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Abstract

I analyze the role of the distribution of skills in shaping optimal nonlin-
ear income tax schedules. I use theoretical skill distributions as well
as empirical skill distributions for 14 OECD countries. I find that a
more dispersed log-normal skill distribution implies a more progres-
sive optimal tax schedule. Optimal tax rates should be lower through-
out if a greater number of unskilled agents cluster at the bottom, and the
scheme is more progressive if a greater number of agents locate at the
top. I also highlight how the impact of the skill distribution is affected
by the form of the social welfare function and the utility function. The
findings using empirical skill distributions suggest that the results are
sensitive to the type of statistical estimator used to estimate the skill

distribution.
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1 Introduction

A well-known fact from optimal taxation theory is that optimal tax schemes
depend on three components: the skill distribution of the population, the
individual preferences over consumption and labor supply, and the social
planner’s taste for redistribution (Mirrlees|1971). Previous research applied
various combinations of model specifications in order to compute optimal
marginal tax rates (see Table[I). Very few of those focus on the role of skill
distributions in shaping optimal tax schemes (Kanbur and Tuomala, [1994;
Mankiw et al., 2009). Compared to the social welfare functions and the indi-
vidual utility functions, the skill distributions are less subjective and easier
to quantify. What patterns of optimal tax schemes can be inferred from dif-
ferent skill distributions? What drives the pattern of optimal marginal tax
rates, the subjective model specifications, or the underlying skill distribu-
tions? In this paper, I analyze the role of the skill distribution in shaping
optimal tax schemes.

In the first part of the paper, I conduct extensive simulation studies cover-
ing five different types of theoretical skill distributions. I carefully simulate
optimal tax schedules with many commonly used specifications. The skill
distributions differ in three ways: whether there is a mass point of unskilled
workers at the bottom, whether the distribution has a thick tail at the top and
the general dispersion of the distribution. I illustrate these differences with
four groups of skill distributions: a log-normal distribution, a log-normal
distribution with a mass point at the bottom, a log-normal distribution with
a Pareto tail (henceforth, log-normal-Pareto distribution), and a log-normal
distribution with a mass point at the bottom and a Pareto tail.

In the second part of the paper, I use empirical skill distributions and cal-
culate optimal income tax schedules for 14 OECD countries, using wages as
proxies for skillsm The 14 countries are: Austria, Czech Republic, Estonia,
Finland, Germany, Greece, Ireland, Japan, Luxembourg, Netherlands, Swe-
den, Switzerland, UK, and the US. For Sweden, I use large-scale survey data
collected by Statistics Sweden. For the 13 other countries, I use data from
the Luxembourg Income StudyE]

!t is common to use wage as a proxy for skill in the literature on optimal income taxation.
2] utilize the large-scale wage survey data from Statistics Sweden, as the data provides more
observations than the Luxembourg Income Study Database (see Section [4.T)).



There are three findings from the first part of the study. First, the impact
of the skill distribution on optimal marginal tax rates depends crucially on
the choice of social welfare function in the cases where I attach a mass point
at the bottom or a Pareto tail (or both) to the log-normal distribution. More-
over, whether there are income effects on labor supply is irrelevant to the
pattern of optimal tax schemes if the government is extremely inequality
averse. Second, the larger the number of unskilled workers at the bottom,
the lower are the optimal tax rates for this group, a result which is valid
across a range of different model specifications. Third, the thicker the Pareto
tail, the more progressive (or less regressive if applying a max-min type so-
cial objective function) are the optimal tax schemes. Attaching a Pareto tail
affects not only the optimal tax schemes beyond the cutoff points (i.e., the
points where the Pareto tail is attached), but also at lower skill levels. The
earlier the Pareto tail enters the log-normal skill distribution, the less pro-
gressive the optimal tax schemes are before the cutoff point.

There are three findings from the second part of the study. First, the pat-
terns of optimal tax rates are flatter for Luxembourg, Switzerland, and the
US. This finding can be attributed to a higher dispersion of the fitted log-
normal distribution for these countries as compared to other countries in
the sample. Second, attaching a Pareto tail alters the pattern of the optimal
tax rates after the cutoff point, and a discontinuity in the optimal marginal
tax rate arises at the cutoff point. The earlier the Pareto tail enters the fit-
ted wage distributions, the more progressive are the optimal tax schemes.
Third, based on the evidence from Sweden, it appears that the Pareto tail fits
the wage distribution well for high-income earners, and optimal marginal
tax rates of fitted log-normal-Pareto and non-parametric wage distributions
become more similar for high-income earners.

This paper contributes to the literature in several ways. First, to the best
of my knowledge, this is the first paper to systematically simulate and ana-
lyze the role of the skill distribution in shaping optimal tax schemes. I pro-
vide graphical results that span the entire skill distribution, revealing the
general pattern of optimal marginal tax rates. Second, this paper exploits
empirically calibrated models on wage distributions across different OECD
countries. I find the simulated optimal tax schemes are sensitive to how the

empirical wage distributions are estimated, e.g., whether parametric or non-



parametric estimators are used. I suggest future simulation exercises should
be careful about the estimated skill distributions.

This paper builds on Mirrlees” optimal nonlinear income tax model and
provides additional numerical results for the pattern of optimal tax schemes.
In Table(1} I provide a summary of previous numerical studies of optimal tax
rates. For example, some show that optimal marginal tax rates decrease in
skill for the vast majority of the population (Mirrlees| 1971} Tuomala) [1984).
Some show an increasing pattern of optimal marginal tax rates along the
income distribution (Kanbur and Tuomala), (1994; Tuomalal 2010). More re-
cent studies present a U-shaped pattern of optimal marginal tax rates (Saez,
2001; Mankiw et al. [2009; Bastani, 2015). Some of these studies are related
to this paper but focus on different model specifications (Tuomala [1984;|Da-
han and Strawczynski, 2000; Tuomala, [2010). Other studies contribute to the
theory or simulation methods (Saez, 2001} Bastani, [2015). Overall, very few
studies analyze the role of the skill distribution on the shape of optimal tax
schemes. An exception is Kanbur and Tuomalal (1994) who show that the
choice of the variance of the skill distribution can determine whether the
pattern of optimal marginal tax rates is decreasing or increasing. Another
exception is Mankiw et al.| (2009), who indicate that the shape of optimal
marginal income tax rates can be sensitive to the thickness of the right tail
of the skill distribution, e.g., a U-shaped pattern of optimal marginal tax
rates emerges when using a Pareto distribution to fit higher wages whereas
optimal marginal tax rates are monotonically decreasing otherwise.

The rest of the paper proceeds as follows. Section 2 introduces the discrete
optimal income tax model. Section 3 simulates and analyzes the optimal
tax schemes for different theoretical skill distributions. Section 4 provides a
simulation analysis based on empirical calibrations for 14 OECD countries.
Finally, Section 5 concludes.

2 The discrete optimal income tax model

This paper uses a discrete type version of the Mirrlees|(1971) optimal non-
linear income tax model. The problem of the government is to maximize so-
cial welfare which aggregates individual utilities, subject to the social plan-
ner’s budget constraint, and a set of incentive compatibility constraints. This
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analysis builds on a labor supply model which assumes that workers only
differ in skill levels, which are here proxied by market wage rates. (Stiglitz,
1982} IDiamond),[1998; Mankiw et al.,2009).

I assume that there is a set of distinct types of agents, S={1,2,...,N}. The
skill for type i € Sis n;, and n; <n;if i <j. Asis customary in the literature,
the tax schedule is defined as a set of consumption-income pairs (c;,y;), i =
1,....,N, where the tax schedule is implicitly defined as T(y;) = y; —c;. A
type i agent earns before-tax income y; and consumes after-tax income c;
and gains the payoff u(c;, y;, n;).

It is convenient to define the utility function as u/(c;, y;) = u(c;,y;, ;). The
utility function is separable and given by ui(ci,yi) = x(c;) — v(vi/n;), with
x¢ >0 and v, > 0. I will consider both the quasi-linear case which arises
when x(c) = c and the case where the utility from consumption is strictly
concave, namely, x¢ < OEI The quasi-linear case implies that there is no in-
come effect on labor supply. When the utility from consumption is strictly
concave, the value of redistribution typically increases due to diminishing
marginal utility of consumption. Agents decide on their labor supply given
the tax scheme set by the government. Individual labor supply is expressed
in terms of hours of work, and is given by I;(n;) = vi/n;. Thus, choosing a
pre-tax income level y; is equivalent to choosing labor supply.

The government aims to maximize social welfare represented by the so-

cial welfare function
Wiy, uy, ..., un) =Y G (ci,y:)) 7, (1)
i

where 71; is the fraction of type i agents. The social welfare function reflects
the government’s taste for redistribution, and G(u')is an increasing and con-
cave function of u. The government maximizes social welfare W subject to

the revenue constraint

Y T)mi <E, @

where E is the required revenue for public expenditure, and T(y;) =y; —c; is
the tax revenue collected from type i agent. The exogenous required revenue

3Boadway et al(2000) studies the properties of the optimal income tax when the utility
function is linear in leisure. [Tuomalal (2010) simulates the marginal tax rate structure by using
a quadratic utility of consumption (i.e., an upper bound for consumption).



depends on the total public expenditure and the non-tax revenue collected
by the government. If E = 0, the income tax is only used for redistribution.
Governments cannot observe individuals” productivities and can only use
income as the tax base, T(y;). In this second best problem, the following
incentive compatibility constraints are required

Vi, j € S ul(ci,yi) = u'(cj,y)). 3)

These constraints prevent individuals from choosing others” consumption-
income pairs, such that no one deviates from his/her true productivity. Peo-
ple with higher incomes pay higher taxes from a redistributive point of view.
However, these taxes cannot be too high as this would drive high-income
earners away. The redistribution of income is therefore restricted by the in-
centive compatibility constraints.

Following |Hellwig|(2007), I consider the weakly relaxed income tax prob-
lem where the constraints in (3)) are replaced by the necessary and sufficient

conditions:
\V/l S {1/2/' . '/N - 1} : ui+1(ci+1/yi+l) Z ui+1(ciryi)l and (4)

Vie{l,Z,...,N—l}:cMZci. (5)

Maximizing social welfare (I) subject to the revenue constraint (2) and
the downward incentive compatibility constraints {#) and the consumption
monotonicity constraints (5), we can obtain an implicit formula for optimal
marginal tax rates

i+l

/ _ Aluci
T'(yi) = pes (0(ci,yi,ni) — 6(ci, yi, Niv1)) - (6)
——

A B

where A; is the multiplier on the ith downward incentive compatibility con-
straint in (#) and ¢ is the multiplier on the government budget constraint.
The term 6(c;,y;,n;) is defined as the marginal rate of substitution of labor
supply for consumption for an agent of skill #; at the point (y;,c;) of an in-
difference curve. The marginal utility of consumption for skill type i + 1

choosing the consumption-income bundle intended for type i is ugl, and



ugl = ufjl, when the utility function is separable. It is assumed that the con-
sumption monotonicity constraints (5) are not binding. The derivation of
the optimal tax formula is sketched in Appendix[A]l The equation () indi-
cates that optimal tax rate for type i agent increases in the marginal utility of
consumption and decreases in the population mass of that agent. In addi-
tion, the greater the difference in MRS and therefore in ability, the higher the
tax rate for the agent. Three elements on the right-hand side of equation (6)
determine optimal tax rates: social welfare weights (A), population mass of
skill distribution (A), and marginal rate of substitution of labor supply for
consumption (B).

3 Part I: Numerical simulations for different skill

distributions

3.1 Methodology

The optimal tax schemes depend on three elements: the shape of the skill
distribution, individuals” utility over consumption and labor supply, and
the attitudes of the government towards inequality. My simulation exercise
considers several of the most commonly used model specifications to study
the role of the skill distribution in shaping optimal tax schedules. Table
describes the parameters in the simulation. As already mentioned, I con-
sider two types of utility functions. In the first, utility is strictly concave in
consumption:

_ o sy
u(c,l) =logc 1+1/el . (7)

The second utility function is quasi-linear in consumption and is given by:

T 141/
u(c,l)=c 1+1/el . (8)
The compensated elasticity of labor supply with respect to the wage rate is
in both cases ¢ = 0.3, which is in line with the recommended elasticity in the
labor supply literature (Chetty et al., 2011).



Table 2: Parameters in the simulation

Parameter Value Description
0 Utilitarian
B 0.2 Intermediate SWEF parameter
o0 Max-min
1 80.32 Scale parameter for the calibration of labor supply
Utility function parameters
e 0.3 Compensated elasticity of labor supply
u 3 Location measure of log-normal distribution (log of median skill)
o 0.2,0.4,0.6,0.8,1 Dispersion measure of log-normal distribution
b 5,10,15,20 Mass point at the bottom (in percent)
Skill distribution parameters
® 1,2,3,4 Shape parameter of Pareto distribution
Xm 21.65,25.3,30.1,37.4  Cutoff points of Pareto distribution
N 1000, 10000 Number of skill types (for Part I and Part II respectively)

The simulations employ three types of social welfare functions: a utili-
tarian social welfare function, an increasing and strictly concave function of
utility, and a max-min social welfare function. These cases can be captured
by weighting the individual utilities by the following function

Gu) = —;eﬁ”, ©)

where f reflects the degree of inequality aversionE] As f increases, the so-
cial welfare function becomes more concave and the government becomes
more inequality averse. The extreme inequality aversion case, i.e., the max-
min welfare function, is obtained when f = co. The utilitarian social welfare
function is obtained when = 0.

In my simulations, I use four different combinations of model specifica-
tions based on the type of utility function and the type of social welfare
function. The case where the government has no incentive to redistribute
income from high-skill to low-skill agents is excluded, that is, the combina-
tion of a utilitarian social objective and a quasi-linear utility function is not
considered. I also exclude the case of a concave social welfare function and
a concave utility function. This combination is, in fact, a concave transfor-
mation of a concave function (i.e., a concave utility function), and the choice

4This functional form is also used by |{Tuomala| (1984, [2010).



of concavity is somewhat arbitrary. In Appendix [B} I consider the case of a
utilitarian social welfare function combined with different types of concave
utility functions.

In this section, I consider four groups of skill distributions, referred to as
Type I, Type II, Type Il and Type IV summarized in Table

Table 3: Summary of simulation experiments

Type of skill distribution Considered parameter values

Log-normal distributions
Type I: 0=0.2,04,0.6,0.8,1

(considering different dispersion parameters o)
Log-normal distributions
Type II: b = 0%,5%,10%,15%,20%
(considering different mass points b at the bottom)
Log-normal-Pareto distributions
Type III: a=1,2,3,4
(considering different shape parameters )
Log-normal-Pareto distributions
Type IV: X =21.65,25.3,30.1,37.4
(considering different cutoff points for the Pareto-distribution x;,)

All simulations employ the log-normal distribution parameters (j1,) = (3,0.6) unless otherwise stated.

In Type I, L use a log-normal distribution and change the degree of disper-
sion as measured by the parameter ¢. I consider the values 0=0.2,0.4,0.6,0.8,1
and let i be fixed and equal to 3.

In Type II, I consider skill distributions with a mass point of size b located
at the bottom of the distribution. Notice that b corresponds to the b:th per-
centile of the skill distribution and is defined by the skill level n satisfying
P(n <= n) = b. I use the mid-point, /2, to represent the the skill range [0, n].
According to World Health Organization data, the share of people receiving
social/disability benefits is around 6% in Nordic CountriesE] Mankiw et al.
(2009) attached a 5% mass point at the bottom to reflect the share of dis-
abled workers in the US. In the simulations, I compare five different cases,
b =0%,5%,10%,15%,20%.

In Type III and Type IV, I consider different scenarios regarding the right
tail of the skill distributions. The probability density function of a Pareto

5World Health Organization, 1970-2019, https://gateway.euro.who.int/en/indicators/
hfa_415-2721-number-of-people-receiving-socialdisability-benefits / visualizations /#id=
19406&tab=table
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distribution is given by

ax®
fP(X) = xa_ﬁ (xm,zx S ]R>0/ X e [xm,oo)), (10)

where « is the shape parameter and x;, is the cutoff point, i.e., the entry
point of the Pareto tail. The shape parameter reflects the thickness of the
tail, and the smaller the shape parameter, the thicker the Pareto tail. I con-
sider the values « = 1,2,3,4. This is in line with the earlier literature that has
used values ranging from 0.5 to 5. For example, Mankiw et al. (2009) and
Bastani| (2015) attach a Pareto parameter « = 2 in their parametric wage dis-
tributions, and [Diamond) (1998) uses 0.5,1.5,5@ I choose the percentiles of
the log-normal distribution p = 55%,65%,75%, 85% as the cutoff points, and
the corresponding values of the cutoff points x;, = 21.65,25.3,30.1,37 4.

In Type 1II, I use the value of Pareto parameter « =2 as the benchmark,
and I compare the impact of different Pareto parameters (at the same cutoff
point) on the pattern of the tax schemes. In Type IV, the benchmark case is
a log-normal-Pareto distribution with a cutoff of the Pareto tail at x,, = 30.1,
and I compare the effect of different cutoff points of the attached Pareto tail
(with the same Pareto parameter) to the shape of the marginal tax rates. The
baseline parameters are shown in Table 3| In the scenarios Type II, III and

IV, the log-normal parameters are fixed at the baseline values (¢, o) = (3,0.6).

3.2 Results

In Figure[T) I summarize the simulation results obtained using Type I skill
distributions. Consistent with the findings of previous work, the extent of
inherent inequality can dramatically change the pattern of optimal marginal
tax rates, see [Kanbur and Tuomala| (1994). Figure [I(a) shows that optimal
tax rates are everywhere increasing when using a concave utility function
and a utilitarian social welfare function. The shape of optimal marginal tax
rates along the percentiles of the skill distribution tends to be concave if
there is no income effect, leading to a decreasing pattern of tax rates for
approximately the top 10 percentile of the population, see Figure [[{c). The
concave utility function implies declining marginal utility of consumption,

9Bastani and Lundberg| (2017) report the value of Pareto parameter is around 3 in 1970-2015
in Sweden.

11



which leads to more redistributive tax schemes (i.e., the second derivative
of the tax function is higher everywhere).

The results for the max-min type of social welfare function are in line
with the result from Kanbur and Tuomalal (1994), in which the optimal tax
rates are everywhere decreasing. Figure([I[b) and[I{d) show that the general
results for the concave and quasi-linear types of utility function are very
similar. The optimal tax scheme decreases faster when there is no income
effect. When eliminating one incentive for redistribution, i.e., the declining
marginal utility of consumption, optimal tax rates appear to be lower for

higher-skilled agents.

Figure 1: Optimal marginal tax rates using log-normal distributions with different
dispersion (Type I)

(a) Utilitarian Social Welfare Function and Concave Utility (b) Max-min Social Welfare Function and Concave Utility
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(c) Intermediate Taste for Redistribution and Quasi-linear Utility
~

d) Max-min Social Welfare Function and Quasi-linear Utility
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In Figure 2} I report optimal tax rates for Type II skill distributions. We
observe a universal result across the different panels, which is, the larger
the mass point, the lower the optimal tax rates for unskilled agents. Also,
optimal marginal tax rates tend to converge for higher skill levels, that is,
the size of the mass point does not influence optimal marginal tax rates at
high skill levels. The results are invariant to the thickness of the right tail,

12



see Figure

Figure 2: Optimal marginal tax rates using log-normal distributions with different
mass points at the bottom (Type 1I)
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Figure[3|illustrates optimal tax rates for Type III skill distributions. Figure
Bfa) andB|c) show that optimal marginal tax rates are everywhere increasing
when attaching a thicker Pareto tail to the log-normal distribution, e.g., & =
1,2. The optimal marginal tax rates increase sharply with a thicker Pareto
tail, see Figure B(a). Attaching a Pareto tail affects not only the optimal tax
schemes beyond the cutoff points, but also at lower skill levels. Similar to the
results from Type II distributions, both the pattern and the level of optimal
marginal tax rates are invariant to the choice of utility function when the
government is extremely inequality averse.

7In appendix Figure @ I present an alternative version of the Type II skill distribution
where I consider a log-normal-Pareto distribution with a mass point at the bottom of the distri-
bution.
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Figure 3: Optimal marginal tax rates using log-normal-Pareto distributions with
different shape parameters (Type I1I)
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Note: The cutoff point of the Pareto-distribution is fixed at the 75th percentile.

Figure [ presents simulated optimal tax rates for Type IV skill distribu-
tions considering the following percentile cutoff points for the Pareto tail: no
cutoff point, p55, p65, p75, p85. In line with the results for Type III skill dis-
tributions, optimal marginal tax rates increase for upper-middle skill agents.
Attaching a Pareto tail affects not only the optimal tax schemes after the cut-
off points, but also the (global) tax schemes before the cutoff points. In par-
ticular, the smaller the percentile of the cutoff point, the lower the optimal
tax rates before the cutoff point. Moreover, the optimal tax schemes tend to
converge to one uniform tax scheme when shape parameters of the Pareto
tail are the same across different skill distributions.

Similar to the Type Il and Type III skill distributions, the role of the income
effect depends on the government’s taste for redistribution: the income ef-
fect is irrelevant to the pattern of optimal tax schemes if the government has
a max-min type of social welfare function.
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Figure 4: Optimal marginal tax rates using log-normal-Pareto distributions with
different cutoff points for the Pareto-distribution (Type IV)
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Note: The shape parameter is fixed at o = 2.

4 Part II: Optimal tax rates for 14 OECD countries

In the previous section, I simulated optimal marginal tax rates for differ-
ent theoretical skill distributions. In this section, I conduct simulations using
empirical skill distributions. This exercise aims to learn about differences in
optimal taxes across countries and gain further insights into how the shape
of skill distribution affects optimal taxes using data from actual economies. I
also explore the sensitivity of optimal marginal tax rates to parametric func-
tional forms and non-parametric distributions.

I employ a simple calibrated model to simulate optimal tax schemes for
14 OECD countries. I focus on the quasi-linear utility function specified in
(8). The elasticity of labor supply is as before e = 0.3. The government’s
taste for redistribution is captured by the concave social welfare function

G(u) =logu. I use gross hourly wages as proxies for skills, as is common in
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the literature on optimal income taxationﬁ I apply parametric (log-normal
and log-normal-Pareto distributions) and non-parametric methods to fit the

empirical wage distributions.

4.1 Data

This paper employs micro-level cross-country data from 2013@ For Swe-
den, I use monthly wage data provided by Statistics Swedenm The survey
data covers 50% of private sector employees and all employees in the public
sector. For the other 13 countries, I use hourly wages from the Luxembourg
Income Study Database. The wages in the Luxembourg Income Study are
collected by different government agencies. The data only covers workers
who have a formal contract job, i.e., people with zero wage earnings and the
non-working population are excluded. The currency is in 2013 Euro, and
other currencies are converted to Euro using the average exchange rate in
2013. Summary statistics are reported in Table

4.2 Constructions of wage distributions
Parametric wage distributions for 14 OECD countries

Due to the limitation of the sample size in the Luxembourg Income Study
Database, I fit parametric distributions to the wage samples of the 14 OECD
countries. The log-normal estimates are shown in Table @ In Figure[5] I
plot the fitted log-normal wage distributions. I categorize countries into
three groups based on the dispersion of the empirical wage distributions
measured by the variance of the fitted log-normal distribution, see Table[d]

There are two things that need to be considered when attaching a Pareto
tail to a log-normal distribution. First, the Pareto tail should fit the observa-
tions well. The fit of the right tails of the distributions are depicted in Figure
The shape parameter « is estimated by using Maximum Likelihood es-
timation. The goodness of fit of log-log regressions of the survival functions

81t is possible to use different proxies for skill, e.g., the Programme for the International
Assessment of Adult Competencies (PIAAC) provides an alternative measure for adult skills,
see https:/ /www.oecd.org/skills/piaac/.
“Without considerations of wage dynamics, the 2013 data is used due to limitations of the
available datasets.
19For Sweden, I divide the monthly wage by the average monthly hours of work to obtain a
measure of the hourly wage rate.
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of the Pareto distributions are shown in Table E} Second, the log-normal-
Pareto distribution is expected to be smooth and continuous. The difference
between the log-normal distribution and the Pareto tail at the cutoff point

X, needs to be small. I measure the difference in relative terms, that is,

fP(x =Xm) — fln(x =Xpm)
fin(x = 2xm)

D fin(x) = where fp(x =) = (1~ p), (11
where p is the corresponding percentile of the threshold x;,. I loop over a set
of discrete percentiles (70th, 75th, 80th, 85th, 90th, 95th, 99th) and determine
the one that gives the smallest difference between log-normal distribution
and the Pareto tail (in relative terms) at the cutoff point x;;,. The matched
Pareto tails are displayed in Table[d]

Non-parametric wage distribution for Sweden

Given that the Swedish wage data contains over two million observa-
tions, I am able to compute an optimal tax scheme using a finer non-parametric
wage distribution. In particular, I divide the empirical wage distribution
into 10,000 equally sized bins (each containing the same share of the total
population). I use the median value of each bin to represent the wage level
of that bin. I then compare optimal tax schemes that result from different

parametric and non-parametric distributions.

4.3 Results

I now present simulated optimal income tax schedules for the empirical
wage distributions. To be able to easier compare the results for the different
countries, as already mentioned, I group and rank them according to the
variance of the fitted log-normal distributions, which is a measure of pre-
tax inequality. The first group consists of Austria, Czech Republic, Estonia,
and Greece; the second group consists of Finland, Germany, Ireland, Japan,
and the UK; the third group consists of Luxembourg, Netherlands, Sweden,
Switzerland, and the US[H]|

11t is worth mentioning that some countries are not ranked as we expected, e.g., Sweden is
in the high inequality group. There might be two possible reasons for this ranking: first, the
variance measures the pre-tax inequality with no taxes and transfers. Second, the estimates are
data-driven, and I access a different dataset for Sweden.
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In Figure|5} I visualize fitted log-normal distributions and corresponding
optimal marginal tax rates. The first thing to notice is that the pattern of op-
timal marginal tax rates is sensitive to the shape of the fitted log-normal
distributions. I find that the patterns of optimal tax rates are flatter for
the more dispersed log-normal distributions (i.e., distributions with large
variance), for example, Austria has a flatter tax scheme than Estonia, see
Figure [f(a). The marginal tax rates decrease faster for countries with more
compressed wage distributions, for example, Czech Republic, Estonia, and
Greece. Countries similar in dispersion share a similar pattern of optimal
marginal tax rates, such as Sweden and Luxembourg, see Figure [5{(c). The
general pattern of optimal tax rates decreases for high-income earners (at
least for income earners with wage levels above the cutoff point x,;,) when
applying log-normal distributions to fit wage distributions.

In Figure [6} I show optimal marginal tax rates using fitted log-normal-
Pareto distributions. Attaching a Pareto tail alters the pattern of optimal
tax rates beyond the cutoff point, and the optimal tax rate at the cutoff point
becomes a kink point. We observe a higher tax ladder beyond the kink point
for some countries, and it is more salient for Sweden, Japan, Finland, and the
Netherlands. It appears that the smaller the percentile of the cutoff point, p,
the larger the increase in optimal tax rates, see Table[d] The optimal marginal
tax rates for individual countries are reported in Figure

Figure [7] presents the simulated optimal tax rates resulting from the fit-
ted parametric and fitted non-parametric wage distributions. The pattern
and level of optimal tax rates are very sensitive to the estimated wage dis-
tributions. The log-normal distribution leads to a flatter shape of optimal
tax scheme than optimal tax rates simulated using the empirical wage dis-
tribution. Based on the evidence from Sweden, it appears that the Pareto
tail fits the wage distribution well for high-income earners, and optimal tax
schemes of fitted log-normal-Pareto and non-parametric wage distributions

move closer for high-income earners.
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Figure 5: Fitted log-normal distributions and optimal marginal tax rates
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Figure 6: Fitted log-normal-Pareto distributions and optimal marginal tax rates
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Figure 7: Optimal marginal tax rates using fitted parametric and fitted non-
parametric wage distributions
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5 Conclusions

The paper analyzes the role of the skill distribution in shaping optimal
nonlinear income tax schemes. I use theoretical skill distributions as well as
empirical skill distributions for 14 OECD countries. I find that a more dis-
persed log-normal skill distribution implies a more progressive optimal tax
schedule. Optimal tax rates should be lower if a greater number of unskilled
agents cluster at the bottom, and the scheme should be more progressive if
a greater number of agents locate at the top. I also highlight how the impact
of the skill distribution is affected by the form of the social welfare function
and the utility function.

There are several findings from the analysis using empirical skill distri-
butions. First, the pattern of optimal tax rates are flatter for Luxembourg,
Switzerland, and the US. This finding can be attributed to a higher variance
of the fitted log-normal distribution for these countries. Second, attaching a
Pareto tail alters the pattern of optimal tax rates after the cutoff point, and
a discontinuity in the optimal marginal tax rate arises at the cutoff point.
The earlier the Pareto tail enters the fitted wage distribution, the more pro-
gressive are the optimal tax schemes. The results are sensitive to the type of
statistical estimator used to estimate the skill distribution.

Governments can adjust tax schemes by comparing the dispersion of skill
distributions in different years or locally across different regions. Since the

optimal marginal tax rates can be sensitive to the fitted skill distributions
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(e.g., parametric and non-parametric distributions), this determines how
much the policymaker can trust the result of a given optimal taxation model

or simulation.
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Appendix

A Deriving the implicit optimal tax formula

The government problem can be stated as follows:
max G Ci, Y;))TT;
(e, ; (' (ci, yi)) i

subjectto Y (y; —¢;)7r; >0,
i

u (e, visn) > u e, yi), Vie {1,2,...,N =1},
Ciz1 = Cj, Vie {1,2,...,1\] — 1}.

The Lagrangian for this maximization problem can be expressed as

N N
L=) G'(ci,y)mi+ ) (vi — )
i=1 i=1 (Al)

N-1 ‘ N-1
+ Y A i, yie) — e y)) + Y Cilcia — <.
P P

Differentiating the Lagrangian with respect to c; and y; gives the first-order

conditions
_0G() 0wy ., ouiey)  outMeLy) .
“ ui(ciy)  oc T — ¢+ A ac; Aj ac; +(i-1—(i=0,
(A2)
. i(n. 1. i(~. 4. i+l 4.
y dG(-) du (Cllyl)ﬂi"'ﬁbni"‘/\i—l Ju'(ci, i) _/\ia” (ci, yi) ~0. (A3)

T ouil(chy) v y; ;i

Suppose the consumption monotonicity constraints are not binding, that
is, ;=0 fori € {1,2,...,N}. Multiplying equation 1i by 31:((:17%)/8% we

eiyi)/oci”
get
0G() au'(ciyi) qbn,a”i(cifyi)/ayi
dul(cyi)  oyi Houl(c, yi)/Oc (A4)
+/\i_laui(cir.‘/i) Y du(ci, i) aul:(cir.‘/i)/a]/i _o.
ay; dc;  Aui(ci,y;)/dc;
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Subtracting equation (A3) from equation (A4), we obtain

0u'(ci, yi)/9yi ou(ci,y) 9u' (i, yi) /9y +A4a”i+l(ci/yi)

s A | ~0.
nlaul(ci/yi)/aci i A ac;  oui(c;y)/oc; 1 Oy

(A5)

Simplifying the equation above, we obtain

¢7T.(a“i(ciryi)/ayi N 1) _ /\,a”m(cir%) (a“”l(cifyi)/ayf a”i(cifyi)/ayi).

"\ 9ui(c;,y;)/dc; " 9c w ey fac;  oul(ci,y;)/9dc;
(A6)
Individuals face a tax regime and maximize their utility
max u' (ci,vi)
{ciyities i
subjectto ¢; <y; — T(y)),
and the first-order condition gives us
au'(ciyi) /oy, 3 ,
dwi(ciyi)foc;, —A =T (A7)
Inserting equation into (A6), we obtain
A outtl(c;, ;) ot ey fay,  oul(c;,y;)/oy;
T,(yi) _ M (ci ]/1)( - / Vi ( iYi)/ yz>. (A8)
¢ aC,’ ou (Cuyz)/ac,- au’(ci,yi)/aci

Defining the marginal rate of substitution for an agent of skill level #; at the

point (c;, y;) of an indifference curve as

' (ciyi) oy,

0ci yiomi) = = 3Mi(fi,yi)/8ci. (49)
The optimal tax formula is given by
aui*l(ci,yl-)
/ Ai de;
T'(yi) = —om (0(ci,yi,ni) — 6(ci, yi nis1))- (A10)
1
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B Sensitivity analysis

B.1 The curvature of the individual utility function

As discussed in section the combination of a concave social welfare
function and a concave utility function leads to an arbitrary level of curva-
ture of the social welfare function. How sensitive are the patterns of optimal
tax schemes to the curvature of the individual utility function?

To examine this effect, I employ a utilitarian social welfare function and
consider the following utility function:

=

ueh=g— - #1/611“/6’, (B11)
where 7 is the coefficient of the relative risk aversion in consumption. My
sensitivity analysis considers three different coefficients of relative risk aver-
sion in consumption, i.e., ¢ = 0.9,1,1.1. The benchmark value of v is 1,
in which case the utility function is expressed as equation (7) in the main
text In Figure I report the results from this sensitivity analysis. It
appears that the general patterns of optimal marginal tax rates are not very

sensitivity to the value of 7.

12For example, Hansen and Singleton| (1983) concludes the coeffficient of relative risk aver-
sion is between 0 and 2 by using historical monthly data. [Palsson|(1996) shows that the relative
risk aversion on Swedish data is in the range of 2 and 4. [Kocherlakota| (1996) claims that a co-
efficient of the relative risk aversion above 10 reflects individual highly improbable behavior.
Saez|(2001) adopts a logarithmic form of consumption that corresponds to a coefficient of rela-
tive risk aversion of 1 in his simulations. Mankiw et al.[(2009) uses 1.5 as the value of coefficient
to simulate optimal marginal tax rates in US.
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Figure A1: Optimal marginal tax rates using different log-normal distributions
(Type I, sensitivity analysis)
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Figure A2: Optimal marginal tax rates using a log-normal distribution considering
different mass points at the bottom (Type 11, sensitivity analysis)
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Figure A3: Optimal marginal tax rates using a log-normal-Pareto distribution con-
sidering different shape parameters (Type II1, sensitivity analysis)
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Figure A4: Optimal marginal tax rates using a log-normal-Pareto distribution con-
sidering different cutoff points for the Pareto-distribution (Type 1V, sensitivity anal-
ysis)
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Figure A5: Optimal marginal tax rates using a log-normal-Pareto distribution con-
sidering different mass points at the bottom (sensitivity analysis)
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Figure A6: Optimal marginal tax rates using a log-normal-Pareto distribution con-
sidering different mass points at the bottom
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C Summary statistics

Summary statistics are reported in Table

D Right tails of the wage distributions

Figure|A7|depicts the fit of the right tails of the wage distributions.

E Simulated optimal marginal tax rates by coun-

try

In Figure I show optimal marginal tax rates for individual countries.
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Figure A7: Right Tails of the Wage Distributions, 2013
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Density

Figure A8: Optimal marginal tax rates, by country
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