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bstract

In order to verify the effects of machine learning in a market structure, an evolutionary model containing firms that use a genetic
lgorithm to decide their investment in innovative R&D was developed. These firms share the market, with two other types of
rms, those with a fixed rate of investment and those with random strategies. A model of industrial dynamics was implemented
nd simulated using several population distributions of the three types of firms. The availability of external credit and the length
f learning periods were evaluated and their effects, in the market structure, analysed. The simulations results brought contrasting
ndings when compared to previous works, as it confirmed that machine learning led to market dominance, but the same did not
ccur when considering the improvement of technological efficiency and social welfare.

EL classification: L16; C63; C61

eywords: Genetic algorithms; Agent-based modeling; Evolutionary model; Industrial dynamics
 2019 The Authors. Production and hosting by Elsevier B.V. on behalf of National Association of Post-

raduate Centers in Economics, ANPEC. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).

.  Introduction

The most known model of industrial dynamics is the one developed by Nelson and Winter (1982). In this model,
ach firm makes an R&D investment in order to improve their productivity, which is divided between the search for
nnovation and imitation. There are two different types of firms, the ones that only imitate and those which innovative
nd imitative processes occur simultaneously. The level of productivity achieved in one period is carried to the next,
eginning the industry’s evolutionary process.

According to the model created by Nelson and Winter (1982) the innovation is defined as the search for new means
f production and processes improvement. The imitation consists of endeavouring to copy the market’s best practice
highest level of productivity). As the investment in R&D is a fraction of the capital stock, the crucial factor for
nnovation and imitation is the firm’s size, because a larger value of capital stock means a higher probability of success.
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The two-way relationship between market structure and innovation must be highlighted. Also, the choice for innovative
investment is generally less profitable than the choice for imitative investment, this is due to the initial structure, which
inflicts higher research costs to the innovative firms.

When considering a situation of incomplete information, each firm does not know the others’ decisions, therefore,
it’s not possible to forecast what is the best action. Schaffer (1989) discusses the idea of non-profit maximizing firms
and applies concepts of the “spite effect” phenomena. Which consists of the fact that a subject can choose a set of
strategies that leads to a minor gain if the other individual suffers a more relevant loss. Arifovic (1994) argues that
when a time progression exists, the agents’ knowledge, acquired on the previous levels, must be considered. Therefore,
this is the context of learning: using previous experiences to guide the next decisions. Vriend (2000) classifies learning
using two basic formats, individual and social. The first, consists of the set of information independently obtained,
for example, by a failure/success method. On the other hand, the latter consists in the transmission of behaviours and
characteristics from one individual to the other, this could occur, for example, by imitation. According to Vriend (2000)
both learning approaches are relevant and must be analysed together, because different results may be found when
those are computed in isolation. Those differences are due to the “spite effect”.

One way to implement machine learning, first developed by Holland (1975), is by using genetic algorithms. They are
evolutionary algorithms based on the concepts of natural selection, which means that the environment selects the fittest
beings and their offspring inherits genes that allow the continuity of species evolution. Genetic algorithms enable the
search, from an initial set of strategies, for approximated solutions to the optimization problems. The initial strategies
are tested, then combined and/or modified, in order to search for new and better strategies, creating a new generation,
resulting in an iterative and, consequently, evolutionary process.

Shubik and Vriend (1999) use dynamic programming to relate game theory approaches and behavioural simulations.
Even when agents have a considerable amount of information, if they are initially far away from the rational expectations
equilibrium, they might not reach the equilibrium point. On the other hand, if the agents have little information in order
to forecast the future, they could make the assumption that some characteristics from the past will remain constant. By
doing so, they use their past experiences to base their future actions, this allows a classification system to learn and
recognize good action patterns, finding implicit solutions to dynamic programming problems. Therefore, even when
an explicit solution cannot be found, an adaptive algorithm can make the calculation and find, through simulation, a
solution.

Simulations are very useful when applied to evolutionary economics. Kwaśnicki (1999) analysed different simulation
approaches for the economic development, comparing both Schumpeterian based models, for example the model of
Nelson and Winter (1982), and agent-based approaches. An agent-based model does not have all features completely
specified, thus there is one defined set of strategies, that allows the agents to make choices in the search for survival.
When economically applied, both models act similarly, agents start their interactions without any previous knowledge
and, step by step, build their database through learning. According to Kwaśnicki (1999), Schumpeterian models have
the advantage of making the ability to relate real time and simulation time possible, while in agent-based modelling,
the understanding of this relationship (changing dynamics and time) is more difficult. Therefore, the author suggests
considering both modelling strategies together.

In order to compare different types of R&D investments, one using a fixed rate and the other defined by a genetic
algorithm, Yildizoglu (2002), uses the two strategies in a simplified Nelson and Winter (1982) evolutionary model and
verifies their effects in social and technological welfare, evaluating the relevance of using genetic algorithms. In each
time step, firms that use a fixed R&D rule, regardless the market situation, do not change their method of investment.
On the contrary, firms, that use genetic algorithms as a learning tool, have variable R&D investment dependent on the
industry’s conditions.

Therefore, in a genetic algorithm, an agent has a set of strategies, known as chromosomes, which have the same
number of genes, identical in length. During the agent’s lifetime, those genes are constantly modified (evolution) as
consequence of the gained experience and results. Yildizoglu (2002) has employed the genetic algorithm, at the end of
each generation, to define the percentage of profit invested in innovative R&D. A generation is the necessary period to
test all strategies. As the new chromosomes depend on the actual industrial dynamics, the behaviour of each agent will

depend on the actions of its competitors. Thus, as the new strategies are not necessarily short-term investments, they
must be tested along some time steps. For each strategy, the average gross profit rate was computed, for the purpose of
evaluating its fitness.
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Furthermore, the convergence of the investment rate, Yildizoglu (2002), was found in firms that used the genetic
lgorithm and the presence of learning resulted in higher technological and social efficiency, in fact, the R&D activity
s dominated by the firms that have used the genetic algorithm.

This paper aims to implement an evolutionary industry model, as proposed by Nelson and Winter (1982), adding
ome of Yildizoglu (2002) premises and doing some new assumptions and changes in parameters to verify the efficiency
nd effectiveness of using genetic algorithms not only in markets with fixed R&D investment firms, but also, in other
arkets where firms decide their investment randomly. Among these changes it must be highlighted, that in the present
odel firms do not exit the market, different learning periods for the genetic algorithm are tested, a new fitness function

s used, the external credit influence is analysed, and the investment in R&D is defined as a percentage of the capital
tock. It’s expected to verify and validate the learning through genetic algorithms and to compare the effects of those
arameters modifications on the results.

In order to run the simulation, the model is described using the “ODD Protocol” (Overview, Design concept and
etails), then, it is implemented and simulated using an agent-based modelling approach in NetLogo.
The remaining of this paper is organized as follows. Section 2 presents the theoretical framework of the model

ith a small explanation about the main operators of a genetic algorithm. Section 3 consists of the model description.
ection 4 shows simulation results and their discussion. Finally, Section 5 presents the main conclusions and a brief
iscussion about the findings.

.  Theoretical  framework

The economic theory tells that firms’ profits in perfectly competitive markets tend to zero in the long run, however,
n an oligopoly, there is non-null profits. Consequently, in this case, the entry of new competitors is interesting, but it
s necessary for the entrants to surpass entry barriers imposed by the market. Winter (1984) has studied this emergence
f new firms by analysing different situations of entry, considering the market conditions that favour the entrance and
valuating the potential of new entrants. The author also studied the market’s exit conditions. When a firm goes out of
he market, there is an offer reduction resulting in an increase of the product price in the next period.

In a situation of incomplete information, each firm does not know the others’ decisions, therefore, it’s not possible
o forecast what is the best action. Witt (1986) analysed the behaviour of firms in scenarios with lack of information,
hrough the simulation of three different models, each using a specific set of rules. The objective was to verify whether
he choices of act as a profit maximiser are dominant when comparing to learning and behaviour adjustment strategies.
hus, Witt (1986) affirms that profit maximization is neither necessary nor sufficient condition to increase the probability
f survival for a firm in dynamic markets.

The genetic algorithms can be applied, for example, to a firm’s optimization problem that has limited or absent
nformation. Thus, the most efficient type of investment is unknown and using the algorithm allows seeking strategies in
rder to get better results. The genetic algorithm simulates the situation where firms have few or zero information about
he market and, from an initial set of actions, the results are observed, and new strategies created. So, it is important to
nderstand two main features: the industrial dynamics and learning. The former consists of how the entrance and exit
f firms occur, how much each firm invests in R&D and how the investment is made (innovation or imitation). The
atter refers to how the databases of knowledge, which guide the firms’ choices, are built.

Arifovic (1994) analyses different learning methods, using a cobweb model to compare the performance of genetic
lgorithms and other methods. The algorithms have three different genetic operators: reproduction, crossover and
utation. Reproduction consists of making copies of the most fitting strategies (chromosomes), because those have

 higher probability of generating a new chromosome that would be useful to the genetic evolution. The crossover
onsists of getting part of the genetic code of two different strategies to create a new chromosome. Next, the mutation
perator takes over and there is a random gene mutation, therefore, some elements of the strategies could be modified,
enerating the final new list of strategies. In some cases, a fourth operator might be used: election, which consists of
esting the newly generated chromosomes before allowing them to be part of the population. This optional operator
llows the elimination of some mutation’s negative effects.
According to Beckenbach (1999), several studies consider the genetic algorithm as a function optimizer and in
ost of the cases, they are used to find the maximum value of a unimodal time-invariant function, which results in

he necessity of having an exclusive system of performance improvement for the genetic algorithm. Therefore, this
oes against the idea of genetic algorithms being an adaptive search procedure, that tries to solve high complexity
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decision-making problems, which complexity is derived from environmental uncertainties. Thus, it is accepted that the
circumstances must be described by a multimodal time-variant function, without observer interference, to correctly
represent the population’s survival skills evolution.

Shubik and Vriend (1999) use dynamic programming to relate game theory approaches and behavioural simulations.
Even when agents have a considerable amount of information, if they are initially far away from the rational expectations
equilibrium, they might not reach the equilibrium point. On the other hand, if the agents have little information in order
to forecast the future, they could make the assumption that some characteristics from the past will remain constant. By
doing so, they use their past experiences to base their future actions, this allows a classification system to learn and
recognize good action patterns, finding implicit solutions to dynamic programming problems. Therefore, even when
an explicit solution cannot be found, an adaptive algorithm can make the calculation and find, through simulation, a
solution.

As a kind of evolutionary algorithm, the genetic algorithms allow learning through experience. Basically, new
strategies are generated from the previous ones to seek and find new solutions with a better fit. Thus, it consists of an
optimization of the fitness function through the algorithm’s implementation. According to Mitchell (1998), a genetic
algorithm is more efficient and competitive than other classic methods, if the search space is large, neither smooth
nor unimodal, not well known, the fitness function has too much noise or if the procedure does not demand a global
maximum to be found. But, either way, the key success factors of a genetic algorithm are the encoding of possible
solutions and operators, the settings features and the definition of the success criteria.

The most traditional way of encoding system, according to Mitchell (1998), is the binary encoding, which consists of
converting each option from the set of possible choices into a “string” (chromosome) containing 0 or 1 values, each one
of these chromosome’s elements is a gene. Then, after encoding, some solutions are chosen and tested, the procedure
is followed by the genetic operators (selection, crossover and mutation), in order to develop the new generation of
chromosomes.

2.1.  Selection

According to Mitchell (1998), the selection operator is the next step after the encoding decision. It consists of
selecting chromosomes that are going to have their genetic material transmitted to the next generation. There are
several ways of selecting those candidates, but for the scope of this paper, only the elitism and roulette wheel methods
are going to be undertaken:

2.1.1.  Elitism
Elitism consists of maintaining a certain number of chromosomes in the next generation, guaranteeing that those

individuals’ characteristics are not going to be lost after crossover and mutation procedures. In the case of wanting to
maintain only the individual with the best fitness, this member is selected as part of the new chromosomes generation.
This way, not only the strategy that obtained the best result will be able to is not going to be lost and will still.

2.1.2. Roulette  wheel  method
Also known as fitness proportionate selection, the roulette wheel method, consists of setting selection weights for

the chromosomes proportionate to their fitness. It is the same as giving to each individual, a roulette wheel slice that
has its size proportional to their fitness. Next, after each spin, one individual is selected to be part of the parents’
population. According to Mitchell (1998), one way to implement this method is:

Step 1 – Obtain the value T, which is the sum of all chromosomes’ fitness values.
Step 2 – Draw a random number, r, between 0 and T.

Step 3 – Orderly sum each value of fitness, accrediting each to its respective interval range.
Step 4 – Select as part of the parents’ population the individual that is responsible for the interval range that contains
the value r.
Step 5 – Repeat steps 3 and 4 until all the necessary parents are selected.
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Table 1
Single point crossover.

Parents Crossover point New generation

1 0 1 0 0 1 1 1 0 1 0|0 1 1 1 0 1 0 1 0 0
0 1 1 0 1 0 0 0 1 1 0|1 0 0 0 1 1 0 0 1 1

Table 2
Example of chromosomes mutation.

Chromosomes Before mutation After mutation
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 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 0 0 0 1 1
 1 1 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0

After selecting both parent chromosomes the crossover and mutation operators can act to define whether and how
hey are going their offspring, the new strategies.

.2.  Crossover

In biology, theories related to the species crossover justify the transmission and emergence of characteristics through
he reproduction of two individuals. There is always exchange of genetic material when two beings sexually reproduce,
nd their offspring has genes from both parents, creating a completely new set of characteristics.

The crossover operator of genetic algorithms acts similarly, making evolution possible, due to the mixing of two
hromosomes’ genes. According to Mitchell (1998), the crossover consists of using parts of the genetic material of one
hromosome and adding some genes of the other. An example of a single point crossover can be observed in Table 1,
art of each 7-gene individual is selected and added to the other, forming two new individuals.

.3.  Mutation

Mutation is, in biological terms, alterations of individuals’ genotypes, in other words, they have genes that did not
riginate in their ancestors. Those new characteristics are obtained from a failure in the genes reproduction and create
ew features that can be passed to the individual’s future offspring, modifying, in the long-term, the species attributes.

Therefore, the genetic operator of mutation is essential to the variability of individuals and, as stated by Mitchell
1998), it avoids the premature convergence of the individuals to a non-optimized solution. On the other hand, if the
utation operator is too present, it could lead to an intense variability of the sample, making the convergence to the

est solution impossible.
In practice, this operator consists of changing the chromosome’s genes. In a binary encoding, the mutation stage

ould be the probability of one element of the string being modified. Thus, if a gene that should be an element 0
uffers mutation it would be modified to 1 and vice versa. As shown in Table 2, mutation can occur as a draw, which
he success changes one chromosome’s random gene, or as a draw for each gene, which allows more than one to suffer

utation in the same round.

.  Model  description

The model consists of applying a genetic algorithm as an intelligence source for an evolutionary model based on
elson and Winter (1982). As it was proposed by Yildizoglu (2002), some firms use a genetic algorithm to define their

nvestment in innovative R&D, however the rates instead are calculated on the capital and not on profits like Yildizoglu
2002), afterwards their performance is compared to those of two other types of firms. The ones with fixed innovative

trategies and the ones that have zero intelligence, defining their innovative investment randomly at the end of each
eriod.

In addition, this model also differs from the one developed by Yildizoglu (2002) as firms do not exit the market,
arious learning periods for the genetic algorithm are tested, the fitness function is defined as the average net profit
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rate, the external credit influence is analysed, and the investment in R&D is defined as a percentage of the capital
stock, while Yildizoglu (2002) uses a fraction of the previous period gross profit. The design concepts of the model,
described in Section 3.1.4, explain the reasons behind each of these implementation decisions.

In order to facilitate the comprehension and reproduction of the model, it is described by an ODD(Overview, Design
concept and Details) protocol, as suggested by Railsback and Grimm (2012), in order to detail the agent-based model
used. The simulations are made using NetLogo software developed by Wilensky (1999).

3.1.  Model’s  ODD  protocol

3.1.1.  Purpose
Verify the effects of intelligence on the market structure through the introduction of genetic algorithms in an

evolutionary model. In order to do so, first, firms that use a genetic algorithm to define their innovative investment
share the market with firms that use fixed strategies. Then, in another scenario genetic firms share the market with
firms that do not use any kind of intelligence, just defining their investment randomly. Finally, the performance of each
of these strategies is evaluated, by verifying the relevance of using a genetic algorithm in an evolutionary model.

3.1.2. Entities,  state  variables,  and  scales
There are three types of agents (entities): firms that use the genetic algorithm (genFirms); the nwFirms, that use the

Nelson and Winter (1982) investment rate; and those with random strategies of investment(rndFirms).
All the firms have fixed imitative R&D investment, rim, as proposed by Nelson and Winter (1982), but the genFirms

have the following features: variable innovative R&D investment, therefore, its rin is altered according to the genetic
algorithm. Then, the particular characteristics of nwFirms  are: R&D investments in innovation and imitation being
fixed, thus, they follow the Nelson and Winter (1982) values rin and rim, respectively. Finally, the rndFirms  are
different because, even though they also have a variable innovative R&D investment, it depends on a stochastic process
– randomly generating a rin value, which is limited to a maximum of the nwFirms  innovative R&D value times a
multiplier.

Every firm has as variables: capital stock (K) and productivity (A). As it was previously mentioned, genFirms  and
rndFirms also have as variable the percentage of capital invested in innovative R&D, rin.

On their model, Nelson and Winter (1982), established that the simulation duration is 100 time steps with each period
representing a trimester. So, it is necessary to adjust the time scale, for the purpose of allowing the genetic algorithms
iterative/evolutionary process to occur. Yildizoglu (2002) fixates those time steps at 6000, making it necessary to divide
each trimester of the original model by 60 in order to maintain a similar number of periods. For each situation, 20
simulation runs were executed.

3.1.3. Process  overview  and  scheduling
After the initialisation of the procedures, the agents invest a percentage of their capital stock in R&D, using predefined

strategies, they also invest a fixed percentage of their capital stock in imitative R&D, both investments are made to
improve the firms’ productivity, increasing their profits in the following periods.

The innovation investment rate of the genFirms  is defined by using an initial set of strategies. The fitness is defined
as the average profit rate of the periods in which the strategy was used. These firms update their chromosomes at the
generation’s end, after all strategies have been tested, therefore, the percentage of the capital invested in R&D changes
over time. The whole process of strategy testing and the explanation of how the genetic algorithm works is explained
in Section 3.1.7.

The rndFirms  decide their innovative investment randomly, then, at each round, percentages of capital are drawn
and invested in innovative R&D, the maximum value of the draw is defined as five times the percentage of capital that
the nwFirms  invest.

At the end of each generation, firms that use the genetic algorithm can change their strategies, the rndFirms  change
them after each period and nwFirms  utilise the same strategies during the entire simulation.
3.1.4. Design  concepts
Basic  principles:  a predefined number of firms (32) is generated; the firms use a percentage of their capital stock

in imitative and innovative R&D, rim and rin, respectively. In each time step, the firms try to innovate, generate a
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ew productivity level, or imitate, copy the best practice of the market. After each period the firm selects the highest
roductivity among those obtained by research investment and the previous one. Then, the firm new productivity level
s set as that last period highest value.

In the first market, a fraction of the firms has fixed investment strategies, nwFirms, the remaining firms are genFirms
nd decide their innovative R&D investment by using a genetic algorithm. The maximum value, this investment can
chieve, is equal to five times the fixed percentage of the capital of the nwFirms. This limit is necessary to avoid the
xcessive exposure of the capital stock, which could generate disturbances to the market structure. Led by the search
or greater profit rates, the genetic is implemented to select the strategies, percentage of capital invested in R&D, that
esults in a greater profit. In the second market, the nwFirms  are replaced by rndFirms  that define their investment in
nnovation by means of a stochastic event. The same maximum investment limit of the genFirms  is set for the rndFirms.
ach market is simulated using 0%, 25%, 50%, 75% and 100% of genFirms.

The profit in one period determines the capital investment of the next. In case of positive profits, the firm has on top
f its own profit, a source of external credit (BANK), which is predefined as a multiple of the firm profit (0, 1 or 2.5).
he next period investment in capital stock (Ki(t+1)), is, by definition, always non-negative. Thus, even when the profit

s negative, the capital stock of the firm will only be decreased by the depreciation rate (σ), as the capital investment
ould be null.
Yildizoglu (2002) determined that each strategy is to be tested during 5 time steps. Nonetheless, simulations were

erformed also using other durations of the learning periods for the purpose of verifying the relationship between
earning period and market structure.

Applying the concepts of firms’ entrance and exit proposed by Winter (1984), Yildizoglu (2002) has assumed
hat when a firm has constant negative profits, their capital stock diminishes due to the depreciation, if it goes below

 minimum value, this firm leaves the market, because it has lost its investment capacity. In the actual model, this
arameter is not considered, because maintaining in the market firms with a very low capital does not substantially
nfluence the market structure, as the condition to trigger the firm’s exit refers to an amount of capital stock that do not
nflict a significant temporary offer reduction, therefore the increase in prices is not relevant enough to be sensed.

Another particularity is the use of Nelson and Winter (1982) original values for the percentage of imitative and
nnovative R&D using the capital stock as reference. Yildizoglu (2002), on the other hand, uses the profit as reference,
stimating the R&D investment percentage. This change is relevant, because it does not only allows the final results to
e comparable with the Nelson and Winter (1982) model, but also allows a firm that eventually gets negative profits to
ot completely losing its capacity to invest in R&D, then they can, for instance, overcome the losses from one period
hrough the improvement of productivity. Using the gross profit, in practical, means that once a firm obtained a negative
rofit it instantly losses all its capability of R&D and will have its capital stock depleted until it triggers the market’s
xit condition.

The model developed by Yildizoglu (2002) also sets a minimum rate of investment, feature not present in this
urrent model, because setting this minimum rate constraints the model, as it does not allow the firms that use a genetic
lgorithm to eventually behave as purely imitators, like some of the firms of the Nelson and Winter (1982) model.

Adaptation: The firms that use genetic algorithm store information about the fitness of each chromosome (strategy)
sed in that generation. Therefore, they have a certain level of intelligence and their decisions are guided by learning.
he fitness of the investment strategy is measured by the average profit rate of the firm. The investment strategies that

esult in higher profit rates are “winners” and more likely to become starting points for the new strategies that are going
o be created by the crossover and mutation mechanisms.

Objective:  Using a genetic algorithm, optimize profit using the best trade-off between capital stock expansion and
nnovation.

Learning: genFirms  make use of the knowledge acquired from the results observed after the use of certain strategies.
hromosomes with better results have a greater chance of being chosen in the next periods (selection by roulette wheel)
nd, therefore, have a higher probability of having their genetic material transmitted to the next generation. The best
trategy is kept unchanged and it will be part of the next generation, preventing the loss of the winning strategies
elitism).
Prediction: The companies that use the genetic algorithm assume that the past winning strategies, those that have
chieved better results, are more promising candidates to be more successful in the next period.

Sensing: The agents have access to the evolution of their profit data; thus they can infer whether their strategies have
ucceeded. The agent’s “memory” is equal to the number of strategies used in each generation (Cr). Each strategy,
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used over a determined set of periods, has its average profit rate computed and stored. The set of periods is the learning
period parameter.

Interaction:  Agents do not interact directly, but when they are successful in imitation, they copy the best productivity
among market players, that is, they get the highest productivity rate from that period.

Stochasticity: The investment in R&D is divided into innovation and imitation. The result, of the investment and
the efficiency of innovation are random events. The innovation consists of a process, in which the innovative success
for each investment in R&D is given by:

P[din =  1] =  ain ×  rin ×  Kj (1)

where, for the nwFirms, rin =  rinNW , for the genFirms, rin =  rinNW ×  rdij × f , where f is the multiplication factor
of rinNW that limits the maximum value of rin and rdij is the percentage of the search space concerning the current
chromosome. In the case of rndFirms, rin =  rinNW ×  RN  ×  f , therefore, the probability of innovation success is
proportional to the multiplier factor and the RN  is a randomly generated number within the range [0, 1]. The calibration
parameter (ain) is set to 0.125, as proposed by Nelson and Winter (1982).

If this first event is successful, a new productivity value is obtained by generating a random number in the log-normal
distribution, with a time-dependent average:

log(Ãjt) −→  N (A0 +  (1 +  α)t/ft , σ) (2)

where A0 is the initial productivity, constant and equal to 0.16, α  is set to 0.01 and σ  is 0.05; it should be highlighted
that the exponential relationship with time, divided by the temporal adjustment parameter, ft = 60, is a singularity of
this model, since, Nelson and Winter (1982) have considered a linear relationship to time.

Regarding imitation, there is a new stochastic event, which, in the case of success, results in the copy of the best
market practice. The event’s probability of success is given by:

P[dimt =  1] =  aim ×  RDjt (3)

Then, the probability of imitative success is proportional to the amount invested in R&D multiplied by a calibration
parameter, which causes, regardless of the amount invested, the probability to be lower than 1. In accordance with
Nelson and Winter (1982), this parameter is set to 1.25. The result of the imitation process is given by:

Âjt =  Ajt +  dimt ×  (A∗
t −  Ajt) (4)

In case of failure of the probabilistic event (dimt = 0) the productivity after the investment in imitation will be equal
to the productivity of the previous period. In the case of success (dimt = 1), the new value will be equal to the highest
productivity among all firms, A∗

t .
In addition to these stochastic events, in the case of genFirms, there’s stochasticity, in both genetic operators. The

crossover procedure has the probability of occurring set to P[X] = 0.7, and each chromosome’s gene mutation have a
probability of happening equal to P[M] = 0.03.

Observation: the social welfare indicators are market price, average profit rate, capital and production concentration.
The technical efficiency indicators: average and maximum productivities, market share, capital stock.

3.1.5. Initialization
Depending on the chosen market, two types of agents, genFirms  and nwFirms  or genFirms  and rndFirms, produce

a homogeneous product and initially have the same values of productivity, capital and market share. These agents have
fixed or variable investment strategies and at the beginning of the first period, they make different investment decisions.

3.1.6. Input  data
The environment is considered invariant over time, so there is no input data.
3.1.7. Submodels
Each firm produces the same homogeneous product following the production equation:

Qj =  Aj ×  Kj (5)
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Then, the net profit rate of each firm (πj) is given by:

πj =  pAj −  c −  rim −  rin (6)

here the cost of capital (c), pre-set constant, and p  is the product’s market price, defined by the following equations:

Q  =
∑

j

Qj (7)

p =  p(Q) = D

Q1/η
(8)

here Q is the total offer, D  is the demand, constant and predefined as 67, and η, is the elasticity of demand, considered
ccording to the original model and equal to 1. After setting the price for the market, it is possible to compute, the
rofit rate, πj that, after multiplying by the company’s capital stock, KJ, results in the net profit of each firm, �j:

�j =  πj × Kj (9)

The effective productivity of the firms, for the following period, will be given by selecting the highest productivity
alue resulting from stochastic events:

Aj,t+1 =  max
(
Ajt, Ãjt, Âjt

)
(10)

So, the productivity of the previous period is compared to the ones obtained through innovation and after the
mitation process, selecting the highest of them as the effective productivity for the next period.

Firms with fixed strategies use a fixed percentage of their capital as investment in innovation and imitation. According
o Nelson and Winter (1982), in the case of a market with 32 firms these values are 0.00097 and 0.0194, respectively.
hese values were chosen, according to the authors, because they correspond to an average of two innovative successes
er year and one imitation success was as likely for the whole industry as to one firm thriving in innovation. Therefore,
he value invested in innovative R&D by the firms, will be equal to the highest rate of investment in innovation multiplied
y the firms’ capital stock:

RDinjt =  rin × Kj (11)

The firms’ capital stock after each period, is determined by:

Kj(t+1) =  I

(
Pt ×  Aj(t+1)

c
,
Qit

Qt

, πjt,
δ

ft

)
×  Kjt +

(
1 − δ

ft

)
×  Kjt (12)

here I  is the investment equation, a function of the ratio between price and production cost,
Pt×Aj(t+1)

c
; market share,

Qit

QT
; the firm’s profit in the previous period, πjt; and the adjusted depreciation rate, δ

ft
; which corresponds to the

epreciation rate in the trimester, defined as 0.03 by Nelson and Winter (1982), divided by the time factor adjustment
or the 6000 periods set as 60. The investment is defined in a way that is always non-negative:

I (ρ, s,  π,  δt) =  max

[
0, min

[
(1 +  δt) − (2 −  s)

ρ  ∗  (2 −  2s)
, f (π)

]]
(13)

eing f(π) determined according to the availability of external investment (BANK):

f  (π) =

⎧⎪⎪⎨
⎪⎪⎩

δt +  π  if f  (π) ≤  0 or  BANK  =  0

δt +  2π  if f  (π) >  0 and  BANK  =  1

δt +  3.5π  if f  (π) >  0 and  BANK  =  2.5

(14)

The  genetic  algorithm:  A flowchart of the general procedure of the genetic algorithm is shown in Fig. 1. First,
 predefined number of agents is generated. The aforementioned agents have a fixed number of strategies randomly

enerated with a constant number of genes. These genes are the elements of a binary string. The agents test their
hromosomes and keep information about their performance and, at the end of each generation, the best chromosome
s selected to form the next generation. The other new chromosomes will be generated through crossover and mutation
perators.
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Fig. 1. Flow chart of the genetic algorithm process for generating new strategies.

As presented by Yildizoglu (2002), there are Cr  strategies, defined as equal to 8 and each of these chromosomes
has G  genes. Therefore, for G  equal to 7 the set of possibilities is determined by:

	  =
G−1∑
i=0

1 · 2i =  127 (15)

The first generation is created by randomly generating all the chromosomes, which represents a percentage of
investment in innovative R&D. Therefore, considering the maximum possible investment in innovative R&D, with a
7-gene chromosome, there will be 127 possible equally spaced levels of investment. For example, one chromosome
[1 0 0 1 0 1 1], the investment in innovation would be equal to 59% of the maximum possible innovative R&D investment,
as shown below:

rin = 1 ×  26 +  0 ×  25 +  0 × 24 +  1 ×  23 +  0 ×  22 +  1 ×  21 +  1 × 20

127
(16)

rin = 75

127
= 0.59 =  59% (17)
The profit rate is determined through the balance between productivity and investment in capital stock, the two
crucial factors for determining the profit rate. The process is repeated for each of the chromosomes for some periods
(learning period) and the average profit rate is computed.
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ig. 2. Average productivity for different markets, availability of credit and proportions of genFirms. (Two auxiliary lines of plus and minus one
tandard deviation were added for each data set represented on the figures. This pattern is repeated throughout the paper.)

The genetic algorithm applied has three stages: elitism, in which the best strategy is maintained for the next period
ithout modification, crossover and mutation.
The crossover consists of selecting two parents, which, through the roulette wheel method, create the remaining 7

hromosomes. The two chromosomes selected as parents reproduce with a probability, P[X  = 1] equal to 70%. And, if
his stochastic event is successful, the single point reproduction will occur, i.e., from a chosen position of the binary
tring, there is the exchange of genetic material, and two new chromosomes are created, which will form the new
ist of strategies. When the crossover does not occur, the parents themselves are added to the set of strategies. In the
ase of 8 chromosomes, this process is repeated four times, generating 8 new strings, then one is eliminated, and the
inning strategy of the previous period is added to the set (elitism). This way, the dimension of the chromosomes set

s maintained.
The mutation stage consists of another stochastic process for each gene of the chromosomes that has gone through

e crossover phase. The probability of mutation, P[M  = 1], is equal to 3%. Then, in case of a successful draw, the
orresponding gene will mutate, so if its value was 0, it becomes 1, and vice versa. The mutation of each gene is
ndependent, and the winning strategy does not suffer mutation, because, in theory, it already has the most desired
haracteristics.

After the occurrence of crossover and mutation operators, the new chromosomes are, finally, selected for the next
eneration and all procedures are iteratively repeated until simulation ends.

.  Results  and  discussion

The average productivity is analysed at the end of both market simulations for different configurations considering,
rstly, the effect of external investment by credit in market performance, Fig. 2, in this situation the number of learning
eriods was kept constant and equal to 5.

Thus, similar average productivity levels for the two markets are observed when the percentage of the companies
sing the genetic algorithm is 100%, but for smaller percentages, in a market that contains firms that use the fixed
nvestment strategies, Fig. 2a, the average productivity levels are lower than in the market that contains firms, which use
andomness in the decision, Fig. 2b. This situation is due to the fact that the percentage of capital that will be invested
n innovation by the rndFirms  will, on average, be greater than the nwFirms’, since they can invest up to 5 times more
n innovation than a nwFirm. This justifies the higher productivity levels for higher percentages of rndFirms. In both
ases there is a decrease in average productivity as the ratio of genFirms  increases and it can be observed that the
vailability of external credit does not lead to changes in the average productivity levels, a fact that corroborates the
esults shown in Nelson and Winter (1982).
When the average productivity is analysed in comparison with the percentage of genFirms  and the number of
earning periods, keeping the bank credit fixed at 0, it is observed that, as shown in Fig. 3, the average productivity
ehaves differently depending on the number of learning periods and the market involved.
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Fig. 3. Average productivity for different markets, learning periods and proportions of genFirms.
Fig. 4. Average price for different markets, learning periods and proportions of genFirms.

In a market with nwFirms  and genFirms, Fig. 3a, when there is no learning process, an increase of the percentage of
genFirms causes an increase in average productivity, but as the duration of the learning period is increased, the average
productivity decreases as the ratio of genFirms  increases.

Analysing the market with rndFirms  and genFirms, Fig. 3b, where there is no learning, the average level of produc-
tivity is almost constant for all percentages of companies that use the genetic algorithm. For all the levels of learning, the
model behaves similarly to the other market, with the productivity decreasing as the proportion of genFirms  increases.

The non-change in average productivity alongside the increase in the ratio of genFirms  in the markets shared with
rndFirms, is an indication that for the minimal learning period, genFirms  behave as firms that randomly choose their
strategies. This statement is strengthened by the fact that in markets with nwFirms  the average productivity increases as
the proportion of genFirms  is increased only for the situation where there is no learning process involved. In situations
where learning is applied, in all the cases the behaviour of the average productivity does not change as the learning
period is increased, in fact, there is an overlap of the averages and, respectively, standard deviations.

Considering the price of the products in both markets, there is no significant variation when changes in the duration
of learning periods are considered, Fig. 4, or in the availability of credit. It is observed that the final price average and
their respective standard deviations do not significantly modify their behaviours during the three different periods.

Comparing both markets’ average prices, considering the situation where the learning period is equal to 5 and the
bank credit is 0, Fig. 5, it is verified that the final average price is higher for the market containing fixed-strategy firms,

(nwFirms).

The same situation is verified in all the proportions of firms using the genetic algorithm, with the exception of the
case of 100% of genFirms  (identical markets).
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Fig. 5. Average price for different markets and proportions of genFirms.
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Fig. 6. Average price evolution through for both markets.

The highest average price in markets where nwFirms  are present, indicates that, in these cases, the social welfare of
he market is lower, because the higher average price decreases the consumers’ purchasing power. On the other hand,
n both markets, the increase in the percentage of genFirms  seems to reduce the social welfare, because it indicates
he increase in the average price. This finding goes against one of the results presented by Yildizoglu (2002), which
ndicated an increase in social welfare due to the presence of firms using the genetic algorithms, since, in that case, the
rice of the product decreased as the proportion of the firms using the algorithm increased.

In Fig. 6, it is possible to observe the evolution of the average price throughout the simulation, for both markets
ith a percentage of genFirms  equal to 50%, learning period equal to 5 and zero credit. It is observed that, throughout

he simulation the average price in q situation where nwFirms  are present remains higher than in those where they are
ot. Probably, this is consequence of higher average productivity values due to a larger investment in innovative R&D
y the rndFirms.

As expected, when analysing the investment in innovative R&D in the markets in the same situation described in
he preceding paragraph, Fig. 7, it is observed that investment in the case of rndFirms  and genFirms  markets is much
reater than the investment of the market that has nwFirms, this way, it is predictable that the first one will have greater
uccess in innovation and achieve higher levels of productivity, which leads to lower average prices and, consequently,
reater social welfare.

Analysing the average Inverse Herfindahl indexes for concentration of capital(HK) and of production(HQ), Fig. 8,

here is a similar behaviour in the case of both markets, considering 50% of genetic firms, learning period equal to 5
nd zero bank credit.
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Fig. 7. Acumulated investment in R&D for both markets.
Fig. 8. Evolution over time of the production and capital Inverse Herfindahl indexes.

The concentration rates at the end of the simulation are then compared to each of the percentages of genetic firms
considering the two markets, Fig. 9. It is possible to verify that both the production and capital indexes increase as
the proportion of the companies using the genetic algorithm increases, which means that the market becomes less
concentrated as firms that use algorithm are added. It turns out that both concentration indexes, when the ratio is 0%
of genFirms  and 25% of genFirms, for the market containing nwFirms, Fig. 9a and c, are smaller than in the market
containing rndFirms, Fig. 9b and d. Therefore, it is concluded that the market containing nwFirms  is generally more
concentrated for smaller proportions of firms that use the genetic algorithms. In the case of higher proportions, this
difference does not occur, being the indexes similar.

Analysing the results of net profit, Fig. 10, it is possible to verify that in the market containing genetic and fixed
strategies’ firms, both the average, Fig. 10a, and the maximum profit levels are superior when compared to the universe
containing firms with random strategies. This fact is explained by the higher productivity levels of the rndFirms, which
probably caused a reduction in the profit of genFirms. It should be noted that the shock, near the period 4000, Fig. 10a,
indicates a success in innovation that modified the market structure.

It is essential to carry out the study about the convergence of the values selected by the genetic algorithm. It is
verified that, for all proportions of genFirms, learning periods, bank credit availability, the behaviour of the genFirms
is similar. Fig. 11, illustrates the convergence of the strategies’ average values to 0; in the situation where 50% of firms
that used the genetic algorithm, a learning period was set at 5 and zero bank credit.

It turns out that the genetic algorithm has identified as best strategy the zero investment in innovation. This con-

vergence is indeed curious, since firms using the genetic algorithm tended, then, to have the same behaviour as the
imitative firms in the Nelson and Winter (1982) model. In that model, the imitative firms do not invest in innovative
R&D, limiting themselves to imitate and invest in physical capital.
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Fig. 9. Capital and production Inverse Herfindahl indexes for different markets and proportions of genFirms.
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Fig. 10. Evolution of average mean and maximum profits of genFirms for different markets.

The firms that use genetic algorithm converge to this same situation. It was necessary to verify if this set up created

 competitive advantage translated into market dominance. Then, it was necessary to evaluate the market share for
ach of the simulation universes across different genetic firms percentages, Fig. 12.

It is possible to conclude that for all analysed situations the genFirms  dominate the market, because their market
hare always exceeds their proportion in relation to the other firms. It is clear that when the genetic firms divide
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Fig. 11. Convergence of strategies for genFirms over time.

Fig. 12. Average market share of genfirms for different proportions of firms using the genetic algorithm.

Table 3
Market share of genFirms.

Market Percentage of firms that use the genetic algorithm (%)

0% 25% 50% 75% 100%

nwFirms vs genFirms 0.00 55.75 79.42 94.00 100
(Standard deviation) (0.00) (18.95) (17.65) (6.11) (0.00)
rndFirms vs genFirms 0.00 37.07 68.90 84.15 100

(Standard deviation) (0.00) (20.43) (12.72) (10.58) (0.00)

the market with the fixed strategy firms, they have more advantage than when they coexist with those with random
strategies. This fact is due to the higher productivity levels of these firms rndFirms, but, even in this case, the firms
using the genetic algorithm outweigh their proportions as demonstrated by Table 3:

The results confirmed that, when firms use this genetic algorithm, in most cases, they dominate the market, demon-
strating that the technique used by them is a winning strategy, sharing Yildizoglu (2002) findings and confirming the
existence of individual learning. The results have shown a different convergence than the one found by Yildizoglu
(2002). The genetic firms tended throughout the simulation to the purely imitative firms of the Nelson and Winter

(1982) evolutionary model. This convergence, combined with the investments in innovation made in the initial periods,
resulted in a strategy that dominates the market.
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.  Conclusions

The Nelson and Winter (1982) evolutionary model is widely used as a basis study and allows numerous forms of
daptations. In one of those, Yildizoglu (2002) implemented a simplification of said model, using a genetic algorithm
s a way to govern the firms’ R&D decisions. Among the conclusions the author has shown a proof of learning by the
rms that use the genetic algorithm, as result of the market dominance and the convergence of the individual strategies.

The creation of a new model that sought to be most faithful to the original model, Nelson and Winter (1982), was
roposed. Using some modifications proposed by the simplified model, Yildizoglu (2002), and other new assumptions.

The number of firms used in the simulations was identical to the competitive market of the original model, as well as
heir investment rates in innovative and imitative R&D. The number of periods followed the one used in the simplified
odel, so it was decided to make a temporal adjustment in the depreciation rate of each period and in the stochastic

vents that determine the successes in innovation and imitation. It was decided not to implement the exit of firms from
he market. The maximum investment possible of firms with variable strategies was set to five times the percentage
f the capital stock invested by the firms with fixed strategies of the original model. The investment is also another
arameter that has been modified in relation to the work of Yildizoglu (2002), the author used as reference the previous
eriod profit, while in the initial work, it was used, as in the present study, the percentage of capital stock.

The model was described using the “ODD protocol” proposed by Railsback and Grimm (2012). Then, the model
as implemented, and the simulations were performed in Netlogo using two distinct models, the first of them contained
rms that used fixed strategies of investment in innovative R&D along with firms that used a genetic algorithm, and, the
econd model simulated firms with random decision strategies on investment in innovation together with the same firms
hat used the algorithm. Different proportions of genetic firms were tested, three credit availability, and six durations
or learning periods, seeking to verify the effects of each of those variables in the market structure.

In relation to the availability of external credit, the results corroborate the findings of Nelson and Winter (1982). It
as verified that there was no direct influence of the increase in credit availability over the productivity or significantly

hanges the market structure.
The analysis of the learning period duration has shown that when learning processes are not applied there is not

ufficient selectivity of the strategies by the firms that used the genetic algorithm. So, as these strategies did not show
ny convergence, the firms ended up presenting a similar behaviour, as it was possible to predict, and performance
hen compared to the random strategies ones. In learning periods higher or equal to two intervals, a convergence
as found, demonstrating that for this genetic algorithm and in these cases, specifically, “short” learning periods were

ufficient to offer the necessary selectivity for the strategies evolutionary process.
In both models the presence of genetic firms decreased the average productivity levels, leading to the increase in

he average price in the markets. Therefore, the presence of firms using the genetic algorithm causes a decrease in
ocial welfare, as increases in price reduce the purchasing power of consumers. This result opposes the one presented
y Yildizoglu (2002), which verified a decrease in price and consequent increase of the social welfare.

During all the simulations, the fall of the average price was verified, which, in the end, was in the same range of those
ound by Nelson and Winter (1982), indicating the model suitability. Considering the investment in innovation, it was
ound, as expected, that markets with random firms invested more than those that contained similar market divisions,
ut with firms that used fixed strategies. This is explained by the fact that companies with random strategies have a
imit of the investment rate five times higher than firms with fixed strategies, therefore, on average, the innovative
nvestment rate will be higher, explaining the largest productivity levels for markets with random decision firms.

The concentration indicators have shown that for both markets, higher percentages of firms that govern their
nnovative investment using the genetic algorithm led to a less concentrated market. Therefore, capital and production
re more equally distributed, and could even mean a greater competitiveness of the market, however, this hypothesis
s not confirmed by lower price levels.

The analysis of the genetic firms’ strategies convergence found a result partially similar to the one presented by
ildizoglu (2002), because there was a convergence, but unlike the previous work, investment in innovation has
onverged to levels close to zero. This fact is curious, because the behaviour of the genetic firms over time became a

imilar to the, Nelson and Winter (1982), imitative firms, which do not invest in innovation.

Analysing the effects of reducing the investments in innovative R&D, showed that this was a dominant strategy,
ince the genetic firms’ market share have always outweighed the percentage equivalent to their presence in the market.
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So, they manage to conquer an extra portion of the market. This effect is more strongly observed in the situation where
the genetic firms share the market with the fixed strategies ones and for small percentages of firms that make decisions
using a genetic algorithm.

As it was stated by Yildizoglu (2002), firms using the genetic algorithm learn, because even acting independently,
their level of intelligence allows them to adjust their strategies in order to possess market dominance, showing a
convergence of strategies, clearly proofing the existence of an individual learning process.
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