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Abstract

Level-k thinking and Cognitive Hierarchy have been widely applied as a normal-
form solution concept in behavioral and experimental game theory. We consider
the extension of level-k thinking to extensive-form games. Player’s may learn about
levels of opponents’ thinking during the play of the game because some information
sets may be inconsistent with certain levels. In particular, for any information set
reached, a level-k player attaches the maximum level-` thinking for ` < k to her
opponents consistent with the information set. We compare extensive-form level-k
thinking with other solution concepts such as level-k thinking in the associated
normal-form, extensive-form rationalizability, ∆-rationalizability, iterated admissi-
bility, and backward induction. We use extensive-form level-k thinking to reanalyze
data from some prior experiments in the literature.
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1 Introduction

The core idea of level-k thinking or iterated reasoning about other players is as old as

game theory and at the heart of strategic reasoning. Even before the seminal “Theory of

Games and Economic Behavior” had been published by von Neumann and Morgenstern

in 1944, Morgenstern (1928, p. 98) emphasized it in his work on predictions in social

situations:1

“Sherlock Holmes, pursued by his opponent, Moriarty, leaves for Dover. The

train stops at a station on the way, and he alights there rather than traveling

on to Dover. He has seen Moriarty at the railway station, recognizes that he is

very clever, and expects that Moriarty will take a special faster train in order

to catch him at Dover. Holmes’ anticipation turns out to be correct. But

what if Moriarty had been still more clever, had estimated Holmes’ mental

abilities better and had foreseen his actions accordingly? Then obviously

he would have traveled to the intermediate station. Holmes, again, would

have had to calculate that, and he himself would have decided to go on to

Dover. Whereupon Moriarty would have “reacted” differently. Because of so

much thinking, they might not have been able to act at all or the intellectually

weaker of the two would have surrendered to the other in the Victoria Station,

since the whole flight would have become unnecessary. Examples of this kind

can be drawn from everywhere.”

It has been studied in various different forms as sequential best response learning

(Cournot, 1838), hierarchies of beliefs (Harsanyi, 1967), iterated admissibility and it-

erated dominance (Farquharson, 1969, Brams, 1975, Moulin, 1979), rationalizability

(Spohn, 1982, Bernheim, 1984, Pearce, 1984), k-level mutual belief in rationality and

variants thereof (Tan and Werlang, 1988, Battigalli and Siniscalchi, 2002, Brandenburger,

Friedenberg, Keisler, 2008, Heifetz, Meier, and Schipper, 2019), level-k thinking (Nagel,

1995), and cognitive hierarchies (Stahl and Wilson, 1994, 1995, Camerer, Ho, Chong,

1994). Latter work on level-k thinking was very much inspired by experiments and

has been applied to a wide variety of experimental games (see Crawford, Costa-Gomez,

Iriberri, 2013, for a survey) and seen applications to auctions (Crawford and Iriberri,

2007), mechanism design (Kneeland, 2022), financial market microstructure (Zhou, 2022),

1While the origin of level-k thinking is often traced back to the Beauty Contest described by Keynes
in 1936, we note that Morgenstern’s work predates Keynes.
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and even general equilibrium (Carvajal and Zhou, 2022). We learn from the literature

that details matter. In this paper, we focus on details that arise in extensive-form games.

Moreover, we focus on level-k thinking as currently this is a dominant solution concept

in experimental game theory thought to capture some notion of bounded rationality.

Although level-k reasoning has been applied to extensive-form games (e.g., Kawagoe

and Takizawa, 2012, Ho and Su, 2013, Garcia-Pola, Iriberri, and Kovarik, 2020), it is a

solution concept for normal-form games. Players hold a first-level belief over opponent’s

behavior (often called level-0 types). A level-1 player best responds to such a first-level

belief. A level-2 player best response to his belief that others are level-1 players. A level-3

player best responds to level-2 players etc. The issue is that in extensive-form games,

players may learn about the opponents’ levels of thinking during the play because some

information sets cannot be reached when opponents use certain levels of thinking. Any

level of opponents’ reasoning that a player learns during play must be below her own level

of reasoning. Information about the opponents’ level of reasoning is useful for predicting

opponents’ future play.

In this paper, we present an extensive-form version of level-k thinking that allows for

updating of beliefs over opponents’ levels of thinking in extensive-form games. We com-

pare extensive-form level-k thinking with normal-form level-k thinking, extensive-form

rationalizability, strong ∆-rationalizability, iterated admissibility, and backward induc-

tion. We focus on the comparison with these solution concepts because all of them can

be interpreted as some form of iterative reasoning. We show that for initial full-support

beliefs, extensive-form level-k thinking refines normal-form level-k thinking outcomes.

However, while normal-form level-k thinking refines level-k normal-form rationalizability,

extensive-form level-k thinking does not refine (and is not refined by) k-level extensive-

form rationalizability. We also show that extensive-form level-k thinking differs from

k-level ∆-rationalizability, k-level iterative admissibility, and k-level backward induction.

Our goal in proposing a notion of extensive-form level-k thinking is not to put up

another contender in a horse race of solution concepts that magically predicts behavioral

data better than any other in games in extensive form. Rather, our hope is that by

confronting experimental data with various solution concepts such as extensive-form level-

k thinking, normal-form level-k thinking, and k-level extensive-form rationalizability, we

are able to learn about particular features of human strategic reasoning that are reflected

in one solution concept but not in others keeping other features fixed. For instance, by

comparing the fit of extensive-form level-k thinking and normal-form level-k thinking, we

can learn about the prevalence of forward induction given comparable levels of reasoning
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and assumptions on level-1 beliefs/level-0 behavior. Or by comparing the fit of extensive-

form level-k thinking and k-level extensive-form rationalizability, we can learn about

the impact of assumptions on level-1 beliefs/level-0 behavior given comparable levels

of reasoning and the ability to do forward induction. As a first proof of concept, we

reanalyze data from versions of the battle-of-the-sexes game with an outside option by

Cooper et al. (1993), Balkenborg and Nagel (2016), and Evdokimov and Rustichini

(2016).

We are not aware of any other paper that presents an extensive-form version of level-

k thinking. The closest paper to ours is Ho and Su (2013) who consider repeated play

of an extensive-form game. Players use level-k thinking applied to each stage game of

the repeated play. Yet, they allow for updating of levels only between stages of the

repeated play. Although Ho and Su (2013) study repeated extensive-form games, they

apply normal-form level-k thinking to the normal-form of the stage game with updating

between repeated play of the stage game. This is different from our approach since we

allow for updating about opponents’ levels of thinking within the play of the extensive-

form game. That is, they focus on learning between stage games while we allow for

dynamic level-k thinking even within one-shot play of extensive-form games. This makes

our solution concept applicable even to one-shot play of games in extensive form. Feng

and Wang (2019) also study learning of levels of reasoning for both, normal-form level-k

thinking and cognitive hierarchy in repeated play of normal-form games.

In our notion of extensive-form level-k thinking, players are able to learn about op-

ponents’ levels of reasoning from opponents’ play throughout the game. Consequently,

their own play may vary with what they learned about opponents’ levels of reasoning

earlier in the game. There is quite some experimental evidence for the assumption that a

player’s behavior depend on her belief about the levels of reasoning of opponents; see for

instance Agranov et al. (2012) and Alaoui, Janezic, and Penta (2020). The assumption

is also consistent with the idea that the levels of reasoning displayed by a player might

be endogenous (Alaoui and Penta, 2016).

The paper is organized as follows: The next section recalls level-k thinking in the

normal-form and compares it to rationalizability. This sets the stage for Section 3 that

introduces the definition of extensive-form level-k thinking, compares it to level-k think-

ing in the normal-form, extensive-form rationalizability, strong ∆-rationalizability, iter-

ated admissibility, and backward induction. In Section 4, we present a simply reanalysis

of data from prior experiments on games. Proofs are relegated to the appendix.

3



2 Normal-Form Level-k Thinking

First, we review level-k thinking for games in normal-form. This will turn out to be useful

when comparing it to extensive-form level-k thinking. We consider finite games in normal-

form 〈N, (Ai)i∈N , (ui)i∈N〉 that consist of a nonempty finite set of players N = {1, ..., n}
and for each player i ∈ N , a nonempty finite set of actions Ai and a utility function

ui : A −→ R with A := ×i∈NAi. As usual, for any player i ∈ N , we denote by

A−i := ×j∈N\{i}Aj the set of action profiles of player i’s opponents.2 Denote by ∆(A−i)

the set of probability measures on A−i. A belief of player i over opponents’ actions is

denoted by βi ∈ ∆(A−i).

We say that player i’s action ai ∈ Ai is rational with βi if ai maximizes player i’s

expected utility with βi. With these definitions in place, we can define the by now stan-

dard solution concept of level-k thinking3 that has been widely applied in experimental

game theory.

Definition 1 (Normal-Form Level-k Thinking) Fix a first level belief profile β1 =

(β1
i )i∈N with β1

i ∈ ∆(A−i) for each i ∈ N . Define inductively for each player i ∈ N ,

B1
i (β1) = {β1

i }

L1
i (β

1) =
{
ai ∈ Ai : ai is rational for player i with belief β1

i

}
...

Bk
i (β1) =

{
βi ∈ ∆(A−i) : βi(L

k−1
−i (β1)) = 1

}
Lk
i (β1) =

{
ai ∈ Ai :

There exists βi ∈ Bk
i (β1) such that ai

is rational for player i with belief βi.

}
.

For k ≥ 1, we call Lk
i (β1) the set of (normal-form) level-k thinking actions of player i

anchored by the profile of first-level beliefs β1.

Several remarks are in order: First, the first-level belief β1 is often interpreted as

behavior of level-0 players. Since it is also often assumed that there are no actual level-0

players, it is appropriate to interpret it as a (fictitious) belief over opponents’ play.

Second, level-k thinking is not one solution concept but a collection of solution con-

cepts, one for each first-level belief β1 / level-0 behavior and each level k. In applications,

2For games in normal form, we will make use of the “−i” notational convention for any objects
indexed by players.

3Although we use the established terminology, we must admit that we do not know how level-k
thinking is related to actual thought processes in the human brain.

4



the first-level belief is often fixed to uniform distribution (e.g., Nagel, 1995) although in

some applications other distributions are more natural (e.g., Arad and Rubinstein, 2012).

These assumptions seem to reflect assumptions of either unpredictable behavior (i.e., in

the spirit of the principle of insufficient reason) or non-strategic level-0 behavior.

Third, when iterated best responses are unique, i.e., the sets Lk
i (β1), k ≥ 1, are single-

ton, then also Bk+1
i (β1), k ≥ 1, are singleton. In such a case, it does not matter whether

or not we allow for correlated beliefs or, alteratively, would restrict to independent beliefs.

In applications, unique best responses are frequently assumed in the literature.

2.1 Level-k Thinking versus Rationalizability

The idea of using iterated reasoning about opponents play in a solution concept featured

already in solution concepts developed earlier in game theory. In particular, rational-

izability introduced by Spohn (1982), Bernheim (1984), and Pearce (1984) is defined

inductively using player’s beliefs about rational actions of opponents.4

Definition 2 (Rationalizability) Define inductively for each player i ∈ N ,

B1
i = ∆(A−i)

R1
i =

{
ai ∈ Ai :

There exists βi ∈ B1
i such that ai

is rational for player i with belief βi.

}
...

Bk
i =

{
βi ∈ ∆(A−i) : βi(R

k−1
−i ) = 1

}
Rk

i =

{
ai ∈ Ai :

There exists βi ∈ Bk
i such that ai

is rational for player i with belief βi.

}
For any k ≥ 1, we call Rk

i the set of k-level rationalizable actions of player i. The set of

player i’s rationalizable actions is

R∞i =
∞⋂
k=1

Rk
i

It is well-known that rationalizability is strategy-equivalent to iterated elimination

of strictly dominated actions (see Pearce, 1984). In fact, for any level k ≥ 1, level-k

rationalizability (i.e., rationalizability up to level k) is strategy-equivalent to k-iterated

4Like most of the literature, we focus on correlated rationalizability; see Brandenburger and Dekel,
1987, and Tan and Werlang, 1988, for more on rationalizability.
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elimination of strictly dominated actions. An action is strictly dominated if there exists a

possibly mixed action that yields a strictly higher expected utility no matter what oppo-

nents play. Thus, rationalizability does not only provide a prediction in the limit when k

goes to infinity, but also for every finite level k. This has been previously used in exper-

iments to partially identify levels of beliefs (see for a similar approach, Li and Schipper,

2020). In our context, it is now natural to ask about how behavior implied by level-k

thinking is related to level-k rationalizable actions in games in normal form. For any

first-order belief (i.e., any level-0 behavior), the level-k behavior is k-level rationalizable.

That is, level-k thinking implies k-level rationalizability.

Proposition 1 For any finite game in normal-form, 〈N, (Ai)i∈I , (ui)i∈I〉, any profile of

first-level beliefs, β1, and level k ≥ 1, Lk(β1) ⊆ Rk.

While obvious at the first level, the proof by induction in the appendix reveals that at

any level k, the belief that a player following level k thinking entertains about opponents’

play is a belief that k-level rationalizes her action. That is, the inclusion holds not only

for actions but also beliefs.

The most obvious difference between rationalizability and level-k thinking is that

rationalizability does not fix first-level beliefs. Initially, it allows for any first-level beliefs

over opponents’ actions. This is useful when there is no “natural” first-level belief and

when it is reasonable to assume that players could entertain any initial belief. Based

on Proposition 1, one may be tempted to claim that level-k reasoning yields sharper

predictions than rationalizability. Yet, level-k thinking does not explain the first-level

beliefs. That is, it does not provide a theory of first-level beliefs or level-0 behavior.

Rather, given a first-level belief of players / assumption of level-0 behavior of the analyst

that, while extremely useful, is necessarily ad hoc because it is outside the model of

level-k thinking, it yields a sharper prediction than if the analyst considers any first-level

belief as in level-k rationalizability.

In order to emphasize that (1) first-level beliefs of level-k thinking yield strong re-

finement power, and (2), that level-k thinking differs from rationalizability just in the

first-level belief, we state the following weaker converse to Proposition 1. For every ratio-

nalizable action there exists a first-level belief with which the action is rationalizable with

level-1 thinking. Note that this implies that we can find first-level beliefs that justify any

arbitrarily high k-level rationalizable action with level-1 thinking. Thus, ex ante tying

the hands to a particular first-level belief/assumption of level-0 behavior is crucial in
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experiments if level-k thinking is to have predictive power beyond rationalizability and

the identification of levels is to be meaningful.

Proposition 2 For any finite game in normal-form, 〈N, (Ai)i∈I , (ui)i∈I〉, every player

i ∈ N , and every ai ∈ R∞i , there exists a first-level belief β1 ∈ ∆(A−i) such that ai ∈
L1
i (β

1).

While the observation might be obvious to some, we present a short proof in the

appendix.

It is also worth emphasizing another difference between level-k thinking and rational-

izability: Latter is a reduction procedure on beliefs that implies a reduction procedure

on actions while for former this is not necessarily the case. This demonstrated in the

following simple example:

Example 1 Consider the following the following variant of the matching pennies game:

U
D

L R(
2,−1 −1, 2
−1, 1 1,−1

)
Apply level-k thinking anchored with a uniform first-level belief for each player. Then the

sets of level-k thinking actions are derived subsequently by

Row player Column player
L1
i (β

1) {U} {R}
L2
i (β

1) {D} {R}
L3
i (β

1) {D} {L}
L4
i (β

1) {U} {L}
L4
i (β

1) {U} {R}
...

...
...

We note that level-k thinking results in a choice cycle. So clearly, it is not the case that

the set of level-k actions are refined level by level.

The fact that level-k thinking is not necessarily a reduction procedure is certainly not

desirable from an epistemic point of view. Yet, it matches curiously with the reasoning

reflected in the quote from Morgenstern (1928) that we stated in the introduction.
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3 Extensive-Form Level-k Thinking

Consider a finite extensive-form game with possibly imperfect information and simulta-

neous moves, perfect recall but finite horizon 〈N,H, P, (Ii)i∈N , (ui)i∈N〉 defined by

• A nonempty finite set of players N .

• A set H of finite sequences of action profiles (i.e., histories) such that

– ∅ ∈ H,

– If history (am)m=1,...,M ∈ H andM ′ < M , then also the subhistory (am)m=1,...,M ′ ∈
H.

The set of terminal histories are histories with no successors. We denote them as

usual by Z.

• A player function P : H \ Z −→ 2N∪{c} \ {∅} that assigns to each nonterminal

history h ∈ H \ Z a nonempty subset of players P (h) ⊆ N ∪ {c} that may include

nature, c. That is, players are allowed to move simultaneously. Moreover, nature

is allowed to move any time and even simultaneously with other players.

With this notation, let Ai(h) be the nonempty set of actions of player i ∈ P (h) at

the non-terminal history h ∈ H\Z. Moreover, we let a ∈ ×i∈P (h)Ai(h) be the action

profile of players moving at history h. That is, h ∈ H \ Z and a ∈ ×i∈P (h)Ai(h),

then (h, a) ∈ H.

• For each player i ∈ N , a partition Ii of non-terminal histories in Hi = {h ∈ H \Z :

i ∈ P (h)} at which he moves. Elements of Ii are called information sets of player

i. As usual, we require that for any information set Ii ∈ Ii, Ai(h) = Ai(h
′) for

any h, h′ ∈ Ii. Thus, we can simply denote by Ai(Ii) the set of player i’s actions

at information set Ii. Each player’s information sets are required to satisfy perfect

recall.

• For each player i ∈ N , a von Neumann-Morgenstern utility function over lotteries

of terminal histories. We denote by ui : Z −→ R player i’s Bernoulli utility index.

See for instance Osborne and Rubinstein (1995, Chapters 6.3.2 and 11.1.2) for further

details on extensive-form games including perfect recall. We allow for simultaneous

moves of players. We also allow for imperfect information and moves of nature at any

time during game including simultaneously with other players. We do not have to assume
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a prior probability measure over moves of nature but such an assumption can be added

whenever it is required.

For any player i ∈ N , a (pure) strategy of player i assigns to each of her information

sets an action available at that information set. Formally, a strategy si is a function

si : Ii −→
⋃

Ii∈Ii Ai(Ii) such that si(Ii) ∈ Ai(Ii) for all Ii ∈ Ii. Let Si denote the set of

player i’s strategies. Let Nc := N ∪ {c}. We treat nature as a player with information

sets that are singleton. Define S := ×i∈NcSi if nature moves in the game. Otherwise,

S := ×i∈NSi. Similarly, for any i ∈ N , S−i := ×j∈Nc\{i}Sj if natures moves in the game.

Otherwise, S−i := ×j∈N\{i}Sj.

For every player i ∈ N , we say a strategy si ∈ Si reaches an information set if there

exists a profile of opponents’ strategies s−i such that (si, s−i) reaches this information

set. Similarly, a profile of opponents’ strategies s−i reaches an information set if there

exists a strategy si of player i such that (si, s−i) reaches this information set.

A belief system of player i ∈ N

β̄i :=
(
β̄i(Ii)

)
Ii∈Ii

∈
∏
Ii∈Ii

∆(S−i)

is a profile of beliefs, a belief β̄i(Ii) ∈ ∆(S−i) about other players’ strategies for each

information set Ii ∈ Ii, with the following properties:

• β̄i(Ii) reaches Ii, i.e., β̄i(Ii) assigns probability 1 to the set of strategy profiles of

the other players that reaches Ii.

• If information set Ii precedes information set I ′i, then β̄i(I
′
i) is derived from β̄i(Ii)

by conditioning whenever possible.

Denote by B̄i the set of all belief systems of player i ∈ N .

For a player i and an information set Ii, a strategy s′i is an Ii-replacement of strategy

si if s′i agrees with si on all information sets strictly preceding Ii.

With a belief system β̄i, strategy si is sequentially rational for player i at the in-

formation set Ii if si does not reach Ii or if si does reach Ii but there does not exist

Ii-replacement of si which yields a strictly higher expected utility given β̄i(Ii) on S−i.

Definition 3 (Extensive-Form Level-k Thinking) Given a belief system of first-level
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beliefs, β̄1 = (β̄1
i )i∈N with β̄1

i ∈ Bi, define inductively for all i ∈ N ,

B̄1
i (β̄1) = {β̄1

i }

L̄1
i (β̄

1) =

{
si ∈ Si :

For every information set Ii ∈ Ii, si is sequentially
rational at Ii with respect to β̄1

i .

}
...

B̄k
i (β̄1) =

β̄i ∈ B̄i :

For every information set Ii ∈ Ii, if there exists `
with 1 ≤ ` < k for which there exists s−i ∈ L̄`

−i(β̄
1)

such that s−i reaches Ii, let ¯̀ be the largest such `.

Then β̄i(Ii)assigns probability 1 to L̄
¯̀
−i(β̄

1). Otherwise,
if there is no such `, then let β̄i(Ii) = β̄1

i (Ii).


L̄k
i (β̄1) =

{
si ∈ Si :

There exists β̄i ∈ B̄k
i (β̄1) with which for every information

set Ii ∈ Ii, si is sequentially rational at Ii.

}
For any level k, we call L̄k

i (β̄i) player i’s set of extensive-form level-k thinking strategies.

Several remarks are in order: First, a player’s assumption of opponents’ level-0 be-

havior is modelled as level-1 belief. However, we like to emphasize that since a player

may move at various information sets of the game, she forms possibly different beliefs

about opponents’ behavior at each of her information sets.5 According to the notion of

belief system, each such a belief must be consistent with having reached this information

set and derived by conditioning whenever possible. That is, different from normal-form

level-k thinking, a player not just forms beliefs about opponents’ behavior before playing

the game but also at each of her information sets throughout the game. The assumption

of level-0 behavior of opponents is now a collection of assumptions, one belief at each of

her information sets.

Second, extensive-form level-k thinking features the best rationalizability principle

(Battigalli, 1996). At each of her information sets, a player following extensive-form

level-k thinking assigns the highest possible level `-thinking with ` < k to opponents that

is consistent with reaching the information set. Intuitively, a player does not easily label

opponents’ behavior as a “mistake”. Rather a player tries to make sense of opponents’

behavior as much as it possible within her own (limited) thinking. Such an approach

makes quite some sense when allowing for learning from opponents’ play. If opponents’

play is judged easily as a mistake, then there is not much to learn from.

5Kawagoe and Takizawa (2012) consider a normal-form version of level-k thinking applied to centipede
games in which they allow for level-1 uniform beliefs over actions at each node rather than just level-1
uniform initial beliefs over strategies. This definition is already a small step away from normal-form
level-k thinking towards extensive-form level-k thinking.
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Third, a player’s belief is updated to lower levels of opponents’ thinking along the

path of play whenever information sets are reached that cannot be reached with strategies

of opponents’ featuring higher levels of thinking. Of course, this depends on the player’s

own level of thinking since one defining feature of level-k thinking is a form of naiveté,

namely that a player with level k must believe opponents’ feature levels of thinking

strictly lower than level k.

Fourth, the phrasing of the definition of B̄k
i (β̄1) appears somewhat awkward at the

first glance, since it involves an “if ... then ... Otherwise ...” clause. Partially, this

captures the best rationalizability principle above (i.e., the “then” statement). Yet, the

“if” and “Otherwise” clauses emphasize that an information set may not be reachable

with any extensive-form level-` thinking strategy, for ` < k. What shall a player believe

in such a case? We assume that in such a case, the player resorts nevertheless to his first-

level belief. Such an assumption is innocuous if the first-level belief is a full support belief

like for instance uniform belief as often assumed in the literature on level-k thinking.

In the following subsections, we explore extensive-form level-k thinking by comparing

it to various other solution concepts.

3.1 Normal-Form versus Extensive-Form Level-k Thinking

The key difference between level-k thinking in the normal form and extensive-form level-k

thinking is that players can update beliefs about opponent’s level-` thinking, for ` < k,

conditional on information sets reached. At each information set reached, player i with

level-k thinking attributes the highest level-` thinking, ` < k, to opponents consistent

with the information set. It embodies the best rationalization principle (Battigalli, 1996).

To what extent does the best rationalizability principle matter? First, we show that, if

β̄1 is a profile of full-support belief systems, then extensive-form level-1 strategies are

equivalent to normal-form level-1 strategies.

Proposition 3 Consider any finite extensive-form game with perfect recall. Let β̄1 be a

profile of full-support belief systems and β1 a profile of full-support beliefs in the associated

normal-form consistent with β̄1. Then for any player i ∈ N , L̄1
i (β̄

1) = L1
i (β

1).

The observation implies in particular that if beliefs are uniform both in the extensive-

form game and the associated normal-form (as frequently assumed in experimental work),

then level-1 thinking strategies coincide.
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The observation does not extend to level-2 thinking strategies as the following example

demonstrates:

Example 2 (Extensive-form level-k strategies refine normal-form level-k strate-

gies for k ≥ 2) Consider a version of a game in Figure 1 due to Reny (1992) (which is

itself a variant of a centipede game). To the left, we print the game in extensive form; to

the right the associated normal-form.6 The extensive-form level-k thinking strategies and

Figure 1: Reny (1992) Game

the normal-form level-k thinking strategies are printed in Table 1 for any k ≥ 1. (We

let “∗” stand for any action.) We observe that at any level k ≥ 2, the extensive-form

level-k strategies of player 2 are a subset of the normal-form level-k strategies. For k ≥ 3,

this holds not only for strategies of player 2 but even outcomes. The reason is that once

player 2 gets to move (i.e., reaches her first information set), she is certain at level 2

that player 1 does not use extensive-form level-1 thinking since any extensive-form level-1

thinking strategy of player 1 prescribes O1 at the root of the tree. She must now think that

player 1 behaves uniformly over her strategies and with such a belief her strategy (C2, o2)

is uniquely rational. In contrast, normal-form level-2 thinking of player 2 presumes level-

1 thinking strategies of player 1, i.e., any strategy in {(O1, o1), (O1, c1)}. Thus, player

2 is indifferent among all her strategies and hence any strategy in S2 is consistent with

normal-form level-2 thinking.

Above example shows that at level 2, strategies only differ between extensive-form

level-k thinking and normal-form level-k thinking but not outcomes. One could argue

that this fact is behaviorally irrelevant at level 2 as only outcomes “should” matter. Note

6Ignore for the time being the red lines and blue boxes in the normal form of Figure 1. They pertain
to extensive-form rationalizability and will be discussed later.
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though that strategies could be elicited via the strategy method (Selten, 1967) so that not

just outcomes of the extensive-form game are behaviorally relevant. Nevertheless, even

if one takes the view that only outcomes matter, it should be noted that in this example

outcomes differ at level k ≥ 3 as well. Moreover, the next example shows that already at

level 2, outcomes of extensive-form level-k thinking can differ from normal-form level-k

thinking.

Example 3 (Extensive-form level-2 outcomes refine normal-form level-2 out-

comes) Consider the game in Figure 2 from Heifetz, Meier, and Schipper (2021) (i.e.,

HMS game for short): The extensive-form level-k thinking strategies and the normal-form

Figure 2: HMS Game

level-k thinking strategies (both with uniform level-1 beliefs) are printed in Table 1 for

any k ≥ 1. We observe that at level 2, the extensive-form level-2 thinking strategies are

{(O1, ∗), (C1, c1)} and {(C2, ∗)} for players 1 and 2, respectively, while for normal-form

level-2 thinking they are S1 and {(C2, ∗)} for players 1 and 2, respectively. (Again, we

let “∗” stand for any action.) In particular, normal-form level-2 thinking allows outcome

(5,−10) to emerge while this is ruled out with extensive-form level-2 thinking. The reason

is that under normal-form level-2 thinking, player 2 is indifferent among all strategies in

the normal-form since he believes that player 2 plays O2. In contrast, in the extensive-

form, when player 1 reaches his second information set, he is certain that player 2 does

not follow extensive-form level-1 thinking but must be “level-0”. Consequently, at his

second information set, he has uniform beliefs about the actions of player 2 at the last

information set, with which only c1 is rational.

Both examples beg the question whether or not in general for any level k ≥ 1,

extensive-form level-k thinking is a (weak) refinement (both in terms of strategies and

14



outcomes) of normal-form level-k thinking. The examples suggest this to be the case.

More generally, we can show that for any full-support initial belief β1 and level k, the

set of outcomes reached by extensive-form level-k thinking refines the set of outcomes

reached by normal-form level-k thinking.

To state this assertion more formally, we require the following definition. For any

strategy profile s ∈ S, let z(s) denote the terminal history reached by s. For any

nonempty subset of strategy profiles S ′ ⊆ S, let Z(S ′) = {z ∈ Z : z = z(s), s ∈ S ′}.
Note that for any nonempty S ′, S ′′ ∈ S, S ′ ⊆ S ′′ implies Z(S ′) ⊆ Z(S ′′).

Proposition 4 (Extensive-form level-k thinking refines outcomes of normal-

form level-k thinking) Consider any finite extensive-form game with perfect recall.

Let β̄1 be a profile of full-support belief systems and β1 a profile of full-support beliefs

in the associated normal-form consistent with β̄1. Then Z(L̄k(β̄1)) ⊆ Z(Lk(β1)) for all

k ≥ 1.

The proof proceeds by induction. The result for the base-case, level-1, is implied

by Proposition 3. At any higher level-k, we focus on players whose information set is

reached along the path to the outcome noting that for other players we can simply select

an extensive-form level-(k− 1) thinking strategy without affecting the outcome. For any

player along the path, we select the first information set, which is well-defined since the

game as perfect recall. The extensive-form level-k rational strategy is also rational at

this information set with a belief that - as we show - we can confine to normal-form

level-(k − 1) strategies of opponents. The result now follows.

The proposition implies in particular that, if initial beliefs are uniform, as often

assumed in applications, then for any level k, extensive-form level-k thinking refines the

set of outcomes that can be reached by normal-form level-k thinking.

We note that Example 7 and the game used in Subsection 4.1 show that for some

games the outcome-refinement of extensive-form level-k thinking is strict at some levels.

3.2 Extensive-Form Level-k Thinking versus Extensive-Form
Rationalizability

In Section 2.1 we observed that any normal-form level-k thinking strategy is also level-k

rationalizable. In this section, we show that this is not necessarily the case anymore

when we consider extensive-form level-k thinking and level-k extensive-form rationaliz-

able strategies. It is not due to a defect in the definitions. Rather, it is due to different

15



updates conditional on information sets that may occur with and without restrictions on

first-order belief systems of extensive-form level-k thinking.

The notion of extensive-form rationalizability is also due to Pearce (1984). However,

in contrast its well-known counterpart for normal-form games, there is no treatment of

it in standard textbooks on game theory. Consequently, it is much less known although

undeservingly so. We follow Battigalli (1997) in allowing for correlated beliefs over op-

ponents’ strategies and define it as a reduction procedure on beliefs that subsequently

implies a reduction procedure on strategies. The following definition is due to Battigalli

(1997) who proves it to be equivalent to Pearce’s definition allowing for correlated beliefs.

Definition 4 (Extensive-Form Rationalizability) Define inductively for every player

i ∈ N ,

B̄1
i is the set of player i’s belief systems.

R̄1
i =

{
si ∈ Si :

There exists β̄i ∈ B̄1
i with which for every information

set Ii ∈ Ii, si is sequentially rational at Ii.

}
...

B̄k
i =

β̄i ∈ B̄k−1
i :

For every information set Ii, if there exists some profile of
other players’ strategies s−i ∈ R̄k−1

−i such that s−i reaches Ii,
then β̄i(Ii) assigns probability 1 to R̄k−1

−i .


R̄k

i =

{
si ∈ Si :

There exists β̄i ∈ B̄k
i with which for every information

set Ii ∈ Ii, si is sequentially rational at Ii.

}
The set of extensive-form rationalizable strategies is

R̄∞i =
∞⋂
k=1

R̄k
i .

Battigalli and Siniscalchi (2002) characterize extensive-form rationalizability by com-

mon strong belief in rationality. Moreover, for every finite level-k, the k-level extensive-

form rationalizable strategies are characterized by k-level mutual strong belief in ra-

tionality. Similar to the equivalence between rationalizability and iterated elimination

of strictly dominated actions, extensive-form rationalizability is level-by-level strategy-

equivalent to iterated elimination of conditionally strictly dominated strategies (Shimoji

and Watson, 1998). For each information set of a player, consider the the sub-space of

strategy profiles that reach this information set. This is a normal-form information set in

the sense of Mailath, Samuelson, and Swinkels (1993). A strategy is conditionally strictly
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dominated if there exists a possibly mixed strategy that conditional on such a normal-

form information set yields a strictly higher expected utility no matter what strategy

profiles in the normal-form information sets are played by opponents.

In the figures, we indicate in the associated normal-form the normal-form information

sets associated to information sets in the extensive-form by blue boxes. We also indicate

the order of elimination of conditionally strictly dominated strategies (and hence the

order of elimination of non-rationalizable strategies) by red lines with numbers attached

that represent the level at which the strategy is eliminated. These examples illustrate

already some findings. In the Reny game (Figure 1), extensive-form level-k thinking

strategies refine level-k extensive-form strategies for k ≥ 1. In the HMS game (Figure 2),

they refine strategies of player 2 at level 1 but otherwise yield the same strategies as

higher levels. The extensive-form level-k thinking strategies (with uniform level-1 belief

Figure 3: Battle-of-the-Sexes with an Outside Option I

systems) and k-level extensive-form rationalizable strategies are printed level-by-level in

Table 2. (Again, we let “∗” stand for any action.)

One of the most prominent examples to demonstrate the forward induction power of

extensive-form rationalizability is the battle-of-the-sexes game with an outside option.

We use this example to discuss the relationship between extensive-form level-k thinking

and level-k extensive-form rationalizability. In particular, we show that in contrast to

the analogous normal-form solution concepts, extensive-form level-k thinking does not

refine level-k extensive-form rationalizability.

Example 4 (Battle-of-the-sexes with an outside option I) Consider the game in

Figure 3. Player 1 moves first, deciding between Out and In. When he chooses In, the

battle-of-the-sexes game is played. Both players can choose between B and S. Player 1

17



Table 2: Solutions to Outside Option Games
BoS I Extensive-form level-k k-level extensive-form
game (uniform level-1 belief system) rationalizability

Level Player 1 Player 2 Player 1 Player 2

1 {(Out, ∗)} S {(Out, ∗), (In,B)} {B,S}
2 {(Out, ∗)} S {(Out, ∗), (In,B)} {B}

3
...

... {(In,B)}
...

BoS II Extensive-form level-k k-level extensive-form
game (uniform level-1 belief system) rationalizability

Level Player 1 Player 2 Player 1 Player 2

1 {(In,B)} S {(Out, ∗), (In,B)} {B,S}
2 {(Out, ∗)} B {(Out, ∗), (In,B)} {B}

3 {(In,B)} B {(In,B)}
...

4
...

...
...

...

strictly prefers ((In,B), B) over ((Out, ∗), ∗) over ((In, S), S) and any other outcome.

While for levels k ≤ 2, extensive-form level-k thinking with uniform initial belief refines

level-k extensive-form rationalizable outcomes, at level 3 and higher the extensive-form

level-k thinking outcome is distinct from the level-k extensive-form rationalizable outcome.

For player 1 at level 1, (Out, ∗) is rational to a uniform belief over player 2’s strategies.7

For extensive-form rationalizability, also (In,B) is rational at level 1. Consequently, if

player 2’s information set is reached at level 2, she knows that player 1 continues with

action B to which B is the unique best response by player 2. In contrast, extensive-form

level-1 thinking strategies (with uniform initial belief systems) do not reach player 2’s

information set. Hence, when she is called to play, she must believe that player 1 is

level-0, i.e., playing uniformly. With such a belief, S is uniquely rational for player 2.

At level 2, player 1 knows that player 2 would play S upon moving In. Given this belief,

(Out, ∗) continues to be rational at the level 2. That is, the prediction of extensive-form

level-3 is to observe (Out, ∗). In contrast, for extensive-form rationalizability, player 1

understands at level 3 that once she moves In, player 2 will select B. Thus, playing

B upon moving In is the unique best response of player 1. To summarize, extensive-

form level-3 thinking strategies with uniform initial belief yield ((Out, ∗), S) while 3-level

7Also Balkenborg and Nagel (2016, p. 398) present such an argument for moving Out at the beginning
of the game.
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extensive-form rationalizability strategies yield a different outcome, ((In,B), B). This

example demonstrates that generally extensive-form level-k thinking with uniform belief

systems is neither a refinement nor is refined by k-level extensive-form rationalizability.

The outcome of extensive-form level-k thinking in the prior example is driven by

the fact that with player 1’s uniform belief over player 2’s actions, (Out, ∗) is rational,

i.e., yielding a utility of 3, which is larger than 2.5, the expected utility from playing

(In,B) against an uniformly mixing player 2. This observation illustrates that outcomes

of extensive-form level-k thinking can be sensitive to misspecifications of utilities, which

poses interesting issues in experiments. Obviously, the non-robustness is problematic

because we can only easily experimentally control payoffs but not necessarily utilities.

On the hand, small changes in the utility matter behaviorally in a way that is not picked

up by k-level extensive-form rationalizability but is picked up by extensive-form level-k

thinking because of restrictions on first-level belief systems. This makes extensive-form

level-k thinking interesting in experiments. The prediction of extensive-form level-k

thinking can change radically when slightly changing player 1’s utility of the outside

option in a way that does not affect predictions of extensive-form rationalizability. This

is demonstrated in the next example.

Figure 4: Battle-of-the-Sexes with an Outside Option II

Example 5 (Battle-of-the-sexes with an outside option II) Consider the game in

Figure 4. This game is identical to the game in Figure 3 expect that the outside option

yields now a utility of 2 instead of 3 to player 1. The predictions of k-level extensive-

form rationalizability remain unchanged and are level-by-level identical to the ones for

the game in Figure 3. Yet, extensive-form level-k thinking strategies (with uniform initial
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belief systems) of player 1 differ considerably from the ones in Figure 3 (see Table 2).

For player 1 at level 1, (In,B) is uniquely sequentially rational to uniform beliefs over

player 2’s strategies. Player 2 plays optimally S against an uniformly mixing player

1. At the second level, player 1 anticipates this and (Out, ∗) is uniquely sequentially

rational with such a belief. For player 2, she finds B the only rational action at level 2

because she knows by now that once her information set is reached, player 1 continues

to play B. Anticipating this at level 3, player 1 select (In,B). Player 2 continues with

B at level 3 because extensive-form level-2 thinking with uniform initial belief systems

of player 1 prescribes (Out, ∗). That is, her information set should not be reached with

such a strategy. Upon reaching the information set nevertheless, she must believe player

is extensive-form level-1, i.e., playing (In,B), and consequently B is the unique best

response. Thus, extensive-form level-k thinking yields the extensive-form rationalizable

outcome and strategies for k ≥ 3. But the point of the example is to demonstrate that

changing the utility of the outside option to player 1 from 3 to 2 alters dramatically

extensive-form level-k thinking strategies. More generally, given uniform initial beliefs of

player 1, the prediction flips when player 1’s utility of the outside option crosses 2.5. In

contrast, this change does not affect the prediction of extensive-form rationalizability.

To sum up, extensive-form level-k thinking with uniform initial belief systems and

extensive-form rationalizability are unrelated solution concepts in terms of outcomes,

which is in contrast to their normal-form counterparts (see Section 2.1). This is due to

restrictions placed on first-level belief systems (i.e., level-0 behavior) for extensive-form

level-k thinking. Extensive-form level-k thinking is also very sensitive to misspecifications

of utilities.

3.3 Extensive-form Level-k Thinking versus ∆-Rationalizability

In the prior subsection, we argued that extensive-form level-k thinking differs from

extensive-form rationalizability due to restrictions placed on first-level belief systems

(aka level-0 behavior). Yet, in the literature there are already versions of extensive-

form rationalizability that incorporate restrictions on first-level beliefs under the name of

(strong) ∆-rationalizability (see Battigalli, 2003, Battigalli and Siniscalchi, 2003, Batti-

galli and Prestipino, 2013) and extensive-form best response sets (Battigalli and Frieden-

berg, 2012). Here we state the definition of ∆-rationalizability in a form that facilitates

the comparison with extensive-form rationalizability and extensive-form level-k thinking.
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Definition 5 (Strong ∆-Rationalizability) For each player i ∈ N , fix a nonempty

(measurable) set of restrictions on belief systems ∆i ⊆ B̄i. Let ∆ := (∆i)i∈N . Define

inductively for every player i ∈ N ,

B̄1
i (∆) is the set of player i’s restricted belief systems ∆i.

R̄1
i (∆) =

{
si ∈ Si :

There exists β̄i ∈ B̄1
i (∆) with which for every information

set Ii ∈ Ii, si is sequentially rational at Ii.

}
...

B̄k
i (∆) =

β̄i ∈ ∆i :
For every information set Ii, if there exists some profile of
other players’ strategies s−i ∈ R̄k−1

−i (∆) such that s−i reaches Ii,
then β̄i(Ii) assigns probability 1 to R̄k−1

−i (∆).


R̄k

i (∆) =

{
si ∈ R̄k−1

i (∆) :
There exists β̄i ∈ B̄k

i (∆) with which for every information
set Ii ∈ Ii, si is sequentially rational at Ii.

}
The set of strong ∆-rationalizable strategies is

R̄∞i (∆) =
∞⋂
k=1

R̄k
i (∆).

First note that compared to extensive-form level-k thinking, strong ∆-rationalizability

is a reduction procedure on strategies. Yet, it is also easy to see that the set of ∆-

rationalizablty strategies may be empty. This is naturally the case when the restrictions

∆i clash with the requirement that beliefs must assign probability 1 to R̄k−1
−i (∆) when

latter set is not ruled out. That is, the crux is in the definition of B̄k
i (∆). We require

β̄i ∈ ∆i which might be inconsistent with β̄i(Ii)(R̄
k−1
−i (∆)) = 1 and the existence of a

strategy profile s−i ∈ R̄k−1
−i (∆) that reaches Ii. There are restrictions where the set of ∆-

rationalizable strategies is nonempty (see Battigalli, 2003, for non-trivial applications).

For instance, in the case of no restrictions, strong ∆-rationalizability is equivalent to

extensive-form rationalizability and hence nonempty for every finite game. Most relevant

for our comparison with extensive-form level-k, ∆-rationalizability is typically empty if

∆i is the set of full support belief systems or, even more special, the belief system of

uniform beliefs (as often assumed in the level-k literature). We illustrate this in the next

example.

Example 6 (Battle-of-the-sexes with an outside option III) Consider the game

in Figure 5, a version of a game used in experiments by Cooper et al. (1993). The

outside option yields now a payoff strictly lower than the pure equilibrium payoffs in the

battle-of-the-sexes game. Consider ∆ = (∆1,∆2) where ∆1 consists just of the uniform
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Figure 5: Battle-of-the-Sexes with an Outside Option III

belief system, i.e., player 1’s belief at the beginning of the game and after moving In

assigns assigns probability 1
2

to each action, B and S, of player 2. Similarly, ∆2 consist

of the uniform belief
(

1
2
, 1

2

)
of player 2 over player 1’s actions B and S after observing

In. The strong ∆-rationalizable strategies of the players 1 and 2 at level 1 are (In,B)

for player 1 and S for player 2. Now, at level 2, neither player can believe in the level-1

∆-rationalizable strategy of the opponent and have uniform beliefs. Thus, level-2 ∆-

rationalizable strategies with ∆ being the uniform belief restriction must be empty and so

for k-level ∆-rationalizable strategies, for any k ≥ 2; see Table 3.

Clearly, as the example illustrates, in the case of uniform belief restrictions, we need

to give up this restriction at level-2 and higher. This motivates a modification of strong

∆-rationalizablity in which we replace β̄i ∈ ∆i with β̄i ∈ B̄i in the specification of

B̄k
i (∆) of Definition 5. Returning to Example 6, we notice now that the “modified”

∆-rationalizable strategies are nonempty. In particular, they coincide with the first level

∆-rationalizable strategies, (In,B) and S for players 1 and 2, respectively. Yet, this is

a very strange “solution”. If player 1 realizes that player 2 plays S, why wouldn’t he

best respond with (In, S). Similarly, if player 2 realizes that player 1 plays (In,B), why

wouldn’t she best respond with B. The reason is that we require nestedness of strategies

in the specification of Rk
i (∆) of Definition 5, i.e., Rk

i (∆) ⊆ Rk−1
i (∆), for k > 1. However,

giving up in the modified definition of strong ∆-rationalizability this nestedness yields

our definition of extensive-form level-k thinking. We derive the extensive-form level-k

thinking strategies with uniform belief systems of Example 6 in Table 3. It illustrates

that the non-nesteness of extensive-form level-k thinking may create cycles, similar to

what we have already observed for normal-form level-k thinking in Example 1.
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Table 3: Solutions Battle-of-the-Sexes Game III

Extensive-form level-k k-level extensive-form k-level ∆ rat.
(uniform level-1 belief system) rationalizability (∆ uniform belief system)

Level Player 1 Player 2 Player 1 Player 2 Player 1 Player 2

1 (In,B) S (In, ∗) {B,S} (In,B) S
2 (In, S) B (In, ∗) {B,S} ∅ ∅
3 (In,B) S (In, ∗) {B,S} ∅ ∅
... (altern.) (altern.)

...
...

...
...

3.4 Extensive-form Level-k Thinking versus Iterated Admissi-
bility

In the battle-of-the-sexes games with an outside option of the previous section, k-level

extensive-form rationalizability yields strategies that are equivalent to k-iterative elim-

ination of weakly dominated strategies. Since in the battle-of-the-sexes game with an

outside option I, extensive-form level-k thinking with uniform initial beliefs is distinct

from k-level extensive-form rationalizability, it demonstrated that extensive-form level-k

thinking is also distinct from k-iterative admissibility even if we assume uniform initial

belief. Yet, especially with the assumption of initial full-support belief, it is intuitive that

sometimes extensive-form level-k thinking retains some features of iterated admissibility

that one can think of rationalizability with full-support beliefs. Both feature some form

of caution in their beliefs. This is indeed the case in the following example.

Figure 6: HMS2 Game

Example 7 Consider the game of Figure 6 that is a variant of a game discussed in

Heifetz, Meier, and Schipper (2021). Let’s call it the HMS2 game. In this game,
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extensive-form rationalizable strategies are disjoint from strategies remaining from it-

erated admissibility although in terms of outcomes, iterated admissibility strictly refines

the set of extensive-form rationalizable outcomes. (See Table 4, upper part, or the elimi-

nations in Figure 6 (for extensive-form rationalizability) and the associated normal-form

(for iterated admissibility). Extensive-form level-k thinking (with uniform initial belief

systems) coincides with k-iterated admissibility and is disjoint from k-level extensive-form

rationalizability from k ≥ 3 onward (see the upper part of Table 4). Yet, this is highly

sensitive to the utilities. If, for instance, we slightly change player 2’s utility of (b, e) from

2 to 3 (let’s call it the HMS3 game), then extensive-form rationalizability and iterated ad-

missibility remain unchanged at all levels but now extensive-form level-k thinking (again

with uniform initial beliefs) coincides with k-level extensive-form rationalizabiltiy and is

disjoint from k-iterated admissibility from k ≥ 3 onward. See the lower part of Table 4.

Again, this illustrates the sensitivity of predictions of extensive-form level-k thinking to

small changes of utilities. It is due to the assumption of initial uniform beliefs.

Table 4: Solutions to HMS2 and HMS3 Games

HMS2 Extensive-form level-k k-level extensive-form k-iterated admissibility
game (uniform level-1 belief system) rationalizability

Level Player 1 Player 2 Player 1 Player 2 Player 1 Player 2

1 {b} {d} {a, b, c} {d, e} {a, b} {d, e}
2 {a} {d} {a, c} {d, e} {a, b} {d}
3 {a} {d} {a, c} {e} {a} {d}

HMS3 Extensive-form level-k k-level extensive-form k-iterated admissibility
game (uniform level-1 belief system) rationalizability

Level Player 1 Player 2 Player 1 Player 2 Player 1 Player 2

1 {b} {d} {a, b, c} {d, e} {a, b} {d, e}
2 {a, c} {d} {a, c} {d, e} {a, b} {d}
3 {a, c} {e} {a, c} {e} {a} {d}

In Subsection 3.3, we realized the difficulty of coming up with a extensive-form ratio-

nalizability concept that features initial uniform belief systems even though that would

arguably be the most relevant comparison to extensive-form level-k thinking with uni-

form level-1 belief systems. However, the cautiousness captured in level-1 uniform belief

systems could be captured more generally in a rationalizability concept with cautious-

ness or prudence. Although iterated admissibility captures cautiousness already, iterated
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admissibility is a solution concept for the normal form. While Kohlberg and Mertens

(1986) argue that the (associated) game in normal-form should be sufficient for solutions

to games, there is evidence that behaviorally the extensive-form versus normal-form rep-

resentation of the games makes a difference (e.g., Cooper and Van Huyck, 2003). It

would therefore be desirable to also have an extensive-form rationalizability concept that

captures cautiousness. Heifetz, Meier, and Schipper (2021) put forward the following

definition of prudent rationalizability.8

Definition 6 (Prudent Rationalizability) For any i ∈ N , let R̂0
i = Si. For k ≥ 1,

define inductively

B̂k
i =

β̄i ∈ B̄i :

For every information set Ii, if there exists some profile

s−i ∈ R̂k−1
−i of the other players’ strategies such that s−i

reaches Ii, then the support of βi (Ii) is the set of strategy

profiles s−i ∈ R̂k−1
−i that reach Ii.



R̂k
i =

{
si ∈ R̂k−1

i :
There exists βi ∈ B̂k

i such that for all Ii ∈ Ii player i
with strategy si is sequentially rational at Ii.

}
The set of prudent rationalizable strategies of player i is

R̂∞i =
∞⋂
k=1

R̂k
i .

Note that this solution concept features non-nested sets of beliefs but nested sets of

strategies. It is clear that a full-support belief on a smaller opponents’ strategy subspace

cannot be an element of the full-support beliefs on larger opponents’ strategy subspaces.

Thus, the set of k-level prudent belief systems cannot be a subset of the set of k− 1 level

prudent belief systems. Heifetz, Meier, and Schipper (2021) show that it is nonempty for

any finite extensive-form game (including extensive-form games with unawareness).

Meier and Schipper (2022) show that prudent rationalizability is level-by-level strat-

egy equivalent to iterated admissibility in the associated normal form (see Shimoji and

8It has been applied to partially identify cautious level-k reasoning in experiments by Li and Schipper
(2020). It also been applied to games with unawareness including disclosure games (Heifetz, Meier, and
Schipper, 2021; see Li and Schipper, 2019, for experiments), electorial campaigning (Schipper and Woo,
2019) and, with additional belief restrictions, to screening problems (Francetich and Schipper, 2022). In
Schipper and Woo (2019), the levels of reasoning embodied in prudent rationalizability have been used
to model the political reasoning capabilities of voters.
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Watson, 1998, and Brandenburger and Friedenberg, 2011, for related results). Thus, Ex-

ample 7 demonstrates already how extensive-form level-k thinking with level-1 uniform

belief systems differs from prudent rationalizability.

3.5 Extensive-Form Level-k Thinking versus Backward Induc-
tion

Arguably the most commonly used solution concept to extensive-form games especially

with perfect information and non-simultaneous moves is subgame-perfect equilibrium

solved by backward induction. Since backward induction is an iterated process, we

can consider it also “level-by-level”, i.e., from one subgame to the next of next-higher

rank. Consider for simplicity a finite extensive-form game with perfect information,

non-simultaneous moves, and a finite horizon. Call the rank of a subgame the maximal

number of nodes to reach a terminal node. Backward induction is now defined as follows:

At level 1, consider all subgames of rank 1. Select a utility maximizing action of the

player that moves in this subgame. Replace the subgame with a terminal node ascribing

this utility to this newly created terminal node. Assume we have defined the procedure

at level k− 1. Then at level k, consider all subgames of rank k (in the original extensive-

form game). Select a utility maximizing action of the player that moves in this subgame

considering the utilities obtained from the procedure at level k−1. Replace the subgame

with a terminal node ascribing this utility to this newly created terminal node. Do this

with all subgames of rank k. Since the finite game has a finite horizon, the procedure

stops after some finite number of levels.

We can now ask about how extensive-form level-k thinking compares to backward

induction up to level k. The following examples demonstrate that backward induction

and extensive-form level-k thinking are quite distinct solution concepts.

A prominent game displaying the backward induction logic transparently is the cen-

tipede game (Rosenthal, 1981). How does extensive-form level-k thinking compare to

backward induction in the centipede game? The example demonstrates that extensive-

form level-k thinking may refine level-k backward induction at some levels but be refined

by level-k backward induction at some other levels.

Example 8 (Centipede game) Consider a short version of the centipede game de-

picted in Figure 7. The set of extensive-form level-k strategies (with uniform initial belief

systems) and backward induction strategies for every level k are detailed in Table 1. We

note that at level-1, extensive-form level-k thinking (with uniform initial belief system)
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Figure 7: Centipede game

refines the level-1 backward induction strategies and outcomes. This is not surprising

as we reap the full power of the assumption on the particular uniform“level-0” behavior

while only having the refinement power of backward induction for the game of rank 1, the

“tail” and “last leg” of the centipede. At level 2, extensive-form level-k thinking still re-

fines level-2 backward induction but with strategies that differ starkly from extensive-form

level-1 thinking as players now take extensive-form level-1 strategies of the opponent into

account. At level-3, extensive-form level-k thinking still refines level-3 backward induction

outcomes but the strategy of player 2 is now inconsistent with backward induction. The

reason is that player 2 does not expect that his second information set is reached. Hence

any action at this information set is rational. In contrast, if player 2 follows backward

induction and reaches her second information set, she “shrugs her shoulders” and igno-

rantly continues to do backward induction as if nothing had happened. As from level-4

though, backward induction refines extensive-form level-k strategies (for the same reason

that produced the difference at level 3). The outcomes are the same though. To summa-

rize, for levels k ≤ 3, extensive-form level-k thinking refines level-k backward induction

in terms of outcomes. Yet, for levels k ≥ 4, extensive-form level-k thinking is refined

by level-k backward induction in terms of strategies but not outcomes. This changing

pattern of the relationship between extensive-form level-k thinking and level-k backward

induction highlights the fact that these are conceptually quite different solution concepts

although both can be understood as solutions concepts employing some form of inductive

elimination of strategies. We note that extensive-form level-k thinking does not display

the often criticized “blind belief” in the opponent playing backward induction when an

information set is reached that is not on the outcome path.
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4 Revisiting Prior Experiments

There is a large literature on testing solution concepts to extensive-form games in ex-

perimental game theory. Given our observations with regard to extensive-form level-k

reasoning, normal-form level-k reasoning, and k-level extensive-form rationalizability,

data sets on games in which forward induction plays a role are of special interest to us.

We are very grateful to authors of some previously published experiments for providing

us with their data sets. In this section, we report on a simple reanalysis of those extant

data sets attempting to glean different aspects of strategic sophistication.

4.1 The Role of Forward Induction Given the Level of Thinking
& Uniform First-Level Beliefs

Cooper et al. (1993) conducted experiments on the Battle-of-the-Sexes game with outside

options. One of the games used in their experiments is depicted in Figure 8. Although

its proper subgame is phrased as an “anti-coordination” game, it is seen easily to be

equivalent to a Battle-of-the-Sexes game just by renaming the actions of one player.

Figure 8: Battle-of-the-Sexes Game used by Cooper et al. (1993)

Table 5 presents level-by-level three solutions: extensive-form level-k with uniform

initial belief systems, normal-form level-k with uniform initial beliefs, and extensive-

form rationalizability. We observe that in this game, extensive-form level-k reasoning is

equivalent to k-level extensive-form rationalizability for every level but the first. More im-

portantly, extensive-form level-k thinking is a strategy refinement of normal-form level-k

reasoning from level 3 onward and an outcome refinement of normal-form level-k reason-

ing from level 4 onward. Both, extensive-form level-k reasoning and normal-form level-k

reasoning feature levels of reasoning. Yet, extensive-form level-k reasoning also features
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Table 5: Solutions to the Battle-the-Sexes Game used by Cooper et al. (1993)
Extensive-form level-k Normal-form level-k k-level extensive-form

(uniform level-1 belief syst.) (uniform level-1 belief) rationalizability

Level Row player Column pl. Row player Column pl. Row player Column pl.

1 {(In, 2),(O,*)} 2 {(In, 2),(O,*)} 2 {(In, 2),(O,*)} {1, 2}
2 (O, *) 1 (O, *) 1 {(In, 2),(O,*)} 1
3 (In,2) 1 (In,2) {1, 2} (In, 2) 1
4 (In,2) 1 {(In, 2),(O,*)} 1 (In,2) 1
...

...
...

...
...

...
...

a second dimension of strategic sophistication, namely the ability to update beliefs about

opponent’s future behavior given the opponent’s past behavior. Games like the present

one, in which extensive-form level-k thinking strictly refines normal-form level-k think-

ing, provide us with an opportunity to assess the importance of the forward-induction

ability beyond just level-k thinking. This becomes apparent at level 3. Under normal-

form level-k reasoning for k = 3, the column player is indifferent between actions 1 and 2

thinking that the row player chooses Out anyway. In contrast, when the column player’s

information set is reached and she gets to play, she now knows under extensive-form level-

k reasoning with k = 3 that the row player cannot be an extensive-form level-2 reasoner

because such a row player would move Out. At extensive-form level-3, the only way for

the column player to make sense of the row player’s action to move In is to attribute

level-1 to the row player. Here we see the “best rationalizability principle” embodied

in extensive-form level-k thinking at work. Rather than believing that the row player

is irrational by choosing In, the column player attributes the highest level of rationality

consistent with reaching the subgame to the row player (and below her own level-3),

which is extensive-form level-1. This makes her realize that the row player plans to play

2 since he moved In already. Thus, she best responds with taking action 1.

Participants played the game for 22 periods and alternated between the row and

column player positions. Players were anonymously re-matched. Results of the first 11

periods differed significantly from the last 11 periods and Cooper et al. (1993) reported

only on the last 11 periods. Other treatments of the experiment involved variants of

the Battle-of-the-Sexes games with outside options. We focus on the game of Figure 8

because extensive-form level-k is a strict refinement of normal-form level-k reasoning.9

9For instance, Cooper et al. (1993) also report on a treatment involving a game similar to Example 6.
However, in this game, extensive-form level-k coincides with normal-form level-k and extensive-form
rationalizability provides only a coarse solution. Therefore, we do not think we can learn much for our
purposes from that treatment w.r.t. the solution concepts discussed here and omit a reanalysis.
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See Cooper et al. (1993) for further details of the experimental design.10

Table 6 describes the percentage of choices consistent with the various solution con-

cepts. First, we observe that a large percentage of choices are consistent with all three

Table 6: Choices in Cooper et al. (1993) Consistent with Solutions
Extensive-form level-k Normal-form level-k k-level extensive-form

(uniform level-1 belief system) (uniform level-1 belief) rationalizability

Level Row player Column pl. Row player Column pl. Row player Column pl.

1 98% 8% 98% 8% 98% 100%
2 20% 92% 20% 92% 98% 92%
3 78% 92% 78% 100% 78% 92%
4 78% 92% 98% 92% 78% 92%

solution concepts. Second and more importantly, we note that apparently the second

dimension of strategic sophistication, forward-induction, is just missing in 8% of the

column players at comparable levels of reasoning (i.e., at level-3, the relevant level for

forward induction) and comparable assumptions on first-level beliefs/level-0 behavior (i.e.,

uniform). Normal-form level-k with uniform initial beliefs trivially fits 100% of the data

on the column player for k = 3 while extensive-form level-k with uniform initial belief

systems fits just 8% less at k = 3.

The exercise also offers a glimpse of how extensive-form level-k thinking might be used

in experimental game theory. The goal is not so much in winning a horse race among

solution concepts in a fitting exercise. Rather, by comparing different solution concepts

that differ, very much in the spirit of comparative statics, just in one particular feature

of strategic sophistication from each other but are otherwise comparable, we might learn

about the prevalence of this feature without interference by other varying features. When

comparing the fit of extensive-form level-k with uniform initial belief systems and normal-

form level-k with uniform initial beliefs in the experiment, we learn about the prevalence

of forward induction given comparable levels of thinking and comparable assumptions

on initial beliefs.

10Although we received the data from Cooper et al. (1993), we were not able to fully comprehend
them yet given that they were collected more than 30 years ago. Thus, our analysis makes use of the
frequencies reported in Cooper et al. (1993, Table 4).

30



4.2 The Role of Uniform Level-1 Beliefs Given Forward Induc-
tion & the Level of Reasoning

Balkenborg and Nagel (2016) study a variant of the battle-of-the-sexes game with an

outside option on which nature moves first and selects between the outside option game

or the battle-of-the-sexes game without the outside option. We focus here on the sub-

game consisting of the battle-of-the-sexes game with the outside option as depicted in

Figure 9.11 While such a focus on a subgame only is generally problematic when studying

solution concepts with forward induction, because beliefs of players might be affected by

what happened before the subgame, we do not think that it does affect our analysis of

this particular game in a relevant way.

Figure 9: Game used by Balkenborg and Nagel (2016)

The predictions of extensive-form level-k thinking (with uniform initial belief sys-

tems) and extensive-form rationalizability are given in Table 7. It is well-known that the

outcome of extensive-form rationalizability is equivalent in this game to the prediction

by iterated admissibility and strategic stability. Balkenborg and Nagel (2016) refer to

this outcome simply as the forward induction outcome. Their interest is on testing it

against Harsanyi-Selten equilibrium selection based on risk-dominance, the focal point,

and strong backward induction. In particular, since profile (R, r) is both risk-dominant

and focal due to symmetry of payoffs, (6, 6), backward induction suggests that player 1

chooses out and guarantees himself the larger payoff of 7. This prediction coincides with

extensive-form level-k thinking with uniform level-0 belief systems in this game for k ≥ 1.

In fact, already Balkenborg and Nagel (2016, p. 398) note that Out is player 1’s best

response to the uniform belief over player 2’s actions in the battle-of-the-sexes subgame.

The fact that extensive-form level-k thinking with uniform level-0 belief systems differs

from k-level extensive-form rationalizability in this game allows us to study the effect of

11In their terminology, it is the “left game”.

31



level-0 uniform beliefs given forward induction and given comparable levels of thinking.

Table 7: Solutions to the Game of Balkenborg and Nagel (2016)
Extensive-form level-k Normal-form level-k k-level extensive-form

game (uniform level-1 belief syst.) (uniform level-1 beliefs) rationalizability

Level Player 1 Player 2 Player 1 Player 2 Player 1 Player 2

1 (Out, ∗) r (Out, ∗) r {(Out, ∗), (In, L)} {l, r}
2 (Out, ∗) r (Out, ∗) {l, r} {(Out, ∗), (In, L)} l

3
...

... {(Out, ∗), (In, L)} {l, r} {(In, L)}
...

4
...

...
...

...
...

...

Note that normal-form level-k reasoning with uniform initial beliefs has “no bite” in

this game. This is because at level 3, player 1 can have arbitrary beliefs about both

level-2 best responses of player 2. This makes both (Out, ∗) and (In, L) consistent with

normal-form level-k thinking for k ≥ 3. It just underlines the fact that normal-form

solution concepts are not always useful for studying extensive-form games. That’s why

in what follows we focus on extensive-form level-k thinking and k-level extensive-form

rationalizability.

In their experiments, 154 students participated in 13 independent sessions. In each

session, the game was played sequentially for 50 rounds which was followed by one round

of play using the strategy method (Selten, 1967). Participants were randomly rematched

after rounds but maintained their player role throughout the experiment. Sessions dif-

fered by the information feedback but results did not differ so that data of the various

sessions have been pooled together.

Table 8: Choices in Balkenborg and Nagel (2016) Consistent with Extensive-form Solu-
tion Concepts

Extensive-form level-k k-level extensive-form
game (uniform level-1 belief system) rationalizability

Level Player 1 Player 2 Player 1 Player 2

1 88% 43% 90.2% 100%
2 88% 43% 90.2% 57%
3 88% 43% 2% 57%

We classify individual choices as in Table 8. Our exercise shows that for the Balken-

borg and Nagel (2016) dataset, 88% of the player 1 chooses Out, which is consistent with

the prediction of extensive form level-k thinking but not with k-level extensive-form ra-

tionalizability from level-3 onward. Since the most substantial difference between k-level

extensive-form rationalizability and extensive-form level-k thinking is the assumption of

32



uniform level-1 belief systems, this difference illustrates the impact of the initial beliefs

assumption given the level of reasoning (i.e., level 3) and the fact that both solution

concepts feature the assumption that players are able to do forward induction.

The picture looks different for player 2. Only 43% of player 2 choose r conditional on

the subgame is played. That’s slightly less than for k-level extensive-form rationalizability

for k ≥ 2 (57%). Together this suggests that how participants view the context of the

game, as captured by their initial beliefs, may depend on the player role. While the

uniform beliefs assumptions seems largely consistent with the behavior of participants

in the role of player 1, it is apparently not a descriptive assumption for the majority of

participants in the role of player 2.

The last observation suggests further studies. We can use an experiment by Evdoki-

mov and Rustichini (2016) to check for the robustness of the mixed results for player 2.

Their experiment makes use of the battle-of-sexes games with outside option depicted

in Figure 10. This game has a similar best response structure as the battle-of-the-sexes

Figure 10: Battle-of-the-Sexes Game used by Evdokimov and Rustichini (2016)

game with an outside option I (Example 4) and to the game used by Balkenborg and

Nagel (2016). Thus, strategies consistent with various solution concepts are analogous

to Table 7 (see Example 4 for more detailed arguments).

There were 230 participants in the experiment. Participants played the game repeat-

edly. Their player roles could switch between repetitions. Between rounds, they received

limited feedback: Player 1 received no feedback about player 2. Player 2 received in-

formation on whether or not the Battle-of-the-sexes subgame was reached, i.e., whether

or not player 1 moved “In”. There are different treatments that differ in the number

of times the game had been repeated, when questions for belief elicitation were asked

during the repetitions, and in the incentive structure.12

12Unfortunately, we do not have the belief elicitation data.
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Table 9: Choices in Evdokimov and Rustichini (2016) Consistent with Extensive-form
Solutions

Extensive-form level-k k-level extensive-form
game (with uniform level-1 belief system) rationalizability

Level Player 1 Player 2 Player 1 Player 2

1 62% 22% 98% 100%
2 62% 22% 98% 78%
3 62% 22% 36% 78%

Focusing on the behavioral data from all of their treatments, we classify individual

choices as in Table 9. Extensive-form level-k thinking with uniform level-1 belief systems

predicts that player 1 always chooses Out at levels above 1, which is consistent with 62%

of the choices made by the participants. In terms of player 2’s choice, the extensive-

form level-k with uniform level-1 belief systems predicts that player 2 will select R,

which is consistent with only 22% of the choices. In contrast, the k-level extensive-form

rationalizability fits 78% of the choices made by player 2. However, the extensive-form

rationalizability only fits only 36% of the player 1’s choices. While the percentages

differ from the corresponding percentages for the Balkenborg-Nagel game in Table 8, the

stylized fact from both experiments is that extensive-form level-k with uniform beliefs

fits better to the behavior of player 1 while extensive-form rationalizability fits better

to player 2. Again, we conclude that while the uniform beliefs assumptions seems more

consistent with the behavior of participants in the role of player 1, it is not a descriptive

assumption for the majority of participants in the role of player 2. By fitting both solution

concepts to the data, we can draw these conclusions given comparable levels of reasoning

and the ability to do forward induction.

5 Closing Remarks

We extended normal-form level-k thinking to extensive-form games by allowing for up-

dating of beliefs during the play and use of these updated beliefs to make predictions

over opponents’ future play. In no way we want to suggest that extensive-form level-k

thinking will be the ultimate behavioral solution concept that fits the data on extensive-

form games better than other solution concepts. Quite to the contrary, we expect that in

abstract choice environments some subjects in experiments may lack the ability to mean-

ingfully draw conclusions from opponents’ past play for opponents’ future play. This

ability is like a second dimension of sophistication that is distinct from (but interacts

with) the binding cognitive bound. Our hope is that by applying extensive-form level-k
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thinking to experimental games and comparing it to normal-form level-k thinking, we

can learn about the prevalence of this second dimension of strategic sophistication.

We contrasted extensive-form level-k thinking with other existing iterative solutions

concepts to extensive-form games in order to emphasize that there is more than one way

to approach levels of thinking in extensive-form games. Unfortunately, extensive-form

rationalizability and strong ∆-rationalizability have been understudied in experimental

game theory probably because there is no text-book treatment available of these solution

concepts. However, similar to Kneeland (2015)’s demonstration that normal-form level-k

rationalizability is a valid behavioral solution concept for the empirical study of levels

of reasoning, we hope that smart experiments on level-k extensive-form rationalizability

will emerge.

The analysis of extensive-form level-k thinking could be taken further in both theoret-

ical and experimental directions. For instance, it might be possible to extend the detailed

epistemic analysis of the differences between normal-form level-k thinking and k-level ra-

tionalizability by Brandenburger, Friedenberg, and Kneeland (2020) to extensive-form

level-k thinking and k-level extensive-form rationalizability. Moreover, while more exist-

ing data sets on experimental extensive-form games could be analyzed with extensive-

form level-k thinking, we currently think about new experiments with extensive-form

games tailor-made for testing extensive-form level-k thinking.

Proofs

Proof of Proposition 1

We prove constructively using induction on the levels.

Base Case: For all i ∈ N , since β1
i ∈ B1

i , L1
i (β

1) ⊆ R1
i .

Inductive Hypothesis: For all i ∈ N and 1 ≤ ` < k, L`
i(β

1) ⊆ R`
i .

Inductive Step: We need to show that for every i ∈ N , Lk
i (β1) ⊆ Rk

i . Pick any ai ∈
Lk
i (β1). By Definition 1, there exists a belief βi ∈ ∆(A−i) that is certain of Lk−1

−i (β1) such

that ai is rational with βi. By the induction hypothesis, such a belief βi is also certain

of Rk−1
−i . Hence, ai ∈ Rk

−i. �

Proof of Proposition 2

Since the game is finite, there exists K such that for all k ≥ K, R∞i = Rk
i for all i ∈ N .
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For any ai ∈ R∞i there exists βi ∈ ∆(A−i) such that βi(R
K
−i) = 1 and ai is rational

for player i given βi. Since this holds for every player i ∈ N , set β1 = β = (βi)i∈N . Then

ai ∈ L1
i (β

1). �

Proof of Proposition 3

For k = 1, note that for any player i ∈ N , if a strategy is rational with respect to a profile

of full-support beliefs β1
i in the associated normal-form that is consistent with the profile

of full-support belief systems β̄1, then it is rational with respect to β̄1
i (Ii) conditional on

reaching information set Ii. This is due to the fact that conditioning does not alter the

relative likelihoods of opponent’s strategies reaching the information set. Conversely, if a

strategy is rational with respect to a profile of system of full-support beliefs β̄1 at every

information set Ii ∈ Ii, then is also rational with respect to the profile of full-support

beliefs β1 in the associated normal-form that is consistent with β̄1. �

Proof of Proposition 4

We prove by induction on the levels.

Base Case: By Proposition 3, L̄1
i (β̄

1) = L1
i (β

1) for all i ∈ N . Thus, L̄1(β̄1) = L1(β1) and

Z(L̄1(β̄1)) = Z(L1(β1)).

Inductive Hypothesis: For any ` with 1 ≤ ` < k, Z(L̄`(β̄1)) ⊆ Z(L`(β1)).

Inductive Step: We need to show Z(L̄k(β̄1)) ⊆ Z(Lk(β1)). Let z ∈ Z(L̄k(β̄1)).

Let N(z) ⊆ N be the set of players i ∈ N for whom an information set Ii is reached

along the path to z. Since the extensive-form game has perfect recall, each player’s

set of information sets form an arborescence, i.e., there is a partial order on the set of

information sets that orders information sets by precedence. Since it is a partial order,

it may have upper bounds, i.e., initial information sets. Yet, along each path, there is a

unique upper bound. For any i ∈ N(z), let Ii denote this first information set of i along

the path to z.

Since z ∈ Z(L̄k(β̄1)), there exists s ∈ L̄k(β̄1) with z(s) = z. For any i ∈ N(z(s)),

there exists β̄i ∈ B̄k
i (β̄1) such that β̄i(Ii)(L̄

k−1
−i (β̄1)) = 1 and si is sequentially rational at

Ii with β̄i(Ii) (with si being the i-component of strategy profile s).

For any nonempty Z ′ ⊆ Z, with some slight abuse of notation denote by S−i(Z
′) =

{s−i ∈ S−i : z(si, s−i) ∈ Z ′, si ∈ Si}. Note that for any nonempty Z ′, Z ′′ ⊆ Z with Z ′ ⊆
Z ′′ implies S−i(Z

′) ⊆ S−i(Z
′′). The induction hypothesis, Z(L̄k−1(β̄1)) ⊆ Z(Lk−1(β1)),
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implies Z(Si × L̄k−1
−i (β̄1)) ⊆ Z(Si × Lk−1

−i (β1)). Hence, we have S−i(Z(Si × L̄k−1
−i (β̄1))) ⊆

S−i(Z(Si × Lk−1
−i (β1))).

Note that for any nonempty S ′−i ⊆ S−i, S−i(Z(Si×S ′−i)) ⊇ S ′−i. Thus, β̄i(Ii)(L̄
k−1
−i (β̄1)) =

1 implies β̄i(Ii)(S−i(Z(Si × L̄k−1
−i (β̄1)))) = 1 and β̄i(Ii)(S−i(Z(Si × Lk−1

−i (β1)))) = 1.

Define βi = β̄i(Ii). Note that opponents strategies in S−i(Z(Si×Lk−1
−i (β1)))\Lk−1

−i (β1)

do not affect terminal histories, i.e., Z(Si × S−i(Z(Si × Lk−1
−i (β1)))) ⊆ Z(Si × Lk−1

−i (β1)).

To see this, consider any z(s̃1, s̃−i) ∈ Z(Si × S−i(Z(Si × Lk−1
−i (β1)))) with s̃i ∈ Si and

s̃−i ∈ S−i(Z(Si×Lk−1
−i (β1))). Now, since s̃−i ∈ S−i(Z(Si×Lk−1

−i (β1))), there exists ŝi ∈ Si

such that z(ŝi, s̃−i) ∈ Z(Si × Lk−1
−i (β1)). Because this holds for any ŝi ∈ Si, we can set

ŝi = s̃i. Then z(s̃i, s̃−i) ∈ Z(Si ∈ Lk−1
−i (β1)), which is exactly what we needed to show.

We conclude that βi(· | Lk−1
−i (β1)) yields the same expected utilities from strategies

as βi, where βi(· | Lk−1
−i (β1)) is βi conditional on Lk−1

−i (β1). Moreover, βi(· | Lk−1
−i (β1)) ∈

Bk
i (β1).

Since si is rational with β̄i(Ii) at Ii, it is also rational with βi(· | Lk−1
−i (β1)). Thus,

si ∈ Lk
i (β1).

This holds for all i ∈ N(z(s)). Since strategies of any other player j ∈ N \N(z(s)) do

not affect reaching z(s), we can choose any s′j ∈ Lk
j (β1). Note that z

(
(si)i∈N(z(s)), (s

′
j)j∈N\N(z(s))

)
=

z(s). Since z
(
(si)i∈N(z(s)), (s

′
j)j∈N\N(z(s))

)
∈ Z(Lk(β1)), we have z(s) ∈ Z(Lk(β1)). �
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