
Pütz, Peter; Kramer-Sunderbrink, Arne; Dreher, Robin Tim; Hoffmann, Leona;
Werner, Robin

Article

A Proposed Hybrid Effect Size Plus p-Value Criterion.
A Comment on Goodman et al. (The American
Statistician, 2019)

Journal of Comments and Replications in Economics (JCRE)

Suggested Citation: Pütz, Peter; Kramer-Sunderbrink, Arne; Dreher, Robin Tim; Hoffmann,
Leona; Werner, Robin (2022) : A Proposed Hybrid Effect Size Plus p-Value Criterion. A
Comment on Goodman et al. (The American Statistician, 2019), Journal of Comments and
Replications in Economics (JCRE), ISSN 2749-988X, ZBW - Leibniz Information Centre for
Economics, Kiel, Hamburg, Vol. 1, Iss. 2022-4, pp. 1-15,
https://doi.org/10.18718/81781.26

This Version is available at:
https://hdl.handle.net/10419/267164

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.18718/81781.26%0A
https://hdl.handle.net/10419/267164
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Journal of Comments and Replications in Economics - JCRE

A Proposed Hybrid Effect Size Plus 𝑝-Value Criterion
A Comment on Goodman et al. (The American Statistician, 2019)

Peter Pütz*† Arne Kramer-Sunderbrink* Robin Tim Dreher*

Leona Hoffmann* Robin Werner*

Journal of Comments and Replications in Economics, Volume 1, 2022-4, DOI: 10.18718/81781.26

JEL: C10; C12
Keywords: NHST; Intervall null hypothesis; Minimum effect size plus p-value criterion; Thick t-test;
Statistical evidence; Type I error rate; False discovery rate

Data Availability: The R code to reproduce the simulation results in this comment can be down-
loaded at JCRE’s data archive (DOI: 10.15456/j1.2022024.101215). In addition, the analyses
can be accessed and customized on github.com/drehero/goodman-replication.

Please Cite As: Pütz, Peter, Arne Kramer-Sunderbrink, Robin Tim Dreher, Leona Hoffmann, and
Robin Werner (2022). A Proposed Hybrid Effect Size Plus 𝑝-Value Criterion. A Comment on
Goodman et al. (2019). Journal of Comments and Replications in Economics, Vol 1(2022-4). DOI:
10.18718/81781.26

Abstract
In a recent simulation study, Goodman et al. (2019) compare several methods with regard to their
type I and type II error rates when considering a thick null hypothesis that includes all values that
are practically equivalent to the point null hypothesis. They propose a hybrid decision criterion
only declaring a result “significant” if both a small p-value and a sufficiently large effect size are
obtained. We successfully verify the results using our own software code in R and discuss an
additional decision method that is tailored to maintain a pre-defined false positive rate. We confirm
that the hybrid decision criterion has comparably low error rates in checkable settings but point out
that the false discovery rate cannot be easily controlled by the researcher. Our analyses are readily
accessible and customizable on github.com/drehero/goodman-replication.
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1 Introduction

In the context of the replication crisis, the discussion on the usefulness of null hypothesis signifi-
cance testing and the correct use and interpretation of 𝑝-values has been hot in recent years. The
American Statistical Association’s Statement on p-Values and Statistical Significance (Wasserstein and
Lazar, 2016) was arguably the most prominent work on pitfalls in using 𝑝-values for statistical
inference. It was followed by a symposium on statistical inference organized by the American
Statistical Association in 2017. The symposium led to a special issue of The American Statistician
titled "Moving to a World Beyond 𝑝 < 0.05" presenting many suggestions on how to separate signal
from noise in data.

Some authors suggest that the traditional focus on point hypotheses is part of the problem (e.g.,
Greenland, 2019; McShane et al., 2019): When testing the point null hypothesis (𝐻 𝑝

0 : ` = `0),
even tiny, practically irrelevant effects can be “statistically significant” if the number of samples is
big enough. Furthermore, problems in the experimental setup can easily lead to a small bias that
is wrongly flagged as a statistically significant effect by the test. It was suggested to refrain from
testing point hypotheses and instead to test the thick null hypothesis that an effect is big enough to
be practically significant (e.g., Betensky, 2019; Blume et al., 2019).

Goodman et al. (2019), henceforth GSK, propose a hybrid decision criterion that is called
minimum effect size plus p-value (MESP): It only leads to a rejection if a 𝑝-value lower than 5%
is obtained in a standard 𝑡-test for the point null hypothesis and the observed effect size is large
enough to be considered practically relevant, i.e. lies outside of the interval determined by the
thick null hypothesis. In a simulation study they compare different decision criteria and show
good overall performance of their method. More specifically, MESP generally has rather low type I
error rates and has high type II error rates only in settings that the researcher can usually identify,
namely low nominal power settings. However, in comparison with classical point hypothesis
testing, MESP lacks a parameter to control its false positive rate with respect to the thick null
hypothesis.

In this comment, we successfully verify the GSK results using independently written software
code in R. We extend the analyses by a Bayesian-motivated 𝑡-test, the thick 𝑡-test, that is equipped
with a parameter that controls its false positive rate with respect to the thick null hypothesis. We
also compute false discovery and false omission rates for different nominal power categories and
show that the MESP approach has the undesirable property that the false discovery rate does not
necessarily decrease for rising nominal power. Furthermore, we provide an openly available code
repository that allows the scientific community to easily verify, amend and extend the analyses
conducted in GSK and in this comment.

This comment proceeds as follows. Section 2 explains the simulation setting and methods used
by GSK and motivates a further decision criterion. Section 3 presents the results, while Section 4
concludes.
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2 Simulation setting and decision methods

In the following, the effect size deemed practically relevant by researchers in a certain scenario is
referred to as MPSD (Minimum Practically Significant Distance). Accordingly, the thick null hy-
pothesis is 𝐻𝑡

0 : |` − `0 | ≤ MPSD or, equivalently, 𝐻𝑡
0 : ` ∈ 𝐼0, where 𝐼0 = [`0 −MPSD , `0 +MPSD]

is the thick null interval.

Simulation We simulate 100,000 cases.1 Each can be thought of as a fictional study testing
whether some parameter is different from `0 = 100. Formally, a case is characterized by a tuple
(`, 𝜎, 𝑛,MPSD) describing the conditions of the study:

• `, sampled uniformly from {75, . . . , 125}, is the population mean of our data.

• 𝜎, sampled uniformly from {4, . . . , 60}, is the standard deviation of the population.

• 𝑛, sampled uniformly from {5, . . . , 100}, is the sample size.

• MPSD , sampled uniformly from {2, . . . , 20}, is the minimal effect size deemed practically
relevant by researchers in our fictional scenario.

For every case, we save if |` − `0 | > MPSD (i.e., if 𝐻𝑡
0 is false). We sample the data

𝑥1, . . . , 𝑥𝑛
𝑖.𝑖.𝑑.∼ N(`, 𝜎) and save the results of the decision methods described below based on that

sample.

2.1 Original decision methods

GSK compare five different decision methods:

Conventional The first method is a 𝑡-test for the point null hypothesis 𝐻
𝑝

0 that ` = `0 with
𝛼 = 0.05. Note that this 𝛼 is usually the desired false positive rate (the type I error): If the point
null hypothesis is true it should not be falsely rejected by the test more than 5% of the time.
However, since the test is used here to decide whether the thick 𝐻𝑡

0, not 𝐻
𝑝

0 , should be rejected,
the false positive rate will exceed 5% for MPSD > 0.

Small-alpha The second method is a 𝑡-test as described above with 𝛼 = 0.005 instead of
0.05. Lowering 𝛼 from 0.05 to 0.005 was prominently recommended to lower the rate of false
positive results and irreproducible research findings (Benjamin et al., 2018). However, as discussed
above, 𝛼 is used to control the false positive rate with respect to 𝐻

𝑝

0 , not 𝐻𝑡
0.

Distance-only The third method rejects the null hypothesis if the observed effect size is at
least as big as the minimum practically significant distance, i.e., |𝑥 − `0 | ≥ MPSD .

1In order to obtain robust results over different simulation runs also for subgroup analyses (e.g. Table 2), we increase
the number of simulated cases compared to GSK who simulate 10,000 cases.
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MESP GSK propose a new decision method called “Decision by Minimum Effect Size Plus
𝑝-value” that is a conjunction of the conventional and the distance-only method, i.e., the null
hypothesis is rejected only if both methods would reject it, if both the 𝑝-value of the 𝑡-test is smaller
than 0.05 and the observed effect size is practically significant.

Interval-based The final method considered by GSK rejects the null only if the thick null
interval 𝐼0 and the 95% confidence interval centered around the observed sample mean 𝑥 do not
intersect.2

2.2 Thick t-test

In this section we present a sixth decision method that we call the thick 𝑡-test. The idea is to base
the decision to reject the thick null hypothesis 𝐻𝑡

0 on the probability of observing an effect that is
more extreme with respect to `0 than the one actually observed if 𝐻𝑡

0 was true:

𝑝 = 𝑃( |𝑋 − `0 | > |𝑥 − `0 | | 𝐻𝑡
0)

=

`0+MPSD∑︁
¤̀=`0−MPSD

𝑃( |𝑋 − `0 | > |𝑥 − `0 | | ` = ¤̀)𝑃(` = ¤̀ | 𝐻𝑡
0).

(1)

Note that ` is an integer in our simulation. If ` is continuous, an integral has to be used instead of
the sum. Our code contains details on how to compute 𝑝 in either case.

The probability in Equation (1) is known as the prior predictive 𝑝-value popularized by Box
(1980) (see also Bayarri and Berger (2000) for a discussion on this and related concepts for com-
posite null hypotheses). For MPSD = 0, i.e., 𝐻𝑡

0 ≡ 𝐻
𝑝

0 , 𝑝 is simply the 𝑝-value of a two-sided point
hypothesis test. In that sense, 𝑝 as defined above is a generalization of familiar 𝑝-values to thick
null hypotheses and the same guarantee regarding the false positive rate from point hypothesis
tests holds for the thick 𝑡-test: If we decide to reject 𝐻𝑡

0 whenever 𝑝 < 𝛼 = 0.05, the probability
to report an effect even though the real effect is practically irrelevant is 5%. This is because, just
like the familiar 𝑝-value in a two-sided point hypothesis test, 𝑝 is uniformly distributed on [0, 1]
under 𝐻𝑡

0, i.e., 𝑃(𝑝 ≤ 𝛼 | 𝐻𝑡
0) = 𝛼. To be precise, due to the discrete distribution of ` in the sim-

ulation, 𝑝 is only asymptotically uniformly distributed, and hence 𝑃(𝑝 ≤ 𝛼 | 𝐻𝑡
0) = 𝛼 only for 𝑛 → ∞.

However, we need to make an assumption about the distribution of ` under 𝐻𝑡
0 and only under

this assumption, the guarantee holds. Since we are doing a simulation we know that ` is uniformly

2The interval-based method is equivalent to a two-sided decision criterion presented in Betensky (2019) for rejecting
a thick null hypothesis. However, Betensky (2019) allows the interval-based method also to be used to confirm thick null
hypotheses. In this regard, the method applied by Betensky (2019) can be considered as a composite approach that combines
the interval-based method presented in GSK and equivalence testing using two one-sided tests (Schuirmann, 1987). The
latter is designed to confirm the hypothesis that an effect is not larger than some practically meaningful equivalence bounds,
i.e. the boundaries of the thick null. The Bayesian counterpart to Betensky (2019) is the HDI-ROPE procedure (Kruschke,
2011) that also allows for rejection and acceptance of a thick null hypothesis. Both Betensky (2019) and Kruschke (2011)
deem results inconclusive if the estimated interval (confidence or credible interval, respectively) is neither fully inside nor
fully outside of the thick null hypothesis.
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distributed, i.e., 𝑃(` = ¤̀ | 𝐻𝑡
0) = 1/(2MPSD + 1) for ¤̀ ∈ 𝐼0. In a real-world experiment on the

other hand, the distribution under 𝐻𝑡
0 used in the thick 𝑡-test is an expression of the researcher’s

prior knowledge or assumptions about `. For example, if a researcher has no or decides to ignore
prior knowledge, they should opt for a flat prior for ` on the thick null interval. If a researcher
believes that small effects are more likely than bigger ones, they could, for example, choose a
truncated normal distribution. Aside from or additional to a researcher’s beliefs, prior knowledge
on a parameter of interest may be gathered from expert elicitation (e.g. Albert et al., 2012) or
previous studies in a specific research field (e.g. Schulz et al., 2021).

We believe that this method is useful for a number of reasons: Firstly, only two of the five
original methods tested in GSK (MESP and the interval-based method) take both the MPSD and
the standard error of the estimated mean ˆ̀ = 𝑥 into account. Therefore, it benefits the comparison
to add a decision method that uses all available information.

Secondly, it presents a framework to better understand most of the other methods: The conven-
tional and the small-alpha method can be thought of as thick 𝑡-tests that assume 𝑃(` = `0 | 𝐻𝑡

0) = 1.
For a given observed effect, this distributional choice produces the smallest 𝑝-values among all
possible thick 𝑡-tests with a symmetric prior. Thus, 𝐻𝑡

0 is more often rejected by the test and
may even be rejected if the observed effect is inside the thick null interval. Hence, we expect
the false positive rate of these methods to be higher than 𝛼 (5% and 0.5%, respectively). The
interval-based method on the other hand is approximately equivalent (except for a term that is
usually negligible) to the thick 𝑡-test that assumes 𝑃(` = `𝑐 | 𝐻𝑡

0) = 1, where `𝑐 is the value in
the thick null interval that is closest to the observed mean 𝑥. For a given observed effect, this
distributional choice produces the largest 𝑝-values and is therefore the most conservative decision
with respect to rejecting 𝐻𝑡

0 among all possible thick 𝑡-tests. Hence, we expect the false positive
rate to be below 5% and the false negative rate to be high for this method. Note that the thick 𝑡-test
with 𝑃(` = `𝑐 | 𝐻𝑡

0) = 1 is equivalent to choosing 𝑝 = sup ¤̀ ∈𝐼0 𝑃( |𝑋 − `0 | > |𝑥 − `0 | | ` = ¤̀). Taking
the supremum instead of integrating ¤̀ out is the traditional way of dealing with composite null
hypotheses (see for example Bickel and Doksum, 2015, p. 217), e.g., when conducting a one-sided
𝑡-test. Finally, the distance-only method can be thought of as a thick 𝑡-test that assumes the same
distribution as the interval-based method but with 𝛼 = 50%. Hence, we expect the false positive
rate to be higher than that of the interval-based method but well below 50% since the assumed
distribution is overly conservative.

Thirdly, the thick 𝑡-test could be used as a decision method in its own right. The 𝛼 parameter al-
lows controlling the risk of incorrectly rejecting a true null hypothesis directly and more accurately
than the overly conservative interval-based method. Of course, this requires that the assumption
about the distribution of the population mean when there is no practically relevant effect is at
least approximately true. We don’t believe that the need to make this assumption is necessarily a
disadvantage compared with the other methods since one would have to make similar assumptions
about the distribution of ` under 𝐻𝑡

0 if one wanted to derive any guarantees regarding their false
positive rates with respect to the thick null hypothesis.

5
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Table 1: Impact of nominal power, method, and true location of the population mean on inference
success.

Inference success rates of each method for each combination
of true location and nominal power

Does the true
location fall
within the bounds
of the thick null?

Nominal
power

Number of
simulated

cases Conventional
Small-
alpha MESP

Distance-
only

Interval-
based

Thick
𝑡-test

Yes ≥ 0.80 23,869 37.6% 53.3% 90.7% 90.7% 99.7% 95.2%
(45,193 cases) 0.30 to 0.80 12,920 76.3% 92.9% 82.6% 78.8% 99.5% 95.1%

< 0.30 8,404 90.7% 98.4% 90.7% 55.7% 98.5% 94.7%

No ≥ 0.80 17,674 99.4% 96.7% 92.4% 92.4% 62.6% 85.8%
(54,807 cases) 0.30 to 0.80 14,507 85.5% 66.2% 83.0% 86.8% 42.9% 65.3%

< 0.30 22,626 56.3% 35.3% 56.3% 88.0% 38.7% 50.6%

3 Results

Table 1 was created based on Table 2 of GSK. The different methods are compared in terms of their
overall inference success rate, controlled for the nominal power. The nominal power for a case in
the simulation relies on the power calculation for a one-sample z-test for the mean using 𝛼 = 0.05,
the case’s true population standard deviation 𝜎, sample size 𝑛 and minimum detectable difference
MPSD . Table 1 also distinguishes between the true mean falling within and beyond the thick null.
In addition to the methods from GSK, the thick 𝑡-test introduced in the last section is considered.
The table is visualized in Figure 1.

The top half of Table 1 and the left half of Figure 1 show the success rates of the methods
when the true parameter lies within the thick null interval. The interval-based method performs
best in this case, as already seen in GSK. The new method of the thick 𝑡-test falsely rejects 𝐻𝑡

0

approximately 5% of the time across all nominal power categories. The success rates of the other
methods except for the interval-based method are lower in at least one case and depend on the
nominal power. The MESP method exhibits overall moderate error rates.

The bottom half of Table 1 and the right half of Figure 1 show the success rates of the methods
when the real parameter lies outside the null interval. The previously best method performs
worst in this case. Overall, the distance-only method has high inference success rates and is
topped only at high nominal power by the conventional method and the small-alpha method.
However, these two methods have a much worse success rate for low nominal power. The newly
considered thick 𝑡-test performs moderately. It is neither one of the best methods at high nominal
power, nor one of the worst methods at low nominal power. MESP performs reasonably well
for higher nominal power and exhibits low inference success only in the low nominal power setting.

Overall, the described Table 1 and Figure 1 very much resemble the corresponding illustrations
in GSK. The thick 𝑡-test method performs very well if the true location falls within the bounds of the
thick null. MESP has generally acceptably low error rates except for low nominal power settings
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Figure 1: Graph of impact of nominal power, method, and true location of the null on inference
success.

when the thick null is not true. As a composite measure of the conventional and the distance-only
method it has inference success rates similar to the former when the nominal power is low and
similar to the latter when the nominal power is high. The reason for this behavior is intuitive: The
𝑝-value computed for 𝐻

𝑝

0 only plays an important role for the MESP decision if effect sizes need
to be really large to lead to a rejection of 𝐻𝑡

0. Conversely, in high nominal power settings 𝑝-values
are generally low and MESP’s decision is only dependent on the distance criterion. An interesting
property of MESP is that due to its construction as a composite measure it has lowest inference
success for medium nominal power if the thick null holds.

Following Table 3 of GSK, Table 2 shows inference success rates depending on deciles of the
relative MPSD which is defined as MPSD/𝜎. As MPSD and 𝜎 are drawn from respective ranges of
integers for the simulation of cases, ties in the relative MPSD occur. When dividing the simulated
cases into deciles, we add a tiny value 𝜖 ∼ N(0, 10−10) to the relative MPSD to distribute ties on
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Table 2: Impact of relative MPSD and method on inference success.

Inference success rates of each method for each combination
of true location and relative MPSD

Does the true
location fall
within the bounds
of the thick null?

Decilea for
MPSD/𝜎

Number of
simulated

cases Conventional
Small-
alpha MESP

Distance-
only

Interval-
based

Thick
𝑡-test

Yes 1 1,355 93.6% 98.9% 93.6% 38.5% 97.5% 94.8%
(45,193 cases) 2 2,459 90.8% 98.3% 90.8% 54.7% 98.9% 94.6%

3 3,305 85.4% 96.6% 85.8% 66.4% 98.9% 94.5%
4 4,297 80.1% 94.8% 83.6% 74.1% 99.3% 95.3%
5 5,147 75.1% 90.9% 85.2% 79.0% 99.4% 94.5%
6 5,633 68.0% 85.8% 84.9% 80.8% 99.5% 95.3%
7 5,605 58.3% 78.1% 86.4% 84.0% 99.5% 95.1%
8 5,617 48.6% 65.8% 89.3% 88.1% 99.7% 95.3%
9 5,730 34.6% 49.2% 91.6% 91.4% 99.6% 95.2%
10 6,045 16.9% 25.7% 95.1% 95.1% 99.9% 95.3%

No 1 8,645 54.6% 34.7% 54.6% 91.8% 43.9% 51.9%
(54,807 cases) 2 7,541 63.3% 43.6% 63.3% 89.7% 43.5% 57.0%

3 6,695 71.1% 50.4% 71.0% 87.6% 41.8% 58.8%
4 5,703 75.9% 57.1% 74.6% 85.4% 39.2% 60.0%
5 4,853 81.3% 64.0% 77.2% 85.1% 38.2% 61.3%
6 4,367 86.4% 71.9% 80.2% 84.7% 40.0% 64.1%
7 4,395 91.6% 80.8% 83.8% 86.9% 46.1% 70.7%
8 4,383 96.0% 90.6% 88.8% 90% 55.2% 80.1%
9 4,270 98.4% 95.5% 92.5% 93.1% 64.6% 87.7%
10 3,955 99.9% 99.2% 97.1% 97.1% 79.5% 95.9%

aThese ranges of values for MPSD/𝜎 correspond to the deciles:
1: 0.033–0.103 6: 0.345–0.419
2: 0.103–0.167 7: 0.419–0.533
3: 0.167–0.224 8: 0.533–0.739
4: 0.224–0.286 9: 0.739–1.214
5: 0.286–0.345 10: 1.214–5.000

the boundary of two deciles evenly to those deciles. The table is divided into two parts. The upper
one shows success rates when the true location falls within the bounds of the thick null while the
lower one shows success rates when the true location does not fall within the bounds of the thick
null. Figure 2 visualizes Table 2.

Looking at the upper half of the table one can observe that the interval-based and the thick 𝑡-test
method both have low error rates with the interval-based method showing almost no inference
failure for high relative MPSDs. The MESP method has the best success rates for low and high
deciles and performs moderately for medium deciles. For the distance-only method the success
rate increases considerably the higher the relative MPSD becomes. In contrast to that stand the
conventional and the small-alpha method. They perform best for the low relative MPSD values
and fall off the higher it becomes.
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Figure 2: Impact of relative MPSD and method on inference success.

If the thick null is false, the conventional and small-alpha method, MESP as well as the
thick 𝑡-test perform better the higher the relative MPSD becomes. The interval-based method
has considerably worse success rates than the other methods in all but the lowest deciles. The
distance-only method has decent success rates, especially for low and high deciles. The MESP
method performs nearly as good as the conventional 𝑡-test with slightly worse performance in
medium and higher deciles. It exhibits inference success rates below 70% only in settings where
the relative MPSD is low. In practice, such a setting could be recognized by the researcher before
conducting a study if a reliable guess on the population’s standard deviation is available.

Overall, these numbers confirm the results in GSK regarding the success rates for different
ranges of the relative MPSD . As already shown in Table 1 and Figure 1, the added thick 𝑡-test
falsely rejects the thick null less often compared to other methods tailored to thick null hypotheses
such as the MESP and the distance-only method, but has lower inference success rates if the thick
null does not hold.
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Table 3: Error rates and inference success rate for each method.

Conventional
Small-
alpha MESP

Distance-
only

Interval-
based

Thick
𝑡-test

False positive rate 41.4% 27.0% 11.6% 19.2% 0.6% 4.9%
False negative rate 22.1% 36.7% 25.0% 10.9% 52.5% 34.2%
False discovery rate 30.5% 26.0% 11.3% 15.1% 1.0% 5.8%
False omission rate 31.4% 37.9% 25.5% 14.1% 39.0% 30.4%

Inference success rate 69.2% 67.7% 81.1% 85.3% 71.0% 79.0%

Table 3 and Table 4 are inspired by Figure A7 of GSK. Table 3 shows error rates as well as
overall inference success rates, i.e., the share of correct inference decisions over all simulations,
with respect to the thick null. With an inference success rate of 69.2% for the conventional
and 67.7% for the small-alpha variant, the point 𝑡-tests together with the interval-based method
(71.0%) have the lowest inference success rate. With 85.3% the distance-only method has the
highest overall inference success rate. Of course, in another simulation setting with the thick null
being true more often than 45.2% as in our setting (Table 1), the picture might look different.
Table 3 also shows that the conventional 𝑡-test has the highest false positive rate (41.4%) with
respect to the thick null. Lowering the alpha of the 𝑡-test to 0.005 reduces the false positive rate to
27.0% at the expense of a higher false negative rate.

Combining the inferences of the conventional 𝑡-test and the distance-only method results in an
inference success rate of 81.1% for the MESP method with a false positive rate of 11.6% and a
false negative rate of 25.0%. The interval-based method has the lowest false positive rate (0.6%)
but with 52.5% also the highest false negative rate of all six methods. Due to its construction the
thick 𝑡-test yields a false positive rate of 4.9% and has a false negative rate that is 18.3 percentage
points lower compared to the interval-based method.

The false discovery rate is important from a practical perspective, as it is defined as the share of
false positive findings among all positive findings (rejections of the null hypothesis). In the context
of a thick null hypothesis, this is the probability that there is actually no practically relevant effect
in the population if the decision criterion indicates that there is one. In our simulation, the false dis-
covery rate is lowest for the interval-based method, while the false omission rate as its counterpart
is lowest for the distance-only method. While the false discovery and false omission rate computed
here are dependent on the share of true thick null hypotheses and can be derived from Table 1, one
would have to decide on a prior probability of the thick null being true for a single study in practice.

Table 4 compares the six methods regarding the false discovery rate and the false omission
rate in more detail. In this table, a distinction is made between high, medium and low nominal
power. As the false discovery and omission rates are crucially dependent on the share of thick null
hypotheses being true, they are normalized by using true/false positive/negative rates to compute
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them instead of absolute numbers, i.e.,

normalized false discovery rate =
false positive rate

false positive rate + true positive rate
and

normalized false omission rate =
false negative rate

false negative rate + true negative rate
,

where the true/false positive/negative rates can be derived from Table 1. To this end, comparisons
between different nominal power categories are allowed and it can be investigated whether
methods improve with increasing nominal power. All rates should only be interpreted relative to
each other since, in general, the false discovery rate decreases and the false omission rate increases
with more true locations falling beyond the thick null. Thus, a different simulation setting, e.g.,
with more true locations falling beyond the thick null, would lead to different results.

The interval-based method has false discovery rates which are well below 5% for all nominal
power categories. The thick 𝑡-test method also exhibits overall low false discovery rates. The first
three methods shown in Table 4 do not have the generally desirable property of a decreasing false
discovery rate for rising nominal power. While the MESP has overall medium false discovery rates,
the false discovery rate rises when moving from low to medium nominal power. The reason is
the aforementioned construction of the MESP as a composite measure of the conventional and
the distance-only method which have contradicting false discovery rates when the nominal power
increases.

Regarding the false omission rate, a consistent structure can be recognized across all methods:
The false omission rate increases with decreasing nominal power. For high nominal power, the
value is lowest for the conventional method (1.6%) and highest for the interval-based method
(27.3%). For low nominal power, the distance-only method shows the lowest value of 17.7%.

When considering the false discovery rate and the false omission rate, there is no clear best
method even when disregarding the low nominal power category. For medium and high nominal
power, many methods have false discovery rates that arguably exceed desirable values. The
interval-based method works best in this regard at the expense of a considerable false omission
rate even in the highest nominal power category. To this end, the individual context of a study
plays a crucial role in the choice of the appropriate decision criterion.
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Table 4: (Normalized) false discovery rate and (normalized) false omission rate depending on
nominal power.

Nominal
power

Number of
simulated

cases Conventional
Small-
alpha MESP

Distance-
only

Interval-
based

Thick
𝑡-test

(Normalized) false ≥ 0.80 41,543 38.6% 32.6% 9.1% 9.1% 0.5% 5.3%
discovery rate 0.30 to 0.80 27,427 21.7% 9.7% 17.3% 19.7% 1.2% 7%

< 0.30 31,030 14.2% 4.2% 14.2% 33.5% 3.7% 9.5%

(Normalized) false ≥ 0.80 41,543 1.6% 5.8% 7.7% 7.7% 27.3% 13%
omission rate 0.30 to 0.80 27,427 16% 26.7% 17% 14.4% 36.5% 26.7%

< 0.30 31,030 32.5% 39.6% 32.5% 17.7% 38.3% 34.3%

4 Conclusion and Discussion

In this comment, we confirmed the results of GSK using our own software code written in R
that enables the easy implementation of further decision criteria. We added such a decision cri-
terion that allows to control for a pre-defined type I error rate with respect to a thick null hypothesis.

We confirmed that the MESP method as proposed by GSK has comparably low type I and type
II error rates with respect to a thick null hypothesis in settings the researcher can check for. Only
in low nominal power settings the MESP method has difficulties to detect a practically relevant
effect and, accordingly, has a quite high false omission rate. The false discovery rate is moderate in
comparison with other decision criteria but has the undesirable property that it does not decrease
monotonically with rising nominal power (assuming a fixed prior probability for the thick null
being true). If the researcher’s aim is to keep the false discovery rate low, the MESP should only be
used in high nominal power settings.

The MESP method could also be applied for point null hypothesis testing: As it augments
the conventional 𝑡-test by taking the minimum practically significant effect size into account,
MESP is a simple and effective approach for adding an additional layer of protection against false
positives without strongly increasing the false negative rate. However, if researchers are serious
about testing whether the thick null hypothesis is true, MESP lacks a parameter to adapt the
method to contexts with different costs of false negatives and positives with respect to the thick
null hypothesis. In contrast, the interval-based method and the thick 𝑡-test (assuming the chosen
distribution of ` | 𝐻𝑡

0 is approximately true) provide such a parameter with 𝛼 being the upper
bound of the false positive rate or approximately equal to it, respectively.

The performance of the decision criteria generally depends on whether the thick null hypothesis
is true or not. In practice, one can make an informed guess on this probability, i.e., specifying a
prior probability, or select the decision criterion according to the estimated nominal power and the
type of error one wants to avoid.

If the prior probability on the thick null being true is set high, it is advisable to select a decision
criterion with low false positive rate, namely the interval-based method or the thick 𝑡-test. Vice
versa, if one rather believes the true location lies outside the thick null interval, the distance-only
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method is generally the method of choice as it minimizes the false negative rate. However, the
prior is ultimately unknown and usually one rather knows the sample size and the MPSD and
can make a good estimate of the population’s standard deviation. Thus, the nominal power can
be approximated and used for selecting a decision criterion: In high nominal power settings, the
MESP and the distance-only are good choices irrespective of whether the thick null hypothesis is
true or not. If the nominal power is low, there is no criterion that can be generally recommended:
If the aim is to minimize the false positive rate, all approaches except for the distance-only method
work well. The latter, however, is the only criterion that has a decent false negative rate in such a
case.

In general, it is recommendable for hypothesis testing to specify and publish the (thick) null
hypothesis, planned analyses methods, and the decision criterion before conducting the study to
reduce options for 𝑝-hacking and increase transparency in science. Irrespective of the decision
criterion used, every empirical study is subject to limitations and assumptions and thus uncertainty
beyond sampling noise. While an extensive debate on statistical inference including dos and don’ts
as well as merits and pitfalls can be found in Wasserstein et al. (2019) and the corresponding issue
of the The American Statistician, we conclude by citing a generic piece of advice to the research
community using statistics: “Accept uncertainty. Be thoughtful, open, and modest” (Wasserstein et
al., 2019).
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