior for η = 0 and η = 100, respectively. Polarization increases from
an average value of 1.8 (stev 0.5) to 2.8 (stdev 0.4), and misinformation increases from an average value
of 2.4 (stev 0.6) to 3.6 (stdev 0.4). See Section 3.5 for more details.

highlights). This is illustrated in Figure 3, where Panels A and B show the clicking distribution for the

cases of respectively small and large η. We refer to this phenomenon, whereby individuals are less likely

to click on items close to the true state and more likely to click on ones further away, due to a higher

parameter η, as crowding out the truth. As mentioned in the introduction, the case of large η seems to

capture what Bail (2021) refers to as the social media “prism”, which he argues besides fueling extremism

and polarization, mutes moderates and gives a distorted image of others. To see this, consider Panel B,

where we see that individuals on the left, for example, are more likely to click on extreme items from the

left when clicking on the left (blue), but are also more likely to click on extreme items from the right when

clicking on the right (shaded red on the right). This suggests that they will get a more extreme impression

of individuals both on the left and on the right and, given that priors are centered around θ, this is also

consistent with higher perceived polarization on social media (see also Yang et al. (2016)). In other words,

the highlighting parameter η can be seen as directly contributing to the “prism” effect of Bail (2021).

Panels C and D, finally, show the highlighting behavior in the case of small and large η respectively, and

where it can be seen that there is more highlighting in D than in C, suggesting that engagement increases

with η.

In the subsections that follow, we look at the above phenomena more formally and also connect them

to welfare evaluations for the platform and the consumers.
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3.2 Limit Clicking and Highlighting Behavior

In order to evaluate the impact of the parameters of the algorithm (η, λ), it is useful to obtain actual clicking

and highlighting behavior of the individuals, while keeping track of the dynamic feedback between clicking,

highlighting and ranking. We do this by characterizing the limit clicking and highlighting distributions,

since these ultimately determine what to expect in terms of engagement and changes in posterior beliefs.

A central feature of the ranking algorithm is its dependence on the popularity of different items. Define

the expected popularity of an item with signal y, absent ranking, as the sum of the expected clicking and

highlighting propensities, absent ranking, where highlighting is weighted by η:

π(y) =
1 + η · µH(y)

M · (1 + η · µ̄H) + η · (µH(y)− µ̄H)
, (11)

where µH(y) =
∫
x∈H−1(y) pA(x)f(x;σ

2
x)dx and µ̄H =

∫
µH(y)f(y;σ

2
y)dy.

15

An assumption that we maintain in this and the following section is that the expected rank of a given

item with signal y ∈ R is approximated by a linear decreasing function of the expected popularity of that

item, absent ranking:

r(y) ≈ ζ0 − ζ1 · π(y), (12)

where ζ0, ζ1 > 0 are constants.

This assumption significantly simplifies the analysis. It allows us to directly derive the effects of the

popularity and personalization parameters and to characterize both the limit clicking and highlighting

distributions, which represent expectations of T repetitions (for T → ∞) of the process described in

Sections 2.1 and 2.2.16 Importantly, Figure 4 shows that the assumption is quite accurate for simulations

with different values of η in the flat (Panels A-C) and non-flat cases (Panels D-F). Moreover, all the

simulations in Section 3.5 are obtained without imposing the assumptions and the results are fully consistent

with the analytical results obtained assuming Eq. (12). This suggests that the linearity assumption on the

expected rank is relatively innocuous within our overall framework.

Lemma 1 (Limit Clicking and Highlighting Distributions). Assume Eq. (12), then the limit clicking

15Eq. (11) is derived from:

π(ym) =

∫ ∑
k∈{C,E,I} pk · φn,m ·

(
1 + η · pA(xn) · 1{xn∈H(ym)}

)
f(x;σ2

x)dx∑
m′∈M

∫ ∑
k∈{C,E,I} pk · φn,m′ ·

(
1 + η · pA(xn) · 1{xn∈H(ym′ )}

)
f(x;σ2

x)dx
,

taking averages over T repetitions for T → ∞.
16The analysis would otherwise require computing distribution over limit rankings, which is an open problem already without

highlighting and with M > 2 items (Analytis et al., 2022). However, it can be verified that in the case of M = 2, using a
result from Analytis et al. (2022), there is an exact linear relationship between the expected rank and the clicking propensity
as assumed in Eq. (12).
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Figure 4: Linear dependence between the expected rank (blue circles, obtained from simulations) and the
expected popularity π(y) as assumed in Eq. (12). Panels (A)-(C) depict the flat case highlighting case, and
Panels (D)-(F) the non-flat case. Red line denotes the best linear fit. To compute each blue dot, we binned
the item’s signals into 81 bins (bin-size = 0.2) and compute the mean popularity and the corresponding
mean rank from T = 103 experiments, each of them with different M = 20 item’s signals and different
N = 5 · 103 individual’s signals. See Section 3.5 in the main text for more details.

distribution can be approximated as:

LCD(y) ≈ Λβ(π(y)) · f(y;σ2y), (13)

where, Λβ is a linear function with Λ′
β > 0 for β > 1, π is defined in Eq. (11). Accordingly, the limit

highlighting distribution can be approximated as LHD(y) ≈ µH(y) · LCD(y).

The first result shows a basic feature of our ranking-based dynamics, namely, that the expected traffic

on a given item is driven by its expected popularity, absent ranking. Attention bias enters through Λβ as

it’s a strictly increasing function of π(y) provided β > 1. A higher π(y) increases the rank of an item with

signal y, thereby increasing its traffic, the more so, the greater β is, for β > 1. With Eq.(11) we can write:

LCD(y) ∝ (1 + η · µH(y)) · f(y;σ2y), (14)

meaning that, for any y, LCD(y) is proportional to the expression on the right and directly shows how

η affects limit clicking behavior. Both results follow from the linearity assumption in Eq. (12) combined
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with the functional form of the clicking probabilities assumed in Eq. (2).

3.3 Engagement, Misinformation and Polarization

3.3.1 Effect of the highlighting parameter η

We here focus on the comparative statics of the popularity parameter for highlighting (η) and assume there

is no personalization (λ = 1).17 As is clear from Section 3.2, as η increases, the expected popularity of an

item and hence its expected traffic is increasingly driven by the highlighting propensity. This observation is

a central message of the paper and has important consequences for how the parameter η affects engagement,

misinformation and polarization.

Proposition 1 (Effect of η on Engagement, Misinformation and Polarization). Assume Eq. (12). If in-

dividuals’ highlighting behavior is non-flat (pA as in Eq. (3)), then, increasing the weight on highlighting

(higher η) increases user engagement, misinformation and polarization. If, instead, the highlighting behav-

ior is flat (pA constant), then the above results need not hold; a higher η increases user engagement and

decreases misinformation and polarization.

Thus, in the non-flat highlighting case, increasing η, increases engagement, but also has the adverse

effect of increasing misinformation and polarization. This is not the case when highlighting behavior is flat,

where a higher η increases engagement, while decreasing misinformation and polarization, albeit slightly.

It is possible to interpret the results in light of the evidence provided by Bakshy et al. (2015). As

discussed above, Bakshy et al. (2015) point out that in the case of “hard” news (e.g, national, political),

the propensity to highlight content is indeed higher for individuals with a more extreme prior, whereas the

same does not apply to “soft” news (e.g., entertainment). The results suggest that social media platforms

have an incentive to choose a high level of η as this results in a high level of engagement across all types

of news contents. Yet, while this is not so much a concern for users’ welfare in the case of “soft” news, we

show it might have detrimental effects on misinformation and polarization when it comes to political news

contents.

3.3.2 Effect of the personalization parameter λ

Suppose that the ranking can be personalized, based on the sign of the individuals’ signals as in Sec-

tion 2.2.2. It is not difficult to see that the above results on the effect of η continue to hold for any degree

of personalization (λ ∈ [0, 1]). The next result concerns the effect of the personalization parameter λ.

17The willingness to increase engagement was behind the boost in η implemented in 2018 by Facebook with the stated
objective of increasing meaningful social interactions; see Section 4 for a related discussion.
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Proposition 2 (Effect of λ on Engagement and Polarization). Assume Eq. (12) and fix η ≥ 0 arbi-

trarily. Then increasing personalization (lower λ) increases user engagement and polarization, both when

individuals’ highlighting behavior is flat and when it is non-flat (pA as in Eq. (3)).

The fact that more personalization increases polarization is straightforward. Decreasing λ makes the

rankings of the two groups increasingly less correlated, which in turn makes users in each group more likely

to click on items carrying a signal of the same sign as their own. This directly increases the polarization

measure POL. To see the effect on engagement, note first that users that are active types only share

items that are close enough to their own signal (ym ∈ H(xn)). As λ decreases and the rankings become

less correlated, users are more likely to see items that have signals closer to their own more prominently

ranked, and are in turn also more likely to click on them. But since items that are more prominently

ranked are more likely to be in the set H(xn), they are also more likely to be highlighted. Overall, whether

highlighting behavior is flat or non-flat, a lower λ (more personalization) contributes to an increase in

ENG.

One effect that the personalization parameter λ does not have in our model, differently from the

highlighting parameter η, is that it does not significantly impact misinformation. This is due to the fact

that it mainly contributes towards interchanging clicks made from one group on items with signals of the

opposite sign with clicks made by individuals from the other group, who have signals of the same sign.

While this contributes to increasing polarization it does not really affect misinformation.

3.4 Towards a socially efficient ranking

Consider the welfare index (Wψ) defined in Section 2.3, Eq (10). From the analysis of the previous sections,

we can show:

Proposition 3. Assume Eq. (12). If individuals’ highlighting behavior is non-flat (pA as in Eq. (3)), then,

for small values of ψ, (ψ ≈ 0), social welfare (Wψ) is maximized at (η, λ) ≈ (0, 1), while for large values

of ψ, (ψ ≈ 1), social welfare is maximized at (η, λ) ≈ (∞, 0).

If instead individuals’ highlighting behavior is flat (pA constant), then, for small values of ψ, (ψ ≈ 0),

social welfare is maximized at (η, λ) ≈ (∞, 1), while for large values of ψ, (ψ ≈ 1), social welfare is

maximized at (η, λ) ≈ (∞, 0).

This presents a key result of the paper. Namely, in the empirically relevant case of non-flat propensity

to highlight, a clear dichotomy arises between the perspective of the platform and the one of the users with

respect to the desirable weight to be assigned to the highlights. This resonates with the reports leaked

by Facebook’s whistle-blowers, who underscored the conflicting welfare effects created by the platform’s

2018 “Meaningful social interactions” update, which boosted the weights given to content sharing and
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highlighting in the ranking algorithms. Indeed, while this change increased users’ overall engagement

on Facebook, it appears to also have led to an increase in misinformation and polarization and hence

decreased user welfare, as predicted by Proposition 3 for the non-flat case.18 Section 4 presents direct

empirical evidence in this regard.

3.5 Numerical Simulations

We here provide simulation results for the more general case, where no restriction on the linearity of the

expected ranking is imposed. We run T = 4, 000 independent simulations of the basic model with both

non-flat and flat highlighting propensities. Each run corresponds to M = 20 different news items signals

ym ∼ N(θ = 0, σ2y = 9) and to N = 105 individuals signals xn ∼ N(θ = 0, σ2x = 9). When reporting the

key evaluation indices, we only consider the last 2, 000 clicks. This avoids dependence on the initialization

of the ranking. We also set θ̂ = θ. The proportions of confirmatory, exploratory, and indifferent clicking

types are set to pC = 0.7, pE = 0.15, and pI = 0.15, respectively, and their corresponding propensities

to γC = 0.8, γE = 0.4, and γI = 0.5, respectively. The value of β determining the attention bias is set

to β = 1.25 and the value of α for the non-flat highlighting probability pA is 4. Results are robust to

choosing different values of the parameters.

Figure 5 summarizes the simulated effects of η and λ on the key evaluation indices for the non-flat

case (Panels A-C) and the flat case (Panels D-F), where the reported measure is an average among all T

independent simulations. Panels A and D show total user engagement (ENG). We observe that increasing

η and increasing personalization (decreasing λ) results in an increase of engagement in both non-flat and

flat cases. The dependence on λ is more pronounced in the flat case. Panels B and E show results of

misinformation (MIS). Again, increasing η has opposite effects in non-flat and flat scenarios, resulting

in an increase of misinformation in the non-flat case, and a decrease the flat case. In contrast to the

polarization results, we only observe a weak dependence of misinformation on the degree of personalization

λ, which is only noticeable for higher values of η. Finally, Panels C and F show results of user polarization

(POL). In agreement with the analytical results, we observe that the effect of increasing η is different

depending on the highlighting propensities. In the non-flat case, increasing η results in an increase of

polarization, whereas in the flat case, it has the opposite effect. However, increasing personalization

(decreasing λ) results in an increase in polarization, for both types of highlighting propensities.

Finally, we show results of the welfare index Wψ(η, λ). Figure 6 shows Wψ(η, λ) for different values of

18An aspect that may play a role in moderating the platform-optimal level of η is how it impacts advertising through its
effect on content, besides the effect on engagement. For example, if advertisers were to dislike a too high level of misinforma-
tion/polarization, this could be reflected in Wψ and, consequently, could affect the platform-optimal level of η. Nevertheless,
for ψ > 0, i.e., as long as the platform cares about engagement, the level of η chosen by the platform will be higher than
the one minimizing misinformation and/or polarization. For theoretical models on the role of advertising in affecting content
moderation in social media, see Madio and Quinn (2021); Liu et al. (2021); Jiménez Durán (2022).
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Figure 5: Effect of varying highlighting weight (η) and personalization (λ) in the simulations. For non-flat
individuals’ highlighting behavior: (A) user engagement, (B) misinformation, and (C) polarization. For
flat individuals’ highlighting behavior: (D) user engagement, (E) misinformation, and (F) polarization.

the weight ψ which controls for the relative importance of the platform’s welfare (high ENG) relative to

the users’ welfare (low MIS and POL). We observe that the values of η and λ for which the welfare index

is maximized coincide with those stated in Proposition 3 for both flat and non-flat cases.

4 Empirical Evidence: Meaningful Social Interactions and Political Po-

larization

The theoretical predictions of our model discussed in Section 3.3 suggest that an increase in the weight

given by the ranking algorithm to the “highlights” (an increase in η) will result in individuals being

more exposed to extremist political content and, in turn, in a higher level of political polarization. To

connect this prediction to observational data, we exploit Facebook’s “Meaningful Social Interaction” (MSI)

update implemented in January 2018, which—with the goal of increasing platform engagement—boosted

the weight given to likes and shares in Facebook’s ranking algorithm.19 In particular, our theoretical

framework suggests that—if the propensity to highlight contents is higher for people with more extreme

priors (non-flat case)—we should observe an increase in extremism and political polarization following such

19See https://www.facebook.com/business/news/news-feed-fyi-bringing-people-closer-together and
www.edition.cnn.com/2021/10/27/tech/facebook-papers-meaningful-social-interaction-news-feed-math.
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Figure 6: Effect of highlighting weight (η) and personalization (λ) on social welfare in the simulations.
For non-flat individual highlighting behavior: (A) user welfare (ψ = 0), (B) platform welfare (ψ = 1).
Similarly for flat individuals’ highlighting behavior: (C) user welfare, (D) platform welfare.

a change in the algorithm. In what follows, we provide empirical evidence in support of such predictions

by leveraging a survey dataset from Italy containing rich information on political preferences around the

time of the change in Facebook’s algorithm.

4.1 Data

The dataset comes from the Polimetro (i.e., Political meter) surveys run by the leading Italian public

opinion polling company Ipsos. The Polimetro contains weekly/monthly interviews on a representative

sample of the Italian voting population (i.e., aged 18 or above).

In particular, for the purpose of our analysis, the survey asks questions on the main sources of infor-

mation used by an individual to form a political opinion (i.e., newspapers, radio news, tv news, friends,

internet, etc). It is important to notice that around the time of its MSI update, Facebook was by far the

first social network in Italy with 34 million active users per month and a 60% penetration rate in the overall

population (corresponding to a penetration rate of almost 80% with respect to the population of Italian

internet users), compared with the 33% and 23% penetration rates of Instagram and Twitter, respectively

(We Are Social, 2018). Hence, while the Ipsos survey does not directly ask questions about Facebook use,

it is possible to proxy the exposure to Facebook content with the use of internet to form a political opinion.

Furthermore, besides providing information on the socio-demographic characteristics of the respondents,
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the Polimetro asks questions regarding the ideological position of the respondent on the left-right scale and

on the probability of voting for each party. Accordingly, we make use of these questions to construct two

main outcome variables. The first one is a dummy variable taking value zero if a respondent self-identifies

with a moderate political position (center, center-left or center-right) and one if she instead identifies with

a more extremist position (left, right, extreme-left, extreme-right). This variable is thus meant to capture

a simple measure of political extremism. The second one is a measure of affective polarization capturing

“the extent to which citizens feel sympathy towards partisan in-groups and antagonism towards partisan

out-groups” (Wagner 2021, page 1), see Appendix.3.1 for further details.

4.2 Empirical strategy

We implement a Differences-in-Differences empirical model to assess whether the change in the Facebook

algorithm implemented in January 2018 via the introduction of the “Meaningful Social Interaction” weights

had a causal impact on self-declared ideological extremism and affective polarization. Specifically, we look

at such outcomes in the group of people living in a given municipality who use internet to form a political

opinion and who were interviewed after the Meaningful Social Interaction (MSI) algorithm was introduced

(i.e., January-June 2018) and then compare it with the ones of the group of people also using internet

to form an opinion who were interviewed before such a change (i.e., June-December 2017) and at the

same time with the group of people interviewed after such change in the algorithm that were not using

internet as one of the main sources to form an opinion. Accordingly, we estimate the following econometric

specification:

Yi,m,t = α+ β1(Opinion via interneti,m,t × Post MSI)

+ β2 Opinion via interneti,m,t + β3 Post MSI+ αm + Xi,t + εi,m,t (15)

where Yi,m,t represents the outcome of interest relative to individual i, leaving in municipality m inter-

viewed in the survey wave t (i.e., probability of declaring a non-moderate political ideology or affective

polarization). αm captures municipality fixed effects. β1 is the parameter of interest. In more demanding

specifications, we also include either time fixed effects (i.e., survey-wave fixed effects) or province-by-time

fixed (which account for any unobservable shock at the province-time level). Xi,t represents a vector of

socio-demographic control variables including the respondent’s age (and age squared), gender, number of

resident family members, level of education, type of occupation and religiosity. Observations are weighted

according to the sampling weights provided by Ipsos and thus the results are representative of the Italian

voting age population.
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4.3 Results

Table 1 shows our baseline results on the effect of the introduction of Facebook’s MSI update on the proba-

bility that an individual using internet to form an opinion holds a non-moderate political position. Column

1 provides estimates when including municipality fixed effects only (besides individual level controls). Col-

umn 2 includes also date-of-interview fixed effects accounting for possible overall time-varying patterns in

ideological positions. Column 3 includes fixed effects both at the municipality and at the province-by-

date-of-interview level, thus accounting for any province-time variation in political preferences. Columns

1-3 present estimates when clustering standard error at the regional levels (which in Italy correspond to

electoral districts for the upper chamber). Column 4 provides evidence that results are robust when clus-

tering standard error at a finer geographical level (provinces). The results suggest that in the period after

the MSI implementation, individuals using internet to form a political opinion had a higher probability of

holding a non-moderate ideology. The effect is sizeable accounting—in the most demanding specifications,

columns 3 and 4—for around one standard deviation increase in such probability.

Table 1: MSI and non-moderate ideological position
(1) (2) (3) (4)

Non-moderate Non-moderate Non-moderate Non-moderate
Ideology Ideology Ideology Ideology

Opinion via internet × Post MSI 0.062*** 0.058*** 0.051*** 0.051***
(0.016) (0.015) (0.014) (0.018)

Opinion via internet -0.012 -0.006 -0.012 -0.012
(0.020) (0.020) (0.024) (0.022)

Post MSI -0.017*
(0.009)

Observations 25,690 25,690 25,690 25,690
Mean outcome 0.36 0.36 0.36 0.36
SD outcome 0.48 0.48 0.48 0.48

Municipality FE YES YES YES YES
Date of interview FE NO YES NO NO
Province-Date of interview FE NO NO YES YES

Cluster SE Region Region Region Province

Note: Time horizon: June 2017-June 2018. All estimates include the following control variables: age, age squared,
gender, number of resident family members, level of education, type of occupation and religiosity of the respondent.
Observations are weighted according to the sampling weights provided by Ipsos and thus the results are representative
of the Italian voting age population. Robust Standard Errors in parenthesis. *** p<0.01, ** p<0.05, * p<0.1

We now turn to the analysis on affective polarization. Table 2 presents our results.20 The results

present in Columns 1-4 show a positive, statistically significant and robust effect. That is, in the period

after the MSI algorithmic update, individuals using internet to form a political opinion had a higher level

of affective polarization. Also in this case, the effect is sizeable accounting for around 1.2 of a standard

20The lower number of observations relative to Table 1 is due to the fact that the questions used as proxies of sympathy
score for the different parties are asked less frequently (i.e., in fewer surveys) with respect to the one on the self-decleared
ideological position.
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deviation increase in affective polarization. All in all, Tables 1 and 2 provide evidence in support of the

key theoretical predictions of our model.21

Table 2: MSI and Affective Polarization
(1) (2) (3) (4)

Affective Affective Affective Affective
Polarization Polarization Polarization Polarization

Opinion via internet × Post MSI 0.054** 0.055** 0.073*** 0.073***
(0.024) (0.024) (0.019) (0.025)

Opinion via internet -0.012 -0.011 -0.006 -0.006
(0.023) (0.022) (0.023) (0.025)

Post MSI 0.118***
(0.020)

Observations 14,499 14,499 14,499 14,499
Mean outcome 1.29 1.29 1.29 1.29
SD outcome 0.61 0.61 0.61 0.61

Municipality FE YES YES YES YES
Date of interview FE NO YES NO NO
Province-Date of interview FE NO NO YES YES

Cluster SE Region Region Region Province

Note: Time horizon: June 2017-June 2018. All estimates include the following control variables: age,
age squared, gender, number of resident family members, level of education, type of occupation and
religiosity of the respondent. Observations are weighted according to the sampling weights provided
by Ipsos and thus the results are representative of the Italian voting age population. Robust Standard
Errors in parenthesis. *** p<0.01, ** p<0.05, * p<0.1

5 Conclusion

Ranking algorithms are central to the working of social media platforms. This paper provides a theoretical

framework to study the dynamic feedback between social media users and a platform’s ranking algorithm.

The model shows how polarization and misinformation may naturally emerge from simple changes in

the algorithm’s parameters, combined with basic well-documented behavioral traits of the users. When

optimizing its algorithm, the platform may face a trade-off between its own welfare and that of its users.

We show that changes in popularity and personalization parameters that increase platform engagement

may have detrimental effects in terms of misinformation—crowding-out the truth—and/or polarization, but

may also distort the way individuals perceive each other on the platform (Bail, 2021; Yang et al., 2016).

Our results are also consistent with the evidence provided by the empirical literature assessing the impact

of personalization on political polarization (Levy, 2021; Huszár et al., 2022). Importantly, by exploiting

the 2018 Facebook MSI algorithmic ranking update and leveraging a rich survey dataset from Italy, we

provide direct empirical evidence corroborating the detrimental impact on political polarization created by

a boost in the weight given by the ranking algorithm to “highlighted” contents (e.g., shares), as predicted

21Appendix Tables A.1 and A.2 show that the results are robust to excluding observations in the pre-electoral period
(January-March 2018).
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by our model. The paper thus provides academic guidance to the public debate on the potential desirable

and undesirable consequences of social media and other “algorithmic gatekeepers” on social welfare.

We conclude by acknowledging that the model does not embed other important features of social media

such as endogenous networks or fact-checking. Complementary research (Acemoglu et al., 2022) points out

that these additional features may lead to further reinforcing the trade-off between platform engagement

and social welfare outlined here. All in all, the insights from this line of research provide a “theory of

harm,” indirectly endorsing the recent attempt by the European Union to regulate digital platforms.22

Future research combining endogenous dynamic algorithmic ranking and endogenous belief and network

formation may provide additional insights to guide public regulators and social media platforms in their

efforts to reduce the negative impact of ranking dynamics on social media users and on democratic society

at large.

22See https://digital-strategy.ec.europa.eu/en/policies/digital-services-act-package.
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2022.

26

www.amnesty.org/en/documents/ASA16/5933/2022/en/
www.amnesty.org/en/documents/ASA16/5933/2022/en/
www.edition.cnn.com/2021/10/27/tech/facebook-papers-meaningful-social-interaction-news-feed-math
www.edition.cnn.com/2021/10/27/tech/facebook-papers-meaningful-social-interaction-news-feed-math


Epstein, Robert and Ronald E Robertson, “The Search Engine Manipulation Effect (SEME) and its
Possible Impact on the Outcomes of Elections,” Proceedings of the National Academy of Sciences, 2015,
112 (33), E4512—-E4521.

Flaxman, Seth, Sharad Goel, and Justin M Rao, “Filter bubbles, echo chambers, and online news
consumption,” Public opinion quarterly, 2016, 80 (S1), 298–320.

Galasso, Vincenzo and Tommaso Nannicini, “Competing on good politicians,” American political
science review, 2011, 105 (1), 79–99.
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APPENDICES

Appendix.1 Proofs

Proof of Lemma 1. From Eqs. (2) and (4), we have that clicks on item m get updated according to:

κ̂n,m − κ̂n−1,m =
βM−rn,mφn,m∑

m′∈M βM−rn,m′φn,m′
.

Taking expectations of an average run out of T runs, we have φn,m ≈ 1/(2[m]) and can write:

E[κ̂n,m − κ̂n−1,m] =


βM−rn,m/(2M+)∑

m′∈M+
βM−rn,m/(2M+)+

∑
m′∈M−

βM−rn,m/(2M−)
if m ∈M+

βM−rn,m/(2M−)∑
m′∈M−

βM−rn,m/(2M+)+
∑
m′∈M+

βM−rn,m/(2M−)
if m ∈M−

(1)
≈ βM−rn,m∑

m′∈M+
βM−rn,m′ +

∑
m′∈M−

βM−rn,m′
for all m ∈M

=
βM−rn,m∑
m′∈M βM−m′ =

βMβ
M−rn,m

M

βM
∑

m′∈M β
M−m′
M

=
β
M−rn,m

M∑
m′∈M β

M−m′
M

,

where (1) follows from P(sgn(xn) = sgn(ym)) ≈ P(sgn(xn) ̸= sgn(ym)) ≈ 1/2 and from [m] ≈M+ ≈M− ≈
M/2, for T sufficiently large (in the limit as T → ∞).

From this we can write the expected probability of an item with signal ym = y being clicked in an
average run out of T runs (again as T → ∞) as:

E[κ̂(y)] =
β
M−r(y)
M∑

m′∈M β
M−m′
M

(1)
=

β
M−ζ0+ζ1·π(y)

M∑
m′∈M β

M−m′
M

≈
1 + log β · M−ζ0+ζ1·π(y)

M

1 + log β ·
∑

m′∈M
M−m′

M

,

where (1) follows from applying Eq. (12) to the expected rank r(y). Taking into account the distribution
of the items’ signals g, this readily implies as the limit clicking distribution:1

LCD(y) = Λβ(π(y)) · g(y), (A.1)

where, for z ≥ 0:

Λβ(z) =
M + log β · (M − ζ0 + ζ1 · z)
M + log β ·

∑
m′∈M (M −m′)

=
M + log β · (M − ζ0 + ζ1 · z))
M + log β ·M(M − 1)/2

, (A.2)

so that Λ′
β(z) is a constant and Λ′

β(z) ≡ Λ′
β = ζ1·log β

M+log β·M(M−1)/2 > 0 since β > 1, ζ1 > 0.
Similarly, we can write the limit highlighting distribution as:

LHD(y) = µH(y) · LCD(y). (A.3)

These distributions do not integrate to 1 but rather give a per capita probability of clicking and highlighting
a given item with signal ym = y. 2

Proof of Proposition 1. Set θ = θ̂ = 0 and fix β > 1. To simplify notation we drop the subscript β from
the function Λβ and write just Λ. Given Eq. (12), we can apply Lemma 1 and write engagement (ENG),

1To cut on notation, throughout the proofs, we write f(x) for the density of the individuals signals (f(x;σ2
x) in the main

text) and g(y) for the density of the items’ signals (f(y;σ2
y) in the main text). Note that g(y) is not to be confused with the

symbol g also used to denote a group of individuals.
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polarization (POL) and misinformation (MIS), respectively as:

ENG =

∫
(LCD(y) + LHD(y)) dy =

∫
(1 + µH(y))LCD(y)dy =

∫
(1 + µH(y)) Λ(π(y))f(y)dy

MIS =

∫
|y − 0|LCD(y)dy =

∫
|y|Λ(π(y))f(y)dy

POL =

∫ ∣∣yLCDR(y)− yLCDL(y)
∣∣ dy =

∫ ∣∣yΛR(π(y))− yΛL(π(y))
∣∣ f(y)dy,

where for g ∈ {L,R}, LCDg is the limit clicking distribution of individuals from group g and (in the
non-personalized case with λ = 1) can be written as:

LCDg(y) = Λg(π(y))g(y),

where Λg(π(y)) is now the expected probability an item with signal ym = y will be clicked on by an
individual in group g. Note that while clicking and highlighting by a given group is heavily dependent on
the sign of the signal of the item, (that is, whether m ∈ M+ or m ∈ M−), both groups share the same
ranking which depends on the total clicking and highlighting propensities of the two groups (π(y)).

From this we can compute the effect of a change in η on he three variables. Suppose that highlighting
behavior is non-flat. It suffices to compute:

∂ENG

∂η
=

∂

∂η

∫
(1 + µH(y)) Λ(π(y))g(y)dy

=

∫
∂(1 + µH(y))

∂η
Λ(π(y))g(y)dy +

∫
(1 + µH(y))

∂Λ(π(y))

∂η
g(y)dy

(1)
=

∫
(1 + µH(y)) Λ

′∂π(y)

∂η
g(y)dy

(2)
=

∫
(1 + µH(y)) Λ

′ (M − 1)(µH(y)− µ̄H)

(M(1 + ηµ̄H) + η(µH(y)− µ̄H))
2 g(y)dy

(3)
> 0,

where (1) follows because ∂µH(y)
∂η = 0 and ∂g(y)

∂η = 0, (2) follows from Eq. (11), and (3) follows since

Λ′(π(y)) = Λ′ > 0 and µH(y) ≥ 0 for all y and, moreover, for |y| > |y′| we have µH(y) > µH(y
′) on a

large enough mass of signals y (strictly speaking until −x∗, x∗), and hence also for 1+µH(y)

(M(1+µ̄H)+η(µH(y)−µ̄H))2
.

The latter implies
∫ (1+µH(y))(µH(y)−µ̄H)

(M(1+µ̄H)+η(µH(y)−µ̄H))2
g(y)dy > 0. Since

∫
(µH(y) − µ̄H)g(y)dy = 0, increasing

η corresponds to shifting mass towards signals with higher absolute value, thereby strictly increasing
engagement. Similarly:

∂MIS

∂η
=

∂

∂η

∫
|y|Λ(π(y))g(y)dy =

∫
|y|∂Λ(π(y))

∂η
g(y)dy

=

∫
|y|Λ′ (M − 1)(µH(y)− µ̄H)

(M(1 + ηµ̄H) + η(µH(y)− µ̄H))
2 g(y)dy

(1)
> 0,

where (1) follows again because Λ′(π(y)) > 0 and µH(y) ≥ 0, and for |y| > |y′| we have µH(y) > µH(y
′)

on a large enough mass of signals y, ensuring that
∫ |y|(µH(y)−µ̄H)

(M(1+ηµ̄H)+η(µH(y)−µ̄H))2
g(y)dy > 0.

Finally, to compute the effect on polarization, we need to keep track of clicking in the two groups. While
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there is a unique ranking (since λ = 1), individuals in the different groups nonetheless behave differently.

∂POL

∂η
=

∂

∂η

∣∣∣∣∫ yΛR(π(y))− yΛL(π(y))g(y)dy

∣∣∣∣
=

∂

∂η

∣∣∣∣∫ y
(
ΛR(π(y))− ΛL(π(y))

)
g(y)dy

∣∣∣∣
(1)
=

∂

∂η

(∫
y≤0

(−y)
(
ΛL(π(y))− ΛR(π(y))

)
g(y)dy +

∫
y>0

y(ΛR(π(y))− ΛL(π(y)))g(y)dy

)
(2)
=

∂

∂η

(
2

∫
y>0

y
(
ΛR(π(y))− ΛL(π(y))

)
g(y)dy

)
= 2

∫
y>0

y

(
∂ΛR(π(y))

∂η
− ∂ΛL(π(y))

∂η

)
g(y)dy

(3)
= 2

∫
y>0

y

(
ΛR+π(y)

∂π(y)

∂η
− ΛL+π(y)

∂π(y)

∂η

)
g(y)dy

= 2

∫
y>0

y
(
ΛR+ − ΛL+

)
π(y)

∂π(y)

∂η
g(y)dy

= 2

∫
y>0

y
(
ΛR+ − ΛL+

)
(1 + ηµH(y))

(M − 1)(µH(y)− µ̄H)

(M(1 + ηµ̄H) + η(µH(y)− µ̄H))
3 g(y)dy

(4)
> 0,

where (1) follows because of R− we have ΛL(π(y)) > ΛR(π(y)), and on R+ we have ΛR(π(y)) > ΛL(π(y)),
(2) follows by symmetry of the limit clicking distribution, (3) follows since ΛR,ΛL are linear and hence,
for y on R+, Λ

R′
(y) ≡ ΛR+ and ΛL

′
(y) ≡ ΛL+ are positive constants with ΛR+ > ΛL+, and finally (4) follows

for the same reasons as with the previous cases (ENG and MIS) since µH(y) and y are increasing in y

and ΛR+ > ΛL+ on R+, ensuring
∫
y>0

(1+ηµH(y))(µH(y)−µ̄H)

(M(1+µ̄H)+η(µH(y)−µ̄H))3
g(y)dy > 0. Note also that due to symmetry,∫

y>0(µH(y)− µ̄H)g(y)dy = 0.

Suppose now that highlighting behavior is flat. The above expressions continue to hold:

∂ENG

∂η
= Λ′ ·

∫
(1 + µH(y))

(M − 1)(µH(y)− µ̄H)

(M(1 + ηµ̄H) + η(µH(y)− µ̄H))
3 g(y)dy

> 0.

However, in the flat case, as |y| increases µH(y) decreases, or equivalently, µH(y) increases as |y| decreases,
but µH(y)− µ̄H is positive for smaller values of y and hence the above integral is positive.

In the case of misinformation, the argument is reversed, since it is now |y|
(M(1+ηµ̄H)+η(µH(y)−µ̄H))2

that

multiplies µH(y) − µ̄H and hence the fact that as |y| increases the whole fraction increases, while µH(y)
decreases, which means that the overall integral is now negative.

∂MIS

∂η
= Λ′ ·

∫
|y| (M − 1)(µH(y)− µ̄H)

(M(1 + ηµ̄H) + η(µH(y)− µ̄H))
2 g(y)dy

< 0.

A similar argument applies for polarization:

∂POL

∂η
= 2

(
ΛR+ − ΛL+

) ∫
y>0

y(1 + ηµH(y))
(M − 1)(µH(y)− µ̄H)

(M(1 + ηµ̄H) + η(µH(y)− µ̄H))
3 g(y)dy

< 0.
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Here the inequality follows since the integral is on R+ so that it is y(1+ηµH(y))

(M(1+ηµ̄H)+η(µH(y)−µ̄H))3
that multiplies

the expression µH(y) − µ̄H , where it can be checked that the former is increasing in y, while µH(y) is
decreasing in y, making the overall integral negative. Note that as before, due to symmetry,

∫
y>0(µH(y)−

µ̄H)g(y)dy = 0. 2

Proof of Proposition 2. Set again θ = θ̂ = 0 and fix β > 1, and write Λ for the function Λβ, thus
dropping the subscript β. Applying Eq. (12) to the personalized algorithm Eq. (7), we obtain for the
expected rank:

rg(y) ≈ ζ0 − ζ1 ·
πgg(ym) + λπ¬gg (ym)

1 + λ
, g ∈ {L,R}, (A.4)

where ζ0, ζ1 > 0 are constants and ¬g denotes the group in {L,R} other than g. Here the expressions
πgg(y) and π¬gg (y) denote respectively the popularity from individuals in g and in ¬g in the ranking seen
by group g:2

πgg(y) =
1 + η · µgH(y)

M(1 + η · µ̄gH) + η(µgH(y)− µ̄gH) + λ
(
M(1 + η · µ̄¬gH ) + η(µ¬gH (y)− µ̄¬gH )

)
and

π¬gg (y) =
λ(1 + η · µ¬gH (y))

M(1 + η · µ̄gH) + η(µgH(y)− µ̄gH) + λ
(
M(1 + η · µ̄¬gH ) + η(µ¬gH (y)− µ̄¬gH )

) ,
where µgH(y) is the propensity to highlight by individuals in g:

µgH(y) =

∫
x∈H−1(y)

I{x∈g}pA(x)f(x)dx.

We can apply Lemma 1 and write engagement as:

ENG =
∑
g=L,R

∫
(LCDg(y) + LHDg(y)) dy =

∑
g=L,R

∫ (
1 + µgH(y)

)
LCDg(y)dy

=
∑
g=L,R

∫ (
1 + µgH(y)

)
Λg

(
πgg(y) + λπ¬gg (y)

1 + λ

)
g(y)dy,

where as in the proof of Proposition 1, Λg
(
πgg (y)+λπ

¬g
g (y)

1+λ

)
is the probability of being clicked by an individual

in g:

Λg
(
πgg(y) + λπ¬gg (y)

1 + λ

)
=
M + log β ·

(
M − ζ0 + ζ1

πgg (y)+λπ
¬g
g (y)

1+λ

)
M + log β ·

∑
m′∈M (M −m′)

, (A.5)

2The distinction is necessary because of the normalizations that get applied to the two different rankings and that therefore
change the denominators in the two cases.
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We can compute

∂ENG

∂λ
=

∑
g=L,R

∂

∂λ

∫ (
1 + µgH(y)

)
Λg

(
πgg(y) + λπ¬gg (y)

1 + λ

)
g(y)dy

=
∑
g=L,R

∫ (
1 + µgH(y)

) ∂Λg (πgg (y)+λπ¬g
g (y)

1+λ

)
∂λ

g(y)dy

=
∑
g=L,R

∫
y≤0

(
1 + µgH(y)

)
Λg−

′
∂
(
πgg (y)+λπ

¬g
g (y)

1+λ

)
∂λ

g(y)dy

+

∫
y>0

(
1 + µgH(y)

)
Λg+

′
∂
(
πgg (y)+λπ

¬g
g (y)

1+λ

)
∂λ

g(y)dy


= 2

∑
g=L,R

∫
y>0

(
1 + µgH(y)

)
Λg+

′
∂
(
πgg (y)+λπ

¬g
g (y)

1+λ

)
∂λ

g(y)dy

= 2
∑
g=L,R

∫
y>0

(
1 + µgH(y)

)
Λg+

′

1 + λ

(
∂πgg(y)

∂λ
+ λ

∂π¬gg (y)

∂λ
− πgg(y)− π¬gg (y)

1 + λ

)
g(y)dy

Now,
∂πgg(y)

∂λ
=

−(1 + η · µgH(y))
(
M(1 + η · µ̄¬gH ) + η(µ¬gH (y)− µ̄¬gH )

)(
M(1 + η · µ̄gH) + η(µgH(y)− µ̄gH) + λ

(
M(1 + η · µ̄¬gH ) + η(µ¬gH (y)− µ̄¬gH )

))2 ,
and

∂π¬gg (y)

∂λ
=

(1 + η · µ¬gH (y))
(
M(1 + η · µ̄gH) + η(µgH(y)− µ̄gH)

)(
M(1 + η · µ̄gH) + η(µgH(y)− µ̄gH) + λ

(
M(1 + η · µ̄¬gH ) + η(µ¬gH (y)− µ̄¬gH )

))2 ,
where it can be checked that:

∂ (πgg(y) + π¬gg (y))

∂λ
=

(1 + η · µ¬gH (y))η(µgH(y)− µ̄gH)− (1 + η · µgH(y))η(µ
¬g
H (y)− µ̄¬gH )(

M(1 + η · µ̄gH) + η(µgH(y)− µ̄gH) + λ
(
M(1 + η · µ̄¬gH ) + η(µ¬gH (y)− µ̄¬gH )

))2 ,
which, integrated on R+, is strictly negative for g = R and outweighs (in absolute value) the case for
g = L, such that for any λ ∈ [0, 1] and whether or not µgH(y) increases in y:∑

g=L,R

∫
y>0

(
1 + µgH(y)

)
Λg+

′

1 + λ

∂ (πg(y) + λπ¬g(y))

∂λ
g(y)dy < 0.

Moreover, a similar argument applies for −πgg (y)−π¬g
g (y)

1+λ , such that also:

∑
g=L,R

∫
y>0

(
1 + µgH(y)

)
Λg+

′

1 + λ

(−1)(πgg(y)− π¬gg (y))

1 + λ
g(y)dy < 0.

This shows that ∂ENG
∂λ < 0 so that less personalization (larger λ) decreases engagement both with flat and

non-flat highlighting.
Finally,

POL =

∣∣∣∣∫ yLCDR(y)dy −
∫
yLCDL(y)dy

∣∣∣∣ ,
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Figure A.1: Engagement, polarization, and misinformation as a function of the highlighting parameter η
(non-flat case) with a common benchmark θ̂ (solid line) and heterogeneous benchmarks θ̂n (dotted line).
The shaded areas represent the 95% confidence intervals.

so that, using the same reasoning as in the proof of Proposition 1, we can write:

∂POL

∂λ
=

∂

∂λ

(
2

∫
y>0

y

(
ΛR

(
πRR(y) + λπLR(y)

1 + λ

)
− ΛL

(
πLL(y) + λπRL (y)

1 + λ

))
g(y)dy

)
= 2

∫
y>0

yΛR+
′
(
∂πRR(y)

∂λ
+ λ

∂πLR(y)

∂λ
−
πRR(y)− πLR(y)

1 + λ

)
g(y)dy

−2

∫
y>0

yΛL+
′
(
∂πLL(y)

∂λ
+ λ

∂πRL (y)

∂λ
−
πLL(y)− πRL (y)

1 + λ

)
g(y)dy.

Moreover, similar calculations as above show that the first integral is negative and dominates in absolute
value the second one, showing that overall ∂POL∂λ < 0 so that again less personalization (larger λ) decreases
polarization both with flat and non-flat highlighting. 2

Proof of Proposition 3. Recall from Eq. (10):

Wψ(η, λ) = ψ · ENG(η, λ)− (1− ψ) ·MIS(η, λ) · POL(η, λ).

Hence, for ψ = 0, we have W0 = MIS · POL, while, for ψ = 1, we have W1 = ENG. The results then
follow directly from Propositions 1 and 2.

Consider the non-flat case. It follows immediately that W0 is maximized at a smallest possible value
of η, since −MIS · POL is maximized when MIS · POL is minimized and MIS

∂η > 0, POL∂η > 0. Also, W0

is maxized at a largest possible value of λ again since POL
∂λ < 0 (less personalization decreases POL) while

MIS
∂λ ≈ 0. The contrary is true for ψ = 1.

By contrast, by analogous argument, in the flat case, W0 is maximized at a largest possible value of η
and at a largest possible value of λ, while for ψ = 1, W1 is maximized at a largest possible value of η and
a smallest possible value of λ. 2

Appendix.2 Additional Results

We here discuss some additional results that were not discussed or only very briefly mentioned in the main
text of the paper.
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Figure A.2: Individuals’ signal distribution and highlighting propensity in the non-flat case with non-
centered θ̂, (with θ = 6 and θ̂ = 0); x∗ denotes the value of xn where the highlighting propensity is locally
maximal.

Appendix.2.1 Heterogeneous benchmark

Consider the case where individuals can have idiosyncratic benchmarks θ̂n. The results do not change
qualitatively. In fact, the simulations suggest that, for θ̂n’s centered around θ and not too dispersed
(θ̂n ∼ N(θ, σ2

θ̂
) with σ

θ̂
≤ min{σx4 ,

σy
4 }), our main results on engagement, popularity and misinformation

are rather close to the cases where individuals have a common benchmark, θ̂n = θ̂ for all n. This is
illustrated in Figure A.1 that shows the effect of η on the variables ENG,POL,MIS for the non-flat case.

Appendix.2.2 Non-centered benchmark

While it is natural to assume that the benchmark θ̂ splits the signals roughly in half in symmetric environ-
ments, so that θ̂ ≈ θ, it may occur occasionally that the two are far apart. In such a situation, individuals’
and news items’ signals are shifted away from the benchmark θ̂. This means that a potentially large mass
of individuals have a prior belief far from θ̂ and are hence likely to highlight news items far from it but
potentially close to θ. In such a case, an increase in η can contribute to both higher engagement and at
the same time lower misinformation in the non-flat case. To see this consider Figure A.2 that illustrates a
situation where clearly θ̂ ̸= θ. Here x∗ ≈ θ so that a large mass of individuals with a signal close to the
truth has a large highlighting propensity. An increase in η leads to a more prominent ranking for items
around x∗ ≈ θ, which in turn, through the effect on the clicking distribution, leads to a lower level of mis-
information as measured byMIS. Increasing the weight on highlights here actually accelerates individuals
clicking on news items carrying truthful signals.

Appendix.3 Empirical Evidence on Meaningful Social Interactions and Political Po-
larization: Additional Information

Appendix.3.1 Affective Polarization

Since Italy is a multi-party political system, we follow Alvarez and Nagler (2004) and Wagner (2021) and
define a measure of Weighted Affective Polarization (WAP) for individual i as:

WAP =

√√√√ P∑
p=1

vp∗ | sympip − sympi | , (A.6)
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where vp is the vote share of party p (measured as a proportion ranging from 0 to 1), sympip is measured
with the probability attached by individual i to voting for party p (ranging from 0 to 10), and sympi is
individual i’s weighted average party sympathy score. That is:

sympi =
P∑
p=1

vp ∗ sympip . (A.7)

Appendix.3.2 Robustness

One possible concern regarding the causal interpretation of our results linking Facebook’s MSI update and
political polarization is due to the concurring general elections in Italy in March 2018. With respect to
this issue we notice that, by including the date of interview fixed-effect, our empirical strategy takes into
account and controls for any general trend in political polarization over time. At the same time, one might
argue that the presence of elections might have led to a differential trend in political polarization between
individuals that used internet to form an opinion and the ones who did not which was not due to the MSI
algorithm per se (e.g., increase in online fake news before elections). In response to this argument, we first
point out that the MSI algorithm might have further amplified the diffusion of fake-news as predicted by
our model. Second, we provide below evidence suggesting a polarization effect even when dropping the
months immediately after the MSI update and before the elections (i.e., January-March 2018). Specifically,
Tables A.1 and A.2 present results when comparing the period June-December 2017 (pre-MSI) with April-
December 2018 (post-MSI and post-elections).

Table A.1: MSI and non-moderate ideological position: Robustness
(1) (2) (3)

Non-moderate Non-moderate Non-moderate
Ideology Ideology Ideology

Opinion via internet websites 0.047** 0.048** 0.048**
× Post MSI (0.018) (0.020) (0.021)

Opinion via internet websites -0.011 -0.013 -0.013
(0.018) (0.022) (0.022)

Observations 29,570 29,570 29,570
Mean outcome 0.37 0.37 0.37
SD outcome 0.48 0.48 0.48

Municipality FE YES YES YES
Date FE YES NO NO
Province-Date FE NO YES YES

Cluster SE Region Region Province

Note: Time horizon: June 2017-December 2017 and April-December 2018. All estimates include
the following control variables: age, age squared, gender, number of resident family members, level of
education, type of occupation and religiosity of the respondent. Observations are weighted according
to the sampling weights provided by Ipsos and thus the results are representative of the Italian voting
age population. Robust Standard Errors in parenthesis.
*** p<0.01, ** p<0.05, * p<0.1
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Table A.2: MSI and Affective Polarization

(1) (2) (3)
Affective Affective Affective

Polarization Polarization Polarization

Opinion via internet websites 0.051 0.064** 0.064*
× Post MSI (0.030) (0.031) (0.034)

Opinion via internet websites -0.007 -0.008 -0.008
(0.021) (0.023) (0.022)

Observations 17,317 17,317 17,317
Mean outcome 1.38 1.38 1.38
SD outcome 0.67 0.67 0.67

Municipality FE YES YES YES
Date FE YES NO NO
Province-Date FE NO YES YES

Cluster SE Region Region Province

Note: Time horizon: June 2017-December 2017 and April-December 2018. All estimates
include the following control variables: age, age squared, gender, number of resident family
members, level of education, type of occupation and religiosity of the respondent. Observa-
tions are weighted according to the sampling weights provided by Ipsos and thus the results
are representative of the Italian voting age population. Robust Standard Errors in parenthe-
sis.
*** p<0.01, ** p<0.05, * p<0.1
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