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BAYESIAN ONLINE CHANGE POINT
DETECTION IN FINANCE

REzA HABIBI!

Abstract It is quite common that the structure of a time series changes abruptly. Identifying these change
points and describing the model structure in the segments between these change points is an
important task in financial time series analysis. Change point detection is the identification of
abrupt changes in the generative parameters of sequential data. In application areas such as
finance, online rather than offline detection of change points in time series is mostly required,
due to their use in predictive tasks, possibly embedded in automatic trading systems. However,
the complex structure of the data generation processes makes this a challenging endeavor. This
paper is concerned with online change point detection in financial time series using the Bayesian
setting. To this end, the Bayesian posterior probability of change at a specific time is proposed
and some procedures are presented for selecting the priors and estimation of parameters.
Applications in simulated financial time series are given. Finally, conclusions are proposed.
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INTRODUCTION

The problem of change-point estimation has
attracted significant attention. A branch of the litera-
ture deals with the estimation of a single change-point
(for a change in mean see e.g. Gombay (2008) and
Gombay and Serban (2009) and references therein)
while another extends it to multiple change-points with
many changing parameters such as Ombao et al,
(2001) who divide a time series into dyadic segments
and choose the one with the minimum cost. The latter
branch can be further categorized. On the one hand,
the multiple change-point estimation can be formulat-
ed through an optimization task i.e. minimizing a multi-
variate cost function (or criterion). When the number
of change-points N is unknown then a penalty is typi-
cally added e.g. the Schwarz criterion. In addition, the
user can adopt certain cost functions to deal with the
estimation of specific models: the least-squares for
change in the mean of a series (Lavielle & Moulines,
2000), the minimum description length criterion for
non-stationary time series (for example, Davis et al.,
2006), the Gaussian log-likelihood function for changes
in the volatility or the covariance structure of a multi-
variate time series, see Lavielle and Teyssiere (2006).
For a comprehensive review in change point analysis in
financial time series and online methods, see Xiao et
al., (2018). Change point analysis in financial time series
is also critical because of their importance in predictive
applications. There are two different frameworks for
change detection in financial time series, i.e., offline
and online frameworks.

The Bayesian procedure is an influential tool for
online making of statistical inferences, see Adams and
MacKay (2007). The process of Bayesian online change
point detection proposed by Adam and MacKay is in
essence a filtering process on an infinite state hidden
Markov model, in which the observed time series can
be split into a set of connected segments, each seg-
ment is generated by a hidden model, called the obser-
vation model (there are infinitely many possible ways
of segmentation thus infinitely many possible observa-
tion models). A "change point" is defined as the begin-
ning time index of a new segment. Duration is defined
as the length of a segment; duration is generated from
a model called the duration model.

In the current paper, using the Bayesian setting and
following Koop and Potter (2004), change point detec-
tion is considered in finance. To this end, let X;, i > 1
denote the return of a financial asset at time i > 1.
Throughout the paper, it is assumed that these varia-
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bles are mutually independent and having distribution
with density function fg;. Here, 8, is a time varying pa-
rameter e.g., the mean (level) or volatility of price. In-
deed, at time i, parameter 6; is changed to new level
Gl*with probability of p; and remains unchanged with
probability of 1 - p;. Let J; be a dummy variable which is
zero if there is no change in 6;- 1 with probability of
1 - p;and J; =1 if a changed has occurred at 6;- 1 with
probability of p;. Hence,

6,=(1—1) 6, 1 +16:,

where §; = 61*—9,-,1 is the magnitude of change and
notice that 6; = 6,_; + Ji6; which constitutes a random
walk structure.

The above problem may also be considered as
jump detection in price of a financial asset. However,
a special case of the jump detection problem is the
change point analysis, see Saatci et al., (2010). This
type of change representation has been used by Habibi
et al.,, (2017). Types of change point models such as at
most one change point model (AMOC) at i = k, and
multiple change points at i = k, i > 1 are special cases of
this model by letting J; = 1 for i = k, and zero otherwise
for the AMOC case and J; =1 forandi=k, i>1 zero
otherwise for the multiple change point problem.

The rest of the paper is organized as follows. In the
next section, first, the probability of change is pro-
posed. Then, estimation of unknown parameters of
probabilities are discussed. Applications of the pro-
posed method in finance via simulated examples are
given in section 3.

ONLINE CHANGE DETECTION

In this section, the Bayesian online change
point detection is proposed. Indeed, observations
X; 1 <j<iareobserved and it is interesting to know if
Ji=1 or J; = 0? To this end, first, the Bayesian probabil-
ity of change is proposed. Then, the estimation of un-
known parameters of probability of change is dis-
cussed.

PROBABILITY OF CHANGE

Here, the posterior probability of change r; defined
by

It = P(J, =l/)(j, 1 SjSI)
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as a leading indicator, is computed. This measure may
be considered an early warning tool for alarming possi-
ble future changes. Notice that

pif@if(xi) 0% % @
T = , 07 % 6;_,.
b pifer () HA-POfe;_, ()" Y 1
One can see that
T D _ fer(x)
T—m 1—-p " 07 fo  (x)

where A; is the likelihood ratio measure. Then, it is seen
that the logit function of r;(logit(r;) = log(&) is given by

logit(mr;) = logit(p;) + log(4;).

The second part of the above decomposition is
u; = log(A;) which shows the existence of change point
at i-th time point as soon as u; is larger than a critical
threshold. In an offline setting, the cumulative sum
process of, uji.e., s; = E{Zl(ui —1i,), 1<j<n, where
i, = # is an inverted V-shaped curve which is max-
imized around the actual change point. However, the
first term of the above-mentioned decomposition is the
expert opinion regarding the existence of a change
point at i-th time point. Indeed, ; is a tradeoff between
real data (likelihood ratio) and the expert opinion p;. As
soon as, ; is larger than a threshold ¢, it is doubtful
whether there is a change at i-th time point. Two main
parameters in detection of change points, accurately,
are the sequence of probabilities p; and threshold c. As
follows, two procedures are proposed to this end.

Procedure 1. To select p/'s, it is enough to have
a function which is maximized at actual change points.
A fast answer to this question is to assume that logit(p;)
= a/\;, for some positive a's. Indeed, coefficient a is
selected by expert opinion which indicates his/her
belief about information that the likelihood ratio has
about the location of change point. Therefore,

a

D = 4 i>1,and logit(m;) = (1 + a) log(4;).

@
1+AE

By this formulation, m;> c implies that
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Let Cmax := max(c;) = c. Hence, a Monte Carlo simu-
lation may be applied to find distribution of ¢, and
propose reasonable c's as some indicators of distribu-
tion of Cpy-

Procedure 2. For another formulation of p;, assume
that J; is one if log(A;) > d; for some pre-determined
threshold d;'s and zero otherwise. Indeed, log(/;) > d.
means there is a change at i-th time point. Here, p; is
computed by p; = P(log(/;) > d,). The following proposi-
tion summarizes the above discussion.

Proposition 1. (1) - (4) are correct.

(1) The posterior probabilities 7t;'s of having change
point at i-th time point are given in the logit function as
follows

log(m) = log(p;) + log(Ay).

(2) Let o be the prior belief degree to likelihood
ratio A.. Then. the empirical prior probabilities p; is giv-

enby p, = Aia_ where /; is the likelihood ratio.
4

1
a+1

A
(3) Hence, =$

ani=land ¢ = ¢y, = max(cy),
1

Plas

€= C;-=ﬁ§_mAs soon as, m; > ¢, it is concluded that
there is a change at j-th time point.

(4) For another formulation of p;, let p; = P(log(A;) >
d;) and J;is one if log(/\;) > d; and zero otherwise.

PARAMETER ESTIMATION

In the previous section, Bayesian online change
point detection is studied. However, the mentioned
procedures contain some unknown parameters which
should be estimated, in practice. In this section, the
mentioned procedures are reviewed using estimated
parameters and their advantages and disadvantages,
and sensitivity and robustness analyses are studied.

To this end, assume that in practice, 6; is unknown
and that &, is an estimate of 6, e.g., maximum likeli-
hood, least square or Bayesian estimate, based on ob-
servations x;, 1 <j <i. Assume that there exists a sto-
chastic representation for g, as follows

éa’ = (l - j—a‘)éi—l + Aag(Xa) = éi’—l + j—a"i‘:

where §, = g(X,) — 8,_,, for some functions g's and for-

A%+
Ci = T a1 > C. getting factor 1, € (0,1). For example, when 6 plays the
1
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role of population mean and it is estimated by sample
mean 8; = i;, then 1, =1/i. Usually, it is assumed that

Y A, = and ¥ A2 < oo for making sure of the conver-
gence issues.

When there is no change point up to i-th time
point, then A; is close to one and it is estimated by

)
e,

It is easy to see that, as A; > 0, by the first order
Taylor approximation, log(ﬁ!.) is approximated by

log(&,) ~ 2,6, —1log (f3,_, (x)).

! 35{'—1

However, if there is a change at i-th time point,
indeed, when J; is one since ('}i,) =>d,, then A; is estimat-
ed by

~  Jaep ()
A, =g
Y fe, ()

Let J; is one if log(A;) > d, and is zero, otherwise.
Here, 8, — 8,_, + J.g(X,) constitutes an estimated ver-
sion of the random walk process.

To compute d;, it is necessary to know the null dis-
tribution of log( A;). As an example, first, suppose that
X; come from normal distribution with mean 6; and
common variance o°. Then, A;=1/i and é,. = x;. Then,

l0g( ) = 2,1 ~0.52) (e

=By

Also, P(4,(1=0.54) (—)2 < da) =1—a implies that

Then, d;= Fi'l where F; is normal distribution with mean
&8s gnd variance A;(1—0.51,). Also, p, = ®(d?)— &(d2),
d_;: i %8 g1_g2_ 24 Thenext

b al-084;) e 1 b J4i-054)
proposition summarizes the above discussion.
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Proposition 2. (1) - (2) are correct.

(1) Indicatoris J; a binary variable indicating
the existence of change point at j-th time point with
success probability p; = P(log(A,) > d;), for some pre-
determined threshold d/'s. Here, ; = 6,_, + J,g(X,) consti-
tutes an estimated version of the random walk process.

(2) Under the null hypothesis on no
change point up to time point I, then the likelihood

ratio A; is estimated by A, = f)_(é*'(f]] and approximated
91’—; a
by 2,8, ——1log(fs, , (x)), where §; = (1—2,)8_; + A,g(X)

-1

where is stochastic approximation representation of éi
for some functions g's and forgetting factor A; € (0,1).

When, J; = 1, then A; is estimated by '}‘\i_ _ M
fa,_, G0

FINANCIAL CASES

Here, some illustrative simulation cases with finan-
cial applications are given.

Case 1. Let n = 150, and X/'s (return process) come
from Bernoulli distribution such that at i = 86 the prob-
ability of success is changed from 0.1 to 0.45. It is as-
sumed that p; = 0.1 for i # 86 and it is 0.9 for 86-th ob-
servation. Let ¢ = 0.7, then the first point at which
mt; > 0.7 is the actual change point 86. For another ex-
ample, let n = 200, and X;'s (return process) come from
Poisson distribution such that at i = 64 the intensity
parameter is changed from 1 to 2. It is assumed that
p;=0.1for | # 64 and it is 0.9 for 64-th observation. Let
¢ = 0.7, then the first point at which ir; > 0.7 is the actu-
al change point 64. The previous cases were at most
one change point (AMOC) model. Here, for a multiple
change point case, let the mean of normally distributed
random variables change from 1 to 2 and return to 1 at
ko = 34, k; = 78 and the standard deviation is constant
and equals to 0.1. Then, the time series plot of m; im-
plies that there are two changes, visually. Again, the
prior probability of having changes at actual change
points are given as 0.9 and in other time points, this
probability is given as 0.1.

www.finquarterly.com
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Figure 1: Time series plot of i;
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Here, again, the above example 2 is considered but
pi's are changed. It is assumed that o = 0.75. Then, time

series plot of m; is plotted as follows indicating two
change points.

Figure 2: Time series plot of i;
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Case 2. Volatility of a financial asset is an indicator
for variability of return process of price of a given asset.
Let s; be the price of a financial asset such as a stock at
time t and 7 =log(s,) —log(s._;) be the logarithmic re-
turn process. Suppose that i is the overall mean of r;
and ¢ is the variance of return series up to time t.
Hence, the volatility o7 is estimated by 62 — zi L%,
where x; = (; — 1)*. Indeed, in stochastic approximation

representation, then, 4; = %.g(xj) = x;. Notice that ?
has a central chi-squared distribution with one degrée
of freedom. Then, x; has scale distribution with scale
parameter 6; = 0,-2. Let n = 100, ko = 65, 1t = 0.001. As-
sume that 6; = 0.001 before the change and 6; = 0.007
after the change. Plot of m; are given in Figure 3 indi-
cates there is a change at 65 time point.

www.finquarterly.com
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Figure 3: Time series plot of i;
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Case 3. In the previous case, it was assumed
that returns are independent. Here, it is assumed that
X; =1; — p obeys a first order autoregressive AR(1)
process, given by

n—p=aln_, —p+e.

where &; is a white noise process, normally distributed
with zero mean and variance g2 < co. To test the exist-

ence of change in coefficient «a, the recursive least
. . Bi—nxjacj_y . . .
square estimate @, = —; = is considered. Notice

T a7,

that & = (1—4)&_. + 4 :—il Also, notice that x; given x; . ;
is normally distr)i(butedJ with mean ax; . ; and vari-
ance ¢Z.. Thus, ﬁ is normally distributed with mean
o and variancexfg-Let n = 100, k, = 33,62= 0,77.
Coefficient a is 0.1 before the change and it is 0.75
after the change. Plot of m; is given in Figure 4, indi-
cating there is a change at 33 time point.

Figure 4: Time series plot of &;
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CONCLUDING REMARKS

Change point models seek to fit a piecewise regres-
sion model with unknown breakpoints to a 16 data set
whose parameters are suspected of changing through

of changing through time. However, the number of
possible solutions to a multiple change point problem
requires an efficient algorithm if long time series are to
be analyzed. A sequential Bayesian change point algo-
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rithm is introduced that provides uncertainty bounds the priors and estimation of parameters. The algorithm
on both the number and location of change points. is able to detect the change points quickly. Simula-
tion studies illustrate how the algorithm performs un-
der various scenarios. Real data sets are presented to
show the accuracy and performance of the proposed
methods.

The online change point detection in financial time
series using the Bayesian setting is considered in the
current paper. An algorithm is proposed for selecting
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