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Abstract

This study provides an assessment of the R&D–patent relation of European

pharmaceutical firms that are not flawed by endogeneity biases. Firms invest

in R&D and generate latent knowledge which then manifests in observable

patent outcomes through a Poisson model. The process of turning R&D into

knowledge is described by a production process subject to inefficiency and

endogeneity. To estimate a Poisson stochastic frontier model, the suggested

novel copula‐based approach directly accounts for the dependence between

the endogenous regressors and the inefficiency component. Hence, its

implementation does not require any instrumental variables. Simulation

results underline that the proposed estimator outperforms conventional

instrumental variable estimators. Neglecting endogeneity leads to a substantial

underestimation of the R&D elasticity of patents generated in the European

pharmaceutical industry.

1 | INTRODUCTION

High innovation output likely influences the business success in the long run, while ongoing investments in R&D are
necessary to continuously generate knowledge and remain innovative (Griliches, 1998; Jaffe, 1989; Siebert, 2017). Since
innovation‐relevant knowledge generated is usually unobserved, it can only be approximated, for instance, by the
number of patent grants (Griliches, 1998; Jaffe, 1989; Siebert, 2017). As patent counts are discrete, recent empirical
models investigating the R&D–patent relationship rely on count data models, such as Poisson regressions (Fé &
Hofler, 2013). Considering inefficiencies within innovation processes has also gained increasing attention in the recent
literature (Fu & Yang, 2009; Pieri et al., 2018). Regarding each firm as a “producer” of knowledge, knowledge
generation can be described by means of a production process (Daub, 2008; Dittmer & Strätz, 2012; Griliches, 1998;
Siebert, 2017). At the same time, this embedding allows for determining firm‐specific efficiency within the R&D–patent
relationship (for literature reviews, see Abbas et al., 2014; Czarnitzki & Toole, 2011; Holgersson, 2013).

Quantitative assessments of innovative efficiency are often performed in the framework of stochastic frontier
analysis (SFA, for methodological reviews, see Amsler et al., 2016; Coelli et al., 2005; Kumbhakar & Lovell, 2003).
When modeling stylized innovation processes, a particular model specification issue arises if firms have some a priori
information on eventually inefficient knowledge generation, and they adjust the level of R&D expenditures accordingly
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(Siebert, 2017). However, such dependence is unobserved to the analyst and has become one of the most common
forms of endogeneity in the context of innovation efficiency modeling, which makes drawing valid causal conclusions
virtually impossible.1 Maximum‐likelihood‐based instrumental variable (ML‐IV) estimation methods have recently
been proposed to handle endogeneity in SFA models (Amsler et al., 2016; Kutlu, 2010; Prokhorov et al., 2020; Tran &
Tsionas, 2013). However, a general drawback of ML‐IV methods is, that they rely upon the availability of consensual
outside information to construct the instruments (Windmeijer & Santos Silva, 1997). In search of suitable instrumental
information, empirical studies typically condition on “internal” information, such as lagged explanatory variables,
which are often weak and fail to fully cope with endogeneity (N. Wang & Hagedoorn, 2014).

Seeing that suitable—that is, “external”—instrument information in frontier models is often scant, unavailable, or
weak, this study proposes a frontier model for Poisson distributed outcomes that we conceptualize as an extension of
the IV‐free joint regression model using copulas introduced by Park and Gupta (2012). Given that copula techniques
have been successfully adopted for Gaussian SFA's (Tran & Tsionas, 2015), we extend it towards a Poisson SFA model.
Although joint estimation models have been intensively studied (Becker et al., 2021; Haschka, 2022; Tran &
Tsionas, 2021) and used in various empirical settings (Datta et al., 2017; Haschka et al., 2021; Manchanda et al., 2004;
Zhang et al., 2017), their general applicability in Poisson SFA models has not yet been addressed. The method is based
on a copula function to directly model dependencies of endogenous regressors and inefficiency and thus does not
require any external information. As an additional model feature, we adopt scaling properties (H.‐J. Wang &
Schmidt, 2002), which enable a structured perspective on potential determinants of inefficiency. We conduct Monte
Carlo experiments and assess the performance of the proposed estimator in comparison with stylized ML as in Fé and
Hofler (2013), and IV estimation with “weak” and “strong” instrumentation (N. Wang & Hagedoorn, 2014).
Simulation‐based evidence suggests that the copula estimator (i) provides unbiased estimates if model regressors are
correlated with unobserved inefficiency, (ii) copes with reverse causality, and (iii) delivers quantitative assessments of
the correlation between inputs and inefficiencies.

The empirical analysis aims at an unbiased understanding of knowledge generation in a cross section of 137
unaffiliated European pharmaceutical firms. The focus on the pharmaceutical industry follows similar rationales as the
analysis of N. Wang and Hagedoorn (2014) and Fé and Hofler (2013). On the one hand, the empirical evidence on
knowledge generation has highlighted important sector‐specific characteristics. Hence, approaching knowledge
generation conditional on the pharmaceutical industry does not suffer from unobserved cross‐industry heterogeneities
as a potential channel of endogeneity. Moreover, the cross‐sectional perspective immunizes the analysis against
interindustry variation in other factors such as technological opportunities and the effectiveness of patents as a means
of appropriating returns from R&D. On the other hand, the patenting rate in the pharmaceutical industry is among the
highest in high‐technology sectors (Chen & Chang, 2010; Danguy et al., 2019; Griliches, 1998). Significant differences
in gross margins have been primarily attributed to the superior records of pharmaceutical companies in protecting their
innovations by patents. For instance, pharmaceutical gross margins are nearly twice as large as those in the
semiconductor industry (Chen & Chang, 2010). Moreover, it is worth highlighting that a major fraction of costs is
incurred in the R&D stage, with the “R proportion” holding outstanding relevance for this sector. In this regard,
endogeneity biases that originate in the personal attributes of the drug developers hold specific relevance for the
analysis. For instance, experienced researchers could be expected to reduce trial‐and‐error experiments in laboratories.
In a similar vein, a research staff familiar with patenting processes and authorities has the potential to position a firm
among the top performers within the pharmaceutical industry. Finally, given that drug development touches sensitive
societal fields, such as public health and health policy, both the composition and experience of the research staff could
hold particular importance for effective knowledge generation in the pharmaceutical industry in comparison with
other sectors. Going beyond endogeneity concerns, it is worth noting that for this industry research taking place
in universities—that is, pharmaceutical faculties—could act as a major source of knowledge transfer and the
acquisition of key business skills (Haschka & Herwartz, 2020; Powell, 1998). Hence, the description of knowledge
generation subject to intraindustry competition is likely to benefit from the potential to scale inefficiencies in SFA
models, as in H.‐J. Wang and Schmidt (2002).

Our empirical results enable two major conclusions. First, we diagnose with high significance regressor
endogeneity challenging the estimation of the marginal causal effect of R&D expenditures for steering patenting
outcomes in the European pharmaceutical industry. Specifically, this effect is underestimated by almost 50% under
exogeneity assumptions. Given empirical evidence of R&D‐inefficiency dependence, it should be acknowledged that
firms adjust their R&D inputs according to their own inefficiency. As this dependence is unobserved to analysts or
competitors, active management should crucially take account of feedback between R&D and inefficiency for the
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purposes of market screening and unraveling competitive efficiency levels. Second, pointing to important knowledge
spillovers, pharmaceutical firms in proximity to a university are on average 56% more efficient than firms without such
a neighbor. Accordingly, the acquisition of knowledge from neighboring universities largely improves innovativeness
and complements in‐house innovative activities.

In Section 2, we establish an intraindustry model of patent generation at the firm level, outline the Poisson
SFA model with inefficiency scaling, and describe the copula‐based estimation approach. In Section 3, we examine
the finite sample performance of alternative estimators by means of a Monte Carlo study. Section 4 provides a
detailed comparative analysis of patent outputs of the European pharmaceutical industry, before Section 5
concludes. Detailed simulation results and a set of complementary simulations are provided in the Supporting
Information.

2 | LATENT KNOWLEDGE GENERATION AND IV ‐FREE ESTIMATION

The efficient management of knowledge generation is crucial for long‐term business success and requires an unbiased
assessment of the translation from R&D expenditures into knowledge manifestations, such as patents. In this section,
we first sketch a production model to describe the transition of innovation inputs into knowledge subject to
inefficiencies that emerge from an intraindustry perspective covering a cross section of competing firms. We establish
an empirical model that further advances the approach taken by Fé and Hofler (2013) and apply a production function
approach in which patents are the realization of a latent knowledge generation process. Second, we turn to an
encountering of potential sources of endogeneity as pertinent threats to an unbiased analytic assessment of causal
effect structures. In the third instance, we develop an explicit SFA count data model and suggest an IV‐free approach to
model estimation.

2.1 | Approximating the firm‐level innovation process

An extensive body of literature has shown that innovation processes are more complex than stylized translations of
R&D into knowledge (for a systematic review, see Hall et al., 2005). On the one hand, knowledge generated is
unobserved and thus remains latent by nature. When using the number of patents as an approximation, it is necessary
to take into account the discrete nature of patent outcomes (Hall et al., 2005). On the other hand, it has become
pertinent to allow for inefficiencies within the process turning R&D into knowledge (Griliches, 1998; Siebert, 2017).
Against this background, we model innovation processes by means of Poisson frontier models to explicitly consider
these particularities (Fé & Hofler, 2013). Stylized characteristics of industrial R&D activity suggest that it is reasonable
to assume that patent counts follow a Poisson distribution (for pioneering work, see Hausman et al., 1984; Jaffe, 1986;
Pakes & Griliches, 1984). Especially in the pharmaceutical industry, patents can be thought of as measuring the
number of successful outcomes from a large but unobserved number of projects within a firm's R&D lab, each of which
has a small probability of success. Furthermore, intraindustry companies are subject to similar restrictions within the
market, for example, to the likelihood that the patent office responds to an inquiry from a patent applier. Nevertheless,
the success in patenting likely depends on the experience of researchers or personal relations in dealing with the patent
office. Accordingly, firms with less experienced researchers in this regard are less successful in patenting, giving rise to
inefficiencies in patent generation.

To make these considerations explicit, consider the following model for i N= 1, 2, …, firms:

patents ~ Pois(latent knowledge )withi i (1)

f X β TElatent knowledge = ( ; ) × .i i i (2)

In (2), latent knowledgei denotes the knowledge generated from a vector of innovation inputs Xi subject to a
production function f X β( ; )i , for example, of Cobb–Douglas type (Haschka & Herwartz, 2020; Siebert, 2017), and
technical efficiency ∈TE [0, 1]i . Both knowledge and technical efficiency are known to the firm, but unobserved by the
analyst. Since patents can be seen as an observable manifestation of knowledge, we assume that latent knowledge i

turns into patentsi through a Poisson distribution, that is, X TE[patents , ] = Pois(latent knowledge )i i i i . Further, the
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Poisson model comes with the advantage that latent knowledgei does not need to be observed and the number of patent
applications does not need to be known.

2.2 | Endogeneity in knowledge generation models

A particular empirical challenge arises if firms have some a priori information on eventually inefficient knowledge
generation and adjust the level of R&D expenditures accordingly (Siebert, 2017). In (2), ≠X TECov[ , ] 0i i introduces
endogeneity to the model. However, unbiased assessments are pivotal to unravel efficiency differences for the strategic
positioning of firms to improve the processes of knowledge generation and patenting.

Regarding the origin of endogeneity in knowledge generation models, one might consider three nonexclusive
channels. First, patent generation is typically seen as a reflection of R&D expenditures. However, patents
themselves might also lead to R&D activities (Correa, 2004; Scherer, 2001). For instance, Czarnitzki and Toole
(2011) argue that patents reduce uncertainty and thereby influence R&D decisions. Accordingly, endogeneity
might result from patterns of reverse causality (Arora et al., 2003; Cincera, 1997). Technology shocks that affect
investment decisions provide a second origin of endogeneity. For instance, Alexopoulos (2011) has shown that
technological shocks are positively linked to inputs of knowledge production, such as R&D. Since such shocks
are unobserved to analysts, they show up in model terms assessing productive efficiency. As a result, technology
shocks induce correlation between model residuals and explanatory input variables (Alexopoulos, 2011;
Schilling, 2015). Third, the experience of researchers or personal relations in dealing with the patent office are
also likely to shape efficiency. Seeing a major fraction of costs being incurred in the R&D stage with outstanding
relevance of the “R proportion,” this channel appears to be particularly important in the pharmaceutical
industry.

Obtaining unbiased estimates under endogeneity invokes further complications if productive output is quantified in
terms of a count variable, since discrete distributions are often more complex to handle in comparison with stylized
continuous output measures (Fahrmeir & Lang, 2001). For instance, Fé and Hofler (2013) adopt a Poisson frontier
model to estimate a knowledge generation function for a number of patents awarded to pharmaceutical firms
conditional on supposedly exogenous R&D expenditures. Cincera (1997) estimates the effect of R&D expenditures on
discrete patent outcomes by means of lagged explanatory variables as instruments. However, after testing instrument
validity, the author finds that any (weak) exogeneity hypothesis for R&D is rejected with conventional significance.
Nonetheless, seeing strong arguments for the prevalence of endogeneity (Cincera, 1997; Correa, 2004; Scherer, 2001),
endogeneity could have biased the understanding of the R&D–patent relation obtained within the framework of
standard Poisson frontier regressions.

2.3 | Copula‐based Poisson frontier modeling

Figure 1 presents a flowchart of the proposed model. When conducting market or competitor analyses, (i) the R&D‐
inefficiency dependence (indicated by the double arrow) must be taken into account and (ii) approximating observed
patent outcomes by means of a count data model (e.g., Poisson regressions) is crucial, since otherwise both estimated
R&D elasticities and firm‐specific inefficiency measures are biased. Determining competitors' efficiency holds
particular relevance for the strategic positioning of the firm, since inefficient firms are likely to perform weaker
regarding long‐run business success.

Further, the consideration of external determinants of inefficiency allows one to disentangle firm‐specific
unobserved inefficiency from observed environmental influences, such as university spillovers (Siegel et al., 2003).
Especially in the pharmaceutical industry, similar research taking place in universities with pharmaceutical faculty

FIGURE 1 Stylized illustration of the
proposed model
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likely promotes local knowledge that can be absorbed and thus benefits firm performance (Szücs, 2018; Yu‐
ming, 2009). For instance, knowledge externalities originating in universities likely complement the in‐house research
of firms located in geographic proximity (Blume & Fromm, 2000; Oshri et al., 2015). In this respect, unraveling sources
of (in)efficiency is pivotal when conducting market or competitor analyses.

To estimate the relationship in (1) and (2) summarized in Figure 1, we start from the copula approach of Tran and
Tsionas (2015) that copes with endogenous interrelations, and generalize it such that it is applicable to Poisson
distributed outcomes. The approach is particularly useful, as it avoids the search for suitable instrumental information.
More specifically, we construct the joint distribution of the endogenous regressors and the inefficiency component
conditional on the assumption that the outcome variable is Poisson distributed. As an additional model feature, we
adopt scaling properties and thereby allow for observable determinants of inefficiency.

2.3.1 | The Poisson stochastic frontier model

For the general model representation, let Yi denote the discrete output variable, for example, the number of patents
granted to firm i. By assumption, Yi exhibits a Poisson distribution for a sample of N producers, that is,

Y λ i N~ Pois( ), = 1, 2, …, ,i i (3)

where λi is the latent mean of the Poisson distribution, which is presumed behind the issuance of observable patent
counts of firm i, that is, latent knowledge. The structured SFA model relates the unknown mean to observable
covariates, that is, innovation inputs, and a stochastic component that accounts for deviations from fully efficient
knowledge generation. Specifically,

{ }x α z βλ κ u= exp + + − ,i i i i
′ ′

(4)

u h u= *,i i i (5)

 ( )u μ σ* ~ , .i u
+

*
2 (6)

Equation (4) describes the innovative production process with λi capturing the unobserved knowledge generated.
Exogenous inputs are collected in the vector xi. Extending the model in Fé and Hofler (2013), we allow for endogenous
input variables that are correlated with u *i and collected in the p‐dimensional vector zi. For both categories of input
variables, we assume linear influences on λi with parameters α and β. Finally, the intercept κ accounts for total factor
productivity (Hausman et al., 1984).2

Similar to common approaches in SFA modeling, the term ui describes production inefficiencies, that is,
∈ ∞u [0, )i . In (5), we extend the basic Poisson SFA by introducing the function hi to scale the distribution of u *i , that

is, u h u= *i i i , where the underlying stochastic component u *i exhibits a truncated normal distribution (Kumbhakar &
Lovell, 2003). By virtue of the scaling index s δh = exp( ′ )i i , it is possible to relate inefficiencies to (observable)

environmental influences, for example, spillover effects, collected in the vector si (H.‐J. Wang & Schmidt, 2002).3

2.3.2 | Maximum‐likelihood estimation

Under the assumption that all inputs are exogenous, that is, β = 0 in (4), the conditional distribution of
Yi given xi, si, and u *i can be derived by multiplying the respective marginals, that is, the probability mass
function of Yi and the probability density function of u *i . Accordingly, the likelihood for a sample of N
observations is
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i

i i

(7)

where ( )θ α δκ μ σ= , ′, ′, , ′u*
2 is the vector of model parameters to be estimated and ( )g u *i is the density of the half‐

normal distribution (see Equation 6). Owing to the latency of u *i , it has to be integrated out from the joint density for
each observation i. Since the likelihood lacks a closed form, the integral has to be evaluated by means of numerical
integration procedures.4 The estimator resulting from the maximization of Lln ML mimics the estimator in Fé and
Hofler (2013) and is henceforth denoted as θ̂ML .

2.3.3 | Joint estimation by means of copulas

Now consider the case when endogenous covariates enter the model, that is, ≠β 0 in (4). Let ( )f z z u Y, …, , *,i pi i i1

denote the joint density of z z( , …, )i pi1 , u *i and Yi for a single firm i. The joint distribution captures the entire dependence
of the endogenous regressors and the inefficiency term (Park & Gupta, 2012). Hence, the endogeneity problem can be

solved by maximizing ( )f z z u Y, …, , *,i pi i i1 instead of ( )f u Y* *,i i in (7). Noticing that the conditional probability mass

function of Yi corresponds to ( )f z z u p Y, …, , * ( )i pi i i1 , only the joint density ( )f z z u, …, , *i pi i1 has to be determined in

advance. Following Tran and Tsionas (2015), we suggest a copula function to construct and estimate ( )f z z u, …, , *i pi i1

conditional on the observed data. According to Sklar's theorem (Sklar, 1959), the joint density can be given as

( )( ) ( ) ( )f z z u c F z F z G u g u f z, …, , * = ( ), …, ( ), * * ( ),i pi i i pi pi i i
j

p

j ji1 1 1

=1
(8)

such that ⋯ ⋯
∞

∞

∞

∞ ∞   ( )f z z u dz dz du, …, , * * = 1i pi i i pi i
− − 0

1 1 . In (8), capital and small letters denote marginal cumulative

distributions and density functions, respectively, and c is the copula density, which links its components by means of

the probability integral transform (Li & Racine, 2007; Nelsen, 2006). When replacing ( )g u *i in (7) by ( )f z z u, …, , *i pi i1

from (8), the likelihood accounts for endogenous interrelations between z z( , …, )i pi1 and u *i , since the dependence
structure is completely characterized by means of the joint density. As a result, the copula‐based likelihood is

∝

∞

∞




 









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
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( )

( )
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θ x z sL Y
λ λ

Y
c F z F z G u g u f z du

λ λ

Y
c F z F z G u g u du

( , , , ) =
exp(− )

!
( ), …, ( ), * * ( ) *

exp(− )

!
( ), …, ( ), * * *.

i
N i

Y
i

i
i p pi i i j

p
j ji i

i
N i

Y
i

i
i p pi i i i

Cop =1
0

1 1 =1

=1
0

1 1

i

i
(9)

Before proceeding with the implementation, we briefly describe model identification (for a detailed outline of
identification in copula‐based joint estimation models, see Haschka, 2022). Recall that the copula function disentangles joint
variation among endogenous regressors from remaining unexplained variation due to u*. Accordingly, the model is
identified as long as the marginal distributions of the endogenous regressors differ from the half‐normal distribution
assumed for u*. Subsequently, the conditional expectation of u* given z becomes a nonlinear function and this nonlinearity
allows us to identify the linear regression coefficients in (4) through the joint distribution. However, if zj is indeed half
normal, the model is not identified because the copula can no longer distinguish the variations as a result of endogenous
regressors from the variation caused by u* (Tran & Tsionas, 2015). Consequently, the identification problem has important
implications for empirical applications. If one assumes a half‐normal distribution for the inefficiency term, it has to be
examined whether the endogenous regressors exhibit half‐normal distributions before application. As the copula further
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requires sufficient variation in regions where the conditional expectation is nonlinear, binary endogenous regressors also
cannot be modeled.5

2.3.4 | Implementation of the copula‐based estimator

Regarding the copula c, we use the Gaussian copula, which is applicable in many settings and has several desirable
theoretical properties (Danaher & Smith, 2011). For instance, the Gaussian copula is more flexible for multidimensional
modeling than Archimedean copulas (for further arguments in favor of the Gaussian copula, see Park & Gupta, 2012; Tran

& Tsionas, 2015).6 The density of the Gaussian copula ( )( )c F z F z G u( ), …, ( ), * ; Σi p pi i1 1 in (9) is given by

∕ {
}

( )
( )

( )

( )

( )

( )

c F z F z G u

I F z F z G u

(·) = (det(Σ)) × exp −
1

2
Φ ( ( )), …, Φ ( ( )), Φ * ′

1

2
× (Σ − ) Φ ( ( )), …, Φ ( ( )), Φ * ,

i p pi i

p i p pi i

−1 2 −1
1 1

−1 −1

−1
+1

−1
1 1

−1 −1
(10)

where Φ−1 is the quantile function of the standard normal distribution and Σ is the correlation matrix formalizing the
dependence among the respective components in c. As a particular merit of the Gaussian copula, the off‐diagonal entries in
Σ coincide with the Pearson correlations. Hence, the copula delivers quantitative assessments of the correlation between
endogenous regressors and inefficiency, which is a valuable diagnostic when modeling economic production patterns.

The parametric forms of ( )G u *i and ( )g u *i follow from the assumption in (6). The marginal densities f z( )j ji in

(9) do not contain any parameter of interest and can be dropped from the likelihood, since they enter as
normalizing constants. Building on Tran and Tsionas (2015), we replace F z F z( ), …, ( )i p pi1 1 by their respective
empirical counterparts before maximizing the likelihood. Given observed samples of zji, j p= 1, …, ; i N= 1, …, ,

we use the empirical cumulative distribution function of zj, that is, ≤F z z˜ = ( )j N i
N

ji j
1

+ 1 =1 0 .7 Seeing that the

empirical cumulative distribution function is a step function by definition, the model is at odds with the
assumptions behind Sklar's theorem (Sklar, 1959), which states that the copula in (10) is only uniquely defined if
its margins are continuous. However, we show in the Supporting Information that such a violation is not
problematic, as the model can be identified regardless of the noncontinuity of F̃j, even in small samples. Finally,

Lln Cop (see Equation 9) is maximized with respect to ( )θ α β δκ μ σ= , ′, ′, ′, , , vechl[Σ]′ ′u*
2 , where vechl[Σ] stacks

the lower diagonal parameters of Σ in a column vector comprising p unknown parameters.8 To test for the
presence of regressor endogeneity, either model selection criteria such as Akaike's Information Criteria or
Bayesian Information Criteria or likelihood‐based tests can be used. Regarding the latter, the correlation
coefficients in vechl[Σ] capture the endogeneity of the regressors in z. Under regularity conditions, the ML
estimators of model parameters are asymptotically normally distributed. Thus, the Wald statistic for testing the
null hypothesis of the exogeneity of regressor zp, that is, H ρ: = 0z0 p

is ∕ρ ρˆ SD( ˆ )z zp p
. The likelihood‐ratio and

score tests for endogeneity can also be derived in a straightforward manner under the copula model. In the
following, the resulting estimator is denoted θ̂Cop . In summary, the proposed approach is IV‐free and copes with
interrelationships between input selection and productive inefficiency without any additional distributional
assumptions (Tran & Tsionas, 2015).

3 | SIMULATION STUDY

To examine the finite sample properties of the proposed copula estimator (θ̂Cop ), we conduct some Monte Carlo
experiments. The IV‐free estimator promises unbiased estimation under correlation between observed production
inputs and unobserved stochastic inefficiency. however, in the case of exogeneity, it might suffer from inefficient
parameter assessment in comparison with stylized ML estimation (θ̂ML ). Alternatively, ML‐IV estimators could hold
interest to handle endogeneity in Poisson frontier models (Drivas et al., 2014). In sum, our comparative investigation
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involves four estimators, namely, the copula estimator, the common ML estimator, and two variants of ML‐IV
estimation, denoted θ̂ IV1 and θ̂ IV2 below, which differ in the choice of the external information employed. We next
explain the generation of Poisson distributed stochastic outcomes and encounter the alternative estimators entering our
comparative analysis. We evaluate distributional properties of rival parameter estimates by means of stylized box plots
in the main text of this section. More detailed simulation results on the average performance of alternative estimators,
as well as discussions on inferential results are provided in the Supporting Information and briefly discussed.

3.1 | Data generation

Discrete outcomes Y λ i N~ Pois( ), = 1, 2, …, ,i i are drawn after structuring the Poisson mean λi (see Equation 6) as

( )λ κ αx βz h u= exp + + − * ,i i i i i (11)

where κ is an intercept parameter, x N~ (0, 1)i is an exogenous input variable and potential endogeneity is channeled
through a correlation between the second input variable zi and productive inefficiency u *i . To be explicit about the
origin of potential endogeneity, it holds that







z γw η u η φ= + and Corr *, = ,i i i i i (12)

where w N~ (0, 1)i is strictly exogenous and might be considered as “external” information (if ≠γ 0) to
enable ML‐IV estimation (for a similar approach, see Drivas et al., 2014). Apparently, the joint generation of u *i
and ηi is crucial for the emergence of endogeneity in the form of a simultaneous input adaptation to technology

shocks. Specifically, we draw u *i and ηi jointly from a normal copula with correlation






u η φCorr *, =i i and a half‐

normal marginal distribution for u *i , that is,  ( )u σ* ~ 0,i u
+

*
2 . The choice of the marginal distribution of ηi allows

us to distinguish two frameworks of data generation and model estimation. On the one hand, we consider a
benchmark scenario for which the underlying true distributions are in line with density specifications required
for the purposes of ML‐IV estimation. On the other hand, we consider a scenario of intrinsic model
misspecification in the sense that actual shocks ηi are drawn from a skewed distribution with excess kurtosis.
Subsequently, ηi is falsely considered Gaussian for ML‐IV estimation. For benchmarking purposes and the
consideration of density misspecification the marginal distributions of ηi are

 ∕( )η σ η χ σ(i) ~ 0, and (ii) ~ (( (2) − 2) 2) ,i η i η
2 2

(13)

respectively. To enhance model flexibility, the inefficiencies u *i enter the Poisson mean in scaled form u u h= *i i i,

h δs s N= exp( ), where ~ (0, 1).i i i (14)

Regarding parameter settings, we set the values of φ to analyze the performance of alternative estimators
under exogeneity (φ = 0) and degrees of moderate (φ = .4) and strong endogeneity (φ = .8). The remaining
model parameters are set as κ = 2, α β δ= = = .5, σ σ= = 1η u

2
*

2 and γ = 1. We consider finite samples of
alternative sizes N = {100, 250, 500}, and regard N = 500 as sufficient to unravel the asymptotic properties of the
considered estimators. Each simulation experiment is replicated 1000 times. All computations were performed
in R. We next encounter the alternative estimators and their adaptation to the simulated data‐generating models
(DGMs).
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3.2 | Estimators

3.2.1 | The IV‐free copula estimator

The proposed estimator θ̂Cop results from linking the observed endogenous variables to the unobserved inefficiency
term u *i by means of a copula function. Since the DGM contains one endogenous regressor zi, the copula in (9) and (10)
is bivariate with density function










 











( )

( )

( )
( )

( )

( )
( )

( )

c G u F z
ρ

ρ G u F z

ρ

ρ G u F z

ρ

* , ˜( ) =
1

1 −
exp

− Φ * + (Φ ( ˜( )))

2(1 − )

+
2 Φ * Φ ( ˜( ))

2(1 − )
.

i i

i i

i i

2

2 −1
2

−1 2

2

−1 −1

2

(15)

In (15), ρ denotes the correlation between zi and u *i based on the probability integral transform, and hence it
governs the “degree” of endogeneity. Unlike alternative ML‐IV approaches, the implementation of the copula estimator
outlined in (9) neither requires instrumental variable information, for example, wi, nor any distributional assumption
regarding ηi.

3.2.2 | ML‐IV estimator

Seeing the alternative parameter selections for the correlation parameter φ = {0, .4, .8}, θ̂ML is the estimator of choice
and most likely to outperform θ̂Cop in case of φ = 0. Under alternative scenarios of φ = {.4, .8}, θ̂Cop is likely to benefit
from its consistency, although it is unclear how it performs in comparison with suitably implemented ML‐IV‐based
estimators. Owing to the stylized DGM in (12) and (13), it is straightforward to compare the copula estimator with ML‐
IV estimation. Assuming that the proper instrument wi is available and the distribution of ηi is known, the likelihood of
an ML‐IV‐type estimator obtains as

∞








( )θ x z s wL Y

λ λ

Y
f η u du( , , , , ) =

exp(− )

!
** , * *

i

N
i
Y

i

i
i i iIV1

=1 0

i

(16)

according to Drivas et al. (2014). The joint distribution ( )f η u** , *
i i in (16) can be computed by means of Sklar's

theorem (Sklar, 1959). The marginal distribution ( )g u *i follows from the assumption of half normality. Moreover,

shocks ηi obtain as η x γw= −i i i, and exhibit a marginal normal distribution ( )η σ~ 0,i η
2 by assumption. The log‐

likelihood implied by (16) allows for straightforward maximization with respect to ( )θ κ α β δ γ σ σ φ= , , , , , , , ′u η*
2 2 to

obtain θ̂ IV1 . The actual performance of this estimator likely differs for the two scenarios encountered in (13), for which
only the first underlying distribution corresponds to a correctly specified model density in (16). As further estimates
and valuable diagnostic information, θ̂ IV1 includes a variance estimate for ηi and the estimated correlation between ηi
and u *i (φ̂). To unravel potential risks associated with the choice of instrumental information, we next consider a
counterpart of θ̂ IV1 where the selected instrument is weak.

We further modify the ML‐IV estimator in (16) such that the instrument wi is replaced by w w* = exp( )i i .
Subsequently, w*i is scaled to exhibit the same mean and variance as wi, and η z γw= − *

i i i enters the model density
θ x z s wL Y( , , , , )IV2 , which is otherwise in full analogy to L IV1 in (16). Since w*i provides less precise information for
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the endogenous variable zi, the joint density ( )f η u** , *
i i is misspecified, and the dependence between ηi and u *i is only

insufficiently captured. As a result, the estimator θ̂ IV2 might suffer from remaining endogeneity if φ > 0.9

3.3 | Distributional results for parameter estimates

The stylized boxplots displayed in Figure 2 provide an overall assessment of the simulation outcomes.10 Parameter‐
specific boxplots are provided with respect to the same scale. Hence, the graphical representations suitably highlight
the asymptotic properties of the alternative estimators. All estimators seem to converge to some asymptotic limit.
Specifically, unbiased estimators, for example, ML under exogeneity, Cop, IV1 converge to the true underlying model
parameters, while biased estimators (ML under endogeneity, IV2) approach a false limit with shrinking variance as the
sample size increases.

The boxplots of parameter estimates κ δˆ, ˆ, and σ̂u*
2 show quite similar outcomes for all alternative estimators under

exogeneity of input variables (φ = 0). In these DGMs, sizeable performance differentials of alternative estimators
emerge for the estimation of the elasticity parameter β only. Unsurprisingly, the ML estimator is the method of choice
in such models showing the smallest variations around the true parameter of β = .5. The boxplots for both variants of
ML‐IV estimation are close to outcomes for ML, while the proposed estimator suffers in relative terms from the largest
variation around the true parameter.

For DGMs subjected to endogeneity, simulation outcomes change markedly even in the cases of the smallest sample
sizes (N = 100). For all parameters and sample sizes and both levels of induced endogeneity (φ = .4, .8), ML estimation
and the IV estimator with weak instrumentation (IV2) come with distributions of parameter estimates that lack a
centering around the underlying true parameters. In these scenarios, properly implemented ML‐IV estimation (IV1) is

FIGURE 2 Boxplots for parameter estimates κ̂ (top), β̂ (second top), δ̂ (second lowest), and σ̂ *u
2 (lowest) obtained from the estimators

ML, Cop, IV1, and IV2 based on the DGM of scenario i( ) in (13). Cop, copula; DGM, data‐generating model; IV, instrumental variable; ML,
maximum‐likelihood.
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the best performing throughout. However, the practical implementation of this estimator is always at risk of
misspecification. Therefore, it is interesting to see that relative to IV1 estimation, the efficiency losses of copula
estimation (Cop) are at most moderate and rather small in larger samples ( ≥N 250). Although this result holds for all
parameters, moderate inefficiencies of the proposed estimator are most prevalent for the elasticity parameter β.

The relative performance of alternative estimators drastically changes in case of a false density specification and
endogenous input variables—scenario (ii) in (13) and φ > 0 shown in Figure S1 in the Supporting Information. Under
such realistic conditions, the proposed estimator is unique among all rival estimators (ML, IV1, and IV2) in providing
unbiased assessments of all model parameters. Apart from unbiased parameter estimation, the proposed estimator is
apparently the method of choice in terms of having the smallest estimation errors on average and for the vast majority
of single Monte Carlo replications.

Moreover, with the exception of estimating the elasticity parameter β, the distributional characteristics of
copula‐based estimates are almost entirely unaffected by introducing endogeneity, that is, changing the
correlation parameter from φ = 0 to .4. This is noteworthy, since the model structure is much less complex under
exogeneity in comparison with the case of DGMs subjected to endogeneity. Copula‐based estimates of β are
slightly more dispersed for DGMs subjected to endogeneity in comparison with DGMs featuring exogenous factor
inputs. The DGMs considered feature the “realistic” property that—under endogeneity (φ = .4, .8)—production
inputs and inefficiency are positively related (Alexopoulos, 2011). Hence, it is interesting to highlight the
directional patterns of biased parameter estimates. Conditional on the endogenous DGMs considered, estimation
biases materialize in the form of underestimating both the frontier parameter β and the intercept κ, while the
parameters governing the deviation from the frontier tend to be overestimated (δ, σu*

2 ). Accordingly,
misinterpretations and incorrect conclusions are likely caused by neglected endogeneity in practical applications
of Poisson frontier models.

3.4 | Summary of simulation results

In summary, the graphical illustration of the parameter estimates obtained from alternative estimators under a variety
of DGMs allows for a few short‐hand conclusions: First and unsurprisingly, ML estimation is the method of choice to
estimate Poisson frontier models under exogeneity of input variables. Second, if applied properly, that is, with access to
suitable external information and correct distributional assumptions, ML‐IV estimation is prime to cope with
endogenous input variables. Third, if an analyst feels insecure about available instrument information or might doubt
the distributional assumptions, ML‐IV estimation is at risk of delivering systematically biased assessments of all model
parameters. Fourth, with access to scarce or insecure external information the proposed estimator is the method of
choice in Poisson frontier models. The same conclusion applies whenever an analyst feels uncertain about
distributional assumptions. Fifth, seeing that copula‐based estimation is unique in providing unbiased estimates in
many realistic cases, it is worth highlighting that efficiency losses relative to ML and ML‐IV estimation are moderate
even if the latter estimators do not suffer from misspecification in any direction.

The simulation results discussed in particular for the suggested IV‐free approach cover somewhat ideal
settings where the model implementations align with core aspects of data generation. In the Supporting
Information, we examine estimator performance in scenarios of model misspecification regarding (i) the choice
of the copula function, (ii) more complex patterns of endogeneity, (iii) discrete or binomial endogenous
regressors, and (iv) small samples coupled with weak dependence. From these additional simulations we can
draw three general remarks. First, estimation under model misspecification comes at the cost of larger
estimation uncertainty. Especially the estimation of variance parameters is at risk of suffering from model
misspecification. However, losses in estimation accuracy rapidly shrink when extending the sample
information. Second, when dealing with binomial endogenous regressors, the proposed method remains biased
in small samples as a result of a lack of identification. However, the Monte Carlo results hint at an improved
estimator performance in extended samples in such cases of limited variation in endogenous regressors. Third,
the proposed estimator performs well in small samples in the case of low degrees of dependence between
inefficiency and the endogenous variable.
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4 | KNOWLEDGE GENERATION IN THE EUROPEAN
PHARMACEUTICAL INDUSTRY

In this section, we illustrate the proposed method to handle endogeneity in Poisson frontier models empirically, and
estimate a production function for the number of patents awarded to a firm in a given year. The empirical model is set
up conditional on our initial considerations summarized in Figure 1. Noticing that a major fraction of costs is incurred
in the R&D stage in the pharmaceutical industry, an unbiased assessment of the payoff to R&D expenditures offers
valuable insights into productivity levels regarding intraindustry competition.

We provide alternative empirical assessments of patent generation as a manifestation of the knowledge production
of firms (Hausman et al., 1984). As these estimates differ regarding their performance under endogeneity, our analysis
is informative on the adverse effects of unmodeled (ML under exogeneity) or only partly controlled endogeneity (ML‐
IV with lagged explanatory variables). Apart from modeling knowledge generation of European pharmaceutical firms
in an unbiased manner, further purposes of our comparative analysis include (i) highlighting the adverse effects of
endogeneity on common ML‐based evaluations, (ii) unraveling the case of potential endogenous interrelations between
input selection and productive inefficiency, and (iii) investigating the role of knowledge spillover effects in supporting
innovation processes.

4.1 | Data

The empirical analysis conditions on a cross‐sectional sample of 137 independent European pharmaceutical firms in 2016.
The pharmaceutical industry is one of the most productive and profitable industrial sectors and it is often considered as
highly research‐intense (Meliciani, 2000; Pammolli et al., 2011). An intense commitment to R&D is decidedly among the
main reasons for a firm's long‐run success, since high innovative efficiency is supposed to establish sustainable competitive
advantages (Chen & Chang, 2010). By restricting our attention to firms within a single industry, we can best focus on the
unraveling of endogenous interrelations and their implications for the empirical understanding of knowledge generation (N.
Wang & Hagedoorn, 2014). In particular, we avoid difficulties associated with interindustrial or panel analysis as additional
endogeneities channeled through unobserved heterogeneity are ruled out.

As formalized by the Poisson stochastic frontier model in (3)–(6), the number of patent grants is used to
approximate the outcome of knowledge production.11 Data on patents are retrieved from the PATSTAT database.12

Following the related literature (E. C. Wang, 2005; E.C. Wang & Huang, 2005), R&D expenditures (R&D) and the
number of research employees (MP) are considered as input factors in the knowledge production process. The variable
R&D is obtained from profit and loss reports, measured as total business expenditures on research and development in
2016 prices and exchange rates in units of 1000 Euro. The variable MP is based on the number of full‐time equivalent
research staff (technicians, researchers, engineers, etc.) registered on the company's payroll.13 Data have been drawn
from the Amadeus database of the Bureau van Dijk. Formalizing a Cobb–Douglas production process, both input
variables (zi in Equation 11) enter the model in natural logarithms. Accordingly, the coefficient estimates attached to
these endogenous variables provide direct quantifications of the elasticities of knowledge output with respect to R&D
spendings and research staff. Pointing to returns to scale in performing innovation investments, total elasticities less
than 1 (greater than 1) indicate decreasing (increasing) returns to scale (P. Wang, 1998).

4.2 | Evidence on knowledge production

We treat both input variables R&D and MP as potentially endogenous and employ the proposed copula estimator in
comparison with the standard ML approach and ML‐IV estimation. Recall that the copula and the ML‐IV estimators
differ in terms of informational needs. Whereas the former is IV‐free, truly external information as required by the
latter is hardly available. Hence, we naïvely instrument the input variables with their own 1‐year lagged realizations as
in Cincera (1997).14 We differentiate two empirical models. For the first detection of endogeneity in input selection, we
set up Model I without scaling of inefficiencies, that is, we impose the restriction δ = 0 in (5). This model coincides
with its counterparts in Fé and Hofler (2013) and P. Wang (1998). Hence, it allows for a straightforward comparison of
empirical results with literature findings. Moreover, in some sense it isolates endogeneity effects in a stylized manner.
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To obtain Model II, we augment Model I with inefficiency determinants as outlined in Section 2.3. Specifically, we
consider university spillover effects as external determinants of scaled inefficiencies. Hence, the more general model
allows a joint investigation of endogenous interrelations between inefficiencies of knowledge generation and research
input variables. In addition, it provides a structural view on inefficiency in response to firm location within the
geographic proximity of scientific institutions.

4.3 | The stylized Poisson frontier model

4.3.1 | Endogeneity biases and the independence of patent outcomes

The left‐hand side panel of Table 1 reports estimation results for Model I obtained through ML, copula, and ML‐IV
estimation.15 As we have observed from the simulation studies, the standard errors of the proposed copula estimator
are relatively large in small samples, but sufficiently small to draw meaningful inferential conclusions on model
parameters. By comparing ML estimates with those from the copula approach, we can implicitly examine whether the
production inputs are endogenous. Supporting the case for endogeneity, the estimated elasticities are substantially
different. In detail, the model (significantly) changes the estimated output elasticities from .2178 (.1562) to .4482 (.1956)
for R&D expenditures (research staff, MP). The copula estimator also provides tests of regressor endogeneity for

R Dlog( & ) and MPlog( ). Wald statistics for testing the null hypotheses of ρ = 0R D u( log( & ), *) and ρ = 0MP u( log( ), *) are
∕.5251 . 0537 = 9.778 (p<.001) and ∕.2916 . 0592 = 4.925 (p<.001), respectively. Hence, both diagnostics indicate the

presence of endogeneity for both regressors with high significance. As already insinuated by Cincera (1997),

TABLE 1 Estimation results using the ML, the proposed copula, and the ML‐IV estimator

Model I Model II

Parameter ML Proposed ML‐IV ML Proposed ML‐IV

const 2.216 1.601 2.115 2.216 1.567 2.054

(.0401) (.0709) (.4137) (.0414) (.0817) (.4098)

log(R&D) .2178 .4482 .2556 .2521 .4376 .2902

(.0351) (.0998) (.0899) (.0358) (.0928) (.0861)

log(MP) .1562 .1956 .1504 .1770 .2079 .1669

(.0131) (.0684) (.0503) (.0179) (.0722) (.0488)

uni – – – −.3948 −.4107 −.4114

(.0401) (.0957) (.1071)

σ *u
2 2.664 1.120 2.293 2.556 1.183 2.109

(.1084) (.1902) (.2071) (.1112) (.2009) (.2075)

ρ *R D u( log( & ), ) – .5251 – – .486 –

(.0537) (.0499)

φ *η u( , )R Dlog( & )
– – .1209 – – .1153

(.1084) (.1157)

ρ *MP u( log( ), ) – .2916 – – .251 –

(.0592) (.0536)

φ *η u( , )MP( log( )
– – .0009 – – −.0052

(.0909) (.0933)

Note: Standard errors in parentheses are obtained by means of bootstrap procedures with 1000 replications. For ML‐IV estimation, the covariates R&D and MP
are instrumented with their respective one‐period lagged counterparts. The estimated coefficients of the instruments are omitted to economize on space.

Abbreviations: IV, instrumental variable; ML, maximum‐likelihood.
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instrumenting with lagged explanatory variables is not sufficient to cope with estimation biases. Specifically, the
coefficient estimates obtained from ML‐IV estimation only slightly differ from their ML counterparts.

The Poisson model outlined in (1) and (2) builds implicitly upon the assumption of independent patent outcomes
between the firms. Although our sample information does not allow an explicit testing of this assumption it is worth
recalling that we employ bootstrap techniques for inferential purposes (see also footnote 8). In particular, we employ a
resampling scheme of drawing tuples of firm‐specific observations independently with replacement. Although a
rigorous proof of bootstrap validity in the present Poisson SFA model is beyond the scope of this paper, we observe that
the bootstrap means of parameter estimates are very close to the data‐based estimates throughout (not shown). For
instance, the R&D elasticity estimate of .4482 is very close to the mean elasticity estimate from 1000 bootstrap samples
of .4319. Similarly, the bootstrap means of the employment elasticity (.2102) and the correlation estimates ρ R D u( log( & ), *)

(.5202) and ρ MP u( log( ), *) (.3077) are very close to the data‐based estimates documented in Table 1 for the copula
estimator. From these descriptive results for the core behavioral model parameters we conclude that the assumption of
independent patent outcomes between the firms is not overly restrictive for the considered sample. Given considerable
evidence for endogenous regressors, we proceed with the more general model with scaling property (Model II) for
further investigations.16

4.3.2 | R&D effectiveness and patent output

The right‐hand side panel of Table 1 documents estimation results for Model II comprising scaled inefficiencies. Model
augmentation by means of scaling the inefficiency terms only marginally changes the frontier coefficient estimates for
all estimators. As demonstrated in Section 3, neglecting potential endogeneity is associated with an underestimation of
output elasticities, which is in line with the results of Cincera (1997), who finds a slight increase in coefficient estimates
after weakening endogeneity. Accordingly, an unbiased assessment of production elasticities reveals that factor
productivity is actually higher when relaxing the assumption of (strictly) exogenous inputs. Although the production
elasticities are underestimated under assumed exogeneity, two important effects that have been uncovered earlier in
the Monte Carlo study are visible likewise.

On the one hand, inefficiency variances are substantially higher for both the ML and the ML‐IV estimation in

comparison with copula‐based parameter estimation. Assessments of productive efficiency are usually based on






û *i ,

which depends on the estimate of σu*
2 .17 Accordingly, the inefficiency variance can be related to a firm's average

distance from full efficiency. The estimated average distances from full efficiency are for the ML and the copula
estimator, respectively. Although these values are not directly interpretable, they are useful for model comparison. An
overestimation of σu*

2 implies that the firms are falsely considered as more inefficient than is actually the case. For
instance, as implied by our model outcomes, pharmaceutical firms have been 35% more efficient on average as implied
by standard ML‐based model evaluations.18 Furthermore, a sizable shrink in the estimated intercept is evident when
moving from ML or ML‐IV estimates to copula‐based parameter assessments. Recall that the intercept estimate can be
attributed to total factor productivity (Kumbhakar & Lovell, 2003). Accordingly, it can be interpreted to reflect
accumulated knowledge, that is, a firm's “knowledge base” (Hausman et al., 1984). Although both knowledge
accumulation and innovative activity are significantly responsible for patent generation, an overestimate of the
intercept joint with underestimates of output elasticities implies that knowledge accumulated is falsely considered to
be more important for patent generation in comparison with current production inputs. As a result, inconclusive
implications and misleading suggestions for improving knowledge generation processes are likely induced by
endogeneity biases.

The estimates for the correlation coefficients ρ R D u( & , *) and ρ MP u( , *) are both significant and positive, providing
additional evidence of correlation between unobserved technical inefficiency and production inputs. Specifically, the
correlation coefficients are estimated as ρ̂ = .486R D u( & , *) and ρ̂ = .251MP u( , *) . These statistics directly capture mutual
dependencies and provide valuable economic information, as they enable assessing how the firms respond to changes
in inefficiency on average. Sizeably positive correlation estimates indicate pronounced input adjustments for implicit
changes in the production technology. A positive sign of both correlation estimates is intuitively reasonable. For
instance, (adverse) external technological shocks are likely to reduce efficiency and result indirectly in less output.
At the same time, the production inputs have to be simultaneously increased to retain the output level. Exemplifying
such shocks, one might notice regulations of the European Union that apply to the pharmaceutical industry and reflect
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that pharmaceutical research outcomes are related to the population's health (Baines et al., 2018). Consequently,
stronger production restrictions or sharper regulations extended to drug approvals might be considered as potential
manifestations of technological shocks (Baines et al., 2018).

To complement our assessment of knowledge generation of European pharmaceutical firms in 2016, we compare our
results to those found in Fé and Hofler (2013) and P. Wang (1998) for the case of US producers in 1976. Both studies use the
same US data and a Poisson model that is similar to our Model I in terms of the covariate information employed. Since Fé and
Hofler (2013) neglect (potential) endogeneity, a comparison with our ML results is natural. Our ML estimate of the elasticity of
innovative output with respect to R&D spendings (.2521) is substantially smaller. In P. Wang (1998), the associated coefficient
ranges from .6716 up to 1.588, whereas Fé and Hofler (2013) estimate 1.207, which is more than four times larger than our
estimate. Despite cross‐country heterogeneity, a sizeable reduction of R&D effectiveness in the over course of more than
40 years is consistent with literature findings diagnosing a steady decline in pharmaceutical payoffs to R&D (Hashimoto &
Haneda, 2008, report a decline of 50% from 1983 to 1992). Such diminishing returns in knowledge generation might be
ascribed to intensified competition (Pammolli et al., 2011), or the fact that pharmaceutical innovations have become
incrementally spread over a large variety of products (Aghion & Howitt, 1998; Ha & Howitt, 2007).

4.3.3 | Knowledge spillovers

Seeing a steady decline in pharmaceutical R&D effectiveness (Hashimoto & Haneda, 2008; Pammolli et al., 2011), a
promising complement to produce one's own innovations by investing in R&D is to absorb external knowledge—that
is, “diffusion spillovers” (Nelson, 2009). A growing body of literature has highlighted that the capacity to absorb local
external knowledge holds particular relevance for firms in the pharmaceutical industry to remain innovative (Furman
et al., 2005; Harhoff, 2005; Runiewicz‐Wardyn, 2013).

To approximate such effects, the dummy variable uni indicates if a university or public research institution with more than
1000 employees (excluding auxiliaries) is located within a 10‐km road distance from a firm (for a similar approach, see Hall
et al., 2005). As can be seen in Table 1, all three estimated Poisson frontier models lead to the same conclusion in qualitative
terms. A negative and significant effect of uni indicates that geographic proximity to a university or public research institution
is associated with higher levels of efficiency in knowledge generation. Thus, we can confirm the findings of Siegel et al. (2003),
namely that university presence facilitates knowledge spillovers which stimulate innovative activity.

To assess the model implications in an economically meaningful way, it is necessary to jointly evaluate the
quantitative results with inefficiency variance.19 The copula estimator reveals a variance estimate of 1.183 and an
estimate of−.4107 for the coefficient of uni. Since these estimates jointly determine innovative efficiency, we are able to
attribute efficiency differences to local knowledge spillovers originating from universities. In detail, pharmaceutical
firms located in geographic proximity to a university are on average 56% more efficient than firms without such a
neighbor.20 Since universities are powerful sources of external knowledge (Szücs, 2018), our results indicate that the
capacity to absorb such local spillovers largely enhances innovativeness. From the firm perspective, similar research
taking place in private research establishments and universities hosting a pharmaceutical faculty could be the major
source of spillovers due to technological transfers and the acquisition of key business skills (Powell, 1998).

5 | CONCLUSION

Previous studies have highlighted five important aspects that should be taken into account when modeling firm‐level
innovation processes, namely (i) innovation‐relevant knowledge generated by the firm is unobserved, (ii) the discrete nature of
patents should be taken into account when using them as an approximation of innovative output, (iii) the process turning
R&D into knowledge is likely affected by inefficiencies that (iv) are subject environmental factors, and (v) R&D inputs are
typically endogenous. We establish an empirical model to simultaneously consider these aspects regarding the pharmaceutical
industry. The suggested Poisson frontier model allows for inefficiency scaling, and accounting for regressor endogeneity does
not require instrumental information. Rather, building upon the Gaussian SFA model of Tran and Tsionas (2015) feedback
linking R&D expenditures and inefficiency is quantified by means of a (Gaussian) copula. We examine the finite sample
behavior of the proposed estimator by means of Monte Carlo simulations. The results show that the coefficient estimates of
the proposed method are not affected by endogeneity. From a set of complementary simulation experiments, we conclude that
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the performance of the proposed estimator remains unaffected in case of departures from some underlying model
assumptions, such as non‐Gaussian dependence structures.

However, the proposed approach is not without limitations. First, although the Gaussian copula is highly flexible,
especially when dealing with multiple endogenous inputs as in an empirical application, it still builds upon the
assumption of linear dependency of its margins. Second, Monte Carlo results show that unbiased estimates come at the
cost of high variances in small samples. Although instrumental variable estimation is the method of choice under
endogeneity, weak instrumentation or density misspecifications are pertinent threats to such fully parametric
estimation. Nevertheless, we expect that the proposed method provides useful alternatives to many empirical problems
addressed in the form of Poisson frontier models.

We employ the proposed estimator to quantify a knowledge production function for European pharmaceutical
firms in 2016. In particular, innovation processes are subject to technological interactions between innovative
efficiency and R&D. On the one hand, we can confirm the arguments of Alexopoulos (2011) that stylized technological
shocks are positively linked to the inputs of knowledge production. On the other hand, endogeneity biases are
pertinent, since restrictive assumptions of regressor exogeneity result in a marked underestimation of an R&D elasticity
and efficiency. In addition to the assessment of endogenous input selection, we re‐examine the effect of university
knowledge spillovers on innovative efficiency. Our results support the “absorptive capacity” hypothesis (Cohen &
Levinthal, 1989, 1990). Since pharmaceutical research is costly, innovation policy should explicitly develop the capacity
to absorb local technology spillovers. In particular, universities hosting a pharmaceutical faculty stimulate beneficial
externalities that foster innovativeness, which can be exploited for efficiency enhancements. Accordingly, a deeper
understanding of the channels of external pharmaceutical knowledge acquisition would benefit the strategic
positioning of firms to become more innovative.
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ENDNOTES
1 We discuss the important origins of endogeneity in knowledge generation models below in Section 2.2. The linkage of endogenous
covariate information and stochastic inefficiency can lead to biased estimates for causal effects if applied methods build upon
assumptions of regressor exogeneity. As a result, the outcome of managerial decisions can hardly be assessed under the presumption of
independent actions combined with the invariance of all other factors.

2 To be precise, total factor productivity is related to κexp( ).

3 Although scaling functions are widely employed in Gaussian SFA models (Kumbhakar & Lovell, 2003), they have not yet been used for
the class of count data models.

4 In contrast to Fé and Hofler (2013, 2020), who approximate the integral using Halton sequences, we follow Tran and Tsionas (2015) and
use Gauss–Konrod quadrature with 50 points.

5 We assess adverse effects on the performance of the estimator when dealing with binary endogenous regressors in the Supporting
Information.

6 We characterize the performance of the proposed estimator under misspecification of the copula function in the Supporting Information.

7 The rescaling factor ∕ N1 ( + 1) instead of ∕N1 ensures that the empirical cumulative distribution is well bounded in (0, 1).

8 We use the derivative‐free simplex method for numerical optimization of Nelder and Mead (1965) to obtain the ML estimates of model
parameters θ. The proposed copula estimator can be classified as a semiparametric method, as it combines the nonparametric
distribution of endogenous regressors with the parametric distribution of the inefficiency term. In semiparametric models, the derivation
of Hessian‐based asymptotic standard errors can be extremely difficult such that bootstrap procedures have become a natural alternative
to assess estimation uncertainty (Park & Gupta, 2012). Accordingly, we use simple bootstrap techniques to estimate standard errors and
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confidence intervals. For fully nonparametric approaches in SFA models for continuous outcomes, we refer the reader to Simar et al.
(2016) and Mastromarco and Simar (2021).

9 The correlation between the endogenous variable zi and the instrument wi is on average about .705. Accordingly, wi can be considered as
a strong instrument for zi. The “weak” instrument w*i exhibits an average correlation, which is smaller by a factor of .6715.

10 The coefficient attached to the exogenous variable x (α) did not exhibit a bias (see Tables S1 and S2 in the Supporting Information). For
this reason, boxplots for α̂ are not included, although they can be provided by the authors upon request.

11 Mansfield (1982, 1986) showed that in the pharmaceutical industry the patenting rate of inventions is about 84%. More recently, Danguy
et al. (2019) document patenting rates between 79% and 74%. Noticing that not all knowledge output is patented, patents are only an
imperfect indicator to approximate knowledge production. Nonetheless, they hold particular relevance in the pharmaceutical industry,
since the patenting rate in this sector is among the highest in any high‐technology sectors (Danguy et al., 2019; Griliches, 1998).

12 We restrict our analysis to European patents, since the PATSTAT database only provides information about patents granted by the
European Patent Office.

13 External agency workers were disregarded due to data limitations.

14 Input variables lagged by 1 year are available for only 94 firms out of the full sample of 137 firms. Accordingly, ML‐IV estimates are based
on the reduced sample.

15 The copula estimator is set up with a three‐dimensional Gaussian copula to model the interdependence between R&D, MP, and the
(unobserved) inefficiency term, which is assumed to be half normally distributed. Regarding the ML‐IV estimator, we additionally
assume that the endogenous inputs R&D and MP are marginally normal.

16 As an alternative to considering Poisson distributed patent outcomes, discrete counts could also be assumed to follow a more flexible
negative binomial distribution. Explicit estimation results for the negative binomial model are available upon request from the authors.
Except for intercept estimates, ±2 standard errors rule‐of‐thumb confidence intervals constructed around copula‐based estimates
retrieved under the negative binomial model include the estimates as documented for the Poisson models I and II in Table 1.

17 Specifically, it holds that






u σ* = *i u

ϕ (0)

Φ(0)
, where ϕ (·) and Φ(·) denote the probability density function and the cumulative distribution

function of the standard normal distribution, respectively.

18 By taking the ratio, that is, ∕1 − .8444 1.302.

19 Since ( )u N σ* ~ 0, *i u
+ 2 , then u δs u= exp( ) *i i i is ( )N δs σ~ 0, exp(2 ) *i u

+ 2 , see Haschka et al. (2020).

20 By taking the ratio, that is, ∕1 − exp(2 × (−.4107) × 1) exp(2 × (−.4107) × 0). The remaining two estimators provide nearly identical
results. In detail, they report efficiency gains of 54.6% (ML) and 56.1% (ML‐IV).
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