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The Effects of Discontinuing Machine Learning Decision Support 

 
Kevin Bauer1, Michael Nofer2, Benjamin Abdel-Karim2, Oliver Hinz2 

 

________________________________________________________________ 
Abstract: Advances in Machine Learning (ML) led organizations to increasingly implement 

predictive decision aids intended to improve employees’ decision-making performance. While 

such systems improve organizational efficiency in many contexts, they might be a double-edged 

sword when there is the danger of a system discontinuance. Following cognitive theories, the 

provision of ML-based predictions can adversely affect the development of decision-making 

skills that come to light when people lose access to the system. The purpose of this study is to 

put this assertion to the test. Using a novel experiment specifically tailored to deal with 

organizational obstacles and endogeneity concerns, we show that the initial provision of ML 

decision aids can latently prevent the development of decision-making skills which later 

becomes apparent when the system gets discontinued. We also find that the degree to which 

individuals “blindly” trust observed predictions determines the ultimate performance drop in 

the post-discontinuance phase. Our results suggest that making it clear to people that ML 

decision aids are imperfect can have its benefits especially if there is a reasonable danger of 

(temporary) system discontinuances. 

 

1. Introduction 

Organizations increasingly rely on Machine Learning (ML) systems such as Random Forests, Support 

Vector Machines, or Neural Networks to augment their employees’ performance on specific tasks 

(Jordan and Mitchell 2015; Berente et al. 2019). These systems typically process available information 

and produce predictions about unknown (future) states of the world. Predictions then feed as an input 

factor into employees’ decision-making processes helping them make better and more nuanced 

decisions under uncertainty by improving their judgment (Agrawal et al. 2019). Contemporary examples 

include a wide range of decision aids: Procurement Systems leveraging historical data to forecast 

required future resources, Sales Systems using information about customers to predict cross-selling 

opportunities (Loureiro et al. 2018), and Marketer Systems harnessing economic indicators to predict 

the efficacy of specific marketing strategies (Singh et al. 2017). 

Yet, following previous insights from the automation literature on expert system decision aids, the 

provision of such predictive decision aids might be a double-edged sword. While it can inform business 

decisions and, thereby, improve organizational efficiency (Shang and Seddon 2002; Stallkamp et al. 

2012; Janssen et al. 2013), the provision of decision aids generally comes at the expense of negatively 

affecting employees’ skill development (see, e.g., Orlikowski 1991; Dzindolet et al. 2002; Skinner 2004; 

Goddard et al. 2012, Alavi and Leidner 2001; McCall et al. 2008). When employees overly rely on 

computerized decision aids instead of engaging in vigilant information seeking and processing 
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themselves, they may not learn how to make a decision in the absence of computerized support (see, 

e.g., Mosier et al. 1998; Skitka et al. 1999; Carr 2014).  

However, insights from the literature stem from settings where employees interact with expert systems 

(comprehensive, declarative instructions explicitly devised by human experts), not contemporary 

predictive decision aids (unintelligible predictions based on self-learning ML models) that differ in 

dimensions important to the development of knowledge. Given the growing prevalence of ML-based 

systems, it is imperative to explore whether insights into the relationship between the provision of 

computerized decision support and the development of skills are still valid (Teodorescu et al. 2021). So 

far, we lack a thorough understanding of how predictive systems shape employees’ knowledge 

development, and, relatedly, their consequences for employee performance under system 

discontinuance. The potential problem of system discontinuance is particularly relevant to ML 

applications because these systems are more likely to exhibit discontinuances than expert systems. That 

is because they stop working appropriately and thus become unusable when disruptions in the 

environment evoke fundamental changes to the data generating processes, i.e., concept drifts (Widmer 

and Kubat 1996; Gama et al. 2014). In these situations, knowledgeable human experts need to navigate 

decision-making on their own until they have produced sufficient new data to retrain the disrupted 

system. Therefore, somewhat ironically, the development (and maintenance) of human decision-making 

skills is a complement to the successful implementation of ML-based decision support. 

The purpose of the study at hand is to experimentally test whether the provision of decision-supporting 

ML predictions causally affects the development of decision-making skills. More specifically, we intend 

to answer two research questions:  

(i) What is the impact of providing unintelligible ML decision support on the development of 

decision-making skills and performances when systems get discontinued? 

(ii) Does the degree of “blind” trust shape the occurrence of such effects?  

Exploring the interplay between contemporary ML decision support and individuals’ development of 

decision-making skills is a crucial endeavor since organizations increasingly employ ML-based systems 

to aid their employees. Since individuals’ skills constitute one of the most valuable assets of 

organizations, it is pivotal to understand how the ML decision support system may have on the 

development of skills, as well as its ramifications under a system discontinuance. 

There are several requirements for studying the causal effects of ML decision support systems on skill 

development. First, we need to ensure that individuals do not have prior experience with the decision 

task so that they develop any decision-making skills only during the study. Second, individuals may not 

have distinct access to additional information relevant to developing skills. Third, we need to eliminate 

the possibility that individuals possess unobserved (strategic) motives affecting their willingness to 

develop skills. Finally, we need to exogenously (and unanticipatedly) discontinue the ML decision 

support system for a random subset of employees. Meeting these requirements in a field setting is 

particularly difficult, if not outright impracticable. Against this background, we address our research 
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questions by designing and implementing an incentivized online experiment specifically tailored to cope 

with the outlined obstacles.  

In our treatment condition of the experiment, participants solve a series of logical puzzles. For the first 

half, participants solve the puzzle with the help of an ML decision support system. For the second half, 

we discontinue the system without a warning. We track treatment participants’ decision-making 

performance over time and compare it to one of the baseline participants who work on identical puzzles, 

however, always without the aid of an ML decision support system. Our analyses reveal that the 

provision of the ML decision aid impedes treatment participants’ latent development of skills which 

becomes visible once the system discontinuance occurs. We find evidence that the degree to which 

treatment participants “blindly” trust the system shapes their decision-making performance in the post-

discontinuance phase. 

Our paper relates to two streams of literature. First, our paper complements previous work that examines 

the impact of expert system decision support on deskilling (e.g., Fitts 1951; Johnson et al. 2010; Ranz 

et al. 2017; Mateus et al. 2019). Evidence on the impact of expert system decision support on employee 

skill is mixed. Several studies indicate that the long-term use of such decision support systems (e.g., 

Knowledge Management Systems) decreases users’ business process knowledge. (Dowling et al. 2008; 

McHall 2008; Axelsen 2012; Triki and Weisner 2014; Rinta-Kahila et al. 2018). Other studies suggest 

that there can be positive skill effects as well (see, e.g., Millman and Hartwick 1987; Orlikowski and 

Barley 2001; Schuppan 2014). Our paper complements this work by producing novel evidence on how 

ML decision support affects the development of decision-making skills. Specifically, despite 

considerable differences between expert and ML decision support systems (see, e.g., Berente et al. 2021; 

Teodorescu et al. 2021), the insights previous IS research generated appear to remain valid. 

Second, we contribute to relatively nascent literature that studies how the discontinuance of decision 

support systems affects users. When computerized decision support systems create benefits, 

organizations typically keep them in place more or less indefinitely. Therefore, in the absence of system 

failures, adverse effects on people’s skill development may not come to light and only occur latently. 

However, for different reasons, systems may, at least temporarily, get discontinued, e.g., due to updates 

or in the case of ML-based systems retraining, so that decision support is absent (see, e.g., Power & 

Gruner 2015; Rinta-Kahila et al. 2018). In general, only a few studies have explored the discontinuance 

of decision support systems in organizations (see, e.g., Tully 2015; Rinta-Kahila et al. 2018; Soliman & 

Rinta-Kahila 2020; Rinta-Kahila et al. 2021). Existing studies typically focus on the antecedents of 

discontinuance, while ignoring potential downstream ramifications. One notable example is the paper 

by Rinta-Kahila et al. (2018) who explore the impact of discontinuing an expert system on employee 

performance. We add to this literature by exploring the ramifications of discontinuing an ML decision 

support system for the post-continuance decision-making performance of users.  

The paper proceeds as follows. In section 2, we outline the theoretical background motivating our 

research hypotheses. Section 3 presents the experimental design, while we report our empirical results 
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in section 4. We conclude with a discussion of results and provide an outlook on future research avenues 

in section 5. 

 

2. Theoretical background 

Skill development in the ACT-R framework 

From an organizational perspective, skills are a pivotal asset to firms that can help them gain a 

competitive advantage if utilized and passed on effectively among employees (Barney 1991, Grant 1996, 

Alavi and Leidner 1999). Therefore, it is imperative to shed light on how the provision of contemporary 

ML decision support affects employees’ development of decision-making skills. When there exists the 

chance of a (temporary) discontinuance of the predictive system, e.g., because managers decide to quit 

licensing a system, or because the system is inoperative due to malfunctioning (Soliman and Rinta-

Kahila 2020), latent adverse effects on employees’ skills will come to light and may lead to considerable 

disruptions in business activities. Importantly, with the increasing implementation of ML-based decision 

support, the chance of system discontinuances grows. That is due to the nature of modern ML 

applications. Typically, models learn from historical data that comes in the form of input-output pairs. 

However, in dynamically changing, nonstationary environments, the data generating process, and 

thereby the data distribution, can change over time so that the pattern learned from historical data is no 

longer accurate – a phenomenon referred to as concept drift (Widmer and Kubat 1996). When a concept 

drift occurs, predictive models require an updating or retraining on novel data sets that encode the 

changed data distribution (Gama et al. 2014). To adapt to disrupted ML systems, however, organizations 

require knowledgeable employees to navigate decision processes themselves and thus produce adequate 

new data. Somewhat ironically, the development and maintenance of human knowledge is, therefore, a 

vital complement to the implementation of ML-based decision support.  

To examine the interplay between predictive decision support and skill development, one must first 

understand conceptually how people develop it. The starting point of skill is knowledge. Going back to 

Plato, knowledge is often broadly defined as a “justified true belief” (Nonanka 1994, Boghossian 2007) 

that can take on one of two forms: procedural knowledge or “know-how” that is directly applicable to 

specific tasks, i.e., skills, and declarative knowledge or “know-what” about the nature of things, i.e., 

facts and rules (Norström 2015). Notably, procedural knowledge is tacit, meaning that it is intuitive in 

nature and difficult to articulate (e.g., knowing how to ride a bike). By contrast, declarative knowledge 

is explicit. People possess a conscious awareness of this type of knowledge, meaning it is easy to 

articulate declarative knowledge (e.g., knowing what the technology adoption theory is). Both types of 

knowledge are naturally interdependent (Fantl 2008) with procedural knowledge being seen as the 

ability to apply declarative knowledge as condition-action pairs. Put differently, declarative knowledge 

is the antecedent for developing procedural knowledge, i.e., decision-making skills (Anderson and 

Fincham 1994).  
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But how exactly do people develop skills to solve problems? A widely used conceptualization of the 

skill development process originates from the ACT-R theory – a framework outlining the workings of 

human cognition (Anderson and Lebiere 1998, Anderson 2013). The ACT-R framework proposes two 

subsequent stages of skill development: a declarative and a procedural stage. The development of skill 

begins in the declarative stage by observing declarative information such as rules, definitions, 

instructions, or examples from the environment. Individuals encode this information as experiences into 

memory – either working or long-term memory (Anderson et al. 1997). Initially, individuals address the 

problem at hand by analogizing from the stored experience, i.e., they engage in interpretive problem-

solving. Over time, individuals observe additional information either through obtaining endogenous 

feedback on the successes and failures of their problem-solving attempts or through exogenous events 

in the environment that reveal further problem-relevant facts. The newly encountered information is 

considered in the working memory where individuals can increasingly refine their high-level 

understanding of the problem resulting in the development of declarative knowledge that is eventually 

committed as “chunks” in the (declarative) long-term memory (Anderson 1997, Anderson et al. 2004). 

When stored in long-term memory, the retrieval of chunks to engage in analogizing becomes simpler as 

the number of retrievals and related chunks increases (Grimaldi and Karpicke 2012).  

Once individuals have developed and stored declarative knowledge in their long-term memory, the 

procedural knowledge development process begins. In this second stage, individuals gradually convert 

declarative knowledge into procedural knowledge through a process referred to as production 

compilation. The compilation results in explicit production rules that one can think of as condition-

action pairs (Anderson 1997). These condition-action pairs are at the heart of decision-making skills. 

Production rules are stored in the (procedural) long-term memory and allow solving problems without 

the cognitively strenuous retrieval of declarative knowledge for guidance. With additional practice, 

individuals can further refine or expand compiled production rules, leading to improved skills. Utilizing 

(optimized) condition-action pairs instead of more complex analogizing both, speeds up performance 

and frees cognitive resources by reducing the required level of attentional capacity (Anderson 2014).  

In our experimental study, we incentivize participants to develop a problem-solving strategy for logical 

puzzles. We provide feedback on a constant basis so that they can engage in a trial-and-error process to 

come up with successful condition-action pairs, i.e., develop decision-making skills. Correctly 

recognizing the logical pattern involved allows participants to maximize their earnings in our study (see 

section 3 for details on the experimental design).  

 

Computerized decision support and human knowledge 

Studies from automation research across disciplines frequently indicate that the broad implementation 

of expert system decision support, i.e., systems that perform recommendations for tasks based on an 

understanding of how human experts behave, can contribute to deskilling (see, e.g., Mosier et al. 1998; 

Skitka et al. 1999; Mascha and Smedley 2007; Dowling et al. 2008; McHall et al. 2008; Parasuraman 
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and Manzey 2010; Hoff 2011: Axelsen 2012; Carr 2014; Rinta-Kahila et al. 2018). Mosier et al. (1998) 

study omission and commission errors by pilots resulting from using expert systems (automated 

communication and electronic checklists) in flight simulators. They find that automation biases 

constitute a significant factor when pilots engage with automated aids and that pilots do not consider all 

available information when making decisions in conjunction with computerized decision aids. Dowling 

et al. (2008) study the long-term effects associated with the use of audit support systems finding that it 

decreases employees’ existing declarative knowledge over time. Using a qualitative research method, 

Axelsen (2012) finds that the long-term use of audit support systems decreases auditors’ procedural 

knowledge. In a case study with an IT service company, Rinta-Kahila et al. (2018) show that using 

software that automates fixed assets accounting and reporting leads to a latent deskilling of accountants 

that comes to the surface when users lost access to the system. While these studies depict how 

computerized decision support can entail the loss of human knowledge, none of them considers the 

development of new skills, which is what we look at.  

Smedley and Sutton (2007) study the impact of expert systems on procedural knowledge development. 

They find that the development of knowledge and response to the presented information differs 

considerably based on users’ initial expertise, with ‘intentional learners’’ developing relatively high 

levels of knowledge. McCall et al. (2008) examine the impact of knowledge-management systems on 

performance and skill development. They find that the availability of knowledge-management systems 

as decision aids enhances user performance and does not impede the development of declarative 

knowledge. Instead, using this expert decision aid incites the development of different knowledge. Hoff 

(2011) finds decreased clinical knowledge and a lower willingness to learn about medical trends such 

as innovative methods for diagnosis following the introduction of electronic medical records. Arnold et 

al. (2018) find that the automated provision of explanations in expert decision support systems is an 

important design feature influencing the skill development processes. Insights on the development of 

knowledge from these studies stem from cases where the decision aid comes from expert systems.  

Overall, many previous studies depict a potential dark side of the employment of computerized decision 

aid, where machines exercise real authority (Agion and Tirole 1997) over human users who merely do 

what the machine tells them to do without thinking for themselves (Hirschheim et al. 1991). However, 

there are also studies, especially in the context of automated business decisions, that provide 

contradicting evidence. For instance, Sayed (2006) finds that the implementation of an ERP system in 

Egypt did not cause a deskilling of employees. Instead, employees recognize that their knowledge is 

central to the proper functioning of the technology. Other studies show that deskilling caused by expert 

system decision support is not as pervasive as broadly suggested. Instead, the occurrence of deskilling 

effects from implementing such systems depends on the system’s design (e.g., Orlikowski and Barley 

2001). Relatedly, Orellana (2015) suggests that the provision of computerized decision support does not 

result in de- but reskilling. In sum, previous studies examining the relationship between computerized 

decision support and user knowledge focus on expert systems that provide users with comprehensive 
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information on how to do their tasks (e.g., Cummings 2004; McCall 2008, Rinta-Kahila et al. 2018), 

reports (e.g., Dowling et al. 2008, Verghese 2008, Hoff 2011), and even take over decision-making 

completely (see, e.g., Skitka et al. 1999).  

Complementing previous studies, we consider contemporary ML decision aids that aggregate and 

transform available information to produce probabilistic predictions. These systems are increasingly in 

use in organizations (see, e.g., McAfee et al., 2012; Hoffman et al. 2018; De Spiegeleer et al., 2018, Leo 

et al., 2019) and, for instance, include decision aids that forecast procurement prices, predict chances of 

sales conversions, predict the probability of customer churn, and assess the fit of an applicant for a 

vacancy. Importantly, this form of decision support is fundamentally different from previous generations 

of expert system decision support (see, e.g., Teodorescu et al., 2021; Berente et al., 2021). In general, 

“[…] ML may require a massive rethinking of significant portions of the corpus of IS research in light 

of these differences [to previous generations of AI-based systems]” (Teodorescu et al., 2021, p.1483). 

Rethinking and retesting accepted IS theories in the light of ML requires that we once again start at the 

ground level and address things at the most basic level of analysis. Doing so will be an essential step 

toward the efficient and beneficial usage of this contemporary generation of AI technologies (Berente 

et al., 2021). ML-based decision support systems are typically machines that have learned, more or less 

all by themselves, high-dimensional, non-linear relations between different variables from large, labeled 

data sets to produce a label estimate for unseen data without a label (LeCun et al. 2015; Jordan and 

Mitchell 2015). Put differently, ML decision support systems represent true machine knowledge. This 

characteristic is in stark contrast to expert systems that comprise expert knowledge developed by 

humans. Given the differences between traditional expert systems and modern ML support systems, it 

remains an open question to what extent previous insights in deskilling are still valid. The field of 

Information Systems must have the ambition to uncover the changing influence of constantly evolving 

technologies. 

3. Study design 

We designed a novel laboratory experiment to identify the relation between ML decision support and 

skill development. Our study design leverages the strengths of the controlled laboratory environment in 

ways that would be difficult to replicate in a field setting, if not outright impracticable. The study design 

ensures that participants (i) have no previous experience of the logic governing the task, (ii) do not have 

different access to information that is relevant to solving the task, and (iii) have no unobserved (strategic) 

motives affecting task performance, and (iv) participants do not anticipate the discontinuation of the ML 

decision aid. We control the structure of the task, the material consequences of decisions, and the 

information flow, allowing us to detect the development of decision-making skills and how predictive 

decision support affects it. 
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Design Overview 

 

Figure 1: Illustration of one market simulation. Participants in our study engaged in 12 subsequent market simulations all 

following the depicted structure. We denote the treatment variation, i.e., the presence of predictions about the current market 

state in the first six market simulations, via squared brackets. 

In our experimental study, participants repeatedly work on a logic puzzle (see figure 1 for an illustration 

of an individual puzzle). To make the setting more accessible to participants, we frame the puzzles as 

market simulations, each comprising five consecutive rounds of making investment decisions with 

intermediary feedback. However, the structure of the task more fundamentally mirrors aspects that many 

decision-making tasks under uncertainty share: (i) there exists an unknown state of the world that affects 

the personal consequences of decision making, and (ii) people observe (conditionally independent) 

environmental cues that relate to the hidden state and are, therefore, relevant to decision making. In each 

of the five rounds of a market simulation, participants receive four conditionally independent cues that 

help them identify which of two possible decisions maximizes their payoff, i.e., the best investment 

option. The design is related to Kuhnen (2015) and Kuhnen and Miu (2017). 

Most importantly for our research objective, there exists a fixed relation between the cues and the market 

state that we do not reveal to participants. However, we always give participants feedback about their 

investment performance after deciding, so that they can learn to interpret the cues correctly over time. 

We even provide an overview of the cues and actual market state of all previous rounds for a given 

market simulation. Participants learn about the existence of the pattern and its stability throughout the 

experiment. We explicitly tell participants that they can benefit from figuring out the pattern (see 

Appendix for the exact instructions). In addition to the four cues, participants observe the output of a 

machine learning model that uses the four cues to make a highly accurate prediction about the market 

state in the current round. Again, we are completely transparent and provide participants with detailed 

information about the machine learning model, how we trained it, and how accurate the model is on a 

representative test set.  
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The experiment comprises two stages. In stage 1, participants work on six market simulations one after 

another, always observing both cues and a machine learning prediction. In stage 2, participants again 

work on six consecutive market simulations that follow the exact same structure. The only difference is 

that participants no longer observe machine learning predictions but only the four cues in stage 2. We 

did not inform participants about them losing access to the predictive aid before so it comes 

exogenously. This abrupt discontinuance enables us to observe any latent effects on the skill 

development that are unobservable while treatment participants can rely on the prediction. Everything 

else, including the relationship between cues and optimal decisions, is identical.  

To identify how the availability of the ML decision support in stage 1 affects participants’ capability to 

learn the hidden relation between cues and the optimal decision, i.e., develop decision-making skills, 

we implement a baseline condition of the experiment. The only difference between the outlined 

treatment condition and the baseline is that participants in the latter do not receive predictive decision 

support during the first six market simulations. By comparing the performance of participants who 

initially observe machine learning predictions (Treatment) to those who do not (Baseline), we are able 

to isolate the causal treatment effects. In the following, we fill in the important details of the market 

simulations that participants encountered. 

Details on market simulations 

In both stages of our experiment, participants encounter 6 market simulations each. After every market 

simulation, participants receive a detailed overview of all relevant information (cues, market states, 

predictions, and the fundamental economic situation) and their decisions, so that they can detect 

potential faults in their interpretation of cues (and predictions) and revise their strategy accordingly in 

the next simulation. Doing so is possible because the underlying randomization process and mechanisms 

are identical across all twelve simulations. The process works as follows. A market simulation comprises 

five consecutive rounds of decision making. At the beginning of a simulation, we flip a fair coin to 

determine the fundamental economic situation 𝐸 ∈ {𝐺, 𝐵} that can either be good (G) or bad (B). The 

randomization occurs on the individual level so that we can mitigate concerns about ordering effects. 

The economic situation 𝐸 is fixed for the five consecutive rounds of decision making comprised in a 

market simulation. For every round, we randomly draw one of two mutually exclusive market states 𝑚 

∈ {ℎ, 𝑙} from the distribution 𝑃𝐸 where 𝑝𝐺(ℎ) = 0.7, 𝑝𝐵(ℎ) = 0.3, and ℎ,𝑙 indicate respectively that the 

market is in a high or low state in a given round.3 Participants only become aware of the fundamental 

economic state at the end of a simulation, when they observe all information from the previous five rounds 

of decision making. Participants had an unlimited amount of time to examine the overview. Obtaining this 

information allows them to develop a more thorough understanding about how to interpret cues, especially 

after they have seen some market states in a given simulation. 

Details on rounds 

 
3 As the two possible market states are mutually exclusive, it holds that 𝑝𝐺(𝑙) = 0.3 and 𝑝𝐵(𝑙) = 0.7. 
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In every round of a given market simulation, participants’ objective is to figure out whether the 

unobserved market state 𝑚 is high or low, allowing them to identify the payoff maximizing investment 

decision 𝑑 ∈ {𝑟, 𝑓}. Participants have unlimited time to make a decision. If the market in a given round is 

in the high state ℎ, the optimal decision 𝑑∗(. ) is to invest in the risky asset 𝑟, i.e., 𝑑∗(ℎ) = 𝑟 yielding the 

payoff Π(r|h) = 4 monetary units (MU). By contrast, when the market is in the low state 𝑙, the optimal 

decision is to invest in the fixed income asset 𝑓, i.e., 𝑑∗(𝑙) = 𝑓, yielding the payoff Π(f|l) = 2 MU. The 

payoffs for the opposite decision equal Π(f|h) = 2 MU and Π(r|l) = 0 MU, respectively. With this 

specification, both decisions (ex-ante) yield the same expected payoff, i.e., are mutually attractive to 

risk neutral individuals.4 After making their decision, we inform participants about the actual market 

state in the given round. Apart from the extensive feedback participants receive after each decision and 

at the end of each simulation, they also observe all results from previous rounds of the current simulation 

in a table format while deciding in a given round (see screenshot in figure 2). Specifically, they always 

observe the expert cues, (the machine learning prediction,) and the actual market state of all prior rounds 

of the current simulation. By providing this information, we intend to facilitate learning without adding 

additional sources of noise such as participants capabilities to recall information from previous rounds. 

Notably, to ensure that participants are familiar with the task at hand before making their first payoff 

relevant decision, we let them engage in two trial rounds of decision making that we told them would 

not influence the remainder of the study. Participants engaged in the trial rounds right after reading 

through the instructions and before starting the first complete market simulation 

Details on cues 

While participants neither observe the current economic situation nor the current market state directly 

when making a decision, they observe four conditionally independent cues that can be accurate or 

inaccurate with different probabilities.5 Each cue can be high or low 𝑒1, 𝑒2, 𝑒3, 𝑒4 ∈ {ℎ, 𝑙}, indicating the 

state of the market. The cues are correlated with the market state, conditional on the fundamental 

economic situation so that they help participants anticipate the payoff maximizing decision. Note that 

the aggregate informational content of cues, and by extension the difficulty of correctly interpreting 

them, is by design the same in both economic situations. We only interchange the reliability of individual 

cues so that the logic is not too simple to detect as it is arguably the case if it is always the same cue that 

is accurate with the highest probability. The following table 1 outlines the probabilities with which 

certain cues are accurate. As illustrated, the cue 1 (Expert 1) is most reliable when the fundamental 

economic situation is good, whereas cue 2 (Expert 2) is most reliable if fundamental situation is bad. 

 

Cue by 
 Fundamental Economic Situation 

 Good Bad 

Expert 1  80% accurate 50% accurate 

Expert 2  50% accurate 80% accurate 

 
4 E(f) = 0.5*2 + 0.5*2 = 2 = 0.5*0.7*4 + 0.5*0.3*4 = E(r) 
5 The cues are independent given the fundamental economic situation and the market state. 
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Expert 3  38% accurate 65% accurate 

Expert 4  65% accurate 38% accurate 

Table 1: Summary of cue accuracies conditional on the fundamental economic situation. Note that we presented the cues to 

participants as opinions of human experts. 

We present these cues to participants as opinions from four fixed human experts, who give different 

good advice. To differentiate the cues sufficiently from other information on the screen, especially the 

ML prediction in the treatment, we assigned each expert an image of a fictitious person that we generated 

using a generative adversarial network by Karras et al. (2019). While we fixed the image-expert 

assignment across simulations for an individual participant, the order could randomly differ across 

participants.  

 

 

 

 

 

 

 

 

 

We also randomized whether participants observed four male or female images. With equal probability, 

participants either always observed the same images of four women or four men (we show screenshots 

in figures 2a and 2b). Notably, while the order might differ across participants as outlined, it is always 

the same four women and men that each participant could randomly see. For additional information on 

the generation of expert cues in our software refer to the appendix. 

With the overall structure of the logic involved and design, we are confident that the relationship 

between cues and the market states that participants are incentivized to learn is sufficiently cognitively 

Figure 2a: Illustration of the decision-making interface in the 

treatment condition. 
Figure 2b: Illustration of the decision-making interface in the 

baseline condition. 

Electronic copy available at: https://ssrn.com/abstract=4299664



 12 

challenging but, at the same time, follows simple enough rules so that participants can develop the 

knowledge over time if they exert effort. 

 

  

Details on predictive decision support system 

The predictive decision aid treatment participants have access to is a Random Forest classifier using the 

popular Python library Scikit-learn (Pedregosa et al. 2011). The final model comprises 200 individual 

learners, each with a depth of 3. We trained this model using a simple 2 step procedure. First, we 

randomly generated 1.000.000 data points each comprising the fundamental economic situation, the 

market state, and the four cues. The correlations in the generated data set are identical to the ones 

implemented in the experiment. Second, we optimized (5-fold cross-validation) and trained the Random 

Forest on a random subset of 750.000 data points and tested its performance on the remaining 250.000 

observations.  The final model’s accuracy equals 85.4%. We further tested the efficacy of the model by 

letting it compete with pilot participants (other researchers) unfamiliar with the underlying logic in 

controlled mock sessions of the experiment. The model consistently outperformed the pilot participants 

(9 out of 9 cases; 6 simulations each). 

To ensure that participants had the same perception and beliefs about the nature of the ML model, they 

received a detailed description of the model including the data we trained it on, its accuracy rate, the 

fact that it outperformed other humans, the type of model implemented, and examples of domains where 

Random Forests are frequently used.  

Experimental procedure 

We conducted an online experiment and recruited participants from Great Britain using the commercial 

platform Prolific. We ran the study at the end of October 2021. The study procedure consisted of three 

parts.  

First, we randomly assigned participants to the treatment or baseline condition with equal probability. 

The study began with a pre-experimental survey containing questions about participants’ socio-

demographics and several items on their familiarity with and attitude towards predictive software. The 

answers to these questions serve as a randomization check and as additional co-variates in some analyses 

(see table 4 in the appendix for an overview).  

Second, participants received instructions on the upcoming task. Participants had unlimited time to read 

the instructions carefully. After reading the instructions and before the first market simulation started, 

participants engaged in two trial rounds of investment decision-making so that they would already be 

familiar with the interface and structure of decision-making. Subsequently, participants started with 

stage 1 as outlined above. Notably, we explicitly informed subjects that there would be another part of 

the experiment – even though we did not tell them the exact nature of it – and that learning to understand 

how cues relate to market states will be materially beneficial. To make sure that participants’ 
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concentration did not drop, we introduced an attention check after three market simulations, which we 

control for in our analyses.  

Third, after they finished with the first six rounds, we informed participants that they had to work on 

another six puzzles. The instructions explicitly state that the next puzzles have the identical structure as 

before and that participants can use the learned pattern to identify the payoff maximizing decision in a 

given round. Again, we implemented a simple attention check after three puzzles. After stage 2, the 

experiment ended with informing participants about their overall earnings. 

Overall, 291 different individuals participated in our experiment. The randomized treatment assignment 

resulted in 149 treatment and 142 baseline participants. We observe the behavior of each individual 

across 12 simulations each comprising 5 rounds, i.e., 17.460 individual decisions. On average, it took 

participants 31 minutes to complete the experiment. In addition to a fixed participation fee of 2 Euro, 

we paid participants a bonus according to their investment performance across stages 1 and 2. 

Specifically, we added up the entire amount of MU participants earned through their decisions. For 

every MU, we paid participants 2 Euro cents. The average bonus amounted to 2.97 Euro (approx. 148 

MU) so the overall average income equaled 4.97 Euro (9.62 Euro/hr). 

 

4. Results 

In this section, we present our results in two parts. First, we begin our analyses on an aggregate level 

examining how the availability of predictive decision support affects participants’ decision-making 

performance in the two parts of the experiment. Second, we study how participants’ decision-making 

performance evolves across market simulations. Third, we test for the presence of treatment 

heterogeneities to gain insights into the origins and circumstances under which ML decision support 

affects participants’ development of decision-making skills. 

Decision making performance across parts 

Figure 1 depicts the average frequency with which baseline and treatment participants made a payoff-

maximizing decision in the two stages of our experiment. A decision maximized a participant’s payoff 

if she invested her endowment in the stock whenever the market was in a high state and the bond 

otherwise. Participants’ performance arguably depended on recognizing the hidden relationship between 

the unobserved market state and observed cues from experts. Therefore, we argue that the trajectory of 

this measure across market simulations reflects participants’ decision-making skills. This argumentation 

is conceptually in line with the learning goal orientation leading an individual to increase the level of 

performance in a given activity (Button et al. 1996). 
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Figure 3: Participants’ investment decision performance in the two parts of the experiment rounds. Bars represent average 

shares of payoff maximizing decisions. Error bars depict 95% confidence intervals of averages. We show results separately 

for baseline and treatment participants. 

On average, in stage 1 of our baseline condition, participants chose the payoff-maximizing investment 

decision 60.2% of the time. Thus, on average, participants chose the option with the highest payoff in 3 

out of 5 decisions they had to make per market simulation. This ratio is significantly better than random 

guessing, suggesting that baseline participants took advantage of the cues provided by the experts 

(p<0.01, Wilcoxon signed-rank test). In addition to the expert cues, treatment participants observed ML 

predictions about the market state in stage 1. On average, they made a payoff-maximizing decision 

71.7% of the time. Therefore, the availability of the ML decision led to an average increase in investment 

performance by 11.5 percentage points in stage 1. This difference is economically (+19.1%) and 

statistically highly significant (p<0.01, Chi2-test), emphasizing that having access to a predictive 

decision aid did make treatment participants considerably better off.  Additional regression analyses 

reveal that treatment participants placed significantly more weight on the observed ML prediction than 

on the expert cues, providing evidence that they did not see the ML output as another expert. 

Note that treatment participants' performance is significantly lower than the prediction accuracy, which 

equals 84.8% (p<0.01, Wilcoxon signed-rank test), implying two things. On the one hand, at least some 

treatment participants did not always follow observed predictions but overruled them from time to time. 

On the other hand, they could have performed even better had they relied on the ML decision aid more 

frequently. Hence, treatment participants did not use the available predictions to their full potential.  

Turning to participants’ performance in the second stage, we find that baseline participants’ average 

likelihood of making a payoff maximizing decision increased significantly by 4.9 percentage points to 

65.1% from stage 1 to stage 2 (+8.1%; p<0.01, Wilcoxon signed-rank test). Because the randomization 

of market states and the relation between expert cues and market states are identical in the two stages, 

the enhanced performance arguably reflects an improvement in their decision-making skill. When 

looking at the performance of treatment participants, we find that they, on average, made a payoff-

maximizing decision in 61.9% of the cases. Relative to their baseline counterparts, treatment participants 
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were, on average, 3.2 percentage points less likely to choose the most profitable investment option. This 

difference amounts to 5.2% and is statistically significant (p<0.01, Chi2-test). Put differently, while 

observing ML predictions in stage 1 made treatment participants significantly better off, they performed 

significantly worse than baseline participants once we discontinued the additional decision support in 

stage 2. This observation suggests that the availability of the ML decision aid in stage 1 latently impeded 

treatment participants’ skill development. This adverse effect came to light once we discontinued the 

ML decision support system. Result 1 summarizes the findings outlined thus far: 

 

Result 1: The availability of ML decision support in stage 1 causes treatment participants to exhibit a 

significantly higher investment performance than baseline participants in stage 1 (while using the 

decision aid), however, a significantly lower one in stage 2 (post-discontinuance). 
 

Before moving on to a more nuanced analysis at the individual level, one final comment seems 

appropriate. Figure 3 shows that treatment participants’ investment performance averaged across all 

simulations is significantly higher than that of baseline participants (respectively 66.8% vs. 62.7%; 

p<0.01, Chi2-test). Even though this observation depicts the efficacy of the ML decision support, 

outlined results show that the initial decision support harmed participants’ performance when the 

discontinuance occurred. This documented mechanism can be particularly harmful in situations in which 

a suboptimal decision is hard to reverse or has considerably negative consequences, e.g., undetected 

money laundering by supervisory agents, misdiagnosed serious diseases by physicians, or inadequate 

financial risk assessments by banks. 

 

Skill development across simulations 

We next examine the development of participants’ performance across consecutive market simulations. 

These more nuanced analyses provide insights into the development of participants’ decision-making 

skills. 

Figure 2 shows the average frequency with which participants made payoff-maximizing decisions in the 

twelve consecutive market simulations. We present results separately for the baseline and treatment 

conditions. The dashed vertical line separates stages 1 and 2, which comprise simulations one through 

six and seven through twelve, respectively. In other words, the dashed vertical line illustrates the point 

in time when we discontinue the decision aid for treatment participants. 
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Figure 4: Participants’ investment decision performance across consecutive market simulations. Marked lines show the 

average share of payoff maximizing decisions per simulation. The line marked with a circle shows results for baseline 

participants, while the line marked with a triangle depicts results for treatment participants. The dashed red line separates 

stage 1 and stage 2 (respectively left and right). Error bars depict 95% confidence intervals of averages. 

Figure 4 indicates that the frequency with which baseline participants’ chose the payoff maximizing 

investment increased gradually from 55.6% to 63.8%. (+14.7%) across the six consecutive market 

simulations in stage 1. This observation strongly supports the notion that baseline participants 

increasingly understood and exploited the underlying relation between expert cues and market states 

over time, i.e., their decision-making skills improved over time. Notably, the steepest increase in 

performance occurred across the first four market simulations. From simulation four onwards, the 

performance was rather steady at an average of about 64%.  

 
Dep. Variable: (1) (2) 

Payoff maximizing decision Baseline Treatment 

No. simulation  0.019*** 0.007* 

 (0.007) (0.005) 

   

Stage 2 0.122*** -0.080*** 

 (0.035) (0.026) 

   

No. simulation*Stage 2 -0.021*** -0.005 

 (0.008) (0.007) 

p-value of F-test: 

No. simulation + No. simulation *Stage 2 

0.6 0.71 

Expert and state controls YES YES 

Observations 8520 8940 

p 0.000 0.000 

R-squared 0.046 0.060 
 

Table 2: OLS regression with individual and round fixed effects. Column (1) shows estimates for the subsample of baseline 

participants, whereas column (2) shows results for treatment participants. We report robust standard errors in parentheses. 

The dependent variable is a dummy indicating whether a participant chose the payoff maximizing option in a given investment 

scenario. We also include, but do not explicitly report, control variables for the observed expert cues and the unobserved 

market state. We denote significance levels as *p<0.1, **p<0.05, ***p<0.01. 

Fixed effects OLS regressions corroborate the patterns observed in figure 4 (see table (2)). In both 

columns, we regress a dummy indicating a payoff maximizing choice on the simulation number, a stage 

dummy, and their interaction term. We further include individual and round fixed effects, controls for 
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expert cues, and unobserved market state controls. Estimates in column (1) show results for baseline 

participants, confirming statistically that their performance increased significantly by about two 

percentage points per market simulation in stage 1. However, the interaction term reveals that the time 

trend in stage 2 was significantly lower. An F-test confirms that the overall time trend in stage 2 is not 

significantly different from 0 (p=0.6), i.e., the development of skills stagnated. 

When examining the performance development of treatment participants, we find that their performance 

increased from 68.7% in simulation one to 73.9% in simulation six (+7.6%). Regression analyses reveal 

that this time trend is weakly statistically significant (see column (2) of the table (2)) but significantly 

smaller than the trend we observe for baseline participants (p<0.05, F-test). In stage 2, we do not find 

treatment participants’ decision performance to change significantly over market simulations. The 

frequency with which they made payout-maximizing decisions appears to have leveled off at around 

61%. Notably, the average performance of treatment participants per market simulation was consistently 

lower than that of baseline participants. The difference in performance is especially evident in 

simulations seven and eight (66.1% versus 61.3% and 65.2% versus 60.9%, respectively). This gap, 

however, gradually declined across subsequent simulations (see table 3 for a statistical overview). 

Hence, post-discontinuance, treatment participants caught up to the performance of their baseline 

counterparts. This trajectory may indicate that treatment participants developed decision-making skills 

gradually once they could no longer rely on ML predictions. 

 Number of market simulation 

Avg. Stage 1  Stage 2 

performance 1 2 3 4 5 6  7 8 9 10 11 12 

Treatment 0.56 0.57 0.59 0.63 0.63 0.64  0.66 0.65 0.66 0.64 0.65 0.65 

              
Baseline 0.69 0.73 0.7 0.74 0.71 0.74  0.61 0.61 0.64 0.62 0.61 0.63 

Est. difference  0.14*** 0.18*** 0.14*** 0.11*** 0.07*** 0.09***  -0.05* -0.06** -0.03 -0.02 -0.04 -0.01 

OLS regression (0.026) (0.026) (0.026) (0.025) (0.026) (0.025)  (0.027) (0.027) (0.026) (0.026) (0.026) (0.026) 

 

Table 3: Summary statistics of participants’ investment performance across simulations and OLS estimates of treatment 

differences. The dependent variable of OLS regressions is a dummy indicating whether a participant chose the payoff 

maximizing option in a given investment scenario for the given market simulation. We also include, but do not explicitly report, 

control variables for the observed expert cues, the unobserved market state, and personal characteristics. We report robust 

standard errors in parentheses and denote significance levels as *p<0.1, **p<0.05, ***p<0.01.  

At this point, it is worthwhile to elaborate on the weakly significant, yet positive time trend for treatment 

participants in stage 1. While one may be inclined to interpret this finding as evidence that their decision-

making skills improve, further analyses of treatment participants’ propensity to overrule observed ML 

predictions point in another direction (see table 4 in the appendix). First, we find that participants’ 

inclination to overrule the ML prediction decreased significantly with the number of market simulations 

(see column (1) of table 5 in the appendix). Given that the average prediction accuracy equals 84.8%, 

following predictions more frequently naturally increased the performance. Second, treatment 

participants did not become more capable of detecting when a prediction was inaccurate. If anything, 

the opposite appears to be true. Regression analyses show that the probability of overriding incorrect 

ML predictions decreased over the course of the simulations (see column (2) of table 5 in the appendix). 

Hence, it does not seem to be the case that treatment participants’ higher inclination to rely on ML 

predictions resulted from a more general understanding of how to use expert cues to determine when to 
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follow or overrule an ML prediction. Together, these insights suggest that treatment participants’ 

performance increase in stage 1 did neither stem from an increased understanding of the relation between 

expert cues and the market state, nor from an increased understanding of when the decision aid was 

inaccurate. Instead, it appears more plausible that they increased their reliance on ML prediction across 

market simulations.  

In sum, these results suggest that participants exhibit lower decision-making performance in Stage 2 

because the initial availability of ML predictions impeded the development of decision-making skills. 

Notably, treatment participants caught up to the performance of baseline participants over the course of 

stage 2. In practice, however, the time required to catch up may not be available to decision-makers – 

or only at considerable costs – who unexpectedly lose access to predictive decision support in a 

consequential decision scenario outside the safe space of a controlled experiment. 

 

Result 2: The availability of ML predictions impeded the development of decision-making skills. 

Treatment participants increasingly adhered to observed ML predictions. The lowered decision-making 

skills came to light when the ML system got discontinued. 

 

Skill development and trust in the ML decision support system 

In the final part of our analyses, we study whether there exist heterogeneities in the extent to which the 

initial availability of ML predictions impedes the development of decision-making skills. Conceptually, 

our starting point is the notion that the degree to which an algorithmic decision aid impedes learning 

depends on users' (over)reliance on the system. 

Previous research documents that people try to exert the least amount of cognitive effort that is still 

acceptable in a given situation (see, e.g., Fiske and Taylor 1991; Garbarino and Edell, 1997). As outlined 

before, the predictions provide treatment participants with a shortcut for identifying a production rule 

indicating the payoff maximizing decision. Put differently, predictions constitute a decision heuristic 

that economizes cognitive effort and developing skills. Naturally, the more participants blindly rely on 

the heuristic instead of processing expert cues, the less likely they gain a thorough understanding of 

their relation to the optimal decision. In the context of our study, we would, therefore, expect to find 

stronger treatment effects for participants who rely more on ML predictions (see figure 5 for an 

overview). 

 
 

Figure 5: Illustration of research model that motivates analyses of treatment heterogeneities. 
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The question, however, is how to operationalize such a test given that reliance on the system arguably 

develops endogenously over time. In our analyses, we exploit a combination of two facts: (i) people’s 

documented propensity to be especially averse to ML predictions after seeing them being incorrect 

(Dietvorst et al. 2015; 2018), and (ii) the fact that participants observe errors randomly due to our 

individual-level randomization of market states and expert cues. Specifically, we very conservatively 

distinguish treatment participants based on whether the very first prediction they observe turns out to be 

incorrect and examine the impact of this random event on their performance in stages 1 and 2. 

 

 
Figure 6: Participants’ investment decision performance in the two parts of the experiment rounds. Bars represent average 

share of payoff maximizing decisions. Error bars depict 95% confidence intervals of averages. We show results separately for 

baseline participants, high type treatment participants, and low type treatment participants. 

In our treatment condition, 12.1% of participants encountered an incorrect prediction during their very 

first investment decision. We refer to these participants as low types and the remaining ones as high 

types. Importantly, a prediction error in the first decision is not correlated with future errors. After the 

first decision, low and high types observe prediction errors in 15.7% and 15.2% of the cases, respectively 

(p=0.77, Chi2-test). Despite prediction error rates being virtually identical for subsequent rounds in part 

1, we find that low types (25.9%) were significantly more likely than high types (20.4%) to overrule a 

prediction (p<0.01, Chi2-test). Therefore, we argue, that low types indeed relied significantly less on 

the prediction. Did this reliance indeed affect participants’ development of skills? Figure 6 provides 

insights into this question, depicting the average decision performance for baseline participants, and 

high and low type treatment participants. 

In stage 1, high and low treatment participant types made a payoff maximizing investment decision in 

72.1% and 69.2% of the cases, respectively. The difference is statistically insignificant (p=0.17, Chi2-

test). Hence, even though low types relied significantly less on the highly accurate prediction, their 

performance, if anything, only decreased marginally in stage 1. We further find that high and low type 

treatment participants performed significantly better than baseline participants (p<0.01 for both, Chi2-

test).  
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When looking at the second stage, we find evidence for the existence of treatment heterogeneities. While 

high type treatment participants, on average, made a payoff maximizing decision in 61.4% of the cases, 

their low type counterparts did so 65.4% of the time (+6.5%). A Chi2-test shows that this difference is 

statistically significant (p<0.08). Therefore, our results provide some evidence that the lower reliance 

on observed predictions in stage 1 appears to be associated with a higher decision-making performance 

in stage 2. We further find that the performance of low type treatment participants in stage 2 is not 

significantly different from the one of baseline participants (p=0.9, Chi2-test). By contrast, high type 

treatment participants performed significantly worse than baseline participants in stage 2 (p<0.01, Chi2-

test). 

In sum, the outlined evidence suggests that treatment participants who saw the decision aid make a 

mistake right at the beginning developed more decision-making skills than their high type counterparts. 

Our analyses on treatment heterogeneities support the notion that the impediment of skill development 

increased with participants’ blind adherence to predictions. One implication of this finding is that one 

may mitigate the negative impact of (predictive) decision aids on skill development processes by 

enhancing (and maintaining) users’ awareness of the system’s potential to be wrong. 

 

Result 3: By reducing treatment participants’ reliance on the predictive decision aid, initially observing 

an incorrect ML prediction mitigated the impediment of the skill development process. 

 

5. Discussion and Conclusion 

While there is evidence that ML-based predictive decision support can effectively improve employee 

performance in organizations (see, e.g., Berente et al. 2021), there is reason to suspect that the 

implementation of such systems adversely affects the development of decision-making skills. With the 

growing use of such systems in organizations, it becomes ever more imperative to understand whether, 

and if so when, such negative ramifications come to light. The paper at hand contributes to this endeavor 

by examining the influence of ML-based decision support on skill development in a controlled 

experimental setting. 

We produce evidence that the provision of ML predictions impedes the development of decision-making 

skills so that ML system users exhibit relatively lower decision-making performance once a system 

discontinuance occurs. Notably, we find that users increasingly follow ML predictions over time, 

without learning when to overrule them. We further provide evidence that the degree to which users 

“blindly” follow observed predictions shapes the ultimate lack of skill in the post-discontinuance phase. 

Our findings complement previous studies from the automation and information system discontinuance 

literature that document deskilling effects and drops in post-discontinuance performance caused by 

expert system decision support (Stone 2007; McCall et al. 2008; Soliman and Rinta-Kahila 2020;). We 

provide evidence that the effects previous research has documented in the domain of expert systems 

largely transfer to ML-based decision support characterized. Specifically, our results relate to McCall 

et al. (2008) who find that the use of knowledge-management systems affects the development of 

Electronic copy available at: https://ssrn.com/abstract=4299664



 21 

declarative knowledge of users. Our results also relate to Rinta-Kahila et al. (2018) who observe 

deskilling effects for accountants who had access to a knowledge management system that functioned 

as a decision aid. Complementing their finding on expert systems, we also observe that ML decision 

support impedes the development of skill right from the beginning which comes to light once human 

users lose access to the decision aid. This evidence further emphasizes the importance of studying IS 

discontinuance effects.  

Our results further suggest that participants gradually increase their reliance on the ML system over 

time, without getting better at detecting when predictions are incorrect. Hence, individuals do not seem 

to invest cognitive efforts in developing knowledge about the system but become increasingly 

complacent in blindly adhering to what the system says. This observation accords with previous studies 

reporting declining cognitive efforts of people who can constantly rely on technological support 

(Mendoza 2018; Lee et al. 2021). Sparrow (2011), for instance, coined the term “Google effect” after 

investigating the recall of words people typed into a computer. People knowing that the word is 

retrievable later performed worse in remembering the facts than those aware that the computer will not 

store the information. In a similar vein, the Kaspersky Lab (2017) described the tendency to forget 

information stored on a trusted device as “digital amnesia”. Relatedly, our analyses on treatment 

heterogeneities suggest that such adverse effects depend on individuals’ perceptions about the 

performance of the computerized decision aid. In our experiment, participants who saw the system make 

a mistake right at the beginning were less likely to rely on the support and seemed to develop better 

decision-making skills. This evidence complements previous research on the factors influencing the 

occurrence of deskilling effects (see, e.g., Orlikowski and Barley 2001, Orellana 2015) and contributes 

to reconciling contradicting evidence on the absence of deskilling in certain domains (see, e.g., Sayed 

2006). 

The twofold effect that ML decision support initially enhances individuals’ performance but comes at 

the expense of developing decision-making skills constitutes a dilemma for organizations that consider 

implementing ML decision support. Contemporary ML models trained on historical data become 

inaccurate if disruptions and changes in the data distributions, i.e., concept drifts, occur (Widmer and 

Kubat 1996; Gama et al. 2014). In such a situation, employees can no longer rely on the predictive 

decision aid which means that there is an unintended, exogenous system discontinuance disrupting the 

decision process (Soliman and Rinta-Kahila 2020). Employees must cope with the absence of the ML 

decision aid and make informed decisions on their own until enough new data encoding the novel data 

distribution is collected so that the ML model can adapt itself, e.g., via retraining or updating. Only after 

such a transmission phase of human expert decision-making and an update of the ML model, the ML 

decision aid can again reliably support the corresponding business process. Put differently, the ML 

models’ reliability, in the long run, requires human expertise. According to our results, however, the 

growing implementation of ML decision aids in organizations might reduce the expertise within 

organizations. As a consequence, the improvement of existing ML support systems may be inherently 
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limited due to the adverse effects on the development of decision-making skills. Contrary to suggestions 

by prior research that contemporary (AI-) technologies help us improve our cognitive potencies (e.g., 

Wilson and Daugherty 2018), our results depict a potential pitfall and advocate for more careful use of 

these technologies. Thereby we contribute to a nascent stream of papers that report challenges related 

to using ML applications. Fügener et al. (2021), for instance, show that the use of ML applications may 

reduce decision-making individuality, creating a convergence toward similar behaviors in the aggregate. 

Kane et al. (2021) even foreshadow the loss of human control over ML systems, painting a dark picture 

of the dawn of a machine-dominated age in which humans have no decision autonomy (see also 

Hirschheim et al. 1991). However, two observations may provide a possible silver lining to this rather 

dim perspective. First, it appears as if treatment participants’ post-discontinuance performance slightly 

recovers over time. In cases where suboptimal decisions do not weigh strongly, employees may 

constructively adapt to the disrupted process and (re-)develop their skills. Second, we find that 

participants’ blind reliance on predictions permanently decreases if they initially see the system err. This 

pattern implies that there is a value to increasing and maintaining individuals’ awareness of the ML 

systems’ error susceptibility to mitigate skill development concerns. In that regard, organizations might 

benefit from implementing training programs, guidelines, or instructions emphasizing the support 

system’s imperfection. Moreover, participants who initially see the system make a mistake still reap 

considerable benefits from having access to the predictions. Hence, there might exist such a thing as 

“the right amount” of predictive decision support, where short-term productivity is elevated, and long-

term adverse effects on knowledge development are contained. 

Our results also have practical implications for managers who decide about the implementation of ML 

decision support. On the one hand, the insight that ML decision aids can impede the development of 

skills suggests that managers are well-advised not to implement such systems in domains where 

employees have to execute an assortment of distinct yet inherently related and complementary tasks. 

Providing employees with an ML decision aid for one of the tasks can impede the development of skills 

and thus negatively affect the performance across tasks. On the other hand, the impediment to skill 

development under ML decision support is naturally relevant to the training of novices, young 

professionals, and career starters. In domains where these novel employees need to develop a 

comprehensive understanding of the workings of interlinked organizational processes, it might be 

advisable to train them with limited access to ML decision aids so that they can make better decisions 

from the start, however, also develop fundamental decision-making skills. 

As with any study, there are limitations to this paper. While decreasing the generalizability of our results, 

these limitations can serve as an inspiration for future research. One limitation naturally stems from the 

controlled experimental design. Even though our design allows us to isolate effects, it may not be 

representative of the development of decision-making across the entire range of the professional 

environment. That is because we use a relatively simple logic puzzle and recruit a pool of participants 

from the Prolific platform to study causal deskilling effects. One might argue that this setting is 
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reasonably representative of gig-workers or low-skill workers in routine environments (e.g., Uber 

drivers, or clerical office workers) but not for high-skilled professionals such as managers. Against this 

background, one fruitful avenue for future research is to study the existence of deskilling effects on the 

employment of predictive systems in the managerial domain (e.g., considering predictive due diligence 

assessments before mergers). Another direction to go is to test how ML-based decision support interacts 

with previously developed skills. That is, how do trained individuals’ skills and decision performance 

change in response to providing ML-based decision support, and what happens if they encounter a 

system discontinuance? 

Another limitation of our study is that we cannot directly measure reskilling effects, i.e., to what extent 

participants can become more proficient in understanding the workings of the decision support system. 

For the most part, that is because the ML decision support offered is a black box system. The black-box 

nature of many modern ML systems has adverse effects in many domains, for instance, on user trust or 

users' ability to detect errors (see, e.g., Gregor and Benbasat 1999; Pearl 2019; Rosenfeld and 

Richardson 2019). Current developments in the field of eXplainable Artificial Intelligence provide 

methods designed to counter these problems (see, e.g., Bauer et al. 2021). The implementation of 

explainability measures may be paramount to counter adverse skill development effects. Future research 

should put this notion to the test, especially due to the growing number of regulations prohibiting the 

use of black-box ML systems in certain areas. 

Finally, our study cannot provide any guidance regarding an optimal level of ML decision support. Our 

results depict the existence of meaningful treatment heterogeneities when it comes to system reliance. 

These insights may suggest that there is such a thing as “the right amount” of predictive decision support, 

where short-term productivity is elevated, and long-term deskilling effects are contained. Future 

research may move beyond examining the repercussions of dichotomously deciding about implementing 

computerized decision support and consider the provision of decision support on a more continuous 

scale. One possible avenue would be to test the effectiveness of computerized decision support provided 

only at the explicit request of the user, i.e., when the effort required to obtain the support varies. 
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Appendix 
 

Additional material 
 

Category Item Overall Treatment Baseline p-value 

Socio-

demographic 

information 

How old are you? 

26.2 25.6 26.8 p=0.23 

(Wilcoxon 

ranksum test) 

Please indicate your 

gender. 

Female: 0.64 

Male: 0.36 

Female: 0.67 

Male: 0.33 

Female: 0.6 

Male: 0.4 

p=0.24 (Chi2-

test) 

How many years of 

working experience 

do you have? 

4.8 4.33 5.28 p=0.395 

(Wilcoxon 

ranksum test) 

Please indicate your 

highest degree. 

No degree: 0.01 

Secondary school: 

0.06 

High school: 0.37 

Bachelor: 0.39 

Master: 0.15 

Ph.D.: 0.02 

 

Secondary 

school: 0.06 

High school: 0.38 

Bachelor: 0.39 

Master: 0.16 

Ph.D.: 0.01 

No degree: 0.02 

Secondary 

school: 0.06 

High school: 0.37 

Bachelor: 0.39 

Master: 0.15 

Ph.D.: 0.01 

p=0.94 

(Kolmogorov-

Smirnov test) 

Risk 

aversion 

I enjoy being daring. 

4.6 4.7 4.54 p=0.417 

(Wilcoxon 

ranksum test) 

I take risks. 

4.78 4.9 4.62 p=0.03 

(Wilcoxon 

ranksum test) 

I am looking for 

danger. 

2.32 2.2 2.42 p=0.31 

(Wilcoxon 

ranksum test) 

Technology 

anxiety 

I feel apprehensive 

about using 

technology. 

3.08 3.04 3.11 p=0.71 

(Wilcoxon 

ranksum test) 

Technical terms 

sound like confusing 

jargon to me. 

3.06 3.12 2.99 p=0.48 

(Wilcoxon 

ranksum test) 

I have avoided 

technology because it 

is unfamiliar to me. 

1.69 1.63 1.75 p=0.34 

(Wilcoxon 

ranksum test) 

I hesitate to use most 

forms of technology 

for fear of making 

mistakes I cannot 

correct. 

1.95 1.85 2..05 p=0.38 

(Wilcoxon 

ranksum test) 

Other 

Do you have a 

background in 

computer science? 

0.3 0.31 0.3 p=0.81 (Chi2-

test) 

Please tell us, in 

general, about your 

programming skills, 

using a scale from 0 

to 10, where 1 means 

no skills at all and 10 

means expert. 

2.9 3.07 2.75 p=0.29 

(Wilcoxon 

ranksum test) 

Please tell us, in 

general, about your 

machine learning 

expertise, using a 

scale from 0 to 10, 

where 1 means no 

expertise at all and 10 

means expert. 

3.18 3.46 2.89 p=0.04 

(Wilcoxon 

ranksum test) 

Human trust 

4.73 4.62 4.85 p=0.2 

(Wilcoxon 

ranksum test) 

Electronic copy available at: https://ssrn.com/abstract=4299664



 32 

Machine trust 

4.58 4.49 4.68 p=0.36 

(Wilcoxon 

ranksum test) 

Experience with 

investing 

2.77 2.93 2.61 p=0.01 

(Wilcoxon 

ranksum test) 
 

Table 4: Overview of survey items. We report overall measures, and measures separately for treatment and baseline 

participants. We provide test statistics on treatment differences as randomization checks.. 

 

 
 (1) (2) 

Dep. variable: Overrule 

prediction 

Overrule incorrect 

prediction 

No. simulation -0.016*** -0.003* 

 (0.003) (0.002) 

   

Prediction 0.018 -0.012 

 (0.018) (0.011) 

Expert and state controls YES YES 

Observations 4470 4470 

p 0.000 0.030 

R-squared 0.194 0.063 

Adj. R-squared 0.164 0.028 
 

Table 5: OLS regression with individual and round fixed effects. Both regression models are estimated on the subsample of 

treatment participants in stage 1. The dependent variable in column (1) is a dummy indicating whether a participant overruled 

the observed prediction in a given round. In column (2) the dependent variable is a dummy indicating whether a participant 

correctly overruled the observed prediction in a given round. The independent variables indicate the simulation round and the 

observed prediction. We also include, but do not explicitly report, control variables for the observed expert cues and the 

unobserved market state. We denote significance levels as *p<0.1, **p<0.05, ***p<0.01. 
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Additional information on the experiment 

 
To generate combinations of the economic situation, market states, and signals we used the python 

library random. The procedure for both training data generation and the data generation in the study 

worked as depicted in the following code example: 

 

 
Figure 7: Python code for market state and expert signal generation. 

 

Experimental Instructions 
 

General instruction: 

 

This experiment comprises two subsequent stages. In both parts, you will have to make a series 

of choices between investing into either a stock or bond. Contingent on your choice, you earn 

monetary units. The number of units you earn in every decision is summed up at the end of the 

experiment. For every monetary unit you have earned, you are paid 2 Eurocents. In addition, 

you will receive a fixed income of 2 Euros for your participation. 

 

Example 1: Assume you earn 280 monetary units in the experiment. Your ultimate income in 

the experiment, which you are paid out, equals: 280*0.02 + 2 = 7.60 Euros. 

 

Example 2: Assume you earn 220 monetary units in the experiment. Your ultimate income in 

the experiment, which you are paid out, equals: 220*0.02 + 2 = 6.40 Euros. 

 

Electronic copy available at: https://ssrn.com/abstract=4299664



 34 

Please make your decisions carefully as they determine your ultimate income that you receive 

at the end of the experiment. The use of any decision support which is not provided on screen 

is strictly forbidden. 

 

 

 

 

 

Instruction part 1: 

 

Your task: 

  

You participate in 6 asset market games. Each game consists of 5 consecutive rounds. In every 

round, you can invest in one of two assets: 

- A risk-free bond that is always paying 2 monetary units for certain. A bond is a fixed 

income instrument that represents a loan made by an investor to a borrower (typically 

corporate or governmental) that traditionally pays a fixed interest rate (coupon) to 

investors. 

- A risky stock which is either paying 0 (Low Payoff) or 4 (High Payoff) monetary units. 

 

The probability that an investment into the stock yields the high payoff (4 units), depends on 

the stock's fundamental state, which you only observe at the end of the five rounds. With an 

equal probability (50% / 50%), the fundamental state can either be good, or bad. Depending on 

the market fundamental state, the probability of high and low payoffs looks as follows: 

- Good state: If the stock is in a good state, the probability for the high payoff equals 70%. 

This is, with a chance of 70% you receive the payoff of 4, and with 30% you receive 

the payoff of 0. 

- Bad state: If the stock is in a bad state, the probability for the high payoff equals 30%. 

This is, with a chance of 30% you receive the payoff of 4, and with 70% you receive 

the payoff of 0. 

 

The fundamental state is the same across the 5 consecutive rounds and may only vary across 

the seven asset market games. 

 

 

Available information  

 

In every round, before you make your decision, you observe expectations about the stock’s 

payoff in the given round from 4 independent experts. 

Each expectation can either say High Payoff, or Low Payoff, indicating the expert’s expectation 

about the stock’s payoff in this round, which can be correct or incorrect. 

 

Important: There exists a pattern behind the expert expectations, which does not change 

throughout the entire experiment. If you have figured out the underlying patterns, the 

expectations can help you identify when the stock will yield a high payoff. Understanding the 

pattern will be useful throughout the experiment by helping you to maximize your personal 

income. 

 

[BEGIN: TREATMENT ONLY] 

In addition to the expectations of the four experts, you observe the prediction of a Machine 

Learning System that was trained to predict the stock’s payoff in a given round based on the 
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four experts’ stated expectations. In other words: The Machine Learning System was designed 

to recognize the underlying pattern of expert expectations. 

 

The Machine Learning System was trained and tested on 1.000.000 distinct observations. Each 

observation comprised the four expectations of the experts as independent variables and the 

stock’s actual payoff as dependent variable. In a test, the trained Machine Learning System 

correctly predicts the stock’s payoff in a given round in more than 85% of the cases. In several 

tests, the Machine Learning System systematically outperformed other researchers when it 

comes to correctly predicting the stock's payoff. Below you can find additional information 

about the structure of the system. We use a Random Forest Learning model.  

 

Additional Information about the Machine Learning System  

 

The Random Forest is one of the simplest, yet one of the most powerful machine learning 

models for classification. In the context of the experiment, classification refers to correctly 

predicting whether the stock will yield a high payoff or low payoff. 

 

Random Forests are an ensemble learning method for classification, regression and other tasks 

that operates by constructing a multitude of decision trees at training time (Wikipedia). Each 

individual decision tree makes a single prediction. The majority prediction of the set of trees 

determines the ultimate prediction of the Random Forest. In other words: the forest uses the 

"wisdom of the crowd".  

 

In this experiment, the Random Forest computes the probability that the stock will yield a high 

payoff. In other words, the model captures the underlying relationship between experts’ 

expectations and the stock’s actual payoff and can therefore help you make the payoff 

maximizing choice. You are only shown a High Payoff prediction if the probability for this 

event is the maximum. Otherwise, you are shown a Low Payoff prediction.  

 

Some real-world applications: 

 

E-Commerce 

- Product Recommendation 

- Price Optimization 

 

Stock Market 

- Stock Market Prediction 

- Stock Market Sentiment Analysis 

 

Healthcare and Medicine 

- Cardiovascular Disease Prediction 

- Diabetes Prediction 

 

If you have further questions regarding the Machine Learning System or would like to obtain 

the entire code, please contact our research team on Prolific or via mail: [blinded for peer 

review] 

 

 

[END: TREATMENT ONLY] 
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To ensure that you understand the task at hand, there will be two mock rounds of investment 

decisions, before the main part of the experiment starts. Note that the results of these mock 

rounds will not be paid out. 

 

 

 

 

 

Instruction part 2: 

 

You have finished part 1. Part 2 is about to start. Below you find instructions for the second 

part of the experiment. 

 

Your task 

You again participate in 6 asset market games. The games have the identical structure as before 

 

[START: TREATMENT ONLY]  

except for the fact that you do not observe predictions of the Machine Learning System 

anymore. 

[END: TREATMENT ONLY] 

 

Each game consists of 5 consecutive rounds. As before, you can always invest in one of two 

assets: 

- A risk-free bond that is always paying 2 monetary units for certain. A bond is a fixed 

income instrument that represents a loan made by an investor to a borrower (typically 

corporate or governmental) that traditionally pays a fixed interest rate (coupon) to 

investors. 

- A risky stock which is either paying 0 (Low Payoff) or 4 (High Payoff) monetary units. 

 

The probability that an investment into the stock yields the high payoff (4 units), depends on 

the stock's fundamental state, which you only observe at the end of the five rounds. With an 

equal probability (50% / 50%), the fundamental state can either be good, or bad. Depending on 

the market fundamental state, the probability of high and low payoffs looks as follows: 

 

- Good state: If the stock is in a good state, the probability for the high payoff equals 70%. 

This is, with a chance of 70% you receive the payoff of 4, and with 30% you receive 

the payoff of 0. 

- Bad state: If the stock is in a bad state, the probability for the high payoff equals 30%. 

This is, with a chance of 30% you receive the payoff of 4, and with 70% you receive 

the payoff of 0. 

 

The fundamental state is the same across the 5 consecutive rounds and may only vary across 

the seven asset market games. 

 

Available information  

 

As in the previous games, in every round, before you make your decision, you observe 

expectations about the stock’s payoff in the given round from 4 independent experts. 

The pattern behind the expert expectations, is exactly the same as in the previous games and 

does not change. If you have already figured out the underlying patterns in stage 1, you can 

apply your knowledge to better identify when the stock will yield a high payoff. 
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