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Farsighted Miners under Transaction Fee
Mechanism EIP1559⋆

Jens Leth Hougaard1 and Mohsen Pourpouneh1

University of Copenhagen, Copenhagen, Denmark {jlh, mohsen}@ifro.ku.dk

Abstract. We investigate the recent fee mechanism EIP1559 of the
Ethereum network. Whereas previous studies have focused on myopic
miners, we here focus on strategic miners in the sense of miners being
able to reason k-blocks ahead. We derive expressions for optimal miner
behavior (in terms of setting block sizes) in the case of 2-block foresight
and varying degrees of hashing power. Results indicate that a sufficiently
large mining pool will have enough hashing power to gain by strategic
foresight. We further use a simulation study to examine the impact of
both 2-block and 3-block foresight. In particular, the simulation study
indicates that for realistic levels of hashing power, mining pools do not
gain from the being able to reason more than 2 blocks ahead. More-
over, even though the presence of strategic miners increase the variation
in block sizes and potentially empty blocks, overall system throughput
tend to increase slightly compared to myopic mining.

Keywords: Blockchain · Ethereum · Transaction fee mechanism.
JEL Classification: D47, D53, L11, L17.

1 Introduction

On August 5, 2021, at block 12, 965, 000 the Ethereum network (Buterin et al.
(2014)) implemented the so-called “London Hard Fork” (Buterin et al. (2019);
Beiko (2021)), which changed its fee mechanism from what can loosely be de-
scribed as a type of first price auction: blocks had a maximum (standard) size in
terms of units of gas, and users attached a “bid” to their transaction indicating
what they were willing to pay per unit of gas if their transaction was executed
(i.e., included in a block). Miners typically fill up the blocks to standard size by
selecting those transactions with the highest “bid”, hence maximizing their rev-
enue for the current block. Consequently, this fee mechanism inherits the typical
issues with first price auctions, Buterin (2021); Maskin et al. (2001), e.g., lack of
user incentive compatibility, instability of the blockchain in the absence of the
block reward, and over-bidding for faster inclusion in the block.

⋆ We wish to thank Jens Gudmundsson, Haiting Han and Luyao Zhang for helpful
comments on earlier version of this paper. Support by the Center for Blockchains
and Electronic Markets, funded by the Carlsberg Foundation under grant no. CF18-
1112, is gratefully acknowledged.
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The new fee mechanism - dubbed EIP1559 - is an attempt to regulate demand
and allow flexibility by changing the maximum block size (Buterin (2018, 2016,
2014)). To achieve this, the fee of the coming block is determined by the size
of the current block and thereby known to the users akin to a dynamically
adjusted posted price. This fee is known as the base (or network) fee, which
is “burned” by the network (and thus not paid to miners).1 The base fee is
updated algorithmically and depends on the on-chain data. That is, if the size of
the current block exceeds standard size (also called the target size) T then the
base fee increases for the coming block, and similarly, if the size of the current
block is below T , the base fee will decrease for the coming block. Blocks are now
allowed to be of a size between 0 and 2T units of gas and users now attach a
cap on the total fee they are willing to pay, f . The total fee (i.e., user payment)
consists of the base fee plus a so-called “miner tip” , p, that the miner receives
for including the transaction. A transaction is eligible to be included in a block if
the network fee does not exceed the cap. If an eligible transaction is included in a
block the user pays the minimum of the base fee plus miner tips and the total fee
cap. The miner only receives the minimum of the miner tip and the cap minus
the base fee. A myopic miner will therefore try to fill up the block as much as
possible, including transactions with the highest miner tips. However, since the
current block size influences the network fee of the coming block, a farsighted
miner may act strategically when deciding on which transactions they want to
include in the block.

First, we consider a miner who is able to reason ahead when deciding which
transactions to include in a two-block sequence (i.e., a miner with 2-block fore-
sight). Assuming that users’ willingness to pay are i.i.d. and uniformly dis-
tributed, we identify the optimal (i.e., revenue maximizing) block sizes for a
single (monopolist) miner with 2-block foresight. Unlike a myopic miner, a miner
with 2-block foresight may find it optimal to publish empty blocks depending on
the size of the initial base fee. Since miners in practice compete to mine blocks,
we also consider the percentage of hashing power needed in order to make it
profitable for a miner to mimic the optimal strategy of a monopolist rather
than being myopic: assuming that the rest of the network is myopic. Using a
simulation study, we then demonstrate that a large mining pool (e.g. such as
Ethermine2) can have hashing power enough to prefer publishing empty blocks
rather than to mine myopically. In a similar fashion we repeat the exercise for
miners with 3-block foresight and find again that publishing empty blocks may
increase revenues compared to being myopic. However, our simulations show
that nothing is gained in terms of aggregate revenue to having 2-block foresight.
We conjecture that this remains true for higher levels of foresight as well for
mining pools of realistic sizes (below 50% hashing power). Intuitively, with re-
alistic levels of hashing power, the probability of mining several blocks in a row
decreases fast and thus the ability to harvest the benefits of lowering the base

1 By itself this will have deflationary effect benefiting all agents holding the cryp-
tocrurrency.

2 https://etherchain.org/miner

https://etherchain.org/miner
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fee. For small mining pools, in effect there is very little, if anything, to gain from
having foresight of more than two blocks ahead and we conjecture that miners
with higher levels of foresight optimally would mimic the strategy of a 2-block
farsighted miner.

Our simulation study demonstrates that strategic mining behavior leads to
more variation in base fees and block sizes, but somewhat surprisingly does not
seem to lower system through-put. We further show that by changing the rule
which up-dates the base fee to a rule which updates on the basis of the average
of the two most recent blocks, lowers the variance of the base fee significantly
even for myopic miners. Consequently, a strategic farsighted miner will now
need more hashing power to gain by strategic manipulation of the base fee. Our
conclusions appear to be robust to changes in the distributional assumption on
users’ willingness to pay.

1.1 Related literature

Our paper follows up on a recent line of papers analysing various aspects of
EIP1559 and fee mechanisms in general.

The economic properties of the EIP1559, were first studied in Roughgarden
(2020, 2021). In this work, it is assumed that the miners are myopic, in the
sense that they will always fill the block as much as possible without includ-
ing any “fake” transactions. The intuition is that the base fee is burned by the
network, while manipulating the base fee is costly for the miners. Furthermore,
it is shown that in cases where the base fee is high enough to limit the set of
eligible transactions to be below the maximum block size, the users’ “obvious
optimal equilibrium bid” is to set the fee cap equal to the true valuation of
the user and a tip which is equal to the miners’ marginal cost of executing the
user’s transaction. Consequently, EIP1559 is incentive compatible for both users
and myopic miners. In Chung and Shi (2021), the authors prove a conjecture
in Roughgarden stating that no non-trival incentive compatible mechanism can
prevent (off-chain) miner-user collusion. As a result, they propose a new mech-
anism dubbed as “burning second-price auction”. Alternatives to the EIP1559
mechanism has also been discussed in Ferreira et al. (2021). They suggest a new
mechanism (dubbed the dynamic posted-price-mechanism) which not only takes
the size of the previous blocks into account but also the bids from the previous
blocks in order to compute a fee for the subsequent blocks. Moreover, in Rough-
garden (2020), several variations of EIP1559, such as the EIP2593 (dubbed as
the escalator) are discussed.

Monnot et al. (2020); Leonardos et al. (2021), consider a dynamic system to
evaluate the evolution of the base fee over time, and provide upper, and lower,
bounds on the base fee given that miners and users are not speculating on the
current base fee.

In Liu et al. (2022), the authors provide an empirical study to examine the
effect of EIP1559 on the transaction fee dynamics, transactions waiting time,
and security of the blockchain. The results show an improvement on the user
experience by making fee estimation easier, mitigating intra-block difference of
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gas price paid, and reducing users’ waiting times. Finally, Reijsbergen et al.
(2021) proposes a dynamic updating rule for the base fee. That is, the base fee
rather than being updated based on only the previous block, updates by a sliding
window which takes into account multiple previous blocks.

In comparison to previous studies, we do not assume from the outset that
miners are myopic. On the contrary, we consider strategic miners with a foresight
of up to k blocks ahead. We further consider situations where the base fee is so
low that the set of eligible transactions is larger than the maximal block size.

2 Model and notation

A formal description of EIP1559 can be found several places, e.g. Roughgarden
(2020, 2021). Here, we let T denote the standard block size in units of gas. A
(block)chain with height t is defined by a profile S = (s1, . . . , st) where si is the
block size of the i’th block in the chain.

In EIP1559, si ∈ [0, 2T ] and the base fee at block t, denoted bt, is determined
by

bt = bt−1

(
1 +

1

8
· st−1 − T

T

)
= b0

t∏
j=1

(
1 +

1

8
· sj−1 − T

T

)
. (1)

Thus, when si < T the base fee of the coming block i+ 1 decreases and vice
versa when si > T . This allows the users to predict the next block’s “reserve
price”. In EIP1559 every transaction T must specify two parameters: a fee cap
f , which determines the user’s maximum willingness to pay per unit of gas for
their transaction to be processed, and a tip p, which is the (maximum) amount
that the user is willing to pay the miner to include their transaction.

Any transaction will therefore cost the user the minimum of her fee cap and
the total fee payment, i.e.:

user payment = min{f, p+ bt} (2)

Consequently, the miner’s revenue (payoff) from including a transaction in the
block is given by:

miner payoff = min{f − bt, p} (3)

To simplify our analysis we will, throughout the paper, consider legacy trans-
actions only. After implementation of EIP1559, legacy transactions (type 0) are
still allowed: here users only determine the fee cap, f and (for compatibility)
we can consider the tip p as being set equal to f . Thus, users always pay f per
unit of gas, and the miners receive f − bt per unit of gas since bt is burnt. Stan-
dard economic logic seems to indicate that over time users’ willingness to tip the
miner will decrease (resp. increase) with increasing (resp. decreasing) base fees
since users care only about their total payment. Moreover, even with constant
tips, miner revenue is weakly increasing with decreasing base fees because the
base fee affects the number of eligible transactions.
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3 EIP1559: some preliminary observations

An immediate implication of Equation 1 is that the ordering of the blocks in
a given chain S has no effect on the size of the base fee at a given height t.
Formally,
Observation 1: Let π : {1, . . . , t− 1} → {1, . . . , t− 1} be a permutation of the
indices 1, . . . , t− 1. Then bt(S) = bt(πS).

Thus, assume for convenience that block sizes are increasingly ordered s1 ≤
· · · ≤ st. Consider two increasingly ordered chains of the same height t, S =
(s1, . . . , st) and S′ = (s′1, . . . , s

′
t), with the same through-put, i.e.,

∑t
j=1 sj =

M =
∑t

j=1 s
′
j . Denote by S(M) the set of such chains with height t and through-

put M . Now, S is said to Lorenz-dominate S′ (written S ≻ S′) iff
∑k

j=1 sj ≥∑k
j=1 s

′
j for all k = 1, . . . , t−1. In other words, the transactions are more equally

distributed between blocks in S than in S′. Clearly, if M = tT then si = T , for
all i, is the unique Lorenz maximal chain whereas (for t even) the chain where
si = 0 for i = 1, . . . , t/2 and si = 2T for i = t/2 + 1, . . . , t is the unique Lorenz
minimizer.

A real valued differentiable function b : [0, 2T ]t → R is said to be Shur-
concave if it preserves the Lorenz ordering, i.e., if S ≻ S′ ⇒ b(S) ≥ b(S′).

It is well-known (see e.g., Theorem 4, page 89 in Marshall et al. (1979))
that b is Shur-concave iff the partial derivatives are decreasingly ordered, i.e.,
b′1 ≥ · · · ≥ b′n. It is clear from Equation 1 that bt has decreasingly ordered
partial derivatives and thus the base fee bt is minimized for the most unequally
distributed block sizes. Formally,
Observation 2: If S is a Lorenz minimizer on S(M) then bt(S) = min{bt(S′) |
S′ ∈ S(M)}.

Now, a legacy transaction is characterized by its fee cap f . Thus, since the
base fee is burned, Observation 2 indicates a revenue maximizing miner prefer
Lorenz minimizing chains. More precisely, at any given height t a miner maxi-
mizes the revenue of block t if the total amount of throughput is distributed as
unevenly as possible over the blocks in the chain. Of course, the miner of block
t is not necessarily in control of the previous block sizes, but it is clear that the
choice of block size at a given height influences the revenue in later blocks. In
this way a farsighted miner will not automatically fill up the blocks as much as
possible, but may choose the block size strategically. For instance, consider a
rational miner in control of a block chain of height t = 2. When she is deciding
on how many transactions to process in block 1, she aims at maximizing the
total revenue obtained from both block 1 and 2. If the initial base fee is 0 and
the number of incoming transactions is large enough compared to the maximal
block size, it will be revenue maximizing to fill up both blocks to full size (i.e.,
s1 = s2 = 2T ). However, if the initial base fee is given by the steady state base
fee (i.e., the clearing price which makes exactly T transactions eligible) it may be
revenue maximizing to let s1 = 0 and s2 = 2T . Obviously, the picture becomes
much more complicated taking into account that there are multiple competing
miners (mining pools) as we will show in the coming sections.
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In the following sections, we will analyze the potential for miners’ strategic
behaviour in further detail both analytically (for a single miner with 2-block
foresight) and by simulations (for miners with up to 3-block foresight and varying
degrees of hashing power).

4 Myopic versus strategic miners

As mentioned in the previous section, whether a given transaction τ , is eligible
to be executed depends on the user’s cap f and the base fee bt at the current
time t. In particular, a transaction is eligible if f − bt ≥ 0. We assume that users
willingness to pay (i.e., their cap) are i.i.d and follow a uniform distribution
f ∼ U [0, F ]. Moreover, suppose that a fixed number n of new transactions arrive
at every time interval t (i.e., for every block).

Proposition 1. Assuming that there are n transactions uniformly distributed
on [0, F ], the expected number of transactions that are eligible for inclusion in
block t is nF−bt

F .

Proof. See Appendix 8.

If nF−bt
F < 2T the miner can at most include nF−bt

F (eligible) transactions in
the block at height t. This will give the miner an expected payoff of nF−bt

F (F−bt
2 ).

If nF−bt
F ≥ 2T the maximal block size restricts the number of eligible trans-

actions that can be executed. In this case the miner can at most expect a payoff
of 2T (F − TF

n − bt).
A myopic miner, is a miner that maximizes expected payoff per block without

taking into account that the current block size influences the base fee of the
next block (as given by Equation 1) which in turn influences the set of eligible
transactions for the next block etc. In other words, a myopic miner always fills
up the block as much as possible (and do not add fake transactions).

In contrast, a strategic miner, is a miner which maximizes the total expected
payoff thinking k blocks ahead when she determines which transactions to in-
clude in the current, and up-coming k− 1 blocks. We say that a strategic miner
has a foresight of k-blocks in that case.

4.1 A monopolist miner with 2-block foresight

The problem of a single (monopolist) miner with 2-block foresight is already
surprisingly complex. Since the miner can only reason one block ahead of the
current block, it is optimal for the miner to fill up the second block as much as
possible given the set of eligible transactions at block 2 (which in turn depends on
the size of the first block). Thus, the problem boils down finding the optimal size
of the first block. The following intermediate result turns out to be convenient.

Proposition 2. Let (Bt, Bt+1) be two consecutive blocks, such that st ̸= 0 and
st+1 ̸= 2T . The total expected miner payoff of (Bt, Bt+1) is smaller than that of
(B̄t, B̄t+1) when s̄t = 0 and s̄t+1 ̸= 0 or s̄t ̸= 0 and s̄t+1 = 2T .
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Proof. See Appendix 9.

We can now determine the payoff maximizing size of the first block for a
2-block farsighted miner as a function of the initial base fee: the second block
should always be full as possible given the set of eligible transactions.

Proposition 3. The optimal size of the first block for a 2-block farsighted miner
is:

st(bt) = max{0,min{2T, (5
4
bt +

TF

n
− F )(

−2n

F
)}} (4)

Proof. See Appendix 10.

Consequently, whereas a myopic miner will always fill up every block as much
as possible, a 2-block farsighted miner may optimally leave the first block empty
if the first block’s base fee is sufficiently high. Clearly, this hinges on the fact
that the same miner gets to mine two blocks in a row: leaving the current block
empty relies on the ability to harvest the benefits of a decreasing base fee for
the second block.

Figure 1 below illustrates the optimal size of the first block for a 2-block
farsighted monopolist miner in the particular case where n = 100, T = 15 and
F = 10.

Fig. 1: The optimal size of the first block, with T = 15, F = 10, and n = 100.

When the base fee is low (i.e., bt ∈ [0, 5.6]) the miner will fill up the first
block to max size 2T , whereas when the base fee is high (i.e., bt ∈ [6.8, 10])
the first block is optimally be left empty: in between the optimal block size will
monotonically decrease.

4.2 Competition: A 2-block farsighted miner with hashing power α

In practice, miners are competing to verify blocks so we therefore turn to the
case of a miner with different levels of hashing power. We start out to examine
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how much hashing power a 2-block farsighted miner needs in order to do better
than a myopic miner (taking into account that there is a probability proportional
to the hashing power of getting to mine the second block). Note, that while it
generally matters for the optimal strategy of a k-block farsighted miner whether
the rest of the network is myopic or farsighted as well, there is no difference in
the particular case of k = 2.

Let the networks total hashing power be normalized to 1, and let a given
miner have hashing power α ∈ (0, 1). In Figure 2 below, we illustrate the miner’s
decision tree: with probability (1 − α)2 she will not get to mine any of the
two blocks; with probability α2 she will get to mine both; and with probability
α(1− α) she will get to mine one block, either the first or the second.

0

0 1

1

0 1

(1− α)2 (1− α)α α(1− α) α2

Fig. 2: The decision tree of a 2-block farsighted miner with hashing power α.
An edge labelled 1 indicates that the farsighted miner creates a block, and edge
labelled 0 indicates otherwise.

Note that for the left branch of the tree there is no difference between the
payoff for a myopic and a 2-block farsighted miner. Therefore, we focus on the
right branch. Furthermore, by Proposition 3, even as a monopolist it is optimal
for a farsighted miner to act as if myopic when the base fee is sufficiently low.
Therefore, we focus on base fee values bt ≥ 4

5F (1 − T
n ) where a (monopolist)

2-block farsighted miner optimally sets st = 0. Hence, we consider the minimum
required computational power for a farsighted miner such that producing an
empty first block is profitable in expectation.

Let RM
1 denote the payoff of a myopic miner from the first block on the right

branch of the tree in Figure 2, and RM
2 be the payoff of a myopic miner from

the second block of the right branch. Similarly, let RF
1 and RF

2 be the payoff
of a farsighted miner from the first and second blocks on the right branch,
respectively. So, the expected payoff, of a myopic miner from the right branch
is α(1 − α)RM

1 + α2(RM
1 + RM

2 ). If the farsighted miner decides to leave the
first block empty, i.e., RF

1 = 0, so the expected payoff of a farsighted miner is
α2RF

2 . Therefore, a farsighted miner is better off to produce an empty first block
whenever, α2RF

2 ≥ α(1− α)RM
1 + α2(RM

1 +RM
2 ), which simplifies to:

α >
RM

1

RF
2 −RM

2

(5)

As a special case, consider a myopic miner and assume that the initial base
fee bt is at steady state level: leaving exactly T eligible transactions. At block
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t, the miner therefore fill the block with all eligible transactions. In this case,
the eligible transactions are distributed uniformly on [bt, F ]. Given that from
every transaction the amount of bt is burnt, the payoff of the myopic miner from
each transaction is uniformly distributed on [0, F − bt]. Therefore the average
revenue of the miner, i.e., RM

1 , of including eligible transactions in the block is
RM

1 = T
(
F−bt

2

)
. Since bt+1 = bt, the average revenue of the miner is the same

for block t+ 1, that is, RM
2 = RM

1 = T
(
F−bt

2

)
.

Now, if the miner has 2-block foresight, she will leave the first block empty if
she gets to mine it (with probability α): since the farsighted miner sets st = 0,
we get bt+1 = 7

8bt, and the miner can choose the same transactions and earn
1
8bt more for each transaction with a block size of 2T . So the revenue of the
second block becomes RF

2 = T (F − bt) +
2T
8 bt. Plugging, RM

1 , RM
2 and RF

1 into
Equation 5, a level-2 farsighted miner will do better than a myopic miner if:

α >
T
2 (F − bt)

T (F − bt) +
T
4 bt −

T
2 (F − bt)

⇒ α >
F − bt

F − bt
2

At steady state bt = F (1 − T
n ), so the above equation simplifies to α > 2T

n+T .
Say, n = 100 new transactions arrive at time t and t + 1 and that target size
is T = 15, then when the base fee is at the steady state, the 2-block farsighted
miner will do better than the myopic miner if she holds more than 26% of the
total hashing power.

Figure 3, shows the minimum required computational power (in percentage)
for different values of the base fee bt ≥ 4

5F (1 − T
n ), when the transactions are

uniformly distributed on (0, 10), and the target size is set to 15.

Fig. 3: The minimum computational power required to benefit from 2-block fore-
sight compared to being myopic, for given levels of the base fee, with T = 15,
F = 10, and n = 100.
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To sum up, for a 2-block farsighted miner with α percent hashing power we
will use the following strategy for our simulations:

– Network mines first block (happens with probability 1− α):
• First block: No action.
• Second block:

∗ Network mines (with probability 1− α): No action.
∗ Miner mines (with probability α): play myopically.

– The miner mines the first block (happens with probability α):
• First block. Play a mixed strategy:

∗ with probability 1− α: play myopically.
∗ with probability α: play as a 2-block farsighted monopolist.

• Second block:
∗ Network mines (with probability 1− α): No action.
∗ Miner mines (with probability α): Play as a 2-block farsighted mo-

nopolist (coinciding with myopic play).

Note that this strategy is optimal (i.e., maximizing expected revenue) for the
miner: always play myopically in the second block since this is the last. Given
this, in case the miner gets to mine the first block she will be a monopolist miner
with 2-block foresight with probability α, and this is the only block she will get
to mine with probability 1 − α. In the latter case, she should optimally fill up
the first block as much as possible (i.e., play myopically).

5 Simulation Results

Clearly, analytical results for higher levels of k-block foresight are increasingly
complex. We therefore turn to simulation studies. Specifically, we consider the
case where the transactions at every time interval flow according to a Poisson
Distribution, with constant arrival rate λ. Thus, the number of new transactions
created at time t, denoted nt, is given by:

nt ∼ P (nt = x) =
e−λλx

x!
, and (x = 0, 1, 2, · · · ) (6)

For the following simulations we assume the arrival rate λ = 100. Transactions
are sequentially added to the mempool. As such, users do not act strategically.
That is, the users do not submit their transactions based on the current base
fee, but following the Poisson process. Moreover, we assume the users’ bids are
i.i.d. from a fixed uniform distribution on [0, 10], and that all the transactions
are of the same size. Also, we set the target size of the block to T = 15.

For the execution, first we use the Poisson distribution to generate a data
set for a sequence of 1000 blocks (specifically, the full data set contains 100, 467
transactions). This data is used in all the subsequent simulations. Then we repeat
50 times a random pick of the miner who gets to mine blocks in the sequence of
1000 blocks. Every value regarding, base fee, miner revenue, and block distribu-
tion, is then averaged over those 50 repeated runs. We also assume that the rest
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of the network acts myopically. As such, a farsighted miner with varying degrees
of hashing (i.e, market) power is competing with the rest of the network that
acts myopically. Throughout the sequences of 1000 blocks the base fee follows
the EIP-rule (1) according to the chosen block sizes.

5.1 Myopic miner

We first simulate a myopic miner, i.e., a miner that at every block fills the block as
much as possible according to the number of eligible transactions in the mempool
and the available block size. As discussed previously, given that transactions are
distributed uniformly on [0, 10], and if at every round 100 new transactions are
added to the mempool, the base fee must stabilize around 100 10−b

10 = 15, i.e.,
8.5. In the simulations, since the number of new transactions are different at
every round and the transactions are accumulated in the mempool, the base fee
stabilizes at 8.9 with a variance of 0.14. Figure 4 shows the evolution of the base
fee for myopic miners.

Fig. 4: The average and variance of the base fee for myopic miners.

The average revenue per block is 7.94, so ex-ante, a myopic miner with hash-
ing power α has an expected average revenue of α × 7.94 for every block when
the rest of the network are myopic as well.

5.2 2-block farsighted miner

We consider a 2-block farsighted miner with varying degrees of hashing power.
Specifically, we focus on simulations where the miner has hashing power α ∈
{0.1, 0.15, 0.2}. In comparison, the largest mining pool in the Ethereum network
has approximately 27% of the total hashing power3.

Base fee: Figure 5, shows the base fee a 2-block farsighted miner with differ-
ent computational powers. The summary of the results are presented in Table 1.
Note that, as the computational power increases, the number of empty blocks
increases, therefore the average base fee decreases and the variance increases.

3 https://miningpoolstats.stream/ethereum

https://miningpoolstats.stream/ethereum
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Average Variance
α = 10% 8.9 0.15
α = 15% 8.88 0.18
α = 20% 8.82 0.20

Table 1: The average and variance of the base fee for miners with 2-block fore-
sight.

(a) Farsighted miner with α = 10%. (b) Farsighted miner with α = 15%

(c) Farsighted miner with α = 20%

Fig. 5: Evolution of the base fee for different computational power of 2-block
foresight miners.

Reward Distribution: Next, we consider the aggregate reward of a far-
sighted miner with α = 10%, 15% and 20% hashing power and compare the
results with the case that the miner acts myopically. The results are shown in
Figure 6.

For a miner with α = 10%, the expected revenue of the being farsighted is
similar to that of being myopic. This is due to the fact that for a miner with
α = 10%, Equation 5 and Figure 3, implies that the base fee must be larger
than 9.35 before it pays off (in expectation) to produce an empty block for the
farsighted miner. However, with respect to Figure 5, the base fee is often less
than 9.35 and in those instances the miner only have a 10% chance to mine the
block. Therefore, the revenue of a farsighted miner is basically similar to that of
a myopic miner in this case.

For a 2-block farsighted miner, with α = 20%, Equation 5 and Figure 3,
implies that the base fee must be larger than 8.79 in order to benefit from
producing an empty block, which happens more frequently. Furthermore, as
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the miner has 20% of the computational power, the miner gets to produce more
consecutive blocks, which increases the farsighted miner’s expected revenue. This
corresponds to the finding in Section 4.2.

(a) Farsighted miner with α = 10%.

(b) Farsighted miner with α = 15%

(c) Farsighted miner with α = 20%

Fig. 6: Cumulative reward for 2-block foresight miners.

Block Distribution and throughput: Figure 7, shows the distribution of
the blocks for myopic and farsighted miners. Note that, as the computational
power of the farsighted miner increases then the number of empty blocks in-
creases as well. However, considering the total throughput of the network, i.e.,
the number of transactions included in the blocks, for a period of 1000 blocks,
increases. The throughput of the network (i.e., the total transactions included
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in blocks) is summarized in Table 2. Therefore, the miners by being farsighted
tend to increase the throughput of the network. This is due to the fact that, as
shown in Table 1, the base fee decreases when there are strategic miners that
produce empty blocks. As the base fee goes down, more transactions become
eligible to be included in a block, which in turn increases the throughput of the
system (in the extreme case, if the base fee is always close to zero, then every
block is almost full).

Average
Myopic 15342

α = 10% 15363
α = 15% 15433
α = 20% 15468

Table 2: The total throughput for myopic and 2-block foresight miners.

(a) Myopic miner. (b) Farsighted miner with α = 10%.

(c) Farsighted miner with α = 15% (d) Farsighted miner with α = 20%

Fig. 7: Distribution of 1000 the blocks for myopic miner and 2-block farsighted
miners.

5.3 3-block foresight

In this section, we consider a miner with 3-block foresight. Roughly speaking, a
3-block farsighted miner considers the expected revenue of the next three blocks
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and tries to strategize based on the first block and the second block (if she gets
the chance to mine these blocks). Similar to the case of 2-block foresight, the
decision tree of a 3-block farsighted miner with computational power α is shown
in Figure 8.

0

0

0 1

1

0 1

1

0

0 1

1

0 1

(1− α)3 (1− α)2α (1− α)2α (1− α)α2 (1− α)2α (1− α)α2 (1− α)α2 α3

Fig. 8: The decision tree for a 3-block farsighted miner with α computational
power. The probability of each mining sequence is denoted on each leaf.

First, we consider the optimal strategy for the monopolist miner, i.e., α =
100%. Using simulation, the optimal sizes of the first and the second block as a
function of the initial base fee, is shown in Figure 9.

(a) Optimal size of the first block. (b) Optimal size of the second block.

Fig. 9: The optimal size of the first and second block for a miner with 3-block
foresight.

Figure 10 compares the aggregate revenue of a monopolist myopic miner, a
monopolist 2-block farsighted miner, and a monopolist 3-block farsighted miner.

We emphasize that the revenue of a (monopolist) 2-block farsighted miner is
higher than that of a (monopolist) 3-block farsighted miner. At first glance this
may seem counter-intuitive since one would expect a miner with higher levels of
foresight to be able to do at least as good as a miner with lower levels of foresight.
However, this line of reasoning is only valid if we consider per block revenue in
the respective 2, and 3-block sequences. When we consider longer sequences of
blocks another feature sets in. For instance, consider a series of, say, 6 blocks:
here, a miner with 2-block foresight will at best be able to produce 3 empty
blocks, whereas a miner with 3-block foresight at best will be able to produce
2 empty blocks. As it is a lowering of the base fee that creates the opportunity
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Fig. 10: The aggregate revenue of monopolist miners for myopic, 2-block foresight
and 3-block foresight.

to increase revenue, a monopolist miner with 2-block foresight can decrease the
base fee further than a miner with 3-block foresight, and thereby obtain a higher
revenue over repeated sequences of 2 and 3-block constellations.

Next, consider a miner with 3-block foresight and α computational power. In
the simulations we assume that the miner uses the following strategy:

1. Network gets to mine the first block (with probability 1− α):
(a) First block: No action.
(b) Onwards: Copy the strategy of a miner with 2-block foresight and α

hashing power.
2. The miner mines the first block (with probability α):

– First block. Play a mixed strategy:
(a) with probability 1− α: play myopically.
(b) with probability α: play as a monopolist miner with 3-block foresight.

– Onwards: Copy the strategy of a miner with 2-block foresight and α
hashing power.

Note that playing this strategy we “pretend” that the mempool is empty when
entering the second block. This is clearly not the case, so in principle the miner
could have done better if she took the size of the mempool when entering block
2 into account. Yet, for realistic levels of hashing power, this mistake is arguably
limited and we claim that the above strategy is near optimal in that case.

The results are shown in Figure 11(a)-(c) below. With only 10% hashing
power the aggregate revenue of the myopic miner is slightly better than that of
both a 2, and 3-block farsighted miner. With 15% and 20% hashing power both
farsighted miners do better than the myopic miner, and the 2-block farsighted
miner consistently do better than the 3-block farsighted miner. We emphasize
that this may partly be due to the fact that the strategy of the 3-block farsighted
miner is only near optimal so the 3-block farsighted miner could potentially have
done slightly better if allowed to play an optimal strategy. Yet, as shown above,
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when we simulate the optimal strategy for a 3-block farsighted monopolist miner
she will still be worse off than a 2-block farsighted monopolist miner. So the
results for lowers levels of hashing power seem in line with this.

The system throughput (Table 3 below) is increasing in the levels of hashing
power and is slightly higher for farsighted than myopic miners. Again, average
base fee (Table 4 below) decreases in the levels of hashing power whereas the
variance increases - similar to the case of the miner with 2-block foresight.

(a) Farsighted miner with α = 10%.

(b) Farsighted miner with α = 15%

(c) Farsighted miner with α = 20%

Fig. 11: Cumulative reward for 3-block foresight miners.
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Average
Myopic 15342

α = 10% 15356
α = 15% 15389
α = 20% 15423

Table 3: The throughput for miners with 3-block foresight.

Average Variance
α = 10% 8.9 0.15
α = 15% 8.89 0.16
α = 20% 8.84 0.18

Table 4: The average and variance of the base fee for miners with 3-block fore-
sight.

Average base fee updating rule: Since the base fee only depends on the size
of the previous block, then a farsighted miner can manipulate the base fee so
that he can extract more value in the next block. Here, in line with Reijsbergen
et al. (2021), we propose the average base fee updating rule for the base fee. The
simplest form, is to update the base fee based on the average of the previous two
blocks. Formally,

bt =

(
bt−1

(
1 +

1

8
· st−1 − T

T

)
+ bt−1

)
· 1
2

(7)

Figure 12 compares the base fee evolution for the myopic miners with the
EIP1559 and the average updating rule of Equation 7. Note that, as the expected
demand at every block is the same then the average of the base fee for using both
updating rule with myopic miners is similar. However, the variance of the base
fee with the average updating rule is lower (to be more precise, the variance of
the base fee by applying the average updating rule is 0.028 whereas the variance
of EIP1559 is 0.14.)

Fig. 12: Comparison of the base fee with the new updating rule for myopic miners.
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The effect of applying the average updating rule on miners’ revenue is shown
in Figure 13. Given that the network reaches a steady state, the first part of
Equation 7 is approximately equal to bt1 , and hence bt = bt−1. Therefore, the
revenue of myopic miner is roughly the same with both updating rules. However,
in case of a farsighted miner producing an empty block it has less effect on the
base fee. This implies that a miner needs more computational power to be able
to manipulate the new updating rule for the base fee.

Fig. 13: Comparison of the revenue of myopic and 2-block foresight miners with
α = 20%.

5.4 Robustness

The simulation results of the previous section used the uniform distribution to
model the users’ willingness to pay. To examine whether the main conclusions
obtained above are robust to changes in this distributional assumption, we have
also run the simulations using a normal distribution with average 10, and vari-
ance 5 to model the users’ willingness to pay. The remaining parameters, i.e.,
the distribution of the new transactions and the number of blocks kept the same
as in the previous section. The simulation results shows the previous conclusions
still hold, i.e., miners with 2 and 3-block foresight are better off by strategically
producing empty blocks. The intuition for this results is that the miners can
carry the high value transactions into the next block, and hence lower the base
fee which results in less burning and thereby higher miner revenue. Moreover,
as before, the miner with 2-block foresight does better than a miner with 3-
block foresight on aggregate revenue and system throughput also increases with
farsighted miners.
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6 Conclusion

To sum up, our simulation study illustrates that a 2-block farsighted miner/pool
may gain from strategic behavior if their hashing power is sufficiently high (here
more than approx. 15%). Strategic behavior leads to more empty blocks and
variation in block sizes, but on average increases system throughput slightly.
Somewhat counter intuitively, allowing miners to reason more than 2 blocks
ahead does not add to the advantage of having strategic foresight. In particular,
our result illustrate that for all levels of hashing power a miner with 2-block
foresight do better in terms of aggregate revenue than a miner with 3-block
foresight. We conjecture that for higher levels of foresight this remains true for
realistic levels of hashing power (that is, between 15-40%).

Finally, changing the base fee up-dating rule slightly to average over the two
past blocks reduces the variance of the base fee considerably. Thereby, it also
significantly limits the expected gains from strategic behavior. These results
seem robust to changes in the distributional assumptions on users’ willingness
to pay.
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7 Appendix

8 Proof of Proposition 1

Proposition 1. Assuming that there are n transactions uniformly distributed
on [0, F ], the expected number of transactions that are eligible for inclusion in
block t is nF−bt

F .

Proof. Let χi denote the random variable that shows the inclusion of a transac-
tion in the block Bt. Formally,

χi =

{
1, if i’s fee cap satisfies fi ≥ bt
0, otherwise

Therefore,

Pr(χi = 1|bt) = Pr(fi > bt) = 1− Pr(fi ≤ bt) = 1− F (bt) =
F − bt

F

As the users are independent and identically distributed, then so is χi. Hence,
every transaction inclusion in the block follows, i.e., the χi, follows a Bernoulli
distribution with parameter p = 1−F (bt) (this is well defined since 0 ≤ F (bt) ≤
1). Using Wald’s equation E[

n∑
i=1

χi|bt] = E[n]E[X1] = n× F−bt
F .

9 Proof of Proposition 2

Proposition 2. Let (Bt, Bt+1) be two consecutive blocks, such that st ̸= 0 and
st+1 ̸= 2T . The total expected miner payoff of (Bt, Bt+1) is smaller than that of
(B̄t, B̄t+1) when s̄t = 0 and s̄t+1 ̸= 0 or s̄t ̸= 0 and s̄t+1 = 2T .

Proof. Let R denote the payoff of the two blocks (Bt, Bt+1), and R̄ denote the
payoff of the two blocks (B̄t, B̄t+1). That is,

R =

∑
τ∈Bt

fτ +
∑

τ∈Bt+1

fτ

−
(
stbt + st+1bt+1

)

R̄ =

∑
τ∈B̄t

fτ +
∑

τ∈B̄t+1

fτ

−
(
s̄tb̄t + s̄t+1b̄t+1

)
.
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Note that in the above equations, bt = b̄t, since the base fee of the block at
height t only depends on the size of the block at height t − 1. Furthermore,
bt+1 = bt

8

(
7 + st

T

)
and b̄t+1 = bt

8

(
7 + s̄t

T

)
.

Based on the size of the first block, i.e., st, we consider different cases and in
each case we show that the miner can increase her payoff by decreasing the size
of the first block.

Case 1. st ≤ T , and st+1 ≤ T .
Since st ≤ T implies that bt+1 ≤ bt, all transactions in Bt are eligible for
inclusion in Bt+1. Furthermore, as st+1 ≤ T , Bt+1 has sufficient space to
include all the transactions in Bt. Therefore, setting B̄t = ∅ and B̄t+1 =

Bt ∪Bt+1, implies

( ∑
τ∈Bt

fτ +
∑

τ∈Bt+1

fτ

)
=

( ∑
τ∈B̄t

fτ +
∑

τ∈B̄t+1

fτ

)
. Conse-

quently, R̄ > R if and only if s̄tbt+ s̄t+1b̄t+1 < stbt+ st+1bt+1. In particular,
we have s̄t = 0 and s̄t+1 = st + st+1. Moreover, because s̄t = 0, we get
b̄t+1 = 7

8bt. Thus, we have

s̄tbt + s̄t+1b̄t+1 = s̄t+1b̄t+1 = (st + st+1)
7

8
bt

< stbt + st+1

(
bt
8
(7 +

st
T
)

)
= stbt + st+1bt+1

To conclude, in case st ≤ T , and st+1 ≤ T , the payoff of the miner is
increased if instead we set s̄t = 0 and s̄t+1 = st + st+1.

Case 2. st ≤ T , and st+1 > T .
Since st ≤ T implies that bt+1 ≤ bt, all the transactions in Bt are eligible
for inclusion in Bt+1. Let k = 2T − st+1 be the remaining space in Bt+1,
and let Γ be any subset of k transactions in Bt. Setting B̄t = Bt \ Γ and

B̄t+1 = Bt ∪ Γ , implies

( ∑
τ∈Bt

fτ +
∑

τ∈Bt+1

fτ

)
=

( ∑
τ∈B̄t

fτ +
∑

τ∈B̄t+1

fτ

)
.

Therefore, again R̄ > R if and only if s̄tbt+ s̄t+1b̄t+1 < stbt+st+1bt+1. Now,
s̄t = st − k and s̄t+1 = st+1 + k. Moreover, note that, b̄t+1 = bt

8

(
7 + s̄t

T

)
=

bt
8

(
7 + st−k

T

)
= bt

8

(
7 + st

T

)
− k bt

8T = bt+1 − k bt
8T . Therefore,

s̄tb̄t + s̄t+1b̄t+1 = (st − k)bt + (st+1 + k)(bt+1 − k
bt
8T

) < stbt + st+1bt+1

(since bt+1 ≤ bt). To conclude, the miner’s payoff increases whenever we set
s̄t = st − k and s̄t+1 = st+1 + k.

Case 3. st > T , and st+1 < T .
Since, st > T then bt+1 > bt. Let k = 2T − st+1, as st+1 < T , then k > T .
Let Γ be any subset of k transactions in Bt. As k > T , then removing all the
set of Γ transactions from Bt, implies that b̄t+1 < bt, so these transactions
can be included in the B̄t+1. Setting B̄t = Bt \ Γ and B̄t+1 = Bt ∪ Γ , and a
similar argument as that of Case 2 applies.
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Case 4. st > T , and st+1 > T . Let k = 2T − st+1, as st+1 > T , then k < T . Next,
we show that there are a set of T transactions in Bt, that are eligible for
inclusion in Bt+1. Note that as st > T , then bt < b∗, where b∗ = F (1 − T

n )
is the stable base fee. So, there are T transaction in Bt, with a fee cap
larger than the stable base fee, that is Tops = {τ ∈ Bt | fτ ≥ F (1 − T

n )}.
As, st+1 > T , then bt+1 < b∗, therefore all the transactions in Tops are
eligible for inclusion in block Bt+1. Note that, reducing the size of the first
block results in a lower base fee, hence b̄t+1 < bt+1. Therefore the set of
transactions in Tops are eligible for inclusion in ¯Bt+1. As k < T , then Γ is
the subset of any subset of k transactions in Tops. Setting, B̄t = Bt \Γ and
B̄t+1 = Bt ∪ Γ , a similar argument as in Case 2 applies.

10 Proof of Proposition 3

Proposition 3. The optimal size of the first block for a 2−block farsighted
miner is:

st = max{0,min{2T, (5
4
bt +

TF

n
− F )(

−2n

F
)}} (8)

Proof. The steady state base fee (leaving exactly T eligible transactions) is given
by b∗ = F (1− T

n ). We consider two cases where the base fee is above and below
b∗ and show that the optimal size follows Equation 4.

Case 1. bt > b∗. In this case the, the number of eligible transactions for two con-
secutive blocks is less than 2T . Thus, by Proposition 2 the optimal size of
the first block is st = 0 which is also what we get from (4) when inserting
bt ≥ F (1− T

n ).
Case 2. bt < b∗. In this case there are sufficient eligible transactions so that the

miner can fill the second block to 2T . In the first round the miner chooses
st which is bounded by either by the maximum size of the block 2T or by
the maximum number of eligible transactions. At time t, n new transactions
with values being uniformly distributed on [0, F ] is added to the pool. By
Proposition 1, the miner is limited by min{2T, nF−bt

F }. Hence the miner
chooses all the transactions τ with fτ ≥ F

(
1− st

n

)
, such transactions are

uniformly distributed on [F
(
1− st

n

)
, F ]. Therefore the gross revenue of the

miner is stF
2 (2− st

n ). As for each transaction, bt is burnt, the net revenue of
the miner from the first block is

stF

2
(2− st

n
)− stbt. (9)

At time t + 1, n new transactions are added to the mempool, with values
that are uniformly distributed on [0, F ]. Therefore the miner gets to create
a block of size st transactions from the new transactions which, similar to
the previous case, yields a revenue of stF

2 (2− st
n )− stbt+1.

The remaining space in the second block, i.e., S̄ = 2T − st, must be filled
up from the transactions in the mempool. Let Λ denote the transactions
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remaining in the mempool. Note that, Λ = 2n − 2st and the values of
these transactions are uniformly distributed on [0, F

(
1− st

n

)
]. Out of the

Λ transactions, the miner chooses the top S̄ transactions. That is, the miner
includes transactions with f ≥ F

(
1− st

n

) (
1− S̄

Λ

)
. These transactions have

values that are uniformly distributed on
[
F
(
1− st

n

) (
1− S̄

Λ

)
, F
(
1− st

n

)]
.

Therefore, the average revenue of these transactions is S̄
2F
(
1− st

n

) (
2− S̄

Λ

)
.

Note that for each transaction, bt+1 is burnt. Hence, the revenue of the
second block is S̄

2F
(
1− st

n

) (
2− S̄

Λ

)
+ stF

2 (2 − st
n ) − 2Tbt+1. Note that,

bt+1 = bt
(
1 + 1

8
st−T
T

)
. Therefore, 2Tbt+1 = bt

4 (7T + st). All in all, the rev-
enue of the second block is

S̄

2
F
(
1− st

n

)(
2− S̄

Λ

)
+

stF

2
(2− st

n
)− bt

4
(7T + st) (10)

Putting Equations 9 and 10 together the total revenue of the miner from
two consecutive blocks is:

R(st) =
1

2
(2T − st)

(
F − st

n

)(
2− 2T − st

2(n− st)

)
+ Fst

(
2− st

n

)
− stbt −

7T

4
bt −

st
4
bt

The first order condition implies:

∂R

∂st
= −F

n
(2T + 2n− 3st) + F (2− 2st

n
)− 5

4
bt = 0

Therefore, the optimal size of the first block is st = ( 54bt +
TF
n − F )(−2n

F ).
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